+

WO1997036587A1 - Methode de traitement du cancer - Google Patents

Methode de traitement du cancer Download PDF

Info

Publication number
WO1997036587A1
WO1997036587A1 PCT/US1997/005328 US9705328W WO9736587A1 WO 1997036587 A1 WO1997036587 A1 WO 1997036587A1 US 9705328 W US9705328 W US 9705328W WO 9736587 A1 WO9736587 A1 WO 9736587A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
glycyl
substituted
pyrrolidin
methionine
Prior art date
Application number
PCT/US1997/005328
Other languages
English (en)
Inventor
David C. Heimbrook
Allen I. Oliff
Steven M. Stirdivant
Original Assignee
Merck & Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9613599.1A external-priority patent/GB9613599D0/en
Application filed by Merck & Co., Inc. filed Critical Merck & Co., Inc.
Priority to JP9535542A priority Critical patent/JP2000504023A/ja
Priority to EP97921085A priority patent/EP0906099A4/fr
Priority to AU27221/97A priority patent/AU727939B2/en
Publication of WO1997036587A1 publication Critical patent/WO1997036587A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a method of treating cancer using a combination of a compound which has Raf antagonist activity and a compound which has famesyl transferase inhibiting activity.
  • the Raf antagonist compounds used in the present invention demonstrate anti-cancer activity through antagonism of the kinase, Raf .
  • the raf genes code for a family of proteins which can be oncogenically activated through N-terminal fusion, truncation or point mutations.
  • Raf is a member of the MAP Kinase cascade, which also includes MEK's and MAP Kinase (ERK).
  • Raf can be activated and undergoes rapid phosphorylation in response to treatment of cells with PDGF, EGF, insulin, thrombin, endothelin, acidic FGF, CSF1 or TPA, as well as in response to oncoproteins v-fms, v-src, v-sis, Hras and polyoma middle T antigen.
  • Antisense constructs which reduce cellular levels of c-Raf, and hence Raf activity, inhibit the growth of oncogene-transformed rodent fibroblasts in soft agar, while exhibiting little or no general cytotoxicity. Since inhibition of growth in soft agar is highly predictive of tumor responsiveness in whole animals, these studies suggest that the antagonism of Raf is an effective means by which to treat cancers in which Raf plays a role.
  • Examples of cancers where Raf is implicated through overexpression include cancers of the brain, genitourinary tract, lymphatic system, stomach, larynx and lung. More particularly, such examples include histiocytic lymphoma, lung adenocarcinoma and small cell lung cancers. Additional examples include cancers in which overexpression or activation of Raf-activating oncogenes (e.g., K-ras, erb-B) is observed. More particularly, such cancers include pancreatic and breast carcinoma.
  • Raf-activating oncogenes e.g., K-ras, erb-B
  • the Ras protein is part of a signalling pathway that links cell surface growth factor receptors to nuclear signals initiating cellular proliferation. Biological and biochemical studies of Ras action indicate that Ras functions like a G-regulatory protein. In the inactive state, Ras is bound to GDP. Upon growth factor receptor activation, Ras is induced to exchange GDP for GTP and undergoes a conformational change. The GTP -bound form of Ras propagates the growth stimulatory signal until the signal is terminated by the intrinsic GTPase activity of Ras, which returns the protein to its inactive GDP bound form (D.R. Lowy and D.M. Willumsen,
  • Ras Activation of Ras leads to activation of multiple intracellular signal transduction pathways, including the MAP Kinase pathway and the Rho/Rac pathway (Joneson et al., Science 271.-810-812).
  • Mutated ras genes are found in many human cancers, including colorectal carcinoma, exocrine pancreatic carcinoma, and myeloid leukemias.
  • the protein products of these genes are defective in their GTPase activity and constitutively transmit a growth stimulatory signal.
  • the Ras protein is one of several proteins that are known to undergo post-translational modification.
  • Famesyl-protein transferase utilizes famesyl pyrophosphate to covalently modify the Cys thiol group of the Ras CAAX box with a famesyl group (Reiss et al. , Cell, 62:81 -88 (1990): Schaber et al. , J. Biol. Chem., 265: 14701 - 14704 ( 1990); Schafer et al. , Science, 249: 1 133-1 139 ( 1990); Marine et al., Proc. Natl Acad. Sci USA, 57:7541 -7545 (1990)).
  • Ras C-terminus contains a sequence motif termed a "CAAX” or "Cys-Aaa 1 -Aaa 2 -Xaa” box (Cys is cysteine, Aaa is an aliphatic amino acid, the Xaa is any amino acid) (Willumsen et al. , Nature 310:583-586 (1984)).
  • this motif serves as a signal sequence for the enzymes farn esyl-protein transferase or geranylgeranyl-protein transferase, which catalyze the alkylation of the cysteine residue of the CAAX motif with a C 15 or C 20 isoprenoid, respectively.
  • farn esyl-protein transferase or geranylgeranyl-protein transferase which catalyze the alkylation of the cysteine residue of the CAAX motif with a C 15 or C 20 isoprenoid, respectively.
  • farnesylated proteins include the Ras-related GTP- binding proteins such as Rho, fungal mating factors, the nuclear lamins, and the gamma subunit of transducin. James, et al., J. Biol Chem. 269, 14182 (1994) have identified a peroxisome associated protein Pxf which is also farnesylated. James, et al., have also suggested that there are farnesylated proteins of unknown structure and function in addition to those listed above.
  • Inhibitors of famesyl-protein transferase have been described in two general classes.
  • the first class includes analogs of famesyl diphosphate (FPP), while the second is related to protein substrates (e.g., Ras) for the enzyme.
  • the peptide derived inhibitors that have been described are generally cysteine containing molecules that are related to the CAAX motif that is the signal for protein prenylation. (Schaber et al, ibid; Reiss et. al, ibid; Reiss et al., PNAS, 88:132-136 (1991 )).
  • Such inhibitors may inhibit protein prenylation while serving as altemate substrates for the famesyl-protein transferase enzyme, or may be purely competitive inhibitors (U.S.
  • Patent 5,141 ,851 University of Texas; N.E. Kohl et al, Science,
  • biosynthesis by inhibiting HMG-CoA reductase blocks Ras membrane localization in cultured cells.
  • a Raf antagonist compound and a famesyl protein transferase inhibitor are used in the present invention to treat cancer, such as in tumor cells which are not particularly Raf or FPTase dependent.
  • the Raf antagonist compound and a famesyl protein transferase inhibiting compound are used in combination.
  • a method of treating cancer is disclosed which is comprised of administering to a mammalian patient in need of such treatment an effective amount of a Raf antagonist compound and an effective amount of a famesyl protein transferase inhibiting compound.
  • the present invention relates to a method of treating cancer which is comprised of admininstering to a mammalian patient in need of such treatment an effective amount of a Raf antagonist compound and an effective amount of a famesyl protein transferase inhibiting compound. Any compound which antagonizes Raf and any compound which inhibits famesyl protein transferase can be used.
  • Raf antagonist is used in the general sense to relate to compounds which antagonize, inhibit or counteract the activity of the raf gene or the protein produced in response thereto.
  • famesyl protein transferase inhibiting compound is likewise used in the general sense and refers to compounds which antagonize, inhibit or counteract the activity of the gene coding famesyl protein transferase or the protein produced in response thereto.
  • Cancers which are treatable in accordance with the invention described herein include cancers of the brain, genitourinary tract, lymphatic system, stomach, larynx, liver and lung. More particularly, such cancers include histiocytic lymphoma, lung adenocarcinoma and small cell lung cancers. Additional examples include cancers in which overexpression or activation of Raf-activating oncogenes (e.g., K-ras, erb-B) is observed. More particularly, such cancers include pancreatic, mammary and salivary carcinomas, colorectal carcinoma, exocrine pancreatic carcinoma and myeloid leukemias.
  • Raf-activating oncogenes e.g., K-ras, erb-B
  • AR represents an aromatic group containing 6-10 atoms
  • X and X' each independently represent -(CH2)m-Y-(CH2)n -, wherein m and n represent integers within the range of from 0 - 4, such that the sum of m and n is from 0 - 6;
  • Y represents a member selected from the group consisting of: a direct bond: O; S(O)y, with y equal to 0, 1 or 2; NRq', with Rq' as defined below; C(O); OC(O); C(O)O; SO x NRq' with x equal to 1 or 2 and Rq' as defined below; NRq'SO x ; C(O)NRq' and NRq'C(O); represents a 4 to 10 membered non-aromatic heterocycle containing at least one N atom, and optionally containing 1-2 additional N atoms and 0-1 O or S atom;
  • R x represents H, C 1-6 alkyl(R q ) 3 , OC 1-6 alky
  • each R and R" independently represents a member selected from the group consisting of: halo; hydroxy; C 1-6 alkyl(Rq) 3 ;
  • each R' independently represents a member selected from the group consisting of: CONH 2 ; CONHC 1-6 alkyl(Rq) 3 ;
  • each R 5 and R 6 independently represents H, aryl, C 1 -6 alkyl(Rq) 3 , or each CR 5 R 6 taken in combination represents a 3, 4, 5 or 6 membered cycloalkyl or heterocyclyl group, an aryl group or a heteroaryl group, wherein when p equals 1 , at least one of j and k is 1 , 2 or 3; each R 7 and R 8 independently represents H, C 1 -6 alkyl or aryl;
  • Rq represents a member selected from the group consisting of: R q' ; CN; CO 2 H; CO 2 C 1 -4 alkyl; C(O)C 1 -4 alkyl ; aryl(R a ) 3 ; NH 2 ; NHC 1 -6 alkyl(R a )3; N(C 1 -6 alkyl(R a ) 3 ) 2 ; heteroaryl(R a ) 3 ;
  • each R a independently represents a member selected from the group consisting of: H, C 1 -6 alkyl, OC 1 -6 alkyl, aralkyl, substituted aralkyl, heteroaralkyl, substituted heteroaralkyl, aralkoxy, substituted aralkoxy , halo, hydroxy, CN, CONH 2 , CONHC 1 -6 alkyl, CON(C 1 -6 alkyl) 2 , CO 2 H, CO 2 C 1 -6 alkyl, C(O)C 1 -6 alkyl, phenyl, CF 3 , SH, NO 2 , SO y C 1 -6 alkyl, with y as defined above; SO 2 NH 2
  • each R' independently represents a member selected from the group consisting of: hydroxy; C 1 -6 alkyl(Rq) 3 ;
  • R 5 and R 6 are independently H, aryl, C 1 -6 alkyl(Rq) 3 , or CR 5 R 6 in combination represents a 3, 4, 5 or 6 membered cycloalkyl or heterocyclyl group, an aryl group or a heteroaryl group; p represents 1 , 2 or 3, with the proviso that when p represents 1 , CR 5 R 6 represents a 3, 4, 5 or 6 membered cycloalkyl group or a heterocyclyl group, an aryl group or a heteroaryl group, and at least one of j and k is 1 , 2 or 3;
  • R 9 represents H, a negative charge balanced by a positively charged group or a protecting group
  • Rq represents a member selected from the group consisting of: Rq'; CN; CO 2 H; CO 2 C 1 -4 alkyl; C(O)C 1 -4 alkyl ; NH(Rq ") ;
  • Rq represents H, OH or OC 1-4 alkyl
  • R 1 is 4-pyridyl, pyrimidinyl, quinazolin-4-yl, quinolyl, isoquinolinyl, 1 -imidazolyl or 1-benzimidazolyl which is optionally substituted with one or two substituents each of which is independently selected from C 1-4 alkyl, halogen, C 1-4 alkoxy, C 1-4 alkylthio, NR 10 R 20 , or N- heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NR 22 ;
  • R 2 is hydrogen, -(CR 10 R 20 ) n OR 12 , heterocyclyl, heterocyclyl C 1-10 alkyl, C 1-10 alkyl, halo-substituted C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-7 cycloalkyl, C 3-7 cycloalkyl C 1-10 alkyl,
  • arylalkyl heteroaryl, heteroarylalkyl, heterocyclyl or
  • heterocyclyalkyl moieties may be optionally substituted
  • n' is an integer having a value of 1 to 10;
  • n 0 or the integer 1 or 2;
  • R 3 is Q-(Y 1 ) t ;
  • Q is an aryl or heteroaryl group
  • t is a number having a value of 1 , 2 or 3;
  • Z is oxygen or sulfur
  • n is 0 or an integer from 1 to 10;
  • Y 1 is independently selected from hydrogen, C 1 -5 alkyl, halo- substituted C 1 -5 alkyl, halogen, or -(CR 10 R 20 ) n Y 2 ;
  • Y 2 is -OR 8 , -NO 2 , -S(O) m 'R 1 1 , -SR 8 , -S(O)) m 'OR 8 , -S(O) m NR 8 R 9 , -NR 8 R 9 , -O(CR 10 R 20 ) n NR 8 R 9 , -C(O)R 8 , -CO 2 R 8 ,
  • m' is a number having a value of 1 or 2;
  • R 4 is phenyl, naphth-1 -yl or naphth-2-yl which is optionally substituted by one or two substituents, each of which is independently selected, and which, for a 4-phenyl, 4-naphth-1 -yl or 5-naphth-1 -yl
  • substituent is halo, cyano,-C(Z)NR 7 R 17 , -C(Z)OR 23 ,
  • R 5 is hydrogen, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl or NR 7 R 17 , excluding the moieties -SR 5 being -SNR 7 R 17 and -SOR 5 being -SOH;
  • R 6 is C 1-4 alkyl, halo-substituted-C 1-4 alkyl, C 1-4 alkenyl, C 2-4
  • R 7 and R 17 are each independently selected from hydrogen or C 1-4 alkyl, or R 7 and R 17 together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR 22 ;
  • R 8 is hydrogen, heterocyclyl, heterocyclylalkyl or R 11 ;
  • R 9 is hydrogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-7
  • cycloalkyl C 5-7 cycloalkenyl, aryl, arylalkyl, heteroaryl or heteroarylalkyl or R 8 and R 9 may together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR 12 ;
  • R 10 and R 20 are each independently selected from hydrogen and C 1-4 alkyl
  • R 11 is C 1-10 alkyl, halo-substituted C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 3-7 cycloalkyl, C 5-7 cycloalkenyl, aryl, arylalkyl, heteroaryl or heteroarylalkyl;
  • R 12 is hydrogen. -C(Z)R 13 or optionally substituted C 1-4 alkyl,
  • R 13 is hydrogen, C 1-10 alkyl, C 3-7 cycloalkyl, heterocyclyl,
  • R 14 and R 24 is each independently selected from hydrogen, alkyl, nitro or cyano;
  • R 15 is hydrogen, cyano, C 1-4 alkyl, C 3-7 cycloalkyl or aryl;
  • R 16 and R 26 is each independently selected from hydrogen or
  • R 18 and R 19 is each independently selected from hydrogen, C 1-4 alkyl. substituted alkyl, optionally substituted aryl, optionally substituted arylalkyl or together denote a oxygen or sulfur;
  • R 21 is hydrogen, a pharmaceutically acceptable cation, C 1-10 alkyl, C 3-7 cycloalkyl, aryl, aryl C 1-4 alkyl, heteroaryl, heteroarylalkyl, heterocyclyl, aroyl, or C 1-10 alkanoyl;
  • R 22 is R 10 or C(Z)-C 1-4 alkyl
  • R 23 is C 1-4 alkyl, halo-substituted-C 1-4 alkyl or C 3-5 cycloalkyl;
  • R 36 is hydrogen or R 23 ;
  • R 25 is C 1-10 alkyl, C 3-7 cycloalkyl, heterocyclyl, aryl, arylalkyl,
  • heterocyclyl heterocyclyl, heterocyclyl-C 1-10 alkyl, heteroaryl or
  • R 27 is hydrogen, cyano, C 1-4 alkyl, C 3-7 cycloalkyl or aryl; or a pharmaceutically acceptable salt thereof.
  • R 1a and R 1b are independently selected from:
  • heterocyclyl C 3 -C 10 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R 10 O-, R 11 S(O) m -, R 10 C(O)NR 10 -, CN, (R 10 ) 2 N-C(NR 10 )-, R 10 C(O)-, R 10 OC(O)-, N 3 ,
  • R 2 and R 3 are independently selected from: H; unsubstituted or
  • substituted group is substituted with one or more of:
  • R 2 and R 3 are attached to the same C atom and are combined to form (CH 2 ) u - wherein one of the carbon atoms is optionally replaced by a moiety selected from: O, S(O) m , -NC(O)-, and -N(COR 10 )-; R 4 and R 5 are independently selected from H and CH 3 ; and any two of R 2 , R 3 , R 4 and R 5 are optionally attached to the same carbon atom;
  • R 6 , R 7 and R 7a are independently selected from: H; C 1-4 alkyl, C 3-6 cycloalkyl, heterocycle, aryl, aroyl, heteroaroyl, arylsulfonyl, heteroarylsulfonyl, unsubstituted or substituted with:
  • R 6 and R 7 may be joined in a ring
  • R 7 and R 7a may be joined in a ring;
  • R 8 is independently selected from:
  • R 10 is independently selected from hydrogen, C 1 -C 6 alkyl, benzyl and aryl;
  • R 11 is independently selected from C 1 -C 6 alkyl and aryl;
  • V is selected from:
  • V is not hydrogen if A 1 is S(O) m and V is not hydrogen if A 1 is a bond, n is 0 and A 2 is S(O) m ; W is a heterocycle;
  • Y is aryl, heterocycle, unsubstituted or substituted with one or more of:
  • n 0, 1, 2, 3 or 4;
  • p 0, 1 , 2, 3 or 4;
  • r is 0 to 5, provided that r is 0 when V is hydrogen; s is 0 or 1 ;
  • t is 0 or 1
  • R 1a , R 1b , R 10 , R 11 , m, R 2 , R 3 , R 6 , R 7 , p, R 7a , u, R 8 , A 1 , A 2 , V, W, X, n, p, r, s, t and u are as defined above with respect to formula (Il-a);
  • R 4 is selected from H and CH 3 ; and any two of R 2 , R 3 and R 4 are optionally attached to the same carbon atom; R 9 is selected from:
  • alkenyl alkynyl, perfluoroalkyl, F, Cl, Br, R 10 O-,
  • G is H 2 or O;
  • Z is aryl, heteroaryl, arylmethyl, heteroarylmethyl,
  • arylsulfonyl arylsulfonyl, heteroarylsulfonyl, unsubstituted or substituted with one or more of the following:
  • R 1 a , R 1 b , R 10 , R 11 , m, R 2 , R 3 , R 6 , R 7 , p, u, R 7a , R 8 , A 1 , A 2 , V, W, X, n, r and t are as defined above with respect to formula (Il-a);
  • R 4 is selected from H and CH 3 ; and any two of R 2 , R 3 and R 4 are optionally attached to the same carbon atom;
  • G is O;
  • Z is aryl, , heteroaryl, arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, unsubstituted or substituted with one or more of the following:
  • R 11 , V, W, m, n, p and r are as defined above with respect to formula (Il-a);
  • R 1a and R 1b are independently selected from:
  • heterocyclyl C 3 -C 10 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R 10 O-, R 11 S(O) m -, R 10 C(O)NR 10 -, CN,
  • R 2a and R 2b are independently selected from:
  • R 3 and R 4 are independently selected from:
  • R 3 and R 4 are combined to form - (CH 2 ) s - ;
  • R 5a and R 5b are independently selected from:
  • substituent is selected from F, Cl, Br. CF 3 , N(R 1 0 ) 2 , NO 2 , R 1 0 O-, R 1 1 S(O) m -, R 10 C(O)NR 10 -, CN, (R 10 ) 2 N-C(NR 10 )-, R 10 C(O)-, R 10 OC(O)-, N 3 , -N(R 10 ) 2 , R 11 OC(O)NR 10 - and C 1 -C 20 alkyl,
  • R 5a and R 5b are combined to form - (CH 2 ) s - wherein one of the carbon atoms is optionally replaced by a moiety selected from: O, S(O) m , -NC(O)-, and-N(COR 10 )-;
  • R 7a is selected from a) hydrogen
  • R 7b is selected from
  • a carbonyl group which is bonded to an unsubstituted or substituted group selected from aryl, heterocycle, C 3 -C 1 0 cycloalkyl and C 1 -C 6 alkyl substituted with hydrogen or an unsubstituted or substituted group selected from aryl, heterocycle and C 3 -C 1 0 cycloalkyl, and
  • R 8 is independently selected from:
  • R 1 1 OC(O)NR 10 -, and c) C 1 -C 6 alkyl unsubstituted or substituted by aryl,
  • R 10 is independently selected from H, C 1 -C 6 alkyl, benzyl, substituted aryl and C 1 -C 6 alkyl substituted with substituted aryl;
  • Z is independently H 2 or O;
  • s is 4 or 5:
  • t 3, 4 or 5;
  • R 11 , W, m, n, p and r are as defined above with respect to formula (II- a);
  • R 1a and R 1b are independently selected from:
  • heterocyclyl C 3 -C 10 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R 10 O-, R 11 S(O) m -, R 10 C(O)NR 10 -, CN,
  • R 2a and R 2b are independently selected from:
  • R 3 and R 4 are independently selected from:
  • R 5a and R 5b are independently selected from:
  • R 5a and R 5b are combined to form - (CH 2 ) s - wherein one of the carbon atoms is optionally replaced by a moiety selected from: O, S(O) m , -NC(O)-, and-N(COR 10 )-;
  • R 7a is selected from
  • R 7a is selected from
  • a carbonyl group which is bonded to an unsubstituted or substituted group selected from aryl, heterocycle, C 3 -C 10 cycloalkyl and C 1 -C 6 alkyl substituted with hydrogen or an unsubstituted or substituted group selected from aryl, heterocycle and C 3 -C 10 cycloalkyl, and
  • R 8 is independently selected from:
  • R 11 S(O) m -, R 10 C(O)NR 10 -, CN, NO 2 , R 10 2 N-C(NR 10 )-, R 10 C(O)-, R 10 OC(O)-, N 3 , -N(R 10 ) 2 , or
  • R 9 is selected from:
  • R 10 is independently selected from H, C 1 -C 6 alkyl, benzyl, substituted aryl and C 1 -C 6 alkyl substituted with substituted aryl;
  • R 12 is hydrogen or C 1 -C 6 alkyl
  • R 13 is C 1 -C 6 alkyl
  • Z is independently H 2 or O; s is 4 or 5;
  • t 3, 4 or 5;
  • u is 0 or 1; with respect to formula (Il-f):
  • R 11 , V, W, m, n, p and r are as defined above with respect to formula (Il-a); R 1a and R 1b are independently selected from:
  • heterocyclyl C 3 -C 10 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R 10 O-, R 11 S(O) m -, R 10 C(O)NR 10 -, CN,
  • R 2a and R 2b are independently selected from:
  • R 3 and R 4 are independently selected from:
  • R 7a is selected from
  • R 7a is selected from
  • a carbonyl group which is bonded to an unsubstituted or substituted group selected from aryl, heterocycle, C 3 -C 1 0 cycloalkyl and C 1 -C 6 alkyl substituted with hydrogen or an unsubstituted or substituted group selected from aryl, heterocycle and C 3 -C 1 0 cycloalkyl, and
  • R 8 is independently selected from:
  • R 1 1 OC(O)NR 1 0 -, and c) C 1 -C 6 alkyl unsubstituted or substituted by aryl,
  • R 9 is selected from:
  • R 10 is independently selected from H, C 1 -C 6 alkyl, benzyl, substituted aryl and C 1 -C 6 alkyl substituted with substituted aryl;
  • R 12 is hydrogen or C 1 -C 6 alkyl
  • R 13 is C 1 -C 6 alkyl;
  • Z is independently H 2 or O; q is 0, 1 or 2;
  • s 4 or 5;
  • t 3, 4 or 5;
  • u is 0 or 1; with respect to formula (Il-g):
  • R 11 , V, W, m, n, p and r are as previously defined with respect to formula (Il-a);
  • R 1a and R 1b are independently selected from:
  • R 2a and R 2b are independently selected from:
  • R 3 and R 4 are independently selected from:
  • R 7a is selected from
  • R 7a is selected from
  • a carbonyl group which is bonded to an unsubstituted or substituted group selected from aryl, heterocycle, C 3 -C 10 cycloalkyl and C 1 -C 6 alkyl substituted with hydrogen or an unsubstituted or substituted group selected from aryl, heterocycle and C 3 -C 10 cycloalkyl, and
  • R 8 is independently selected from:
  • R 10 C(O)NH-, CN, H 2 N-C(NH)-, R 10 C(O)-, R 10 OC(O)-, N 3 , -N(R 10 ) 2 , or R 10 OC(O)NH-;
  • R 9 is selected from:
  • R 10 is independently selected from H, C 1 -C 6 alkyl, benzyl, substituted aryl and C 1 -C 6 alkyl substituted with substituted aryl;
  • R 12 is hydrogen or C 1 -C 6 alkyl
  • R 13 is C 1 -C 6 alkyl
  • Z is independently H 2 or O; qis 0, 1 or 2;
  • s 4 or 5;
  • u is 0 or 1
  • R 1a , R 1b , R 8 , R 9 , R 10 , R 11 , A 1 , A 2 , V, W, m, n, p and r are as previously defined with respect to formula (Il-a); R 2 and R 3 are independently selected from:
  • R 2 or R 3 are combined with R 6 to form a ring such that
  • R 4a , R 4b , R 7a and R 7a are independently selected from:
  • R 5a and R 5b are independently selected from:
  • R 5a and R 5b are combined to form - (CH 2 ) s - wherein one of the carbon atoms is optionally replaced by a moiety selected from: O, S(O) m , -NC(O)-, and -N(COR 10 )- ;
  • R 6 is independently selected from hydrogen or C 1 -C 6 alkyl;
  • Q is a substituted or unsubstituted nitrogen-containing C 4 -C 9 mono or bicyclic ring system, wherein the non-nitrogen containing ring may be an aromatic ring, a C 5 -C 7 saturated ring or a heterocycle;
  • X, Y and Z are independently H 2 or O; s is 4 or 5;
  • t 3, 4 or 5;
  • u is 0 or 1 ; with respect to formula (Il-i):
  • R 1 a , R 1 b , R 8 , R 9 , R 10 , R 1 1 , A 1 , A 2 , V, W, m, n, p and r are as previously defined with respect to formula (Il-a); R 2 and R 3 are independently selected from:
  • R 2 or R 3 are combined with R6 to form a ring such that
  • R 4a , R 4b , R 7a and R 7a are independently selected from:
  • R 5a and R 5b are independently selected from:
  • R 5a and R 5b are combined to form - (CH 2 ) s - wherein one of the carbon atoms is optionally replaced by a moiety selected from: O, S(O) m , -NC(O)-, and-N(COR 10 )-;
  • R 6 is independently selected from hydrogen or C 1 -C 6 alkyl;
  • R 12 is
  • R 13 is independently selected from hydrogen and C 1 -C 6 alkyl
  • R 14 is independently selected from C 1 -C 6 alkyl
  • Q is a substituted or unsubstituted nitrogen-containing C 4 -C 9 mono or bicyclic ring system, wherein the non-nitrogen containing ring may be an aromatic ring, a C 5 -C 7 saturated ring or a heterocycle;
  • X, Y and Z are independently H 2 or O; s is 4 or 5;
  • t 3, 4 or 5;
  • R 1 a , R 1 b , R 8 , R 9 , R 10 , R 1 1 , A 1 , A 2 , V, W, m, n, p and r are as previously defined with respect to formula (Il-a); R 2 and R 3 are independently selected from:
  • R 2 or R 3 are combined with R 6 to form a ring such that
  • R 4a , R 4b , R 7a and R 7a are independently selected from:
  • R 10 O-, R 11 S(O) m -, R 10 C(O)NR 10 -, CN, NO 2 , (R 10 ) 2 N-C(NR 10 )-,R 10 C(O)-, R 10 OC(O)-, N 3 ,
  • R 6 is independently selected from hydrogen or C 1 -C 6 alkyl;
  • Q is a substituted or unsubstituted nitrogen-containing C 4 -C 9 mono or bicyclic ring system, wherein the non-nitrogen containing ring may be an aromatic ring, a C 5 -C 7 saturated ring or a heterocycle;
  • X, Y and Z are independently H 2 or O; q is 0, 1 or 2;
  • s 4 or 5;
  • t 3, 4 or 5;
  • R 1 a , R 1 b , R 8 , R 9 , R 10 , R 1 1 , A 1 , A 2 , V, W, m, n, p, and r are as defined above with respect to formula (Il-a); R 2 and R 3 are independently selected from:
  • R 2 or R 3 are combined with R 6 to form a ring such that
  • R 4a , R 4b , R 7a and R 7a are independently selected from:
  • R 6 is independently selected from hydrogen or C 1 -C 6 alkyl;
  • Q is a substituted or unsubstituted nitrogen-containing C 4 -C 9 mono or bicyclic ring system, wherein the non-nitrogen containing ring may be an aromatic ring, a C 5 -C 7 saturated ring or a heterocycle;
  • X, Y and Z are independently H 2 or O; q is 0, 1 or 2;
  • s 4 or 5;
  • t 3, 4 or 5;
  • u is 0 or 1 ;
  • R 1 a , R 1 b , R 8 , R 9 , R 10 , R 1 1 , A 1 , A 2 , V, W, m, n, p and r are as defined above with respect to formula (Il-a); R 2 and R 3 are independently selected from:
  • R 2 or R 3 are combined with R 6 to form a ring such that
  • R 4a , R 4b , R 7a and R 7a are independently selected from:
  • R 5a and R 5b are independently selected from:
  • R 5a and R 5b are combined to form - (CH 2 ) s - wherein one of the carbon atoms is optionally replaced by a moiety selected from: O, S(O) m , -NC(O)-, and -N(COR 1 0 )- ;
  • R 6 is independently selected from hydrogen or C 1 -C 6 alkyl;
  • 0 is a substituted or unsubstituted nitrogen-containing C 4 -C 9 mono or bicyclic ring system, wherein the non-nitrogen containing ring may be an aromatic ring, a C 5 -C 7 saturated ring or a heterocycle;
  • X, Y and Z are independently H 2 or O; s is 4 or 5;
  • R 1a , R 1b , R 8 , R 9 , R 10 , R 11 , A 1 , A 2 , V, W, m, n, p and r are as defined above with respect to formula (Il-a); R 2 and R 3 are independently selected from:
  • R 4a , R 4b , R 7a and R 7a are independently selected from:
  • R 5a and R 5b are independently selected from:
  • R 5a and R 5b are combined to form - (CH 2 ) s - wherein one of the carbon atoms is optionally replaced by a moiety selected from: O, S(O) m , -NC(O)-, and -N(COR 10 )- ;
  • R 6 is independently selected from hydrogen or C 1 -C 6 alkyl;
  • R 12 is
  • R 1 3 is independently selected from hydrogen and C 1 -C 6 alkyl
  • R 14 is independently selected from C 1 -C 6 alkyl
  • Q is a substituted or unsubstituted nitrogen-containing C 4 -C 9 mono or bicyclic ring system, wherein the non-nitrogen containing ring may be an aromatic ring, a C 5 -C 7 saturated ring or a heterocycle;
  • X, Y and Z are independently H 2 or O;
  • s is 4 or 5;
  • t is 3, 4 or 5; and
  • u is 0 or 1; with respect to formula (Il-n):
  • R 1a , R 1b , R 8 , R 9 , R 10 , R 11 , A 1 , A 2 , V, W, m, n, p and r are as defined above with respect to formula (Il-a); R 2 and R 3 are independently selected from:
  • R 2 or R 3 are combined with R 6 to form a ring such that
  • R 4a , R 4b , R 7a and R 7a are independently selected from:
  • R 6 is independently selected from hydrogen or C 1 -C 6 alkyl
  • Q is a substituted or unsubstituted nitrogen-containing C 4 -C 9 mono or bicyclic ring system, wherein the non-nitrogen containing ring may be an aromatic ring, a C 5 -C 7 saturated ring or a heterocycle;
  • X, Y and Z are independently H 2 or O; q is 0, 1 or 2;
  • s 4 or 5;
  • t 3, 4 or 5;
  • R 1a , R 1b , R 8 , R 9 , R 10 , R 11 , A 1 , A 2 , V, W, m, n, p and r are as defined above with respect to formula (Il-a); R 2 and R 3 are independently selected from:
  • R 2 or R 3 are combined with R 6 to form a ring such that ⁇
  • R 4a , R 4b , R 7a and R 7a are independently selected from:
  • R 6 is independently selected from hydrogen or C 1 -C 6 alkyl
  • Q is a substituted or unsubstituted nitrogen-containing C 4 -C 9 mono or bicyclic ring system, wherein the non-nitrogen containing ring may be an aromatic ring, a C 5 -C 7 saturated ring or a heterocycle;
  • X, Y and Z are independently H 2 or O; q is 0, 1 or 2;
  • s 4 or 5;
  • t 3, 4 or 5;
  • u is 0 or 1.
  • Specific compounds which antagonize Raf include the following: 4-[5-(4-fluorophenyl)-4-pyridin-4-yl-1H-imidazol-2-yl]-piperidine-1- carboxylic acid tert-butyl ester;
  • Examples of compounds which antagonize or inhibit famesyl protein transferase include the following:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Steroid Compounds (AREA)

Abstract

Cette invention porte sur une méthode de traitement du cancer consistant à administrer à un patient mammalien un composé inhibant Raf ainsi qu'un composé inhibant la farnésyl-protéine transférase.
PCT/US1997/005328 1996-04-03 1997-03-31 Methode de traitement du cancer WO1997036587A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9535542A JP2000504023A (ja) 1996-04-03 1997-03-31 癌治療方法
EP97921085A EP0906099A4 (fr) 1996-04-03 1997-03-31 Methode de traitement du cancer
AU27221/97A AU727939B2 (en) 1996-04-03 1997-03-31 A method of treating cancer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US1477396P 1996-04-03 1996-04-03
US60/014,773 1996-04-03
GB9613599.1 1996-06-28
GBGB9613599.1A GB9613599D0 (en) 1996-06-28 1996-06-28 A method of treating cancer

Publications (1)

Publication Number Publication Date
WO1997036587A1 true WO1997036587A1 (fr) 1997-10-09

Family

ID=26309586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/005328 WO1997036587A1 (fr) 1996-04-03 1997-03-31 Methode de traitement du cancer

Country Status (5)

Country Link
EP (1) EP0906099A4 (fr)
JP (1) JP2000504023A (fr)
AU (1) AU727939B2 (fr)
CA (1) CA2250232A1 (fr)
WO (1) WO1997036587A1 (fr)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038862A1 (fr) * 1998-02-02 1999-08-05 Lg Chemical Ltd. Inhibiteurs de farnesyl-transferases, ayant une structure piperidine, et procede de preparation correspondant
WO1999064442A1 (fr) * 1998-06-10 1999-12-16 Istituto Di Ricerche Di Biologia Molecolare P Angeletti S.P.A. Inhibiteurs peptides de la protease ns3 du virus de l'hepatite c
FR2780892A1 (fr) * 1998-07-08 2000-01-14 Sod Conseils Rech Applic Utilisation d'inhibiteurs de prenyltransferases pour preparer un medicament destine a traiter les pathologies qui resultent de la fixation membranaire de la proteine g heterotrimerique
WO2000016778A1 (fr) * 1998-09-24 2000-03-30 Merck & Co., Inc. Procede de traitement du cancer
US6046208A (en) * 1996-01-11 2000-04-04 Smithkline Beecham Corporation Substituted imidazole compounds
WO2000061145A1 (fr) * 1999-04-09 2000-10-19 Schering Corporation Procedes pour l'induction de la mort de cellules cancereuses et la regression de tumeurs
US6251914B1 (en) 1997-07-02 2001-06-26 Smithkline Beecham Corporation Cycloalkyl substituted imidazoles
US6268370B1 (en) 1992-01-13 2001-07-31 Smithkline Beecham Corporation Compounds
US6362193B1 (en) 1997-10-08 2002-03-26 Smithkline Beecham Corporation Cycloalkenyl substituted compounds
EP1165082A4 (fr) * 1999-03-03 2002-06-12 Merck & Co Inc Inhibiteurs de la prenyle-proteine transferase
US6414150B1 (en) 1996-08-21 2002-07-02 Smithkline Beecham Corporation 4,5-disubstituted imidazole compounds
WO2003022833A1 (fr) * 2001-09-05 2003-03-20 Smithkline Beecham Plc Pyridylfurans et pyrroles inhibiteurs de la kinase raf
WO2003022832A1 (fr) * 2001-09-05 2003-03-20 Smithkline Beecham P.L.C. Pyridylfurans et pyrroles inhibiteurs de la kinase raf
US6548503B1 (en) 1998-11-04 2003-04-15 Smithkline Beecham Corporation Pyridin-4-yl or pyrimidin-4-yl substituted pyrazines
US6548520B1 (en) 1998-05-22 2003-04-15 Smithkline Beecham Corporation Substituted imidazoles having anti-cancer and cytokine inhibitory activity
US6562832B1 (en) 1997-07-02 2003-05-13 Smithkline Beecham Corporation Substituted imidazole compounds
US6610695B1 (en) 1997-06-19 2003-08-26 Smithkline Beecham Corporation Aryloxy substituted pyrimidine imidazole compounds
WO2002026246A3 (fr) * 2000-09-29 2003-10-02 Gsf Forschungszentrum Umwelt Compositions pharmaceutiques contenant des polynucleotides codant une proteine raf
US6730683B2 (en) 1997-12-19 2004-05-04 Smithkline Beecham Corporation Compounds of heteroaryl substituted imidazole, their pharmaceutical compositions and uses
US6759410B1 (en) 1999-11-23 2004-07-06 Smithline Beecham Corporation 3,4-dihydro-(1H)-quinazolin-2-ones and their use as CSBP/p38 kinase inhibitors
US6774127B2 (en) 1997-06-13 2004-08-10 Smithkline Beecham Corporation Pyrazole and pyrazoline substituted compounds
US6777415B2 (en) 2000-10-05 2004-08-17 George Q. Daley Methods of inducing cancer cell death and tumor regression
US6858617B2 (en) 1998-05-26 2005-02-22 Smithkline Beecham Corporation Substituted imidazole compounds
WO2005047266A1 (fr) * 2003-11-14 2005-05-26 Lorus Therapeutics Inc. Imidazoles d'aryle et leur utilisation comme agents anticancereux
US6982270B1 (en) 1999-11-23 2006-01-03 Smithkline Beecham Corporation 3,4-dihydro-(1H)quinazolin-2-one compounds as CSBP/p38 kinase inhibitors
US6987119B2 (en) 2000-03-06 2006-01-17 Smithkline Beecham P.L.C. Imidazol-2-carboxamide derivatives as raf kinase inhibitors
US7026336B1 (en) 1999-11-22 2006-04-11 Smithkline Beecham P.L.C. Compounds
US7053098B1 (en) 1999-11-23 2006-05-30 Smithkline Beecham Corporation 3,4-Dihydro-(1H) quinazolin-2-one compounds as CSBP/P38 kinase inhibitors
US7070968B2 (en) 1994-02-04 2006-07-04 Arch Development Corporation DNA damaging agents in combination with tyrosine kinase inhibitors
EP1707205A2 (fr) 2002-07-09 2006-10-04 Boehringer Ingelheim Pharma GmbH & Co. KG Compositions pharmaceutiques contenant un antichlinergique et un inhibiteur du p38 pour le traitement de maladies respiratoires
US7122666B2 (en) 1999-07-21 2006-10-17 Sankyo Company, Limited Heteroaryl-substituted pyrrole derivatives, their preparation and their therapeutic uses
US7199137B2 (en) 2000-09-21 2007-04-03 Smithkline Beecham Plc Imidazole derivatives as Raf kinase inhibitors
US7235551B2 (en) 2000-03-02 2007-06-26 Smithkline Beecham Corporation 1,5-disubstituted-3,4-dihydro-1h-pyrimido[4,5-d]pyrimidin-2-one compounds and their use in treating csbp/p38 kinase mediated diseases
AU2002365899B2 (en) * 2001-12-04 2007-09-13 Onyx Pharmaceuticals, Inc. RAF-MEK-ERK pathway inhibitors to treat cancer
US7282500B2 (en) 2001-05-19 2007-10-16 Smithkline Beecham P.L.C. Imidazole-2-carboxamide derivatives as Raf kinase inhibitors
US7301021B2 (en) 1997-07-02 2007-11-27 Smithkline Beecham Corporation Substituted imidazole compounds
US7407957B2 (en) 2004-08-26 2008-08-05 Maybridge Limited Phthalazinone derivatives
WO2008142031A1 (fr) 2007-05-18 2008-11-27 Institut Curie La p38alpha cible thérapeutique dans le cancer de la vessie
EP1670780A4 (fr) * 2003-10-02 2008-12-17 Irm Llc Composes et compositions utiles comme inhibiteurs de la proteine kinase
EP1536787A4 (fr) * 2002-08-14 2009-02-25 Pure World Botan Inc Alcaloides imidazole de lepidium meyenii et techniques d'utilisation
EP2116245A2 (fr) 2004-08-07 2009-11-11 Boehringer Ingelheim International GmbH combinaisons d'inhibiteurs de la kinase EGFR pour le traitement de désordres respiratoires et de l'appareil digestif
US7618959B2 (en) 2002-11-05 2009-11-17 Smithklinebeecham Corp Antibacterial agents
US7692006B2 (en) * 2006-10-17 2010-04-06 Kudos Pharmaceuticals Limited Phthalazinone derivatives
US7829560B2 (en) 2004-07-08 2010-11-09 Arqule, Inc. 1,4-disubstituted naphthalenes as inhibitors of P38 MAP kinase
US7884120B2 (en) 2002-08-19 2011-02-08 Lorus Therapeutics Inc. 2,4,5-trisubstituted imidazoles and their use as anti-microbial agents
US7902192B2 (en) 2003-05-15 2011-03-08 Arqule, Inc. Inhibitors of P38 and methods of using the same
EP2384751A1 (fr) 2004-12-24 2011-11-09 Boehringer Ingelheim International Gmbh Médicaments pour le traitement ou la prévention des maladies fibrogènes
US8148392B2 (en) 2005-05-25 2012-04-03 Lorus Therapeutics Inc. 2-indolyl imidazo [4,5-d] phenanthroline derivatives and their use in the treatment of cancer
US8178672B2 (en) 2004-10-19 2012-05-15 Arqule, Inc. Synthesis of imidazooxazole and imidazothiazole inhibitors of p38 MAP kinase
US8475842B2 (en) 2008-10-07 2013-07-02 Astrazeneca Ab Immediate release pharmaceutical formulation of 4-[3-(4-cyclopropanecarbonyl-piperazine-1-carbonyl)-4-fluoro-benzyl]-2H-phthalazin-1-one
US8691807B2 (en) 2011-06-20 2014-04-08 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US8722693B2 (en) 2007-06-13 2014-05-13 Incyte Corporation Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US8933086B2 (en) 2005-12-13 2015-01-13 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B]pyridines and pyrrolo[2,3-B]pyrimidines as Janus kinase inhibitors
US8933085B2 (en) 2010-11-19 2015-01-13 Incyte Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US8987443B2 (en) 2013-03-06 2015-03-24 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9034884B2 (en) 2010-11-19 2015-05-19 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors
US9193733B2 (en) 2012-05-18 2015-11-24 Incyte Holdings Corporation Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US9216984B2 (en) 2009-05-22 2015-12-22 Incyte Corporation 3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane—or heptane-nitrile as JAK inhibitors
US9249145B2 (en) 2009-09-01 2016-02-02 Incyte Holdings Corporation Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
US9309247B2 (en) 2013-03-20 2016-04-12 Lorus Therapeutics Inc. 2-substituted imidazo[4,5-D]phenanthroline derivatives and their use in the treatment of cancer
US9334274B2 (en) 2009-05-22 2016-05-10 Incyte Holdings Corporation N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
US9359358B2 (en) 2011-08-18 2016-06-07 Incyte Holdings Corporation Cyclohexyl azetidine derivatives as JAK inhibitors
US9464088B2 (en) 2010-03-10 2016-10-11 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US9487521B2 (en) 2011-09-07 2016-11-08 Incyte Holdings Corporation Processes and intermediates for making a JAK inhibitor
US9498467B2 (en) 2014-05-30 2016-11-22 Incyte Corporation Treatment of chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) by inhibitors of JAK1
US9655854B2 (en) 2013-08-07 2017-05-23 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US10166191B2 (en) 2012-11-15 2019-01-01 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US10758543B2 (en) 2010-05-21 2020-09-01 Incyte Corporation Topical formulation for a JAK inhibitor
US10899736B2 (en) 2018-01-30 2021-01-26 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US11104957B2 (en) 2013-10-04 2021-08-31 Aptose Biosciences, Inc. Compositions and methods for treating cancers
US11149047B2 (en) 2017-10-30 2021-10-19 Aptose Biosciences, Inc. Aryl imidazoles for treatment of cancer
US11304949B2 (en) 2018-03-30 2022-04-19 Incyte Corporation Treatment of hidradenitis suppurativa using JAK inhibitors
WO2022249192A1 (fr) * 2021-05-27 2022-12-01 Ramot At Tel-Aviv University Ltd. Composés suppresseurs de métastases à large spectre et leurs utilisations thérapeutiques dans des tumeurs humaines
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352705A (en) * 1992-06-26 1994-10-04 Merck & Co., Inc. Inhibitors of farnesyl protein transferase

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563255A (en) * 1994-05-31 1996-10-08 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of raf gene expression
IL117580A0 (en) * 1995-03-29 1996-07-23 Merck & Co Inc Inhibitors of farnesyl-protein transferase and pharmaceutical compositions containing them
PL184819B1 (pl) * 1995-10-06 2002-12-31 Merck & Co Inc Podstawione związki imidazolilowe oraz zawierające je kompozycje farmaceutyczne

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352705A (en) * 1992-06-26 1994-10-04 Merck & Co., Inc. Inhibitors of farnesyl protein transferase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0906099A4 *

Cited By (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268370B1 (en) 1992-01-13 2001-07-31 Smithkline Beecham Corporation Compounds
US7838512B2 (en) 1994-02-04 2010-11-23 Arch Development Corporation DNA damaging agents in combination with tyrosine kinase inhibitors
US7070968B2 (en) 1994-02-04 2006-07-04 Arch Development Corporation DNA damaging agents in combination with tyrosine kinase inhibitors
US6046208A (en) * 1996-01-11 2000-04-04 Smithkline Beecham Corporation Substituted imidazole compounds
US6414150B1 (en) 1996-08-21 2002-07-02 Smithkline Beecham Corporation 4,5-disubstituted imidazole compounds
US6774127B2 (en) 1997-06-13 2004-08-10 Smithkline Beecham Corporation Pyrazole and pyrazoline substituted compounds
US6610695B1 (en) 1997-06-19 2003-08-26 Smithkline Beecham Corporation Aryloxy substituted pyrimidine imidazole compounds
US7301021B2 (en) 1997-07-02 2007-11-27 Smithkline Beecham Corporation Substituted imidazole compounds
US6562832B1 (en) 1997-07-02 2003-05-13 Smithkline Beecham Corporation Substituted imidazole compounds
US6251914B1 (en) 1997-07-02 2001-06-26 Smithkline Beecham Corporation Cycloalkyl substituted imidazoles
US6362193B1 (en) 1997-10-08 2002-03-26 Smithkline Beecham Corporation Cycloalkenyl substituted compounds
US6730683B2 (en) 1997-12-19 2004-05-04 Smithkline Beecham Corporation Compounds of heteroaryl substituted imidazole, their pharmaceutical compositions and uses
WO1999038862A1 (fr) * 1998-02-02 1999-08-05 Lg Chemical Ltd. Inhibiteurs de farnesyl-transferases, ayant une structure piperidine, et procede de preparation correspondant
US6548520B1 (en) 1998-05-22 2003-04-15 Smithkline Beecham Corporation Substituted imidazoles having anti-cancer and cytokine inhibitory activity
US6858617B2 (en) 1998-05-26 2005-02-22 Smithkline Beecham Corporation Substituted imidazole compounds
AU754773B2 (en) * 1998-06-10 2002-11-21 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Peptide inhibitors of hepatitis C virus NS3 protease
US6867284B1 (en) 1998-06-10 2005-03-15 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Peptide inhibitors of hepatitis C virus NS3 protease
WO1999064442A1 (fr) * 1998-06-10 1999-12-16 Istituto Di Ricerche Di Biologia Molecolare P Angeletti S.P.A. Inhibiteurs peptides de la protease ns3 du virus de l'hepatite c
FR2780892A1 (fr) * 1998-07-08 2000-01-14 Sod Conseils Rech Applic Utilisation d'inhibiteurs de prenyltransferases pour preparer un medicament destine a traiter les pathologies qui resultent de la fixation membranaire de la proteine g heterotrimerique
WO2000016778A1 (fr) * 1998-09-24 2000-03-30 Merck & Co., Inc. Procede de traitement du cancer
US6548503B1 (en) 1998-11-04 2003-04-15 Smithkline Beecham Corporation Pyridin-4-yl or pyrimidin-4-yl substituted pyrazines
US6861417B2 (en) 1998-11-04 2005-03-01 Smithkline Beecham Corporation Pyridin-4-YL or pyrimidin-4-YL substituted pyrazines
EP1165082A4 (fr) * 1999-03-03 2002-06-12 Merck & Co Inc Inhibiteurs de la prenyle-proteine transferase
CN100421661C (zh) * 1999-04-09 2008-10-01 先灵公司 诱导癌细胞死亡和肿瘤消退的方法
US6316462B1 (en) 1999-04-09 2001-11-13 Schering Corporation Methods of inducing cancer cell death and tumor regression
WO2000061145A1 (fr) * 1999-04-09 2000-10-19 Schering Corporation Procedes pour l'induction de la mort de cellules cancereuses et la regression de tumeurs
US7122666B2 (en) 1999-07-21 2006-10-17 Sankyo Company, Limited Heteroaryl-substituted pyrrole derivatives, their preparation and their therapeutic uses
US7189745B1 (en) 1999-11-22 2007-03-13 Smithkline Beecham Corporation Compounds
US7026336B1 (en) 1999-11-22 2006-04-11 Smithkline Beecham P.L.C. Compounds
US7053098B1 (en) 1999-11-23 2006-05-30 Smithkline Beecham Corporation 3,4-Dihydro-(1H) quinazolin-2-one compounds as CSBP/P38 kinase inhibitors
US6982270B1 (en) 1999-11-23 2006-01-03 Smithkline Beecham Corporation 3,4-dihydro-(1H)quinazolin-2-one compounds as CSBP/p38 kinase inhibitors
US6759410B1 (en) 1999-11-23 2004-07-06 Smithline Beecham Corporation 3,4-dihydro-(1H)-quinazolin-2-ones and their use as CSBP/p38 kinase inhibitors
US7235551B2 (en) 2000-03-02 2007-06-26 Smithkline Beecham Corporation 1,5-disubstituted-3,4-dihydro-1h-pyrimido[4,5-d]pyrimidin-2-one compounds and their use in treating csbp/p38 kinase mediated diseases
US6987119B2 (en) 2000-03-06 2006-01-17 Smithkline Beecham P.L.C. Imidazol-2-carboxamide derivatives as raf kinase inhibitors
US7199137B2 (en) 2000-09-21 2007-04-03 Smithkline Beecham Plc Imidazole derivatives as Raf kinase inhibitors
WO2002026246A3 (fr) * 2000-09-29 2003-10-02 Gsf Forschungszentrum Umwelt Compositions pharmaceutiques contenant des polynucleotides codant une proteine raf
US6777415B2 (en) 2000-10-05 2004-08-17 George Q. Daley Methods of inducing cancer cell death and tumor regression
US7282500B2 (en) 2001-05-19 2007-10-16 Smithkline Beecham P.L.C. Imidazole-2-carboxamide derivatives as Raf kinase inhibitors
US7297694B2 (en) 2001-09-05 2007-11-20 Smithkline Beechum P.L.C. Pyridylfurans and pyrroles as Raf kinase inhibitors
WO2003022832A1 (fr) * 2001-09-05 2003-03-20 Smithkline Beecham P.L.C. Pyridylfurans et pyrroles inhibiteurs de la kinase raf
US7446106B2 (en) 2001-09-05 2008-11-04 Smithkline Beecham Plc Pyridylfurans and pyrroles as Raf kinase inhibitors
WO2003022833A1 (fr) * 2001-09-05 2003-03-20 Smithkline Beecham Plc Pyridylfurans et pyrroles inhibiteurs de la kinase raf
AU2002365899B2 (en) * 2001-12-04 2007-09-13 Onyx Pharmaceuticals, Inc. RAF-MEK-ERK pathway inhibitors to treat cancer
US7307071B2 (en) * 2001-12-04 2007-12-11 Onyx Pharmaceuticals, Inc RAF-MEK-ERK pathway inhibitors to treat cancer
EP1707205A2 (fr) 2002-07-09 2006-10-04 Boehringer Ingelheim Pharma GmbH & Co. KG Compositions pharmaceutiques contenant un antichlinergique et un inhibiteur du p38 pour le traitement de maladies respiratoires
EP1536787A4 (fr) * 2002-08-14 2009-02-25 Pure World Botan Inc Alcaloides imidazole de lepidium meyenii et techniques d'utilisation
US8987305B2 (en) 2002-08-19 2015-03-24 Aptose Biosciences Inc. 2,4,5-trisubstituted imidazoles and their use as anti-microbial agents
US8394815B2 (en) 2002-08-19 2013-03-12 Lorus Therapeutics Inc. 2,4,5-trisubstituted imidazoles and their use as anti-microbial agents
US7884120B2 (en) 2002-08-19 2011-02-08 Lorus Therapeutics Inc. 2,4,5-trisubstituted imidazoles and their use as anti-microbial agents
US7618959B2 (en) 2002-11-05 2009-11-17 Smithklinebeecham Corp Antibacterial agents
US7902192B2 (en) 2003-05-15 2011-03-08 Arqule, Inc. Inhibitors of P38 and methods of using the same
EP1670780A4 (fr) * 2003-10-02 2008-12-17 Irm Llc Composes et compositions utiles comme inhibiteurs de la proteine kinase
US7569593B2 (en) 2003-10-02 2009-08-04 Irm Llc Compounds and compositions as protein kinase inhibitors
AU2004289539B2 (en) * 2003-11-14 2011-11-24 Lorus Therapeutics Inc. Aryl imidazoles and their use as anti-cancer agents
AU2004289539C1 (en) * 2003-11-14 2012-06-07 Lorus Therapeutics Inc. Aryl imidazoles and their use as anti-cancer agents
US8969372B2 (en) 2003-11-14 2015-03-03 Aptose Boisciences Inc. Aryl imidazoles and their use as anti-cancer agents
US10080739B2 (en) 2003-11-14 2018-09-25 Aptose Biosciences Inc. Aryl imidazoles and their use as anti-cancer agents
WO2005047266A1 (fr) * 2003-11-14 2005-05-26 Lorus Therapeutics Inc. Imidazoles d'aryle et leur utilisation comme agents anticancereux
JP2007511504A (ja) * 2003-11-14 2007-05-10 ローラス セラピューティクス インコーポレーテッド アリールイミダゾールおよびその抗癌剤としての使用
US8114873B2 (en) 2004-07-08 2012-02-14 Arqule, Inc. 1,4-disubstituted naphthalenes as inhibitors of p38 map kinase
US7829560B2 (en) 2004-07-08 2010-11-09 Arqule, Inc. 1,4-disubstituted naphthalenes as inhibitors of P38 MAP kinase
EP2116245A2 (fr) 2004-08-07 2009-11-11 Boehringer Ingelheim International GmbH combinaisons d'inhibiteurs de la kinase EGFR pour le traitement de désordres respiratoires et de l'appareil digestif
US7407957B2 (en) 2004-08-26 2008-08-05 Maybridge Limited Phthalazinone derivatives
US8178672B2 (en) 2004-10-19 2012-05-15 Arqule, Inc. Synthesis of imidazooxazole and imidazothiazole inhibitors of p38 MAP kinase
EP2384751A1 (fr) 2004-12-24 2011-11-09 Boehringer Ingelheim International Gmbh Médicaments pour le traitement ou la prévention des maladies fibrogènes
EP2878297A1 (fr) 2004-12-24 2015-06-03 Boehringer Ingelheim International GmbH Médicaments pour le traitement ou la prévention des maladies fibrogènes
US8148392B2 (en) 2005-05-25 2012-04-03 Lorus Therapeutics Inc. 2-indolyl imidazo [4,5-d] phenanthroline derivatives and their use in the treatment of cancer
US8946245B2 (en) 2005-12-13 2015-02-03 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US9814722B2 (en) 2005-12-13 2017-11-14 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
US11331320B2 (en) 2005-12-13 2022-05-17 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US11744832B2 (en) 2005-12-13 2023-09-05 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US8933086B2 (en) 2005-12-13 2015-01-13 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B]pyridines and pyrrolo[2,3-B]pyrimidines as Janus kinase inhibitors
US10639310B2 (en) 2005-12-13 2020-05-05 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors
US9662335B2 (en) 2005-12-13 2017-05-30 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
US9974790B2 (en) 2005-12-13 2018-05-22 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors
US9079912B2 (en) 2005-12-13 2015-07-14 Incyte Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase inhibitors
US10398699B2 (en) 2005-12-13 2019-09-03 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors
US9206187B2 (en) 2005-12-13 2015-12-08 Incyte Holdings Corporation Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase
US7692006B2 (en) * 2006-10-17 2010-04-06 Kudos Pharmaceuticals Limited Phthalazinone derivatives
US8247416B2 (en) 2006-10-17 2012-08-21 Kudos Pharmaceuticals Limited Phthalazinone derivative
WO2008142031A1 (fr) 2007-05-18 2008-11-27 Institut Curie La p38alpha cible thérapeutique dans le cancer de la vessie
US10610530B2 (en) 2007-06-13 2020-04-07 Incyte Corporation Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US10016429B2 (en) 2007-06-13 2018-07-10 Incyte Corporation Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US8722693B2 (en) 2007-06-13 2014-05-13 Incyte Corporation Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US11213528B2 (en) 2007-06-13 2022-01-04 Incyte Holdings Corporation Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US9376439B2 (en) 2007-06-13 2016-06-28 Incyte Corporation Salts of the janus kinase inhibitor (R)-3(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US8829013B1 (en) 2007-06-13 2014-09-09 Incyte Corporation Salts of the Janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US8822481B1 (en) 2007-06-13 2014-09-02 Incyte Corporation Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d] pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
US11633396B2 (en) 2008-10-07 2023-04-25 Kudos Pharmaceuticals Limited Immediate release pharmaceutical formulation of 4-[3-(4- cyclopropanecarbonyl-piperazine-1-carbonyl)-4-fluoro-benzyl]-2H- phthalazin-1-one
US11975001B2 (en) 2008-10-07 2024-05-07 Kudos Pharmaceuticals Limited Immediate release pharmaceutical formulation of 4-[3-(4-cyclopropanecarbonyl-piperazine-1-carbonyl)-4-fluoro-benzyl]-2H-phthalazin-1-one
US8475842B2 (en) 2008-10-07 2013-07-02 Astrazeneca Ab Immediate release pharmaceutical formulation of 4-[3-(4-cyclopropanecarbonyl-piperazine-1-carbonyl)-4-fluoro-benzyl]-2H-phthalazin-1-one
US12178816B2 (en) 2008-10-07 2024-12-31 Kudos Pharmaceuticals Limited Immediate release pharmaceutical formulation of 4-[3-(4-cyclopropanecarbonyl-piperazine-1-carbonyl)-4-fluoro-benzyl]-2H-phthalazin-1-one
US12144810B1 (en) 2008-10-07 2024-11-19 Kudos Pharmaceuticals Limited Immediate release pharmaceutical formulation of 4-[3-(4-cyclopropanecarbonyl-piperazine-1-carbonyl)-4-fluoro-benzyl]-2H-phthalazin-1-one
US12048695B2 (en) 2008-10-07 2024-07-30 Kudos Pharmaceuticals Limited Immediate release pharmaceutical formulation of 4-[3-(4-cyclopropanecarbonyl-piperazine-1-carbonyl)-4-fluoro-benzyl]-2H-phthalazin-1-one
US9216984B2 (en) 2009-05-22 2015-12-22 Incyte Corporation 3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane—or heptane-nitrile as JAK inhibitors
US9623029B2 (en) 2009-05-22 2017-04-18 Incyte Holdings Corporation 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane- or heptane-nitrile as JAK inhibitors
US9334274B2 (en) 2009-05-22 2016-05-10 Incyte Holdings Corporation N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
US9249145B2 (en) 2009-09-01 2016-02-02 Incyte Holdings Corporation Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
US9464088B2 (en) 2010-03-10 2016-10-11 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US10695337B2 (en) 2010-03-10 2020-06-30 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US11285140B2 (en) 2010-03-10 2022-03-29 Incyte Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US9999619B2 (en) 2010-03-10 2018-06-19 Incyte Holdings Corporation Piperidin-4-yl azetidine derivatives as JAK1 inhibitors
US10758543B2 (en) 2010-05-21 2020-09-01 Incyte Corporation Topical formulation for a JAK inhibitor
US11571425B2 (en) 2010-05-21 2023-02-07 Incyte Corporation Topical formulation for a JAK inhibitor
US10869870B2 (en) 2010-05-21 2020-12-22 Incyte Corporation Topical formulation for a JAK inhibitor
US11590136B2 (en) 2010-05-21 2023-02-28 Incyte Corporation Topical formulation for a JAK inhibitor
US11219624B2 (en) 2010-05-21 2022-01-11 Incyte Holdings Corporation Topical formulation for a JAK inhibitor
US12226419B2 (en) 2010-05-21 2025-02-18 Incyte Corporation Topical formulation for a JAK inhibitor
US9034884B2 (en) 2010-11-19 2015-05-19 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors
US10640506B2 (en) 2010-11-19 2020-05-05 Incyte Holdings Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidines derivatives as JAK inhibitors
US8933085B2 (en) 2010-11-19 2015-01-13 Incyte Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US10513522B2 (en) 2011-06-20 2019-12-24 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US8691807B2 (en) 2011-06-20 2014-04-08 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US9023840B2 (en) 2011-06-20 2015-05-05 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US9611269B2 (en) 2011-06-20 2017-04-04 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US11214573B2 (en) 2011-06-20 2022-01-04 Incyte Holdings Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors
US9359358B2 (en) 2011-08-18 2016-06-07 Incyte Holdings Corporation Cyclohexyl azetidine derivatives as JAK inhibitors
US9718834B2 (en) 2011-09-07 2017-08-01 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9487521B2 (en) 2011-09-07 2016-11-08 Incyte Holdings Corporation Processes and intermediates for making a JAK inhibitor
US9193733B2 (en) 2012-05-18 2015-11-24 Incyte Holdings Corporation Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US11896717B2 (en) 2012-11-15 2024-02-13 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
US11576864B2 (en) 2012-11-15 2023-02-14 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US11576865B2 (en) 2012-11-15 2023-02-14 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US10874616B2 (en) 2012-11-15 2020-12-29 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US10166191B2 (en) 2012-11-15 2019-01-01 Incyte Corporation Sustained-release dosage forms of ruxolitinib
US11337927B2 (en) 2012-11-15 2022-05-24 Incyte Holdings Corporation Sustained-release dosage forms of ruxolitinib
US8987443B2 (en) 2013-03-06 2015-03-24 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9714233B2 (en) 2013-03-06 2017-07-25 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US9221845B2 (en) 2013-03-06 2015-12-29 Incyte Holdings Corporation Processes and intermediates for making a JAK inhibitor
US9309247B2 (en) 2013-03-20 2016-04-12 Lorus Therapeutics Inc. 2-substituted imidazo[4,5-D]phenanthroline derivatives and their use in the treatment of cancer
US12151026B2 (en) 2013-08-07 2024-11-26 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US9655854B2 (en) 2013-08-07 2017-05-23 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US10561616B2 (en) 2013-08-07 2020-02-18 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US11045421B2 (en) 2013-08-07 2021-06-29 Incyte Corporation Sustained release dosage forms for a JAK1 inhibitor
US11104957B2 (en) 2013-10-04 2021-08-31 Aptose Biosciences, Inc. Compositions and methods for treating cancers
US9498467B2 (en) 2014-05-30 2016-11-22 Incyte Corporation Treatment of chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) by inhibitors of JAK1
US11149047B2 (en) 2017-10-30 2021-10-19 Aptose Biosciences, Inc. Aryl imidazoles for treatment of cancer
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US11278541B2 (en) 2017-12-08 2022-03-22 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
US10899736B2 (en) 2018-01-30 2021-01-26 Incyte Corporation Processes and intermediates for making a JAK inhibitor
US11304949B2 (en) 2018-03-30 2022-04-19 Incyte Corporation Treatment of hidradenitis suppurativa using JAK inhibitors
US12280054B2 (en) 2018-03-30 2025-04-22 Incyte Corporation Treatment of hidradenitis suppurativa using JAK inhibitors
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
WO2022249192A1 (fr) * 2021-05-27 2022-12-01 Ramot At Tel-Aviv University Ltd. Composés suppresseurs de métastases à large spectre et leurs utilisations thérapeutiques dans des tumeurs humaines

Also Published As

Publication number Publication date
EP0906099A4 (fr) 2001-02-07
CA2250232A1 (fr) 1997-10-09
JP2000504023A (ja) 2000-04-04
AU727939B2 (en) 2001-01-04
AU2722197A (en) 1997-10-22
EP0906099A1 (fr) 1999-04-07

Similar Documents

Publication Publication Date Title
EP0906099A1 (fr) Methode de traitement du cancer
EP0934270A1 (fr) Procede de traitement du cancer
AU701763B2 (en) Inhibitors of farnesyl protein transferase
US5869682A (en) Inhibitors of farnesyl-protein transferase
WO1997038664A2 (fr) Methode de traitement de cancer
WO1996030343A1 (fr) Inhibiteurs de farnesyl-proteine transferase
EP0891350A1 (fr) Inhibiteurs de farnesyle-proteine transferase
WO1997036900A1 (fr) Inhibiteurs de la farnesyl-proteine transferase
AU2660797A (en) Inhibitors of farnesyl-protein transferase
WO1996034010A2 (fr) Inhibiteurs de la farnesyle transferase
EP0783517A2 (fr) Inhibiteurs de la transferase de proteines farnesylees exempts de thiol
EP0891353A1 (fr) Inhibiteurs de farnesyle-proteine transferase
US5627202A (en) Inhibitors of farnesyl-protein transferase
US5652257A (en) Heterocycle-containing inhibitors of farnesyl-protein transferase
WO1997036591A1 (fr) Inhibiteurs de farnesyl-proteine transferase
WO1996031525A2 (fr) Inhibiteurs de la farnesyl-proteine transferase
EP0837875A2 (fr) Inhibiteurs de la farnesyle transferase
CA2201349A1 (fr) Inhibiteurs de transferase de farnesyl-proteine
EP0837857A2 (fr) Inhibiteurs de la farnesyl-proteine transferase
AU5428596A (en) Inhibitors of farnesyl-protein transferase
CA2201348A1 (fr) Inhibiteurs de la transferase de proteines farnesylees exempts de thiol

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GE HU IL IS JP KG KR KZ LC LK LR LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK TJ TM TR TT UA US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1997921085

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2250232

Country of ref document: CA

Ref country code: CA

Ref document number: 2250232

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997921085

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997921085

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载