WO1998048497A1 - Power supply network, especially on ships - Google Patents
Power supply network, especially on ships Download PDFInfo
- Publication number
- WO1998048497A1 WO1998048497A1 PCT/EP1998/002352 EP9802352W WO9848497A1 WO 1998048497 A1 WO1998048497 A1 WO 1998048497A1 EP 9802352 W EP9802352 W EP 9802352W WO 9848497 A1 WO9848497 A1 WO 9848497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- phase
- network
- circuit
- distribution lines
- Prior art date
Links
- 238000009826 distribution Methods 0.000 claims abstract description 48
- 230000001681 protective effect Effects 0.000 claims abstract description 34
- 239000013598 vector Substances 0.000 claims abstract description 10
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
- H02H7/261—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
- H02H7/263—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of measured values
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/38—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to both voltage and current; responsive to phase angle between voltage and current
- H02H3/382—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to both voltage and current; responsive to phase angle between voltage and current involving phase comparison between current and voltage or between values derived from current and voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/04—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
- H02H7/045—Differential protection of transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
- H02H7/28—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for meshed systems
Definitions
- Power supply network in particular ship's electrical system
- the invention relates to a power supply network, in particular a ship's electrical system, of the type defined in the preamble of claim 1.
- each circuit breaker between the main and sub-distribution lines and between the sub-distribution lines and important electricity consumers is equipped with protective devices which trip the circuit breakers in the event of a short circuit with different delay times, the tripping times increasing from the current consumers to the main distribution lines and the generators feeding the main distribution lines .
- the time-selective switching off of the circuit breakers is implemented in such a way that a time counter is activated in all protective devices when a short circuit occurs in the on-board electrical system, and the protective device that first reaches its individual time limit, the assigned circuit breaker opens.
- the circuit breakers In order for time selectivity to work smoothly, the circuit breakers must be arranged in every conceivable short-circuit path, that is the path between the fault location and the generators, in the order of the delay times set on the protective devices. Regrouping is therefore only possible to a limited extent and only with great technical effort, and there is no ring and mesh formation in the electrical system. With the principle of time selectivity, it is also disadvantageous that short circuits are switched off later, the closer they are to the generators. This means that the most serious and powerful faults are the longest in the vehicle electrical system.
- the invention has for its object to provide a power supply network of the type mentioned with an integrated, digital network protection that can also be used in networks with difficult network configurations, such as ring and mesh formation, and an extremely fast shutdown of the network area of the vehicle electrical system, in which a short circuit occurs.
- the object is achieved according to the invention in a power supply network of the type specified in the preamble of claim 1 by the features in the characterizing part of claim 1.
- the power supply network has the advantage that the continuous addition of the current vectors supplied by the current sensors immediately detects in the event of a short circuit whether the short-circuit current flows through a network area delimited by a group of circuit breakers or has a sink in the network area.
- the short circuit is caused by network faults within this network area, and the protective computer activates the circuit breakers delimiting this network area by controlling the switching devices assigned to the circuit breakers in the associated protective devices, so that this network area is very quickly separated from the rest of the network and the function of the remaining power supply is maintained.
- the network area affected by the short circuit is switched off regardless of whether it is far away or very close to the generators.
- the usual differential protection of the transformers can additionally be easily shifted into the protective computer, thereby saving commissioning and engineering costs.
- differential protection of the transformers the amplitudes and phase positions of the primary and secondary currents of the transformers are compared in order to be able to identify special faults in the transformer.
- conventional differential protection in the event that the transformers have a non-zero swivel angle between primary and secondary voltages, the currents must also be swiveled before comparison by means of auxiliary transformers.
- the current sensors according to the invention automatically correctly detect the phase position of the currents in the circuit breakers, an error, e.g. a short circuit, immediately recognized in the transformer and the corresponding transformer can be switched off.
- 1 is a block diagram of a ship's electrical system
- FIG. 2 shows a block diagram of a protective device for a circuit breaker in the on-board electrical system according to FIG. 1.
- the three-phase ship electrical system shown in the block diagram in FIG. 1 as an example of a power supply network is divided into main distribution lines 11, 12 and sub-distribution lines 13, 14.
- the number of main and sub-distribution lines 11 to 14 is arbitrary, and the network can also be split into third and fourth levels of sub-distributions.
- Sub-distribution lines 13, 14 are coupled to one another via circuit breakers 15.
- the sub-distribution lines 13, 14 are operated with a lower mains voltage than the main distribution lines 11, 12, so that voltage transformers 16 are arranged between the main distribution lines 11, 12 and the sub-distribution lines 13, 14, both of which are connected to the Main distribution lines 11, 12 and sub-distribution lines 13, 14 are connected by means of circuit breakers 15. If the sub-distribution lines 13, 14 with the same mains voltage as the
- Main distribution lines 11, 12 operated, so the main distribution lines 11, 12 and Sub-distribution lines 13, 14 directly coupled to one another by circuit breakers 15.
- the main distribution lines 11, 12 are fed by vehicle electrical system generators 17, which in turn are connected to the main distribution lines 11, 12 via circuit breakers 15.
- a protection device 22 is assigned to each circuit breaker 15, as is shown in detail in FIG. 2 in the block diagram.
- Each protection device 22 has a switching device 23 for actuating the circuit breaker 15 and a current sensor 24 which detects the current flowing through the circuit breaker 15.
- the protective devices 22 communicate via data lines 25 with a protective computer 26, the protective devices 22 of the same distribution level each being connected to one of a plurality of data concentrators 27 to 29, which in turn are connected to the protective computer 26.
- the corresponding data lines 25 are shown in broken lines, dash-dotted lines and dotted lines in FIG. 1.
- the switching device 23 comprises a switching relay 30 for actuating the circuit breakers 15, an amplifier 31 and a decoder 32 which decodes a switching command coming from the protective computer 26 and controls the switching relay 30.
- the switching relay 30 works according to the open-circuit principle, i.e. when charging with excitation current, it opens the circuit breaker 15.
- the current sensor 24 is designed to measure the amount and phase of the current flowing through the circuit breaker 15.
- the phase measurement is based on a virtual line voltage U vir , the phase position of which corresponds to the phase position of the line voltage immediately before the short-circuit occurs.
- This virtual mains voltage U vir is determined by means of a follow-up synchronization, by a so-called
- PLL Phase Locked Loop
- Such a PLL is known for an application of communications technology from Tietze / Schenk, semiconductor technology 9th edition, Springer Verlag Berlin 1989, page 954 ff. And is implemented there in analog technology. Here it is preferably implemented as a program that can be implemented in the protection computer 26.
- the circuit breaker 15 connects the sub-distribution lines 13 and 14 with each other so that the PLL circuit 33 is connected to a line voltage of either the sub-distribution line 14 or the sub-distribution line 13.
- the virtual mains voltage U vir generated by the PLL circuit 33 is at the input of an evaluation unit 34 to which a current measuring device 35 for measuring the phase currents in the three-phase distribution line (in FIG. 2 in the sub-distribution line 14) is connected.
- the evaluation unit 34 determines the magnitude of the three phase currents i 1 # i 2 , i 3 and their phase position in relation to the virtual mains voltage U vir , that is to say the variables describing the vector of the phase currents i lt i 2 and i 3 , which are supplied to a coding unit 36.
- the output of the coding unit 36 is connected to the protective computer 26 via the data line 25 and the corresponding data concentrator 27 to 28.
- the coded data transmission to the protection computer 26 takes place once per mains voltage period.
- the incoming data are assigned to groups of circuit breakers 15, which limit predetermined network areas.
- the circuit 37 denotes a network area which is delimited by four circuit breakers 15.
- the other circuit breakers 15 in the network are grouped together to define predetermined network areas.
- the protection computer 26 continuously adds for each group of circuit breakers 15 the current vectors of the phase currents i 1 measured by the current sensors 24 and transmitted coded via the data lines 25 ; the phase currents i 2 and the phase currents i 3 .
- the protection computer 26 generates a switching command for all the circuit breakers 15 delimiting this network area, which switches to the switching devices 23 of the protection devices 22 of these circuit breakers 15 via the data lines 25.
- the corresponding switching relays 30 of the circuit breakers 15 are energized and the circuit breakers 15 are opened. The faulty network area is thus activated, while the undisturbed operation of the remaining network areas is ensured.
- the invention is not restricted to the exemplary embodiment described above. So instead of the direct measurement of the phase currents i 1; i 2 , i 3 the amount and phase of a co-system, a counter system and a zero system are also determined according to the amount and phase, which are calculated from the phase currents i 1 # i 2 , i 3 . For a ship's electrical system, it is sufficient if only the co-system is taken into account. If the co-systems (or the counter systems and the zero systems) are then vectorially added for all circuit breakers 15 by a group of circuit breakers 15 delimiting a network area, the same statement about a fault location inside or outside this network area is obtained. Through this conversion into the co-systems simplifies the mathematical calculation.
- differential protection the primary and secondary currents are compared with one another to identify faults in the transformer. Since, as a rule, the primary and secondary voltages of transformers are shifted by a multiple of 30 ° relative to each other, a direct comparison of the primary and secondary currents is not possible; rather, this shift or swivel must be reversed beforehand, which is usually the case with current transformers and output converters can be used. The comparison then no longer takes place between the primary and secondary currents, but between appropriately swiveled images of the currents.
- the current monitoring system of the secondary windings has approximately the same angle to the secondary voltage as the current monitoring system of the primary windings to the primary voltage, regardless of the pivoting angle of the transformer.
- phase currents i 1 # i 2 , i 3 are not converted into the co-systems and the vector addition of the phase currents relating to the virtual voltage U vir in their phase position is carried out. Since the phase angles of the currents in each case relate to the virtual mains voltage obtained on the distribution line, the swiveling angles caused by the transformer transformer 16 between the conductor voltages on the primary-side distribution line 11 and 12 and on the secondary-side distribution line 13 and 14 are automatically compensated for.
- the determination of the vectorial current sum is relatively complex.
- An equivalent statement about the location of a short-circuit source can be made according to a simplified embodiment of the invention by only evaluating the short-circuiting switches, i.e. it is checked whether the phase angles of the short-circuit currents at all allow the vectorial current sum to become zero. E.g. all short-circuit currents in a restricted network area approximately the same phase angle, then the vectorial sum cannot become zero, and the error must lie in this network area.
Landscapes
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
The present invention pertains to a power supply network, especially an on-board power supply network, comprising main distribution lines (11, 12) and secondary distribution lines (13, 14) powered by generators (17), current services (18 to 20) that capable of being connected to such lines, current switches inserted between the distribution lines (11 to 14), on the one hand, and the distribution lines (11 to 14) and the generators (17) and the current services (18 to 20), on the other hand, as well as protective devices (22) combined with the current switches (15) and connected to a protective meter (26). In order to effect a very quick switching-off of the network areas affected by a short-circuit on the on-board power supply network with loopings and meshings, the current pick-up shoes contained in the protective devices (22) are designed so as to measure in amount and phase the current flowing through the current switches (15) for comparison with a virtual network voltage. The protective meter (26) continuously compiles for the groups of current switches (15) which delimit predetermined network areas the current vectors measured by the current pick-up shoes and, when the result significantly deviates from null, generates a switching signal to the current switches belonging to the group concerned (15).
Description
BESCHREIBUNG DESCRIPTION
Stromversorgungsnetz, insbesondere SchiffsbordnetzPower supply network, in particular ship's electrical system
Die Erfindung betrifft ein Stromversorgungsnetz, insbesondere ein Schiffsbordnetz, der im Oberbegriff des Anspruchs 1 definierten Gattung.The invention relates to a power supply network, in particular a ship's electrical system, of the type defined in the preamble of claim 1.
Für die permanente Verfügbarkeit vonFor the permanent availability of
Stromversorgungsnetzen, insbesondere von Schiffsbordnetzen, ist es von wesentlicher Bedeutung, daß Kurzschlüsse schnell abgeschaltet und die Kurzschlußorte zur Fehlerbehebung schnell erkannt werden.Power supply networks, in particular of ship's on-board networks, it is essential that short circuits are quickly switched off and the short-circuit locations are quickly recognized for troubleshooting.
Schiffsbordnetze werden bis heute nach den Prinzipien der Strom- und Zeitselektivität geschützt. Hierzu ist jeder Leistungsschalter zwischen den Haupt- und Unterverteilungssträngen sowie zwischen den Unterverteilungssträngen und wichtigen Stromverbrauchern mit Schutzgeräten ausgestattet, die bei Auftreten eines Kurzschlusses mit unterschiedlichen Verzögerungszeiten die Leistungsschalter auslösen, wobei die Auslösezeiten von den Stromverbrauchern zu den Hauptverteilungssträngen und den die Hauptverteilungsstränge speisenden Generatoren hin zunehmen. Damit gibt jeder Leistungsschalter dem unterlagerten Schalter Zeit, einen Kurzschluß abzuschalten, bevor er seinerseits auslöst. Realisiert wird die zeitselektive Abschaltung der Leistungsschalter in der Weise, daß bei Auftreten eines Kurzschlusses im Bordnetz in allen Schutzgeräten ein Zeitzähler aktiviert wird und jeweils das Schutzgerät, das zuerst seine individuelle Zeitgrenze erreicht, den zugeordneten Leistungsschalter
öffnet .Ship electrical systems are still protected according to the principles of electricity and time selectivity. For this purpose, each circuit breaker between the main and sub-distribution lines and between the sub-distribution lines and important electricity consumers is equipped with protective devices which trip the circuit breakers in the event of a short circuit with different delay times, the tripping times increasing from the current consumers to the main distribution lines and the generators feeding the main distribution lines . This means that each circuit breaker gives the subordinate switch time to switch off a short circuit before it in turn trips. The time-selective switching off of the circuit breakers is implemented in such a way that a time counter is activated in all protective devices when a short circuit occurs in the on-board electrical system, and the protective device that first reaches its individual time limit, the assigned circuit breaker opens.
Damit die Zeitselektivität reibungslos funktioniert, müssen die Leistungsschalter in jeder denkbaren Kurzschlußbahn, das ist der Weg zwischen Fehlerort und den Generatoren, immer in der Reihenfolge der an den Schutzgeräten eingestellten Verzögerungszeiten angeordnet sein. Umgruppierungen sind daher nur eingeschränkt und nur mit hohem technischen Aufwand möglich, und eine Ring- und Maschenbildung des Bordnetzes unterbleibt. Bei dem Prinzip der Zeitselektivität ist es auch von Nachteil, daß Kurzschlüsse um so später abgeschaltet werden, je näher sie an den Generatoren liegen. Damit stehen die gravierendsten und stromstärksten Fehler am längsten im Bordnetz an.In order for time selectivity to work smoothly, the circuit breakers must be arranged in every conceivable short-circuit path, that is the path between the fault location and the generators, in the order of the delay times set on the protective devices. Regrouping is therefore only possible to a limited extent and only with great technical effort, and there is no ring and mesh formation in the electrical system. With the principle of time selectivity, it is also disadvantageous that short circuits are switched off later, the closer they are to the generators. This means that the most serious and powerful faults are the longest in the vehicle electrical system.
Es ist bereits vorgeschlagen worden (DE 196 34 094.2-32), einen integrierten, digitalen Netzschutz bei Schiffsbordnetzen dadurch zu erhalten, daß alle Schutzgeräte neben ihren Schaltrelais zum Auslösen des zugeordneten Leistungsschalters einen Stromsensor erhalten, der den über den Leistungsschalter fließenden Strom nach Höhe und Richtung erfaßt. Alle Schutzgeräte kommunizieren mit einem Schutzrechner, dem die Adresse der einzelnen Schutzgeräte bekannt ist. Der Schutzrechner erkennt anhand der von den Stromsensoren gelieferten Meßwerte das Auftreten eines Kurzschlusses und den Ort der dem Kurzschluß am nächsten liegenden Leistungsschalter und gibt einen Auslöse- oder Freischaltbefehl für diese Leistungsschalter aus, so daß der Kurzschlußbereich des Bordnetzes abgetrennt wird. Um völlige Selektivität zu erreichen, muß jeder Abgang vom Bordnetz mit einem Stromsensor ausgerüstet werden, der an den Netzrechner anzuschließen ist.
Der Erfindung liegt die Aufgabe zugrunde, ein Stromversorgungsnetz der eingangs genannten Art mit einem integrierten, digitalen Netzschutz auszustatten, der auch in Netzen mit schwierigen Netzkonfigurationen, wie Ring- und Maschenbildung, angewendet werden kann und eine extrem schnelle Abschaltung des Netzbereiches des Bordnetzes, in dem ein Kurzschluß auftritt, gewährleistet.It has already been proposed (DE 196 34 094.2-32) to obtain an integrated, digital network protection in ship's onboard networks in that all protective devices receive a current sensor in addition to their switching relays for triggering the assigned circuit breaker, which detects the current flowing through the circuit breaker according to height and Direction detected. All protective devices communicate with a protective computer that knows the address of the individual protective devices. The protective computer recognizes the occurrence of a short circuit and the location of the circuit breaker closest to the short circuit on the basis of the measured values supplied by the current sensors and issues a trip or release command for these circuit breakers, so that the short circuit area of the vehicle electrical system is disconnected. In order to achieve complete selectivity, each outlet from the vehicle electrical system must be equipped with a current sensor that must be connected to the network computer. The invention has for its object to provide a power supply network of the type mentioned with an integrated, digital network protection that can also be used in networks with difficult network configurations, such as ring and mesh formation, and an extremely fast shutdown of the network area of the vehicle electrical system, in which a short circuit occurs.
Die Aufgabe ist bei einem Stromversorgungsnetz der im Oberbegriff des Anspruchs 1 angegebenen Gattung erfindungsgemäß durch die Merkmale im Kennzeichenteil des Anspruchs 1 gelöst .The object is achieved according to the invention in a power supply network of the type specified in the preamble of claim 1 by the features in the characterizing part of claim 1.
Das erfindungsgemäße Stromversorgungsnetz hat den Vorteil, daß durch die fortlaufende Addition der von den Stromsensoren gelieferten Stromvektoren im Kurzschlußfall sofort erkannt wird, ob der Kurzschlußstrom einen von einer Gruppe der Leistungsschalter eingegrenzten Netzbereich durchfließt oder in dem Netzbereich eine Senke hat. Im letzten Fall ist der Kurzschluß durch Netzfehler innerhalb dieses Netzbereiches verursacht, und der Schutzrechner schaltet die diesen Netzbereich begrenzenden Leistungsschalter durch Ansteuerung der den Leistungsschaltern zugeordneten Schaltvorrichtungen in den zugehörigen Schutzgeräten frei, so daß dieser Netzbereich sehr schnell von dem übrigen Netz getrennt wird und die Funktion des verbleibenden Netzteils aufrechterhalten bleibt. Im Gegensatz zu dem eingangs beschriebenen zeitselektiven Abschaltprinzip wird der vom Kurzschluß betroffene Netzbereich unabhängig davon abgeschaltet, ob er sich weit entfernt oder sehr nahe an den Generatoren befindet. Damit werden auch die stromstärksten Kurzschlußfehler sofort eliminiert, wodurch evtl. Folgeschäden verhindert werden. Da alle Stromvektoren auf
die virtuelle Netzspannung bezogen sind, bereiten auch die im Netz vorhandenen Transformatoren und die von diesen erzeugten Schwenkwinkel bezüglich ihrer Ein- und Ausgangsspannungen keinerlei Probleme.The power supply network according to the invention has the advantage that the continuous addition of the current vectors supplied by the current sensors immediately detects in the event of a short circuit whether the short-circuit current flows through a network area delimited by a group of circuit breakers or has a sink in the network area. In the latter case, the short circuit is caused by network faults within this network area, and the protective computer activates the circuit breakers delimiting this network area by controlling the switching devices assigned to the circuit breakers in the associated protective devices, so that this network area is very quickly separated from the rest of the network and the function of the remaining power supply is maintained. In contrast to the time-selective switch-off principle described at the beginning, the network area affected by the short circuit is switched off regardless of whether it is far away or very close to the generators. This eliminates even the most powerful short-circuit faults, thereby preventing consequential damage. Because all current vectors are on the virtual mains voltage are related, the transformers present in the network and the swivel angles generated by them with regard to their input and output voltages do not cause any problems.
Da bei heutigen Stromversorgungsnetzen, insbesondere Schiffsbordnetzen, in der Regel bereits aus anderen Gründen ein Datenverkehr zwischen den Schutzgeräten an den Leistungsschaltern und einem zentralen Bedienerplatz installiert ist, ist der technische Aufwand für die Integration des digitalen Netzschutzes relativ gering.Since data transmission between the protective devices at the circuit breakers and a central operator station is usually already installed for other reasons in today's power supply networks, in particular ship's on-board networks, the technical effort for integrating the digital network protection is relatively low.
Bei dem erfindungsgemäßen Stromversorgungsnetz kann zusätzlich der übliche Differentialschutz der Transformatoren problemlos in den Schutzrechner verlagert und dadurch Inbetriebnahme- und Engineering-Kosten eingespart werden. Beim Differentialschutz der Transformatoren werden die Amplituden und Phasenlagen von Primär- und Sekundärströmen der Transformatoren verglichen, um spezielle Fehler im Transformator erkennen zu können. Beim herkömmlichen Differentialschutz müssen in dem Fall, daß die Transformatoren einen von Null abweichenden Schwenkwinkel zwischen Primär- und Sekundärspannungen besitzen, die Ströme vor Vergleich mittels Hilfstransformatoren ebenfalls geschwenkt werden. Da aber die erfindungsgemäßen Stromsensoren die Phasenlage der Ströme in den Leistungsschaltern automatisch richtig erfassen, kann ohne diese Hilfsmaßnahmen im Schutzrechner ein Fehler, z.B. ein Kurzschluß, im Transformator sofort erkannt und der entsprechende Transformator abgeschaltet werden.In the case of the power supply network according to the invention, the usual differential protection of the transformers can additionally be easily shifted into the protective computer, thereby saving commissioning and engineering costs. With differential protection of the transformers, the amplitudes and phase positions of the primary and secondary currents of the transformers are compared in order to be able to identify special faults in the transformer. With conventional differential protection, in the event that the transformers have a non-zero swivel angle between primary and secondary voltages, the currents must also be swiveled before comparison by means of auxiliary transformers. However, since the current sensors according to the invention automatically correctly detect the phase position of the currents in the circuit breakers, an error, e.g. a short circuit, immediately recognized in the transformer and the corresponding transformer can be switched off.
Zweckmäßige Ausführungsformen des erfindungsgemäßen Stromversorgungsnetzes mit vorteilhaften Weiterbildungen
und Ausgestaltungen der Erfindung ergeben sich aus den weiteren Ansprüchen.Expedient embodiments of the power supply network according to the invention with advantageous developments and embodiments of the invention result from the further claims.
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels im folgenden näher beschrieben. Es zeigen:The invention is described below with reference to an embodiment shown in the drawing. Show it:
Fig. 1 ein Blockschaltbild eines Schiffsbordnetzes,1 is a block diagram of a ship's electrical system,
Fig. 2 ein Blockschaltbild eines Schutzgerätes für einen Leistungsschalter im Bordnetz gemäß Fig. 1.2 shows a block diagram of a protective device for a circuit breaker in the on-board electrical system according to FIG. 1.
Das in Fig. 1 im Blockschaltbild dargestellte dreiphasige Schiffsbordnetz als Beispiel für ein Stromversorgungsnetz ist in Hauptverteilungssträngen 11, 12 und in Unterverteilungssträngen 13, 14 unterteilt. Die Zahl der Haupt- und Unterverteilungsstränge 11 bis 14 ist beliebig, und das Netz kann auch noch in eine dritte und vierte Ebene von Unterverteilungen aufgespalten werden. Die Hauptverteilungsstränge 11, 12 und dieThe three-phase ship electrical system shown in the block diagram in FIG. 1 as an example of a power supply network is divided into main distribution lines 11, 12 and sub-distribution lines 13, 14. The number of main and sub-distribution lines 11 to 14 is arbitrary, and the network can also be split into third and fourth levels of sub-distributions. The main distribution lines 11, 12 and
Unterverteilungsstränge 13, 14 sind untereinander über Leistungsschalter 15 gekoppelt. In dem dargestellten Ausführungsbeispiel des Bordnetzes werden die Unterverteilungsstränge 13, 14 mit einer niedrigeren Netzspannung als die Hauptverteilungsstränge 11, 12 betrieben, so daß zwischen den Hauptverteilungssträngen 11, 12 und den Unterverteilungssträngen 13, 14 U spannungs- Transformatoren 16 angeordnet sind, die sowohl auf die Hauptverteilungsstränge 11, 12 als auch auf die Unterverteilungsstränge 13, 14 mittels Leistungsschalter 15 aufgeschaltet sind. Werden die Unterverteilungsstränge 13, 14 mit gleicher Netzspannung wie dieSub-distribution lines 13, 14 are coupled to one another via circuit breakers 15. In the illustrated embodiment of the vehicle electrical system, the sub-distribution lines 13, 14 are operated with a lower mains voltage than the main distribution lines 11, 12, so that voltage transformers 16 are arranged between the main distribution lines 11, 12 and the sub-distribution lines 13, 14, both of which are connected to the Main distribution lines 11, 12 and sub-distribution lines 13, 14 are connected by means of circuit breakers 15. If the sub-distribution lines 13, 14 with the same mains voltage as the
Hauptverteilungsstränge 11, 12 betrieben, so werden die Hauptverteilungsstränge 11, 12 und die
Unterverteilungsstränge 13, 14 direkt durch Leistungsschalter 15 miteinander verkoppelt.Main distribution lines 11, 12 operated, so the main distribution lines 11, 12 and Sub-distribution lines 13, 14 directly coupled to one another by circuit breakers 15.
Die Hauptverteilungsstränge 11, 12 werden von Bordnetzgeneratoren 17 gespeist, die wiederum über Leistungsschalter 15 auf die Hauptverteilungsstränge 11, 12 aufgeschaltet sind. An den Hauptverteilungssträngen 11, 12 sind große Stromverbraucher, wieThe main distribution lines 11, 12 are fed by vehicle electrical system generators 17, which in turn are connected to the main distribution lines 11, 12 via circuit breakers 15. On the main distribution lines 11, 12 are large electricity consumers, such as
Versorgungstransformatoren 18 und Asynchronmotoren 19, über Leistungsschalter 15 angeschlossen, und an den Unterverteilungssträngen 13, 14 liegen weitere beliebige Stromverbraucher 20, die über Netzschalter 20 zu- und abschaltbar sind.Supply transformers 18 and asynchronous motors 19, connected via circuit breakers 15, and on the sub-distribution lines 13, 14 there are any other current consumers 20 which can be switched on and off via mains switch 20.
Jedem Leistungsschalter 15 ist ein Schutzgerät 22 zugeordnet, wie es im Detail in Fig. 2 im Blockschaltbild dargestellt ist. Jedes Schutzgerät 22 weist eine Schaltvorrichtung 23 zum Betätigen des Leistungsschalters 15 und einen Stromsensor 24 auf, der den durch den Leistungsschalter 15 fließenden Strom erfaßt. Die Schutzgeräte 22 kommunizieren über Datenleitungen 25 mit einem Schutzrechner 26, wobei die Schutzgeräte 22 der gleichen Verteilungsebene jeweils an einem von mehreren Datenkonzentratoren 27 bis 29 angeschlossen sind, die ihrerseits mit dem Schutzrechner 26 verbunden sind. Im Ausführungsbeispiel der Fig. 1 sind die Schutzgeräte 22, die den Leistungsschaltem 15 zum Aufschalten der Bordnetzgeneratoren 17 auf die Hauptverteilungsstränge 11, 12 zugeordnet sind, zum Datenkonzentrator 27, die Schutzgeräte 22, die den Leistungsschaltem 15 zum Aufschalten der Transformatoren 16, 18 und der Asynchronmotoren 19 auf die Hauptverteilungsstränge 11, 12 zugeordnet sind, zum Datenkonzentrator 28 und die Schutzgeräte 22, die den Leistungsschaltern 15 zwischen den
Unterverteilungssträngen 13, 14 und den Leistungsschaltern 15 zum Anschließen der Transformatoren 16 an die Unterverteilungsstränge 13, 14 zugeordnet sind, zum Datenkonzentrator 29 geführt. Die entsprechenden Datenleitungen 25 sind in Fig. 1 strichliniert, strichpunktiert und gepunktet dargestellt.A protection device 22 is assigned to each circuit breaker 15, as is shown in detail in FIG. 2 in the block diagram. Each protection device 22 has a switching device 23 for actuating the circuit breaker 15 and a current sensor 24 which detects the current flowing through the circuit breaker 15. The protective devices 22 communicate via data lines 25 with a protective computer 26, the protective devices 22 of the same distribution level each being connected to one of a plurality of data concentrators 27 to 29, which in turn are connected to the protective computer 26. In the embodiment of FIG. 1, the protective devices 22, which are assigned to the power switches 15 for connecting the vehicle electrical system generators 17 to the main distribution lines 11, 12, to the data concentrator 27, the protective devices 22 which are the power switches 15 for connecting the transformers 16, 18 and Asynchronous motors 19 are assigned to the main distribution lines 11, 12, to the data concentrator 28 and to the protective devices 22 which connect the circuit breakers 15 between the Sub-distribution lines 13, 14 and the circuit breakers 15 for connecting the transformers 16 to the sub-distribution lines 13, 14 are assigned to the data concentrator 29. The corresponding data lines 25 are shown in broken lines, dash-dotted lines and dotted lines in FIG. 1.
Die Schaltvorrichtung 23 umfaßt ein Schaltrelais 30 zum Betätigen der Leistungsschalter 15, einen Verstärker 31 und einen Dekoder 32, der einen von dem Schutzrechner 26 kommenden Schaltbefehl dekodiert und eine Ansteuerung des Schaltrelais 30 bewirkt. Das Schaltrelais 30 arbeitet nach dem Arbeitsstromprinzip, d.h. bei Beschicken mit Erregerstrom öffnet es den Leistungsschalter 15.The switching device 23 comprises a switching relay 30 for actuating the circuit breakers 15, an amplifier 31 and a decoder 32 which decodes a switching command coming from the protective computer 26 and controls the switching relay 30. The switching relay 30 works according to the open-circuit principle, i.e. when charging with excitation current, it opens the circuit breaker 15.
Der Stromsensor 24 ist zur Messung des durch den Leistungsschalter 15 fließenden Stromes nach Betrag und Phase ausgebilde . Die Phasenmessung erfolgt dabei bezogen auf eine virtuelle Netzspannung Uvir, deren Phasenlage der Phasenlage der Netzspannung unmittelbar vor Kurzschlußeintritt entspricht. Diese virtuelle Netzspannung Uvir wird mittels einer NachlaufSynchronisation, durch eine sog.The current sensor 24 is designed to measure the amount and phase of the current flowing through the circuit breaker 15. The phase measurement is based on a virtual line voltage U vir , the phase position of which corresponds to the phase position of the line voltage immediately before the short-circuit occurs. This virtual mains voltage U vir is determined by means of a follow-up synchronization, by a so-called
PLL- (Phase Locked Loop) Schaltung 33, gewonnen, die an eine Leiterspannung des dreiphasigen Verteilerstrangs angeschlossen ist, in dem der Leistungsschalter 15 liegt. Eine solche PLL ist für einen Anwendungsfall der Nachrichtentechnik aus Tietze/Schenk, Halbleitertechnik 9. Auflage, Springer Verlag Berlin 1989, Seite 954 ff. bekannt und dort in Analogtechnik ausgeführt. Hier wird sie bevorzugt als Programm realisiert, das in den Schutzrechner 26 implementiert werden kann. In dem in Fig. 2 dargestellten Ausführungsbeispiel verbindet der Leistungsschalter 15 die Unterverteilungsstränge 13 und 14
miteinander, so daß die PLL-Schaltung 33 an eine Leiterspannung entweder des Unterverteilungsstrangs 14 oder des Unterverteilungsstrangs 13 angeschlossen ist. Die von der PLL-Schaltung 33 erzeugte virtuelle Netzspannung Uvir liegt am Eingang einer Auswerteeinheit 34, an die auch eine Strommeßvorrichtung 35 zur Messung der Phasenströme in dem dreiphasigen Verteilungsstrang (in Fig. 2 im Unterverteilungsstrang 14) angeschlossen ist. Die Auswerteeinheit 34 ermittelt den Betrag der drei Phasenströme i1# i2, i3 und deren Phasenlage gegenüber der virtuellen Netzspannung Uvir, also die den Vektor der Phasenströme il t i2 und i3 beschreibenden Größen, die einer Codiereinheit 36 zugeführt werden. Der Ausgang der Codiereinheit 36 ist über die Datenleitung 25 und dem entsprechenden Datenkonzentrator 27 bis 28 an den Schutzrechner 26 angeschlossen. Die codierte Datenübertragung an den Schutzrechner 26 erfolgt einmal pro Netzspannungsperiode .PLL (Phase Locked Loop) circuit 33, obtained, which is connected to a line voltage of the three-phase distribution line in which the circuit breaker 15 is located. Such a PLL is known for an application of communications technology from Tietze / Schenk, semiconductor technology 9th edition, Springer Verlag Berlin 1989, page 954 ff. And is implemented there in analog technology. Here it is preferably implemented as a program that can be implemented in the protection computer 26. In the exemplary embodiment shown in FIG. 2, the circuit breaker 15 connects the sub-distribution lines 13 and 14 with each other so that the PLL circuit 33 is connected to a line voltage of either the sub-distribution line 14 or the sub-distribution line 13. The virtual mains voltage U vir generated by the PLL circuit 33 is at the input of an evaluation unit 34 to which a current measuring device 35 for measuring the phase currents in the three-phase distribution line (in FIG. 2 in the sub-distribution line 14) is connected. The evaluation unit 34 determines the magnitude of the three phase currents i 1 # i 2 , i 3 and their phase position in relation to the virtual mains voltage U vir , that is to say the variables describing the vector of the phase currents i lt i 2 and i 3 , which are supplied to a coding unit 36. The output of the coding unit 36 is connected to the protective computer 26 via the data line 25 and the corresponding data concentrator 27 to 28. The coded data transmission to the protection computer 26 takes place once per mains voltage period.
Im Schutzrechner 26 sind die einlaufenden Daten Gruppen von Leistungsschaltern 15 zugeordnet, die vorgegebene Netzbereiche eingrenzen. Beispielhaft ist in Fig. 1 durch den Kreis 37 ein Netzbereich gekennzeichnet, der durch vier Leistungsschalter 15 eingegrenzt ist. In gleicher Weise sind die übrigen Leistungsschalter 15 im Netz zu vorgegebene Netzbereiche eingrenzenden Gruppen zusammengefaßt. Während des Netzbetriebs addiert der Schutzrechner 26 fortlaufend für jede Gruppe von Leistungsschaltern 15 die von den Stromsensoren 24 gemessenen und über die Datenleitungen 25 codiert übertragenen Stromvektoren der Phasenströme il; der Phasenströme i2 und der Phasenströme i3. Solange die vektorielle Addition aller von den Stromsensoren 24 der Gruppe von Leistungsschaltern 15 an den Schutzrechner 26
gelieferten Ströme i-_ bzw. i2 bzw. i3 in etwa Null ist, ist dieser Netzbereich fehlerfrei. Ein im Bordnetz auftretender Kurzschlußstrom durchfließt diesen Netzbereich, wird aber nicht von einem Fehler in diesem Netzbereich verursacht. Weicht hingegen das Ergebnis der vektoriellen Addition wesentlich von Null ab, so ist dies ein Anzeichen dafür, daß der Kurzschlußstrom nicht den Netzbereich durchfließt, sondern innerhalb des Netzbereichs eine Senke hat, der Kurzschlußstrom also durch einen Fehler in diesem Netzbereich verursacht ist. In diesem Fall generiert der Schutzrechner 26 einen Schaltbefehl für alle diesen Netzbereich eingrenzenden Leistungsschalter 15, der über die Datenleitungen 25 an die Schaltvorrichtungen 23 der Schutzgeräte 22 dieser Leistungsschalter 15 gelangt. Die entsprechenden Schaltrelais 30 der Leistungsschalter 15 werden erregt und die Leistungsschalter 15 geöffnet. Der fehlerhafte Netzbereich ist damit freigeschaltet, während der ungestörte Betrieb der verbleibenden Netzbereiche gesichert ist .In the protection computer 26, the incoming data are assigned to groups of circuit breakers 15, which limit predetermined network areas. For example, in FIG. 1, the circuit 37 denotes a network area which is delimited by four circuit breakers 15. In the same way, the other circuit breakers 15 in the network are grouped together to define predetermined network areas. During network operation, the protection computer 26 continuously adds for each group of circuit breakers 15 the current vectors of the phase currents i 1 measured by the current sensors 24 and transmitted coded via the data lines 25 ; the phase currents i 2 and the phase currents i 3 . As long as the vectorial addition of all of the current sensors 24 of the group of circuit breakers 15 to the protective computer 26 supplied currents i-_ or i 2 or i 3 is approximately zero, this network area is error-free. A short-circuit current occurring in the vehicle electrical system flows through this network area, but is not caused by an error in this network area. If, on the other hand, the result of the vectorial addition differs substantially from zero, this is an indication that the short-circuit current does not flow through the network area but has a sink within the network area, that is to say the short-circuit current is caused by an error in this network area. In this case, the protection computer 26 generates a switching command for all the circuit breakers 15 delimiting this network area, which switches to the switching devices 23 of the protection devices 22 of these circuit breakers 15 via the data lines 25. The corresponding switching relays 30 of the circuit breakers 15 are energized and the circuit breakers 15 are opened. The faulty network area is thus activated, while the undisturbed operation of the remaining network areas is ensured.
Die Erfindung ist nicht auf das vorstehend beschriebene Ausführungsbeispiel beschränkt. So können anstelle der direkten Messung der Phasenströme i1; i2, i3 nach Betrag und Phase auch der Betrag und die Phase eines Mitsystems, einen Gegensystems und eines Nullsystems ermittelt werden, die aus den Phasenströmen i1# i2, i3 berechnet werden. Bei einem Schiffsbordnetz ist es dabei ausreichend, wenn nur das Mitsystem berücksichtigt wird. Werden dann für alle Leistungsschalter 15 von einer einen Netzbereich eingrenzenden Gruppe von Leistungsschaltern 15 die Mitsysteme (bzw. die Gegensysteme und die Nullsysteme) vektoriell addiert, so wird die gleiche Aussage über einen Fehlerort innerhalb oder außerhalb dieses Netzbereichs erhalten. Durch diese Umrechnung in die Mitsysteme wird
eine Vereinfachung in der mathematischen Berechnung erreicht. Außerdem läßt sich der übliche Differentialschutz für die im Stromversorgungsnetz vorhandenen Umspannungs-Transformatoren 16 sehr leicht durch eine Rechenroutine in den Schutzrechner 26 implementieren, so daß gegenüber dem herkömmlichen Differentialschutz erhebliche Einsparungen erzielt werden. Beim Differentialschutz werden die Primär- und Sekundärströme miteinander verglichen, um Fehler in dem Transformator zu erkennen. Da in der Regel die Primär- und Sekundärspannungen von Transformatoren um ein Vielfaches von 30° gegeneinander verschoben sind, ist ein unmittelbarer Vergleich der Primär- und Sekundärströme nicht möglich, vielmehr muß diese Verschiebung bzw. Schwenkung zuvor rückgängig gemacht werden, wozu in der Regel Stromtransformatoren und Ausgangswandler verwendet werden. Der Vergleich findet dann nicht mehr zwischen Primär- und Sekundärstrom statt, sondern zwischen entsprechend geschwenkten Abbildern der Ströme. Dies ist sehr schwer auszulegen und bietet reichlich Möglichkeiten von Vertauschungen. Wird hingegen aus den Phasenströmen am Ein- und Ausgang des Transformators jeweils ein Strommitsystem berechnet, so hat das Strommitsystem der Sekundärwicklungen näherungsweise den gleichen Winkel zur SekundärSpannung, wie das Strommitsystem der Primärwicklungen zur Primärspannung, und zwar unabhängig vom Schwenkwinkel des Transformators . Durch einen einfachen Vergleich der Mitsysteme auf der Primär- und Sekundärseite des Transformators kann der Differentialschutz dann von dem Schutzrechner 26 ohne zusätzlichen Mehraufwand mit übernommen werden.The invention is not restricted to the exemplary embodiment described above. So instead of the direct measurement of the phase currents i 1; i 2 , i 3 the amount and phase of a co-system, a counter system and a zero system are also determined according to the amount and phase, which are calculated from the phase currents i 1 # i 2 , i 3 . For a ship's electrical system, it is sufficient if only the co-system is taken into account. If the co-systems (or the counter systems and the zero systems) are then vectorially added for all circuit breakers 15 by a group of circuit breakers 15 delimiting a network area, the same statement about a fault location inside or outside this network area is obtained. Through this conversion into the co-systems simplifies the mathematical calculation. In addition, the usual differential protection for the transformer transformers 16 present in the power supply network can be implemented very easily by a computing routine in the protective computer 26, so that considerable savings are achieved compared to the conventional differential protection. In differential protection, the primary and secondary currents are compared with one another to identify faults in the transformer. Since, as a rule, the primary and secondary voltages of transformers are shifted by a multiple of 30 ° relative to each other, a direct comparison of the primary and secondary currents is not possible; rather, this shift or swivel must be reversed beforehand, which is usually the case with current transformers and output converters can be used. The comparison then no longer takes place between the primary and secondary currents, but between appropriately swiveled images of the currents. This is very difficult to interpret and offers plenty of opportunities for confusion. However, if a current monitoring system is calculated from the phase currents at the input and output of the transformer, the current monitoring system of the secondary windings has approximately the same angle to the secondary voltage as the current monitoring system of the primary windings to the primary voltage, regardless of the pivoting angle of the transformer. By simply comparing the co-systems on the primary and secondary sides of the transformer, the differential protection can then be taken over by the protection computer 26 without any additional effort.
Das gleiche gilt aber auch, wenn auf die Umrechnung der Phasenströme i1# i2, i3 in die Mitsysteme verzichtet wird
und die Vektoraddition der in ihrer Phasenlage auf die virtuelle Spannung Uvir bezogenen Phasenströme durchgeführt wird. Da die Phasenwinkel der Ströme sich jeweils auf die am Verteilungsstrang gewonnene virtuelle Netzspannung beziehen, werden die von dem Umspannungs-Transformator 16 hervorgerufenen Schwenkwinkel zwischen den Leiterspannungen am primärseitigen Verteilungsstrang 11 bzw. 12 und am sekundärseitigen Verteilungsstrang 13 bzw. 14 automatisch kompensiert .The same applies if the phase currents i 1 # i 2 , i 3 are not converted into the co-systems and the vector addition of the phase currents relating to the virtual voltage U vir in their phase position is carried out. Since the phase angles of the currents in each case relate to the virtual mains voltage obtained on the distribution line, the swiveling angles caused by the transformer transformer 16 between the conductor voltages on the primary-side distribution line 11 and 12 and on the secondary-side distribution line 13 and 14 are automatically compensated for.
Die Ermittlung der vektoriellen Stromsumme ist relativ aufwendig. Eine gleichwertige Aussage über den Ort einer Kurzschlußquelle läßt sich gemäß einer vereinfachten Ausführungsform der Erfindung dadurch herbeiführen, daß nur eine Auswertung der kurzschlußführenden Schalter erfolgt, d.h. überprüft wird, ob die Phasenwinkel der Kurzschlußströme überhaupt zulassen, daß die vektorielle Stromsumme Null werden kann. Haben z.B. alle Kurzschlußströme in einem eingegrenzten Netzbereich näherungsweise den gleichen Phasenwinkel, dann kann die vektorielle Summe nicht Null werden, und der Fehler muß in diesem Netzbereich liegen.
The determination of the vectorial current sum is relatively complex. An equivalent statement about the location of a short-circuit source can be made according to a simplified embodiment of the invention by only evaluating the short-circuiting switches, i.e. it is checked whether the phase angles of the short-circuit currents at all allow the vectorial current sum to become zero. E.g. all short-circuit currents in a restricted network area approximately the same phase angle, then the vectorial sum cannot become zero, and the error must lie in this network area.
Claims
PATENTANSPRUCHEPATENT CLAIMS
Stromversorgungsnetz, insbesondere Schiffsbordnetz, mit von Generatoren (17) gespeisten Hauptverteilungssträngen (11, 12) und mit Unterverteilungssträngen (13, 14) sowie mit auf diese aufschaltbaren Stromverbrauchern (18, 19, 20), mit zwischen den Verteilungssträngen (11 bis 14) einerseits und den Verteilungssträngen (13 bis 14) und den Generatoren (17) sowie den Stromverbrauchern (18, 19, 20) andererseits angeordneten Leistungsschaltern (15) , mit den Leistungsschaltern (15) zugeordneten Schutzgeräten (22) , die jeweils eine den zugeordneten Leistungsschaltern (15) betätigende SchaltvorrichtungPower supply network, in particular ship's electrical system, with main distribution lines (11, 12) fed by generators (17) and with sub-distribution lines (13, 14) as well as with current consumers (18, 19, 20) that can be connected to them, on the one hand, between the distribution lines (11 to 14) and the distribution strands (13 to 14) and the generators (17) and the current consumers (18, 19, 20) on the other hand arranged circuit breakers (15) with the circuit breakers (15) assigned protective devices (22), each of which is assigned to the assigned circuit breaker ( 15) actuating switching device
(23) und einen den über den zugeordneten Leistungsschaltern (15) fließenden Strom erfassenden Stromsensor (24) umfassen, und mit einem mit den Schutzgeräten (22) kommunizierenden Schutzrechner(23) and a current sensor (24) which detects the current flowing through the assigned circuit breakers (15), and with a protective computer communicating with the protective devices (22)
(26), dadurch gekennzeichnet, daß die Stromsensoren(26), characterized in that the current sensors
(24) zur Messung des Stromes ( ix bis i3) nach Betrag und Phase, die bezogen ist auf eine virtuelle Netzspannung (Uvir) , deren Phasenlage derjenigen der Netzspannung vor Kurzschlußeintritt entspricht, ausgebildet sind und daß der Schutzrechner (26) für Gruppen von Leistungsschaltem (15) , die vorgegebene Netzbereiche (37) eingrenzen, fortlaufend die von den Stromsensoren (24) gemessenen Stromvektoren addiert und bei einer wesentlichen Abweichung des Additionsergebnisses von Null einen Abschaltbefehl für
die der Gruppe zugehörigen Leistungsschalter (15) generiert .(24) for measuring the current (i x to i 3 ) according to amount and phase, which is based on a virtual mains voltage (U vir ), the phase position of which corresponds to that of the mains voltage before the short circuit occurs, and that the protective computer (26) for Groups of power switches (15), which delimit predetermined network areas (37), continuously add the current vectors measured by the current sensors (24) and, in the event of a substantial deviation of the addition result from zero, a switch-off command for the circuit breaker (15) belonging to the group is generated.
Netz nach Anspruch 1, dadurch gekennzeichnet, daß anstelle einer kompletten Vektoraddition nur eine Prüfung der Phasenlagen der Phasenströme dahingehend erfolgt, ob diese eine vektorielle Stromsumme von Null zulassen oder nicht .Network according to claim 1, characterized in that instead of a complete vector addition, only a check of the phase positions of the phase currents is carried out to determine whether these permit a vectorial current sum of zero or not.
Netz nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Meßwerte der Stromsensoren (24) codiert an den Schutzrechner (26) übertragen werden.Network according to claim 1 or 2, characterized in that the measured values of the current sensors (24) are transmitted coded to the protective computer (26).
Netz nach Anspruch 3, dadurch gekennzeichnet, daß die Codierung und Übertragung einmal pro Netzspannungsperiode erfolgt.Network according to claim 3, characterized in that the coding and transmission takes place once per network voltage period.
Netz nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zur Gewinnung der virtuellen Netzspannung (Uvir) jeder Stromsensor eine an eine Leiterspannung des dreiphasigen Verteilungsstrangs (11 bis 14) angeschlossene PLL-Schaltung (33) aufweist, die mit Kurzschlußeintritt die unmittelbar vorhergehend vorhandene Phasenlage der Netzspannung festhält .Network according to one of Claims 1 to 4, characterized in that, in order to obtain the virtual network voltage (U vir ), each current sensor has a PLL circuit (33) which is connected to a line voltage of the three-phase distribution line (11 to 14) and which has a short-circuit occurrence which occurs immediately previously existing phase position of the mains voltage.
Netz nach Anspruch 5 dadurch gekennzeichnet, daß jeder Stromsensor (24) eine Strommeßvorrichtung (35) zur Messung der Phasenströme ( ix bis i3) in den dreiphasigen Verteilungssträngen (11 bis 14) , eine Auswerteeinheit (34) zur Berechnung von Betrag und Phase der Phasenströme ( ix bis i3) und eine Codiereinheit (36) zur Codierung der Betrags- und Phasenwerte aufweist, die über eine Datenleitung (25)
mit dem Schutzrechner (26) verbunden ist.Network according to Claim 5, characterized in that each current sensor (24) has a current measuring device (35) for measuring the phase currents (i x to i 3 ) in the three-phase distribution lines (11 to 14), an evaluation unit (34) for calculating the amount and phase which has phase currents (i x to i 3 ) and a coding unit (36) for coding the absolute value and phase values, which are connected via a data line (25) is connected to the protection computer (26).
Netz nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß anstelle der Vektoraddition der Phasenströme innerhalb einer Gruppen von Leistungsschalter (15) , die vorgegebene Netzbereiche eingrenzen, eine Vektoraddition mindestens der aus den Phasenströmen ( ix bis i3) berechneten Mitsysteme erfolgt .
Network according to one of Claims 1 to 6, characterized in that, instead of vector addition of the phase currents within a group of circuit breakers (15) which delimit predetermined network areas, vector addition of at least the co-systems calculated from the phase currents (i x to i 3 ) takes place.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1997116826 DE19716826A1 (en) | 1997-04-22 | 1997-04-22 | Power supply network, in particular ship's electrical system |
DE19716826.4 | 1997-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998048497A1 true WO1998048497A1 (en) | 1998-10-29 |
Family
ID=7827300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1998/002352 WO1998048497A1 (en) | 1997-04-22 | 1998-04-21 | Power supply network, especially on ships |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19716826A1 (en) |
WO (1) | WO1998048497A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1933451A2 (en) | 2006-12-13 | 2008-06-18 | Howaldtswerke-Deutsche Werft GmbH | Submarine with electrical power supply circuit |
KR101087589B1 (en) * | 2007-08-31 | 2011-11-29 | 호발츠벨케 도이췌 벨프트 게엠베하 | Ships with multiple energy stores |
EP2654156A1 (en) * | 2012-04-17 | 2013-10-23 | Siemens Aktiengesellschaft | Fault protection system for a power system of dynamically positioned vessel |
CN103532116A (en) * | 2013-10-10 | 2014-01-22 | 国家电网公司 | Automatic three-layer protection system of distribution network |
CN103532111A (en) * | 2013-09-18 | 2014-01-22 | 湖州泰仑电力自动化工程有限公司 | Incoming line and outgoing line protector of switching station |
US9543748B2 (en) | 2012-04-17 | 2017-01-10 | Siemens Aktiengesellschaft | Fault protection system for a power system of dynamically positioned vessel |
US10450044B2 (en) | 2016-03-31 | 2019-10-22 | Ge Energy Power Conversion Technology Ltd. | Electrical power distribution system, method for powering a corresponding task, propulsion system and method for a ship |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1372715A (en) * | 1999-08-03 | 2002-10-02 | 西门子公司 | Demagnetization-protected permanent magnet ship propulsion system |
EP1293023A1 (en) * | 2000-06-15 | 2003-03-19 | Moeller GmbH | Electrical switchgear comprising a number of switches |
JP3725468B2 (en) * | 2001-12-25 | 2005-12-14 | 三菱電機株式会社 | Ground fault relay system in multiple direct grounding system |
DE10213732B4 (en) * | 2002-03-26 | 2005-02-03 | Yazaki Europe Ltd., Hemel Hempstead | Method for the electrical supply of electrical loads in a vehicle |
DE10237549A1 (en) * | 2002-08-16 | 2004-03-04 | Siemens Ag | Electrical network for underwater and surface vehicles, e.g. B. Navy ships, as well as for offshore facilities |
DE102007006564A1 (en) * | 2007-02-09 | 2008-08-14 | Siemens Ag | Circuit breaker or circuit breaker |
DE202007018606U1 (en) | 2007-11-16 | 2009-02-19 | Moeller Gmbh | Short-circuit limiting device in a low-voltage system |
US8395868B2 (en) | 2008-11-14 | 2013-03-12 | Eaton Industries Gmbh | Short circuit limitation device in a low voltage system |
CN103762565A (en) * | 2014-01-20 | 2014-04-30 | 国家电网公司 | Branch line protection controller |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2510989A1 (en) * | 1974-05-03 | 1975-11-13 | Sprecher & Schuh Ag | Directional relay for unearthed networks - has control for reference voltage generating binary test signal and directional memory at output |
FR2560456A1 (en) * | 1984-02-29 | 1985-08-30 | Alsthom Atlantique | Device for differential protection of a high-voltage electrical line comprising at least one tapping. |
DE19634094A1 (en) * | 1996-08-23 | 1998-03-05 | Stn Atlas Elektronik Gmbh | Power supply system for island grids |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0274639B1 (en) * | 1986-12-12 | 1993-08-04 | Siemens Aktiengesellschaft | Protective interrupting system |
-
1997
- 1997-04-22 DE DE1997116826 patent/DE19716826A1/en not_active Withdrawn
-
1998
- 1998-04-21 WO PCT/EP1998/002352 patent/WO1998048497A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2510989A1 (en) * | 1974-05-03 | 1975-11-13 | Sprecher & Schuh Ag | Directional relay for unearthed networks - has control for reference voltage generating binary test signal and directional memory at output |
FR2560456A1 (en) * | 1984-02-29 | 1985-08-30 | Alsthom Atlantique | Device for differential protection of a high-voltage electrical line comprising at least one tapping. |
DE19634094A1 (en) * | 1996-08-23 | 1998-03-05 | Stn Atlas Elektronik Gmbh | Power supply system for island grids |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1933451A2 (en) | 2006-12-13 | 2008-06-18 | Howaldtswerke-Deutsche Werft GmbH | Submarine with electrical power supply circuit |
EP1933451A3 (en) * | 2006-12-13 | 2009-06-24 | Howaldtswerke-Deutsche Werft GmbH | Submarine with electrical power supply circuit |
KR101109564B1 (en) | 2006-12-13 | 2012-02-28 | 호발츠벨케 도이췌 벨프트 게엠베하 | Submarine boat |
KR101087589B1 (en) * | 2007-08-31 | 2011-11-29 | 호발츠벨케 도이췌 벨프트 게엠베하 | Ships with multiple energy stores |
US9083177B2 (en) | 2012-04-17 | 2015-07-14 | Siemens Aktiengesellschaft | Fault protection system for a power system of dynamically positioned vessel |
CN103378585A (en) * | 2012-04-17 | 2013-10-30 | 西门子公司 | Fault protection system for a power system of dynamically positioned vessel |
KR101478602B1 (en) | 2012-04-17 | 2015-01-02 | 지멘스 악티엔게젤샤프트 | Fault protection system for a power system of dynamically positioned vessel |
EP2654156A1 (en) * | 2012-04-17 | 2013-10-23 | Siemens Aktiengesellschaft | Fault protection system for a power system of dynamically positioned vessel |
US9543748B2 (en) | 2012-04-17 | 2017-01-10 | Siemens Aktiengesellschaft | Fault protection system for a power system of dynamically positioned vessel |
CN103532111A (en) * | 2013-09-18 | 2014-01-22 | 湖州泰仑电力自动化工程有限公司 | Incoming line and outgoing line protector of switching station |
CN103532116A (en) * | 2013-10-10 | 2014-01-22 | 国家电网公司 | Automatic three-layer protection system of distribution network |
US10450044B2 (en) | 2016-03-31 | 2019-10-22 | Ge Energy Power Conversion Technology Ltd. | Electrical power distribution system, method for powering a corresponding task, propulsion system and method for a ship |
EP3225536B1 (en) | 2016-03-31 | 2020-11-25 | GE Energy Power Conversion Technology Ltd | Electrical power distribution system, method for supplying a corresponding load, propulsion system and method for a ship |
Also Published As
Publication number | Publication date |
---|---|
DE19716826A1 (en) | 1998-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0904549B1 (en) | Method for testing differential protection relays or differential protection relay systems | |
WO1998048497A1 (en) | Power supply network, especially on ships | |
DE69823936T2 (en) | GROUNDING ERROR PROTECTION FOR MULTI-SOURCE SYSTEM | |
EP2719043B1 (en) | Fault identification and location in a power supply line which is fed from one side | |
DE102017215820B4 (en) | circuit breakers and procedures | |
DE102012207624A1 (en) | Module unit, network and method for monitoring a power supply network | |
DE112018005677T5 (en) | METHOD AND DEVICE FOR DETECTING ERRORS AND PROTECTING ELECTRICAL NETWORKS | |
DE112019003016T5 (en) | Remote differential protection device | |
DE102011075353B4 (en) | Fault monitoring system for a distribution network station of a power supply network | |
DE2732380A1 (en) | VOLTAGE MEASURING DEVICE | |
DE102013225732A1 (en) | High-voltage fuse for vehicles | |
DE69122078T2 (en) | Service introduction system | |
DE2725485A1 (en) | EARTH Fault Protection | |
WO2014067831A1 (en) | Method and arrangement for locating short-circuits in energy supply systems | |
DE69509492T2 (en) | Monitoring and control device for an electrical system | |
EP0175120B2 (en) | Protecting device for an electric network | |
DE4026799A1 (en) | Selective detection of faults in conductors in high voltage network - by comparing conductor voltages and currents with earth current and star earth voltage | |
WO2010048973A1 (en) | Differential protection method and differential protection device | |
DE604217C (en) | Protection circuit | |
EP2870487B1 (en) | Detection of a fault direction in medium voltage power supply networks | |
DE102006002245B4 (en) | Method for monitoring a disconnectable cable in an electrical network, monitoring device and monitoring system suitable therefor | |
EP0508177B1 (en) | Digital protection relay | |
EP0099461B1 (en) | Selective protection earth fault circuit for a high-voltage cable line | |
WO2023217505A1 (en) | Device and method for adapting a phase angle of a voltage in a transmission line | |
DE166224C (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA NO |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |