WO1998052603A2 - An influenza enveloped dna vaccine - Google Patents
An influenza enveloped dna vaccine Download PDFInfo
- Publication number
- WO1998052603A2 WO1998052603A2 PCT/EP1998/003050 EP9803050W WO9852603A2 WO 1998052603 A2 WO1998052603 A2 WO 1998052603A2 EP 9803050 W EP9803050 W EP 9803050W WO 9852603 A2 WO9852603 A2 WO 9852603A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- virus
- vaccine according
- mumps
- vaccine
- nucleic acid
- Prior art date
Links
- 229960005486 vaccine Drugs 0.000 title claims abstract description 43
- 206010022000 influenza Diseases 0.000 title claims abstract description 14
- 239000000277 virosome Substances 0.000 claims abstract description 77
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 52
- 241000711386 Mumps virus Species 0.000 claims abstract description 48
- 101710154606 Hemagglutinin Proteins 0.000 claims abstract description 41
- 101710093908 Outer capsid protein VP4 Proteins 0.000 claims abstract description 41
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 claims abstract description 41
- 101710176177 Protein A56 Proteins 0.000 claims abstract description 41
- 239000000427 antigen Substances 0.000 claims abstract description 40
- 108091007433 antigens Proteins 0.000 claims abstract description 35
- 102000036639 antigens Human genes 0.000 claims abstract description 35
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 32
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 31
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 31
- 125000002091 cationic group Chemical group 0.000 claims abstract description 28
- 241000700605 Viruses Species 0.000 claims abstract description 20
- 230000001717 pathogenic effect Effects 0.000 claims abstract description 15
- 230000001939 inductive effect Effects 0.000 claims abstract description 10
- KSXTUUUQYQYKCR-LQDDAWAPSA-M 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC KSXTUUUQYQYKCR-LQDDAWAPSA-M 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 30
- 239000013598 vector Substances 0.000 claims description 25
- 230000004927 fusion Effects 0.000 claims description 23
- 101710133291 Hemagglutinin-neuraminidase Proteins 0.000 claims description 20
- 150000002632 lipids Chemical class 0.000 claims description 13
- 244000052769 pathogen Species 0.000 claims description 12
- 239000012528 membrane Substances 0.000 claims description 11
- 108010061100 Nucleoproteins Proteins 0.000 claims description 10
- 102000011931 Nucleoproteins Human genes 0.000 claims description 10
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 10
- -1 cationic lipid Chemical class 0.000 claims description 8
- OPCHFPHZPIURNA-MFERNQICSA-N (2s)-2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)acetyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(CC(=O)NC(=O)[C@H](CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC OPCHFPHZPIURNA-MFERNQICSA-N 0.000 claims description 6
- 241000894006 Bacteria Species 0.000 claims description 5
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 5
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 claims description 4
- 210000000612 antigen-presenting cell Anatomy 0.000 claims description 4
- 230000009089 cytolysis Effects 0.000 claims description 4
- 230000012202 endocytosis Effects 0.000 claims description 4
- 208000035473 Communicable disease Diseases 0.000 claims description 3
- XULFJDKZVHTRLG-JDVCJPALSA-N DOSPA trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F.CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)CCNC(=O)C(CCCNCCCN)NCCCN)OCCCCCCCC\C=C/CCCCCCCC XULFJDKZVHTRLG-JDVCJPALSA-N 0.000 claims description 3
- 241000712079 Measles morbillivirus Species 0.000 claims description 3
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims description 3
- 241000711504 Paramyxoviridae Species 0.000 claims description 3
- 230000001413 cellular effect Effects 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 108020001507 fusion proteins Proteins 0.000 claims description 3
- 102000037865 fusion proteins Human genes 0.000 claims description 3
- MCIDNMJNWYUTMB-UHFFFAOYSA-N n-tert-butyl-n'-tetradecyl-3-(tetradecylamino)propanimidamide Chemical compound CCCCCCCCCCCCCCNCCC(NC(C)(C)C)=NCCCCCCCCCCCCCC MCIDNMJNWYUTMB-UHFFFAOYSA-N 0.000 claims description 3
- 229940063675 spermine Drugs 0.000 claims description 3
- 102000029797 Prion Human genes 0.000 claims description 2
- 108091000054 Prion Proteins 0.000 claims description 2
- 229940079593 drug Drugs 0.000 claims description 2
- 239000003814 drug Substances 0.000 claims description 2
- 241001493065 dsRNA viruses Species 0.000 claims description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 2
- 210000000987 immune system Anatomy 0.000 claims description 2
- 244000045947 parasite Species 0.000 claims description 2
- 238000011321 prophylaxis Methods 0.000 claims description 2
- 230000004936 stimulating effect Effects 0.000 claims 1
- 108020004414 DNA Proteins 0.000 abstract description 47
- 102000004169 proteins and genes Human genes 0.000 abstract description 18
- 108020004511 Recombinant DNA Proteins 0.000 abstract description 5
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 abstract description 5
- 230000005867 T cell response Effects 0.000 abstract description 3
- 230000003472 neutralizing effect Effects 0.000 abstract description 2
- 239000013612 plasmid Substances 0.000 description 85
- 210000004027 cell Anatomy 0.000 description 48
- 102000053602 DNA Human genes 0.000 description 46
- 208000005647 Mumps Diseases 0.000 description 39
- 208000010805 mumps infectious disease Diseases 0.000 description 39
- 239000000185 hemagglutinin Substances 0.000 description 33
- 241000699670 Mus sp. Species 0.000 description 19
- 239000000203 mixture Substances 0.000 description 19
- 230000014509 gene expression Effects 0.000 description 17
- 239000002502 liposome Substances 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 210000002966 serum Anatomy 0.000 description 12
- 241000712461 unidentified influenza virus Species 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 11
- 230000003053 immunization Effects 0.000 description 11
- 238000002649 immunization Methods 0.000 description 11
- 239000002953 phosphate buffered saline Substances 0.000 description 11
- 238000012546 transfer Methods 0.000 description 11
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 10
- 210000003501 vero cell Anatomy 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 9
- 102000005348 Neuraminidase Human genes 0.000 description 9
- 108010006232 Neuraminidase Proteins 0.000 description 9
- 239000000872 buffer Substances 0.000 description 9
- 210000004379 membrane Anatomy 0.000 description 9
- 238000001890 transfection Methods 0.000 description 9
- 230000000692 anti-sense effect Effects 0.000 description 8
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 8
- 150000003904 phospholipids Chemical class 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 230000003612 virological effect Effects 0.000 description 8
- 101150008820 HN gene Proteins 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000008488 polyadenylation Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000013638 trimer Substances 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 5
- 241000699800 Cricetinae Species 0.000 description 5
- 238000002965 ELISA Methods 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 238000010240 RT-PCR analysis Methods 0.000 description 5
- 230000024932 T cell mediated immunity Effects 0.000 description 5
- 230000028996 humoral immune response Effects 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 229910001629 magnesium chloride Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 238000002255 vaccination Methods 0.000 description 5
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 4
- 108010041986 DNA Vaccines Proteins 0.000 description 4
- 229940021995 DNA vaccine Drugs 0.000 description 4
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 4
- 239000007995 HEPES buffer Substances 0.000 description 4
- 108010002350 Interleukin-2 Proteins 0.000 description 4
- 241000711408 Murine respirovirus Species 0.000 description 4
- 108010006785 Taq Polymerase Proteins 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 244000309466 calf Species 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 238000010166 immunofluorescence Methods 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 241000701161 unidentified adenovirus Species 0.000 description 4
- 241000283707 Capra Species 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 102000003814 Interleukin-10 Human genes 0.000 description 3
- 108090000174 Interleukin-10 Proteins 0.000 description 3
- 239000000232 Lipid Bilayer Substances 0.000 description 3
- 201000005505 Measles Diseases 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 230000004700 cellular uptake Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 210000001163 endosome Anatomy 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229940095293 mumps vaccine Drugs 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- YYELLDKEOUKVIQ-UHFFFAOYSA-N octaethyleneglycol monododecyl ether Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCO YYELLDKEOUKVIQ-UHFFFAOYSA-N 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000005382 thermal cycling Methods 0.000 description 3
- 238000005199 ultracentrifugation Methods 0.000 description 3
- 238000002525 ultrasonication Methods 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 101000713368 Bovine immunodeficiency virus (strain R29) Protein Tat Proteins 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 101150034814 F gene Proteins 0.000 description 2
- 241001295925 Gegenes Species 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102100037850 Interferon gamma Human genes 0.000 description 2
- 108010074328 Interferon-gamma Proteins 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 102000004388 Interleukin-4 Human genes 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 101150010882 S gene Proteins 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 108010093857 Viral Hemagglutinins Proteins 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000003092 anti-cytokine Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 206010014599 encephalitis Diseases 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000011553 hamster model Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000034217 membrane fusion Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000009871 nonspecific binding Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 239000003161 ribonuclease inhibitor Substances 0.000 description 2
- 125000005629 sialic acid group Chemical group 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- 229960001600 xylazine Drugs 0.000 description 2
- BHKKSKOHRFHHIN-MRVPVSSYSA-N 1-[[2-[(1R)-1-aminoethyl]-4-chlorophenyl]methyl]-2-sulfanylidene-5H-pyrrolo[3,2-d]pyrimidin-4-one Chemical compound N[C@H](C)C1=C(CN2C(NC(C3=C2C=CN3)=O)=S)C=CC(=C1)Cl BHKKSKOHRFHHIN-MRVPVSSYSA-N 0.000 description 1
- LAGUSEHJTGJJRJ-UHFFFAOYSA-N 2,5-bis(3-aminopropylamino)-n-[2-(dioctadecylamino)-2-oxoethyl]pentanamide Chemical compound CCCCCCCCCCCCCCCCCCN(C(=O)CNC(=O)C(CCCNCCCN)NCCCN)CCCCCCCCCCCCCCCCCC LAGUSEHJTGJJRJ-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 1
- IEQAICDLOKRSRL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO IEQAICDLOKRSRL-UHFFFAOYSA-N 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- 108010068327 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 241001354791 Baliga Species 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 238000011238 DNA vaccination Methods 0.000 description 1
- 206010011878 Deafness Diseases 0.000 description 1
- 241000725619 Dengue virus Species 0.000 description 1
- 108010044052 Desmin Proteins 0.000 description 1
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical compound OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 1
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 1
- 229910003556 H2 SO4 Inorganic materials 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 101710121925 Hemagglutinin glycoprotein Proteins 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 208000005331 Hepatitis D Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000928044 Homo sapiens Desmin Proteins 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 241000712431 Influenza A virus Species 0.000 description 1
- 229940124873 Influenza virus vaccine Drugs 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 102000043129 MHC class I family Human genes 0.000 description 1
- 108091054437 MHC class I family Proteins 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 108700005443 Microbial Genes Proteins 0.000 description 1
- 101150118742 NP gene Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108700001237 Nucleic Acid-Based Vaccines Proteins 0.000 description 1
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 1
- 206010034038 Parotitis Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 238000012181 QIAquick gel extraction kit Methods 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 241000711798 Rabies lyssavirus Species 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 241000724205 Rice stripe tenuivirus Species 0.000 description 1
- BFDMCHRDSYTOLE-UHFFFAOYSA-N SC#N.NC(N)=N.ClC(Cl)Cl.OC1=CC=CC=C1 Chemical compound SC#N.NC(N)=N.ClC(Cl)Cl.OC1=CC=CC=C1 BFDMCHRDSYTOLE-UHFFFAOYSA-N 0.000 description 1
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 1
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 description 1
- 101710198474 Spike protein Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- NFGODEMQGQNUKK-UHFFFAOYSA-M [6-(diethylamino)-9-(2-octadecoxycarbonylphenyl)xanthen-3-ylidene]-diethylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCCOC(=O)C1=CC=CC=C1C1=C2C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C21 NFGODEMQGQNUKK-UHFFFAOYSA-M 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- 239000003012 bilayer membrane Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- YTRQFSDWAXHJCC-UHFFFAOYSA-N chloroform;phenol Chemical compound ClC(Cl)Cl.OC1=CC=CC=C1 YTRQFSDWAXHJCC-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 231100000895 deafness Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- 210000001840 diploid cell Anatomy 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 150000002333 glycines Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000003721 gunpowder Substances 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 208000016354 hearing loss disease Diseases 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 208000005252 hepatitis A Diseases 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 201000010284 hepatitis E Diseases 0.000 description 1
- 230000000521 hyperimmunizing effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 229940124452 immunizing agent Drugs 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000002356 laser light scattering Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940031348 multivalent vaccine Drugs 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 229940023146 nucleic acid vaccine Drugs 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000003681 parotid gland Anatomy 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000002205 phenol-chloroform extraction Methods 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 230000002516 postimmunization Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000012207 quantitative assay Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 210000001533 respiratory mucosa Anatomy 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 201000005404 rubella Diseases 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 210000002948 striated muscle cell Anatomy 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229940021747 therapeutic vaccine Drugs 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 235000019263 trisodium citrate Nutrition 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/145—Orthomyxoviridae, e.g. influenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/155—Paramyxoviridae, e.g. parainfluenza virus
- A61K39/165—Mumps or measles virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
- A61K9/1272—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers comprising non-phosphatidyl surfactants as bilayer-forming substances, e.g. cationic lipids or non-phosphatidyl liposomes coated or grafted with polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5258—Virus-like particles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/54—Medicinal preparations containing antigens or antibodies characterised by the route of administration
- A61K2039/541—Mucosal route
- A61K2039/543—Mucosal route intranasal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6075—Viral proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18711—Rubulavirus, e.g. mumps virus, parainfluenza 2,4
- C12N2760/18734—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to virosomes comprising cationic lipids, biologically active influenza hemagglutinin protein or biologically active derivatives thereof and nucleic acids encoding antigens from pathogenic sources in their insides.
- the nucleic acids are most advantageously DNA. It is preferred that the DNA encodes antigens from mumps virus wherein said antigens are derived from conserved external and internal proteins of said virus.
- the virosomes of the invention may advantageously be formulated as vaccines. It could be shown in accordance with the present invention that such vaccines induce strong neutralizing antibody as well as cytotoxic T cell responses. Most importantly, protection to pathogenic sources such as a mumps virus could be demonstrated.
- the present invention further relates to vaccines comprising recombinant DNA derived from DNA encoding conserved external and internal proteins from mumps virus.
- Plasmid DNA vaccines may find application as preventive vaccines, immunizing agents for the preparation of hyperimmune globuline products or diagnostics and therapeutic vaccines for infectious diseases or for other indications such as cancer.
- Plasmid DNA vaccines are defined as purified preparations of plasmid DNA designed to contain a gene or genes for the intended vaccine antigen as well as genes incorporated into the construct to allow for production in a suitable host system. Plasmid DNA vaccines currently under development are constructs derived from bacterial plasmids that contain one or more genes from an infectious agent.
- plasmids possess DNA sequences necessary for selection and replication in bacteria, eukaryotic promoters and enhancers and transcription termination/ polyadenylation addition sequences for gene expression.
- efficient gene transfer techniques have to be employed for an acceptable vaccine in humans.
- transformation or transfection is one of the most powerful and far-reacting methodologies to come out of molecular biology. It has played a critical role in the study of gene expression and protein structure and function.
- many standard techniques work on only limited ranges of host cells and others are labor intensive or require large numbers of cells.
- Virus mediated gene transfer Genes can be introduced stably and efficiently into mammalian cells by retroviral vectors. However, the efficiency is very low for cells that are non-replicating because retroviruses infect only dividing cells. Further, general safety concerns are associated with the use of retroviral vectors relating to, for instance, the possible activation of oncogenes. Replication-defective adenovirus has become the gene transfer vector-of-choice for a majority of investigators. The adenovirus vector mediated gene delivery involves either the insertion of the desired gene into deleted adenovirus particles or the formation of a complex between the DNA to be inserted and the viral coat of adenovirus by a transferrin-polylysine bridge.
- HVJ Sendai virus
- HVJ Sendai virus
- This method has successfully been used for gene transfer in vivo to many tissues.
- cellular uptake to antisense oligonucleotides by HVJ-liposomes was reported (Morishita et al. 1993; J. Cell. Biochem. 17E, 239).
- a particular disadvantage is, however, that the HVJ-liposomes show non-specific binding to red blood cells.
- Lipid mediated gene transfer Positively charged liposomes made of cationic lipids appear to be safe, easy to use and efficient for in vitro transfer of DNA and antisense oligonucleotides. The highly negatively charged nucleic acids interact spontaneously with cationic liposomes. Already by simple mixing of the polynucleotides with preformed cationic liposomes a complete formation of DNA-liposome complexes is achieved.
- Biolistics as gene transfer methods The term "biolistics" (biological ballistics) is used to define processes that literally shoot high velocity microprojectiles, carrying DNA, into cells. The biolistic process was originally developed by Sanford et al. (Sanford, J.C., Klein, T.M., Wolf, E.D., Allen, N.: Delivery of substances into cells and tissues using a particle bombardment process. J. Part. Sci. Technol. 1987. 5: 27-37) as a means of introducing DNA into plant cells. The limitations of existing methods of gene transfer stimulated the idea of shooting tungsten or gold particles coated with DNA directly into cells.
- the technical problem underlying the present invention was to overcome the disadvantages associated with the development of the prior art nucleic acid vaccines and provide a means that can successfully be used in the formulation of highly protective and safe vaccines.
- the solution to said technical problem is achieved by providing the embodiments characterized in the claims.
- the present invention relates to a vaccine comprising a virosome, said virosome comprising
- HA hemagglutinin protein
- nucleic acid comprising a nucleic acid encoding an antigen derived from a pathogen located in the inside.
- the vaccine of the invention optionally comprises a pharmaceutically acceptable carrier and/or diluent and is preferably formulated according to conventional protocols.
- cationic lipid refers to cationic and/or polycationic lipids. Said term thus describes an organic molecule that contains a cationic component and a nonpolar tail, a so-called head-to-tail amphiphile, such as N-[(l,2,3-dioleoyloxy)propyl]-N,N,N- trimethylammonium chloride (DOTMA) (Feigner et al. 1987; Proc. Natl. Acad. USA 84: 7413-7417), N-[l,2,3-dioleoyloxy)-propyl]-N,N,N-trimethylammonium-methyl-sulfate
- DOTMA N-[(l,2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium-methyl-sulfate
- DOTAP N-t-butyl-N'-tetradecyl-3-tetradecylaminopropionamidine
- polycationic lipid refers to an organic molecule that contains a polycationic component and a nonpolar tail such as the lipospermine: 1,3- dipalmitoyl-2-phosphatidylethanolamido-spermine (DPPES) and dioctadecylamidoglycyl- spermine (DOGS) (Behr et al. 1989; Proc.
- the cationic lipids used in accordance with the present invention optionally contain phospholipids such as phosphatidylethanolamine and phosphatidylcholine. It has proved advantageous to choose a lipid composition of the membrane comprising-band on total lipids, either
- cationic lipids for example comprising polycationic lipids and 10% influenza virus envelope phospholipids
- 80 to 90% by weight of cationic lipids for example comprising polycationic lipids, 5 to 10% influenza virus envelope phospholipids and 5 to 10% by weight of phosphatidyl-ethanolamine
- 40 to 80% by weight of cationic lipids comprising, for example, polycationic lipids, 5 to 20% by weight of influenza virus envelope phospholipids, 5 to 15% by weight of phosphatidyl-ethanolamine and 5 to 50% by weight of phosphatidyl-choline.
- the cationic vesicles with the HA component advantageously have a mean diameter of approximately 100 - 200 nm and a completely closed lipid bilayer.
- the structure of the cationic bilayer membrane is such that the hydrophilic, positively charged heads of the lipids are oriented towards the center of the bilayer.
- cationic virosomes need not fuse with or destabilize the plasma cell membrane to enter the cytoplasm.
- Cationic virosomes enter the host cells via a two step mechanism: (1) attachment and (2) penetration. In the first step they bind via hemagglutinin and/or the cell-specific markers to cell receptors, particularly to membrane glycoproteins or glycolipids with a terminal sialic acid, and are then very efficiently incorporated by receptor-mediated endocytosis.
- the term "influenza hemagglutinin protein (HA) or derivative thereof which is biologically active and capable of inducing the fusion of said virosome with cellular membranes and of inducing the lysis of said virosome after endocytosis by antigen presenting cells” relates to (poly)peptides which substantially display the full biological activity of native hemagglutinin and are thus capable of mediating the adsorption of the cationic vesicles of the present invention to their target cells via sialic acid- containing receptors.
- the reconstituted viral spike proteins hemagglutinin and preferably also neuraminidase
- the biologically active hemagglutinin referred to in this specification preferably refers to the fusion peptide which is incorporated into the trimeric hemagglutinin molecule of influenza virus.
- biologically active hemagglutinin may refer to the complete hemagglutinin trimer of viral surface spikes or to one monomer or to one or both cleaved subunits, the glycopeptides HA1 and HA2, containing the functional fusion peptide.
- said term refers to the fusion peptide itself, isolated or synthetically produced.
- the fusion peptide mediates the entry of the plasmid-influenza envelope complex into the cytoplasm by a membrane-fusion event and finally leads to the release of the transported plasmid into the cell where it will be expressed.
- the virosomes are incorporated via receptor-mediated endocytosis in the course of which the virosomes get entrapped in endosomes.
- the developing acidic pH (pH 5-6) within the endosomes activates the hemagglutinin fusion peptide and triggers the fusion of the virosomal membrane with the endosomal membrane (Wiley, D.C. and Skehel, J.J., Ann. Rev. Biochem. 56 (1987), 365).
- the membrane fusion reaction opens the lipid envelope of the virosomes and liberates the entrapped genetic material into the cytosol.
- the encapsulated material is released shortly after endocytosis so as to avoid an undesired long stay in the endosomes which would give rise to unspecific degradation of the substances contained in the virosomes.
- the molecules mechanisms underlying the subsequent expression of said genetic material is expected to follow conventional and well-known rules.
- the reconstituted virosomes of the present invention have essentially the same fusion activity towards target cells as the intact virus from which they are reconstituted.
- the comparison of fusogenicity is drawn to intact influenza A virus.
- the fusion activity is measured according to known procedures, preferably as reported by Hoekstra et al. (1984), Biochemistry 23: 5675-5681 and L ⁇ scher et al. (1993), Arch. Virol. 130: 317-326.
- the HA or derivative thereof may be obtained from natural sources, it may further be of recombinant or semisynthetic origin or may be chemically produced.
- the vaccine of the present invention has the additional advantage that large DNA concentrations in the vaccine are avoided.
- nucleic acid comprising a nucleic acid encoding an antigen derived from a pathogen refers to nucleic acids carrying, for example, mumps genes or other microbial genes. Said nucleic acids encode at least one antigen from a pathogenic source. Advantageously, said nucleic acids are cloned under appropriate promoter control.
- the corresponding construct is a vector and preferably a plasmid. The preferred inoculated plasmid DNA seems to persist episomally without replication in the nuclei of myocytes without integrating into the genome.
- antigen denotes a two- or three-dimensional proteinaceous, including lipoproteinaceous and glycoproteinaceous structure forming at least one epitope specific for a pathogen that is recognized in a B cell or T cell response.
- the antigen is "derived” from the pathogen e.g. by using a nucleic acid directly obtained from said pathogen which is then translated.
- the term “derived” also includes that the nucleic acid encoding said antigen which was obtained from a natural source has been altered by recombinant means, as long as the immunological characteristics leading to protection against the pathogenic features of said source remain essentially unaltered.
- Said nucleic acids as well as the antigens may also be produced by synthetic or semisynthetic methods.
- the virosome of the invention also comprises intact neuraminidase molecules that are preferably also derived from influenza virus.
- Viral neuraminidase is an exoglycosidase that hydrolyzes terminal sialic acid residues from any glycoconjugate, including the viral glycoprotein themselves.
- the virion NA spikes are tetramers of the NA molecules that are anchored in the lipid bilayer by an amino-terminal hydrophobic amino acid sequence (Shaw, M.W., et al., 1992: New Aspects of Influenza Viruses. Clin. Microbiol. Reviews, 74-92). Recently it could be demonstrated that inhibition of the neuraminidase activity, e.g. through antibodies, leads to the reduction of influenza infectivity in human.
- said cationic lipid is an organic molecule that contains a (poly)cationic component and a non-polar tail, wherein said
- (poly)cationic compounds comprise at least one member selected from the group consisting of:
- N-t-butyl-N'-tetradecyl-3-tetradecylaminopropionamidine; and the polycationic lipids comprise at least one member selected from the group consisting of
- DPES dipalmitoyl-2- ⁇ hosphatidylethanolamido-spermine
- DOGS dioctadecylamidoglycyl spermine
- DOSPA 2,3-dioleyloxy-N-[sperminecarboxamido)ethyl]-N,N-dimethyl-l-propane-aminiumtrifluoro- acetate
- DOSPER 2,3-dioleyloxy-2-(6-carboxy-spermyl)-propylamide
- TDOB N,N,N ⁇ N'-tetramethyl-N,N'-bis(2-hydroxyethyl)-2,3-dioleoyloxy-l,4-butanediammonium iodide
- said nucleic acid is DNA.
- the nucleic acid is advantageously cloned in DNA vectors which are particularly stable in comparison to RNA molecules.
- said nucleic acid is RNA. This embodiment may be advantageous if direct expression of the nucleic acid is desired, i.e. the nucleic acid has not to enter the nucleus to be transcribed into expressible RNA.
- nucleic acid contained in said virosome is a polycistronic acid.
- the various cistrons may encode at least two antigens of the same or different pathogens.
- one cistron may encode an antigen of mumps virus and the other cistron may encode an antigen from a different microbial source.
- Coexpression of different proteins in stochiometrically defined ratios within a single cell can be achieved by polycistronic expression constructs. Following the intramuscular inoculation of "naked" plasmid DNA encoding an antigen, humoral and cellular immune response against the respective antigen expressed by the construct can be primed.
- polycistronic nucleotide vectors in DNA-based immunization allows the use of at least two novel options for genetic immunizations:
- Polycistronic nucleotide vectors can be used to deliver with a single injection a multivalent vaccine that efficiently stimulates a broad spectrum of immune reactivities against several antigens from the same or different pathogens.
- Polycistronic vectors can be constructed that limit the life span of the in vivo transfected cell. This is achieved by co-expressing an inducible suicide gene within the antigen-presenting cell. The construct thereby allows expression of the antigen for a few weeks, sufficient to prime an immune response, but allows subsequent elimination of cells expressing the foreign expression constructs.
- a particularly preferred embodiment according to the invention concerns a polycistronic construct, which is characterized by a suicide gene preferably inducible with a therapeutically acceptable drug.
- the suicide gene may be comprised in the nucleic acid together with one or more nucleic acid sequences encoding antigenes from the same or different pathogens.
- said pathogen is a bacterium, a prion, a parasite or a virus.
- said virus is a single-stranded, non-segmented, genome negative-sense RNA virus, preferably of the family Paramyxoviridae and most preferably mumps virus or measles virus.
- the mumps virus belongs to the paramyxoviridae, subclass paramyxovirus. It is a pathogen causing the contagious infantile illness which consists of the inflammation of parotid glands. During the incubation period following infection, the virus replicates in the respiratory epithelium and then disseminates into secretory ducts of the parotid glands. Other glands may become infected thereafter and numerous cases of meningitis have been reported. Among complications related to the infection, encephalitis is a serious one, with a mortality rate of about 1%; deafness cases have also been reported.
- a vaccine against mumps is available: it is made of an attenuated live virus, produced by culturing infected embryonic chicken cells or human diploid cells.
- the vaccine leads to the seroconversion in vaccinated individuals in about 90 - 95%> but the protection rate in the field is far smaller than expected from the seroconversion rate.
- several "classical" mumps vaccine strains had to be withdrawn from the market due to a high encephalotropic potential after vaccination.
- live mumps virus vaccines are relatively low in heat stability reducing their use in the field, specially in developing countries, where it is difficult to maintain a cold chain.
- said nucleic acid is a recombinant vector, preferably a plasmid.
- the "naked" mumps DNA plasmids contain genes encoding the hemagglutinin-neuraminidase (HN) antigen of mumpsvirus, the fusion (F) protein of mumps virus and the nucleoprotein (NP) of mumps virus.
- HN hemagglutinin-neuraminidase
- F fusion protein of mumps virus
- NP nucleoprotein
- the invention provides an influenza enveloped mumps DNA vaccine which contains the following components:
- mumps polynucleotide monocistronic expression vectors or polycistronic expression vectors may be done as follows:
- pCMV promoter insertion and construction of mono- or poly- cistronic expression vectors Promoter sequence of the immediate early region of the human cytomegalo- virus or of the desmin gene have been shown to support expression of an immunogenic gene product after intramuscular injection of plasmid DNA.
- Recombinant plasmids of this invention contain one or several gene inserts of mumps virus or other microbial agents (e.g.
- hepatitis A, B, C, D or E -virus RSV, Dengue virus, HIV, Rabies virus, Influenza virus, Measles virus, Parainfluenza virus, Rhinovirus, Pseudomonas, Klebsiella, Escherichia coli, Salmonella typhi, Haemophilus influenzae, Bordetella pertussis or Plasmodium falciparum).
- the fusion between two vectors can generate dicistronic pCMV, etc.
- This most preferred expression construct according to the invention may also be characterized in that the CMVp sequence is replaced for the SV40p sequence.
- the invention further relates to a vaccine comprising a vector encoding the hemagglutinin- neuraminidase antigen of mumps virus, the fusion protein of mumps virus and the nucleoprotein of mumps virus.
- said vector is GC9, GC23 or GCNP or GCDC described in the examples hereinafter.
- the present invention relates to a method simulating the immune system of a patient in need thereof, comprising administering a suitable dosage of the vaccine described herein above.
- a suitable dosage may be in the range of Influenza HA 1 - 50 meg
- the aforedescribed method is for the prophylaxis of infectious diseases.
- the above described vaccines are designed to be administered via nasal routes.
- the design and formulation, respectively, may be effected according to conventional procedures.
- Figure 1 Immunofluorescence test carried out on Vero cells infected by DOTAP -virosomes encapsulating mumps plasmids by using anti-mumps polyclonal antibodies
- Figure 2 Visualization of FITC plasmids through virosomes into Vero cells
- Figure 3 Influenza virosomes containing plasmids expressing mumps F-antigen; negatively stained with phosphatungstate, magnification x 100.000
- Figure 4 pH fusion reaction of DOTAP-virosomes expressed as fluorescence dequencing
- Figure 5 Visualization of FITC Mumps plasmids through virosomes into Vero cells The examples illustrate the invention.
- the recombinant plasmids of the present invention can be produced by recombinant DNA techniques, such as those set forth generally by Maniatis et al, MOLECULAR CLONING, A Laboratory Manual, Cold Spring Harbor Laboratory (1982).
- hemagglutinin gene (1749 bp) of the Urabe strain of the mumps virus (Yamanishi et al., (1970), Studies on live mumps vaccine III. Evaluation of newly developed live mumps vaccine. Biken Journal 13, 157-161) was amplified by reverse transcriptase-polymerase chain reaction (RT-PCR). RNA was extracted from viral genomic RNA, using the guanidinium thiocyanate-phenol-chloroform method, described by Chomczynski and Sacchi (1987, Anal. Biochem. 162).
- the synthesis of the cDNA was performed in a 25 ⁇ l reaction volume containing 50 mM KC1, 10 mM Tris-HCl pH 8.3, 5 mM MgCl 2 , 1 mM dNTP mixture (1 mM each), 20 U RNase inhibitor (Boehringer Mannheim, Germany) 40 U MMLV-RT (Perkin- Elmer Cetus, USA) and 0.75 mM of the sense primer after a denaturation step at 80°C. The mixture was incubated at 37°C for 30 min, followed by 3 min denaturation at 94°C, and cooled on ice.
- the PCR was performed in a 100 ⁇ l volume containing 25 ⁇ l of the cDNA reaction, 10 ⁇ l of the PCR buffer (100 mM Tris-HCl pH 8.3, 500 mM KC1 and 25 mM MgCl 2 ), 20 pmol each of sense primer (5 * GGATCCAGATGGAGCCCTCGAAA3') and anti- sense primer (5'GATCCTTATCAAGTGATAGTCAATCT3'), 0.125 mM dNTP mixture and 2 U of Taq polymerase (Perkin-Elmer Cetus, USA). The samples were subjected to 40 cycles of thermal cycling for 94°C 1 m in, 56°C 40 s, 72°C 90 s.
- Both the primers contained the restriction site for BamHI.
- the PCR product was purified with the QIAQUICK PCR purification kit (QIAGEN, Germany) and digested with the restriction enzyme BamHI (1.5 U) in a 100 ⁇ l volume containing the specific buffer (10 ⁇ l) (Boehringer Mannheim, Germany) at 37°C overnight.
- the insert was then purified from the agarose gel by using the QIAquick gel extraction kit (QIAGEN, Germany) and cloned in plasmid pcDNA3 (InVitrogen) which had previously been cut by BamHI and treated with the calf intestine phosphatase (CUP) (Boehringer Mannheim, Germany) in order to eliminate the circularization of the vector itself.
- QIAquick gel extraction kit QIAGEN, Germany
- CUP calf intestine phosphatase
- Plasmid pcDNA3 is a 5.4 Kb vector containing the CMV promoter (bases 209-863), the BGH polyadenylation site (bases 1018-1249), the polylinker (bases 889-994), the SV40 promoter (bases 1790-2115) and the SV40 polyadenylation site (bases 3120-3250).
- the recombinant plasmids containing the HN gene of the Urabe strain (GC9) or the wild type (GC19) of the Mumps virus were used to transform the E.coli bacteria (DH5 ⁇ strain) and some transformants were obtained.
- the DNA plasmids were recovered from the cells and the HN genes were sequenced by the dideoxy method using Sequenase (U.S.
- pCMV ⁇ 7.2 Kb
- This vector contains a CMV promoter, an RNA splice site, an SV40 polyadenylation site and the full length E.coli ⁇ -gal gene located within a pair of NotI restriction sites (bases 820-4294) for excision and replacement with the HN gene of the Mumps virus (GD9 and GDI 9).
- the genes were inserted in another eukaryotic plasmid vector, pCI (4 Kb) (Promega, USA) which contains a CMV promoter, an SV40 polyadenylation site and a multiple cloning site where the HN gene of the Mumps virus was placed.
- pCI 4 Kb
- the procedure followed for these new constructs was the same of the one above mentioned, except for the primers used for the amplification of the HN gene, both of which contained the NotI restriction site (sense primer: 5' GCGGCCGCAGATGGAGCCCTCGAAA3' and anti-sense primer: 5'
- the F gene (1713 bp) of the Mumps virus (Urabe strain) (Cusi M.G. et al. Gene 161, 1995) deleted of the trans-membrane fragment (nt 1492) at the carboxy-terminal (GC 23) was amplified by RT-PCR from the virus genome and sequenced. The procedure used for this reaction was the same of the above mentioned.
- the primers used containing the Bgl II site for the insertion in the pcDNA3 plasmid cut by BamHI were: sense primer 5 * ACAGATCTGATCAGTAATCATGAA3' and anti-sense primer
- the primers used containing the NotI site for the insertion in the pCMV ⁇ (GD23) and pCI plasmid were: sense primer 5'GCGGCCGCGATCAGTAATCATGAA3' and anti-sense primer
- NP nucleocapsid (NP) gene (1657 nt) of the Mumps virus (Urabe strain) was amplified by RT-PCR from the virus genome. The procedure used for this reaction was the same of the above mentioned.
- the primers used containing the Hindlll site for the insertion of the NP gene in the pcDNA3 vector (GC/NP) cut by Hindlll were: sense primer 5 ⁇ AGCTTATGTCGTCTGTGCTCAAA3' and anti-sense primer
- a chimera containing the Mumps virus F and HN genes linked by a linker was cloned in BamHI of the pcDNA3 vector.
- the F gene was deleted of the transmembrane fragment at the carboxy-terminal and the HN gene was deleted of its hydrophobic region at the amino- terminal.
- the linker codes for 8 glycines and 2 serines; its sequence is: 5'GGTGGCGGTGGATCCGGTGGCGGCGGATCA3'.
- a new vector was obtained from pcDNA3, after the deletion of a sequence coding for the resistance to the neomycin.
- pcDNA3 was cut by RsrII (at position 2796 nt) and Smal (at position 2093 nt), treated with the Klenow polymerase and recircularized. It could be important not to vehiculate resistance to antibiotics in DNA vaccination or in gene therapy.
- the Mumps virus HN and F genes were also cloned in this vector (GC 42) as described above.
- Mumps virus HN or F genes were cloned in BamHI and Bglll sites, respectively, as described above.
- the N gene (1176 bp) of the Respiratory Syncytial Virus was amplified by RT-PCR from the virus genome (wild type strain, isolated in the Siena area, Italy).
- the synthesis of the cDNA was performed in a 25 ⁇ l reaction volume containing 50 mM KC1, 10 mM Tris-HCl pH 8.3, 5 mM MgCl 2 , 1 mM dNTP mixture (1 mM each), 20 U RNase inhibitor (Boehringer Mannheim Biochemicals, Germany) 40- U MMLV-RT (Perkin-Elmer Cetus, USA) and 0.75 mM of the sense primer (5'GCGGCCGCATGGCTCTTAGCAAAGTCAA3') after a denaturation step at 80°C.
- the mixture was incubated at 37°C for 30 min, followed by 3 min denaturation at 94°C, and cooled on ice.
- the PCR was performed in a 100 ⁇ l volume containing 25 ⁇ l of the cDNA reaction, 10 ⁇ l of the PCR buffer (100 mM Tris-HCl pH 8.3, 500 mM KC1 and 25 mM MgCl 2 ), 20 pmol of sense primer (5'GCGGCCGCATGGCTCTTAGCAAAGTCAA3') and anti-sense primer (5'GCGGCCGCTCAAAGCTCTACATCA3'), 0.125 mM dNTP mixture and 2 U of Taq polymerase (Perkin-Elmer Cetus, USA).
- the samples were subjected to 40 cycles of thermal cycling for 94°C 1 min, 60°C 40 s, 72°C 90 s. Both the primers contained the restriction site for Not I.
- the PCR product was purified with QIAQUICK PCR purification kit (QIAGEN, Germany) and digested with the restriction enzyme NotI (1.5 U) in a 100 ⁇ l volume containing the specific buffer (10 ⁇ l) (Boehringer Mannheim, Germany) at 37°C overnight.
- the insert was then purified from the agarose gel by using the QUIAquick gel extraction kit (QIAGEN, Germany) and cloned in pCMV ⁇ and pCI previously cut by NotI and treated with CIP.
- the S gene (875 bp) or the Pre-Sl, Pre-S2, S ORF (1364 bp) of the Hepatitis B Virus was amplified by PCR from the plasmid containing the HBV genome (ATCC 45020).
- the synthesis of the DNA was performed in a 100 ⁇ l volume containing 200 ng of the DNA, 10 ⁇ l of the PCR buffer (100 mM Tris-HCl pH 8.3, 500 mM KCl and 25 mM MgCl 2 ), 20 pmol of sense primer (5'GCGGCCGCATGGAGAACATCACATCA3') for the S gene or sense primer (5'GCGGCCGCATGGGGCAGAATCTTTCCA3') for the Pre-Sl, Pre-S2,S ORF and antisense primer (5'GCGGCCGCTTAAATGTATACCCAAAGA3') , 0.125 mM dNTP mixture and 2 U of Taq polymerase (Perkin-Elmer Cetus, USA). The samples were subjected to 40 cycles of thermal cycling for 94°C 1 min, 60°C 40 s, 72°C 90 s.
- Both the primers contained the restriction site for Not I.
- the PCR product was purified with the QIAQUICK PCR purification kit (QIAGEN, Germany) and digested with the restriction enzyme Not I (1.5 U) in a 100 ⁇ l volume containing the specific buffer (10 ⁇ l) (Boehringer Mannheim, Germany) at 37°C overnight.
- the insert was then purified from the agarose gel by using the QUIAquick gel extraction kit (QIAGEN, Germany) and cloned in pCMV ⁇ and pCI previously cut by NotI and treated with CIP.
- mice Four-week-old B ALB/c female mice were obtained from Charles River Laboratories and were immunized two times at 4-week intervals in both hind legs with 50 ⁇ g of DNA (GC9) in 100 ⁇ l of saline. Ten animals were in each immunization group. While under Ketamine-xylazine anesthesia, DNA (GC9 or pcDNA3) was administered intramuscularly. Ten days after the last immunization, mice were anesthetized and sacrificed. Serum, liver and muscle samples were collected from each mouse. Antibody responses were assayed by immunofluorescence (IF) test described by Just, M., Berger, R., Glucj, R., Wegmann, A.
- IF immunofluorescence
- the PCR was performed in a final volume of 100 ⁇ l using 200 ng of DNA, Taq polymerase (2.5 U, Promega Corporation USA) in the specific buffer, with deoxyribonucleoside triphosphate mix (1.25 mM each) and 50 pmol of each primer (GIBCO, BRL).
- the primers used were located on the Mumps virus HN gene : sense primer 5AAGGATCCATGGAGCCCTCGAAA3' (nt 88-111) and the anti-sense primer 5 AGGCATGTTGAGTGGATGG3' (nt 570-589).
- DNA technology can prophylactically be applied to a vaccinee in need thereof, a number of technical problems, particularly relating to the development of a suitable carrier system, need to be solved beforehand.
- genetic material such as, e.g., a plasmid
- plasmid can be unstable and break down or be otherwise more or less inactivated before it reaches the target cells and it may thus be necessary to use large quantities of such material. Due to these large amounts a question arises about the potential risk in the human or animal body.
- the cationic virosomes of the present invention as carriers for the plasmid these problems can be successfully overcome and potential toxicity can be considerably decreased.
- the present cationic virosomes have a far higher activity and efficiency for the transfer of entrapped material, particularly of genetic material such as plasmids expressing mumps genes, into target cells than liposomes or normal virosomes known hitherto.
- Hemagglutinin (HA) from the A/Singapore/6/86 strain of influenza virus was isolated as described by Skehel and Schild (1971), Proc. Natl. Acad. Sci. USA 79: 968-972. In short, virus was grown in the allantoic cavity of hen eggs, and was purified twice by ultracentrifugation in a sucrose gradient.
- Purified virus was stabilized in a buffer containing 7.9 mg/ml NaCl, 4.4 mg/ml trisodiumcitrate • 2H2O, 2.1 mg/ml 2-morpholinoethane sulfonic acid, and 1.2 mg/ml N-hydroxyethyl-piperazine-N'-2-ethane sulfonic acid, pH 7.3. 53 ml of the virus suspension containing 345 ⁇ g HA per ml were pelletted by ultracentrifugation at 100,000 x g for 10 min.
- the solution was sterilized by passage through a 0.2 ⁇ m filter and then transferred to a glass container containing 1.15 g of sterile Biobeads SM-2.
- the container was shaken for 1 hour by using a shaker REAX2 from Heidolph (Kelheim, Germany). This procedure was repeated three times with 0.58 mg of Biobeads. After these procedures a slightly transparent solution of DOTAP virosomes was obtained.
- HA was isolated according to Example 9. To the supernatant containing the solubilized HA trimer (6 mg HA), 5.4 mg DOTAP and 0.6 mg PC were added and dissolved. The formation of virosomes was obtained according to Example 9.
- HA was isolated according to Example 9. To the supernatant containing the solubilized HA trimer (6 mg HA), 2.7 mg DOTAP, 0.6 mg PC and 2.7 mg PE were added and dissolved. The formation of virosomes was obtained according to Example 9.
- the plasmids of Example (1) were used for the demonstration of the high efficiency of cationic virosomes in transfection.
- 5'-FITC plasmids were synthesized via phosphoramidite chemistry (Microsynth GmbH, Balgach, Switzerland).
- a mixed sequence control (msc) plasmid consisting of the same length of nucleotides as the FITC-plasmid was used.
- DOTAP virosomes or DOTAP-PC virosomes 1 ml of DOTAP virosomes or DOTAP-PC virosomes was added to each of a) 2 mg of FITC-plasmid (1.3 ⁇ mol), and b) 3.1 mg plasmid (1.3 ⁇ mol)
- FITC-plasmids and plasmids were incorporated into DOTAP virosomes according to Example 9.
- Non-encapsulated plasmids were separated from the virosomes by gel filtration on a High Load Superdex 200 column (Pharmacia, Sweden). The column was equilibrated with sterile PBS. The void volume fractions containing the DOTAP virosomes with encapsulated plasmids were eluted with PBS and collected.
- Virosome-entrapped FITC plasmid concentrations were determined fluorometrically after the virosomes were fully dissolved in 0.1 M NaOH containing 0.1 % (v/v) Triton X-100. For calibration of the fluorescence scale the fluorescence of empty DOTAP -virosomes that were dissolved in the above detergent solution was set to zero.
- DOTAP -virosomes with encapsulated plasmids were used for tranfection experiments in vitro and in vivo.
- Figure 1 shows the mumps antigen expression of Vero cells which were incubated four days before with DOTAP virosomes encapsulating mumps plasmids.
- the mumps antigen expression is expressed through staining with a fluorescent polyclonal antibody from rabbit against mumps virus.
- DOTAP -virosomes with encapsulated FITC plasmids were used for visualization of the high transfer-rate of plasmid through virosomes into Vero cells ( Figure 2). No fluorescence could be detected after giving the same amount of FITC-plasmid without virosomal encapsulation.
- Micrographs of DOTAP virosomes confirm the unilamellar structure of the vesicles with an average diameter of approximately 120 to 180 nm as determined by laser light scattering.
- the HA protein spikes of the influenza virus are clearly visible (Figure 3).
- the fusion activity of the present DOTAP virosomes was measured by the quantitative assay based on fluorescence dequenching described by Hoekstra et al. (1984), Biochemistry 23: 5675-5681 and L ⁇ scher et al. (1993), Arch. Virol. 130: 317-326.
- the fluorescent probe octadecyl rhodamine B chloride (R18) (obtained from Molecular Probes Inc., Eugene, USA) was inserted at high densities into the membrane of DOTAP virosomes by adding the buffered OEG (Ci 2Eg) solution containing DOTAP and HA to a thin dry film of the fluorescent probe, followed by shaking for 5 to 10 min for dissolving the probe, then continuing as described above under "Preparation of a cationic vesicle".
- Vero cells were grown in 2-well tissue culture chamber slides (Nunc, Naperville, IL 60566, USA). 50 ⁇ l of FITC-mumps plasmid virosomes were added to the cells. They were incubated for 5, 15, and 30 min at 37°C, washed twice with PBS and then examined by fluorescence microscopy. DOTAP virosomes with encapsulated FITC-mumps-plasmid were rapidly incorporated into the cells as can be seen in Figure 5.
- Vero cells were cultured in 24- well Costar plates at an initial concentration of 1 x 10 ⁇ per well and per ml. After an incubation of 24 hours, medium was removed and 625 ⁇ l of fresh medium containing 0.5 ⁇ Ci thymidine, 52.0 mCi/mmol; Amersham, England) and 75 ⁇ l of DOTAP virosomes containing 0.2 nmol of either mumps plasmid or FITC-mumps plasmid were added. The cultures were gently shaken at very slow agitation for 1 hr at 37°C and then transferred to the incubator. After 48 hours the cell suspension was removed, transferred to centrifuge vials, and centrifuged. Obtained cell pellets were washed twice. When the cells could not sufficiently be dispersed into a single cell suspension, they were exposed briefly to a trypsin EDTA solution.
- OEG was removed by Biobeads as described in Example 9.
- a second mixture of NaCl, HEPES and OEG, 3 mg PC, 1 mg PE and 1 mg HA were subjected to the same biobeads treatment to form neutral virosomes.
- the DOTAP plasmid liposomes were fused with the neutral HA-virosomes by treatment with ultrasonication during 60 seconds.
- the obtained solution was diluted 1 : 1000 with PBS. 20 ⁇ l and 50 ⁇ l of this solution containing 1 ng and 2.5 ng plasmid, respectively, were added to 2 x 10" Vero cells. After 48 h incubation the supernatants of the cell cultures were tested for HN antigen by an ELISA assay. A content of 20 to 45 pg HN per ml was measured. Comparison of transfection efficiency of mumps plasmid (HN) loaded DOTAP virosomes with mumps plasmid loaded DOTAP liposomes.
- mice BALB/c mice (5 animals per group) were injected intramuscularly with "naked" plasmid DNA or with virosomal plasmid DNA. The response was read out 4 weeks post- immunization. Mean values ( ⁇ SD) are given.
- Cytotoxicity assay for specific T cell reactivity (refers to in the table 1)
- Spleen cells from immunized mice were suspended in a-MEM tissue culture medium supplemented with lO mM HEPES buffer, 5 x 10 ⁇ 5 M 2- ⁇ -mercaptoethanol, antibiotics and
- Antibodies against mumps virus were detected in mouse sera using an immune fluorescence test described by Just, M., Berger, R., Gl ⁇ ck, R., Wegmann, A. (1985) Feldfried mit für neuartigen human-diploiden Zellvakzine (HDCV) gegen Masern, Mumps und Roteln. Sau Med Wschr 115: 1727-1730. Concentrations of anti-mumps were standardized against a WHO-reference standard.
- the tested sera were diluted so that the measured OD values were between standard serum one and six. Values presented in this paper are calculated by multiplying the serum dilution with the measured antibody level (mlU/ml). Serum titers shown are the mean of 5 individual mice ( ⁇ SD) (Tab. 1).
- virosomal mumps plasmid (GC9 and GC23) was evaluated in a conventional newborn hamster model as described previously, by e.g. Overman et. al., 1953; Burr and Nagler, 1953; Love et al., Microb. Pathog. 1 (1986), 149-158; J. Virol. 58 (1986), 220-222; Develop. Neurosc. 7 (1985), 65-72; J. Virol. 53 (1985), 67-74 and references cited therein.
- mice Female BALB/c mice 4 weeks old (Charles River) were used. Mice were anesthetized with ketamine-xylazine and immunized i.n. with 30 ⁇ l (less then l ⁇ g of DNA) of virosomes-DNA or virosomes alone. The mice inhaled these preparations simply by breathing. The same procedure was used for repeated immunizations one, three, and four weeks after the first inoculation. Group A, B and C were immunized with the plasmid expressing the mumps virus HN protein (GC9), groups D, E and F received the plasmid coding the mumps virus F antigen (GC23).
- GC9 mumps virus HN protein
- groups D, E and F received the plasmid coding the mumps virus F antigen (GC23).
- Groups A and D received an intramuscular priming with influenza virus vaccine (lOO ⁇ l containing 3 ⁇ g of HA).
- Group G received the vector plasmid pcDNA3 entrapped into virosomes.
- Each group was represented by 5 mice.
- BAL bronchoalveolar lavages
- NW nasal washes
- mice were sacrificed by cervical dislocation under anesthetization. Collection of bronchoalveolar lavages (BAL) and nasal washes (NW) from mice were performed as described elsewhere (Takao S-I, Kiyotani K, Sakaguchi T., Fujli Y., Seno M., Yoshida T. 1997 Protection of mice from respiratory Sendai virus infections by recombinant vaccinia viruses. J Virol. 71 : 832-838.).
- Mumps virus-specific IgG and IgA antibodies were measured by enzyme-linked immunosorbent assay (ELISA).
- ELISA enzyme-linked immunosorbent assay
- Purified virions of mumps virus were diluted in coating buffer (0.05M NaHCO 3 /Na 2 CO 3 , pH 9.6) to l ⁇ g of protein per ml, and dispensed to a 96 well plate at lOO ⁇ l well. After allowing to absorb overnight at 4°C, the wells were washed with PBS-0.05% Brij 35 and blocked for preventing nonspecific binding by incubation with 5%> heat inactivated foetal calf serum (FCS) in PBS-Brij 35 for 2h at room temperature.
- FCS foetal calf serum
- TMB 3,3',5,5' Tetramethylbenzidine
- Splenocytes were cultured as described above with the same panel of antigens, except that after 24h in culture, cell-free supernatants were harvested for the presence of IL-2 and after 48h for the presence of IFN- ⁇ , IL-4 and IL-10. Samples were stored at -80°C. Briefly, microtiter plates were coated overnight at 4°C with lOO ⁇ l of anti-cytokine capture MAb (Pharmingen, Milan, Italy) at l ⁇ g/ml. The plates were washed twice with PBS-Tween and blocked with lOO ⁇ l of 10% FCS in PBS per well per 2h at room temperature.
- Mumps virus-stimulated cells from mice inoculated with DNA-virosomes induced the production of IL-2 and IFN- ⁇ , whereas it induced the production of IL-2 and IL-10 in cells taken from mumps virus-immunized animals.
- Immunization with DNA-virosomes such as the control immunization with the purified antigens co ⁇ elated with Thl phenotype.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Virology (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Pulmonology (AREA)
- Communicable Diseases (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU79153/98A AU7915398A (en) | 1997-05-23 | 1998-05-22 | An influenza enveloped dna vaccine |
EP98929369A EP0988052A2 (en) | 1997-05-23 | 1998-05-22 | An influenza enveloped dna vaccine |
US10/269,501 US20030113347A1 (en) | 1991-05-08 | 2002-10-10 | Immunostimulating and immunopotentiating reconstituted influenza virosomes and vaccines containing them |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97108390.2 | 1997-05-23 | ||
EP97108390 | 1997-05-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1998052603A2 true WO1998052603A2 (en) | 1998-11-26 |
WO1998052603A3 WO1998052603A3 (en) | 1999-05-14 |
Family
ID=8226824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1998/003050 WO1998052603A2 (en) | 1991-05-08 | 1998-05-22 | An influenza enveloped dna vaccine |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0988052A2 (en) |
AU (1) | AU7915398A (en) |
WO (1) | WO1998052603A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1409009A1 (en) * | 2001-06-15 | 2004-04-21 | Nordic Vaccine Technology A/S | Therapeutical vaccination |
WO2004045582A1 (en) * | 2002-11-21 | 2004-06-03 | Pevion Biotech Ltd. | High-efficiency fusogenic vesicles, methods of producing them, and pharmaceutical compositions containing them |
EP1676569A1 (en) * | 2004-12-30 | 2006-07-05 | Pevion Biotech Ltd. | Lyophilization of virosomes |
EP1961814A4 (en) * | 2005-11-24 | 2010-01-06 | Univ Osaka Res Found | RECOMBINANT POLYVALENT VACCINE |
US7682619B2 (en) | 2006-04-06 | 2010-03-23 | Cornell Research Foundation, Inc. | Canine influenza virus |
WO2012075337A2 (en) | 2010-12-01 | 2012-06-07 | Spinal Modulation, Inc. | Directed delivery of agents to neural anatomy |
US9603921B2 (en) | 2004-10-27 | 2017-03-28 | Janssen Vaccines Ag | Virosome particles comprising antigens from influenza virus and hepatitis b virus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5550289A (en) * | 1985-01-07 | 1996-08-27 | Syntex (U.S.A.) Inc. | N-(1,(1-1)-dialkyloxy)-and N-(1,(1-1)-dialkenyloxy alk-1-yl-N-N,N-tetrasubstituted ammonium lipids and uses therefor |
FR2617715B1 (en) * | 1987-07-07 | 1990-08-31 | Transgene Sa | VIRAL VECTOR AND RECOMBINANT DNA ENCODING FOR ONE OR MORE SURFACE PROTEINS (HA AND / OR F) OF A MORBILLIVIRUS, INFECTED CELL CULTURE, PROTEINS OBTAINED, VACCINE AND ANTIBODIES OBTAINED |
JPH06500128A (en) * | 1991-05-08 | 1994-01-06 | シュバイツ・ゼルム―・ウント・インプフィンスティテュート・ベルン | Immune stimulating and immunoenhancing reconstituted influenza virosomes and vaccines containing the same |
GB9308963D0 (en) * | 1993-04-30 | 1993-06-16 | Smithkline Beecham Biolog | Novel compounds |
US5550017A (en) * | 1993-10-12 | 1996-08-27 | Emory University | Anti-paramyxovirus screening method and vaccine |
US5830878A (en) * | 1995-06-07 | 1998-11-03 | Megabios Corporation | Cationic lipid: DNA complexes for gene targeting |
-
1998
- 1998-05-22 EP EP98929369A patent/EP0988052A2/en not_active Ceased
- 1998-05-22 AU AU79153/98A patent/AU7915398A/en not_active Abandoned
- 1998-05-22 WO PCT/EP1998/003050 patent/WO1998052603A2/en not_active Application Discontinuation
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1409009A1 (en) * | 2001-06-15 | 2004-04-21 | Nordic Vaccine Technology A/S | Therapeutical vaccination |
CN100488491C (en) * | 2002-11-21 | 2009-05-20 | 派维翁生物技术有限公司 | High-efficiency fused vesicles, methods of producing them, and pharmaceutical compositions containing same |
WO2004045582A1 (en) * | 2002-11-21 | 2004-06-03 | Pevion Biotech Ltd. | High-efficiency fusogenic vesicles, methods of producing them, and pharmaceutical compositions containing them |
EA008497B1 (en) * | 2002-11-21 | 2007-06-29 | Певион Биотех Лтд. | High-efficiency fusogenic vesicles, methods of producing them, and pharmaceutical compositions containing them |
US7329807B2 (en) | 2002-11-21 | 2008-02-12 | Pevion Biotech Ltd. | High-efficiency fusogenic vesicles, methods of producing them, and pharmaceutical compositions containing them |
US9603921B2 (en) | 2004-10-27 | 2017-03-28 | Janssen Vaccines Ag | Virosome particles comprising antigens from influenza virus and hepatitis b virus |
WO2006069719A3 (en) * | 2004-12-30 | 2006-10-19 | Pevion Biotech Ltd | Lyophilization of virosomes |
EA011881B1 (en) * | 2004-12-30 | 2009-06-30 | Певион Биотех Лтд. | Lyophilization of virosomes |
CN101119707B (en) * | 2004-12-30 | 2011-06-15 | 佩维恩生物技术有限公司 | Lyophilization of virosomes |
EP1676569A1 (en) * | 2004-12-30 | 2006-07-05 | Pevion Biotech Ltd. | Lyophilization of virosomes |
EP1961814A4 (en) * | 2005-11-24 | 2010-01-06 | Univ Osaka Res Found | RECOMBINANT POLYVALENT VACCINE |
US7682619B2 (en) | 2006-04-06 | 2010-03-23 | Cornell Research Foundation, Inc. | Canine influenza virus |
WO2012075337A2 (en) | 2010-12-01 | 2012-06-07 | Spinal Modulation, Inc. | Directed delivery of agents to neural anatomy |
Also Published As
Publication number | Publication date |
---|---|
EP0988052A2 (en) | 2000-03-29 |
WO1998052603A3 (en) | 1999-05-14 |
AU7915398A (en) | 1998-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11771652B2 (en) | Lipid nanoparticles for delivering mRNA vaccines | |
US20230043128A1 (en) | Multivalent influenza vaccines | |
Bungener et al. | Virosome-mediated delivery of protein antigens in vivo: efficient induction of class I MHC-restricted cytotoxic T lymphocyte activity | |
CN116322758A (en) | Nucleic acid-based combination vaccine | |
AU2776697A (en) | Cationic virosomes as transfer system for genetic material | |
JP2023550600A (en) | Lipid nanoparticles for delivering mRNA vaccines | |
US20240181037A1 (en) | Immunogenic compositions | |
US20230310571A1 (en) | Human metapneumovirus vaccines | |
EP4433491A2 (en) | Compositions and methods of ribonucleic acid respiratory syncytial virus (rsv) vaccines | |
EP1833465B1 (en) | Lyophilization of virosomes | |
WO1998040499A1 (en) | Gene delivery to mucosal epithelium for immunization or therapeutic purposes | |
EP0988052A2 (en) | An influenza enveloped dna vaccine | |
US20030113347A1 (en) | Immunostimulating and immunopotentiating reconstituted influenza virosomes and vaccines containing them | |
CN111148528A (en) | Flu vaccine | |
CA3203442A1 (en) | Transcription activator-like effector nucleases (talens) targeting hbv | |
US20240252612A1 (en) | Immunogenic compositions and uses thereof | |
CN117580568A (en) | Multivalent influenza vaccine | |
WO2025002352A1 (en) | Pharmaceutical composition containing cationic lipid and use thereof | |
US20250108107A1 (en) | Vaccines and related methods | |
WO2024089634A1 (en) | Immunogenic compositions against influenza and rsv | |
CN117721150A (en) | Rabies mRNA vaccine, preparation and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09264551 Country of ref document: US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1998929369 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 1998549980 Format of ref document f/p: F |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1998929369 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWR | Wipo information: refused in national office |
Ref document number: 1998929369 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998929369 Country of ref document: EP |