+

WO1998003203A1 - Water-insoluble porous particles of biocompatible substances and process for producing the same - Google Patents

Water-insoluble porous particles of biocompatible substances and process for producing the same Download PDF

Info

Publication number
WO1998003203A1
WO1998003203A1 PCT/JP1997/002478 JP9702478W WO9803203A1 WO 1998003203 A1 WO1998003203 A1 WO 1998003203A1 JP 9702478 W JP9702478 W JP 9702478W WO 9803203 A1 WO9803203 A1 WO 9803203A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
water
substance
biocompatible substance
biocompatible
Prior art date
Application number
PCT/JP1997/002478
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Izumikawa
Noboru Yamashita
Akira Takagi
Yoshinori Masuda
Akira Okada
Muneo Fukui
Original Assignee
Yamanouchi Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanouchi Pharmaceutical Co., Ltd. filed Critical Yamanouchi Pharmaceutical Co., Ltd.
Priority to AU34615/97A priority Critical patent/AU3461597A/en
Priority to JP50678698A priority patent/JP3879018B2/en
Publication of WO1998003203A1 publication Critical patent/WO1998003203A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents

Definitions

  • the present invention relates to water-insolubilized porous particles of a biocompatible substance useful as an embolic substance for embolization treatment or a carrier for pharmaceutical preparations, and a method for producing the same.
  • Transcatheter arterial embolization (hereinafter sometimes abbreviated as TAE) is one of the most widely used therapies for multiple cases, large-scale liver cancer, and recurrent cases after resection.
  • TAE Transcatheter arterial embolization
  • the therapy is performed by injecting a lipiodol suspension of an anticancer drug into cancer tissue using a microcatheter, and then embolizing blood vessels leading to the cancer tissue with a suspended embolic material using a nonionic contrast agent. It is something to be done.
  • the blood supply to the cancer tissue is cut off, and the cancer tissue can be effectively killed by the so-called “arms attack”.
  • this therapy is a tissue-selective therapy, side effects such as necrosis of normal cells can be minimized. It is known that the therapy is also effective for renal cancer.
  • a Polysaccharides or polysaccharide derivatives such as partially hydrolyzed potato starch (specified composition, properties, and functions: from physiologically acceptable, water-insoluble, hydrophilic, swellable, glucose units having a three-dimensional network structure)
  • a method for producing a drug for intravascular administration for the treatment of embolism is disclosed, and a biodegradable temporary embolic material using epichlorohydrin-crosslinked partially hydrolyzed potato starch particles based on the invention is degra It is marketed as Double Starch Microsphere (trade name: manufactured by Pharmacia Co., Ltd .; abbreviated as DSM).
  • the DSM only lasts for several tens of minutes, preventing the effect of the above-mentioned “weapon attack” and also uses a cross-linking agent for water insolubilization.
  • Embolic substances used in TAE have so far used autologous clots, muscle fragments, metals, activated carbon particles, gelatin sponges, silicon spheres, polyvinyl alcohol sponges, cyanoacrylates, polylactic acid dalicholate microspheres, etc.
  • gelatin sponges are currently the most commonly used in countries around the world.
  • Japanese Patent Publication No. 62-333263 discloses the manufacture of gelatin spherical particles in order to improve the problem that mechanically crushed gelatin sponges, which were actually used in clinical practice, are difficult to adhere to blood vessels.
  • a cross-linking reaction is carried out by dispersing an aqueous solution of gelatin and a water-soluble compound which undergoes a cross-linking reaction with gelatin in a dispersion solvent in which water-insoluble ethyl cellulose is dissolved in a non-polar organic solvent which is incompatible with water. It is disclosed.
  • Japanese Unexamined Patent Publication (Kokai) No. 60-222,045 discloses a non-porous crosslinked gelatin sphere prepared by the method described in the above-mentioned Japanese Patent Publication No. 62-32,263.
  • a vascular embolic agent consisting of particles is disclosed, and renal embolism in dogs, in which re-opening of the embolized artery is premature compared to humans, was confirmed as a result of a renal embolism experiment 30 days later. I have.
  • embolic material for embolic treatment can be used as a therapeutically effective embolic therapy if recanalized after 2 weeks, and that there is no concern about side effects such as necrosis of normal cells. (Morio Sato, Ryusaku Yamada, Journal of the Japanese Society of Medical Radiology, 43 (8), p. 977-1005 (1983)).
  • the present inventors studied a method for producing water-insoluble and porous particles without using a cross-linking agent.
  • the cross-linking agent was not added, the emulsion was unified when the emulsion was prepared.
  • the porous particles cannot maintain their shape and become agglomerated, and water is present in the particles when the emulsion is prepared and gelled by cooling to remove the particles from the poor solvent.
  • heated in a heated state it dissolves or agglomerates.
  • washing and removing the solvent used during production it can not be sufficiently washed to a permissible amount by stirring alone, and it increases the porosity of the surface of gel particles. Problems such as inability to produce porous particles were clarified.
  • the present inventors have conducted intensive studies to produce porous particles of a biocompatible substance that can be satisfied as an embolic material for embolization treatment.
  • Water-insolubilized porous particles having sufficient elasticity as an embolic substance and embolic ability considered to be therapeutically effective can be prepared by heating porous particles in a system substantially free of water to make them water-insoluble.
  • the water-insolubilized porous particles obtained in this way are not only excellent as embolic substances, but also various other substances such as pharmaceutical substances such as bone growth factor (BMP) and various carriers for cell immobilization or culture.
  • BMP bone growth factor
  • the inventors have found that they have excellent properties as a carrier, and have completed the present invention.
  • the present invention relates to water-insolubilized porous particles of a gel-forming or solidifying biocompatible substance substantially containing no crosslinking agent. Further, the present invention relates to water-insolubilized porous particles of a biocompatible substance obtained by heating gelled or solidified porous particles of a biocompatible substance in a system substantially free of water to make them water-insoluble. .
  • the gelled or solidified porous particles of a biocompatible substance are heated substantially in the presence of water, and the porous particles of the biocompatible substance are insoluble in water by heating in a system.
  • a gel-forming or solidifying biocompatible substance is foamed in a good solvent solution of the substance, dispersed in a poor solvent of a biocompatible substance that is immiscible with the good solvent, and cooled.
  • the obtained porous particles are washed with a solvent in which the poor solvent for the biocompatible substance is miscible, and heated in a system substantially free of water to make the biocompatible substance insoluble in water.
  • porous particles and a method for producing the same are provided.
  • a substance that is soluble in a poor solvent for a biocompatible substance or insoluble in a good solvent for a biocompatible substance is dissolved in a good solvent solution of a gel-forming or solidifying biocompatible substance. And dispersing the substance that migrates to the poor solvent for the substance, further dispersing the dispersion in the poor solvent for the biocompatible substance, and cooling and gelling or solidifying the resultant.
  • Water-insolubilized porous particles of a biocompatible substance obtained by washing with a solvent that is miscible with a poor solvent for a biocompatible substance and heating in a system substantially free of water are provided.
  • foams such as foam have an unstable shape, and although they can be made into blocks, they are small enough to be used as embolic substances without using a cross-linking agent, and are water-insoluble and porous. Under the circumstances that it was considered extremely difficult to make the particles holding the gel, the gelled or solidified porous particles of the biocompatible substance were heated in a substantially water-free system to make them insoluble in water. The water-insolubilized porous particles of the present invention were obtained. Was completely unexpected.
  • substantially contains no cross-linking agent means that a cross-linking agent is added within a range that does not impair the object of the present invention, in particular, within a range that does not exhibit toxicity. It means that.
  • the biocompatible substance used in the present invention is not particularly limited as long as it is pharmaceutically acceptable and biodegradable, and is water-insoluble by heat treatment. Among them, those in which the strength of the gel is increased or solidified by cooling during the formation of the emulsion in the later-described emulsion forming step are preferable. Further, it is preferable that the biocompatible substance foams when dissolved in a good solvent for the substance. Also, without foaming or foaming, after dispersing the poor solvent of the biocompatible substance in a good solvent solution of the substance, the dispersion is further dispersed in the poor solvent of the substance.
  • the present invention also encompasses an embodiment in which a substance can be dispersed in a solution of a biocompatible substance in a good solvent, and then the dispersion can be further dispersed in a poor solvent of the substance to form pores inside the particles.
  • the substance that is soluble in the poor solvent of the biocompatible substance or the substance that is insoluble in the good solvent of the biocompatible substance and migrates to the poor solvent for the substance include, for example, soybean oil when the biocompatible substance is gelatin, and so on. Oils, organic solvents such as black form, and organic compounds such as polystyrene beads.
  • the biocompatible substance of the present invention is not particularly limited as long as it is a polymer composed of amino acid or a biologically-derived compound, a derivative thereof, or a physiologically acceptable salt thereof.
  • a polypeptide, a derivative thereof, a protein, a derivative thereof, a polysaccharide, a derivative thereof, a physiologically acceptable salt thereof, a mixture containing them, or a mixture of these and a polypeptide can be given.
  • proteins or polypeptides such as gelatin, collagen, atelocollagen, albumin, fibrin, protamine, derivatives thereof, or physiologically acceptable salts thereof, juran gum, arabia gum, hyaluronic acid, alginic acid, chondroitin Polysaccharides such as sulfuric acid, heparin, chitin, chitosan, their derivatives, or their physiologically acceptable salts Is mentioned.
  • gelatin, atelocollagen, albumin, hyaluronic acid, alginic acid, derivatives thereof, or physiologically acceptable salts thereof are preferred.
  • biocompatible substances may be used alone or in combination of two or more. Further, gelatin is preferred.
  • the good solvent for the biocompatible substance is not particularly limited as long as it is pharmaceutically acceptable and can dissolve the substance.
  • the solvent may contain pharmaceutically acceptable additives such as a buffer, an emulsifier, and a tonicity agent.
  • the buffer include phosphate, carbonate, and organic acid salt.
  • the emulsifier include polysorbate, polyethylene hydrogenated castor oil, and sorbitan sesquioleate.
  • the tonicity agent include sodium chloride, glucose, lactose, and sucrose. One or more of these additives may be used.
  • the solution may be dissolved by heating.
  • the degree of dissolution of a biocompatible substance in a good solvent for the substance varies depending on the type of the biocompatible substance, but is usually about 0.01 to 50% by weight, preferably about 0. 30% by weight, more preferably about 1 to 20% by weight.
  • the poor solvent for the biocompatible substance is a pharmaceutically acceptable substance that does not dissolve the biocompatible substance, or a pharmaceutically acceptable substance that is immiscible with a good solvent for the biocompatible substance.
  • mineral oil eg, liquid paraffin
  • animal oil eg, soybean oil, sesame oil, peanut oil, cottonseed oil, camellia oil, rapeseed oil, coconut oil, eucalyptus oil, corn oil, olive oil, castor oil, etc.
  • Silicon oil fatty acids, fatty acid esters (for example, medium-chain fatty acid triglyceride (for example, trade name: Panacet, manufactured by NOF Corporation), ethyl oleate, etc.), organic solvents (for example, toluene, benzene, hexane) , Chloroform, dichloromethane, carbon tetrachloride, etc.).
  • fatty acid esters such as medium-chain fatty acid triglyceride and ethyl oleate are preferred.
  • the solvents for these biocompatible substances may be used alone or as a mixture of two or more.
  • fatty acid esters are preferred.
  • the porous particles of the present invention are not particularly limited as long as they are spherical or amorphous particles and have one or more pores on the surface and inside and are insoluble in water. Among them, a honeycomb shape is preferable.
  • a drug or compound may be contained or immobilized in the particles.
  • the drug or compound can be contained or immobilized by a method known per se. Examples of the method include a method in which a drug or a compound is added or mixed to contain or immobilize in each step of the production method described below.
  • generally pharmaceutically acceptable additives such as excipients, stabilizers, buffers, dispersants, and coating agents may be used together with the particles.
  • excipients include lactose, crystalline phenolic cellulose, dextran and the like.
  • examples of the stabilizer include lactose, trehalose, polyethylene dalicol and the like.
  • the buffer include phosphate, carbonate, and organic acid salt.
  • the dispersant include carboxymethyl cellulose, glycerin, and soybean oil.
  • the coating agent include atalylic acid polymer and polylactic acid / glycolic acid copolymer. One or more of these additives may be used.
  • the specific gravity of the water-insolubilized porous particles of the present invention is not particularly limited, but is usually 0.001 to 1 g / w, preferably 0.005 to 0.9 gm, more preferably 0.005 to 0.2 gZm. It is.
  • the specific gravity can be calculated, for example, by taking a fixed volume (ml) with a measuring cylinder, measuring the weight (g) at that time, and dividing the weight by the volume.
  • the particle size of the water-insolubilized porous particles of the present invention is not particularly limited, but is usually 0.01 to 1 Omm, and preferably 0.1 to 7 mm.
  • the particle size is not particularly limited as long as the particle size does not cause a side effect.
  • it can be applied to a normal injection needle or a force table and to a blood vessel selected for embolization treatment.
  • it is 0.5 to 10 mm, more preferably 0.5 to 7 mm.
  • the particle diameter in the present invention means an average particle diameter.
  • the water-insolubilized porous particles of the present invention have elasticity that can pass through an injection or a catheter or the like, and also have elasticity that particles can freely deform and embolize a blood vessel or the like selected for embolization treatment.
  • a microcatheter standard 3
  • a microcatheter standard 3
  • a material capable of passing through a flow path corresponding thereto is preferable.
  • the swelling ratio of the water-insolubilized porous particles of the present invention is not particularly limited, but is usually about 0.1 to 100 times, preferably about 0.1 to 10 times, and more preferably about 1 to 5 times. .
  • the swelling ratio can be determined, for example, by immersing particles of a certain volume (abbreviated as V) in water, saline, various electrolyte solutions, medical infusions, oils, contrast agents, or therapeutic drugs.
  • V 2 The volume of S Peng Jun (abbreviated as V 2) can be measured using a measuring cylinder or the like, and can be calculated by V 2 ZV.
  • substantially free of water refers to an embodiment in which water is present within a range that does not impair the object of the present invention, in particular, within a range in which particles are not dissolved or aggregated during heat treatment. Included in the present invention. More specifically, “substantially free of water” means that the particles have been washed in a washing / dehydration step described below with a solvent in which a good solvent for the biocompatible substance and a poor solvent for the substance are miscible. Alternatively, it means that the particles have been dried by a drying means such as through-air drying, vacuum drying, or freeze-drying.
  • a foaming step in which foaming is performed by stirring an foaming step in which the foam obtained in the step is poured into a poor solvent of M (abbreviated as S2), and stirring is performed, for example, to form an emulsion.
  • a gelation step in which the emulsion obtained in the step is cooled to, for example, a gelling temperature of M or lower to gel (or solidify) to form gel particles, and the gel particles obtained in the step are sieved, for example, by sieving.
  • the above steps are separated for the sake of convenience in order to explain the present invention in detail, but the present invention is not limited to these steps because some steps can also serve as other steps. .
  • each step will be described in detail.
  • a good solvent (S) solution (S1) of the biocompatible substance (M) is foamed.
  • S1 good solvent
  • M biocompatible substance
  • the method includes, for example, a homogenizer
  • the emulsification step is not particularly limited as long as the foam obtained in the above step can be added to the poor solvent (S 2) of M to form an emulsion.
  • a stirrer such as a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.), a stirring motor with a paddle (MAZELA Z, manufactured by EYLA), and a magnetic stirrer (MAG MIXER, manufactured by Yamato Scientific Co., Ltd.) are used.
  • a stirrer such as a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.), a stirring motor with a paddle (MAZELA Z, manufactured by EYLA), and a magnetic stirrer (MAG MIXER, manufactured by Yamato Scientific Co., Ltd.) are used.
  • the ratio of adding the foam obtained in the above step to the poor solvent (S 2) of M is not particularly limited as long as the emulsion can be formed, but is usually 1.0 or less.
  • the conditions such as the number of rotations of the machine and the size of the container may be any conditions as long as defoaming or fusion between emulsion particles does not occur. Even if foaming is not performed or foaming is performed, the poor solvent of the biocompatible substance is dispersed in a good solvent solution of the substance, and this dispersion is further dispersed in the poor solvent of the substance.
  • a pore can be formed inside the particle, or a substance that is soluble in a poor solvent for a biocompatible substance or a substance that is insoluble in a good solvent for a biocompatible substance and migrates to a poor solvent for the substance
  • the foaming step is omitted.
  • 32 is dispersed in 1 (82/31)
  • the dispersion is further dispersed in S 2, and when an S 2 ZS 1 / S 2 emulsion is formed, this step can also serve as the foaming step .
  • the ratio of S 2 ZS 1 is not particularly limited as long as it is a ratio at which an emulsion is formed, but is usually 1.0 or less, preferably 0.8 or less. Furthermore, as for the ratio of (S 2 / S 1) ZS 2, Although not limited, it is 1.0 or less, preferably 0.8 or less.
  • the gelation (or solidification) step is not particularly limited as long as the emulsion obtained in the above step is gelled (or solidified).
  • Examples of the method include a method of cooling the system below the gelation (or solidification) temperature of the biocompatible substance, and a method of solidifying the substance by washing it with a poor solvent. When the emulsion gels (or solidifies), particles that can be easily handled can be obtained.
  • the gelation temperature of the biocompatible substance can be appropriately selected depending on the composition of the biocompatible substance, the concentration of the substance in a good solvent solution, or the retention time (time for maintaining a certain temperature).
  • the substance when quenching a 4% gelatin aqueous solution, it is possible to gel at about 18 ° C; when washing gelled particles with alcohols in the washing step described below, an exothermic reaction occurs. It is preferably at most 16 ° C.
  • the substance can be solidified by washing with a poor solvent for the substance.
  • the step of removing the poor solvent (abbreviated as S2) of the biocompatible substance is not particularly limited as long as it is a method of removing S2 by removing the particles obtained in the above step from S2. Examples of the method include sieving, filtration, and centrifugation.
  • the system is preferably cooled to a temperature lower than the gelation temperature of the biocompatible substance in order to maintain the shape of the particles stably.
  • the particles may be classified according to the purpose of use.
  • the washing / dehydrating step is not particularly limited as long as S and S2 are washed from the particles obtained in the above step.
  • Examples of the method include a method of washing with a solvent (S 3) in which S and S 2 are miscible.
  • S 3) a solvent
  • the particles are taken out on a mesh and washed with S3, or the particles are put into a beaker, washed while being stirred under reduced pressure with S3, and returned to normal pressure, or the particles and S3 are mixed in a beaker. And wash the whole beaker by ultrasonic irradiation.
  • the steps of reduced pressure, normal pressure and ultrasonic waves may be repeated. By this step, pores are further formed on the surface and inside, and S 2 remaining inside is efficiently cleaned.
  • S3 is pharmaceutically acceptable, is miscible with S and S2, and is not particularly limited as long as it is a poor solvent for M.
  • S3 include alcohols (eg, methanol, ethanol, isopropanol, etc.), acetone, dioxane, hexane, and halogen-based organic solvents. Above all, methano Alcohols such as ethanol, ethanol and isopropanol are preferred. These may be used alone or in combination of two or more.
  • an anti-agglomeration agent may be added.
  • the agglomeration inhibitor include lactose, D-sorbitol, and crystalline cellulose. Further, before and after this step, steps such as ventilation drying, vacuum drying, and freeze drying can be performed.
  • the heat treatment step is not particularly limited as long as the particles are substantially insoluble in water and the system is treated under the conditions of temperature and time at which the particles obtained in the step become insoluble in water.
  • any conditions may be used for this step as long as the temperature and the time at which the biocompatible substance causes intermolecular crosslinking.
  • the time conditions in the method are determined by the temperature conditions, and include, for example, 110 minutes to 220 degrees and 10 minutes or more and 120 hours or less.
  • the temperature is from 135 minutes to 120 hours at 135 T, more preferably from 1 hour to 6 hours at 144 to 190 ° C.
  • this step may be performed under reduced pressure. This step can also serve as a sterilization treatment.
  • the particles may be washed with water to remove water-soluble components.
  • the sterilization treatment may be performed by filling the particles of the present invention in a medical packaging container (for example, a vial, an ampoule, a prefilled syringe, etc.), and then using a high-pressure steam method (Japanese Pharmacopoeia) or the like.
  • a medical packaging container for example, a vial, an ampoule, a prefilled syringe, etc.
  • a high-pressure steam method Japanese Pharmacopoeia
  • a dehydration step can be further carried out by a method known per se.
  • drying methods such as ventilation drying, vacuum drying, and freeze drying.
  • the dose can be appropriately adjusted depending on the thickness of blood vessels selected for embolization treatment, the spread of tumor tissue, or the instrument used. Usually, it is 1 g or less, preferably 0.5 g or less. In this case, it may be used as a pharmaceutical composition together with a physiologically acceptable liquid (physiological saline solution, iodinated poppy oil fatty acid ethyl ester, etc.).
  • a physiologically acceptable liquid physiological saline solution, iodinated poppy oil fatty acid ethyl ester, etc.
  • the porous particles of the present invention are used as an embolic substance in TAE and the like, and also used as a hemostatic substance in medical procedures such as biopsy.
  • the particle It may be used as a pharmaceutical composition together with a liquid alone or a physiologically acceptable liquid (such as physiological saline). It is also used as a carrier for various cell immobilization or culture. In this case, it may be used as a pharmaceutical composition together with a physiologically acceptable liquid (such as physiological saline).
  • a wound protectant a disintegrant for oral preparations, a drug adsorbent (for example, a bitterness inhibitor), a carrier for sustained release preparations, and a material for preventing breakage during transportation.
  • porous particles of the present invention can also contain or mix a pharmaceutical substance such as a diagnostic drug or a therapeutic drug. That is, in this case, a pharmaceutical composition containing the porous particles of the present invention is provided.
  • Examples of the diagnostic agent include X-ray contrast agents and radioisotopes as contrast agents.
  • Examples of the X-ray contrast agent include amide trizoic acid, iotharamic acid, omidamide, metrizonic acid, or a physiologically acceptable salt thereof as a triode compound, adipiodone, ixoxagluate, and a triode dimer compound.
  • Iotroxic acid eodoxamic acid, iocarmic acid, or a physiologically acceptable salt thereof, as a non-ionic compound, iotrolan, iopamidol, iohexol, iohersole, iomeprol, metrazamide, or Examples of monodized oils include oxidized poppy oil and fatty acid ethyl ester (trade name: Lipiodol Penoletraphnolide).
  • the diagnostic agent may be, for example, a radioactive substance.
  • the substance may be in the form of a solution or microparticles.
  • the fine particles are generally the same size or smaller than the particles of the present invention.
  • Contains radioisotopes such as indium, thallium, iodine, technetium, gallium, cerium, norebidium, chromate, iron, tin, xenon, carbon, oxygen, nitrogen, fluorine or their physiologically acceptable salts It may be a substance that does. These may use one or more different radioisotopes.
  • the concentration and radioactivity of the radioactive substance are not particularly limited as long as they can be diagnosed.
  • Examples of the therapeutic agent include an antitumor agent or a similar radioactive substance.
  • Examples of the antitumor drug include mitomycin C, actinomycin D, bleomycin (bleomycin hydrochloride, etc.), Lacyclin antibiotics (acralubicin hydrochloride, epirubicin hydrochloride, doxorubicin hydrochloride, etc.), neocarzinostatin, dinostatin stylamer (SMANCS), etc.
  • Examples of antitumor plant component drugs include irinotecan hydrochloride, vinblastine sulfate, etoposide, etc., and other tumor drugs include carpoplatin, cisplatin, pentostatin, lentinan and the like.
  • examples of the therapeutic agent include biological agents such as cytokines, hematopoietic factors, various growth factors, and enzymes.
  • examples of the cytokine include interferon (eg, ⁇ , ⁇ , y), interleukin (eg, IL-1 to IL-18), tumor necrosis factor (TNF), and the like.
  • hematopoietic factor examples include erythropoietin ( ⁇ - ⁇ ), granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), granulocyte-macrophage colony-stimulating factor (GM- CSF), thrombopoietin (II), platelet growth factor, stem cell growth factor (SCF) and the like.
  • growth factors examples include basic or acidic fibroblast growth factor (FGF) or their families, nerve cell growth factor (NGF) or their families, insulin-like growth factor (IGF), bone Form factors (eg BMP 1-2) or transforming growth factors (TGF-), superfamily, hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), epithelial cell growth factor (EGF ).
  • FGF basic or acidic fibroblast growth factor
  • NGF nerve cell growth factor
  • IGF insulin-like growth factor
  • TGF- transforming growth factors
  • HGF hepatocyte growth factor
  • PDGF platelet-derived growth factor
  • EGF epithelial cell growth factor
  • Various hormones include insulin, calcitonin, glucagon, human growth factor (hGH), parathyroid hormone (PTH), and the like.
  • the enzyme include L-asparaginase, superoxide dismutase (SOD), and tissue plasminogen activator (t-PA).
  • Therapeutic agents are substances involved in the expression of proteins and peptides (for example, nucleic acids such as DNA and RNA, or low- and high-molecular transcriptional regulators and their inhibitors). Agent).
  • therapeutic agents include, for example, substances acting on blood vessels (vasodilators, vasoconstrictors, etc.), substances acting on coagulation, substances acting on the formation or dissolution of thrombus, antibacterial substances, anti-inflammation Substances, anesthetics, substances that exhibit hormonal effects, bone resorption inhibitors (for example, bisphosphonates), various vitamins, and antiparasitic substances.
  • therapeutic agents or diagnostic agents may be used as a mixture of two or more. Further, they may be used by diluting them with a physiologically acceptable liquid (eg, physiological saline).
  • FIG. 1 shows a production method for producing the water-insolubilized porous particles of the present invention. A detailed description is given in the section of the disclosure of the invention.
  • FIG. 2 shows the mechanism of action (from administration to recanalization) of embolization therapy when the water-insolubilized porous particles of the present invention are used for transarterial embolization therapy.
  • the mechanism is as follows: (1) Particles selectively administered to a target blood vessel by a catheter physically emboli the blood vessel; (2) Platelet adheres to the particle and Z or is brought into contact with the particle to induce platelet aggregation. Clots are formed (the embolism becomes strong). 3The embolus causes necrosis of a malignant tumor whose nutrient supply is cut off.
  • the concentration of the anticancer drug at the tumor site is also high.
  • particles are degraded by enzymes in the living body, and blood vessels are re-communicated.
  • Necrotic areas or surrounding tissues are restored to normal.
  • the features of the porous particles of the present invention in the mechanism are considered as follows. That is, (1) Regarding the above mechanism (1), since the particles of the present invention are porous, the particle surface area is large, and the particles have excellent elasticity, so that they can be freely adjusted according to the blood vessel wall and the thickness of the blood vessel. By being deformable, particles can be formed in a state where the particles are close to each other in an embolus position and denser.
  • the particles of the present invention can be deformed even in a microcatheter used for TAE or the like, it is possible to administer particles having a particle size larger than that of non-porous' ft particles. An embolic effect is expected. In addition, usually, when a micro catheter is used, a considerable force is required. When the particles of the present invention are used, the physical burden on the practitioner may be reduced for the reasons described above. Be expected. (2) It is generally said that platelet aggregation is induced by contact of platelets with, for example, collagen. Regarding the mechanism (1), for example, a case is considered where gelatin obtained by decomposing collagen is used as a base for an embolic substance.
  • the specific surface area of the particles of the present invention is large because of their porosity, and platelet aggregation is likely to occur because of their large contact surface area with platelets.
  • the particles of the present invention are porous, platelets can infiltrate between the particles, so that the platelet aggregation effect is further enhanced, and the embolization ability is thought to be enhanced accordingly.
  • turbulence is likely to occur in blood vessels due to the effects of particle irregularities, and that platelet aggregation is likely to occur due to the shearing pressure exerted on platelets.
  • the mechanism (1) it is considered that the particle of the present invention is degraded from the inside of the particle due to its porosity in the decomposition by the in-vivo enzyme, so the disappearance rate is high.
  • Figure 3 shows the mechanism of action (from administration to recanalization) when non-porous particles are used in the therapy. Since the particles are not porous, it can be considered that the particle size that can be administered is poorer than the porous particles of the present invention in terms of the embolic property and the re-penetrating ability based on the platelet aggregation action.
  • FIG. 4 shows the results of a platelet aggregation test on the particles of the present invention prepared from Example 16 and the non-porous particles obtained from Comparative Examples 3 to 6. (Beagle A blood)
  • FIG. 5 shows the results of the platelet aggregation test as in FIG. (Blood of Beagle Dog B) Best Mode for Carrying Out the Invention
  • Gelatin (CP-2, manufactured by Miyagi Chemical Co., Ltd.) (20 g) was placed in purified water (500 zo) and dissolved by heating. This solution was returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (1000 rpm, 10 minutes) to foam. This foam (400 ⁇ ) is put into Panacet 800 (Nippon Oil & Fats Co., Ltd.) 1/200, and stirred at 200 rpm using a stirrer (MAZELA Z, Tokyo Rika Instruments) equipped with a Teflon paddle. To form an emulsion. When this emulsion was taken out using a mesh at room temperature without gelling, the emulsion was coalesced and could not be taken out as particles.
  • a homogenizer manufactured by Tokushu Kika Kogyo Co., Ltd.
  • MAZELA Z Tokyo Rika Instruments
  • the gel particles were taken out using a mesh (250 ⁇ m) and washed with isopropyl alcohol (IPA). After washing, ⁇ PA was removed using a glass filter, and gel particles were taken out. This was vacuum-dried and heated at 155 ° C for 4 hours to obtain particles of the present invention.
  • the obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • each particle 1 j 1 before and after the heat treatment was placed in a 1-oz Spitz tube, and water was added thereto to make 1 z, and the residual gel volume after shaking for a certain period of time with a shaker was used.
  • the structure retention ability was compared by measuring.
  • the particles subjected to the heat treatment immediately swelled and maintained their structures, whereas the particles not heat-treated dissolved the gel with time and could not maintain the structure. Therefore, the book It was suggested that the inventive particles were water-insoluble and had a moderate strength considered to be applicable to embolization therapy.
  • the porous particles produced using darthal aldehyde as a cross-linking agent As a result, with respect to the porous particles produced using darthal aldehyde as a cross-linking agent, a tendency to suppress cell growth was observed. In contrast, the porous particles of the present invention tended to promote cell growth. Therefore, it was suggested that the particles of the present invention are more excellent in cell proliferation and safety than particles crosslinked with glutaraldehyde.
  • Gelatin (CP-2, manufactured by Takashiro Chemical Co., Ltd.) (50 g) was placed in purified water (500 ⁇ ) and heated to dissolve. The solution is returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo). (10 () 00 rpm, 10 minutes). The foam was added to soybean oil (manufactured by Kanto Kagaku) 1 /, and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • Gelatin (CP-2, manufactured by Miyagi Chemical Co., Ltd.) (50 g) was placed in purified water (500 /) and heated to dissolve. The solution was returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (lOOOOOrpm, 10 minutes) to foam. The foam (400 m) was put into sesame oil (manufactured by Kanto Kagaku) 1 /, and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • ⁇ serum albumin (BS S, manufactured by Sigma) was placed in 100 ⁇ of purified water, and dissolved by stirring with a magnetic stirrer. This solution was stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (lOOOOOrpm, 10 minutes) to foam. 20 zo of this foam was put into 1 zo of Panaceto 800 (manufactured by NOF CORPORATION), and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • BS S manufactured by Sigma
  • alginic acid manufactured by Sigma
  • 20 g of alginic acid was placed in purified water 100/77 and stirred and dissolved with a magnetic stirrer.
  • the solution was stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (lOOOOORpm, 10 minutes) to foam.
  • 20 bubbles of this foam were put in 1 panaceto 800 (manufactured by NOF CORPORATION), and the same operation as in Example 1 was carried out to obtain particles of the present invention.
  • the obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • Gelatin (CP-2, manufactured by Miyagi Chemical Co., Ltd.) (50 g) was placed in purified water (50 zo), and dissolved by heating. The solution was returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (100,000 rpm, 10 minutes) to foam. This bubble 40 ⁇ / ⁇ 15 (manufactured by Kao Corporation) was added to 1/100/1 (manufactured by NOF CORPORATION) 1 / containing 1%, and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • Example 1 50 g of hydrolyzed gelatin (trade name; Nippi High Grade Gelatin, manufactured by Nippi) was placed in 500 777 of purified water, and heated to dissolve. The solution was returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (100 rpm, 10 minutes) to foam. 400/77 of this foam was put into Panasate 800 (manufactured by NOF Corporation), and stirred at 400 rpm using a stirrer (MAZELA Z, manufactured by EYELA) equipped with a Teflon paddle. To form an emulsion. Thereafter, the same operation as in Example 1 was performed to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • a homogenizer manufactured by Tokushu Kika Kogyo Co., Ltd.
  • Gelatin (CP-2, manufactured by Takashiro Chemical Co., Ltd.) (4 g) was placed in purified water (100 / dilute) and heated to dissolve. The solution was returned to room temperature, added with 20/77 / of panacet, and stirred with a homogenizer to form an emulsion. The emulsion was added in a panasate 800 (manufactured by NOF Corporation) 400/77, and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • Example 1 1 In the same manner as in Example 1, the obtained gel particles were vacuum-dried and then heated at 190 ° C for 1 hour to obtain particles of the present invention.
  • the obtained particles had pores on the surface, and the upper part was porous (honeycomb). When dispersed in water, the particles swelled while maintaining the shape of spherical particles.
  • the gel particles obtained were dried under vacuum in the same manner as in Example I, and then heated at 170 ° C for 2 hours to obtain particles of the present invention.
  • the obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • the gel particles obtained were dried in a vacuum in the same manner as in Example 1 and then heated at 160 ° C. for 4 hours to obtain particles of the present invention.
  • the obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • the gel particles obtained were dried in vacuo in the same manner as in Example 1 and then heated at 145 ° C. for 5 hours to obtain particles of the present invention.
  • the obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • the obtained gel particles were lyophilized, and then heated at 145 ° C for 5 hours to obtain particles of the present invention.
  • the obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • the gel particles were taken out using a mesh (300 / xm) and washed with cooled isopropyl alcohol (IPA). After washing, the IPA was removed using a mesh, and the gel particles were taken out. Put the gel particles and IPA into a beaker, reduce the pressure using a water jet pump, and stir with a magnetic stirrer. While washing, the gel particles were washed. Further, the pressure was returned to normal pressure, the whole beaker was transferred to an ultrasonic cleaner, and the gel particles were irradiated with ultrasonic waves. The gel particles were classified using a mesh, and the gel particles were taken out using a filter. This was vacuum-dried and heated at 155 ° C for 4 hours to obtain particles of the present invention.
  • IPA isopropyl alcohol
  • the particles were further washed with water and freeze-dried to obtain particles.
  • the obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
  • a dispersion medium consisting of 150 g of cyclohexane and 50 g of toluene, 6 g of ethylcell mouth (49% containing an ethoxy group) was dissolved, and this solution was fitted with a cooling tube and a Teflon paddle. Ezo was placed in a separable flask. The stirring speed was 400 rpm, and the temperature was 70 ° C.
  • gelatin was added to water at a concentration of 30% by weight, and 40 g of an aqueous solution obtained by dissolving at 60 ° C was added.4 g of a 50% aqueous dartal aldehyde solution (1 equivalent of the amino group of gelatin, (4 equivalents of Daltar aldehyde) and reacted for 5 minutes to obtain brownish particles. This was washed with ethyl acetate, further washed with acetone, and sieved to collect particles of 0.5 to 1.0 mm, and dried with a vacuum drier to obtain particles. Observation of the particles with an electron microscope revealed that the surface was smooth and had no pores inside.
  • the total amount was set to 4, and this was transferred to a blood collection bottle, 40 mg of each particle was added, and the number of platelets over time was measured using an animal blood cell measuring device (Celltack ⁇ , manufactured by Nihon Kohden).
  • Celltack ⁇ manufactured by Nihon Kohden
  • collagen (mg Z 72 zo, poma tendon collagen, manufactured by Hormon Chemie) was added (the collagen concentration in the blood was reduced). 33.3 ⁇ g / m).
  • a blank test was performed using sodium citrate-containing blood.
  • the water-insolubilized porous particles made of the biocompatible substance of the present invention are biocompatible without containing a crosslinker, and have excellent elasticity such as passing through an injection needle or a catheter and fitting to the wall of a blood vessel.
  • embolic potential that is considered therapeutically effective, and because of its porous nature, it is expected to have a rapid re-penetrating ability after embolic treatment without concern about side effects such as necrosis of normal cells.
  • it can be used for transarterial embolization therapy such as hepatocellular carcinoma.
  • porous particles of the present invention can be used for the therapy, etc., for example, a biopsy hemostatic substance, various carriers for immobilizing or culturing cells, a wound protecting agent, disintegration of oral preparations, and the like.
  • an embolic material for treating emboli containing water-insolubilized porous particles of a biocompatible substance substantially free of a cross-linking agent, and a pharmaceutical substance and a pharmaceutical composition containing the particles is provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Water-insoluble porous particles which contain no cross-linking agent are biologically compatible and porous, have a high elasticity, an excellent embolic effect for treating emboli and an excellent effect of aggregating platelets, and are therefore useful as a hemostatic substance. Because of being porous, these particles are expected to enable rapid recanalization in blood vessels after the treatment of emboli. These particles are produced by heating porous particles of a biocompatible substance in the form of a gel or a solid in a substantially moisture-free system so as to make them water-insoluble. These particles are also useful as a medicinal preparation carrier.

Description

明 細 書 生体適合性物質の水不溶化多孔性粒子及びその製造法 技術分野  Description Water-insolubilized porous particles of biocompatible substance and method for producing the same
本発明は、塞栓治療用塞栓物質あるいは医薬製剤用担体として有用な生体適合性 物質の水不溶化多孔性粒子及びその製造法に関する。 背景技術  The present invention relates to water-insolubilized porous particles of a biocompatible substance useful as an embolic substance for embolization treatment or a carrier for pharmaceutical preparations, and a method for producing the same. Background art
現在、 肝細胞癌の主な治療法には、 肝切除、 経動脈的塞栓療法、 エタノール注入 療法などの療法がある。 なかでも経動脈的塞栓療法 (Transcatheter arterial embolization;以下、 T A Eと略記することもある) は、 多発例、 大型の肝癌、 切 除後の再発例などに幅広く適用されている療法である。 該療法は、抗癌剤のリピオ ドール懸濁液をマイクロカテーテルを用いて癌組織に注入し、続いて非イオン性造 影剤を用いて懸濁した塞栓物質により癌組織に通じる血管を塞栓して行われるも のである。 該療法によれば、 癌組織への血液の供給を絶ち、 いわゆる 「兵糧攻め」 により効果的に癌組織を壊死させることができる。 また、該療法は組織選択的治療 法であるため、 正常細胞の壊死などの副作用も最小限に抑えることができる。 なお、 該療法は腎癌にも有効であることが知られている。  Currently, the main treatments for hepatocellular carcinoma include hepatectomy, transarterial embolization, and ethanol injection. Transcatheter arterial embolization (hereinafter sometimes abbreviated as TAE) is one of the most widely used therapies for multiple cases, large-scale liver cancer, and recurrent cases after resection. The therapy is performed by injecting a lipiodol suspension of an anticancer drug into cancer tissue using a microcatheter, and then embolizing blood vessels leading to the cancer tissue with a suspended embolic material using a nonionic contrast agent. It is something to be done. According to this therapy, the blood supply to the cancer tissue is cut off, and the cancer tissue can be effectively killed by the so-called “arms attack”. In addition, since this therapy is a tissue-selective therapy, side effects such as necrosis of normal cells can be minimized. It is known that the therapy is also effective for renal cancer.
TAEに用いられる塞栓物質に関する先行技術としては、特公昭 6 1 - 2568 9号 (対応特許 US4, 1 24, 705) 、 特公昭 62— 33263号、 特開昭 6 0— 222045号 (対応特許 E P 1 32983) などが公知である。  As prior art relating to embolic substances used in TAE, Japanese Patent Publication No. 61-25869 (corresponding patent US Pat. No. 4,124,705), Japanese Patent Publication No. 62-33263, Japanese Patent Laid-Open No. 60-222045 (corresponding patent EP) 1 32983) and the like.
特公昭 6 1— 25689号公報には、 要約すれば  In Japanese Patent Publication No. Sho 61-25689,
a . 架橘された部分加水分解バレイショデンプンなどの多糖または多糖誘導体 (特定された構成 ·性質 ·機能:生理学的許容性、 水不溶性、 親水性、 膨潤性、 三 次元網状構造を有するグルコース単位から構成、共有性結合をもつ架橋により交叉 結合、 血漿中の α—アミラーゼによって水溶性分画に分解されるような置換度) の 粒子を自体公知の方法で製造し、 b .該粒子を篩別して血管直径に基づいて選択される粒子サイズを有する画分を 採取し、 a. Polysaccharides or polysaccharide derivatives such as partially hydrolyzed potato starch (specified composition, properties, and functions: from physiologically acceptable, water-insoluble, hydrophilic, swellable, glucose units having a three-dimensional network structure) The composition, cross-linking by cross-linking with a covalent bond, and a degree of substitution that is decomposed into a water-soluble fraction by α-amylase in plasma) by a method known per se, b. sieving the particles to collect a fraction having a particle size selected based on the vessel diameter,
c . 該画分を、 必要により他の生理学的許容物質とともに、 生理学的に許容しう る水溶液に懸濁し、  c. suspending said fraction, optionally together with other physiologically acceptable substances, in a physiologically acceptable aqueous solution;
d . 該懸濁液を容器に充填し、 無菌または滅菌処理する  d. Fill the container with the suspension and sterilize or sterilize it
ことを特徴とする塞栓治療用の血管内投与用薬剤の製造法が開示されており、該発 明に基づくェピクロルヒ ドリン架橋部分加水分解バレイショデンプン粒子を用い た生分解性一時的塞栓物質はデグラダブルスターチマイクロスフェアー(商品名 : フアルマシア社製 以下、 D S Mと略記する) として上市されている。 A method for producing a drug for intravascular administration for the treatment of embolism is disclosed, and a biodegradable temporary embolic material using epichlorohydrin-crosslinked partially hydrolyzed potato starch particles based on the invention is degra It is marketed as Double Starch Microsphere (trade name: manufactured by Pharmacia Co., Ltd .; abbreviated as DSM).
該 D S Mは血流遮断効果が数十分しか持続せず、 上述したような 「兵糧攻め」 の 効果を期待できないばかりでなく、 その水不溶化には架橋剤が用いられている。 また、 T A Eに用いられる塞栓物質には、 これまで自己凝血塊、 筋肉片、 金属、 活性炭粒子、 ゼラチンスポンジ、 シリコン球、 ポリビニルアルコールスポンジ、 シ ァノアクリレート、ポリ乳酸ダリコール酸マイクロスフェア一などの使用が報告さ れているが、現在のところゼラチンスポンジが世界各国で最も一般的に用いられて いる。  The DSM only lasts for several tens of minutes, preventing the effect of the above-mentioned “weapon attack” and also uses a cross-linking agent for water insolubilization. Embolic substances used in TAE have so far used autologous clots, muscle fragments, metals, activated carbon particles, gelatin sponges, silicon spheres, polyvinyl alcohol sponges, cyanoacrylates, polylactic acid dalicholate microspheres, etc. However, gelatin sponges are currently the most commonly used in countries around the world.
特公昭 6 2 - 3 3 2 6 3号公報には、実際に臨床で用いられていたゼラチンスポ ンジ機械的破砕物が血管に密着しにくい問題点を改善する目的で、ゼラチン球状粒 子の製造法として、ゼラチン及びゼラチンと架橋反応する水溶性化合物の水溶液を、 水に不溶性のェチルセルロースを水と相溶しない非極性有機溶媒に溶解させてな る分散溶媒中に分散させて架橋反応させることが開示されている。  Japanese Patent Publication No. 62-333263 discloses the manufacture of gelatin spherical particles in order to improve the problem that mechanically crushed gelatin sponges, which were actually used in clinical practice, are difficult to adhere to blood vessels. As a method, a cross-linking reaction is carried out by dispersing an aqueous solution of gelatin and a water-soluble compound which undergoes a cross-linking reaction with gelatin in a dispersion solvent in which water-insoluble ethyl cellulose is dissolved in a non-polar organic solvent which is incompatible with water. It is disclosed.
しかしながら、 該公報に記載された製造法によって得られたものは、 多孔性を有 しておらず、塞栓治療用塞栓物質として求められる弾力性を有していないばかりで なく、具体的に開示された球状粒子はグルタルアルデヒ ドなどの架撟剤を使用して 架橘されたものである。  However, those obtained by the production method described in this publication do not have porosity, do not have the elasticity required as an embolic material for embolic treatment, and are specifically disclosed. The spherical particles were crosslinked using a crosslinker such as glutaraldehyde.
ダルタルアルデヒ ドに限らず架橋剤の多くは生体適合性に欠け、それらの残留性 及び毒性が懸念されていることが文献等で報告されている (van Luyn MJ., Biomaterials, 13 (14), pp. 1017-1024 (1992): van Luyn MJ. , J. Biomed. , Mater. Res. , 26 (8), pp. 109卜 1110 (1992) : Huang Lee しし, J. Biomed. , Mater. Res., 24 (9) , pp. 1 185- 1201 (1990)など) 。 It has been reported in literature that many crosslinkers, not only dartartaldehyde, lack biocompatibility and are concerned about their persistence and toxicity (van Luyn MJ., Biomaterials, 13 (14), pp. 1017-1024 (1992): van Luyn MJ., J. Biomed., Mater. Res., 26 (8), pp. 109, 1110 (1992): Huang Lee, J. Biomed., Mater. Res. ., 24 (9), pp. 1185-1201 (1990)).
特開昭 6 0— 2 2 2 0 4 5号公報には、前記特公昭 6 2— 3 3 2 6 3号公報に記 載された方法により製造された多孔性を有していない架橋ゼラチン球状粒子から なる血管塞栓剤が開示されており、塞栓動脈の再疎通がヒ 卜と比較して早レ、とされ るィヌにおいて腎臓塞栓実験の結果、 3 0日後も動脈の塞栓が確認されている。 塞栓治療用塞栓物質としては、 2週間以降で再疎通すれば治療上有効とされる塞 栓療法が可能とされ、かつ正常細胞の壊死などの副作用も懸念されないことが文献 等で報告されている (佐藤守男, 山田龍作, 日本医学放射線学会雑誌, 43 (8), p. 977- 1005 (1983) ) 。  Japanese Unexamined Patent Publication (Kokai) No. 60-222,045 discloses a non-porous crosslinked gelatin sphere prepared by the method described in the above-mentioned Japanese Patent Publication No. 62-32,263. A vascular embolic agent consisting of particles is disclosed, and renal embolism in dogs, in which re-opening of the embolized artery is premature compared to humans, was confirmed as a result of a renal embolism experiment 30 days later. I have. It has been reported in the literature that embolic material for embolic treatment can be used as a therapeutically effective embolic therapy if recanalized after 2 weeks, and that there is no concern about side effects such as necrosis of normal cells. (Morio Sato, Ryusaku Yamada, Journal of the Japanese Society of Medical Radiology, 43 (8), p. 977-1005 (1983)).
したがって、 架橋剤を含まず生体適合性であって、 注射針またはカテーテルを通 過しかっ血管壁面にフィットするなどの優れた弾力性、治療上有効とされる塞栓能、 正常細胞の壊死などの副作用が懸念されることのない塞栓治療後の速やかな再疎 通能などを有する塞栓物質についてはこれまで知られておらず、その開発が要望さ れていた。  Therefore, it is biocompatible without cross-linking agents and has excellent elasticity, such as passing through a needle or catheter and fitting to the wall of a blood vessel, embolic ability that is therapeutically effective, and side effects such as necrosis of normal cells An embolic material having a rapid reperfusion ability after embolization treatment, which does not raise concerns, has not been known so far, and its development has been requested.
また、 無菌的に大量生産が可能で、 粒子径の制御も可能で、 前記特性を有する塞 栓物質の製造法の開発が必要とされていた。 発明の開示  In addition, there has been a need to develop a method for producing an embolic material having the above characteristics, which enables aseptic mass production and control of particle size. Disclosure of the invention
このような状況下、本発明者らは架橋剤を使用しないで水不溶性でかつ多孔性の 粒子の製造法について検討を行ったところ、架橋剤を添加しない場合ェマルジヨン 調製時にヱマルジョンが合一すること、粒子の強度を高めるため加熱した場合多孔 性粒子がその形状を保つことができず塊となること、ェマルジヨン調製後冷却によ りゲル化させ貧溶媒から粒子を取り出すとき粒子内に水が存在している状態で加 熱した場合溶解あるいは凝集すること、製造時に用いた溶媒を洗浄除去する場合撹 拌のみでは許容量以下までの充分な洗浄ができないこと、ゲル粒子の表面の多孔性 を高められないことなど、多孔性粒子を製造するにあたって問題点が明らかとなつ た。  Under these circumstances, the present inventors studied a method for producing water-insoluble and porous particles without using a cross-linking agent.When the cross-linking agent was not added, the emulsion was unified when the emulsion was prepared. However, when heated to increase the strength of the particles, the porous particles cannot maintain their shape and become agglomerated, and water is present in the particles when the emulsion is prepared and gelled by cooling to remove the particles from the poor solvent. When heated in a heated state, it dissolves or agglomerates.When washing and removing the solvent used during production, it can not be sufficiently washed to a permissible amount by stirring alone, and it increases the porosity of the surface of gel particles. Problems such as inability to produce porous particles were clarified.
さらに、本発明者らは塞栓治療用塞栓物質として満足しうる生体適合性物質の多 孔性粒子を製造すべく鋭意研究した結果、ゲル化または固化した生体適合性物質の 多孔性粒子を実質的に水の存在しない系で加熱して水不溶化することにより、塞栓 物質としての十分な弾力性、治療上有効とされる塞栓能を有する水不溶化多孔性粒 子を調製できることを見出した。 さらに、 このようにして得られた水不溶化多孔性 粒子が塞栓物質として優れているばかりでなく、 例えば骨成長因子 (B M P ) など の医薬物質や種々の細胞固定化または培養用の担体など各種の担体としても優れ た性質を有することを知見して本発明を完成させるに至った。 Further, the present inventors have conducted intensive studies to produce porous particles of a biocompatible substance that can be satisfied as an embolic material for embolization treatment. Water-insolubilized porous particles having sufficient elasticity as an embolic substance and embolic ability considered to be therapeutically effective can be prepared by heating porous particles in a system substantially free of water to make them water-insoluble. Was found. Furthermore, the water-insolubilized porous particles obtained in this way are not only excellent as embolic substances, but also various other substances such as pharmaceutical substances such as bone growth factor (BMP) and various carriers for cell immobilization or culture. The inventors have found that they have excellent properties as a carrier, and have completed the present invention.
すなわち、本発明は実質的に架撟剤を含有しないゲル形成性または固化性の生体 適合性物質の水不溶化多孔性粒子に関する。 また、 本発明はゲル化または固化した 生体適合性物質の多孔性粒子を実質的に水の存在しない系で加熱して水不溶化し てなる生体適合性物質の水不溶化多孔性粒子に関するものである。  That is, the present invention relates to water-insolubilized porous particles of a gel-forming or solidifying biocompatible substance substantially containing no crosslinking agent. Further, the present invention relates to water-insolubilized porous particles of a biocompatible substance obtained by heating gelled or solidified porous particles of a biocompatible substance in a system substantially free of water to make them water-insoluble. .
また、 本発明によれば、 ゲル化または固化した生体適合性物質の多孔性粒子を実 質的に水の存在しなレ、系で加熱して水不溶化する生体適合性物質の多孔性粒子の 製造法、またゲル形成性または固化性の生体適合性物質を該物質の良溶媒溶液中で 起泡させ、 良溶媒とは混和しない生体適合性物質の貧溶媒に分散し、 これを冷却し てゲル化または固化した後、得られた多孔性粒子を生体適合性物質の貧溶媒が混和 しうる溶媒で洗浄し、実質的に水の存在しない系で加熱してなる生体適合性物質の 水不溶化多孔性粒子及びその製造法が提供される。  Further, according to the present invention, the gelled or solidified porous particles of a biocompatible substance are heated substantially in the presence of water, and the porous particles of the biocompatible substance are insoluble in water by heating in a system. In the production method, a gel-forming or solidifying biocompatible substance is foamed in a good solvent solution of the substance, dispersed in a poor solvent of a biocompatible substance that is immiscible with the good solvent, and cooled. After gelation or solidification, the obtained porous particles are washed with a solvent in which the poor solvent for the biocompatible substance is miscible, and heated in a system substantially free of water to make the biocompatible substance insoluble in water. Provided are porous particles and a method for producing the same.
さらにまた、 本発明によれば、 ゲル形成性または固化性の生体適合性物質の良溶 媒溶液に、生体適合性物質の貧溶媒に溶解しうる物質もしくは生体適合性物質の良 溶媒に不溶でかつ該物質の貧溶媒に移行する物質を分散させ、該分散液をさらに生 体適合性物質の貧溶媒に分散し、 これを冷却してゲル化または固化した後、 得られ た多孔性粒子を生体適合性物質の貧溶媒が混和しうる溶媒で洗浄し、実質的に水の 存在しない系で加熱してなる生体適合性物質の水不溶化多孔性粒子及びその製造 法が提供される。  Furthermore, according to the present invention, a substance that is soluble in a poor solvent for a biocompatible substance or insoluble in a good solvent for a biocompatible substance is dissolved in a good solvent solution of a gel-forming or solidifying biocompatible substance. And dispersing the substance that migrates to the poor solvent for the substance, further dispersing the dispersion in the poor solvent for the biocompatible substance, and cooling and gelling or solidifying the resultant. Water-insolubilized porous particles of a biocompatible substance obtained by washing with a solvent that is miscible with a poor solvent for a biocompatible substance and heating in a system substantially free of water are provided.
従来、 泡のような柔らかいものはその形状が不安定であり、 ブロック状にするこ とはできても、 架橋剤を用いないで塞栓物質として用いられる程度の大きさで、水 不溶性かつ多孔性を保持した粒子にすることは極めて困難と考えられていた状況 下、ゲル化または固化した生体適合性物質の多孔性粒子を実質的に水の存在しない 系で加熱して水不溶化することにより、本発明の水不溶化多孔性粒子が得られたこ とは全く予想外であった。 Conventionally, foams such as foam have an unstable shape, and although they can be made into blocks, they are small enough to be used as embolic substances without using a cross-linking agent, and are water-insoluble and porous. Under the circumstances that it was considered extremely difficult to make the particles holding the gel, the gelled or solidified porous particles of the biocompatible substance were heated in a substantially water-free system to make them insoluble in water. The water-insolubilized porous particles of the present invention were obtained. Was completely unexpected.
以下に、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明において、 「実質的に架橋剤を含有しない」 とは、 本発明の目的を損なわ ない範囲内、 特に毒性を呈しない範囲内で、架橋剤を添加する実施態様も本発明に 包括されることを意味するものである。  In the present invention, "substantially contains no cross-linking agent" means that a cross-linking agent is added within a range that does not impair the object of the present invention, in particular, within a range that does not exhibit toxicity. It means that.
本発明に用いられる生体適合性物質としては、製薬学的に許容され生体分解性で あり、 加熱処理により水不溶化するものであれば特に制限されない。 なかでも、 後 述のェマルジヨン化工程においてェマルジヨン形成時に冷却によりゲルの強度が 増加するものあるいは固化するものが好適である。 また、 該生体適合性物質は、 該 物質の良溶媒に溶解するとき起泡するものが好適である。 また、 起泡しなくともあ るいは起泡させなくとも、生体適合性物質の貧溶媒を該物質の良溶媒溶液に分散後、 この分散液をさらに該物質の貧溶媒中に分散することにより、粒子の内部に孔を形 成させうる態様、 あるいは、 生体適合性物質の貧溶媒に溶解しうる物質もしくは生 体適合性物質の良溶媒に不溶でかつ生体適合性物質の貧溶媒に移行する物質を生 体適合性物質の良溶媒溶液に分散後、 この分散液をさらに該物質の貧溶媒に分散す ることにより、 粒子の内部に孔を形成させうる態様も、 本発明に包括される。 生体 適合性物質の貧溶媒に溶解しうる物質もしくは生体適合性物質の良溶媒に不溶で かつ該物質の貧溶媒に移行する物質としては、例えば、 生体適合性物質がゼラチン の場合、 大豆油などの油類、 クロ口ホルムなどの有機溶剤、 ポリスチレンビーズな どの有機化合物などが挙げられる。  The biocompatible substance used in the present invention is not particularly limited as long as it is pharmaceutically acceptable and biodegradable, and is water-insoluble by heat treatment. Among them, those in which the strength of the gel is increased or solidified by cooling during the formation of the emulsion in the later-described emulsion forming step are preferable. Further, it is preferable that the biocompatible substance foams when dissolved in a good solvent for the substance. Also, without foaming or foaming, after dispersing the poor solvent of the biocompatible substance in a good solvent solution of the substance, the dispersion is further dispersed in the poor solvent of the substance. Or a mode in which pores can be formed inside the particles, or a substance that is soluble in a poor solvent for a biocompatible substance or insoluble in a good solvent for a biocompatible substance and migrates to a poor solvent for a biocompatible substance. The present invention also encompasses an embodiment in which a substance can be dispersed in a solution of a biocompatible substance in a good solvent, and then the dispersion can be further dispersed in a poor solvent of the substance to form pores inside the particles. . Examples of the substance that is soluble in the poor solvent of the biocompatible substance or the substance that is insoluble in the good solvent of the biocompatible substance and migrates to the poor solvent for the substance include, for example, soybean oil when the biocompatible substance is gelatin, and so on. Oils, organic solvents such as black form, and organic compounds such as polystyrene beads.
また本発明の生体適合性物質は、ァミノ酸または生体由来の化合物からなる高分 子、 その誘導体、 またはそれらの生理学的に許容される塩であれば特に制限されな レ、。 例えば、 ポリペプチド、 その誘導体、 蛋白質、 その誘導体、 多糖、 その誘導体、 それらの生理学的に許容される塩、 それらを含む混合物、 またはそれらとポリぺプ チドとの混合物などが挙げられる。 具体的には、 ゼラチン、 コラーゲン、 ァテロコ ラーゲン、 アルブミン、 フイブリン、 プロタミンなどの蛋白質またはポリペプチド、 それらの誘導体、 またはそれらの生理学的に許容される塩、 ジュランガム、 ァラビ ァゴム、 ヒアルロン酸、 アルギン酸、 コンドロイチン硫酸、 へパリン、 キチン、 キ トサンなどの多糖、 それらの誘導体、 またはそれらの生理学的に許容される塩など が挙げられる。 なかでも、 ゼラチン、 ァテロコラーゲン、 アルブミン、 ヒアルロン 酸、 アルギン酸、 それらの誘導体、 またはそれらの生理学的に許容される塩が好適 である。 これらの生体適合性物質は 1種または 2種以上混合して用いてもよい。 さ らにはゼラチンが好適である。 Further, the biocompatible substance of the present invention is not particularly limited as long as it is a polymer composed of amino acid or a biologically-derived compound, a derivative thereof, or a physiologically acceptable salt thereof. For example, a polypeptide, a derivative thereof, a protein, a derivative thereof, a polysaccharide, a derivative thereof, a physiologically acceptable salt thereof, a mixture containing them, or a mixture of these and a polypeptide can be given. Specifically, proteins or polypeptides such as gelatin, collagen, atelocollagen, albumin, fibrin, protamine, derivatives thereof, or physiologically acceptable salts thereof, juran gum, arabia gum, hyaluronic acid, alginic acid, chondroitin Polysaccharides such as sulfuric acid, heparin, chitin, chitosan, their derivatives, or their physiologically acceptable salts Is mentioned. Among them, gelatin, atelocollagen, albumin, hyaluronic acid, alginic acid, derivatives thereof, or physiologically acceptable salts thereof are preferred. These biocompatible substances may be used alone or in combination of two or more. Further, gelatin is preferred.
前記生体適合性物質の良溶媒としては、製薬学的に許容され該物質が溶解しうる ものであれば特に制限されない。 例えば、 水、 ジメチルスルホキシド、 ベンジルァ ルコールなどが挙げられる。 なかでも水が好適である。 該溶媒には、 緩衝剤、 乳化 剤、 等張化剤などの製薬学的に許容される添加剤を含んでもよい。 該緩衝剤として は、 リン酸塩、 炭酸塩、 有機酸塩などが挙げられる。 該乳化剤としては、 ポリソル ベート、 ボリエチレン硬化ヒマシ油、 セスキォレイン酸ソルビタンなどが挙げられ る。 該等張化剤としては、 塩化ナトリウム、 グルコース、 乳糖、 ショ糖などが挙げ られる。 これらの添加剤は 1種または 2種以上用いてもよい。 なお該物質を溶解さ せるとき、 溶液を加温して溶解させてもよい。 また、 生体適合性物質を該物質の良 溶媒に溶解するときの澳度は、 生体適合性物質の種類により異なるが、 通常約 0 . 0 1 - 5 0重量%、 好ましくは約 0 . 】〜 3 0重量%、 さらに好ましくは約 1〜 2 0重量%である。  The good solvent for the biocompatible substance is not particularly limited as long as it is pharmaceutically acceptable and can dissolve the substance. For example, water, dimethyl sulfoxide, benzyl alcohol and the like can be mentioned. Among them, water is preferred. The solvent may contain pharmaceutically acceptable additives such as a buffer, an emulsifier, and a tonicity agent. Examples of the buffer include phosphate, carbonate, and organic acid salt. Examples of the emulsifier include polysorbate, polyethylene hydrogenated castor oil, and sorbitan sesquioleate. Examples of the tonicity agent include sodium chloride, glucose, lactose, and sucrose. One or more of these additives may be used. When the substance is dissolved, the solution may be dissolved by heating. The degree of dissolution of a biocompatible substance in a good solvent for the substance varies depending on the type of the biocompatible substance, but is usually about 0.01 to 50% by weight, preferably about 0. 30% by weight, more preferably about 1 to 20% by weight.
前記生体適合性物質の貧溶媒としては、製薬学的に許容され生体適合性物質が溶 解しないもの、あるいは製薬学的に許容され前記生体適合性物質の良溶媒と混和し ないものであれば特に制限されなレ、。例えば、鉱物油(例えば流動パラフィンなど)、 動物油、 植物油 (例えば、 大豆油、 ゴマ油、 落花生油、 綿実油、 椿油、 ナタネ油、 ヤシ油、 ユーカリ油、 とうもろこし油、 オリ一ブ油、 ヒマシ油など) 、 シリコン油、 脂肪酸、 脂肪酸エステル類 (例えば、 中鎖脂肪酸トリグリセライ ド (例えば、 商品 名 :パナセ一ト、 日本油脂社製) 、 ォレイン酸ェチルなど) 、 有機溶媒 (例えば、 トルエン、 ベンゼン、 へキサン、 クロ口ホルム、 ジクロロメタン、 四塩化炭素など) などが挙げられる。 なかでも、 大豆油、 ゴマ油、 落花生油、 綿実油、 椿油、 ナタネ 油、 ヤシ油、 ユーカリ油、 とうもろこし油、 ォリーブ油などの植物油、 中鎖脂肪酸 トリグリセライ ド、 ォレイン酸ェチルなどの脂肪酸エステル類が好適である。 これ らの生体適合性物質の贫溶媒は 1種または 2種以上混合して用いてもよレ、。なかで も脂肪酸エステル類が好適である。 本発明の多孔性粒子としては、球状もしくは不定形の粒子で表面及び内部に 1力 所以上の孔を有し水に不溶であれば特に制限されない。なかでも蜂の巣状のものが 好適である。 また、 該粒子中には薬物または化合物を含有または固定化させてもよ レ、。 薬物または化合物の含有または固定化は、 自体公知の方法で行うことができる。 該方法としては、 例えば、 後述の製造法の各工程において、 薬物または化合物を添 加または混合して、 含有または固定化する方法などが挙げられる。 また、 該粒子と ともに、 例えば、 陚形剤、 安定化剤、 緩衝剤、 分散剤、 コーティング剤などの一般 に製薬学的に許容される添加剤を用いてもよレ、。 該賦形剤としては、 乳糖、 結晶セ ノレロース、 デキス トランなどが挙げられる。 該安定化剤としては、 乳糖、 ト レハロ —ス、 ポリエチレンダリコールなどが挙げられる。 該緩衝剤としては、 リン酸塩、 炭酸塩、 有機酸塩などが挙げられる。 該分散剤としては、 カルボキシメチルセル口 ース、 グリセリン、 大豆油などが挙げられる。 該コーティング剤としては、 アタリ ル酸ポリマ一、 ポリ乳酸グリコール酸共重合体などが挙げられる。 これらの添加剤 は 1種または 2種以上用いてもよい。 The poor solvent for the biocompatible substance is a pharmaceutically acceptable substance that does not dissolve the biocompatible substance, or a pharmaceutically acceptable substance that is immiscible with a good solvent for the biocompatible substance. Not particularly restricted. For example, mineral oil (eg, liquid paraffin), animal oil, vegetable oil (eg, soybean oil, sesame oil, peanut oil, cottonseed oil, camellia oil, rapeseed oil, coconut oil, eucalyptus oil, corn oil, olive oil, castor oil, etc.) , Silicon oil, fatty acids, fatty acid esters (for example, medium-chain fatty acid triglyceride (for example, trade name: Panacet, manufactured by NOF Corporation), ethyl oleate, etc.), organic solvents (for example, toluene, benzene, hexane) , Chloroform, dichloromethane, carbon tetrachloride, etc.). Among them, vegetable oils such as soybean oil, sesame oil, peanut oil, cottonseed oil, camellia oil, rapeseed oil, coconut oil, eucalyptus oil, corn oil, olive oil, and fatty acid esters such as medium-chain fatty acid triglyceride and ethyl oleate are preferred. is there. The solvents for these biocompatible substances may be used alone or as a mixture of two or more. Among them, fatty acid esters are preferred. The porous particles of the present invention are not particularly limited as long as they are spherical or amorphous particles and have one or more pores on the surface and inside and are insoluble in water. Among them, a honeycomb shape is preferable. Further, a drug or compound may be contained or immobilized in the particles. The drug or compound can be contained or immobilized by a method known per se. Examples of the method include a method in which a drug or a compound is added or mixed to contain or immobilize in each step of the production method described below. In addition, generally pharmaceutically acceptable additives such as excipients, stabilizers, buffers, dispersants, and coating agents may be used together with the particles. Such excipients include lactose, crystalline phenolic cellulose, dextran and the like. Examples of the stabilizer include lactose, trehalose, polyethylene dalicol and the like. Examples of the buffer include phosphate, carbonate, and organic acid salt. Examples of the dispersant include carboxymethyl cellulose, glycerin, and soybean oil. Examples of the coating agent include atalylic acid polymer and polylactic acid / glycolic acid copolymer. One or more of these additives may be used.
本発明の水不溶化多孔性粒子の比重は、 特に制限されないが、 通常 0. 00 1〜 1 g/wし 好ましくは 0. 005〜0. 9 g mゾ、 さらに好ましくは 0.005 〜0. 2 gZmゾである。 なお比重は、 例えばメスシリンダーにて一定容量 (m l ) を取り、 そのときの重量 (g) を測定し、 重量を容積で除すことによって算出する ことができる。  The specific gravity of the water-insolubilized porous particles of the present invention is not particularly limited, but is usually 0.001 to 1 g / w, preferably 0.005 to 0.9 gm, more preferably 0.005 to 0.2 gZm. It is. The specific gravity can be calculated, for example, by taking a fixed volume (ml) with a measuring cylinder, measuring the weight (g) at that time, and dividing the weight by the volume.
本発明の水不溶化多孔性粒子の粒子径は、 特に制限されないが、 通常 0.01〜 1 Omm, 好ましくは 0. 1〜 7mmである。 また T A Eに用いられる場合、 副作 用が懸念されない粒子径であれば特に制限されないが、通常注射針または力テーテ ルに、 また塞栓治療に選択される血管に適応できるものである。 好ましくは 0. 5 〜1 0mm、 さらに好ましくは 0. 5〜7mmである。 なお、 本発明でいう粒子径 とは平均粒子径を意味するものである。  The particle size of the water-insolubilized porous particles of the present invention is not particularly limited, but is usually 0.01 to 1 Omm, and preferably 0.1 to 7 mm. When used for TAE, the particle size is not particularly limited as long as the particle size does not cause a side effect. However, it can be applied to a normal injection needle or a force table and to a blood vessel selected for embolization treatment. Preferably it is 0.5 to 10 mm, more preferably 0.5 to 7 mm. The particle diameter in the present invention means an average particle diameter.
本発明の水不溶化多孔性粒子は、注射^ "またはカテーテルなどを通過しうる弾力 性、また塞栓治療に選択される血管などを粒子が自由に変形して塞栓しうる弾力性 を有するものである。 TAEに用いられる場合、例えば 0.5〜 1.5mmの粒子径 を有する粒子が水などの溶媒中に膨潤した状態でマイクロカテーテル (規格 3 French (外径 1 mm) ) またはそれに相当する流路を通過しうるものが好適である。 本発明の水不溶化多孔性粒子の膨潤率は、 特に制限されないが、 通常約 0 . 1〜 1 0 0倍、 好ましくは約 0 . 1〜 1 0倍、 さらに好ましくは約 1〜5倍である。 な お膨潤率は、 例えば一定体積 (V ,と略記する) の粒子を、 水、 生理食塩液、 各種 電解質溶液、 医療用輸液、 油、 造影剤または治療用医薬品の溶液に浸し、 1時間後 の S彭潤体積 (V 2と略記する) をメスシリンダーなどを用いて測定し、 V 2ZV ,に よって算出することができる。 The water-insolubilized porous particles of the present invention have elasticity that can pass through an injection or a catheter or the like, and also have elasticity that particles can freely deform and embolize a blood vessel or the like selected for embolization treatment. When used for TAE, a microcatheter (standard 3) is used in a state where particles having a particle diameter of 0.5 to 1.5 mm are swollen in a solvent such as water. French (outside diameter 1 mm)) or a material capable of passing through a flow path corresponding thereto is preferable. The swelling ratio of the water-insolubilized porous particles of the present invention is not particularly limited, but is usually about 0.1 to 100 times, preferably about 0.1 to 10 times, and more preferably about 1 to 5 times. . The swelling ratio can be determined, for example, by immersing particles of a certain volume (abbreviated as V) in water, saline, various electrolyte solutions, medical infusions, oils, contrast agents, or therapeutic drugs. The volume of S Peng Jun (abbreviated as V 2) can be measured using a measuring cylinder or the like, and can be calculated by V 2 ZV.
次に、 本発明の製造法について説明する (図 1参照) 。  Next, the production method of the present invention will be described (see FIG. 1).
本発明において、 「実質的に水の存在しない」 とは、 本発明の目的を損なわない 範囲内、 特に加熱処理を行うとき粒子が溶解あるいは凝集しない範囲内で、 水が存 在する実施態様も本発明に包括される。特に詳細には、 「実質的に水の存在しない」 とは、 後述の洗浄 ·脱水工程において、 粒子が生体適合性物質の良溶媒及び該物質 の貧溶媒が混和しうる溶媒によって洗浄された状態、 あるいは粒子を通風乾燥、 真 空乾燥、 凍結乾燥などの乾燥手段によって乾燥された状態を意味するものである。 本発明の生体適合性物質からなる水不溶化多孔性粒子の製造法にっレ、ては、生体 適合性物質 (Mと略記する) の良溶媒 (Sと略記する) 溶液 (S 1 と略記する) を 例えば撹拌して泡立てる起泡化工程、 該工程で得られた泡を Mの貧溶媒 (S 2と略 記する) に投入し、 例えば撹拌してェマルジヨンを形成させるェマルジヨン化工程、 該工程で得られたェマルジヨンを例えば Mのゲル化温度以下に冷却してゲル化(ま たは固化) してゲル粒子とするゲル化工程、 該工程で得られたゲル粒子を例えば篩 過して S 2から取り出すことにより S 2を除去する、 貧溶媒 (S 2 ) の除去工程、 該工程で得られたゲル粒子を例えば S 2が混和しうる溶媒( S 3 )で洗浄し乾燥(脱 水) して多孔性粒子とする洗浄 ·脱水工程、 該工程で得られた多孔性粒子を実質的 に水の存在しない系で加熱処理して水不溶化多孔性粒子とする加熱処理工程、更に 必要に応じて水洗し凍結乾燥する工程から構成される。 なお、 前記各工程について は、 本発明を詳細に説明するため便宜上分けるものであるが、一部工程は他の工程 を兼ねることもできるため、 本発明はこれらの工程に拘束されるものではない。 以下、 各工程を詳細に説明する。  In the present invention, "substantially free of water" refers to an embodiment in which water is present within a range that does not impair the object of the present invention, in particular, within a range in which particles are not dissolved or aggregated during heat treatment. Included in the present invention. More specifically, "substantially free of water" means that the particles have been washed in a washing / dehydration step described below with a solvent in which a good solvent for the biocompatible substance and a poor solvent for the substance are miscible. Alternatively, it means that the particles have been dried by a drying means such as through-air drying, vacuum drying, or freeze-drying. According to the method for producing water-insolubilized porous particles comprising the biocompatible substance of the present invention, a solution of the biocompatible substance (abbreviated as M) in a good solvent (abbreviated as S) (abbreviated as S 1) ), For example, a foaming step in which foaming is performed by stirring, an foaming step in which the foam obtained in the step is poured into a poor solvent of M (abbreviated as S2), and stirring is performed, for example, to form an emulsion. A gelation step in which the emulsion obtained in the step is cooled to, for example, a gelling temperature of M or lower to gel (or solidify) to form gel particles, and the gel particles obtained in the step are sieved, for example, by sieving. Removing S 2 by taking out from step 2, removing step of poor solvent (S 2); washing gel particles obtained in this step with, for example, a solvent (S 3) in which S 2 is miscible, and drying (dewatering) Washing and dehydration steps to obtain porous particles, It consists of a heat treatment step in which heat treatment is performed qualitatively in a water-free system to form water-insolubilized porous particles, and, if necessary, a step of washing with water and freeze-drying. The above steps are separated for the sake of convenience in order to explain the present invention in detail, but the present invention is not limited to these steps because some steps can also serve as other steps. . Hereinafter, each step will be described in detail.
起泡化工程については、 生体適合性物質 (M) の良溶媒 (S ) 溶液 (S 1 ) を泡 立てる方法であれば特に制限されなレ、。 該方法としては、 例えば、 ホモジナイザーIn the foaming process, a good solvent (S) solution (S1) of the biocompatible substance (M) is foamed. There is no particular restriction on how to stand. The method includes, for example, a homogenizer
(特殊機化工業社製) 、 パドル付き撹拌モータ一 (MAZELAZ、 EYE LA社製) 、 マグネチックスターラー (ャマト科学社製) などの撹拌機を用いて泡立てる方法、 酸素、 二酸化炭素、 窒素、 空気などの気体を送り込んで泡立てる方法などが挙げら れる。 撹拌器を用いて泡立てる場合、 機械の回転数、 容器の大きさなどの条件は空 気を抱き込むことができればいかなる条件でもよい。 また、 気体を送り込んで泡立 てる場合、 S 1が起泡化できればいかなる条件でもよい。 例えば、 S 1中で多孔性 ガラスフィルタ一で窒素ガスを送り込む方法などが挙げられる。なお S 1の調製時、 Mが溶解しにくい場合には S 1を加温して Mを溶解させてもよい。 (Made by Tokushu Kika Kogyo), Stirring motor with paddle (MAZELAZ, EYE LA), Magnetic stirrer (Yamato Scientific Co., Ltd.), etc. Using a stirrer, oxygen, carbon dioxide, nitrogen, air Such as a method of bubbling by sending gas. When whipping with a stirrer, the conditions such as the number of rotations of the machine and the size of the container may be any conditions as long as they can hold air. In addition, when gas is supplied to form bubbles, any condition may be used as long as S1 can be foamed. For example, there is a method of feeding nitrogen gas through a porous glass filter in S1. When M is difficult to dissolve during the preparation of S 1, M may be dissolved by heating S 1.
ェマルジヨン化工程については、 前記工程で得られた泡を Mの貧溶媒 (S 2) に 添加しエマルシヨンが形成できる方法であれば特に制限されない。該方法としては、 例えば、 ホモジナイザー (特殊機化工業社製) 、 パドル付き撹拌モータ一 (MAZELA Z、 E YE L A社製) 、 マグネチックスターラー (MAG MIXER, ャマト科学社製) な どの撹拌機を用いてェマルジョンを形成させる方法などが挙げられる。またこのと き、 前記工程で得られた泡を Mの貧溶媒 (S 2) に添加する比率 (泡 ZS 2) は、 エマルシヨンが形成できる比率であれば特に制限されないが、 通常 1.0以下、 好 ましくは 0. 8以下である。 また、 機械の回転数、 容器の大きさなどの条件は、 消 泡あるいはェマルジョン粒子間の融合をおこさなければいかなる条件でもよい。な お、 起泡しなくともあるいは起泡させなくとも、 生体適合性物質の貧溶媒を該物質 の良溶媒溶液に分散後、 この分散液をさらに該物質の貧溶媒中に分散することによ り、 粒子の内部に孔を形成しうる場合、 あるいは、 生体適合性物質の貧溶媒に溶解 しうる物質もしくは生体適合性物質の良溶媒に不溶でかつ該物質の貧溶媒に移行 する物質を生体適合性物質の良溶媒溶液に分散後、この分散液をさらに該物質の貧 溶媒に分散することにより、粒子の内部に孔を形成しうる場合、 前記起泡化工程を 省略し、 例えば、 S 1に、 32を分散 (82/31) させ、 該分散液をさらに S 2 に分散し、 S 2ZS 1/S 2エマルジョンが形成されるときには、 当該工程は前記 起泡化工程を兼ねることもできる。 この場合、 S 2ZS 1の比率としては、 ェマル ジョンが形成される比率であれば特に制限されないが、 通常 1.0以下、 好ましく は 0. 8以下である。 さらに (S 2/S 1) ZS 2の比率としては、 上記同様特に 制限されないが、 1 . 0以下、 好ましくは 0 . 8以下である。 The emulsification step is not particularly limited as long as the foam obtained in the above step can be added to the poor solvent (S 2) of M to form an emulsion. As the method, for example, a stirrer such as a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.), a stirring motor with a paddle (MAZELA Z, manufactured by EYLA), and a magnetic stirrer (MAG MIXER, manufactured by Yamato Scientific Co., Ltd.) are used. To form an emulsion. At this time, the ratio of adding the foam obtained in the above step to the poor solvent (S 2) of M (foam ZS 2) is not particularly limited as long as the emulsion can be formed, but is usually 1.0 or less. Preferably it is 0.8 or less. The conditions such as the number of rotations of the machine and the size of the container may be any conditions as long as defoaming or fusion between emulsion particles does not occur. Even if foaming is not performed or foaming is performed, the poor solvent of the biocompatible substance is dispersed in a good solvent solution of the substance, and this dispersion is further dispersed in the poor solvent of the substance. When a pore can be formed inside the particle, or a substance that is soluble in a poor solvent for a biocompatible substance or a substance that is insoluble in a good solvent for a biocompatible substance and migrates to a poor solvent for the substance When the pores can be formed inside the particles by dispersing the dispersion in a good solvent solution of the compatible substance and further dispersing the dispersion in a poor solvent of the substance, the foaming step is omitted. When 32 is dispersed in 1 (82/31), the dispersion is further dispersed in S 2, and when an S 2 ZS 1 / S 2 emulsion is formed, this step can also serve as the foaming step . In this case, the ratio of S 2 ZS 1 is not particularly limited as long as it is a ratio at which an emulsion is formed, but is usually 1.0 or less, preferably 0.8 or less. Furthermore, as for the ratio of (S 2 / S 1) ZS 2, Although not limited, it is 1.0 or less, preferably 0.8 or less.
ゲル化 (または固化) 工程については、 前記工程で得られたェマルジヨンがゲル ィ匕 (または固化) する方法であれば特に制限されない。 該方法としては、 例えば、 生体適合性物質のゲル化 (または固化) 温度以下に系を冷却する方法、 該物質の貧 溶媒で洗浄することにより固化させる方法などが挙げられる。ェマルジヨンがゲル 化 (または固化) することにより、 取り扱い容易な粒子を得ることができる。 生体 適合性物質のゲル化温度は、 通常生体適合性物質の組成、 該物質の良溶媒溶液濃度、 あるいは保持時間 (ある一定の温度に保つ時間) に応じて適宜選択できる。 例えば、 4 %ゼラチン水溶液を急冷する場合、 約 1 8 °Cでゲル化することができる力;、後述 の洗浄工程において、 ゲル化粒子をアルコール類で洗浄する場合、発熱反応を起こ すため概ね 1 6 °C以下が好ましい。 また、 ゼラチン以外の生体適合性物質の場合は、 該物質の貧溶媒で洗浄することにより固化させることができる。  The gelation (or solidification) step is not particularly limited as long as the emulsion obtained in the above step is gelled (or solidified). Examples of the method include a method of cooling the system below the gelation (or solidification) temperature of the biocompatible substance, and a method of solidifying the substance by washing it with a poor solvent. When the emulsion gels (or solidifies), particles that can be easily handled can be obtained. The gelation temperature of the biocompatible substance can be appropriately selected depending on the composition of the biocompatible substance, the concentration of the substance in a good solvent solution, or the retention time (time for maintaining a certain temperature). For example, when quenching a 4% gelatin aqueous solution, it is possible to gel at about 18 ° C; when washing gelled particles with alcohols in the washing step described below, an exothermic reaction occurs. It is preferably at most 16 ° C. In the case of a biocompatible substance other than gelatin, the substance can be solidified by washing with a poor solvent for the substance.
生体適合性物質の貧溶媒 (S 2と略記する) の除去工程については、 前記工程で 得られた粒子を S 2から取り出すことにより S 2を除去する方法であれば特に制 限されない。 該方法としては、 例えば、 篩過、 ろ取、 遠心分離法などが挙げられる。 当該工程では、 粒子の形状を安定に維持するため、 生体適合性物質のゲル化温度以 下に系を冷却して行うことが好ましレ、。 また該工程において、 粒子を使用目的に応 じて分級してもよレ、。  The step of removing the poor solvent (abbreviated as S2) of the biocompatible substance is not particularly limited as long as it is a method of removing S2 by removing the particles obtained in the above step from S2. Examples of the method include sieving, filtration, and centrifugation. In this step, the system is preferably cooled to a temperature lower than the gelation temperature of the biocompatible substance in order to maintain the shape of the particles stably. In this step, the particles may be classified according to the purpose of use.
洗浄'脱水工程については、 前記工程で得られた粒子から S及び S 2が洗浄され る方法であれば特に制限されない。 該方法としては、 例えば、 S及び S 2が混和し うる溶媒 (S 3 ) で洗浄する方法などが挙げられる。 該工程では、 例えば、 メッシ ュ上に粒子を取り出し S 3で洗浄したり、また粒子をビーカーに入れ S 3で減圧下 撹拌しながら洗浄し、 常圧に戻したりあるいは粒子と S 3をビーカ一に入れ、 ビー カーごと超音波照射により洗浄する。 この減圧、 常圧、 超音波の工程を繰り返して もよい。 この工程により、 表面および内部に孔がさらに生じ、 内部に残留した S 2 が効率良く洗浄される。 S 3としては、製薬学的に許容され S及び S 2に混和可能 であり、 Mの貧溶媒であれば特に制限されない。 S 3としては、 例えば、 アルコ ール類 (例えば、 メタノール、 エタノール、 イソプロパノールなど) 、 アセトン、 ジォキサン、 へキサン、 ハロゲン系有機溶媒などが挙げられる。 なかでも、 メタノ —ル、 エタノール、 イソブロパノールなどのアルコール類が好適である。 これらは、 1種または 2種以上用いてもよい。 当該工程では、 粒子の形状を安定に維持するた め、 生体適合性物質のゲル化温度以下に系を冷却して行うことが好ましい。 また当 該工程において、 凝集防止剤を添加してもよい。 凝集防止剤としては、 例えば、 乳 糖、 D—ソルビトール、 結晶セルロースなどが挙げられる。 さらに当該工程の前後 に、 通風乾燥、 真空乾燥、 凍結乾燥などの工程を行うこともできる。 The washing / dehydrating step is not particularly limited as long as S and S2 are washed from the particles obtained in the above step. Examples of the method include a method of washing with a solvent (S 3) in which S and S 2 are miscible. In this step, for example, the particles are taken out on a mesh and washed with S3, or the particles are put into a beaker, washed while being stirred under reduced pressure with S3, and returned to normal pressure, or the particles and S3 are mixed in a beaker. And wash the whole beaker by ultrasonic irradiation. The steps of reduced pressure, normal pressure and ultrasonic waves may be repeated. By this step, pores are further formed on the surface and inside, and S 2 remaining inside is efficiently cleaned. S3 is pharmaceutically acceptable, is miscible with S and S2, and is not particularly limited as long as it is a poor solvent for M. Examples of S3 include alcohols (eg, methanol, ethanol, isopropanol, etc.), acetone, dioxane, hexane, and halogen-based organic solvents. Above all, methano Alcohols such as ethanol, ethanol and isopropanol are preferred. These may be used alone or in combination of two or more. In this step, in order to maintain the shape of the particles stably, it is preferable to cool the system below the gelation temperature of the biocompatible substance. In this step, an anti-agglomeration agent may be added. Examples of the agglomeration inhibitor include lactose, D-sorbitol, and crystalline cellulose. Further, before and after this step, steps such as ventilation drying, vacuum drying, and freeze drying can be performed.
加熱処理工程にっレ、ては、実質的に水の存在しなレ、系で前記工程で得られた粒子 が水に不溶となる温度及び時間条件で処理されれば特に制限されない。 また、 当該 工程としては、生体適合性物質が分子間架橋を起こす温度及び時間であればいかな る条件でもよい。 該方法における時間条件は温度条件によって決定されるが、 例え ば、 1 1 0 °じ〜2 2 0 °じで1 0分以上 1 2 0時間以下が挙げられる。 好ましくは 1 3 5 T:〜 2 0 0 °Cで 1 0分以上 1 2 0時間以下、 さらに好ましくは 1 4 5 °C〜 1 9 0 °Cで 1時間以上 6時間以下である。 また該工程は減圧下で行ってもよい。 当該ェ 程は滅菌処理を兼ねることができる。 また当該工程後、 必要に応じて粒子を水で洗 浄し水に可溶性の成分を除去してもよレ、。  The heat treatment step is not particularly limited as long as the particles are substantially insoluble in water and the system is treated under the conditions of temperature and time at which the particles obtained in the step become insoluble in water. In addition, any conditions may be used for this step as long as the temperature and the time at which the biocompatible substance causes intermolecular crosslinking. The time conditions in the method are determined by the temperature conditions, and include, for example, 110 minutes to 220 degrees and 10 minutes or more and 120 hours or less. Preferably, the temperature is from 135 minutes to 120 hours at 135 T, more preferably from 1 hour to 6 hours at 144 to 190 ° C. Further, this step may be performed under reduced pressure. This step can also serve as a sterilization treatment. After this step, if necessary, the particles may be washed with water to remove water-soluble components.
前記滅菌処理は、 本発明粒子を医療用包装容器 (例えば、 バイアル、 アンプル、 プレフィルド型シリンジなど) に充填封入後、 高圧蒸気法 (日本薬局方) などで行 つてもよレゝ。  The sterilization treatment may be performed by filling the particles of the present invention in a medical packaging container (for example, a vial, an ampoule, a prefilled syringe, etc.), and then using a high-pressure steam method (Japanese Pharmacopoeia) or the like.
また、 本発明粒子は、 医療用包装容器 (例えば、 バイアル、 アンプル、 プレフィ ノレド型シリンジなど) に充填後、 自体公知の方法で、 さらに脱水工程を行うことも できる。 該工程としては、 例えば、 通風乾燥、 真空乾燥、 凍結乾燥などの乾燥方法 が挙げられる。  Further, after the particles of the present invention are filled in a medical packaging container (for example, a vial, ampoule, prefinoled type syringe, etc.), a dehydration step can be further carried out by a method known per se. Examples of the step include drying methods such as ventilation drying, vacuum drying, and freeze drying.
本発明の多孔性粒子が塞栓治療用塞栓物質として用いられる場合、その用量は、 塞栓治療に選択される血管の太さ、 腫瘍組織の広がり、 あるいは使用する器具など により適宜調整することができるが、 通常 1 g以下、 好ましくは 0 . 5 g以下であ る。 この場合、 生理学的に許容される液 (生理的食塩水、 ョード化ケシ油脂肪酸ェ チルエステルなど) などとともに医薬組成物として使用されてもよい。  When the porous particles of the present invention are used as an embolic material for embolization treatment, the dose can be appropriately adjusted depending on the thickness of blood vessels selected for embolization treatment, the spread of tumor tissue, or the instrument used. Usually, it is 1 g or less, preferably 0.5 g or less. In this case, it may be used as a pharmaceutical composition together with a physiologically acceptable liquid (physiological saline solution, iodinated poppy oil fatty acid ethyl ester, etc.).
本発明の多孔性粒子は、 塞栓物質として T A Eなどに用いられる他、 例えばバイ ォプシ一などの医療行為における止血物質として用いられる。 この場合、 該粒子単 独または生理学的に許容される液 (生理的食塩水など) などとともに医薬組成物と して使用されてもよい。 また、 種々の細胞固定化または培養用の担体として用いら れる。 この場合、 生理学的に許容される液 (生理的食塩水など) などとともに医薬 組成物として使用されてもよい。 さらにまた、 創傷保護剤、 経口製剤の崩壊剤、 薬 物吸着剤 (例えば苦味防止剤) 、 徐放性製剤の担体、 輸送時の破損防止材などとし ても用いられる。 The porous particles of the present invention are used as an embolic substance in TAE and the like, and also used as a hemostatic substance in medical procedures such as biopsy. In this case, the particle It may be used as a pharmaceutical composition together with a liquid alone or a physiologically acceptable liquid (such as physiological saline). It is also used as a carrier for various cell immobilization or culture. In this case, it may be used as a pharmaceutical composition together with a physiologically acceptable liquid (such as physiological saline). Furthermore, it is used as a wound protectant, a disintegrant for oral preparations, a drug adsorbent (for example, a bitterness inhibitor), a carrier for sustained release preparations, and a material for preventing breakage during transportation.
また、 本発明の多孔性粒子には、 例えば診断用薬剤、 治療用薬剤などの医薬物質 を含有または混合させて用いることもできる。 すなわち、 この場合、 本発明の多孔 性粒子を含有する医薬組成物が提供される。  In addition, the porous particles of the present invention can also contain or mix a pharmaceutical substance such as a diagnostic drug or a therapeutic drug. That is, in this case, a pharmaceutical composition containing the porous particles of the present invention is provided.
前記診断用薬剤としては、 例えば造影剤として X線造影剤、 放射性同位元素など が挙げられる。 該 X線造影剤としては、例えば三ョード化合物としてアミ ドトリゾ 酸、 ィオタラム酸、 ョ一ダミ ド、 メ トリゾ酸、 またはそれらの生理学的に許容しう る塩、 三ョードダイマー化合物としてアジピオドン、 ィォキサグル酸、 ィオトロク ス酸、 ョードキサム酸、 ィォカルム酸、 またはそれらの生理学的に許容しうる塩、 非イオン性化合物としてィオトロラン、 ィォパミ ドール、 ィォへキソール、 ィォへ ルソール、 ィオメプロ一ル、 メ トリザミ ド、 ョ一ド化油剤としてョード化ケシ油脂 肪酸ェチルエステル (商品名 : リピオドール ゥノレトラフノレィ ド) などが挙げられ る。  Examples of the diagnostic agent include X-ray contrast agents and radioisotopes as contrast agents. Examples of the X-ray contrast agent include amide trizoic acid, iotharamic acid, omidamide, metrizonic acid, or a physiologically acceptable salt thereof as a triode compound, adipiodone, ixoxagluate, and a triode dimer compound. Iotroxic acid, eodoxamic acid, iocarmic acid, or a physiologically acceptable salt thereof, as a non-ionic compound, iotrolan, iopamidol, iohexol, iohersole, iomeprol, metrazamide, or Examples of monodized oils include oxidized poppy oil and fatty acid ethyl ester (trade name: Lipiodol Penoletraphnolide).
また、 前記診断用薬剤としては、 例えば放射性物質であってもよい。 該物質は溶 液または微粒子の形であってもよい。 該微粒子は、 一般には本発明粒子と同一サイ ズかまたはこれより小さいものである。 例えば、 インジウム、 タリウム、 ヨウ素、 テクネチウム、 ガリウム、 セリウム、 ノレビジゥム、 クロム酸、 鉄、 スズ、 キセノン、 炭素、 酸素、 窒素、 フッ素またはそれらの生理学的に許容しうる塩などの放射性同 位元素を含有する物質であってもよい。これらは 1種または 2種以上の異なった放 射性同位元素を用いてもよい。該放射性物質の濃度及び放射能は診断できる範囲で あれば特に制限されない。  Further, the diagnostic agent may be, for example, a radioactive substance. The substance may be in the form of a solution or microparticles. The fine particles are generally the same size or smaller than the particles of the present invention. Contains radioisotopes such as indium, thallium, iodine, technetium, gallium, cerium, norebidium, chromate, iron, tin, xenon, carbon, oxygen, nitrogen, fluorine or their physiologically acceptable salts It may be a substance that does. These may use one or more different radioisotopes. The concentration and radioactivity of the radioactive substance are not particularly limited as long as they can be diagnosed.
前記治療用薬剤としては、例えば抗腫瘍用薬剤または同様の放射性物質などが挙 げられる。 該抗腫瘍用薬剤としては、 抗腫瘍性抗生物質としてマイ トマイシン C、 ァクチノマイシン D、 ブレオマイシン系薬剤 (塩酸ブレオマイシンなど) 、 アント ラサイクリン系抗生物質 (塩酸アクラルビシン、 塩酸ェピルビシン、 塩酸ドキソル ビシンなど) 、 ネオカルチノスタチン、 ジノスタチンスチラマー (SMANCS) など、 代謝拮抗剤としてメ トトレキサート、 テガフール、 フルォロウラシルなど、 アルキル化剤としてシクロフォスフアミ ド、 塩酸二ムスチン、 ラニムスチンなど、 抗腫瘍性植物成分薬剤として塩酸イリノテカン、 硫酸ビンブラスチン、 エトポシド など、 その他の腫瘍用薬としてカルポプラチン、 シスプラチン、 ペントスタチン、 レンチナンなどが挙げられる。 Examples of the therapeutic agent include an antitumor agent or a similar radioactive substance. Examples of the antitumor drug include mitomycin C, actinomycin D, bleomycin (bleomycin hydrochloride, etc.), Lacyclin antibiotics (acralubicin hydrochloride, epirubicin hydrochloride, doxorubicin hydrochloride, etc.), neocarzinostatin, dinostatin stylamer (SMANCS), etc. Examples of antitumor plant component drugs include irinotecan hydrochloride, vinblastine sulfate, etoposide, etc., and other tumor drugs include carpoplatin, cisplatin, pentostatin, lentinan and the like.
また、 治療用薬剤としては、 例えばサイ トカイン、 造血因子、 各種増殖因子、 酵 素などの生物学的薬剤が挙げられる。 該サイ トカインとしては、 例えばインターフ ェロン (例えば α, β , y ) , インターロイキン (例えば I L— 1〜 I L一 1 8) 、 腫瘍壊死因子 (TNF) などが挙げられる。 該造血因子としては、 例えばエリス口 ポヱチン (Ε ΡΟ) 、 頼粒球コロニー刺激因子 (G— CS F) 、 マクロファージコ ロニ一刺激因子 (M— CS F) 、 顆粒球マクロファージコロニー刺激因子 (GM— CS F) 、 トロンボポェチン (ΤΡΟ) 、 血小板增殖因子、 幹細胞增殖因子 (SC F) などが挙げられる。 各種増殖因子としては、 例えば塩基性あるいは酸性の繊維 芽細胞増殖因子 (FGF) あるいはこれらのフアミリー、 神経細胞増殖因子 (NG F) あるいはこれらのファミ リ一、 インスリン様成長因子 ( I GF) 、 骨形成因子 (例えば BMP 1〜ΒΜΡ 1 2) あるいは形質転換增殖因子 (TGF— ) のス一 パーファ ミ リ一、 肝細胞増殖因子 (HGF) 、 血小板由来增殖因子 (PDGF) 、 上皮細胞增殖因子 (EGF) などが挙げられる。 各種ホルモンとしては、 インスリ ン、 カルシトニン、 グルカゴン、 ヒ ト成長因子 (hGH) 、 副甲状腺ホルモン (P TH) などが挙げられる。 酵素としては、 例えば L—ァスパラギナーゼ、 スーパ一 ォキシドデイスムターゼ (SOD) 、 組織プラスミノーゲンァクチべ一ター (t— PA) などが挙げられる。 これらの生物学的薬剤は、 天然に存在する配列構造のも のであってもその改変体であってもよい。 また、 それらの修飾体 (例えばポリェチ レンダリコールなどによる化学修飾体) であってもよレ、。 またこれらは単量体とし て用いても、 ホモまたはへテロの多量体として用いてもよい。  In addition, examples of the therapeutic agent include biological agents such as cytokines, hematopoietic factors, various growth factors, and enzymes. Examples of the cytokine include interferon (eg, α, β, y), interleukin (eg, IL-1 to IL-18), tumor necrosis factor (TNF), and the like. Examples of the hematopoietic factor include erythropoietin (ヱ -ΡΟ), granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), granulocyte-macrophage colony-stimulating factor (GM- CSF), thrombopoietin (II), platelet growth factor, stem cell growth factor (SCF) and the like. Examples of various growth factors include basic or acidic fibroblast growth factor (FGF) or their families, nerve cell growth factor (NGF) or their families, insulin-like growth factor (IGF), bone Form factors (eg BMP 1-2) or transforming growth factors (TGF-), superfamily, hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), epithelial cell growth factor (EGF ). Various hormones include insulin, calcitonin, glucagon, human growth factor (hGH), parathyroid hormone (PTH), and the like. Examples of the enzyme include L-asparaginase, superoxide dismutase (SOD), and tissue plasminogen activator (t-PA). These biological agents may be naturally occurring sequence structures or variants thereof. Moreover, those modified products (for example, chemically modified products such as polyethylene render recall) may be used. They may be used as monomers or as homo- or hetero-multimers.
また、 治療用薬剤は蛋白質、 ペプチド類の発現に関与する物質 (例えば DNA、 RN A等の核酸類あるいは低分子及び高分子の転写調節因子及びそれらの阻害 剤) などであってもよレ、。 Therapeutic agents are substances involved in the expression of proteins and peptides (for example, nucleic acids such as DNA and RNA, or low- and high-molecular transcriptional regulators and their inhibitors). Agent).
さらにまた、 治療用薬剤としては、 例えば血管に作用する物質 (血管拡張剤、 血 管収縮剤など) 、 凝固に作用を及ぼす物質、 血栓の形成または溶解に作用する物質、 抗菌性物質、 抗炎物質、 麻酔剤、 ホルモン効果を示す物質、 骨吸収抑制剤 (例えば ビスフォスフォネート類) 、 各種ビタミン類、 抗寄生虫物質などが挙げられる。 これら治療用薬剤あるレ、は診断用薬剤は 2種以上を混合して用いてもよい。 さら にそれらを生理学的に許容される液 (生理的食塩水など) などで希釈して用いても よい。 図面の簡単な説明  Furthermore, therapeutic agents include, for example, substances acting on blood vessels (vasodilators, vasoconstrictors, etc.), substances acting on coagulation, substances acting on the formation or dissolution of thrombus, antibacterial substances, anti-inflammation Substances, anesthetics, substances that exhibit hormonal effects, bone resorption inhibitors (for example, bisphosphonates), various vitamins, and antiparasitic substances. These therapeutic agents or diagnostic agents may be used as a mixture of two or more. Further, they may be used by diluting them with a physiologically acceptable liquid (eg, physiological saline). BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の水不溶化多孔性粒子を製造する製造方法を示す。 詳細な説明に ついては、 発明の開示の欄に記載している。  FIG. 1 shows a production method for producing the water-insolubilized porous particles of the present invention. A detailed description is given in the section of the disclosure of the invention.
図 2は、 本発明の水不溶化多孔性粒子が経動脈塞栓治療法に用いられる場合、 塞 栓治療の作用機序 (投与から再疎通まで) を示すものである。 該機序は、 ①カテ一 テルにより目的の血管に選択的に投与された粒子は、 血管を物理的に塞栓する、② 血小板が該粒子に粘着及び Zまたは接触することにより血小板凝集が誘発され、血 餅が形成される (塞栓が強固となる) 、 ③塞栓により、 栄養供給が絶たれた悪性腫 瘍が壊死する(抗ガン剤と併用した場合には腫瘍部位における抗ガン剤濃度も高ま り、 さらなる治療効果が期待される) 、 ④粒子が生体内酵素によって分解され血管 が再疎通する、 ⑤壊死部分あるいは周辺組織が正常に回復する、 と考えられている。 該機序における本発明多孔性粒子の特長については、 以下のとおり考えられる。す なわち、 (1 ) 前記機序①については、 本発明粒子は多孔性であるがゆえに粒子表 面積が大きく、 粒子の弾力性に優れるため、 血管壁、 血管の太さに合わせて自由に 変形することができることにより、粒子同士が塞栓都位にぉレ、てより密につまった 状態を形成することができる。 また、 本発明粒子は、 T A Eなどに用いられるマイ クロカテーテル内においても変形することができるため、非多孔 'ft粒子に比べ大き な粒子径を有する粒子を投与することも可能であり、良好な塞栓効果が期待される。 また通常、 マイクロカテ一テルを使うときには、 かなりの力が必要とされる力 本 発明粒子を用いる場合、先述の理由により施術者の肉体的負担が軽減されることが 期待される。 ( 2 ) 通常、 血小板凝集は、 血小板が例えばコラーゲンなどと接触す ることにより誘発されて起こると言われている。 前記機序②については、 例えばコ ラーゲンが分解して得られるゼラチンを塞栓物質の基剤として用いる場合を考え る。 本発明粒子の比表面積は多孔性であるがゆえに大きく、 血小板との接触表面積 が大きいため血小板凝集が起こりやすい。 また、 本発明粒子は多孔性であるため、 粒子間にも血小板が浸入することができることから血小板凝集効果はさらに高ま り、 これに伴い塞栓能も高まると考えられる。 さらにまた、 粒子の凹凸の影響によ り、 血管内に乱流が生じやすく、 血小板が受ける剪断変形圧によって血小板凝集が 起こりやすくなることも期待できる。 (3 ) 前記機序④については、 生体内酵素に よる分解において、本発明粒子が多孔性であることより粒子の内部からも分解され るため消失速度が早レ、と考えられる。 FIG. 2 shows the mechanism of action (from administration to recanalization) of embolization therapy when the water-insolubilized porous particles of the present invention are used for transarterial embolization therapy. The mechanism is as follows: (1) Particles selectively administered to a target blood vessel by a catheter physically emboli the blood vessel; (2) Platelet adheres to the particle and Z or is brought into contact with the particle to induce platelet aggregation. Clots are formed (the embolism becomes strong). ③The embolus causes necrosis of a malignant tumor whose nutrient supply is cut off. (When used together with an anticancer drug, the concentration of the anticancer drug at the tumor site is also high.) It is thought that (1) further therapeutic effects are expected), (2) particles are degraded by enzymes in the living body, and blood vessels are re-communicated. (4) Necrotic areas or surrounding tissues are restored to normal. The features of the porous particles of the present invention in the mechanism are considered as follows. That is, (1) Regarding the above mechanism (1), since the particles of the present invention are porous, the particle surface area is large, and the particles have excellent elasticity, so that they can be freely adjusted according to the blood vessel wall and the thickness of the blood vessel. By being deformable, particles can be formed in a state where the particles are close to each other in an embolus position and denser. Further, since the particles of the present invention can be deformed even in a microcatheter used for TAE or the like, it is possible to administer particles having a particle size larger than that of non-porous' ft particles. An embolic effect is expected. In addition, usually, when a micro catheter is used, a considerable force is required. When the particles of the present invention are used, the physical burden on the practitioner may be reduced for the reasons described above. Be expected. (2) It is generally said that platelet aggregation is induced by contact of platelets with, for example, collagen. Regarding the mechanism (1), for example, a case is considered where gelatin obtained by decomposing collagen is used as a base for an embolic substance. The specific surface area of the particles of the present invention is large because of their porosity, and platelet aggregation is likely to occur because of their large contact surface area with platelets. In addition, since the particles of the present invention are porous, platelets can infiltrate between the particles, so that the platelet aggregation effect is further enhanced, and the embolization ability is thought to be enhanced accordingly. Furthermore, it is expected that turbulence is likely to occur in blood vessels due to the effects of particle irregularities, and that platelet aggregation is likely to occur due to the shearing pressure exerted on platelets. (3) Regarding the mechanism (1), it is considered that the particle of the present invention is degraded from the inside of the particle due to its porosity in the decomposition by the in-vivo enzyme, so the disappearance rate is high.
図 3は、 非多孔性粒子が同療法に用いられる場合の作用機序 (投与から再疎通ま で) を示すものである。 粒子は多孔性でないため、 本発明多孔性粒子と比して投与 可能な粒子径ゃ血小板凝集作用に基づく塞栓性及び再疎通能に劣るものと考えら れる。  Figure 3 shows the mechanism of action (from administration to recanalization) when non-porous particles are used in the therapy. Since the particles are not porous, it can be considered that the particle size that can be administered is poorer than the porous particles of the present invention in terms of the embolic property and the re-penetrating ability based on the platelet aggregation action.
図 4は、実施例 1 6から調製される本発明粒子と比較例 3〜6から得られる非多 孔性粒子について、 血小板凝集試験結果を示す。 (ビーグル犬 Aの血液)  FIG. 4 shows the results of a platelet aggregation test on the particles of the present invention prepared from Example 16 and the non-porous particles obtained from Comparative Examples 3 to 6. (Beagle A blood)
図 5は、 図 4と同様に血小板凝集試験結果を示す。 (ビーグル犬 Bの血液) 発明を実施するための最良の形態  FIG. 5 shows the results of the platelet aggregation test as in FIG. (Blood of Beagle Dog B) Best Mode for Carrying Out the Invention
以下に、 比較例、 実施例及び試験例に基づいて、 本発明をより詳細に説明する力 本発明はこれらの実施例により限定されるものではない。  Hereinafter, the ability to explain the present invention in more detail based on Comparative Examples, Examples and Test Examples The present invention is not limited to these examples.
比較例 1 Comparative Example 1
ゼラチン (C P— 2, 宫城化学社製) 2 0 gを精製水 5 0 0 /73ゾに入れ、 加温し て溶解させた。 この溶液 2 0 O nゾをパナセ一ト 8 0 0 (日本油脂社製) 1 こ投 入し、 テフロンパドルを装着した撹拌装置 (MAZELA Z, 東京理化器械社製) を用い て 2 0 0 r p mで撹拌し、 ェマルジヨンを形成させた。 : のェマルジヨンを冷却し ゲル化させゲル粒子とした。 冷却下、 メッシュ (2 5 0 // m) を用いてゲル粒子を 取り出し、 イソプロピルアルコール ( I P A) で洗浄した。 次に、 ガラスフィルタ —を用いて I P Aを除去し、 粒子を取り出した。 これを真空乾燥後、 1 5 5 °Cで 4 時間加熱し粒子を得た。 得られた粒子はその表面に孔を有しておらず、 内部は多孔 性 (蜂の巣状) ではなかった。 20 g of gelatin (CP-2, manufactured by Takashiro Chemical Co., Ltd.) was placed in purified water 500/73, heated and dissolved. This solution was injected into a panacet 800 (Nippon Oil & Fats Co., Ltd.) 1 at 200 rpm using a stirrer (MAZELA Z, manufactured by Tokyo Rika Instruments) equipped with a Teflon paddle. To form an emulsion. : The emulsion was cooled and gelled to form gel particles. Under cooling, the gel particles were taken out using a mesh (250 // m) and washed with isopropyl alcohol (IPA). Next, the glass filter The IPA was removed using — and the particles were removed. After vacuum drying, it was heated at 155 ° C for 4 hours to obtain particles. The obtained particles had no pores on the surface, and the inside was not porous (honeycomb).
比較例 2 Comparative Example 2
ゼラチン (C P— 2, 宮城化学社製) 2 0 gを精製水 5 0 0 ゾに入れ、 加温し て溶解させた。 この溶液を室温に戻しホモジナイザー (特殊機化工業社製) で撹拌 し ( 1 0 0 0 0 r p m, 1 0分) 起泡させた。 この泡 4 0 0 πゾをパナセ一ト 8 0 0 (日本油脂社製) 1 /に投入し、 テフロンパドルを装着した撹拌装置 (MAZELA Z, 東京理化器械社製) を用いて 2 0 0 r p mで撹拌し、 ェマルジヨンを形成させた。 このェマルジョンをゲル化させることなく室温下、メッシュを用いて取り出したと ころ、 ェマルジヨンが合一し、 粒子として取り出すことはできなかった。  Gelatin (CP-2, manufactured by Miyagi Chemical Co., Ltd.) (20 g) was placed in purified water (500 zo) and dissolved by heating. This solution was returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (1000 rpm, 10 minutes) to foam. This foam (400 π) is put into Panacet 800 (Nippon Oil & Fats Co., Ltd.) 1/200, and stirred at 200 rpm using a stirrer (MAZELA Z, Tokyo Rika Instruments) equipped with a Teflon paddle. To form an emulsion. When this emulsion was taken out using a mesh at room temperature without gelling, the emulsion was coalesced and could not be taken out as particles.
実施例 1 Example 1
ゼラチン (C P— 2, 宫城化学社製) 2 0 gを精製水 5 0 O TTJゾに入れ、 加温し て溶解させた。 この溶液を室温に戻しホモジナイザー (特殊機化工業社製) で撹拌 し ( 1 0 0 0 0 r p m, 1 0分) 起泡させた。 この泡 4 0 0 m Jをパナセ一卜 8 0 0 (日本油脂社製) 1 /に投入し、 テフロンパドルを装着した撹拌装置 (MAZELA Z, 東京理化器械社製) を用いて 2 0 0 r p mで撹拌し、 ェマルジヨンを形成させた。 このェマルジョンを冷却しゲル化させゲル粒子とした。 冷却下、 メッシュ (2 5 0 μ m) を用いてゲル粒子を取り出し、 イソプロピルアルコール ( I P A) で洗浄し た。 洗浄後、 ガラスフィルタ一を用いて ί P Aを除去し、 ゲル粒子を取り出した。 これを真空乾燥後、 1 5 5 °Cで 4時間加熱し、 本発明の粒子を得た。 得られた粒子 はその表面に孔を有し、 内部は多孔性 (蜂の巣状) であり、 水に分散すると球状の 粒子の形を保持したまま膨潤した。  20 g of gelatin (CP-2, manufactured by Takashiro Chemical Co., Ltd.) was placed in purified water 50 O TTJ, and dissolved by heating. This solution was returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (1000 rpm, 10 minutes) to foam. 400 mJ of this foam was put into a PANASET 800/100 (manufactured by NOF CORPORATION), and 200 rpm using a stirrer (MAZELA Z, manufactured by Tokyo Rika Kikai) equipped with a Teflon paddle. To form an emulsion. The emulsion was cooled and gelled to obtain gel particles. Under cooling, the gel particles were taken out using a mesh (250 μm) and washed with isopropyl alcohol (IPA). After washing, ίPA was removed using a glass filter, and gel particles were taken out. This was vacuum-dried and heated at 155 ° C for 4 hours to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
試験例 1 Test example 1
実施例 1で調製した多孔性粒子について、加熱処理前後の各粒子 1 j 1を各々 1 ゾのスピッツ管にとり水を加えて 1 ゾとし、振とう機で一定時間振とう後 の残存ゲル体積を測定することにより構造維持能力を比較した。  With respect to the porous particles prepared in Example 1, each particle 1 j 1 before and after the heat treatment was placed in a 1-oz Spitz tube, and water was added thereto to make 1 z, and the residual gel volume after shaking for a certain period of time with a shaker was used. The structure retention ability was compared by measuring.
その結果、加熱処理した粒子は直ちに膨潤しその構造を維持するのに対し、加熱 処理しない粒子はゲルが経時的に溶解し構造を維持できなかった。 したがって、 本 発明粒子は、 水不溶性であり、 塞栓療法に適用可能と考えられる適度な強度を有す ることが示唆された。 As a result, the particles subjected to the heat treatment immediately swelled and maintained their structures, whereas the particles not heat-treated dissolved the gel with time and could not maintain the structure. Therefore, the book It was suggested that the inventive particles were water-insoluble and had a moderate strength considered to be applicable to embolization therapy.
試験例 2 Test example 2
実施例 1の中間工程で得られた未架橋の多孔性粒子 1 gを冷水 3 0 0 77 /中に 分散させ、 1 0 %グルタルアルデヒ ド水溶液を 1 %となるように滴下し 3 0分間反 応させた。 水で洗浄し未架橘のダルタルアルデヒ ドを除去した後、 1 2 1 3Cで 2 0 分間ォ一トクレーブ処理し、 さらに凍結乾燥し比較試料を得た。 1 g of the uncrosslinked porous particles obtained in the intermediate step of Example 1 was dispersed in cold water 30077 /, and a 10% aqueous glutaraldehyde solution was dropped to 1%, and the solution was reacted for 30 minutes. I responded. After washing with water to remove Darutaruarudehi de un rack Tachibana, 1 2 1 3 2 0 min O one Tokurebu processing in C, and to obtain a comparative sample was further lyophilized.
実施例 1で得られた試料及び比較試料について、 細胞増殖実験を行った。  Cell proliferation experiments were performed on the sample obtained in Example 1 and the comparative sample.
マイクロプレート中に】 w e 1 1あたり 5 X 1 0 4 c e 1 1 s / ノの W 2 0細 胞 (マウス骨髄スト口一マ細胞) を 2 0 0〃 ゾづっ加え C〇2インキュベータ一中 1晚培養し、 その後、 骨形成因子 (B M P— 2 ) を 4 1 . /含んだ培地と 交換し、 さらに 2 4時間培養した。試料及び比較試料は一定体積約 1 0 /を B M P— 2添加時に添加した。 増殖した細胞の計数は、 細胞の凍結融解処理後、 細胞内 のアルカリ性フォスファタ一ゼ活性を利用した定色反応により評価した。 In a microplate] We add 5 × 10 4 ce 11 s / no W 20 cells per mouse (mouse bone marrow strike orifice cells) at 200 ° C. and C〇 2 in the incubator 1 The cells were cultured, and then the medium was replaced with a medium containing bone forming factor (BMP-2) at 41./, and the cells were further cultured for 24 hours. The sample and the comparative sample were added at a constant volume of about 10 / at the time of adding BMP-2. After the cells were frozen and thawed, the number of the proliferating cells was evaluated by a colorimetric reaction utilizing alkaline phosphatase activity in the cells.
その結果、ダルタルアルデヒ ドを架橋剤として用いて製造された多孔性粒子につ いては細胞増殖抑制傾向が認められた。 これに対して、 本発明多孔性粒子について は細胞増殖促進傾向が認められた。 したがって、 本発明粒子においては、 グルタル アルデヒ ドで架橋された粒子よりも細胞増殖性及び安全性に優れていることが示 唆された。  As a result, with respect to the porous particles produced using darthal aldehyde as a cross-linking agent, a tendency to suppress cell growth was observed. In contrast, the porous particles of the present invention tended to promote cell growth. Therefore, it was suggested that the particles of the present invention are more excellent in cell proliferation and safety than particles crosslinked with glutaraldehyde.
実施例 2 Example 2
ゼラチン (C P— 2, 宮城化学社製) 2 0 gを精製水 5 0 O T?ゾに入れ、 加温し て溶解させた。 この溶液を室温に戻しホモジナイザー (特殊機化工業社製) で撹拌 し (1 0◦ 0 0 r p m, 1 0分) 起泡させた。 この泡 4 0 ノを大豆油 (関東化 学社製) 1 ノに投入し、 以下実施例 1と同様に操作し、 本発明の粒子を得た。 得ら れた粒子はその表面に孔を有し、 内部は多孔性 (蜂の巣状) であり、 水に分散する と球状の粒子の形を保持したまま膨潤した。  20 g of gelatin (CP-2, manufactured by Miyagi Chemical Co., Ltd.) was placed in 50 OT of purified water, and heated to dissolve. The solution was returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (10 ° 00 rpm, 10 minutes) to foam. The foam 40 was added to soybean oil (manufactured by Kanto Kagaku Co., Ltd.) 1 and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 3 Example 3
ゼラチン (C P— 2, 宫城化学社製) 5 0 gを精製水 5 0 0 ^ゾに入れ、 加温し て溶解させた。 この溶液を室温に戻しホモジナイザー (特殊機化工業社製) で撹拌 し (1 0 () 0 0 r p m, 1 0分) 起泡させた。 この泡 4 0 0 ゾを大豆油 (関東化 学社製) 1 /に投入し、 以下実施例 1 と同様に操作し、 本発明の粒子を得た。 得ら れた粒子はその表面に孔を有し、 内部は多孔性 (蜂の巣状) であり、 水に分散する と球状の粒子の形を保持したまま膨潤した。 Gelatin (CP-2, manufactured by Takashiro Chemical Co., Ltd.) (50 g) was placed in purified water (500 ^) and heated to dissolve. The solution is returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo). (10 () 00 rpm, 10 minutes). The foam was added to soybean oil (manufactured by Kanto Kagaku) 1 /, and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 4 Example 4
ゼラチン (C P— 2, 宮城化学社製) 5 0 gを精製水 5 00 /に入れ、 加温し て溶解させた。 この溶液を室温に戻しホモジナイザー (特殊機化工業社製) で撹拌 し (l O O O O r pm, 1 0分) 起泡させた。 この泡 4 0 0 mゾをゴマ油 (関東化 学社製) 1 /に投入し、 以下実施例 1と同様に操作し、 本発明の粒子を得た。 得ら れた粒子はその表面に孔を有し、 内部は多孔性 (蜂の巣状) であり、 水に分散する と球状の粒子の形を保持したまま膨潤した。  Gelatin (CP-2, manufactured by Miyagi Chemical Co., Ltd.) (50 g) was placed in purified water (500 /) and heated to dissolve. The solution was returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (lOOOOOrpm, 10 minutes) to foam. The foam (400 m) was put into sesame oil (manufactured by Kanto Kagaku) 1 /, and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 5 Example 5
ゥシ血清アルブミン (B S Λ, シグマ社製) 2 0 gを精製水 1 0 0 πゾに入れ、 マグネチックスターラーで撹拌溶解した。 この溶液をホモジナイザー (特殊機化工 業社製) で撹拌し (l O O O O r pm, 1 0分) 起泡させた。 この泡 2 0 ゾを パナセ一ト 8 0 0 (日本油脂社製) 1 ゾに投入し、 以下実施例 1と同様に操作し、 本発明の粒子を得た。 得られた粒子はその表面に孔を有し、 内部は多孔性 (蜂の巣 状) であり、 水に分散すると球状の粒子の形を保持したまま膨潤した。  20 g of 血清 serum albumin (BS S, manufactured by Sigma) was placed in 100 π of purified water, and dissolved by stirring with a magnetic stirrer. This solution was stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (lOOOOOrpm, 10 minutes) to foam. 20 zo of this foam was put into 1 zo of Panaceto 800 (manufactured by NOF CORPORATION), and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 6 Example 6
アルギン酸 (シグマ社製) 2 0 gを精製水 1 0 0 /77ゾに入れ、 マグネチックスタ 一ラーで撹拌溶解した。 この溶液をホモジナイザー (特殊機化工業社製) で撹拌し ( l O O O O r pm, 1 0分) 起泡させた。 この泡 2 0 ゾをパナセ一ト 8 00 (日本油脂社製) 1 こ投入し、 以下実施例 1と同様に操作し、 本発明の粒子を得 た。 得られた粒子はその表面に孔を有し、 内部は多孔性 (蜂の巣状) であり、 水に 分散すると球状の粒子の形を保持したまま膨潤した。  20 g of alginic acid (manufactured by Sigma) was placed in purified water 100/77 and stirred and dissolved with a magnetic stirrer. The solution was stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (lOOOOORpm, 10 minutes) to foam. 20 bubbles of this foam were put in 1 panaceto 800 (manufactured by NOF CORPORATION), and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 7 Example 7
ゼラチン (C P— 2, 宮城化学社製) 5 0 gを精製水 5 0 ゾに入れ、 加温し て溶解させた。 この溶液を室温に戻しホモジナイザー (特殊機化工業社製) で撹拌 し ( 1 0 000 r pm, 1 0分) 起泡させた。 この泡 40 Ο/πゾをレオドール AO 1 5 (花王社製) を 1 %含有するパナセ一ト 8 0 0 (日本油脂社製) 1 /に投入 し、 以下実施例 1と同様に操作し、 本発明の粒子を得た。 得られた粒子はその表面 に孔を有し、 内部は多孔性 (蜂の巣状) であり、 水に分散すると球状の粒子の形を 保持したまま膨潤した。 Gelatin (CP-2, manufactured by Miyagi Chemical Co., Ltd.) (50 g) was placed in purified water (50 zo), and dissolved by heating. The solution was returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (100,000 rpm, 10 minutes) to foam. This bubble 40 ゾ / π 15 (manufactured by Kao Corporation) was added to 1/100/1 (manufactured by NOF CORPORATION) 1 / containing 1%, and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 8 Example 8
加水分解ゼラチン (商品名 ;二ッピハイグレードゼラチン, 二ッピ社製) 5 0 g を精製水 5 0 0 777 こ入れ、 加温して溶解させた。 この溶液を室温に戻しホモジナ ィザー (特殊機化工業社製) で撹拌し (1 0 0 0 0 r p m, 1 0分) 起泡させた。 この泡 4 0 0 /77ノをパナセート 8 0 0 (日本油脂社製) 1 ノに投入し、 テフロンパ ドルを装着した搅拌装置 (MAZELA Z, E Y E L A社製) を用いて 4 0 0 r p mで撹 拌し、 ェマルジヨンを形成させた。 以下実施例 1と同様に操作し、 本発明の粒子を 得た。 得られた粒子はその表面に孔を有し、 内部は多孔性 (蜂の巣状) であり、 水 に分散すると球状の粒子の形を保持したまま膨潤した。  50 g of hydrolyzed gelatin (trade name; Nippi High Grade Gelatin, manufactured by Nippi) was placed in 500 777 of purified water, and heated to dissolve. The solution was returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (100 rpm, 10 minutes) to foam. 400/77 of this foam was put into Panasate 800 (manufactured by NOF Corporation), and stirred at 400 rpm using a stirrer (MAZELA Z, manufactured by EYELA) equipped with a Teflon paddle. To form an emulsion. Thereafter, the same operation as in Example 1 was performed to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 9 Example 9
酸処理ゼラチン (G— 0 7 8 5 P, 新田ゼラチン社製) 2 0 gを精製水 5 0 0 w こ入れ、 加温して溶解させた。 この溶液を室温に戻しホモジナイザー (特殊機化 工業社製) で撹拌し (1 0 0 0 0 r p m, 1 0分) 起泡させた。 この泡 4 0 0 ^ 7 をパナセート 8 0 0 (日本油脂社製) 1 ゾに投入し、 以下実施例 1と同様に操作し、 本発明の粒子を得た。 得られた粒子はその表面に孔を有し、 内部は多孔性 (蜂の巣 状) であり、 水に分散すると球状の粒子の形を保持したまま膨潤した。  20 g of acid-treated gelatin (G-0785P, manufactured by Nitta Gelatin Co., Ltd.) was poured into 500 w of purified water and heated to dissolve. The solution was returned to room temperature and stirred with a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd.) (100 rpm, 10 minutes) to foam. The foam 400 ^ 7 was put into Panassate 800 (manufactured by NOF CORPORATION), and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 1 0 Example 10
ゼラチン (C P— 2, 宫城化学社製) 4 gを精製水 1 0 0 /Ώゾに入れ、 加温して 溶解させた。 この溶液を室温に戻しパナセ一ト 2 0 /77 /を加え、 ホモジナイザーで 撹拌し、 ェマルジヨンを形成させた。 このェマルジヨンをパナセート 8 0 0 (日本 油脂社製) 4 0 0 /77 こ投入し、 以下実施例 1と同様に操作し、 本発明の粒子を得 た。 得られた粒子はその表面に孔を有し、 内部は多孔性 (蜂の巣状) であり、 水に 分散すると球状の粒子の形を保持したまま膨潤した。  Gelatin (CP-2, manufactured by Takashiro Chemical Co., Ltd.) (4 g) was placed in purified water (100 / dilute) and heated to dissolve. The solution was returned to room temperature, added with 20/77 / of panacet, and stirred with a homogenizer to form an emulsion. The emulsion was added in a panasate 800 (manufactured by NOF Corporation) 400/77, and the same operation as in Example 1 was carried out to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 1 1 実施例 1 と同様の方法で、 得られたゲル粒子を真空乾燥後、 1 9 0 °Cで 1時間加 熱し本発明の粒子を得た。 得られた粒子はその表面に孔を有し、 內部は多孔性 (蜂 の巣状) であり、 水に分散すると球状の粒子の形を保持したまま膨潤した。 Example 1 1 In the same manner as in Example 1, the obtained gel particles were vacuum-dried and then heated at 190 ° C for 1 hour to obtain particles of the present invention. The obtained particles had pores on the surface, and the upper part was porous (honeycomb). When dispersed in water, the particles swelled while maintaining the shape of spherical particles.
実施例 1 2 Example 1 2
実施例〗 と同様の方法で、 得られたゲル粒子を真空乾燥後、 1 7 0 °Cで 2時間加 熱し本発明の粒子を得た。 得られた粒子はその表面に孔を有し、 内部は多孔性 (蜂 の巣状) であり、 水に分散すると球状の粒子の形を保持したまま膨潤した。  The gel particles obtained were dried under vacuum in the same manner as in Example I, and then heated at 170 ° C for 2 hours to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 1 3 Example 13
実施例 1と同様の方法で、 得られたゲル粒子を真空乾燥後、 1 6 0 °Cで 4時間加 熱し本発明の粒子を得た。 得られた粒子はその表面に孔を有し、 内部は多孔性 (蜂 の巣状) であり、 水に分散すると球状の粒子の形を保持したまま膨潤した。  The gel particles obtained were dried in a vacuum in the same manner as in Example 1 and then heated at 160 ° C. for 4 hours to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 1 4 Example 14
実施例 1 と同様の方法で、 得られたゲル粒子を真空乾燥後、 1 4 5 °Cで 5時間加 熱し本発明の粒子を得た。 得られた粒子はその表面に孔を有し、 内部は多孔性 (蜂 の巣状) であり、 水に分散すると球状の粒子の形を保持したまま膨潤した。  The gel particles obtained were dried in vacuo in the same manner as in Example 1 and then heated at 145 ° C. for 5 hours to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 1 5 Example 15
実施例 1 と同様の方法で、 得られたゲル粒子を凍結乾燥後、 1 4 5 °Cで 5時間加 熱し本発明の粒子を得た。 得られた粒子はその表面に孔を有し、 内部は多孔性 (蜂 の巣状) であり、 水に分散すると球状の粒子の形を保持したまま膨潤した。  In the same manner as in Example 1, the obtained gel particles were lyophilized, and then heated at 145 ° C for 5 hours to obtain particles of the present invention. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
実施例 1 6 Example 16
ゼラチン (G G G, 新田ゼラチン社製) 1 0 5 gを精製水に入れ 3 ゾとし、 加温 して溶解させた。 この溶液を室温に戻し撹拌機 (E Y E L A社製) で撹拌し (1 2 0 0 r p m, 2 0分)起泡させた。 この泡 6 ゾをパナセ一ト 8 0 0 (日本油脂社製) 8 ゾに投入し、 テフロンパドルを装着した撹拌装置 (MAZELA Z, E Y E L A社製) を用いて 1 7 0 r p mで撹拌し、 ェマルジョンを形成させた。 このエマノレジョンを 冷却しゲル化させゲル粒子とした。 冷却下、 メッシュ (3 0 0 /x m) を用いてゲル 粒子を取り出し、 冷却したイソプロピルアルコール ( I P A) で洗浄した。 洗浄後、 メッシュを用いて I P Aを除去し、 ゲル粒子を取り出した。 このゲル粒子と I P A をビーカ一に入れ、 水流ポンプを用いて減圧にし、 マグネチックスターラーで撹拌 しながらゲル粒子を洗浄した。 さらに、 常圧に戻し、 ビーカ一ごと超音波洗浄器に 移し、 ゲル粒子を超音波照射した。 このゲル粒子をメッシュを用いて分級し、 フィ ルターを用いてゲル粒子を取り出した。 これを真空乾燥後、 1 5 5 °Cで 4時間加熱 し、 本発明粒子を得た。 次に、 この粒子をさらに水で洗浄後、 凍結乾燥を行い粒子 を得た。 得られた粒子はその表面に孔を有し、 内部は多孔性 (蜂の巣状) であり、 水に分散すると球状の粒子の形を保持したまま膨潤した。 105 g of gelatin (GGG, manufactured by Nitta Gelatin Co., Ltd.) was added to purified water to make 3 g, and dissolved by heating. The solution was returned to room temperature and stirred with a stirrer (manufactured by EYELA) (120 rpm, 20 minutes) to foam. This foam 6 zo is put into a panacet 800 (made by NOF CORPORATION) 8 zo and stirred at 170 rpm using a stirrer (MAZELA Z, manufactured by EYELA) equipped with a Teflon paddle. Was formed. This emano-region was cooled and gelled to form gel particles. Under cooling, the gel particles were taken out using a mesh (300 / xm) and washed with cooled isopropyl alcohol (IPA). After washing, the IPA was removed using a mesh, and the gel particles were taken out. Put the gel particles and IPA into a beaker, reduce the pressure using a water jet pump, and stir with a magnetic stirrer. While washing, the gel particles were washed. Further, the pressure was returned to normal pressure, the whole beaker was transferred to an ultrasonic cleaner, and the gel particles were irradiated with ultrasonic waves. The gel particles were classified using a mesh, and the gel particles were taken out using a filter. This was vacuum-dried and heated at 155 ° C for 4 hours to obtain particles of the present invention. Next, the particles were further washed with water and freeze-dried to obtain particles. The obtained particles had pores on the surface and were porous (honeycomb) inside. When dispersed in water, they swelled while maintaining the shape of spherical particles.
比較例 3 Comparative Example 3
シクロへキサン 1 5 0 g及びトルエン 5 0 gからなる分散媒にェチルセル口一 ス (エトキシキ基含有 4 9 %) 6 gを溶解し、 この溶液を冷却管とテフロンパドル を装着した 5 0 0 77ゾのセパラブルフラスコに入れた。撹拌速度を 4 0 0 r p mと し、 温度を 7 0 °Cにした。 これにゼラチンを 3 0重量%の濃度で水に加え、 6 0 °C で溶解させて得た水溶液を 4 0 g添加し、 5 0 %ダルタルアルデヒ ド水溶液 4 g (ゼラチンのアミノ基 1当量に対してダルタルアルデヒ ド 4当量) を入れ、 5分間 反応させると茶褐色の粒子が得られた。 これを酢酸ェチルで洗浄し、 さらにァセト ンで洗浄し篩いで 0 . 5〜 1 . O mmの粒子を集め、真空乾燥機で乾燥し粒子を得た。 本粒子を電子顕微鏡で観察すると、 表面が滑らかで内部に孔がなかった。  In a dispersion medium consisting of 150 g of cyclohexane and 50 g of toluene, 6 g of ethylcell mouth (49% containing an ethoxy group) was dissolved, and this solution was fitted with a cooling tube and a Teflon paddle. Ezo was placed in a separable flask. The stirring speed was 400 rpm, and the temperature was 70 ° C. To this, gelatin was added to water at a concentration of 30% by weight, and 40 g of an aqueous solution obtained by dissolving at 60 ° C was added.4 g of a 50% aqueous dartal aldehyde solution (1 equivalent of the amino group of gelatin, (4 equivalents of Daltar aldehyde) and reacted for 5 minutes to obtain brownish particles. This was washed with ethyl acetate, further washed with acetone, and sieved to collect particles of 0.5 to 1.0 mm, and dried with a vacuum drier to obtain particles. Observation of the particles with an electron microscope revealed that the surface was smooth and had no pores inside.
比較例 4 Comparative Example 4
比較例 3と同様の操作で行った。 ただし、 ダルタルアルデヒ ドの添加量を 0 . 1 5 g (ゼラチンのアミノ基 1当量に対して、 ダルタルアルデヒ ド 0 . 1 5当量) と した。  The same operation as in Comparative Example 3 was performed. However, the amount of daltar aldehyde added was 0.15 g (0.15 equivalent of daltar aldehyde per equivalent of amino group of gelatin).
比較例 5 Comparative Example 5
比較例 3と同様な操作で行った。架橘剤をグルタルアルデヒ ドからポリグリセ口 一ルポリグリシジルエーテル (商品名 デナコール E X 5 1 2、 ナガセ化成社製) と代え、 これを 5 g (ゼラチンのアミノ基 1当量に対して、 エポキシ基 4当量) 入 れ、 反応時間を 7 0 °Cで 5時間行って、 同様な操作で粒子を得た。  The same operation as in Comparative Example 3 was performed. Glutaraldehyde was replaced by polyglycerol polyglycidyl ether (trade name: Denacol EX 512, manufactured by Nagase Kasei Co., Ltd.), and 5 g of the epoxy resin was added to the epoxy group. The reaction was carried out at 70 ° C. for 5 hours, and particles were obtained by the same operation.
比較例 6 Comparative Example 6
比較例 3と同様な操作で行った。 ただし、 ゼラチンの濃度を 5重量%ととした。 試験例 3 実施例 1 6で製造された加熱処理(1 5 5 °C, 4時間) した粒子から、篩いで 0 . 5〜1 . O m mのものを取り出し、 これを水に分散後凍結乾燥し製造された本発明 粒子と比較例 3〜 6で製造された粒子について、それぞれの粒子の血小板凝集作用 を測定した。試験は、 5 /77 ンリンジ(テルモ社製) にクェン酸ナトリゥム試液(商 品名 チトラート、 ミ ドリ十字社製) を 0 . 4 772 入れ、 ビーグル犬 2頭 (A及び B ) から採血した血液を加え全量 4 とし、 これを採血ビンに移し、 それぞれの 粒子 4 0 m gを入れ、 動物用血球測定装置 (セルタック α、 日本光電社製) を用い て経時的な血小板数を測定することにより行った。 なお、 血液の凝集作用を確認す るため、 コラーゲン (】 m g Z 72ゾ、 ゥマの腱コラーゲン、 Hormon- Chemi e 社製) を 0 . 1 3 7 8 ゾ加えた(血液中のコラーゲン濃度を 3 3 . 3 μ g / m とした)。 また、 試験に用いた血液の妥当性を評価するため、 クェン酸ナトリゥム含有血液を 用いてブランク試験を行った。 The same operation as in Comparative Example 3 was performed. However, the concentration of gelatin was 5% by weight. Test example 3 From the particles subjected to the heat treatment (155 ° C., 4 hours) produced in Example 16, those having a diameter of 0.5 to 1.0 mm were taken out through a sieve, dispersed in water, freeze-dried, and then produced. The platelet aggregation effect of each of the particles of the present invention and the particles produced in Comparative Examples 3 to 6 was measured. In the test, 0.4 772 sodium citrate reagent (trade name: Titrat, manufactured by Green Cross) was added to 5/77 syringe (manufactured by Terumo), and blood collected from two beagle dogs (A and B) was added. The total amount was set to 4, and this was transferred to a blood collection bottle, 40 mg of each particle was added, and the number of platelets over time was measured using an animal blood cell measuring device (Celltack α, manufactured by Nihon Kohden). In order to confirm the blood agglutinating action, 0.13878 oz. Of collagen ((mg Z 72 zo, poma tendon collagen, manufactured by Hormon Chemie) was added (the collagen concentration in the blood was reduced). 33.3 μg / m). In addition, to evaluate the validity of the blood used in the test, a blank test was performed using sodium citrate-containing blood.
ビーグル犬 A及びビーダル犬 Bの 2頭の血液を用いた結果をそれぞれ図 4及び 図 5に示す。 比較例 3〜 6で製造された粒子について、初期値を 1 0 0とした血小 板数の相対比 (血中血小板数の残存率) は、 ブランクと同じくほとんど変化を示さ なかった。 これに対し、 本発明粒子については、 血小板の凝集に基づく血小板数の 相対比の有意な低下が認められた。 したがって、 塞栓物質周辺で血小板凝集が起き ることから、 塞栓療法において、 より強固な塞栓の形成が期待できる。 なお、 コラ 一ゲンを添加したものは添加後 5分で血小板の凝集に基づく血小板数の減少が認 められ、 測定に用いた血液の妥当性を確認した。 産業上の利用の可能性  The results obtained using the blood of two beagle dogs A and B are shown in FIGS. 4 and 5, respectively. As for the particles produced in Comparative Examples 3 to 6, the relative ratio of the number of platelets (residual rate of blood platelet count) with the initial value being 100 showed almost no change as in the case of the blank. In contrast, with the particles of the present invention, a significant decrease in the relative ratio of platelet count based on platelet aggregation was observed. Therefore, since platelet aggregation occurs around the embolic substance, formation of a stronger emboli can be expected in embolization therapy. In the case where collagen was added, a decrease in platelet count due to platelet aggregation was observed 5 minutes after addition, confirming the validity of the blood used for the measurement. Industrial applicability
本発明の生体適合性物質からなる水不溶化多孔性粒子は、架橘剤を含まず生体適 合性であって、注射針またはカテーテルを通過し力つ血管壁面にフィットするなど の優れた弾力性、 治療上有効とされる塞栓能を有し、 多孔性であるがために正常細 胞の壊死などの副作用が懸念されることのない塞栓治療後の速やかな再疎通能が 期待されるため、 例えば肝細胞癌などの経動脈的塞栓療法に用いることができる。 また、 本発明の多孔性粒子は、 該療法などに用いられる他、 例えばバイオプシー の止血物質、 種々の細胞固定化または培養用の担体、創傷保護剤、 経口製剤の崩壊 剤、 薬物吸着剤 (苦味防止剤) 、 徐放性製剤の担体、 輸送時の破損防止材などに用 いることもできる。 The water-insolubilized porous particles made of the biocompatible substance of the present invention are biocompatible without containing a crosslinker, and have excellent elasticity such as passing through an injection needle or a catheter and fitting to the wall of a blood vessel. However, it has embolic potential that is considered therapeutically effective, and because of its porous nature, it is expected to have a rapid re-penetrating ability after embolic treatment without concern about side effects such as necrosis of normal cells. For example, it can be used for transarterial embolization therapy such as hepatocellular carcinoma. In addition, the porous particles of the present invention can be used for the therapy, etc., for example, a biopsy hemostatic substance, various carriers for immobilizing or culturing cells, a wound protecting agent, disintegration of oral preparations, and the like. Agents, drug adsorbents (bitterness inhibitors), carriers for sustained-release preparations, and materials to prevent breakage during transportation.
さらに、 本発明によれば、 実質的に架橋剤を含まない生体適合性物質の水不溶化 多孔性粒子を含有する塞栓治療用塞栓物質あるレ、は医薬物質及び該粒子を含有す る医薬組成物が提供される。  Further, according to the present invention, there is provided an embolic material for treating emboli containing water-insolubilized porous particles of a biocompatible substance substantially free of a cross-linking agent, and a pharmaceutical substance and a pharmaceutical composition containing the particles. Is provided.
さらにまた、 本発明によれば、 大量生産が可能で、 粒子径の制御も可能で、 前記 特性を有する多孔性粒子の製造法が提供される。  Still further, according to the present invention, there is provided a method for producing porous particles having the above characteristics, which enables mass production and control of particle diameter.

Claims

5S 求 の 車 Q Car Q for 5S
1 .実質的に架橋剤を含有しないゲル形成性または固化性の生体適合性物質からな る水不溶化多孔性粒子。 1. Water-insolubilized porous particles made of a gel-forming or solidifying biocompatible substance substantially containing no crosslinking agent.
2 . 生体適合性物質が、 ポリペプチド、 その誘導体、 蛋白質、 その誘導体、 多糖、 その誘導体、及びそれらの生理学的に許容される塩からなる群より選択された 1種 または 2種以上である請求の範囲 1記載の粒子。  2. The biocompatible substance is one or more selected from the group consisting of a polypeptide, a derivative thereof, a protein, a derivative thereof, a polysaccharide, a derivative thereof, and a physiologically acceptable salt thereof. The particles according to 1 above.
3 . 生体適合性物質が、 ゼラチン、 コラーゲン、 ァテロコラーゲン、 アルブミン、 フイブリン、 プロタミン、 ジュランガム、 アラビアゴム、 ヒアルロン酸、 アルギン 酸、 コンドロイチン硫酸、 へパリン、 キチン、 キトサン及びそれらの誘導体、 並び にそれらの生理学的に許容される塩からなる群より選択された 1種または 2種以 上である請求の範囲 2記載の粒子。  3. Biocompatible substances include gelatin, collagen, atherocollagen, albumin, fibrin, protamine, juran gum, acacia, hyaluronic acid, alginic acid, chondroitin sulfate, heparin, chitin, chitosan and derivatives thereof, and their derivatives. 3. The particles according to claim 2, wherein the particles are one or more selected from the group consisting of physiologically acceptable salts.
4 . 生体適合性物質が、 ゼラチン、 ァテロコラーゲン、 アルブミン、 ヒアルロン酸、 アルギン酸及びそれらの誘導体、並びにそれらの生理学的に許容される塩からなる 群より選択された 1種または 2種以上である請求の範囲 3記載の粒子。  4. The biocompatible substance is one or more selected from the group consisting of gelatin, atelocollagen, albumin, hyaluronic acid, alginic acid and their derivatives, and physiologically acceptable salts thereof. The particles according to range 3.
5 . 生体適合性物質が、 ゼラチン及びそれらの誘導体、 並びにそれらの生理学的に 許容される塩からなる群より選択された 1種または 2種以上である請求の範囲 4 記載の粒子。  5. The particles according to claim 4, wherein the biocompatible substance is one or more selected from the group consisting of gelatin and derivatives thereof, and physiologically acceptable salts thereof.
6 . 粒子径が 0 . 0 1乃至 1 0 m mである請求の範囲 1乃至 5のいずれか 1項に記 載の粒子。  6. The particles according to any one of claims 1 to 5, wherein the particles have a particle size of 0.01 to 10 mm.
7 . 比重が 0 . 0 0 1 g Z 乃至 1 g / ゾである請求の範囲 1乃至 6のいずれ か 1項に記載の粒子。  7. The particles according to any one of claims 1 to 6, having a specific gravity of 0.001 g Z to 1 g / zo.
8 .請求の範囲 1乃至 7のレ、ずれか 1項に記載の実質的に架撟剤を含有しない生体 適合性物質の水不溶化多孔性粒子を含有する医薬組成物。  8. A pharmaceutical composition comprising water-insolubilized porous particles of a biocompatible substance substantially free of a crosslinking agent according to any one of claims 1 to 7.
9 . 請求の範囲 8に記載の医薬組成物において、 塞栓治療用塞栓物質として使用さ れる医薬組成物。  9. The pharmaceutical composition according to claim 8, which is used as an embolic material for treating emboli.
1 0 . 請求の範囲 8に記載の医薬組成物において、 止血物質として使用される医薬 '組成物。 10. The pharmaceutical composition according to claim 8, which is used as a hemostatic substance.
1 1 . ゲル化または固化した生体適合性物質の多孔性粒子を実質的に水の存在しな い系で加熱して水不溶化してなる生体適合性物質の水不溶化多孔性粒子。 11 1. Water-insolubilized porous particles of a biocompatible substance obtained by heating gelled or solidified porous particles of a biocompatible substance in a system substantially free of water to make them water-insoluble.
1 2 . ゲル形成性または固化性の生体適合性物質を該物質の良溶媒溶液中で起泡さ せ、 良溶媒とは混和しない生体適合性物質の貧溶媒に分散し、 これを冷却してゲル 化または固化した後、得られた多孔性粒子を生体適合性物質の貧溶媒が混和しうる 溶媒で洗浄し、実質的に水の存在しない系で加熱して水不溶化してなる請求の範囲 1 2. Bubble a gel-forming or solidifying biocompatible substance in a good solvent solution of the substance, disperse it in a poor solvent of a biocompatible substance that is immiscible with the good solvent, and cool it. After gelation or solidification, the obtained porous particles are washed with a solvent that is miscible with the poor solvent for the biocompatible substance, and heated in a system substantially free of water to make them insoluble in water.
1 1記載の粒子。 11. The particles according to 1.
1 3 . ゲル化または固化した生体適合性物質の多孔性粒子を、 実質的に水の存在し ない系で加熱して水不溶化することを特徴とする生体適合性物質の水不溶化多孔 性粒子の製造法。  1 3. The water-insolubilized porous particles of a biocompatible substance, characterized in that the gelled or solidified porous particles of a biocompatible substance are heated in a substantially water-free system to make them insoluble in water. Manufacturing method.
1 4 . ゲル形成性または固化性の生体適合性物質を該物質の良溶媒溶液中で起泡さ せ、 良溶媒とは混和しない生体適合性物質の貧溶媒に分散し、 これを冷却してゲル 化または固化した後、得られた多孔性粒子を生体適合性物質の貧溶媒が混和しうる 溶媒で洗浄し、実質的に水の存在しない系で加熱して水不溶化する請求の範囲 1 3 記載の粒子の製造法。  14. Bubble a gel-forming or solidifying biocompatible substance in a good solvent solution of the substance, disperse it in a poor solvent of a biocompatible substance that is immiscible with the good solvent, and cool it. After gelation or solidification, the obtained porous particles are washed with a solvent that is miscible with the poor solvent for the biocompatible substance, and heated in a substantially water-free system to make them insoluble in water. A method for producing the particles as described above.
1 5 . ゲル形成性または固化性の生体適合性物質の良溶媒溶液に、該物質の貧溶媒 を分散させ、 該分散液をさらに生体適合性物質の貧溶媒に分散し、 これを冷却して ゲル化または固化した後、得られた多孔性粒子を生体適合性物質の貧溶媒が混和し うる溶媒で洗浄し、実質的に水の存在しない系で加熱して水不溶化する請求の範囲 1 3記載の粒子の製造法。  15 5. Disperse the poor solvent of the biocompatible substance in a good solvent solution of the gel-forming or solidifying biocompatible substance, further disperse the dispersion in the poor solvent of the biocompatible substance, and cool it. After gelling or solidification, the obtained porous particles are washed with a solvent that is miscible with the poor solvent for the biocompatible substance, and heated in a system substantially free of water to make them water-insoluble. A method for producing the particles as described above.
1 6 .ゲル形成性または固化性の生体適合性物質の贫溶媒に溶解しうる物質もしく は生体適合性物質の良溶媒に不溶で該物質の貧溶媒に移行する物質を生体適合性 物質の良溶媒溶液に分散させ、該分散液をさらに生体適合性物質の貧溶媒に分散し、 これを冷却してゲル化または固化した後、得られた多孔性粒子を生体適合性物質の 貧溶媒が混和しうる溶媒で洗浄し、実質的に水の存在しない系で加熱して水不溶化 する請求の範囲 1 3記載の粒子の製造法。  16.A substance that is soluble in a solvent for a gel-forming or solidifying biocompatible substance or a substance that is insoluble in a good solvent for a biocompatible substance and migrates to a poor solvent for the substance is used as a biocompatible substance. After dispersing in a good solvent solution, the dispersion is further dispersed in a poor solvent for a biocompatible substance, and after cooling and gelling or solidifying, the obtained porous particles are converted into a poor solvent for a biocompatible substance. 14. The method for producing particles according to claim 13, wherein the particles are washed with a miscible solvent and heated in a system substantially free of water to make them insoluble in water.
1 7 .請求の範囲 1 3乃至 1 6の製造法により得られる水不溶化多孔性粒子をさら に水に分散後、凍結乾燥する請求の範囲 1 3乃至 1 6のレ、ずれか 1項に記載の粒子 の製造法。  17.The water-insolubilized porous particles obtained by the production method according to claims 13 to 16 are further dispersed in water, and then freeze-dried. Method for producing particles.
PCT/JP1997/002478 1996-07-19 1997-07-17 Water-insoluble porous particles of biocompatible substances and process for producing the same WO1998003203A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU34615/97A AU3461597A (en) 1996-07-19 1997-07-17 Water-insoluble porous particles of biocompatible substances and process for producing the same
JP50678698A JP3879018B2 (en) 1996-07-19 1997-07-17 Water-insolubilized porous particles of biocompatible substance and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19087896 1996-07-19
JP8/190878 1996-07-19

Publications (1)

Publication Number Publication Date
WO1998003203A1 true WO1998003203A1 (en) 1998-01-29

Family

ID=16265260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002478 WO1998003203A1 (en) 1996-07-19 1997-07-17 Water-insoluble porous particles of biocompatible substances and process for producing the same

Country Status (3)

Country Link
JP (1) JP3879018B2 (en)
AU (1) AU3461597A (en)
WO (1) WO1998003203A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003013552A1 (en) * 2001-08-04 2003-02-20 Sang-Mun Han Embolic materials comprising of chitin and/or chitosan and method for preparing thereof
JP2003508565A (en) * 1999-08-27 2003-03-04 エルテーエス ローマン テラピー−ジステーメ アーゲー Pellets made from rapidly disintegrating chitosan
WO2003063922A1 (en) * 2002-01-31 2003-08-07 Aesculap Ag & Co. Kg Haemostatic agent containing polyvinyl alcohol and provision of the same for medical use
WO2007004484A1 (en) 2005-07-01 2007-01-11 The Nippon Synthetic Chemical Industry Co., Ltd. Pva particle for use in temporary embolization of blood vessel, process for production thereof, and temporary embolizing agent for blood vessel
JP2008520563A (en) * 2004-11-16 2008-06-19 バイオアバイラビリティ,インク. High concentration self-microemulsifying coenzyme Q10 preparation for nutritional use
EP1772483A4 (en) * 2004-07-23 2008-12-24 San Ei Gen Ffi Inc Composition containing hydrogel component derived from arabian gum
JP2010162063A (en) * 2009-01-13 2010-07-29 Japan Health Science Foundation Embolus material
JP2010227050A (en) * 2009-03-27 2010-10-14 Nitta Gelatin Inc Food material, method for producing the food material, and use of the food material
WO2010150715A1 (en) 2009-06-26 2010-12-29 日本合成化学工業株式会社 Nonhuman animal model of myocardial infarction and method for constructing same
JP2013064009A (en) * 2012-12-07 2013-04-11 Bioavailability Inc Highly concentrated self-microemulsifying coenzyme q10 preparation for nutritional use
JP2013540723A (en) * 2010-09-08 2013-11-07 上海市腫瘤研究所 Pharmaceutical sustained-release vascular embolization gelling agent for tumor treatment and preparation method thereof
JP7679491B2 (en) 2021-04-28 2025-05-19 ネクストバイオメディカル カンパニー リミテッド Hydrated gel for embolization with adjustable decomposition time and its manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5307490B2 (en) 2008-09-25 2013-10-02 日東電工株式会社 Method for producing gelatin particles
US20140079794A1 (en) * 2012-09-18 2014-03-20 Nitto Denko Corporation Gelatin particle and use thereof, and device for administration of physiologically active substance
CA2849472A1 (en) 2013-04-22 2014-10-22 Nitto Denko Corporation Crosslinked gelatin support and support for controlled release of physiologically active substance using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441437A (en) * 1990-06-04 1992-02-12 Dainippon Pharmaceut Co Ltd Hollow material suspendable in liquid
JPH04327528A (en) * 1991-04-23 1992-11-17 Lion Corp S0lid pharmaceutical for oral use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441437A (en) * 1990-06-04 1992-02-12 Dainippon Pharmaceut Co Ltd Hollow material suspendable in liquid
JPH04327528A (en) * 1991-04-23 1992-11-17 Lion Corp S0lid pharmaceutical for oral use

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508565A (en) * 1999-08-27 2003-03-04 エルテーエス ローマン テラピー−ジステーメ アーゲー Pellets made from rapidly disintegrating chitosan
WO2003013552A1 (en) * 2001-08-04 2003-02-20 Sang-Mun Han Embolic materials comprising of chitin and/or chitosan and method for preparing thereof
KR100478227B1 (en) * 2001-08-04 2005-03-21 한상문 Preparing method for embolic materials comprising of chitin and/or chitosan
WO2003063922A1 (en) * 2002-01-31 2003-08-07 Aesculap Ag & Co. Kg Haemostatic agent containing polyvinyl alcohol and provision of the same for medical use
EP1772483A4 (en) * 2004-07-23 2008-12-24 San Ei Gen Ffi Inc Composition containing hydrogel component derived from arabian gum
JP2008520563A (en) * 2004-11-16 2008-06-19 バイオアバイラビリティ,インク. High concentration self-microemulsifying coenzyme Q10 preparation for nutritional use
WO2007004484A1 (en) 2005-07-01 2007-01-11 The Nippon Synthetic Chemical Industry Co., Ltd. Pva particle for use in temporary embolization of blood vessel, process for production thereof, and temporary embolizing agent for blood vessel
US8361454B2 (en) 2005-07-01 2013-01-29 The Nippon Synthetic Chemical Industry Co., Ltd. PVA particle for temporary embolic material and production process thereof, and temporary embolic material
JP2010162063A (en) * 2009-01-13 2010-07-29 Japan Health Science Foundation Embolus material
JP2010227050A (en) * 2009-03-27 2010-10-14 Nitta Gelatin Inc Food material, method for producing the food material, and use of the food material
WO2010150715A1 (en) 2009-06-26 2010-12-29 日本合成化学工業株式会社 Nonhuman animal model of myocardial infarction and method for constructing same
JP2013540723A (en) * 2010-09-08 2013-11-07 上海市腫瘤研究所 Pharmaceutical sustained-release vascular embolization gelling agent for tumor treatment and preparation method thereof
JP2013064009A (en) * 2012-12-07 2013-04-11 Bioavailability Inc Highly concentrated self-microemulsifying coenzyme q10 preparation for nutritional use
JP7679491B2 (en) 2021-04-28 2025-05-19 ネクストバイオメディカル カンパニー リミテッド Hydrated gel for embolization with adjustable decomposition time and its manufacturing method

Also Published As

Publication number Publication date
AU3461597A (en) 1998-02-10
JP3879018B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
EP1128816B1 (en) Polyvinyl alcohol microspheres, and methods for making of the same
EP1986706B1 (en) Porous intravascular embolization particles and methods of making them
KR100478227B1 (en) Preparing method for embolic materials comprising of chitin and/or chitosan
JP5148030B2 (en) Novel high viscosity embolization composition
EP0707474B1 (en) Medical use of organic aerogels and biodegradable organic aerogels
JP3879018B2 (en) Water-insolubilized porous particles of biocompatible substance and method for producing the same
US20030185895A1 (en) Drug delivery particle
JP2002519364A (en) Vascular embolization-forming composition containing ethyl lactate and method of using the same
EP2708570A1 (en) Gelatin Particle and Use Thereof, and Device for Administration of Physiologically Active Substance
KR20130124322A (en) Methods for processing microspheres, microspheres processed thereby, and uses thereof
WO2005013810A2 (en) Biodegradable embolic agents
WO2023208094A1 (en) Hollow embolic microsphere, preparation method therefor, and pharmaceutical composition and use thereof
Benoit et al. Microcapsules and microspheres for embolization and chemoembolization
JP2014058466A (en) Gelatin particle and use thereof, and device for administration of bioactive substance
EP1490121B1 (en) Drug delivery particle
JP2842647B2 (en) Drug sustained release granules and method for producing the same
JP2014058465A (en) Absorbing gelatin particle and gelatin particle for sustained-release of bioactive substance, and device for administration of bioactive substance
JP2005112858A (en) Water-insoluble porous particle of biocompatible substance and process for producing the same
JP2005103319A (en) Water-insoluble porous particles of biocompatible substances and process for producing the same
JP2014218464A (en) Uniformly dispersible crosslinked gelatin particle aggregate
JP2024508888A (en) Alginate-based particles as temporary embolic agents
CN107029280A (en) A kind of preparation method of chitosan alginate soft capsule grain hemostatic material
Li et al. Emulsion‐Based Multi‐Phase Integrated Microbeads with Inner Multi‐Interface Structure Enable Dual‐Modal Imaging for Precision Endovascular Embolization

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GE GH HU IL IS JP KE KG KR KZ LC LK LR LS LT LV MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK SL TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载