+

WO1998047999A1 - Equipo, juego y metodo para el diagnostico microbiologico - Google Patents

Equipo, juego y metodo para el diagnostico microbiologico Download PDF

Info

Publication number
WO1998047999A1
WO1998047999A1 PCT/CU1998/000004 CU9800004W WO9847999A1 WO 1998047999 A1 WO1998047999 A1 WO 1998047999A1 CU 9800004 W CU9800004 W CU 9800004W WO 9847999 A1 WO9847999 A1 WO 9847999A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
samples
culture medium
coli
identification
Prior art date
Application number
PCT/CU1998/000004
Other languages
English (en)
French (fr)
Inventor
Orestes Rolando Contreras Alarcon
Gloria Roura Carmona
Francisco Novo Mesegue
Silvio Hernandez Ramirez
Nardo Ramirez Frometa
Iván Manuel RAMIREZ MOLINA
Fernando Travieso Ruiz
Angela Mariana Zayas Tamayo
Cheyla Romay Penabad
Original Assignee
Centro Nacional De Investigaciones Cientificas (Cnic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CU1997045A external-priority patent/CU22549A1/es
Priority claimed from CU1997048A external-priority patent/CU22708A1/es
Application filed by Centro Nacional De Investigaciones Cientificas (Cnic) filed Critical Centro Nacional De Investigaciones Cientificas (Cnic)
Priority to EP98916796A priority Critical patent/EP0976821B1/en
Priority to CA002286845A priority patent/CA2286845C/en
Priority to DE69840571T priority patent/DE69840571D1/de
Priority to BR9809579-0A priority patent/BR9809579A/pt
Publication of WO1998047999A1 publication Critical patent/WO1998047999A1/es
Priority to US09/426,074 priority patent/US6537772B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/10Enterobacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2334/00O-linked chromogens for determinations of hydrolase enzymes, e.g. glycosidases, phosphatases, esterases
    • C12Q2334/20Coumarin derivatives
    • C12Q2334/224-Methylumbelliferyl, i.e. beta-methylumbelliferone, 4MU
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/24Assays involving biological materials from specific organisms or of a specific nature from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • G01N2333/245Escherichia (G)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/848Escherichia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/848Escherichia
    • Y10S435/849Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/968High energy substrates, e.g. fluorescent, chemiluminescent, radioactive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/975Kit

Definitions

  • the present invention is related to the branch of microbiology, and in particular with equipment, a kit and a method useful in rapid microbiological diagnosis, with application in the human and veterinary clinic.
  • Previous Technique Microbiological diagnosis based on both physical, chemical, and biological methods is an aspect that has been widely addressed in the prior art.
  • US 8,000,755 refers to an electrochemical method for the detection of bacteria by measuring the decrease in the polarographic flow of oxygen that circulates through an electroanalytical cell containing two different electrodes immersed in the inoculated culture medium.
  • This system uses large volumes of culture medium (15-18 ml) for exploration, which makes it difficult to handle samples at the routine level.
  • Another method used to detect microbial growth is the principle of the voltaic cell, which is based on the use of an appropriate container with electrodes of noble metals and required volumes, which generate a potential, detecting the fall of said potential in the moment of full growth of the bacteria. Apparatus based on this principle has been described in the specialized literature.
  • the equipment described in patent GB 83-17685 is of this type and uses a detection method by varying the potential between electrodes that are in contact with the fluid sample, this implies the measurement of potential lows with high impedance implementations of input that causes the measurable signal to be affected as a result of undesirable and unavoidable noises in most cases, in addition to using container containers with noble metals or non-recoverable gold-plated metals.
  • An effective and simple method to detect microbial growth is based on the measurement of the metric behavioral changes produced by microbial growth in an appropriate culture medium. According to the relevant literature, ionic movements in a solution contained in a conductivity measurement cell produce a signal indicating the conductimetric value of said solution.
  • US 4,021,120 and US 3,714,445 describe devices based on the principle of turbidimetry to measure the growth of microorganisms in liquid media.
  • US 4,021,120 describes a device for monitoring the growth of microorganisms in a medium. liquid containing gas. Samples are taken from the container in which the medium is taken with the help of a pump to take them to a degassing chamber with the aim of eliminating gas bubbles, then the sample is introduced into a measuring chamber where a beam of light is passed through it, which will affect a photoelectric cell, producing a current that is increased by an amplifier, which is an indicator of the growth of microorganisms.
  • US Patent 3,832,532 employs a conventional optical device, which includes a spectrophotometric quality cuvette, which for the purpose of carrying out measurements using antibiotic discs includes in its design a bi-lobed miterconnected reservoir, so that when At the end of the incubation, the liquid is passed to the other chamber for the purpose of carrying out the measurement, thus trying to avoid the presence of the antibiotic disc to perform said reading operation.
  • the solution proposed in this invention has great operational and technical complexity, with the consequent economic implications. Current trends in microbiology are directed towards the search for procedures that allow rapid identification of microorganisms (between 2-4 hours) in biological samples, and for this purpose different strategies have been used, including the use of enzymatic markers. specific.
  • coli according to the state of the art, is mainly carried out through two specific enzymatic markers for this bacterium, which are ⁇ -D-glucoronidase and T ⁇ ptofanase, through the formation of Indol (Kovacks, N. Eme veremfachte Methode für der Nach eis der Indol Struktur für Bakte ⁇ en. Z. Immunitatsforsch., 55; 311-315, 1928).
  • Patent application No. WO 80/02433 refers to a procedure for the identification of bacteria by combining different tests for the determination of 26 bacterial enzymes, among which are ⁇ -D-glucoronidase and Tryptophanase for identification of E. coli.
  • bacteria must be isolated from clinical specimens before identification.
  • the objective of the present invention is to provide a system that allows the detection of microbial growth. early in samples from animals, plants and their secretions, in which it is required to detect growth of microorganisms through the use of micro samples.
  • This system is based on the detection of turbidimetric changes in a culture medium, produced by the growth of the microorganism, a system that includes a device, a diagnostic kit and a method designed for this purpose.
  • a novelty of the present technical solution is that it allows to detect infested samples obtained directly from the specimens that produce it.
  • the present invention allows to obtain the scheme of antibiotic sensitivity of microorganisms either from previously isolated colonies or positive samples of urine cultures and blood cultures, in the latter case saving the time required for the processes of Isolation and purification.
  • the present invention allows, from direct urine samples, to discriminate positive samples from negative ones, whether or not they are contaminated with another germ, and may also include simultaneous identification of those particularly infested samples. with E. coli bacteria.
  • results based on more than 1000 samples examined have shown 95% correspondence with the total viable cell count in CLED medium, a method conventionally used for the detection of urinary system infection.
  • the correspondence with the Bauer-Kirby method has been established at 75.8% as a predictive value for sensitive antibiotics and 85.9% for resistant antibiotics, obtaining a total sensitivity of 80.6%.
  • the system guarantees 90% effectiveness for the detection of sensitive antibiotics.
  • the proposed system is characterized by its rapidity, since it allows the determination of urinary infection in 4 hours, and from positive samples it offers reliable results of the antibiogram in only 4 hours. It is also a highly accurate system that allows corroborating the results obtained as many times as estimated.
  • the system of the present invention consists of a kit, a kit and a method designed for rapid microbiological diagnosis, with applications in the human and veterinary clinic.
  • the equipment has been designed to work with a large number of samples and employs an operational program, and a very functional man-machine inferred, which offers an audiovisual alarm to order the reading and prevent operational errors.
  • Being an autonomous computer based on a microprocessor you can store the results of 10 antibiograms with 14 antibiotics and offer the on-screen response of them in 7 segments and in a printer.
  • the measuring module of this equipment can be inserted in the free slot of the computer.
  • the equipment of the present invention is made up of the following devices: • A control module or microprocessor incorporated in a personal computer.
  • a UV lamp optionally.
  • the personal computer must have the following properties: - IBM Compatible, 386/486, 25-66 Mhz. - RAM 1Mbyte minimum.
  • the peristaltic pump has been designed to circulate the samples through the sensor, which has a manual adjustable cassette that guarantees a continuous and adjustable flow, making it possible to use independently or incorporated into the system. It uses a flow of 2.0 - 2.6 ml / minute and is optionally fed with 220 vac or 12 vdc, as well as its power consumption is 0.5 watts.
  • the sensor consists of a continuous microflow reader, which is responsible for detecting turbidity changes due to microbial growth in previously prepared samples from different sources in terms of optical transmittance, in very small sample volumes (up to 200 microliters) and moving, that is, in a moving liquid, where the samples may or may not be interfered with.
  • This sensor is also characterized in that its calibration is performed automatically and at a continuous flow of 2 - 2.6 mi / minute. It employs a conductimetric measurement range of 200 - 300 micro-Siemens and an optical measurement range of 0.00 - 2.00 McFarland.
  • the calibrator used in the present invention is based on the nephelometry technique and is adjusted by the McFarland scale. It is composed of a direct light source and a photosensor and its adjustment is made by a program. Its function is the measurement of turbidity in liquid Mueller-Hinton medium up to 0.2 McFarland. Its feeding is 5 vdc and its consumption 50 ma.
  • the UV lamp that is optionally coupled to the equipment of the present invention allows the identification of the E. coli bacteria in the analyzed samples.
  • the program designed to operate the system object of the present invention offers a friendly and easy-to-use man-machine mterfase, which allows the selection of options by bar menu or function keys combined with the use of icons, as well as storage of data automatically. It also uses a structured interrogation language (SQL) for the extraction of information and in the external utilities is the 'BACKUP' that makes it possible to make backup copies. It is equipped with an alarm system in case of violation of the input condition, an audiovisual alarm for control of the reading time of each sample, as well as other utilities for technical maintenance.
  • SQL structured interrogation language
  • FIG. 1 shows the integral scheme of the equipment of the present invention, in a general view.
  • this equipment is based on a microfluidic turbidity meter reader (1), which is powered by a peristaltic pump (2) and conforms to a high sensitivity electronic equipment (3) that detects turbidimetric changes of (1) by means of a measurement method that allows, using a group of algorithms, to detect small turbidimetric variations and to proceed appropriately with the data obtained.
  • This is formed by a turbidimetric measurement circuit (4) connected through an interface card to a central processing unit (5).
  • This unit receives all keyboard commands (6) and sends the results to a screen (7). This can detect small variations in turbidity that occur in the culture medium inoculated with the sample to be analyzed.
  • FIG. 2 A detailed diagram of the internal structure of the turbidimetric reader (1) is shown in Figure 2, where the detection of turbidimetric variations occurs.
  • the measurement procedure is very simple.
  • the nozzle (8) of the reader is introduced into the sample to be measured, which circulates through it with the aid of the peristaltic pump (2) of Figure 1, operated all the time required for the measurements.
  • the presence of the sample is detected when a voltage value is obtained that exceeds a predetermined threshold value and after a certain time the measurement is carried out and so on.
  • the measuring chamber is composed of a plastic hose (9) inserted in a glass capillary (10).
  • the passage of light (11) is the diameter of the hole that must pass through the light coming from the photo transmitter (12) to reach the measuring chamber (9 and 10).
  • the intensity of the light radiation transmitted through the measuring chamber (9 and 10) will depend on the degree of turbidity in the sample and is measured by a photodetector (13).
  • FIG. 3 shows the operation of the turbidimetric reader through a flow chart.
  • the presence of the turbidimetric reader is verified by means of a detection subroutine and, if present, the existence of the peristaltic pump necessary for the operation of the turbidimetric reader and for the execution of the wash subroutine is checked, in addition to establishing the workflow required.
  • the aforementioned washing subroutine is of significant importance since the parameters of the reader depend largely on the cleanliness of the measuring chamber, an aspect that influences the period of its useful life.
  • the turbidimetric reader will be enabled. Any subroutine that is violated will disable the operation of said reader.
  • the fundamental application of this device is oriented towards the determination of Antibiogram of the sample, (susceptibility of microorganisms to antibiotics), which is achieved in a period of time between 2 and 6 hours, using a diagnostic kit designed for these purposes.
  • the other device that is incorporated into the equipment of the present invention, the static turbidimetric minilector allows to detect turbidity changes due to the microbial growth of the sample originating in the glass bottle containing culture medium, and which forms one of the elements of the diagnostic game of this invention. Said bottle adapts exactly the reading well of said equipment.
  • the device is adjusted to be able to use the reference bottles for direct reading of the sample, that is, no special cuvettes are required for said reading, which favors its use in routine diagnostic means.
  • the mentioned device is used for the calibration of the inoculum that is used in the diagnostic kit for the detection of the antibiogram, reporting turbidity in McFarland units, in correspondence with latex standards that comply with the NCCLS standards, in the established measurement range ( 0 - 4.0 McFarland units).
  • the diagnostic kit that forms the system of this invention is an 8 ml volume nephelometric bottle containing 4.5 ml of culture medium, and which is nothing more than an autoclaveable borosilicate glass bottle, and with a plastic lid .
  • Figure 4 shows the components of the diagnostic kit of the present invention, constituted by the flask containing culture medium and the polymer, the strip holder and the strip itself, used in determining the antibiogram of the sample to be analyzed.
  • the culture medium used to follow microbial growth is the modified Mueller-Hinton Broth OXOID medium, pH 7.4 ⁇ 0.2. and sterile, which additionally includes a polymer.
  • the diagnostic kit for the detection of the antibiogram of the sample to be analyzed is characterized by the use of antibiotic discs that are commercially available and that can be used in accordance with schemes that can be varied according to any need. They are organized in non-transparent strips that include 2 free positions for the negative and positive controls, which are covered with culture medium only and inoculated medium respectively, and which are used for the calculation of the growth rate. There are also another 10 to 22 positions where antibiotic discs can be deposited. The program designed for these purposes allows the introduction of these changes in the acquisition and editing processes, all of which gives the game high flexibility, allowing adaptations to the most varied needs.
  • a polymer which can be any linear polysaccharide of structural formula CH3-CH3-Ch3-N or according to the present invention is added to the glass bottle referred to above which forms said diagnostic set and which contains the culture medium for dilution. similar, of approximate molecular weight between 50,000 and 150,000.
  • the incorporation of said polymer into the culture medium at a concentration in the range between 0.05 and 1%, allows to eliminate the inhibitory effect of the catabolic products that accompany the inoculum of the samples to be analyzed, obtaining higher growth rates of the bacteria involved in infections, in a shorter period of time compared to the time required when the same culture medium is used without said polymer.
  • This new element in the diagnostic kit allows the false-sensitive results obtained in the antibiotic susceptibility studies of the analyzed samples to be reduced, in turn improving correspondence with the reference method of Kirby-Bauer, 1966 (Bauer, AW; Kirby , WMM; Sherris, JC and Turck, M. An. J. Clin. Pathol. 1966, 45, pages 493-496).
  • this polymer is only metabolizable by a small number of microorganisms, which are not commonly found in the analyzes where the present system is applied, it is inferred that the bacterial growth promoting effect observed in its presence is due to an inhibition of the agents suppressing said growth present in the culture medium, whereby said polymer must act by absorbing and / or adsorbing the catabolites that are involuntarily incorporated together with the inoculum that is analyzed. Furthermore, it has been observed that once these catabolites are neutralized by said polymer during the process of measuring the growth of the microorganism, the bactericidal activity of the tested antibiotics becomes more specific.
  • the proposed method allows to diagnose not only previously isolated and purified bacterial strains, but also direct samples of positive blood cultures, urine, etc.
  • the aforementioned sample it is first placed in the glass bottle containing the polymer and the culture medium, to which its turbidity (tO) and this value are immediately determined, as well as the reading time according to the number assigned to each sample, it is set by the program used.
  • the aforementioned bottle is incubated for 2 to 5 hours at a temperature between 35 and 37 ° C, and at the end of the incubation the system emits, according to the structured routine, an audible alarm and an on-screen sign indicating the sample that It must be read again.
  • Those samples that register increments greater than 0.08 McFarland units are considered as positive samples.
  • the system of this invention allows positive samples, once detected, to determine their antibiogram very quickly. For this, an aliquot of said sample is taken and transferred to a new dilution bottle, containing fresh medium, which is then distributed in the microplate where the two controls are found (positive and negative) and 10 to 22 antibiotic discs. After 4 hours of incubation between 35 and 37 ° C, the plate is read, positioning the microflow sensor in each well, following the instructions issued by the program that selects the time of each serial measurement, eliminating interference from reading preceding. From the density values obtained, the growth rate (in the controls) is calculated, and the% inhibition generated for the sample by each antibiotic and according to the level obtained, the criterion of sensitive, resistant or intermediate is awarded, between inhibition values in the range 60 and 100%.
  • the system proposed here allows us to deal with the interferences generated by the contamination of the samples, as well as by the infection caused by more than one germ.
  • the contamination interference has been resolved by adjusting the signal in magnitude and time for the detection of internationally accepted infestant levels (> 100,000 cfu / ml), leading to the exclusion of contaminated samples not infested because they generally have bacterial levels below 1,000 cfu / ml, which allows the detection of contaminated samples only when they are also infested .
  • infestant levels > 100,000 cfu / ml
  • the identification of the germ must be linked to the report of the detection of the urinary infection and the sensitivity scheme of the infestant germ in order to have a complete report.
  • the indicated bottle containing the culture medium liquid and also the polymer used for the detection of urinary tract infection can optionally be added two substrates that allow to include a scheme for the rapid identification of E. coli bacteria in urine, as mentioned above, in the bottle itself detection.
  • a culture medium is formulated which, when used in the proposed system, allows the presence of E. coli to be detected as a causative agent of infection in tested urine samples within a period between about 9 hours.
  • the medium proposed in the present invention contains per liter, in addition to the conventional nutritional bases contained in the culture medium Mueller Hinton, OXOID (Meat Infusion, 300 mg; Casein Hydrolyzate, 17 g and Starch, 1.5 g), substrates MU- ⁇ -D-glucoronide (0.1), L-Tryptophan (1 g), as well as the polymer used as a depressant agent (1 g). These components are solubilized in 50 mM Potassium Phosphate and the pH of said medium is adjusted between 7-7.5. It is then dispensed in vials with 2.5 ml and sterilized by autoclave 20 minutes at 121 (C.
  • the previously used substrates are useful for the detection of the enzymatic activities ⁇ -D-glucoronidase and Tryptophanase produced by E. coli, by means of the formation of Indol, so that to said medium after bacterial growth, an auxiliary reagent is added for development (modified Kovacks reagent) composed of para-dimethylaminobenzaldehyde (2 g), Ethanol and concentrated hydrochloric acid (20 ml).
  • the product of the interaction of enzymes with their substrates is detected in a first step, exposing the vials where an increase in turbidity (positive) is detected to a source of UV light (attachment that can be included in the equipment of the invention optionally for this purpose), for the detection of fluorescence generated by the release of 4-methylumbelliferone.
  • a source of UV light attachment that can be included in the equipment of the invention optionally for this purpose
  • fluorescence generated by the release of 4-methylumbelliferone In a second phase, it checks in the vial itself the formation of Indol by developing with said modified Kovacks reagent.
  • Urine culture is a known test used to detect if a urine sample is infected or not. The procedure begins with a first reading at an initial time (TOh) and continues with a second reading usually four hours after the sample has been incubated (TFh).
  • the determination is carried out photometrically using the inoculum calibrator.
  • the following steps illustrate the procedure to be followed: 1. A bottle with 4.5 ml of sterile culture medium is taken, in which 500 ⁇ l of the urine sample is inoculated. 2. Initial McFarland turbidity is measured using the inoculum calibrator (TOh). 3. The sample is incubated at 37 ° C for 4 hours, and the device warns, by an audible alarm when this time has elapsed for each sample.
  • the cases can be edited if desired and stored in the system database. If the automatic printing mode is activated and the printer is ready to print, the cases will be automatically printed.
  • Samples that have been diagnosed positive can be processed for antibiogram determination (directly).
  • Example 3 Preparation for the antibiogram.
  • Example 4 Preparation of inoculum. • From a pure strain.
  • the strip is sealed again and incubated at 37 ° C for 4 hours. 6. After the incubation time has elapsed, the incubator strip is removed and 10 minutes are expected until room temperature is reached and reading begins. It is advisable to shake the strip manually or mechanically before reading to homogenize the contents of the wells.
  • the inoculum is prepared from a positive urine culture, to perform the antibiogram, it is necessary to pre-dilute the sample to reach 0.5 of the McFarland scale and once the desired turbidity is reached, the process continues from point 2 described previously to obtain the inoculum from a pure strain.
  • the urine culture is detected as positive in 4 hours and has values below 0.5 of the McFarland scale, it must be incubated until it reaches that value or it can be striated in a medium of your choice to work the next day, and This may be due to:
  • the invention provides a package of fully interactive programs that allow testing of antibiograms, urine cultures, storing and processing the results in an environment that is easy to operate and does not require previous experience in computer management. Each test is treated in independent menus that group the fundamental operations performed in each of them.
  • the invention provides a package of fully interactive programs that allow testing of antibiograms, urine cultures, storing and processing the results in an environment that is easy to operate and does not require previous experience in computer management. Each test is treated in independent menus that group the fundamental operations performed in each of them. To access any of the system options:
  • the program After completing the system startup, the program will display the MAIN SCREEN menu that is the starting point for all operations that you wish to perform with it.
  • the main screen consists of three zones or panels:
  • a central panel that displays the icons that activate the main program options.
  • a top panel which provides information on the system version, the current date and time, the menu in which it is working and an indication of the level of action of the screen being displayed.
  • the "Exit” option is offered by which the program can be abandoned at any point as long as it is not in the middle of a measurement or some critical operation. It is advisable to always use this option and NEVER TURN OFF THE COMPUTER without first closing the program. Ignoring this recommendation can lead to disorders in the configuration of the programs.
  • SUBSTITUTE SHEET (RULE 26)
  • the option "Ref. P.” which appears at the same end of the screen, it offers the possibility of activating the screen cooler at will when it is not working, in order to protect it from the marks that can cause a still image for a very long time.
  • This option is also automatically activated when the idle system is detected for a certain time. To return from this option, just move the mouse or simply press any key.
  • the lower panel informs about the status of urine culture tests. In case there are urocultures pending to be read, how many will be informed, as well as the date and time of the first in the list ordered by next reading. It is also indicated if the sound signal that the system emits indicating that the time has come to read a specific urine culture, is active or not. Main menu .
  • the main menu consists of a set of icons that contain drawings related to the operation that is performed when they are activated.
  • a black triangle pointing to the right in the "URO and ATB" options is an indicator that warns that activating one of them will show a sub enu with additional options.
  • Nine icons define the options available within the main menu, from where all system actions are controlled. These are:
  • URO Activates the urine culture icon menu.
  • ATB Activates the antibiogram icon menu.
  • McFarland Allows measuring the contents of the bottle in the calibration unit (McFarland scale).
  • Database Allows access to the database of antibiograms or urine cultures.
  • Options To change the system settings.
  • Information Displays administrative information of the system.
  • DIRAMIC Provides the address of the producer of the system.
  • Help Displays information about the current option.
  • Read uros Procedure for reading urine cultures. When activating the "Read Uros" option, a list of the cases of urine cultures that are pending to be read, showing the consecutive number of the case, the time between readings, and the date and time of the next reading are displayed. If the list is empty, there are no pending cases to be read.
  • SUBSTITUTE SHEET (RULE 26) • Re-read: Read the Oh time of a sample again. This option is useful when an error has been made in the reading of one of the cases and you want to rectify. Activating this option will display a screen with the same possibilities as the "New uros" option plus the option to continue to the next case (Next) without modifying the one you are processing.
  • a selection list is opened that offers the possibility of an intelligent search within it by pressing the first letters of the word that constitutes the desired objective. You can add or delete specific names within the preset listings using the functions provided in this window. This option is used to maintain a standardized list of the data that is inserted into the database.
  • Sort Allows you to sort the list by consecutive number of samples or by next reading. This option is useful when you want to sort the cases by time when they should
  • SUBSTITUTE SHEET (RULE 26) be read that will not always coincide with the order of the consecutive number.
  • Print Print the case to the printer or to an ASCII file. When this command is activated, a print dialog will be presented where you can configure the following parameters for the output of the information:
  • Printer Select a compatible type of printer that is attached to your computer.
  • This operation allows to monitor the microbial growth, expressed in McFarland units according to NCCLS standard, of a sample referred to a previously established blank (non-inoculated sterile culture medium).
  • the samples are placed in the measuring well of the previously compensated calibrator and the information provided on the screen is read directly. For this purpose, an approximate graphic scale and the digital value of the reading are shown.
  • the second decimal number of the digital values that are presented constitute, fundamentally, a measure of the trend of the analyzed sample.
  • it must be ensured that the outer surface of the jars that are placed in the inoculum well is clean and free of scratches.
  • the bottles should be conveniently marked to repeat their position in each measurement, taking care that the mark made is outside the measuring well. Following this practice will achieve adequate accuracy.
  • Compensate Set the target or reference for the determination of turbidity or McFarland value of the samples. This option is particularly useful if a different batch of culture medium will be used after the calibrator was compensated. The process is achieved by positioning a flask containing non-inoculated culture medium in the measuring well of the McFarland calibrator.
  • SUBSTITUTE SHEET (RULE 26) • All / Search: It allows to visualize all the cases of the database or to execute a query or search: Within this procedure, the following options will be available: • Search: It allows to execute the search or query according to the formulated expression .
  • SUBSTITUTE SHEET (RULE 26) It shows information to the user about the system and each of its operations and options.
  • ATB Antibiogram Menu
  • Read ATB By selecting the ATB icon from the main menu, the control is transferred to the operations to be carried out during this test. There are twelve and they are described below: Read ATB:
  • the built-in control system checks systematically and automatically if the sensor has been washed and compensated and if the peristaltic pump is working correctly. This procedure is transparent to the user as long as no difficulties are detected. Otherwise, the user will be informed of the problems detected during the self-check.
  • the system will automatically compensate the sensor operating point for which, in a fully interactive way, it will guide the user during this process. Once the adjustment is completed, the system will report the "Compensation Constant", which is a numerical value that normally below 2.00.
  • the template for editing patient data consists of the following fields:
  • the built-in control system provides an antibiogram validation classification as a measure of reliability of the results obtained.
  • This classification can be:
  • Unreliable Antibiogram Minimum Admissible Growth has not been achieved.
  • - Invalid Antibiogram The mathematical analysis of the Inhibition Factor yields a set of abnormal data. URO-ATB:
  • McFarland Activates the McFarland calibrator to monitor microbial growth.
  • SUBSTITUTE SHEET (RULE 26) - Establish the time that will mediate between the two readings of a urine culture (normally the program will establish an interval of 4:00 hours).
  • An tibi otics Allows you to systematically use a selected antibiotic set, as well as edit new games, modify and / or delete existing ones.
  • the user-defined antibiotic scheme has to play exactly with the antibiotic discs that exist on the plate or strip. Selecting the "Antibiotics" option will provide the following possibilities:
  • a window will be displayed in order to fill in the joint name and select, from the list provided, each antibiotic that will be used.
  • View View or print a specific set of antibiotics.
  • Eliminate Eliminates a complete set of antibiotics.
  • Update Predetermines the set of antibiotics that will be used in the next antibiograms. To change the current placement, the desired set must be selected and the "Update" option must be activated after the selection is made.
  • Select all Select all existing antibiotic sets.
  • This procedure is used to test the operation of the sensor. Statistical parameters such as average value of the measurements, standard deviation and coefficient of variance of a set of 16 identical samples are calculated. The results are stored in a database from where they can be retrieved for viewing or printing, at the user's selection.
  • This cleaning consists of 3 basic stages:
  • Calibration is defined as the procedure by which the response levels of each sensor are determined against an established bacterial growth and the update of this parameter as the time of use of the same elapses. Calibration should be carried out whenever a new sensor is installed. Additionally, the system is programmed to recommend, with some frequency, the convenience of performing this operation for updating purposes. This process is not a routine.
  • SUBSTITUTE SHEET (RULE 26) daily so its execution is recommended whenever the automatic suggestion of the system appears in order to guarantee the level of sensitivity required for proper operation.
  • C- sterile culture medium
  • C + inoculated culture medium
  • McFarland a second vial containing sterilized culture medium in order to obtain a McFarland 0 (C-) index.
  • the system will calculate the average value of the three measurements and the final result will be stored after selecting the "Accept" option.
  • Check flow This is an auxiliary resource to facilitate the checking of the flow and continuity of liquid supplied by the peristaltic pump. Discontinuity of the sample flow may lead to measurement errors. The flow is measured using a 10 ml graduated cylinder and a container with distilled water.
  • Example 6 Results of clinical studies conducted in Cuba: A total of 567 urine samples were analyzed for the presence of significant numbers of uropathogens using the system of the present invention, and comparing the results with the CLED reference method (semi-method quantitative plate culture of Clarigde). Of the total analyzed, 126 samples were positive for CLED, while 108 were using the present system, although only in 4 hours, that is, while the CLED method gives the results between 24 and 48 hours after inoculation of the medium of culture, the present system was 86.1% effective in detecting positive samples only 4 hours after the inoculation of the sample. Of the 441 negative samples found by CLED, the present system was able to detect 440 negatives, also over a period of 4 hours, for an effectiveness rate of 99.8%. The general correspondence of the present system with respect to the traditional CLED method was 89.1%.
  • Example 7 Results of clinical studies conducted in Canada: In another study conducted in Canada, 1,016 urine samples were investigated prospectively. The results obtained with the present system were compared with the CLED method for bacteriu ⁇ a detection. For routine culture, 0.001 ml of urine were seeded on CLED agar plates, using a calibrated pipette. This method detects> 1000 colony forming units / ml (cfu / ml).
  • the total sensitivity of the system of the present invention was 86.4%. Its specificity, that is, the ability to detect true negative samples as defined by the routine culture was 98.5%.
  • FIG. 1 shows the integral scheme of the equipment of the present invention, in a general view.
  • this equipment is based on a turbidimetric microflow reader (1), which is powered by a peristaltic pump (2) and is fitted to a high sensitivity electronic equipment (3) that detects turbidimetic changes of said reader ( 1) by means of a measurement method that allows, using a group of algorithms, to detect small turbometric variations and to proceed appropriately with the data obtained.
  • This is formed by a turbidimetric measuring circuit (4) connected through an inferred card to a central processing unit (5).
  • This unit receives all keyboard commands (6) and sends the results to a screen (7). This can detect small
  • SUBSTITUTE SHEET (RULE 26) turbidity variations that occur in the culture medium inoculated with the sample to be analyzed.
  • FIG 2 represents a detailed diagram of the internal structure of the turbidimetric reader (1) of Figure 1.
  • the nozzle of the reader (8) is introduced into the sample to be analyzed, which then circulates through it with the help of the pump peristaltic (2) of Figure 1.
  • the measuring chamber is composed of a plastic hose (9) inserted m a glass capillary (10).
  • the passage of light (11) the diameter of the hole through which the light coming from the photo transmitter (12) must pass through to reach the measuring chamber (9 and 10).
  • the intensity of the light radiation, transmitted through the measuring chamber (9 and 10) will depend on the degree of turbidity of the sample and will be measured by the photodetector (13).
  • the radiation produced by the photo transmitter (12) is stabilized by a conventional automatic electronic control loop.
  • Figure 3 shows the turbidimetric reader working, using a flow chart.
  • the presence of the turbidimetric reader is verified by means of the detection subrutma and if it is present, then the existence of the peristaltic pump is checked, which is necessary for the operation of the turbidimetric reader and for the execution of the subrutma cleaning, in addition to stabilizing the workflow.
  • the turbidimetric reader will be ready to work. Any subrutma that is violated, will disable the operation of the turbidimét ⁇ co reader.
  • Figure 4 shows the components of the diagnostic kit of the present invention, consisting of a vial containing culture medium and the polymer, the strip holder and the strip itself, used in determining the antibiogram of the sample to be analyzed.
  • Figure 5 shows two screens related to the program that follows the main procedures for the execution of the method object of the invention.
  • ATB Activates the antibiogram icon menu.
  • McFarland Allows measuring the contents of the bottle in the calibration unit (McFarland scale).
  • Database Allows access to the database of antibiograms or urine cultures.
  • DIRAMIC Provides the address of the producer of the system.
  • Uroculture Menu Screen Represents a specific menu for the particular treatment of urine cultures which contains the operations to be carried out during these tests, as a representation of the main options offered by the Main Menu.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

La presente invención está relacionada con la microbiología, específicamente con un equipo, un juego y un método útiles para el diagnóstico rápido microbiológico, con aplicación en la clínica humana y veterinaria. La invención permite detectar cambios turbidimétricos debido al crecimiento microbiano, para lo cual emplea un equipo que incluye dos dispositivos fundamentales; un minilector turbidimétrico estático y un sensor a microflujo accionado por una bomba peristáltica y acoplado a una microcomputadora con un paquete de programas para la adquisición, procesamiento y creación de bases de datos para generar los reportes necesarios. El juego de diagnóstico consta de un frasco con medio de cultivo, que contiene un polímero con actividad de-represora y dos substratos que se adicionan opcionalmente para la identificación particular de E. coli, así como un número determinado de discos de antibióticos, organizados en una tira, para la determinación del antibiograma a partir de colonias aisladas o de muestras positivas que se obtienen directamente de la fuentes que las contienen, lo cual permite detectar infecciones del tracto urinario a partir de muestras directas de orina, incluyendo la identificación simultánea de E. Coli.

Description

EQUIPO, JUEGO Y MÉTODO PARA. EL DIAGNOSTICO MICROBIOLOGICO.
Sector Técnico.
La presente invención está relacionada con la rama de la microbiología, y en particular con un equipo, un juego y un método útiles en el diagnóstico rápido microbiológico, con aplicación en la clínica humana y veterinaria. Técnica Anterior. El diagnóstico microbiológico basado tanto en métodos físicos, químicos, como biológicos, es un aspecto que ha sido ampliamente abordado en el arte anterior.
La patente US 8,000,755 se refiere a un método electroquímico para la detección de bacterias mediante la medición del decremento de la corriente polarográfica de oxígeno que circula a través de una celda electroanalítica que contiene dos electrodos diferentes inmersos en el medio de cultivo inoculado. Este sistema utiliza para su exploración grandes volúmenes de medio de cultivo (15-18 mi), lo que dificulta la manipulación de las muestras a nivel de rutina. Otro método utilizado para detectar el crecimiento microbiano es el principio de la celda voltaica, el cual se basa en el empleo de un recipiente apropiado con electrodos de metales nobles y volúmenes requeridos, los cuales generan un potencial, detectándose la caída de dicho potencial en el momento de crecimiento pleno de la bacteria. En la literatura especializada se han descrito aparatos basados en este principio. El equipo descrito en la patente GB 83-17685 es de este tipo y utiliza un método de detección mediante la variación de potencial entre electrodos que están en contacto con la muestra fluida, esto lleva implícito la medición de bajos potenciales con ímplementaciones de alta impedancia de entrada que provoca la afectación de la señal medible producto de ruidos indeseables e inevitables en la mayoría de los casos, ademas αe utilizar recipientes contenedores con metales nobles o enchapados en oro no recuperables. Un método eficaz y sencillo para detectar el crecimiento microbiano se basa en la medición de los cambios conduct metricos producidos por el crecimiento microbiano en un medio de cultivo apropiado. De acuerdo a la literatura pertinente, los movimientos iónicos en una solución contenida en una celda de medición de conductividad producen una señal indicadora del valor conductimetrico de dicha solución. Se conoce que las celdas de conductividad no tienen una lmealidad total en su plenitud de escala, asi como que la medición depende grandemente de la temperatura. En la patente US 4,482,967 se describe un detector y método para mediciones de conductividad, que corrige estos defectos. Este es un equipo de alta precisión y complejo, de requerimientos especiales para medir valores absolutos de conductividad en un cromatografo de gases, con celdas convencionales y volúmenes grandes.
Se conoce que puede detectarse el crecimiento microbiano en muestras fluidas por diferentes vías, por ejemplo, utilizando método turbidimétrico donde el crecimiento de bacterias produce una turbidez que es leída por el sistema y comparada contra patrones conocidos. Este sistema requiere de sensores ópticos convencionales, así como, de recipientes contenedores de la muestra de calidad óptica, de diseño complejo para poder trabajar con muestras que incluyan sólidos visibles a simple vista (Ej . discos de antibióticos). Una gran desventaja de este sistema es que no puede trabajar con muestras interferidas, es decir, que requiere de muestras homogéneas ópticamente, ademas de la complejidad óptica que conlleva. Las patentes US 3,852,532; US 3,895,661 y US 3,889,011 describen métodos y aparatos para estos fines basados en estos principios.
Las patentes US 4,021,120 y US 3,714,445 describen dispositivos basados en el principio de la turbidimetría para medir el crecimiento de microorganismos en medios líquidos. La patente US 4,021,120 describe un dispositivo para monitorear el crecimiento de microorganismos en un medio líquido que contiene gas. Del recipiente en que se encuentra el medio se toman muestras con ayuda de una bomba para llevarlas hasta una cámara desgasificadora con el objetivo de eliminar las burbujas de gas, luego la muestra se introduce en una cámara de medición donde se hace pasar un rayo de luz a través de ella, que incidirá sobre una celda fotoeléctrica, produciéndose una corriente que se incrementa mediante un amplificador, la cual es un indicador del crecimiento de los microorganismos. La magnitud de dicha corriente dependerá de la intensidad del rayo de luz y, ésta a su vez, estará influenciada por la turbidez del medio. La muestra, una vez analizada, se regresa nuevamente al recipiente con ayuda de otra bomba. Este método de medición al igual que el descrito en la patente US 3,714,445 es muy complejo tanto óptico como mecánicamente, ademas tanto la cámara de medición como las bombas y los conductos de transporte de las muestras, deben ser frecuentemente esterilizados, complejidad que limita su utilización en métodos diagnósticos de rutina. La patente GB 2 221 986 y las patentes US 3,819,278 y US 4,725,148 se refieren a turbidómetros para la medición directa del crecimiento microbiano utilizando el mismo principio de las descritas anteriormente. Las mismas presentan sistemas ópticos y mecánicos complejos y necesitan de la esterilización de sus partes entre cada lote de microorganismos.
Por otra parte, la patente US 3,832,532 emplea un dispositivo óptico convencional, que incluye una cubeta de calidad espectrofotométrica, que a los efectos de ejecutar las mediciones empleando discos de antibióticos incluye en su diseño un reservorio bi-lobulado mterconectado, de manera tal que al concluir la incubación se pase el liquido a la otra cámara a los efectos de ejecutar la medición, tratando de evitar así la presencia del disco de antibiótico para efectuar dicha operación de lectura. La solución propuesta en esta invención presenta una gran complejidad tanto operativa como técnica, con las consiguientes implicaciones económicas. Las tendencias actuales de la microbiología se encaminan hacia la búsqueda de procedimientos que permitan la identificación rápida de los microorganismos (entre 2-4 horas) en muestras biológicas, y para ello han sido utilizadas diferentes estrategias entre las que se encuentra la utilización de marcadores enzimáticos específicos. Según el estado del arte, la mayoría de las muestras biológicas no pueden ser utilizadas de forma directa, siendo necesarios el crecimiento y aislamiento previo del germen a identificar, lo cual constituye una considerable pérdida de tiempo que imposibilita un resultado antes de las 24-48 horas de recepcionadas las muestras en el laboratorio. Las infecciones del tracto urinario se consideran una de las más frecuentes entre las enfermedades infecciosas. Las técnicas clásicas de detección de la infección bacteriana en orina todavía necesitan de un cultivo en placa que requiere generalmente un mínimo de 24 horas de incubación para descartar todas las muestras negativas y seleccionar las positivas . Se conoce que sólo alrededor del 20° de las orinas que llegan al laboratorio son positivas y de éstas, el 70° corresponden a infección por E. coli , de aquí que la identificación rápida de E. coli permite un considerable ahorro de tiempo y de recursos, ya que solamente un 30% de las muestras positivas serían aisladas para su posterior identificación. La identificación de E. coli , de acuerdo al estado del arte se realiza fundamentalmente a través de dos marcadores enzimáticos específicos para esta bacteria, que son la β-D- glucoronidasa y la Tπptofanasa, mediante la formación de Indol (Kovacks, N. Eme veremfachte Methode zum der Nach eis der Indolbildung durch Bakteπen. Z. Immunitatsforsch. , 55; 311-315, 1928) .
El 94% de todas las E. coli y unas pocas Salmonellas y Shiguellas manifiestan reacción positiva a la β-D- glucoronidasa . El ensayo de formación de Indol es positivo para el 99% de todas las E. coli , por lo que la combinación de ambos ensayos permite la identificación inequívoca de este microorganismo .
Actualmente se comercializan diferentes tests como el BACTIDENT- E. coli y medios de cultivo como el FLUOROCULT- MUG, (ambos de la compañía MERCK DIAGNOSTICA) , que se basan en el principio anterior. Sin embargo, para la utilización de los mismos se hace necesario un aislamiento previo del microorganismo para tomar una colonia aislada, a partir de la cual se realiza la identificación (BACTIDENT) o se inocula la muestra objeto de análisis en el medio de cultivo y se espera 24 horas para obtener las colonias aisladas y poder detectar los cambios asociados a la transformación de los substratos específicos (FLUOROCULT-MUG) . En la solicitud de patente No. WO 95/03424, se reporta un medio de cultivo sólido para la detección simultánea de bacterias coliformes y/o E. coli en muestras de agua o alimentos, para lo cual se requieren 24 horas de incubación posteriores a la inoculación de la placa con la muestra a evaluar. Procedimientos similares se siguen en el KIT Diagnóstico URILINE ID y el medio de cultivo CPS ID, ambos de la compañía BIOMERIEUX, Francia. En ambos casos se hace también necesario la incubación de las muestras en el medio sólido, durante 24 horas, previo a la identificación del microorganismo.
La solicitud de patente No. WO 80/02433 se refiere un procedimiento para la identificación de bacterias mediante la combinación de diferentes tests para la determinación de 26 enzimas bacterianas, entre las que se encuentran la β-D- glucoronidasa y la Triptofanasa para la identificación de E. coli . En esta invención las bacterias deben ser aisladas de los especímenes clínicos antes de su identificación.
Divulgación de la invención.
El objetivo de la presente invención es proporcionar un sistema que permite detectar el crecimiento microbiano tempranamente en muestras procedentes de animales, plantas y sus secreciones, en las cuales se requiera detectar crecimiento de microorganismos mediante la utilización de micromuestras . Dicho sistema se basa en la detección de cambios turbidimetricos en un medio de cultivo, producidos por el crecimiento del microorganismo, sistema que incluye un equipo, un juego de diagnostico y un método diseñados para este fin. Una novedad de la presente solución técnica es que la misma permite detectar muestras infestadas obtenidas directamente de los especímenes que la producen.
Adicionalmente, y entre otras aplicaciones, la presente invención permite obtener el esquema de sensibilidad a los antibióticos de microorganismos ya bien a partir de colonias aisladas previamente o de muestras positivas de urocultivos y hemocultivos, en este ultimo caso ahorrándose el tiempo requerido para los procesos de aislamiento y purificación. En el caso particular de las infecciones del tracto urinario, la presente invención permite a partir de muestras directas de orina, discriminar muestras positivas de las negativas, estén contaminadas o no con otro germen, y puede incluir ademas la identificación simultánea de aquellas muestras infestadas particularmente con la bacteria E. coli . Con el sistema de la presente invención, resultados basados en más de 1000 muestras examinadas han mostrado un 95% de correspondencia con el conteo total de células viables en medio CLED, método empleado convencionalmente para la detección de la infección del sistema urinario. En la determinación del antibiograma, la correspondencia con el método de Bauer-Kirby ha sido establecida en un 75.8% como valor predictivo para los antibióticos sensibles y un 85.9% para los antibióticos resistentes, obteniéndose una sensibilidad total de 80.6%. El sistema garantiza un 90% de efectividad para la detección de los antibióticos sensibles. Con el empleo de la presente invención, se logra la obtención de información útil relativa al diagnóstico clínico microbiologico en muy corto tiempo, la cual puede ser utilizada en pacientes para evitar el uso inadecuado de antibióticos, el desarrollo de la resistencia microbiana, largas estadías hospitalarias y desenlaces fatales en infecciones graves.
El sistema propuesto se caracteriza por su rapidez, ya que permite la determinación de la infección urinaria en 4 horas, y a partir de muestras positivas ofrece resultados confiables del antibiograma en sólo 4 horas. Igualmente es un sistema altamente preciso que permite corroborar los resultados obtenidos tantas veces como se estime.
Desde el punto de vista social es de gran importancia, ya que para aquellas personas hospitalizadas posibilita el suministro de antibióticos de forma racional y oportuna, evitando prolongadas estadías hospitalarias. Igualmente, desde el punto de vista ecológico tiene gran impacto ya que al evitar el uso inadecuado de antibióticos, limita al mismo tiempo el desarrollo de la resistencia bacteriana. Es un sistema altamente flexible que permite adaptar la información del programa que emplea a las necesidades y exigencias del usuario con la posibilidad de cambiar el conjunto de antibióticos empleados, de acuerdo a las necesidades particulares. El sistema de la presente invención consta de un equipo, un juego y un método diseñados para el diagnóstico microbiológico rápido, con aplicaciones en la clínica humana y veterinaria. El equipo ha sido diseñado para trabajar con un gran numero de muestras y emplea un programa operativo, y una inferíase hombre-máquina muy funcional, que ofrece una alarma audiovisual para ordenar la lectura y prevenir errores operacionales . Por ser un equipo autónomo basado en un microprocesador, puede almacenar los resultados de 10 antibiogramas con 14 antibióticos y ofrecer la respuesta en pantalla de los mismos en 7 segmentos y en un impresor. El módulo de medición de dicho equipo puede ser insertado en el slot libre de la computadora.
El equipo de la presente invención está conformado por los siguientes dispositivos: • Un modulo de control o microprocesador incorporado en una computadora personal.
• Una tarjeta de inferíase.
• Una bomba peristáltica.
• Un sensor. • Un calibrador.
• Una impresora.
• Una lámpara UV opcionalmente .
La computadora personal debe tener las siguientes propiedades: - IBM Compatible, 386/486, 25-66 Mhz . - Memoria RAM 1Mbyte mínimo.
- Disco Duro: 40 Mbytes mínimo, Torre de Disco Flexible 3 1/2", opcional.
- Monitor SVGA Color.
- Teclado, Ratón (mouse) e Impresora. La bomba peristáltica ha sido diseñada para hacer circular por el sensor las muestras, la cual presenta un cassette regulable manual que garantiza un flujo continuo y ajustable, siendo posible su uso independiente ó incorporado al sistema. Emplea un flujo de 2.0 - 2.6 ml/minuto y se alimenta opcionalmente con 220 vac ó 12 vdc, así como su consumo de potencia es de 0.5 watts.
El sensor esta constituido por un lector a microflujo continuo, el cual es el encargado de detectar en términos de transmitancia óptica, los cambios de turbidez debido al crecimiento microbiano en las muestras previamente preparadas procedentes de diferentes fuentes, en volúmenes de muestras muy pequeñas (hasta 200 microlitros) y en movimiento, es decir, en un líquido en movimiento, donde las muestras pueden estar o no interferidas. Con el empleo de la presente invención no resulta necesario "limpiar" el lector a flujo durante un proceso de medición, de manera que pueden medirse muestras discretas o de manera continua, medida que no es interferida por las variaciones turbidimétπcas del medio de cultivo como consecuencia del cambio de muestra y que sin embargo sí permite detectar las pequeñas variaciones de turbidez del medio debido al crecimiento microbiano, donde no se requiere del control de la temperatura para realizar la medición y es posible realizar un numero indeterminado de mediciones de diferentes muestras de distinto origen. Este sensor se caracteriza además su calibración se realiza de forma automática y a flujo continuo de 2 - 2.6 mi/minuto . Emplea un rango de medición conductimétrica de 200 - 300 micro-Siemens y un rango de medición óptica de 0.00 - 2.00 McFarland. El calibrador que se utiliza en la presente invención se basa en la técnica de nefelometría y es ajustado por la escala McFarland. Está compuesto por una fuente de luz directa y un fotosensor y su ajuste se efectúa mediante un programa. Su función es la medición de la turbidez en medio Mueller-Hinton líquido hasta 0.2 McFarland. Su alimentación es 5 vdc y su consumo 50 ma .
La lámpara UV que se acopla opcionalmente al equipo de la presente invención permite la identificación de la bacteria E. coli en las muestras analizadas. El programa diseñado para hacer funcionar el sistema objeto de la presente invención ofrece una mterfase hombre-máquina amistosa y fácil de usar, que permite la selección de opciones por menú de barras ó teclas de funciones combinada con el uso de iconos, así como el almacenamiento de datos de forma automática. Igualmente utiliza un lenguaje de interrogación estructurado (SQL) para la extracción de información y en los utilitarios externos está el 'BACKUP' que posibilita realizar copias de seguridad. Está dotado de un sistema de alarma en caso de violación de la condición de entrada, de una alarma audiovisual para control del tiempo de lectura de cada muestra, así como de otros utilitarios para su mantenimiento técnico. Los rasgos distintivos esenciales del equipo objeto de la presente invención lo constituyen el minilector turbidimétrico estático y el sensor a microflujo que es accionado por la bomba peristáltica, y su acople a una microcomputadora con un paquete de programas para la adquisición, procesamiento y creación de bases de datos, que permiten la generación de los reportes necesarios. La Figura 1 muestra el esquema integral del equipo de la presente invención, en una vista general. Como se puede observar este equipo está basado en un lector turbidimétπco a microflujo ( 1 ) , el cual se alimenta mediante una bomba peristáltica (2) y se ajusta a un equipo electrónico de alta sensibilidad (3) que detecta cambios turbidimétπcos de (1) mediante un método de medición que permite, empleando un grupo de algoritmos, detectar pequeñas variaciones turbidimétricas y proseguir apropiadamente con los datos obtenidos. Este está formado por un circuito de medición turbidimetrica (4) conectado a través de una tarjeta de interfase a una unidad central de procesamiento (5) . Esta unidad recibe todos los comandos del teclado (6) y envía los resultados a una pantalla (7). Este puede detectar pequeñas variaciones de turbidez que ocurren en el medio de cultivo inoculado con la muestra que será analizada.
Un esquema detallado de la estructura interna del lector turbidimétrico (1) se muestra en la Figura 2, donde se produce la detección de las variaciones turbidimétricas . El procedimiento de medición es muy sencillo. Se introduce la boquilla (8) del lector en la muestra a medir, que circula a través del mismo con la ayuda de la bomba peristáltica (2) de la figura 1, accionada todo el tiempo requerido para las mediciones. Primeramente se detecta la presencia de la muestra al obtenerse un valor de voltaje que sobrepasa un valor de umbral prefijado y transcurrido un tiempo determinado se realiza la medición y así sucesivamente. Debido a que la bomba peristáltica (2) de la figura 1 se mantiene accionada, existe un periodo de tiempo entre cada medición durante el cual circulará aire a través del lector turbidimétrico (1), siendo considerado este tiempo como el momento en que se realiza la limpieza del lector turbidimétrico (1), es decir no se necesita de un proceso adicional de lavado para esterilizar las partes que conforman dicho lector. La cámara de medición está compuesta por una manguera plástica (9) introducida en un capilar de vidrio (10) . El paso de luz (11) es el diámetro del orificio que debe atravesar la luz proveniente del fotoemisor (12) para llegar a la cámara de medición (9 y 10) . La intensidad de la radiación luminosa transmitida a través de la cámara de medición (9 y 10) dependerá del grado de turbidez existente en la muestra y es medida por un fotodetector (13) . La radiación emitida por el fotoemisor (12), se estabiliza por medio de un lazo electrónico de control automático convencional . La Figura 3 muestra el funcionamiento del lector turbidimétrico a través de un diagrama de flujo. Primeramente se verifica la presencia del lector turbidimétrico por medio de una subrutina de detección y de estar presente se comprueba la existencia de la bomba peristáltica necesaria para el funcionamiento del lector turbidimétrico y para la ejecución de la subrutina de lavado, además de que se establece el flujo de trabajo requerido. La referida subrutina de lavado tiene una significativa importancia ya que los parámetros del lector dependen en gran medida de la limpieza de la cámara de medición, aspecto que influye en el período de vida útil del mismo.
Una vez que se hayan ajustado todos los parámetros de trabajo, el lector turbidimétrico estará habilitado. Cualquier subrutina que sea violada inhabilitará el funcionamiento de dicho lector. La aplicación fundamental de este dispositivo está orientada hacia la determinación del antibiograma de la muestra, (susceptibilidad de los microorganismos a los antibióticos) , lo cual se logra en un período de tiempo entre 2 y 6 horas, auxiliándose de un juego diagnóstico diseñado para estos propósitos. El otro dispositivo que se incorpora al equipo de la presente invención, el minilector turbidimétrico estático, como se refirió anteriormente, permite detectar los cambios de turbidez debido al crecimiento microbiano de la muestra que se originan en el frasco de cristal conteniendo medio de cultivo, y que conforma uno de los elementos del juego diagnóstico de esta invención. Dicho frasco se adapta exactamente el pozo de lectura de dicho equipo. El dispositivo está ajustado para poder emplear los frascos de referencia para la lectura directa de la muestra, es decir, no se requieren cubetas especiales para dicha lectura lo que propicia su utilización en medios diagnósticos de rutina. El mencionado dispositivo se utiliza para la calibración del inoculo que se emplea en el juego de diagnóstico para la detección del antibiograma, reportando la turbidez en unidades McFarland, en correspondencia con patrones de látex que cumplimentan las normas NCCLS, en el rango de medición establecido (0 - 4,0 unidades McFarland).
El juego de diagnóstico que conforma el sistema de esta invención lo constituyen un frasco nefelométrico de 8 mi de volumen que contiene 4,5 mi de medio de cultivo, y que no es más que un frasco de vidrio de borosilicato autoclaveable, y con tapa plástica.
La Figura 4 muestra los componentes del juego diagnóstico de la presente invención, constituido por el frasco que contiene medio de cultivo y el polímero, el soporte de la tira y la propia tira, empleada en la determinación del antibiograma de la muestra a analizar.
El medio de cultivo empleado para seguir el crecimiento microbiano es el medio Mueller-Hinton Broth OXOID modificado, PH de 7.4 ± 0.2. y estéril, el cual incluye adicionalmente un polímero . El juego diagnóstico para la detección del antibiograma de la muestra a analizar se caracteriza por el empleo de discos de antibióticos que se encuentran disponibles comercialmente y que pueden utilizarse conformando esquemas que pueden variarse atendiendo a cualquier necesidad. Se organizan en tiras no transparentes que incluyen 2 posiciones libres para los controles negativo y positivo, que se cubren con medio de cultivo solamente y medio inoculado respectivamente, y que son utilizados para el cálculo del índice de crecimiento. Existen además otras 10 a 22 posiciones donde pueden depositarse discos de antibióticos. El programa concebido para estos fines permite la introducción de estos cambios en los procesos de adquisición y edición, todo lo cual adjudica al juego una alta flexibilidad, permitiendo adaptaciones a las más variadas necesidades.
Al frasco de cristal referido anteriormente que conforma dicho juego diagnóstico y que contiene el medio de cultivo para dilución se le adiciona, de acuerdo a la presente invención, un polímero que puede ser cualquier polisacáπdo lineal de fórmula estructural CH3-CH3-Ch3-N o similar, de peso molecular aproximado entre 50,000 Y 150,000. La incorporación de dicho polímero al medio de cultivo, a una concentración comprendida en el rango entre el 0.05 y el 1%, permite eliminar el efecto inhibidor de los productos catabólicos que acompañan al inoculo de las muestras a analizar, obteniéndose mayores índices de crecimiento de las bacterias involucradas en las infecciones, en un período de tiempo menor comparado con el tiempo requerido cuando es utilizado el mismo medio de cultivo sin dicho polímero. Este nuevo elemento en el juego diagnóstico permite que disminuyan los resultados falsos sensibles obtenidos en los estudios de susceptibilidad a antibióticos de las muestras analizadas, mejorándose a su vez la correspondencia con el método de referencia de Kirby-Bauer, 1966 (Bauer, A. W.; Kirby, W. M. M.; Sherris, J. C. and Turck, M. An . J. Clin. Pathol . 1966, 45, pages 493-496) . Considerando que este polímero es sólo metabolizable por un número reducido de microorganismos, los cuales no se encuentran comúnmente en los análisis donde es aplicado el presente sistema, se infiere que el efecto promotor del crecimiento bacteriano observado en su presencia, se deba a una inhibición de los agentes represores de dicho crecimiento presentes en el medio de cultivo, por lo que dicho polímero debe actuar absorbiendo y/o adsorbiendo los catabolitos que son incorporados involuntariamente junto al inoculo que se analiza. Además, ha sido observado que una vez que estos catabolitos son neutralizados por el mencionado polímero durante el proceso de medición del crecimiento del microorganismo, se hace más específica la actividad bactericida de los antibióticos probados. Una de las ventajas de la presente invención es que el método propuesto permite diagnosticar no sólo cepas bacterianas previamente aisladas y purificadas, sino también muestras directas de hemocultivos positivos, orina, etc. Para el análisis de la referida muestra, primeramente ésta es colocada en el frasco de cristal conteniendo el polímero y el medio de cultivo, a la cual se le determina de forma inmediata su turbidez (tO) y este valor, así como el tiempo de lectura de acuerdo al número adjudicado a cada muestra, queda fijado por el programa empleado. Posteriormente, el mencionado frasco se incuba entre 2 y 5 horas a temperatura entre 35 y 37°C, y al término de la incubación el sistema emite, de acuerdo a la rutina estructurada, una alarma sonora y un cartel en pantalla indicando la muestra que debe ser leída nuevamente. Aquellas muestras que registren incrementos superiores a 0.08 unidades McFarland, son consideradas como muestras positivas.
El sistema de esta invención permite a las muestras positivas, una vez detectadas, determinarles su antibiograma de una forma muy rápida. Para ello se toma una alícuota de dicha muestra y se transfiere a un nuevo frasco de dilución, conteniendo medio fresco, el cual seguidamente se distribuye en la microplaca donde se encuentran los dos controles (positivo y negativo) y de 10 a 22 discos de antibióticos. Después de 4 horas de incubación entre 35 y 37°C, la placa se lee, posicionando el sensor a microflujo en cada pozo, siguiendo las instrucciones que emite el programa que selecciona el momento de cada medición en serie, eliminando la interferencia de la lectura precedente. A partir de los valores de densidad obtenidos, se calcula el índice de crecimiento (en los controles), y los % de inhibición generados para la muestra por cada antibiótico y de acuerdo al nivel obtenido se adjudica el criterio de sensible, resistente o intermedio, entre valores de inhibición comprendidos en el rango 60 y 100%. Es decir, aquellas muestras con porcientos de inhibición menores de 60% pueden considerarse resistentes, las que exhiban inhibición entre un 60 y un 80% pueden ser consideradas sensibles a un nivel intermedio y las que se inhiben entre un 80 y un 100% se considerarán sensibles al antibiótico en cuestión. Cada resultado es chequeado para valorar si se encuentra entre el valor mínimo y máximo de crecimiento admisible (antibiograma satisfactorio) . Los resultados obtenidos y los datos editados de cada muestra se pasan automáticamente para crear las bases de datos correspondientes. Como se explicó anteriormente, la invención aplicada al urocultivo permite trabajar con muestras directas en medio líquido, leer en frascos comerciales y seguidamente ejecutar el antibiograma presuntivo en muestras positivas, todo lo cual es ejecutado en un período de tiempo menor de 9 horas, evitándose así los pasos previos de aislamiento y purificación de las muestras y obteniéndose niveles de sensibilidad superiores al 90%.
Por otra parte, el sistema aquí propuesto permite enfrentar las interferencias generadas por la contaminación de las muestras, así como por la infección causada por más de un germen. La interferencia de la contaminación ha sido resuelta ajusfando la señal en magnitud y tiempo para la detección de los niveles infestantes aceptados internacionalmente (>100,000 ufc/ml), propiciando la exclusión de las muestras contaminadas no infestadas por contar éstas generalmente con niveles bacterianos inferiores a 1,000 ufc/ml, lo que permite la detección de muestras contaminadas solamente cuando además éstas están infestadas. En este caso particular, teniendo en cuenta que generalmente las especies contaminantes atendiendo al Gram son saprofitas, en su mayoría sensibles a todos los antibióticos, es evidente que las cepas contaminantes no deben interferir en la detección del esquema de resistencia de las cepas infestantes. Estas constituyen igualmente características distintivas de la presente invención. Con relación a las infecciones producidas por más de 1 germen, en la práctica se pueden presentar dos situaciones particulares. En la primera, puede existir el predominio de uno de los gérmenes infestantes debido a una mayor velocidad específica de crecimiento transcurrido el tiempo mínimo de incubación, en cuyo caso el antibiograma sería válido. En la segunda, los gérmenes crecen simultáneamente, en cuyo caso el antibiograma podría mostrar uno o varios antibióticos efectivos para ambos gérmenes, o se podría presentar un esquema de resistencia absoluta por complementación, en cuya situación sólo podría indicarse la prueba con otros antibióticos no incluidos en el test, o pasar posteriormente a los necesarios procedimientos de aislamiento y purificación para este caso. Este conjunto de análisis y soluciones inmediatas para cada situación particular, solo se posibilita por la aplicación del concepto de lecturas sobre muestras directas, con alto nivel de interferencia, a tiempo corto y fijo, aspectos que caracterizan y distinguen el sistema de la presente invención.
Por otra parte, al reporte de la detección de la infección urinaria y al esquema de sensibilidad del germen infestante debe unirse la identificación del germen para poder contar con un reporte completo. Con la finalidad de alcanzar este objetivo, al señalado frasco que contiene el medio de cultivo líquido y además el polímero utilizado para la detección de la infección urinaria, se le puede adicionar opcionalmente dos substratos que permiten incluir un esquema para la identificación rápida de la bacteria E. coli en orina, como se ha dicho anteriormente, en el propio frasco de detección. En la presente invención se formula, un medio de cultivo que al ser utilizado en el sistema propuesto permite detectar en un período entre cercano a las 9 horas la presencia de E. coli como agente causal de la infección en muestras de orina testadas.
El medio propuesto en la presente invención contiene por litro, además de las bases nutritivas convencionales que contiene el medio de cultivo Mueller Hinton, OXOID (Infusión de Carne, 300 mg; Hidrolizado de Caseína, 17 g y Almidón, 1,5 g) , los substratos MU-β-D-glucorónido (0,1), L-Triptofano (1 g) , así como el polímero empleado como agente de-represor (1 g) . Estos componentes se solubilizan en Fosfato de Potasio 50 mM y se ajusta el pH de dicho medio entre 7-7,5. El mismo es entonces dispensado en viales con 2,5 mi y se esteriliza por autoclave 20 minutos a 121 (C.
Los substratos anteriormente empleados son útiles para la detección de las actividades enzimáticas β-D-glucoronidasa y la Triptofanasa producidas por E. coli , mediante la formación de Indol, por lo que a dicho medio luego del crecimiento bacteriano, se le adiciona un reactivo auxiliar para el revelado (reactivo de Kovacksmodificado) compuesto por para- dimetilaminobenzaldehído (2 g) , Etanol y Acido Clorhídrico concentrado (20 mi) . El producto de la interacción de las enzimas con sus substratos se detecta en un primer paso, exponiendo los viales donde se detecta un incremento de la turbidez (positivos) a una fuente de luz U.V. (aditamento que se puede incluir en el equipo de la invención opcionalmente para este fin) , para la detección de fluorescencia generada por la liberación de 4-metilumbeliferona . En una segunda fase se comprueba en el propio vial la formación de Indol mediante el revelado con dicho reactivo de Kovacks modificado.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN: Ejemplo 1. Puesta en marcha del Equipo:
Se enciende el equipo 15 minutos antes de comenzar las lecturas. Al activar la computadora, el programa de autoejecución conduce directamente al programa encargado de ejecutar todo el proceso, el cual inicialmente comprobará la existencia e integridad de la base de datos y el estado de funcionamiento de cada uno de los componentes del módulo de medición: el sensor, el calibrador de inóculos y la bomba peristáltica. También chequeará la existencia de la llave de protección electrónica que se acopla al puerto paralelo de la computadora. El programa informará sobre cualquier error que se detecte en alguno de los elementos que componen el sistema e inhabilitará las opciones relacionadas con el mismo. De no existir la base de datos, será creada si el usuario así lo decide . Ejemplo 2. Preparación para la determinación de uroculti os. El urocultivo es una prueba conocida utilizada para detectar si una muestra de orina se encuentra infectada o no. El procedimiento se inicia realizando una primera lectura en un tiempo inicial (TOh) y continua con una segunda lectura generalmente cuatro horas después que la muestra ha sido incubada (TFh) .
La determinación es llevada a cabo fotométricamente utilizando el calibrador de inóculos. Los siguientes pasos ilustran el procedimiento a seguir: 1. Se toma un frasco con 4,5 mi de medio de cultivo estéril al cual se le inoculan 500 μl de la muestra de orina. 2. Se mide la turbidez McFarland inicial usando el calibrador de inóculos (TOh) . 3. La muestra se incuba a 37°C durante 4 horas, y el equipo avisa, mediante una alarma sonora cuando haya transcurrido este tiempo para cada muestra.
4. Se realiza una próxima o última lectura del frasco inoculado después de su incubación para comprobar si la muestra es positiva, negativa o dudosa (TFh) . En el caso de las muestras reportadas como "dudosas", se debe prolongar la incubación 1 hora más, para descartar su positividad. En casos de muestras negativas de pacientes con sospecha de infecciones renales, es recomendable prolongar la incubación hasta 5 horas (T5) .
Una vez realizada la lectura, los casos pueden ser editados si así se desea y almacenados en la base de datos del sistema. Si la modalidad de impresión automática está activada y la impresora se encuentra lista para imprimir, los casos serán automáticamente impresos.
Las muestras que se han diagnosticado positivas, pueden ser procesadas para la determinación del antibiograma (directamente) . Ejemplo3. Preparación para el antibiograma.
Para el antibiograma se utilizan tiras de 12 o 24 pocilios. Los primeros 2 pocilios se reservan para el control positivo (C+)y control negativo (C-) respectivamente y en los restantes pocilios se encuentran los discos de antibióticos. La inoculación de la tira se realiza distribuyendo la muestra problema en el primer pocilio (C+) y los pocilios que contienen los discos de antibióticos. El segundo pocilio (C-) debe ser llenado con medio estéril. Ejemplo 4. Preparación del inoculo. • A partir de una cepa pura.
Si el inoculo es preparado a partir de una cepa pura, se deben ejecutar los siguientes pasos:
1. Se toman de 3 a 4 colonias de un cultivo fresco (18-24 h) y se inoculan 4.5 mi de caldo Muller Hinton estéril que contiene un polímero linear de peso molecular 50,000, hasta alcanzar una concentración de células equivalentes a 0.5 de la escala McFarland en el mininefelómetro . Opción que se presenta en el Menú Principal (McFarland) .
2. De esta concentración celular se toman 150 μl y se adicionan a 4.5 mi de otro medio estéril, y se agita para homogeneizar .
3. A partir de esta dilución se distribuyen 200 μl (0.2 mi) en la tira para el antibiograma, en los pocilios correspondientes al control positivo (C+) y en los pocilios que contienen los discos de antibióticos.
4. En el segundo pocilio destinado al control negativo (C-) se dispensan 200 μl (0.2 mi) de medio estéril.
5. Al concluir, la tira se sella nuevamente y se incuba a 37°C durante 4 horas. 6. Una vez transcurrido el tiempo de incubación se extrae la tira de la incubadora y se esperan 10 minutos hasta alcanzarse la temperatura ambiente y comenzar la lectura. Es recomendable agitar la tira manual o mecánicamente antes de efectuar la lectura para homogeneizar el contenido de los pocilios.
7. Se destapa la tira y se comienza la lectura. Es requisito para leer el antibiograma que la diferencia entre (C+) y (C-) alcance un determinado valor definido por el Crecimiento Mínimo Admisible. Si en presencia de valores próximos a los diferenciales establecidos por este parámetro, se detectan en cada uno de los antibióticos probados, niveles de inhibición homogéneamente bajos (Antibiograma no confiable), el antibiograma debe repetirse. En estos casos se recomienda disminuir hasta alcanzar el 30% el volumen de inoculo empleado.
• Si el inoculo se prepara a partir de un urocultivo positivo, para realizarle el antibiograma, es preciso hacer una dilución previa de la muestra hasta alcanzar 0.5 de la escala McFarland y una vez alcanzada la turbidez deseada se continúa el proceso a partir del punto 2 descrito anteriormente para la obtención del inoculo a partir de una cepa pura. En casos en que el urocultivo sea detectado como positivo en 4 horas y tenga valores inferiores a 0.5 de la escala McFarland, este debe ser incubado hasta que alcance dicho valor o puede ser estriado en un medio a su elección para trabajarse al día siguiente, ya que esto puede ser debido a:
1. Baja carga de microorganismo no infestante.
2. Paciente bajo la acción de terapia antimicrobiana. • Cuando el inoculo se prepara a partir de hemocultivos positivos (de 18 a 24 horas de incubación) se deberán realizar los siguientes pasos previos:
Extracción de la fase superior del hemocultivo (sobrenadante) 200 μl y añadirlos en 4,5 mi de medio Mueller- Hinton + Pol-10.
- Leer turbidez en el mininefelómetro en la opción McFarland del Menú Principal y monitorear hasta que alcance valores entre 0.5-0.7 de dicha escala.
- Se continúa el proceso a partir del punto 2 descrito anteriormente para la obtención del inoculo a partir de una cepa pura.
Ejemplo 5. Utilización de los programas.
La invención suministra un paquete de programas completamente interactivos que permiten realizar las pruebas de antibiogramas, urocultivos, almacenar y procesar los resultados en un ambiente que resulta de fácil operación y no requiere experiencia previa en el manejo de computadoras. Cada prueba es tratada en menúes independientes que agrupan las operaciones fundamentales que se desempeñan en cada una de ellas.
Para acceder a cualquiera de las opciones del sistema:
1. Presione la tecla correspondiente a la letra subrayada dentro del icono deseado.
2. Sitúe el cursor del ratón (mouse) sobre el icono seleccionado y presione el botón izquierdo. Ejemplo 5. Utilización de los programas.
La invención suministra un paquete de programas completamente interactivos que permiten realizar las pruebas de antibiogramas, urocultivos, almacenar y procesar los resultados en un ambiente que resulta de fácil operación y no requiere experiencia previa en el manejo de computadoras. Cada prueba es tratada en menúes independientes que agrupan las operaciones fundamentales que se desempeñan en cada una de ellas. Para acceder a cualquiera de las opciones del sistema:
1. Presione la tecls. correspondiente a la letra subrayada dentro del icono deseado.
2. Sitúe el cursor del ratón (mouse) sobre el icono seleccionado y presione el botón izquierdo. Para abandonar la operación escogida, presione la tecla "ESC" o active con el ratón (mouse) la opción "Regresar" la cual conducirá a la pantalla anterior.
Después de completar la iniciación del sistema el programa mostrará el menú de la PANTALLA PRINCIPAL que constituye el punto de partida para todas las operaciones que se deseen realizar con el mismo.
Como se puede apreciar, la pantalla principal está compuesta por tres zonas o paneles:
- Un panel central que exhibe los iconos que activan las opciones principales del programa.
- Un panel superior, donde se suministra información sobre la versión del sistema, la fecha y hora actual, el menú en que se está trabajando y una indicación sobre el nivel de acción de la pantalla que se visualiza. En el extremo superior derecho, se ofrece la opción "Salir" mediante la cual se puede abandonar el programa en cualquier punto siempre que no se encuentre en medio de una medición o alguna operación crítica. Es recomendable usar siempre esta opción y NUNCA APAGAR LA COMPUTADOFA sin cerrar previamente el programa. Ignorar esta recomendación puede acarrear trastornos en la configuración de los programas .
HOJA DE SUSTITUCIÓN (REGLA 26) La opción "Ref. P." que aparece en el mismo extremo de la pantalla, ofrece la posibilidad de activar a voluntad el refrescador de pantalla cuando no se esta trabajando, a fin de protegerla de las marcas que pueden ocasionarle una imagen fi a durante un tiempo muy prolongado. Esta opción también se activa automáticamente cuando se detecta el sistema ocioso durante un determinado tiempo. Para regresar de esta opción solo basta mover el ratón (mouse) o simplemente presionar cualquier tecla. - El panel inferior informa sobre el estado de las pruebas de urocultivos. En caso que existan urocultivos pendientes de ser leídos, se informara cuantos, asi como la fecha y hora del primero en la lista ordenada por próxima lectura. También se indica si la señal sonora que el sistema emite indicando que ha llegado el momento de leer un determinado urocultivo, se encuentra activa o no. Menú Principal .
El menú principal está integrado por un conjunto de iconos que contienen dibujos relacionados con la operación que se desempeña cuando estos se activan. Un triangulo negro apuntando hacia la derecha en las opciones "URO y ATB" es un indicador que avisa que al activar una de ellas se mostrara un sub enu con opciones adicionales. Nueve iconos definen las opciones disponibles dentro del menú principal, desde donde se controlan todos las acciones del sistema. Estas son:
URO: Activa el menú de iconos del urocultivo . ATB: Activa el menú de iconos del antibiograma. McFarland: Permite medir el contenido del frasco en la unidad de calibración (escala McFarland) .
Base de Datos: Permite acceder a la base de datos de antibiogramas o urocultivos.
Opciones: Para cambiar la configuración del sistema. Información: Muestra información administrativa del sistema. DIRAMIC: Brinda la dirección del productor del sistema. Ayuda: Muestra información sobre la opción actual.
HOJA DE SUSTITUCIÓN (REGLA 26) Salir: Abandonar el sistema. Menú de Urocultivos.
Al seleccionar el icono URO del Menú Principal, se dispondrá de un nuevo menú, específico para el tratamiento de urocultivos, el cual contiene las operaciones a desarrollar durante estas pruebas. Dentro del menú de UROCULTIVOS se podrán realizar las siguientes operaciones: Descripción de las opciones del Menú de Urocultivos:
• Leer uros: Procedimiento para la lectura de urocultivos. Al activar la opción "Leer Uros" se presenta un listado de los casos de urocultivos que están pendientes de ser leídos donde se muestran el número consecutivo del caso, el tiempo que debe transcurrir entre lecturas y la fecha y hora de la próxima lectura. Si el listado está vacio, no existen casos pendientes de ser leídos .
Para seleccionar un caso específico del listado puede presionar el botón izquierdo del ratón (mouse) dos veces de forma relativamente rápida sobre el mismo o simplemente presionar la barra espaciadora cuando el cursor del mouse esté posicionado sobre él. Los así seleccionados, aparecerán con una marca al lado y la mayoría de las operaciones se efectuarán solo ellos.
Al seleccionar la opción Leer uros, se podrá disponer de las siguientes posibilidades:
• Nuevos Uros: Permite leer el tiempo Oh de los casos de urocultivo . Si no se ha compensado el calibrador de inóculos, el programa pedirá que se inserte un frasco con medio para proceder con la compensación antes de adicionar los nuevos casos.
Al activar esta opción se mostrará una pantalla donde puede proceder con la lectura, editar el caso (Editar) o cambiar el tiempo que transcurrirá hasta que se ejecute la próxima lectura (TO-TFh) ANTES de leerlo
HOJA DE SUSTITUCIÓN (REGLA 26) • Re-leer: Permite volver a leer el tiempo Oh de una muestra. Esta opción es útil cuando se ha cometido un error en la lectura de uno de los casos y se desea rectificar . Al activar esta opción se mostrará una pantalla con las mismas posibilidades que la opción "Nuevos uros" más la opción de continuar hacia el próximo caso (Próximo) sin modificar el que está procesando.
• Editar: Mediante esta opción se pueden llenar los campos correspondientes a los datos generales del paciente, los de interés del laboratorio, etc. Para almacenar la información que se ha editado, presione el botón izquierdo del ratón (mouse) sobre la opción deseada. Opcionalmente pueden utilizar las teclas RETURN (o ENTER) para aceptar la información y ESC para cancelar la edición en proceso. El usuario podrá editar libremente todos los campos con excepción de aquellos correspondientes a Muestra, Microorganismo y Área, los cuales se encuentran diferenciados por un indicador representativo de un proceso de selección contra listado de opciones.
Al situar el cursor del mouse sobre los campos correspondientes y presionar el botón izquierdo, se abre un listado de selección que ofrece la posibilidad de realizar una búsqueda inteligente dentro del mismo al presionar las primeras letras de la palabra que constituye el objetivo deseado. Se pueden añadir o eliminar nombres específicos dentro de los listados preestablecidos utilizando las funciones suministradas en esta ventana. Esta opción se utiliza para mantener un listado estandarizado de los datos que se insertan en la base.
Si se modifica algún elemento del listado que se muestra, se actualizarán consecuentemente la totalidad de los casos existentes en la base de datos.
HOJA DE SUSTITUCIÓN (REGLA 26) Para saltar de un campo a otro dentro del proceso de edición, presione la tecla TAB o simplemente presione el botón izquierdo del ratón (mouse) sobre el campo deseado. Si se encuentra editando varios casos, aparecerá la opción "Próximo" con la cual se ABANDONA la edición del caso actual sin almacenar los cambios y se pasa automáticamente a la edición del siguiente caso. De forma diferente, si se activa la opción "Aceptar", se almacenarán los datos del caso en pantalla antes de pasar al siguiente. • TO-TFh: Permite configurar el tiempo que transcurrirá entre la primera y próxima lectura.
Nota : Si ya ha transcurrido el tiempo para el cual se quiere configurar el caso, el programa advertirá de ello y mostrará un mensaje de error. Esta opción se ej ecutará para todos los casos seleccionados siempre que sea posible .
• Cancelar: Permite cancelar o eliminar los casos pendientes no deseados. Esta opción se ejecutará para todos los casos seleccionados . • Leer TFh: Permite ejecutar la última lectura del urocultivo a fin de obtener el resultado del examen.
Al activar esta opción aparecerá una pantalla con los datos generales del caso y su clasificación de acuerdo con el nivel de infección del mismo en Positivo, Negativo o Dudoso.
Esta opción igualmente se ejecutará para los casos seleccionados. "Próximo" en este caso no lee ni clasifica el caso y muestra el siguiente lo cual es útil cuando se le quiere aumentar el tiempo entre lecturas y esperar más para ver su evolución
• Selección: Permite marcar o desmarcar todos los casos del listado de urocultivo.
• Ordenar: Permite ordenar el listado por número consecutivo de muestras o por próxima lectura. Esta opción es útil cuando se quiere ordenar los casos por hora en que deben
HOJA DE SUSTITUCIÓN (REGLA 26) ser leídos que no siempre coincidirá con el orden del numero consecutivo. Imprimir: Permite imprimir el caso hacia la impresora o hacia un archivo en formato ASCII. Al accionar este comando, se presentara un diálogo de impresión donde se pueden configurar los siguientes parámetros para la salida de la información:
• Impresora: Permite seleccionar un tipo de impresora compatible con la que se encuentra acoplada a su computadora.
• Epson: Para impresoras de matriz de puntos.
• HP LaserJet: Para impresoras láser.
• Adobe PostScript: Para impresoras con formato PostScript. • ASCII: Para imprimir hacia un archivo ASCII. Esta posibilidad, muy útil cuando se desea exportar datos del programa, permite especificar el nombre y la localización del archivo texto donde se almacenaran los datos. • Cancelar: Vuelve a la opción previa.
• Copias: Número de copias a imprimir.
• Líneas/Pag. : Cantidad de líneas de texto en cada página.
• Imprimir hacia: Permite seleccionar el puerto de salida de la computadora donde se encuentra instalada la impresora, generalmente LPT1, LPT2, LPT3 o LPT4.
• Regresar: Permite regresar a la opción anterior Dentro del diálogo de impresión se dispone de los siguientes comandos : • Aceptar: Inicia la impresión. Al activar esta opción se mostrará un mensaje de información sobre la impresión con una opción para cancelar la misma en caso que se desee.
• Cancel: Cancela la operación.
HOJA DE SUSTITUCIÓN (REGLA 26) • Regresar: Transfiere el control al MENÚ DE UROCULTIVOS
Reporte: Suministra un reporte conciso sobre los resultados de la prueba de urocultivo en la fecha seleccionada por el usuario permitiendo la impresión del mismo. McFarland;
Esta operación permite monitorear el crecimiento microbiano, expresado en unidades McFarland según norma NCCLS, de una muestra referida a un blanco previamente establecido (medio de cultivo estéril no inoculado) . Las muestras se colocan en el pozo de medición del calibrador previamente compensado y se lee directamente la información suministrada en pantalla. Para este proposito se muestra una escala gráfica aproximada y el valor digital de la lectura. La segunda cifra de decimal de los valores digitales que se presentan, constituyen fundamentalmente, una medida de la tendencia de la muestra analizada. Como norma de trabajo, se debe garantizar que la superficie exterior de los frascos que se colocan en el pozo del calibrador de inóculos esté limpia y libre de ralladuras. Los frascos deben marcarse convenientemente de forma de repetir su posición en cada medición, cuidando que la marca realizada quede fuera del pozo de medición. Siguiendo esta práctica se logrará una precisión adecuada.
Dos comandos están disponibles para la operación del calibrador:
• Compensar: Permite establecer el blanco o referencia para la determinación de turbidez o valor McFarland de las muestras.. Esta opción es particularmente útil si un lote diferente de medio de cultivo será usado después que el calibrador fue compensado. El proceso se logra posicionando un frasco que contiene medio de cultivo no inoculado en el pozo de medición del calibrador McFarland.
HOJA DE SUSTITUCIÓN (REGLA 26) • Regresar: Regresa a la opción anterior. Base de datos :
Mediante esta opción se pueden imprimir y visualizar los resultados de los casos de antibiogramas y urocultivos realizados con el sistema. De la misma manera se pueden modificar los datos generales y ejecutar búsquedas bajo determinados criterios las cuales facilitan el estudio de los casos realizados. Como información, se muestra en el área superior de la ventana el caso actual que se está visualizando y el total de casos que existen en la base (ej . Caso: 1 de 100) . También se muestra el modo en que se visualizan los datos, o sea, "Todos los casos" significa que se muestran todos los casos de la base o "Búsqueda", que son los casos que responden a determinadas condiciones establecidas durante una búsqueda específica. La palabra "Visualizando" informa si lo que se presenta en pantalla son los "Datos generales" o los "Resultados" del examen. Las opciones disponibles para el manejo de la base de datos son las siguientes:
• Primero: Permite visualizar el primer caso de la base de datos .
• Anterior: Permite visualizar el caso anterior al que se está visualizando. • Próximo: Permite visualizar el caso que sigue al que se está visualizando.
• Último: Permite visualizar el último caso de la base de datos.
• Ir al caso: Permite visualizar un caso determinado de acuerdo a su número en la base de datos.
• Datos/Resultados: Permite visualizar los datos generales o los resultados del examen.
• Editar: Este procedimiento ya ha sido descrito en el acápite Leer uros.
HOJA DE SUSTITUCIÓN (REGLA 26) • Todos / Buscar: Permite visualizar todos los casos de la base de datos o ejecutar una consulta o búsqueda: Dentro de este procedimiento, se podrá disponer de las siguientes opciones: • Buscar: Permite ejecutar la búsqueda o consulta de acuerdo a la expresión formulada.
• Nueva: Permite formular una nueva expresión de búsqueda.
• Regresar: Permite regresar a la opción anterior. Algunos de los criterios disponibles de "Buscar" son explicados a continuación.
• Que contenga: Permite buscar sin tener en cuenta si el dato fue escrito en mayúsculas o minúsculas. También permite buscar por palabras o sílabas que se encuentren en una palabra o frase específica (ej . "infec" en "Infección severa").
• Que no contenga: Funciona al igual que el anterior con la diferencia que excluye los casos que cumplan dicha condición. • Que se encuentre en: Permite crear una lista con las opciones deseadas. Este criterio se utiliza cuando se desean buscar varios microorganismos, etc. Al activar esta opción se mostrará una lista donde se pueden adicionar o eliminar elementos. • Que no se encuentre en: Funciona al igual que el anterior con la diferencia que excluye los casos que cumplan dicha condición.
• No procesar: Permite eliminar el dato de la expresión de búsqueda formulada. • Ignorar: Ignora el campo seleccionado durante el proceso de búsqueda.
• "Igual a" o "Diferente de": Compara palabras idénticas, tomando en consideración si su escritura difiere por la utilización de minúsculas o
HOJA DE SUSTITUCIÓN (REGLA 26) mayúsculas. Para hacer una búsqueda que no considere si las palabras que fueron escritas de una forma o de otra, se deben utilizar los criterios "que contenga" o "que no contenga" según sea conveniente. • Imprimir: Permite imprimir el caso hacia la impresora o hacia un archivo en formato ASCII. • Regresar: Regresa al MENÚ DE UROCULTIVOS. Opciones : Permite configurar las siguientes posibilidades: • Impresión automática después de la medición del antibiograma.
• Activar o desactivar la señal sonora que indica el momento en el cual un determinado urocultivo se encuentra listo para ser leído. • Decidir sobre la utilización o no de colores en la presentación del reporte.
• Establecer el tiempo que mediará entre las dos lecturas de un urocultivo (normalmente el programa establecerá un intervalo de 4:00 horas). Compensar:
Ajuste del calibrador McFarland. Permite establecer el nivel de referencia para McFarland = 0. Este proceso se lleva a cabo utilizando un frasco con medio de cultivo sin inocular. Consecutivo: Permite configurar el número consecutivo para los nuevos casos de urocultivos siempre que sea posible y no cause conflictos con los casos ya leídos. Esta opción es conveniente cuando se desea que el contador consecutivo de los casos de urocultivos comience por un número diferente de 1. Por ejemplo, comenzar a partir de 50, 100, etc.
Nota: El programa considera el número consecutivo como el "consecutivo del día". Al detectar un cambio en la fecha intentará llevarlo nuevamente a 1. Ayuda:
HOJA DE SUSTITUCIÓN (REGLA 26) Muestra información al usuario sobre el sistema y cada una de sus operaciones y opciones.
Regresar: Transfiere el control hacia el Menú Principal. Menú de antibiogramas
ATB: Menú de antibiogramas
Al seleccionar el icono ATB del menú principal, se transfiere el control hacia las operaciones a desarrollar durante esta prueba. Son doce y se describen a continuación: Leer ATB :
Permite la lectura de un antibiograma que determinará el esquema de susceptibilidad antibiótica de una muestra determinada. Antes de iniciar la lectura, el sistema de control incorporado chequea sistemática y automáticamente si el sensor ha sido lavado y compensado y si la bomba peristáltica está trabajando correctamente. Este procedimiento resulta transparente para el usuario siempre que no se detecten dificultades. En caso contrario, el usuario será informado de los problemas detectados durante el autochequeo. Cuando se ejecuta la primera lectura de un ATB del día, el sistema procederá a compensar automáticamente el punto de operación del sensor para lo cual, de forma totalmente interactiva, guiará al usuario durante este proceso. Una vez concluido el ajuste, el sistema informará la "Constante de Compensación", la cual es un valor numérico que normalmente por debajo de 2.00. Sin embargo, valores por encima de 2.00 pero menores de 2.50 serán aceptados y el usuario será advertido sobre la conveniencia de instalar un nuevo sensor. Una vez que se hayan satisfecho todos los requerimientos técnicos, se presentará la pantalla de edición donde se llenan los datos generales del caso que se va a procesar. La plantilla para la edición de los datos del paciente está integrada por los siguientes campos:
HOJA DE SUSTITUCIÓN (REGLA 26) - Historia Clínica
- Nombre
- 1er Apellido
- 2do Apellido - Edad
- Sexo
- Fecha de examen
- Muestra *
- Descripción - Microorganismo *
- Doctor
- Nosocomial
- Fallecido En este momento dos comandos estarán disponibles:
• Regresar: Regresa al Menú ATB.
• Aceptar: El seleccionar esta opción llevará al usuario a comenzar la medición, donde cada antibiograma se identifica mediante su numero de caso. En la Barra de Título de la ventana de medición aparecerá la indicación de insertar o retirar el sensor de la muestra según convenga. Simultáneamente, un tono de audio de frecuencia grave indicará que el sistema espera por el inicio de la medición de un pocilio mientras que otro tono de audio, de frecuencia más aguda, indicará que la medición correspondiente a ese pocilio ha terminado y que se debe retirar el sensor. Este procedimiento será repetido para cada pozo de la tira. El conjunto de antibióticos en uso y el número del caso se mostrarán en esta ventana. Durante la medición, el sistema constantemente monitorea cualquier error de operación posible, ofreciendo instrucciones para resolver cualquier conflicto que se pueda producir. El siguiente diagrama ilustra la secuencia de cada ciclo de lectura:
HOJA DE SUSTITUCIÓN (REGLA 26) CICLO DE LECTURA
Mensaje: Insertar el sensor + Sonido Grave => Sensor dentro del pocilio + Valor de la lectura
Mensaje: Extraer el sensor + Sonido Agudo => Retirar el Sensor del pocilio y pasar al próximo.
Durante la medición, las opciones disponibles son las siguientes :
• Pozo anterior: Salta atrás. Permite repetir la medición del pozo anterior al que se está midiendo. Esta función es útil cuando se ha detectado un valor inadecuado y se quiere corroborar la medición.
• Próximo pozo: Salta al pocilio siguiente. Permite proseguir con la medición del pozo siguiente al que se está midiendo y abandonar la lectura del actual. • Regresar: Cancela el proceso de medición del antibiograma y regresar a la opción anterior.
Al concluir normalmente una medición, se mostrarán los resultados del antibiograma, donde se clasifica la tolerancia del germen a la acción de los antibióticos a él enfrentados. Para cada antibiótico se definirá uno de tres posibles efectos: SENSIBLE, INTERMEDIO o RESISTENTE así como el porciento de inhibición de crecimiento proporcionado por cada uno conjuntamente con los valores que resultaron de las lecturas de cada pozo. Los resultados se presentan en unidades normalizadas con respecto al valor del Control Negativo.
Otro parámetro suministrado es el Crecimiento Mínimo Admisible el cual permite analizar si el índice de Crecimiento del microorganismo fue suficiente para garantizar la validez del antibiograma.
Adicionalmente, el sistema de control incorporado proporciona una clasificación de validación del antibiograma como medida de confiabilidad de los resultados obtenidos. Esta clasificación puede ser:
HOJA DE SUSTITUCIÓN (REGLA 26) - Antibiograma Satisfactorio: La medición realizada es lícita y los resultados son confiables.
Antibiograma No Confiable: No ha sido alcanzado el Crecimiento Mínimo Admisible. - Antibiograma No Válido: El análisis matemático del Factor de Inhibición arroja un conjunto de datos anormales. URO-ATB :
Permite vincular un Antibiograma a un Urocultivo ya existente, heredando los datos del paciente suministrados durante la edición del URO. Generalmente esta opción se utiliza cuando se desea realizar un antibiograma a una muestra de orina previamente detectada como positiva. Para seleccionar el caso al cual se le realizará la prueba, solamente se requiere el número consecutivo y la fecha del examen. Este tipo de casos se identificarán con la palabra URO-ATB y el número del caso en la base de datos de Urocultivo. McFarland: Activa el calibrador McFarland para monitorear el crecimiento microbiano.
Base de Datos:
Permite mostrar y procesar los datos almacenados de casos de antibiogramas. El procedimiento es similar al descrito en MENÚ DE UROCULTIVOS (Base de Datos) . Opciones :
De forma semejante a la opción existente dentro MENÚ DE UROCULTIVOS, es posible escoger entre las siguientes variantes de operación:
- Habilitar la impresión automática de los reportes de los casos de antibiogramas inmediatamente después de terminar la medición.
- Activar o desactivar la señal sonora que indica el inicio y fin de las mediciones de cada pocilio.
- Decidir sobre el uso de colores en la presentación del reporte.
HOJA DE SUSTITUCIÓN (REGLA 26) - Establecer el tiempo que mediará entre las dos lecturas de un urocultivo (normalmente el programa establecerá un intervalo de 4:00 horas). An tibí óticos: Permite poner en uso sistemático un juego de antibióticos seleccionado, así como editar nuevos juegos, modificar y/o borrar los ya existentes. El esquema de antibióticos definido por el usuario tiene que jugar exactamente con los discos de antibióticos que existen en la placa o tira. Seleccionando la opción "Antibióticos" se brindaran las siguientes posibilidades:
• Nuevo: Permite crear un esquema para un conjunto de antibióticos. Después de la selección, el usuario preguntara por el número de tiras y el número de pozos por tira con el objetivo de construir el esquema correspondiente (Normalmente 2 x 8).
Luego, se mostrará una ventana con el objetivo de llenar el nombre conjunto y seleccionar, a partir de la lista suministrada, cada antibiótico que sera usado. • Ver: Permite ver o imprimir un conjunto específico de antibióticos .
• Modificar: Cambia la distribución o elimina antibióticos de un conjunto específico.
• Eliminar: Elimina un conjunto completo de antibióticos. • Actualizar: Predetermina el conjunto de antibióticos que serán usados en los próximos antibiogramas . Para cambiar la colocación actual, el conjunto deseado debe ser seleccionado y la opción "Actualizar" ser activada después que la selección es hecha. • Seleccionar todos: Selecciona todos los conjuntos de antibióticos existentes.
• No seleccionar: De a sin seleccionar cada conjunto de antibióticos previamente elegido.
• Regresar: Vuelve a la opción previa.
HOJA DE SUSTITUCIÓN (REGLA 26) Estabilidad:
Este procedimiento es usado para probar el funcionamiento del sensor. Parámetros estadísticos tales como valor medio de las mediciones, desviación standard y coeficiente de varianza de un conjunto de 16 muestras idénticas son calculados. Los resultados son almacenados en una base de datos desde donde pueden ser recuperados para visualizar o imprimir, a selección del usuario.
Para su ejecución, emplee agua destilada para cada una de las 16 mediciones.
Los valores esperados para estos parámetros estadísticos son: 2000 < Valor Medio: < 3000 Desviación Standard < 20 Coeficiente de Varianza < 2.00 Limpieza el Sensor:
Permite ejecutar un procedimiento para realizar la limpieza del sensor a voluntad del operador, en el cual, a diferencia del que el sistemáticamente orienta durante la operación normal del equipo, se pueden programar los distintos tiempos que integran el proceso. Esta limpieza consta de 3 etapas básicas:
1. Un primer tiempo durante el cual se circula detergente biológico al sensor a flujo empleando la bomba peristáltica.
2. Un segundo tiempo de enjuague con agua destilada 3. Un último paso de secado del sensor.
Calibrar:
Ejecuta el proceso de calibración del sensor. Se define como calibración al procedimiento mediante el cual se determinan los niveles de respuesta de cada sensor frente a un crecimiento bacteriano establecido y a la actualización de este parámetro en la medida que transcurre el tiempo de utilización del mismo. La calibración debe llevarse a cabo siempre que se instala un nuevo sensor. Adicionalmente, el sistema está programado para recomendar, con cierta periodicidad, la conveniencia de realizar esta operación con fines de actualización. Este proceso no constituye una rutina
HOJA DE SUSTITUCIÓN (REGLA 26) diaria por lo que se recomienda su ejecución siempre que aparezca la sugerencia automática del sistema en aras de garantizar el nivel de sensibilidad requerido para un buen funcionamiento . Para realizar la calibración del sensor, disponga de un frasco con medio de cultivo estéril (C-) y de otro con medio de cultivo inoculado (C+) preferiblemente con Staphylococcus aureus, crecido hasta un nivel de 0.5 McFarland. Utilice el calibrador McFarland para determinar el crecimiento adecuado. Utilice un segundo vial conteniendo medio de cultivo esterilizado con el objetivo de obtener un índice McFarland 0 (C-) .
Seleccione "Calibrar" a partir del Menú ATB y siga el procedimiento interactivo con el objetivo de ejecutar tres lecturas alternativas de un (C+) seguido de un (C-) .
El sistema calculara el valor medio de las tres mediciones y el resultado final sera almacenado después de seleccionar la opción "Aceptar". Chequear flujo: Este es un recurso auxiliar para facilitar el chequeo del caudal y la continuidad de liquido suministrado por la bomba peristáltica. La discontinuidad del flujo de muestra puede acarrear errores de medición. El flujo se mide utilizando una probeta graduada de 10 mi y un recipiente con agua destilada.
Para ello, introduzca el extremo de entrada y el de salida de la manguera del sensor (ambos) dentro del recipiente con agua y active el comando PROCEDER. A partir de este momento, el programa lo guiara a través del proceso. Finalmente, verifique que el flujo de la bomba peristáltica se encuentre en un entorno de 2,4 ml/min.
De no alcanzarse el caudal adecuado, chequee el estado de la manguera de Silicona, especialmente en la porción que se encuentra dentro del cassette de la bomba peristáltica. Observe también la tensión de la misma y el ajuste del
HOJA DE SUSTITUCIÓN (REGLA 26) cassette. Si la manguera está excesivamente dañada o colapsada, instale una nueva. Ayuda:
Suministra información al usuario sobre el sistema y cada una de sus operaciones y opciones. Regresar :
Regresa al Menú Principal.
Ejemplo 6: Resultados de estudios clínicos realizados en Cuba: Un total de 567 muestras de orina fueron analizadas para la presencia de números significativos de uropatógenos empleando el sistema de la presente invención, y comparando los resultados con el método de referencia CLED (método semi- cuantitativo de cultivo en placa de Clarigde) . Del total analizado, 126 muestras fueron positivas por CLED, mientras que 108 lo fueron empleando el presente sistema, aunque tan sólo en 4 horas, es decir mientras que el método CLED da los resultados entre las 24 y 48 horas después de la inoculación del medio de cultivo, el presente sistema fue 86.1% efectivo en detectar las muestras positivas a tan sólo 4 horas después de la inoculación de la muestra. De las 441 muestras negativas encontradas por CLED, el presente sistema fue capaz detectar 440 negativas, igualmente en un período de 4 horas, para una tasa de efectividad de 99.8%. La correspondencia general del presente sistema con respecto al método tradicional CLED fue de un 89.1%.
Ejemplo 7: Resultados de estudios clínicos realizados en Canadá: En otro estudio realizado en Canadá, se investigaron 1,016 muestras de orina de forma prospectiva. Los resultados obtenidos con el presente sistema fueron comparados con el método CLED para la detección de bacteriuπa. Para el cultivo de rutina, 0.001 mi de orina fueron sembrados en placas de agar CLED, empleando una pipeta calibrada. Este método detecta > 1000 unidades formadoras de colonias/ml (cfu/ml).
HOJA DE SUSTITUCIÓN (REGLA 26) Lecturas de la turbidez fueron hechas a tiempo 0, 2, 3, 4 y 5 horas después de la inoculación.
En ambos casos se detectaron 184 muestras positivas (>0.4 unidades McFarland) . La distribución del tiempo y la correlación con un cultivo de rutina de estas muestras se observan en la Tabla 1.
TABLA 1.
Figure imgf000042_0001
Como se puede apreciar, la sensibilidad tota_l del sistema de la presente invención fue de un 86.4%. Su especificidad, es decir, la habilidad para detectar muestras verdaderos negativos según lo definido por el cultivo de rutina fue de 98.5%.
BREVE DESCRIPCIÓN DE LOS DIBUJOS:
Figura 1 muestra el esquema integral del equipo de la presente invención, en una vista general. Como se puede observar este equipo está basado en un lector turbidimetrico a microflujo (1) , el cual se alimenta mediante una bomba peristáltica (2) y se ajusta a un equipo electrónico de alta sensibilidad (3) que detecta cambios turbidimétπcos de dicho lector (1) mediante un método de medición que permite, empleando un grupo de algoritmos, detectar pequeñas variaciones turbidimetricas y proseguir apropiadamente con los datos obtenidos. Este está formado por un circuito de medición turbidimétrica (4) conectado a través de una tarjeta de inferíase a una unidad central de procesamiento (5) . Esta unidad recibe todos los comandos del teclado (6) y envía los resultados a una pantalla (7). Este puede detectar pequeñas
HOJA DE SUSTITUCIÓN (REGLA 26) variaciones de turbidez que ocurren en el medio de cultivo inoculado con la muestra que sera analizada.
Figura 2 representa un esquema detallado de la estructura interna del lector turbidimetrico (1) de la Figura 1. La boquilla del lector (8) es introducida en la muestra a analizar, la cual entonces circula a través de este con la ayuda de la bomba peristáltica (2) de la Figura 1. La c mara de medición está compuesta por una manguera plástica (9) introducida m un capilar de vidrio (10) . El paso de la luz (11) el diámetro del orificio a través del cual la luz que viene del fotoemisor (12) debe atravesar para llegar a la cámara de medición (9 y 10) . La intensidad de la radiación luminosa, transmitida a través de la cámara de medición (9 y 10) dependerá del grado de turbidez de la muestra y sera medida por el fotodetector (13) . La radiación producida por el fotoemisor (12), es estabilizada mediante un lazo electrónico de control automático convencional. Figura 3 muestra el lector turbidimétrico trabajando, mediante un diagrama de flujo. Primeramente, la presencia de del lector turbidimetπco es verificada por medio de la subrutma de detección y si éste está presente, entonces se chequea la existencia de la bomba peristáltica, la cual es necesaria para el funcionamiento del lector turbidimetrico y para la ejecución de la subrutma de limpieza, además de que estabiliza el flujo de trabajo. Una vez que todos los parámetros han sido regulados, el lector turbidimetrico estará listo para trabajar. Cualquier subrutma que sea violada, inhabilitará el funcionamiento del lector turbidimétπco . Figura 4 muestra los componentes del juego diagnostico de la presente invención, constituido por un frasco que contiene medio de cultivo y el polímero, el soporte de la tira y la propia tira, empleada en la determinación del antibiograma de la muestra a analizar.
HOJA DE SUSTITUCIÓN (REGLA 26) Figura 5 muestra dos pantallas relacionadas con el programa que sigue los principales procedimientos para la ejecución del método objeto de la invención.
Pantalla del Menú Principal (5A) : Constituye el punto de partida para todas las operaciones que. se deseen realizar con el mismo.
Nueve iconos definen las opciones disponibles dentro del menú principal, desde donde se controlan todos las acciones del sistema. Estas son: URO: Activa el menú de iconos del urocultivo.
ATB: Activa el menú de iconos del antibiograma.
McFarland: Permite medir el contenido del frasco en la unidad de calibración (escala McFarland) .
Base de Datos: Permite acceder a la base de datos de antibiogramas o urocultivos.
Opciones: Para cambiar la configuración del sistema.
Información: Muestra información administrativa del sistema.
DIRAMIC: Brinda la dirección del productor del sistema.
Ayuda: Muestra información sobre la opción actual. Salir: Abandonar el sistema.
Pantalla del Menú de Urocultivos (5B) : Representa un menú específico para el tratamiento particular de los urocultivos el cual contiene las operaciones a desarrollar durante estas pruebas, como una representación de las opciones principales que ofrece el Menú Principal.
HOJA DE SUSTITUCIÓN (REGLA 26)

Claims

REIVINDICACIONES :EQUIPO, JUEGO Y MÉTODO PARA EL DIAGNÓSTICO MICROBIOLÓGICO.
1. Equipo para diagnóstico microbiológico caracterizado porque presenta dos dispositivos fundamentales: un minilector turbidimétrico estático y un sensor a microflujo, accionado por una bomba peristáltica y acoplado a una microcomputadora mediante una tarjeta de inferíase, y opcionalmente un aditamento constituido por una lámpara UV para la identificación de E. coli en las muestras analizadas.
2. Equipo según la reivindicación 1 caracterizado porque el minilector turbidimétrico está constituido por una pequeña cámara de medición compuesta por una manguera plástica (9) introducida en un capilar de vidrio (10) la cual se ilumina por medio de un paso de luz (11), orificio que permite que la luz proveniente de un fotoemisor (12) llegue a la muestra que se .analiza y que circula a través de la cámara de medición (9 y 10) con la ayuda de una bomba peristáltica (2) .
3. Equipo según la reivindicación 1 caracterizado porque el sensor a microflujo está constituido por un fotodetector (13) que mide el grado de turbidez existente en la muestra en dependencia de la intensidad de la radiación luminosa que llega a él después de atravesar a la cámara de medición (9 y 10) .
4. Equipo según las reivindicaciones de la 1 a la 3 caracterizado porque el conjunto constituido por el minilector turbidimétrico y el sensor a microflujo está acoplado a un equipo electrónico de alta sensibilidad (3) que incluye un lazo electrónico de control automático encargado de estabilizar la radiación emitida por el fotoemisor (12) y detecta por medio del fotodetector (13) los cambios de turbidez que se producen en la muestra que circula a través de la cámara de medición (9 y 10) del lector turbidimétrico
(1), así como está conectado a una unidad de procesamiento
HOJA DE SUSTITUCIÓN (REGLA 26) central (5) que recibe los comandos de un teclado (6) y entrega los resultados en un monitor (7).
5. Juego para el diagnóstico microbiológico caracterizado porque emplea una tira no transparente que incluye 2 posiciones libres para los controles positivo y negativo y además otras de 10 a 22 posiciones donde pueden depositarse discos de antibióticos a opción; un frasco de cristal que contiene medio de cultivo y un polímero, dicho frasco conteniendo opcionalmente para la identificación de E. coli substratos enzimáticos y aditivos que optimizan dicha actividad enzimática, así como un frasco adicional opcional que contiene un reactivo para el revelado de dicha actividad enzimática.
6. Juego diagnóstico según la reivindicación 5 caracterizado porque el medio de cultivo empleado es medio líquido Muller
Hinton (OXOID) modificado.
7. Juego diagnóstico según la reivindicación 5 caracterizado porque el polímero que se le añade al medio de cultivo es un polisacárido lineal de fórmula estructural CH3-CH3-Ch3-N, de peso molecular aproximado entre 50 000 y 150 000, el cual se añade a dicho medio a una concentración comprendida en el rango entre el 0.05 y el 1%.
8. Juego diagnóstico según la reivindicación 5 caracterizado porque para la identificación de E. coli, el frasco que contiene el medio de cultivo y el polímero, contiene adicionalmente los substratos MU- (-D-glucorónido y el L- Triptofano solubilizados en Fosfato de Potasio 50 mM, pH entre 7-7,5.
9. Juego diagnóstico según la reivindicación 5 caracterizado el reactivo revelador empleado es el reactivo de
Kovacksmodificado, constituido por 2g de para- dimetilaminobenzaldehído diluido en etanol y 20 mi de Acido Clorhídrico concentrado.
10. Método para el diagnóstico microbiológico caracterizado porque comprende los siguientes pasos:
HOJA DE SUSTITUCIÓN (REGLA 26) a) Se coloca una alícuota de la muestra obtenida directamente de la fuente que la contiene en el frasco de cristal que contiene el medio de cultivo, el polímero y opcionalmente los substratos seleccionados y los aditivos necesarios para la identificación, determinándose la turbidez de dicho frasco con el contenido anterior a tiempo 0; b) Se incuba dicho frasco entre 2 y 6 horas a temperatura entre 35 y 37°C; c) Se determina el índice de crecimiento entre el tiempo 0 y el tiempo seleccionado de incubación y se discriminan las muestras positivas de las negativas en dependencia del incremento de la turbidez, siendo positivas aquellas con incrementos superiores a 0.08 unidades McFarland, de las cuales se toman alícuotas para pasos ulteriores; d) Para la ejecución del antibiograma, se toma una alícuota de la muestra positiva determinada en el paso c) y se transfiere a un nuevo frasco de dilución conteniendo medio fresco, el cual se dispensa seguidamente a razón de 200 μl en cada pocilio de prueba de la tira, y se procede a su incubación entre 3 y 4 horas a temperatura entre 35 y 37°C; e) La placa se lee posicionando el sensor a microflujo en cada pocilio, siguiendo las instrucciones que emite el programa diseñado al efecto; f) A partir de los valores de densidad obtenidos, se calcula el índice de crecimiento en los controles, y los % de inhibición generados para la muestra por cada antibiótico, y de acuerdo al nivel obtenido se adjudica el criterio de sensibilidad en el rango entre 60 y 100% de inhibición, previo chequeo de la inclusión del resultado entre el valor mínimo y máximo de crecimiento admisible para el microorganismo en cuestión; g) Los resultados obtenidos a partir del paso anterior y los datos editados de cada muestra se pasan automáticamente para crear las bases de datos correspondientes para el establecimiento del antibiograma;
HOJA DE SUSTITUCIÓN (REGLA 26) h) Para la identificación de las muestras positivas infestadas por E. coli se somete una alícuota del frasco crecido en el paso c) a una fuente de luz U.V., detectándose la fluorescencia generada en la misma por la liberación de 4- metilumbeliferona, comprobándose a continuación la formación de Indol mediante el revelado con reactivo de Kovacks modificado; i) En el caso de que la muestra no haya sido identificada como E. coli en el paso h) , la alícuota obtenida previamente en el paso c) se somete a los procedimientos de identificación tradicionales.
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/CU1998/000004 1997-04-18 1998-04-20 Equipo, juego y metodo para el diagnostico microbiologico WO1998047999A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP98916796A EP0976821B1 (en) 1997-04-18 1998-04-20 Equipment, kit and method for microbiological diagnosis
CA002286845A CA2286845C (en) 1997-04-18 1998-04-20 Equipment, kit and method for microbiological diagnosis
DE69840571T DE69840571D1 (de) 1997-04-18 1998-04-20 Diagnostische mikrobiologische testvorrichtung und verfahren
BR9809579-0A BR9809579A (pt) 1997-04-29 1998-04-20 Equipamento, kit e método para diagnóstico microbiológico
US09/426,074 US6537772B1 (en) 1997-04-18 1999-10-18 Equipment, kit and method for microbiological diagnosis

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CU1997045A CU22549A1 (es) 1997-04-18 1997-04-18 Equipo y método para el diagnóstico rápido microbiológico
CU45/97 1997-04-18
CU48/97 1997-04-29
CU1997048A CU22708A1 (es) 1997-04-29 1997-04-29 Juego para el diagnóstico microbiológico
CU1997065 1997-06-06
CU65/97 1997-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/426,074 Continuation US6537772B1 (en) 1997-04-18 1999-10-18 Equipment, kit and method for microbiological diagnosis

Publications (1)

Publication Number Publication Date
WO1998047999A1 true WO1998047999A1 (es) 1998-10-29

Family

ID=27179615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU1998/000004 WO1998047999A1 (es) 1997-04-18 1998-04-20 Equipo, juego y metodo para el diagnostico microbiologico

Country Status (9)

Country Link
US (1) US6537772B1 (es)
EP (1) EP0976821B1 (es)
CN (1) CN1125172C (es)
AT (1) ATE423190T1 (es)
CA (1) CA2286845C (es)
DE (1) DE69840571D1 (es)
ES (1) ES2322679T3 (es)
PT (1) PT976821E (es)
WO (1) WO1998047999A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10478821B2 (en) 2017-04-20 2019-11-19 Biomerieux, Inc. Optical density instrument and systems and methods using the same
US10829797B2 (en) 2015-06-24 2020-11-10 Q-Linea Ab Method for determining antimicrobial susceptibility of a microorganism

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7418399B2 (en) * 1999-03-10 2008-08-26 Illinois Institute Of Technology Methods and kits for managing diagnosis and therapeutics of bacterial infections
US20070037276A1 (en) * 2004-02-23 2007-02-15 Eudes Francois Marie De Crecy Continuous culture apparatus with mobile vessel, allowing selection of fitter cell variants and producing a culture in a continuous manner
US7939315B2 (en) * 2004-02-23 2011-05-10 Eudes Francois Marie De Crecy Continuous culture apparatus with mobile vessel, allowing selection of filter cell variants
US8313643B1 (en) * 2008-10-20 2012-11-20 David Baltimore System and method for analyzing a biological sample
RU2390015C1 (ru) * 2008-12-29 2010-05-20 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" СПОСОБ ИЗБИРАТЕЛЬНОЙ ИДЕНТИФИКАЦИИ ТРИПТОФАНА В СМЕСИ α-АМИНОКИСЛОТ
DE102009004371A1 (de) * 2009-01-08 2010-07-15 Papst Licensing Gmbh & Co. Kg Vorrichtung und Verfahren zum Messen der Aktivität von Enzymen nach Inhibitorentzug
BRPI1015461A2 (pt) * 2009-04-29 2015-09-01 Eudes De Crecy Organismo evolucionariamente modificado, método de produção do organismo e de produto final, fábrica de biocombustível, método para produzir um produto de biocombustível.
US20130130311A1 (en) * 2010-07-27 2013-05-23 Yeda Research And Development Co., Ltd. Methods and systems for assessing clonality of cell cultures
CN106916728B (zh) * 2017-04-18 2023-10-27 朱红 一种磁力搅拌式药敏分析仪器以及配套试剂盒
CN112286267A (zh) * 2020-10-28 2021-01-29 合肥猎知科技有限公司 一种基于大数据的室内菌菇种植环境智能监测分析系统
CN116858784A (zh) * 2023-06-02 2023-10-10 湖北丛光传感技术有限公司 一种电子视镜

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506544A (en) 1964-10-09 1970-04-14 Magna Corp Method of determining microbial populations,enzyme activities,and substrate concentrations by electrochemical analysis
US3609040A (en) * 1969-02-24 1971-09-28 Lilly Co Eli Automated system for performing sample measurements, dilutions and photometric measurements
US3712144A (en) * 1971-03-10 1973-01-23 Lilly Co Eli Automated system for performing sample measurement, dilutions and photometric measurements
US3714445A (en) 1969-11-06 1973-01-30 Inst Nat Rech Agrenomique Apparatus for optical measurements of microbial cultures
US3819278A (en) 1971-07-23 1974-06-25 H Muller Turbidity measuring device with means for preventing the formation of bubbles
US3832532A (en) 1972-08-18 1974-08-27 Pfizer Method and apparatus for testing antibiotic susceptibility
US3852532A (en) 1973-05-30 1974-12-03 Gen Electric Control system for an electrical power line
US3889011A (en) 1970-07-23 1975-06-10 Lever Brothers Ltd Fat products
US3895661A (en) 1972-08-18 1975-07-22 Pfizer Cuvette apparatus for testing a number of reactants
US4021120A (en) 1974-03-18 1977-05-03 Dr. Ing. Hans Mueller Method of measuring the turbidity of gas-containing liquid mediums with microorganisms
WO1980002433A1 (en) 1979-05-02 1980-11-13 Nat Res Dev The identification of bacteria
US4482967A (en) 1981-09-18 1984-11-13 Dionex Corporation Conductivity detector and method
GB2142433A (en) 1983-06-29 1985-01-16 Metal Box Plc Apparatus for detecting micr-organisms
US4725148A (en) 1984-06-07 1988-02-16 Komatsugawa Chemical Engineering Co., Ltd. Turbidimeter employing a semiconductor laser diode and a photodiode
EP0304406A2 (en) * 1987-08-13 1989-02-22 Microbo S.R.L. Apparatus for automatically counting the microorganisms possibly present in liquids, particularly in waters for human use
EP0333560A1 (fr) * 1988-03-08 1989-09-20 Chemunex Procédé de détermination quantitative de micro-organismes
GB2221986A (en) 1988-08-19 1990-02-21 Mandel William R Apparatus and method for optical density measurements of biomass processes
WO1994007123A1 (en) * 1992-09-18 1994-03-31 Tam Lisa A Method and device for measuring cell density in microbiological cultures and other reflectometric properties of liquids
US5345395A (en) * 1991-10-31 1994-09-06 Baxter Diagnostics Inc. Specimen processing and analyzing systems and methods using photometry
WO1995003424A1 (de) 1993-07-21 1995-02-02 Merck Patent Gmbh Kulturmedium für den gleichzeitigen nachweis von coliformen bakterien und escherichia coli
US5637082A (en) * 1996-02-22 1997-06-10 Haemonetics Corporation Adaptive apheresis apparatus

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506544A (en) 1964-10-09 1970-04-14 Magna Corp Method of determining microbial populations,enzyme activities,and substrate concentrations by electrochemical analysis
US3609040A (en) * 1969-02-24 1971-09-28 Lilly Co Eli Automated system for performing sample measurements, dilutions and photometric measurements
US3714445A (en) 1969-11-06 1973-01-30 Inst Nat Rech Agrenomique Apparatus for optical measurements of microbial cultures
US3889011A (en) 1970-07-23 1975-06-10 Lever Brothers Ltd Fat products
US3712144A (en) * 1971-03-10 1973-01-23 Lilly Co Eli Automated system for performing sample measurement, dilutions and photometric measurements
US3819278A (en) 1971-07-23 1974-06-25 H Muller Turbidity measuring device with means for preventing the formation of bubbles
US3832532A (en) 1972-08-18 1974-08-27 Pfizer Method and apparatus for testing antibiotic susceptibility
US3895661A (en) 1972-08-18 1975-07-22 Pfizer Cuvette apparatus for testing a number of reactants
US3852532A (en) 1973-05-30 1974-12-03 Gen Electric Control system for an electrical power line
US4021120A (en) 1974-03-18 1977-05-03 Dr. Ing. Hans Mueller Method of measuring the turbidity of gas-containing liquid mediums with microorganisms
WO1980002433A1 (en) 1979-05-02 1980-11-13 Nat Res Dev The identification of bacteria
US4482967A (en) 1981-09-18 1984-11-13 Dionex Corporation Conductivity detector and method
GB2142433A (en) 1983-06-29 1985-01-16 Metal Box Plc Apparatus for detecting micr-organisms
US4725148A (en) 1984-06-07 1988-02-16 Komatsugawa Chemical Engineering Co., Ltd. Turbidimeter employing a semiconductor laser diode and a photodiode
EP0304406A2 (en) * 1987-08-13 1989-02-22 Microbo S.R.L. Apparatus for automatically counting the microorganisms possibly present in liquids, particularly in waters for human use
EP0333560A1 (fr) * 1988-03-08 1989-09-20 Chemunex Procédé de détermination quantitative de micro-organismes
GB2221986A (en) 1988-08-19 1990-02-21 Mandel William R Apparatus and method for optical density measurements of biomass processes
US5345395A (en) * 1991-10-31 1994-09-06 Baxter Diagnostics Inc. Specimen processing and analyzing systems and methods using photometry
WO1994007123A1 (en) * 1992-09-18 1994-03-31 Tam Lisa A Method and device for measuring cell density in microbiological cultures and other reflectometric properties of liquids
WO1995003424A1 (de) 1993-07-21 1995-02-02 Merck Patent Gmbh Kulturmedium für den gleichzeitigen nachweis von coliformen bakterien und escherichia coli
US5637082A (en) * 1996-02-22 1997-06-10 Haemonetics Corporation Adaptive apheresis apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAUER, A. W. ET AL., J. CLIN. PATHOL., vol. 45, 1966, pages 493 - 496
KOVACKS, N. EINE: "vereinfachte Methode zum der Nachweis der Indolbildung durch Bakterien.", Z. IMMUNITATSFORSCH., vol. 55, 1928, pages 311 - 315

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10829797B2 (en) 2015-06-24 2020-11-10 Q-Linea Ab Method for determining antimicrobial susceptibility of a microorganism
US12203125B2 (en) 2015-06-24 2025-01-21 Q-Linea Ab Device for determining antimicrobial susceptibility of a microorganism
US10478821B2 (en) 2017-04-20 2019-11-19 Biomerieux, Inc. Optical density instrument and systems and methods using the same
US10625265B2 (en) 2017-04-20 2020-04-21 Biomerieux, Inc. Optical test platform
US11141733B2 (en) 2017-04-20 2021-10-12 Biomerieux, Inc. Optical density instrument and systems and methods using the same
US11148144B2 (en) 2017-04-20 2021-10-19 Biomerieux, Inc. Method, apparatus, and computer program product for controlling components of a detection device
US11192112B2 (en) 2017-04-20 2021-12-07 Biomerieux, Inc. Optical test platform
US11285487B2 (en) 2017-04-20 2022-03-29 Biomerieux, Inc. Tip resistant optical testing instrument
US11673141B2 (en) 2017-04-20 2023-06-13 Biomerieux, Inc. Method, apparatus, and computer program product for controlling components of a detection device
US11779931B2 (en) 2017-04-20 2023-10-10 Biomerieux Inc. Optical density instrument and systems and methods using the same
US11938483B2 (en) 2017-04-20 2024-03-26 Biomerieux, Inc. Optical test platform

Also Published As

Publication number Publication date
ATE423190T1 (de) 2009-03-15
DE69840571D1 (de) 2009-04-02
EP0976821B1 (en) 2009-02-18
PT976821E (pt) 2009-05-25
ES2322679T3 (es) 2009-06-24
EP0976821A1 (en) 2000-02-02
CN1125172C (zh) 2003-10-22
CN1265140A (zh) 2000-08-30
CA2286845C (en) 2009-01-13
US6537772B1 (en) 2003-03-25
CA2286845A1 (en) 1998-10-29

Similar Documents

Publication Publication Date Title
US5164796A (en) Apparatus and method for detection of microorganisms
WO1998047999A1 (es) Equipo, juego y metodo para el diagnostico microbiologico
US5164301A (en) Process and kit for detecting microbial metabolism
ES2700774T3 (es) Método para la investigación bacteriológica de una muestra biológica y dispositivo relacionado
EP0333253B1 (en) Apparatus and device for detecting microorganisms
Bell The CDS disc method of antibiotic sensitivity testing (calibrated dichotomous sensitivity test)
ES2089009T5 (es) Aparato y metodos para ensayar la susceptibilidad antimicrobiana de microorganismos.
Sapey et al. Rapid diagnosis of spontaneous bacterial peritonitis with leukocyte esterase reagent strips in a European and in an American center
US7745169B2 (en) Device and method for the detection and enumeration of multiple groups of microorganisms
BR112013010096B1 (pt) Método de detecção de uma atividade biológica
JPH0773510B2 (ja) 微生物モニタリング装置
CA2016872C (en) Apparatus and method for detection of microorganisms
US20120122133A1 (en) Novel devices for the detection of the presence and/or activity of proteases in biological samples
EP0538450A1 (en) Method and apparatus to detect bacterial contamination of transfusable blood
EP0025467B1 (en) Chromogenic chemical substrates for identification of microbial colonies
MXPA99009562A (es) Equipo, juego y metodo para el diagnostico microbiologico
US8298786B2 (en) Colorimetric method and relative device for bacterial load detection
Stocki et al. Asymptomatic bacteriuria screening for developing countries using a modified water quality test kit
RU2192642C2 (ru) Способ прогнозирования клинической эффективности антибактериального средства
JP2024173985A (ja) コンピュータプログラム、抗菌薬の効果推定システム及び抗菌薬の効果推定方法
MATSEN Problems that merit investigation in clinical microbiology laboratories
Wosnitzer et al. Rapid detection methods for bacteriol identification in urologic office laboratory
ITCA950007A1 (it) Kit diagnostico per l&#39;isolamento e la conta batterica delle urinocoltu re e suo impiego per la realizzazione di tale processo.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98805493.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN ID JP KR MX SG TR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2286845

Country of ref document: CA

Ref document number: 2286845

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09426074

Country of ref document: US

Ref document number: PA/a/1999/009562

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1998916796

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998916796

Country of ref document: EP

NENP Non-entry into the national phase

Ref document number: 1998544637

Country of ref document: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载