WO1997039167A1 - Decalaminage de surfaces metalliques - Google Patents
Decalaminage de surfaces metalliques Download PDFInfo
- Publication number
- WO1997039167A1 WO1997039167A1 PCT/GB1997/001045 GB9701045W WO9739167A1 WO 1997039167 A1 WO1997039167 A1 WO 1997039167A1 GB 9701045 W GB9701045 W GB 9701045W WO 9739167 A1 WO9739167 A1 WO 9739167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process according
- electrolysis
- bath
- anodic
- metal
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 33
- 239000002184 metal Substances 0.000 title claims abstract description 33
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 33
- 239000003792 electrolyte Substances 0.000 claims abstract description 20
- 238000013019 agitation Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 40
- 235000019832 sodium triphosphate Nutrition 0.000 claims description 13
- 230000007935 neutral effect Effects 0.000 claims description 9
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- 229910052783 alkali metal Inorganic materials 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims description 2
- 229910052936 alkali metal sulfate Inorganic materials 0.000 claims description 2
- -1 alkali metal tripolyphosphate Chemical class 0.000 claims description 2
- 238000009751 slip forming Methods 0.000 claims description 2
- 229910001963 alkali metal nitrate Inorganic materials 0.000 claims 1
- 238000004140 cleaning Methods 0.000 description 33
- 239000000243 solution Substances 0.000 description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 21
- 238000005554 pickling Methods 0.000 description 21
- 239000010439 graphite Substances 0.000 description 19
- 229910002804 graphite Inorganic materials 0.000 description 19
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 238000002604 ultrasonography Methods 0.000 description 17
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 229910052938 sodium sulfate Inorganic materials 0.000 description 9
- 235000011152 sodium sulphate Nutrition 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 238000002525 ultrasonication Methods 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 229910000975 Carbon steel Inorganic materials 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000010962 carbon steel Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 235000011007 phosphoric acid Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000021110 pickles Nutrition 0.000 description 2
- 230000000541 pulsatile effect Effects 0.000 description 2
- 238000009790 rate-determining step (RDS) Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910006639 Si—Mn Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F1/00—Electrolytic cleaning, degreasing, pickling or descaling
- C25F1/02—Pickling; Descaling
- C25F1/04—Pickling; Descaling in solution
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F1/00—Electrolytic cleaning, degreasing, pickling or descaling
- C25F1/02—Pickling; Descaling
- C25F1/04—Pickling; Descaling in solution
- C25F1/06—Iron or steel
Definitions
- the present invention is concerned with the removal of scale from surfaces of metal bodies, such as steel, in the form of steel wires, rods or the like.
- an applied electric potential causes a current to flow between a pickling solution and a metal surface.
- the current may be anodic or cathodic and will typically be of a density of 1 to 200 amps dm 2 .
- the process is carried out with the electrolyte bath at a substantially neutral pH.
- the process is typically used for removal of scale from steel, which is typically in the form of wire, rod or other continuously formed article.
- the pulsed electric potential has a current density is in the range 0.1 to 10 amp cm 2 , more preferably in the range 0.5 to 5 amp cm 2 .
- the non-aggressive electrolyte comprises a solution of an ammonium or alkali metal tripolyphosphate; typically, the alkali metal is sodium.
- the electric potential may be predominantly anodic or cathodic, typically with an anodic pulse duty cycle of 5 to 95% such as 45 to 75%.
- Figure 3 is a graph showing cleaning times for removal of oxide from heat scaled carbon steel wire as a function of pH and current density in a process according to the first embodiment of the invention
- Figure 4 is a graph showing cleaning times for removal of oxide from heat scaled carbon steel wire as a function of pH and current density in a process, not according to the invention, involving no ultrasonic treatment
- Figure 5 is a 3-dimensional plot showing cleaning times for the same wire in 10% aqueous NaCl solution at 65'C, as a function of the frequency and the anodic duty cycle;
- Figure 6 is a graph showing the percentage of scale (graphite) remaining at the wire surface, as a function of time, for current densities of 0.5 and 2.5 amps cm" 2 , according to the first embodiment of the present invention
- Figure 7 is a graph showing the time to clean as a function of current density at pH's of 0, 1 and 7, respectively;
- Figure 9 is a 3-dimensional surface plot of descaling time as a function of current density and temperature in neutral sodium chloride solution with an anode duty cycle of 95%;
- Figure 11 is a 3-dimensional surface plot of descaling time as a function of current density and temperature in neutral sodium chloride solution with an anode duty cycle of 95% and interspersed ultrasound;
- Figure 12 is a 3-dimensional surface plot of descaling time for removal of graphite scale as a function of anodic duty cycle and frequency at 60°C in neutral sodium sulfate with a current density of 1 Acm 2 ;
- Figure 13 is a 3-dimensional surface plot of descaling time for removal of graphite scale as a function of current density and pH at 60°C in sodium sulfate with an anode duty cycle of 95% and interspersed ultrasound;
- Figure 14 is a 3-dimensional surface plot of descaling time for removal of graphite scale as a function of current density and pH at 60°C and 1Hz in sodium sulfate with an anode duty cycle of 95% and continuous ultrasound
- Figure 15 is a 3-dimensional surface plot of the descaling time for oxide heat scale as a function of the anodic duty cycle and frequency at 60°C and 1 Hz in a 10% sodium tripolyphosphate solution at pH7 and 1.6 Acm 2 current density;
- Figure 17 is a 3-dimensional representation of the descaling time (again for oxide heat scale) vs electrolyte concentration and solution temperature, with data collected under the conditions of pH7, 1Hz at 95% anodic duty cycle;
- Figure 18 is a 2-dimensional graph of descaling time (again for oxide heat scale)vs anodic duty cycle at 1Hz frequency (for which the cleaning conditions were pH7, adjusted using orthophosphoricacid, 60°C, 10% sodium tripolyphosphate, samples being high carbon Si-Mn wire, pickled and subsequently scaled in air and 900°C for various times);
- Electrode 3 (in the form of wire) is the sample to be cleaned and electrode 4 is a graphitic carbon counter electrode. Both electrodes were mounted in a beaker 5 of electrolyte 6 which was in turn placed in an ultrasonic bath 7 containing water 10. The bath itself is thermostatically controlled in order to maintain a constant temperature. During the testing, the exposed area of the electrode 3 is submerged in the electrolyte 6. A Luggin capillary 8 was placed in contact with electrode 3 so that a reference electrode 9 could be used to measure the potential of electrode 3. This potential data was fed back to the Data Acquisition card in the computer 1 and recorded continuously.
- the electrolytic current was applied to the cell using a pulsatile alternating current (a typical waveform being shown schematically in Figure 2).
- the combined ultrasonic-electrolytic surface cleaning of wires was carried out using the cleaning cell apparatus shown schematically in Figure 1.
- the wire 3 to be cleaned was suspended in a volume of electrolyte 6 contained within a thermostated ultrasonic agitation bath 7.
- Electrolytic current was passed between the electrode wire 3 and a graphite counter electrode 4; in all cases the area of the electrode wire exposed to electrolyte was determined, in order to calculate surface current density.
- the flow of electrolytic current was established using a voltage controlled current source (galvanostat) 2 which was in turn actuated by voltage waveform controller 11.
- the electrolytic current passed in the cleaning cell was usually in the form of a pulsatile alternating current and a typical current waveform is shown schematically in Figure 2.
- time is the total time for which the electrolytic current is flowing at the sample surface.
- electrolytic current was interrupted and followed by a period of ultrasonication to remove any loosened scale immediately prior to visual evaluation of surface cleanliness.
- anodic duty cycle as defined with reference to Figure 2
- Figure 3 shows cleaning times for oxide removal from heat scaled carbon steel wire in 10% aqueous sodium sulfate solution at 65°C as a function of pH and current density.
- Figure 4 shows cleaning times for the same system subject to ultrasound electrolysis.
- Figure 5 show cleaning times for the same wire in 10% aqueous sodium chloride solution at 65°C as a function of frequency and anodic duty cycle (duty cycle shown as a percentage figure); identical cleaning times were measured for the same system subject to interspersed ultrasound-electrolysis.
- pH7 neutral conditions
- Figures 3 and 4 may be seen from Figures 3 and 4 that cleaning time in the sulfate medium decreases with increasing current density and decreasing pH; cleaning times at pH3 were immeasurably long (> 30 minutes).
- Figures 3 and 4 also show that a synergistic effect exists between ultrasound and electrolysis, in that cleaning times are about 30% shorter in the case of simultaneous electrolysis-ultrasonication.
- the rate determining step for oxide scale removal was the anodic dissolution of underlying metal.
- Oxide scale removal, leaving a clean, satin textured, metal surface is possible using combined ultrasound and anodic d.c. electrolysis in aqueous sodium sulfate solutions at pH ⁇ 3.
- Oxide scale removal, leaving a clean, satin textured, metal surface is possible using combined ultrasound and anodic d.c. electrolysis in aqueous sodium chloride solutions at pH7 but with significant anodic chlorine evolution.
- Graphite drawing lubricant (aqueous sodium sulfate).
- Figure 6 shows the percentage of scale (graphite) remaining at the wire surface as a function of time, for current densities of 0.5 and 2.5 amps cm 2 , with and without simultaneous ultrasound.
- Figure 7 shows time to clean as a function of current density at pH 0, 1 and 7; and Figure 8 shows the influence of anodic duty cycle on the time dependent cleaning curve at pH7 with a current density of 1 amp cm 2 .
- Figure 6 shows that, although the shapes of the cleaning curves are different for the cases of simultaneous electrolysis-ultrasonication and interspersed electrolysis- ultrasonication, there is no significant influence of simultaneous ultrasonication on time to clean (also see Figure 7).
- Figure 7 reveals that graphite removal is most rapidly accomplished at low pH but that the influence of pH is reduced a higher current densities.
- Figure 8 shows that cleaning rates increase markedly with increasing anodic duty cycle; however, it was also found that making the electrolytic current entirely anodic i.e. d.c. resulted in large increases in cleaning time together with significant amounts of anodic oxygen evolution due to water electrolysis.
- the rate determining step for graphite removal was the anodic dissolution of underlying metal.
- Oxide heat scale sodium tripolyphosphate
- a 10% sodium tripolyphosphate bath adjusted to pH 7 and raised to 60°C was set up.
- the current density for each sample was 1.6 Acm '2 , representing lcm length of metal surface exposed for descaling.
- the electrical properties were methodically varied, the anodic city cycle adjusted from 5 to 95% and the frequency of pulsed ranging from 0.3 to 1000 Hz.
- Descaling times obtained were compiled and arranged into a 3-dimensional graph shown in Figure 15. Optimum conditions appear to be obtained with an anodic duty cycle of 45-75% and frequencies 0.3 to 100 Hz. For these particular set of conditions, fastest cleaning times are achieved at an anodic duty cycle of 75% and at the lowest frequency of 0.3 or 1 Hz.
- Figure 17 shows a 3-dimensional representation of the descaling time results vs the tripolyphosphate concentration and solution temperature.
- the tripolyphosphate concentration was varied from 1-15% and the temperature of the bath adjusted at 20-60°C.
- the pH value was kept constant at 7 and the anodic duty cycle fixed at 95 % with a frequency of 1 Hz.
- Figure 18 visually summarises results obtained on descaling times using sodium tripolyphosphate with varying heat scale thickness.
- a furnace was allowed to reach the temperature of 900°C before being filled with argon gas. Samples were laid out flat on a ceramic boat, separated from each other, and subsequently left in the furnace for 15 minutes so as to allow them to reach 900°C. The furnace was subsequently flushed through with a fast stream of air for a period of 20 seconds and the samples were left to oxidise for 1-60 minutes. Once sealed for the required period of time, the boat was removed from the furnace and placed on a ceramic fibre mat to cool in air at room temperature. Samples were left to oxidise for 1,5, 10,15,30,45 and 60 minutes, to ensure a considerable increase in the scale thickness obtained.
- the cleaning solution was raised to 60°C and exposed to ultrasound for a minimum period of 15 minutes prior to experimentation. Electrical properties were set at IA and the current pulse fixed at 1 Hz. The anodic duty cycle was varied between 5-95% and its efficiency testing for the descaling of wire of various oxide thicknesses.
- Optimum descaling conditions for fastest descaling the metal samples were obtained at high electrolyte concentrations (10-15%) and high temperatures of 50-60°C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97916580A EP0894158A1 (fr) | 1996-04-15 | 1997-04-15 | Decalaminage de surfaces metalliques |
AU25190/97A AU2519097A (en) | 1996-04-15 | 1997-04-15 | Descaling of metal surfaces |
JP9536868A JP2000508711A (ja) | 1996-04-15 | 1997-04-15 | 金属表面のスケール除去 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9607810.0 | 1996-04-15 | ||
GBGB9607810.0A GB9607810D0 (en) | 1996-04-15 | 1996-04-15 | Removal of contaminants from steel surfaces |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997039167A1 true WO1997039167A1 (fr) | 1997-10-23 |
Family
ID=10792109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1997/001045 WO1997039167A1 (fr) | 1996-04-15 | 1997-04-15 | Decalaminage de surfaces metalliques |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0894158A1 (fr) |
JP (1) | JP2000508711A (fr) |
KR (1) | KR20000005451A (fr) |
AU (1) | AU2519097A (fr) |
CA (1) | CA2251782A1 (fr) |
GB (1) | GB9607810D0 (fr) |
PL (1) | PL329292A1 (fr) |
WO (1) | WO1997039167A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001053571A1 (fr) * | 2000-01-17 | 2001-07-26 | C-Tech Innovation Limited | Procede de traitement electrolytique |
GB2386907A (en) * | 2002-03-27 | 2003-10-01 | Isle Coat Ltd | Forming ceramic coatings on metals and alloys |
JP2016183393A (ja) * | 2015-03-26 | 2016-10-20 | Jfeスチール株式会社 | 電解研磨装置および電解研磨方法 |
ITPD20150095A1 (it) * | 2015-05-08 | 2016-11-08 | Ricerca Chimica S R L | Apparecchiatura per il decapaggio elettrochimico di superfici in acciaio inox e procedimento di decapaggio elettrochimico di dette superfici |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106929907B (zh) * | 2017-03-30 | 2018-11-06 | 浙江康盛股份有限公司 | 一种在线钢管表面除锈工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1090071A (en) * | 1963-04-02 | 1967-11-08 | Burndept Ltd | Cleaning by use of ultrasonic vibrations |
JPS5075530A (fr) * | 1973-11-09 | 1975-06-20 | ||
US4206028A (en) * | 1976-12-14 | 1980-06-03 | Inoue-Japax Research Incorporated | Electrochemical polishing system |
WO1995003439A1 (fr) * | 1993-07-21 | 1995-02-02 | Dynamotive Corporation | Procede d'enlevement de certains films d'oxyde de surfaces metalliques |
US5409594A (en) * | 1993-11-23 | 1995-04-25 | Dynamotive Corporation | Ultrasonic agitator |
-
1996
- 1996-04-15 GB GBGB9607810.0A patent/GB9607810D0/en active Pending
-
1997
- 1997-04-15 JP JP9536868A patent/JP2000508711A/ja active Pending
- 1997-04-15 PL PL97329292A patent/PL329292A1/xx unknown
- 1997-04-15 EP EP97916580A patent/EP0894158A1/fr not_active Withdrawn
- 1997-04-15 KR KR1019980708219A patent/KR20000005451A/ko not_active Withdrawn
- 1997-04-15 AU AU25190/97A patent/AU2519097A/en not_active Abandoned
- 1997-04-15 CA CA002251782A patent/CA2251782A1/fr not_active Abandoned
- 1997-04-15 WO PCT/GB1997/001045 patent/WO1997039167A1/fr not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1090071A (en) * | 1963-04-02 | 1967-11-08 | Burndept Ltd | Cleaning by use of ultrasonic vibrations |
JPS5075530A (fr) * | 1973-11-09 | 1975-06-20 | ||
US4206028A (en) * | 1976-12-14 | 1980-06-03 | Inoue-Japax Research Incorporated | Electrochemical polishing system |
WO1995003439A1 (fr) * | 1993-07-21 | 1995-02-02 | Dynamotive Corporation | Procede d'enlevement de certains films d'oxyde de surfaces metalliques |
US5409594A (en) * | 1993-11-23 | 1995-04-25 | Dynamotive Corporation | Ultrasonic agitator |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Section Ch Week 7644, Derwent World Patents Index; Class M11, AN 76-81747X, XP002029248 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001053571A1 (fr) * | 2000-01-17 | 2001-07-26 | C-Tech Innovation Limited | Procede de traitement electrolytique |
GB2358194B (en) * | 2000-01-17 | 2004-07-21 | Ea Tech Ltd | Electrolytic treatment |
GB2386907A (en) * | 2002-03-27 | 2003-10-01 | Isle Coat Ltd | Forming ceramic coatings on metals and alloys |
US6896785B2 (en) | 2002-03-27 | 2005-05-24 | Isle Coat Limited | Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process |
GB2386907B (en) * | 2002-03-27 | 2005-10-26 | Isle Coat Ltd | Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process |
JP2016183393A (ja) * | 2015-03-26 | 2016-10-20 | Jfeスチール株式会社 | 電解研磨装置および電解研磨方法 |
ITPD20150095A1 (it) * | 2015-05-08 | 2016-11-08 | Ricerca Chimica S R L | Apparecchiatura per il decapaggio elettrochimico di superfici in acciaio inox e procedimento di decapaggio elettrochimico di dette superfici |
Also Published As
Publication number | Publication date |
---|---|
KR20000005451A (ko) | 2000-01-25 |
EP0894158A1 (fr) | 1999-02-03 |
JP2000508711A (ja) | 2000-07-11 |
AU2519097A (en) | 1997-11-07 |
PL329292A1 (en) | 1999-03-15 |
GB9607810D0 (en) | 1996-06-19 |
CA2251782A1 (fr) | 1997-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2208109C (fr) | Nettoyage de pieces en aluminium | |
US6645365B2 (en) | Chemical milling | |
EP0972862A3 (fr) | Procédé de fabrication d'un film à base de phosphate et sur des fils d'acier et dispositif | |
US5853561A (en) | Method for surface texturing titanium products | |
JP2000508380A (ja) | 電気分解及びキャビテーション作用を用いて金属表面から膜を除去する方法 | |
JP2002525429A (ja) | 無硝酸溶液を用いる電解酸洗い方法 | |
CN1451058A (zh) | 使用交流电源电解池的用于金属产品的连续电解酸洗方法 | |
US6837985B2 (en) | External counter electrode | |
GB2078783A (en) | Method of descaling metal sheets | |
US4148707A (en) | Electrochemical finishing of stainless steel | |
Xue et al. | Effect of fluoride ions on the corrosion of aluminium in sulphuric acid and zinc electrolyte | |
EP0894158A1 (fr) | Decalaminage de surfaces metalliques | |
US4269677A (en) | Anodic deburring or brightening of steel articles | |
JPH04311598A (ja) | 金属表面の陽極溶解処理方法 | |
US5141563A (en) | Molten salt stripping of electrode coatings | |
US4118301A (en) | Apparatus for electrochemical finishing of stainless steel | |
US4148699A (en) | Electropolishing of stainless steel | |
MXPA98008506A (en) | Descascarillado of metali surfaces | |
US3425920A (en) | Electrolytic method of regenerating organic acid cleaning solution for ferrous metals | |
US1885602A (en) | Process of cleaning scale from bars | |
JP4678612B2 (ja) | 表面改質ステンレス鋼及び表面改質ステンレス鋼の処理方法 | |
JPH0548317B2 (fr) | ||
JP2989067B2 (ja) | ステンレス鋼帯脱スケール用の中性塩電解処理装置 | |
JP2517353B2 (ja) | ステンレス鋼帯の脱スケ―ル方法 | |
JPH1060697A (ja) | 特殊鋼からなる被処理物の表面処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: PV1998-3153 Country of ref document: CZ |
|
ENP | Entry into the national phase |
Ref document number: 2251782 Country of ref document: CA Kind code of ref document: A Ref document number: 2251782 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1998/008506 Country of ref document: MX Ref document number: 1019980708219 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997916580 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1997916580 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997916580 Country of ref document: EP |
|
WWR | Wipo information: refused in national office |
Ref document number: PV1998-3153 Country of ref document: CZ |
|
WWP | Wipo information: published in national office |
Ref document number: 1019980708219 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1019980708219 Country of ref document: KR |