+

WO1997035341A1 - Semiconductor storage device and its manufacture - Google Patents

Semiconductor storage device and its manufacture Download PDF

Info

Publication number
WO1997035341A1
WO1997035341A1 PCT/JP1996/000685 JP9600685W WO9735341A1 WO 1997035341 A1 WO1997035341 A1 WO 1997035341A1 JP 9600685 W JP9600685 W JP 9600685W WO 9735341 A1 WO9735341 A1 WO 9735341A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
electrode
capacitor
upper electrode
etching
Prior art date
Application number
PCT/JP1996/000685
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Kumihashi
Yasushi Goto
Toru Kaga
Kenichi Shoji
Masahiro Moniwa
Natsuki Yokoyama
Tokuo Kure
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP53333997A priority Critical patent/JP3666877B2/en
Priority to PCT/JP1996/000685 priority patent/WO1997035341A1/en
Priority to TW085115005A priority patent/TW312832B/en
Publication of WO1997035341A1 publication Critical patent/WO1997035341A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor

Definitions

  • the present invention relates to a semiconductor memory device and a method of manufacturing the same, and more particularly to a dynamic random access memory (DRAM) or a domain-inverted nonvolatile memory suitable for a large-scale integrated memory.
  • DRAM dynamic random access memory
  • a high-dielectric insulating film such as Ta 2 0 5 and BST as a capacitor insulating film.
  • a ferroelectric insulating film such as PZT is used as a capacitor insulating film, a nonvolatile memory using spontaneous polarization can be obtained. Since ferroelectric substances have extremely large relative dielectric constants of hundreds to thousands, they are also effective as a capacitor insulating film of Dynamitsu Random Access Memory ⁇ High dielectric insulating film / ferroelectric insulating film
  • the selection of the electrode material becomes important. This is because if the electrode material is oxidized during the formation of the insulating film to form an insulator having a low dielectric constant, the capacity of the capacitor is reduced.
  • Japanese Patent Application Laid-Open No. 5-89662 discloses a technique of performing etching while suppressing Pt re-adhesion using a Ti mask.
  • Japanese Patent Laid-Open No. 4-159679 discloses a technique for changing the area of the upper electrode and the lower electrode, or processing the end of the strong dielectric insulating film obliquely to eliminate the distortion of the film thickness change due to the polarization reversal. It is disclosed in the official gazette.
  • the side wall adhesion film 113 mainly composed of the electrode material adheres to the side walls of the mask 112, the upper metal electrode 111, the capacitor insulating film 109, and the lower metal electrode. This is remarkable when Pt or the like which is hardly oxidized is used as the electrode material.
  • the fact that it is difficult to oxidize means that it is difficult to change to a volatile substance by a chemical reaction, and the electrode material is mainly etched by physical sputtering. This sputtered electrode material adheres to the side walls. Oxide becomes conductor
  • the etching reaction product has low volatility, so that the sidewall adhesion film 113 is also formed.
  • This side wall adhesion film 113 must be removed because it causes a short circuit of the capacitor.
  • wet cleaning using an acid or the like has a problem that the capacitor insulating film is deteriorated.
  • the proposed technology uses the fact that the etch rate in dry etching varies depending on the incident angle of ions, and removes side wall deposits on the electrode material by self-cleaning during dry etching. That is.
  • the principle of this self-cleaning is shown in FIG.
  • the etch speed depends on angle 0.
  • the deposition rate is aR (0).
  • the etch rate of the deposited film on the side wall is R (0).
  • the etch rate R ( ⁇ ) on the side wall needs to be higher than the vertical thickness aR (O) / cos0 of the deposited film.
  • Figure 31 shows an improved capacitor structure based on the above findings.
  • the semiconductor memory device S shown in FIG. 31 is a cross-sectional view of a main part at the stage when a capacitor of a semiconductor memory is formed.
  • an element isolation region 102 is first formed on a semiconductor substrate 101.
  • an M0S transistor including the gate electrode 104 and the diffusion layer 105 is formed.
  • a plug 106 is formed in the through hole of the interlayer insulating layer 105 by using CVD and dry etching.
  • a barrier layer 107, a lower metal electrode 108, a capacitor insulating film 109, and an upper metal electrode 111 are formed by dry etching using a mask and a mask 112 of each electrode.
  • the mask 112 is previously formed into a taper shape having a taper angle of 75 degrees or less, and the taper angle of the capacitor can be formed to 75 degrees or less by dry etching based on Ar physical sputtering. In this way, a capacitor having no sidewall adhesion film can be formed.
  • the completed capacitor has a tapered shape, and depending on the thickness of each layer of the capacitor, there is a limit to the degree of integration due to an increase in the bottom area of the capacitor. However, there is no problem in practical use.
  • Semiconductor memory such as DRAM The major challenge is to reduce the cell area as the capacity increases and to improve the degree of integration.
  • a typical object of the present invention is to overcome the above-mentioned problems, and to provide a highly integrated and highly reliable semiconductor memory device.
  • Another representative object of the present invention is to provide a manufacturing method capable of realizing the above-described semiconductor memory device by a relatively simple process. Disclosure of the invention
  • a stacked capacitor including a lower electrode, an insulating film, and an upper electrode is provided on a main surface of a semiconductor substrate, and charges are stored in the capacitor.
  • a side wall of the capacitor has a side wall spacer, and the upper electrode is provided with the upper electrode. It is located inside the doorspacer. This ensures that the side of the lower electrode and the side of the upper electrode are electrically separated, so that there is no short between the two electrodes, and the semiconductor memory device is particularly suitable for high integration.
  • a method of manufacturing a semiconductor memory device having a multilayer capacitor according to a typical embodiment of the present invention, after performing dry etching of an upper electrode, forming a sidewall spacer prior to dry etching of a lower electrode. It is characterized by: As a result, the tapered portion of the side wall spacer does not adhere to the side wall due to self-cleaning during dry etching, so that processing without a short shot becomes possible, and high reliability and high integration are achieved. Thus, a semiconductor memory device is obtained.
  • FIG. 1 is a sectional view of a main part of a semiconductor memory device according to a first embodiment of the present invention.
  • FIG. 2 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor memory device according to the first embodiment of the present invention.
  • FIG. 3 is a fragmentary cross-sectional view showing the manufacturing process of the semiconductor memory device according to the first embodiment of the present invention, following FIG. 2;
  • FIG. 4 is a fragmentary cross-sectional view following FIG. 3 showing the manufacturing steps of the semiconductor memory device S of the first embodiment of the present invention.
  • FIG. 5 is a fragmentary cross-sectional view following FIG. 4, showing the manufacturing steps of the semiconductor device according to the first embodiment of the present invention
  • FIG. 6 is a fragmentary sectional view showing the manufacturing process of the semiconductor memory device according to the first embodiment of the present invention, following FIG. 5;
  • FIG. 7 is an essential part cross sectional view showing the manufacturing process of the semiconductor memory device of the first embodiment of the present invention, following FIG. 6;
  • FIG. 8 is a cross-sectional view of the essential part showing the manufacturing process of the semiconductor memory device according to the first embodiment of the present invention, following FIG.
  • FIG. 9 is a fragmentary cross-sectional view following FIG. 8, showing the manufacturing steps of the semiconductor memory device of the first embodiment of the present invention.
  • FIG. 10 is an essential part cross sectional view showing the manufacturing step of the semiconductor memory device of the first embodiment of the present invention, following FIG. 9;
  • FIG. 11 is a fragmentary cross-sectional view showing the manufacturing process of the semiconductor memory device according to the first embodiment of the present invention, following FIG. 10;
  • FIG. 12 shows a semiconductor according to the first embodiment of the present invention
  • FIG. 14 is a cross-sectional view of a main part showing a manufacturing step of the storage device.
  • FIG. 13 is a fragmentary cross-sectional view showing the manufacturing process of the semiconductor memory device according to the first embodiment of the present invention, following FIG. 12;
  • FIG. 14 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor memory device according to the first embodiment of the present invention, following FIG. 13;
  • FIG. 15 is a fragmentary cross-sectional view showing a semiconductor memory device according to a second embodiment of the present invention.
  • FIG. 16 is a sectional view showing a main part of a semiconductor memory device according to a third embodiment of the present invention.
  • FIG. 17 is a sectional view showing a main part of a semiconductor memory device according to a fourth embodiment of the present invention.
  • FIG. 18 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor memory device according to the fifth embodiment of the present invention.
  • FIG. 19 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor memory device of the fifth embodiment of the present invention, following FIG. 18;
  • FIG. 20 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor memory device according to the sixth embodiment of the present invention, following FIG. 19;
  • FIG. 21 is a plan view showing a sixth embodiment, in particular, a memory cell layout to which the first embodiment is applied.
  • FIG. 22 is a sectional view taken along the line AA of FIG. 21.
  • FIG. 23 is a plan view showing a seventh embodiment, in particular, another memory cell layout to which the first embodiment is applied.
  • FIG. 24 is a plan view showing an eighth embodiment, in particular, another memory cell layout to which the first embodiment is applied.
  • FIG. 25 is a sectional view taken along the line AA ′ shown in FIG. 24.
  • FIG. 26 is a cross-sectional view of a main part of a conventionally known memory cell.
  • FIG. 27 is a cross-sectional view of main parts of another conventionally known memory cell.
  • FIG. 28 is a fragmentary cross-sectional view for explaining problems in the method of manufacturing the memory cell shown in FIG. 27;
  • FIG. 29 is an explanatory diagram of a method of obtaining a clean side wall condition, which is a means of the present invention.
  • FIG. 30 is a graph showing a range of clean side wall conditions, which is a means of the present invention.
  • Fig. 31 is a cross-sectional view of the main part of the capacitor proposed earlier.
  • FIG. 1 is a cross-sectional view of a main part of a semiconductor pathological device (hereinafter referred to as a semiconductor memory) at a stage where a capacitor is formed.
  • a semiconductor memory a semiconductor pathological device
  • an element isolation region 102 is formed on a substrate 101.
  • a MISFET absolute gate field effect transistor
  • the gate electrode 104 and the semiconductor region (diffusion layer) 103 is formed.
  • a plug 106 is formed using CVD and dry etching.
  • a barrier layer 107, a lower metal electrode 108, a capacitor insulating film 109, and an upper metal electrode 111 are formed by dry etching using the same mask as the deposition of each layer.
  • a barrier species 107, a lower metal cladding 108, a capacitor insulating film 109, and an upper metal electrode 111 are formed by dry etching using the same mask as the deposition of each layer,
  • a side wall spacer 114 is formed, and then the lower metal electrode 108 and the barrier layer 107 are etched to form a capacitor. Since a taper angle ( ⁇ ) is formed at the portion of the wall spacer 114, the deposited electrode material is removed by self-cleaning at this portion, so that a capacitor having no side wall deposition film can be formed.
  • the completed multilayer capacitor has the side wall of the upper electrode U1 covered with the side wall base 114. That is, the upper electrode 111 is located inside the side wall spacer 114.
  • an element isolation region 102 is formed in a semiconductor substrate (for example, a P-type Si substrate or a P-type well region) 101.
  • the element isolation region 102 is formed of an oxide film selectively formed on the main surface of the semiconductor substrate 101 by LOCOS (Local Oxidation of Silicon) technology.
  • LOCOS Local Oxidation of Silicon
  • a MISFET is formed by the gate electrode 104 and the diffusion layer 103.
  • the gate oxide film below the gate electrode 104 is formed to a predetermined thickness prior to the formation of the gate electrode.
  • an interlayer insulating film for example, a SOG (Spin On Glass) film 105 is covered and flattened by a reflow process, a through hole is provided in the interlayer insulating film 105.
  • the W (tungsten) plug 106 is formed so as to fill the through hole provided in the interlayer insulating film 105 by using a CVD technique and an etch pack by dry etching.
  • a capacitor is formed on the plug 106. That is, the barrier layer 107, the lower metal layer 115, the insulating film layer 116, the upper metal layer 117, the hard mask layer 118 and a resist mask 119 are sequentially formed.
  • the Nono Domasuku layer 118 may be an insulating material such as Si0 2 or Si 2 N 3 or A1 2 0 3, it may be used a metal such as A1 or Cu. Further, as the barrier layer 107, TiN is preferable.
  • the electrode material This is effective when the side wall is formed by etching.
  • a hard mask 120 is formed.
  • the hard mask 120 is processed so as to have a taper angle of 75 degrees or less.
  • taper processing method when a metal is used as a hard mask, tapering can be performed by processing under conditions that allow side etching by dry etching, or processing may be performed by wet etching. If an insulator is used as a hard mask, it can be processed by either time modulation dry etching, in which deposition and dry etching are alternately performed, or wet etching.
  • the temperature of the substrate is etched near room temperature by dry etching using SF 6 plasma
  • taper processing by side etching is possible.
  • the taper angle can be controlled by controlling the side etching amount and controlling the ion energy by the bias.
  • the resist mask on the hard mask 120 is removed by an ashing step.
  • the upper metal S (117) is dry-etched to form an upper metal electrode 111.
  • Pt is used as the upper metal layer
  • Ar gas is When sputter etching is performed under the conditions of a pressure of 10 mTorr and RF of 500 W, etching can be performed at an etching speed of 20 nm / min. When using the same as the hard mask 120, 3 is obtained as the mask selectivity under this condition.
  • Dry etching may be performed by physical sputtering using a rare gas plasma such as Ar or Ar, or dry etching using a halogen-based gas containing F, C 1, or Br. Even in dry etching by physical sputtering using Ar gas plasma with Pt, if the hard mask 120 has a taper angle of 75 degrees or less, there is no side wall adhesion on the side wall of the hard mask 120 due to self-cleaning during dry etching. Dry etching is possible.
  • the capacitor insulating film 109 is processed by etching. If sputtering by Ar plasma or the like is used for this etching, since the selectivity with the lower metal layer 115 is low, the base metal layer 115 is shaved at the end of the etching, and the side wall adhesion film is formed on the side of the capacitor insulating film 109. There is a drawback that it may be formed on the wall, but there is no practical problem if the in-plane distribution of the etching rate is controlled uniformly.
  • the process may proceed to the next step before the etching of the capacitor insulating film 109 is completed.
  • PZT is used as the insulating film of the capacitor, for example, using a mixed gas of Ar and CF 4 gas as an etching gas, the PZT etch is performed at RF 500 W and a pressure of 10 mTorr in a parallel plate type etching apparatus.
  • Etching can be performed at a speed of 40 nm / min. W as hard mask 120 In this case, a mask selectivity of 4 is obtained under these conditions.
  • Pt is used as the lower metal layer, a selectivity of 3 against the lower metal under this etching condition is obtained.
  • an insulating film layer 121 is deposited by a CVD method. Specifically, absolute ⁇ layer 121 is Si0 2 film. Then, as shown in FIG. 8, a reseal wall spacer 114 is formed by etching back. The material of the insulation ⁇ layer 121, S ⁇ in addition to Si0 2, such as A1 2 0 3, Ti0 2, Ta 2 0 6, those capable of deposition by CVD is selected. Next, as shown in FIG. 9, the lower metal layer (115) is etched to form a lower metal electrode.
  • the sidewall attachment film 113 adheres to the pattern vertical portion, but the sidewall of the hard mask 120 and the sidewall spacer 114 has a taper angle, so that the sidewall attachment film does not adhere.
  • the sidewall attachment film 113 adheres to the pattern vertical portion, but the sidewall of the hard mask 120 and the sidewall spacer 114 has a taper angle, so that the sidewall attachment film does not adhere.
  • the sputtering by Ar gas plasma since Pt / Si0 2 etch rate ratio is about 1, Sa I Douorusu in the lower Pt etching
  • the spacer 114 is also etched. If the side spacers 114 are etched by the height of the hard mask 120 during the lower Pt etching, as shown in FIG.
  • the side wall spacers U4 are located beside the upper metal electrode 111 and the capacitor insulating film 109. Processing that can be formed only can be performed. Such processing involves controlling the height of the hard mask at the time of forming the sidewall spacer in FIG. 8 (this can be controlled by the deposited film thickness of the hard mask layer), and the Pt / Si0 2 can be formed by controlling the etch rate ratio.
  • the conditions and film thickness for this addition differ depending on the material of the lower electrode, the material of the sidewall spacer, the etching gas and the etching equipment, but it is necessary to control the thickness of the hard mask layer and control the etch rate ratio. Changes Absent.
  • the sidewall adhesion film 113 does not need to be removed because there is no short-circuit problem because of the presence of the sidewall spacer 114, but it does not need to be removed, but it increases the reliability of the process and suppresses variations in product characteristics. Therefore, it is desirable to remove them. Therefore, in this embodiment, as shown in FIG. 10, the side wall adhesion film was removed by wet treatment.
  • aqua regia is effective in the case of Pt deposits, and in the case of other substances, a solution treatment appropriate for the type may be performed. It is also effective depending on the type of the lower metal material, such as a downflow plasma treatment and a paper treatment.
  • an insulating film layer 122 is deposited.
  • a flat surface required for the following wiring process can be formed at this point.
  • a flat surface can be created by using etch pack technology or CMP (chemical mechanical polishing) technology, etc., and a sputter insulating film or a CVD insulating film may be used.
  • the insulating film layer 122 is processed by etching or CMP until the upper metal electrode 111 is exposed.
  • a plate electrode 123 is formed. This plate electrode 123 is subjected to wiring processing as necessary. Further, by performing necessary wiring processing, a DRAM device is formed.
  • a side wall spacer 114 is formed immediately after the etching of the upper metal electrode 111, and thereafter, the etching of the capacitor insulating film 109 and the lower metal electrode 108 is performed.
  • the side wall adhesion film 113 since the capacitor insulating film 109 is in contact with the side wall adhering film 1, if the wet process is performed to remove the side wall adhering film 113, the electrical characteristics of the capacitor insulating film 109 may be deteriorated.
  • a memory cell is formed with the sidewall adhesion film 1 13 left. If the sidewall adhesion film 113 can be removed without deteriorating the electrical characteristics, the treatment may be performed.
  • the size of the capacitor insulating film 109 and the lower metal electrode 108 are substantially the same, and the length of the lower side of the upper metal electrode 111 is longer than the length of the upper side of the insulating film 109. It is characterized by being short. In other words, in FIG. 15, the condition is that Le ⁇ Li.
  • a sidewall spacer 114 is formed.
  • the base metal film is shaved at the end of the etching of the capacitor insulating film 109, and the upper metal electrode is formed before forming the sidewall spacer.
  • the lower metal layer may be short-circuited by the sidewall adhesion film.
  • the length of the upper side of the insulating film 109 is shorter than the length of the lower side of the insulator 109. That is, in FIG. 16, there is a relationship of L bi> L ui.
  • FIG. 17 shows a structure formed by a method in which the step of removing the sidewall adhesion film 113 is omitted from the method described in the first embodiment. If the sidewall adhesion film 113 is made of a stable material such as Pt, it does not need to be removed, so that it can be manufactured at low cost by omitting the steps.
  • a fifth embodiment of the present invention will be described with reference to FIGS. This embodiment is obtained by omitting some steps from the method of the first embodiment.
  • the omitted step is the step of forming the capacitor by etching and then flattening it with a reflow film or CMP.
  • the semiconductor memory shown in FIG. 18 is formed by the following steps.
  • An element isolation region 102 is formed on a semiconductor substrate 101, and a gate electrode (omitted in this drawing) and a diffusion layer 103 are formed. Thereafter, an interlayer insulating film 105 and a plug 106 are formed, and then an upper metal electrode 111, a capacitor insulating film 109, a side spacer 114, and a lower metal electrode 108 are formed using a film deposition and etching process. After performing the sidewall adhesion film removing step, the barrier layer 107 is etched to form a capacitor. Up to this point, the method is the same as that described in the first embodiment.
  • a CVD insulating film layer 121 is deposited. As shown in the figure, the deposited film thickness should be more than 1/2 of the distance between adjacent capacitors. As the material of the insulating film layer, the material described in Embodiment 3 may be used.
  • the capacitor isolation portion 124 is formed by etching-packing the CVD insulating layer. By etching back the CVD insulating layer deposited more than half of the capacitor interval, the step between the capacitors is reduced.
  • a plate electrode 123 is formed. Since the steps are alleviated by the capacitor separating portion 124, the plate electrode 123 can be formed as a highly reliable plate electrode which does not break even when the sputtering method is used.
  • the thickness of the CVD insulating film layer it is sufficient to increase the thickness of the CVD insulating film layer.
  • the thickness is increased, there is a problem that the processing time of the deposition and etching steps becomes longer and the throughput is reduced, but there is no problem in practical use.
  • the CVD insulating film layer is thinner than 1/2, the effect of alleviating the step is reduced.
  • the capacitor separating portion 124 is formed by the side wall of the capacitor. This is effective because the vertical steps are inclined.
  • the present embodiment is particularly effective when a fine and highly integrated memory is to be manufactured, when the height of the capacitors is almost equal to the interval between the capacitors and the step between the capacitors is steep. Even in such a case, since the processing can be performed without using a time-consuming process such as reflow or CMP, the throughput can be increased.
  • FIG. 21 shows an embodiment of a planar layout of a memory cell according to the present invention.
  • This layout uses a two-intersection cell and a COB (Capacitor Over Bitline) structure that forms a capacitor on a bit line.
  • the transistors (not explicitly shown) of each memory cell are connected to peripheral circuits (not shown) via bit lines 208.
  • the connection between the transistor and bit line 208 is part of the active area 218 This is the portion of the formed bit line plug 207.
  • the operation of the transistor is controlled by a word line (gate electrode) 203.
  • This word line (gate electrode) 203 is connected to a peripheral circuit (not shown).
  • the connection from the transistor to the capacitor section 220 is made via a capacitor plug 211.
  • the capacitor section 220 is connected to a peripheral circuit (not shown) via a plate electrode 216.
  • the first feature of this planar layout is that one plate electrode 216 is wired for two word lines 203.
  • the capacity of the plate electrode 216 can be made smaller than that of a normal DRAM, so that the potential of the plate electrode 216 can be easily controlled by a peripheral circuit. Therefore, the operation of the nonvolatile memory using ferroelectricity becomes easy.
  • the number of plate electrodes may be one plate electrode for one word line.
  • one plate may be used for three or more lead wires.
  • the number of plate electrodes increases, it becomes difficult to increase the degree of integration. If the number of plate electrodes decreases, the capacitance of the plate electrode increases, making control by peripheral circuits difficult.
  • the optimal number of plate electrodes varies depending on the memory application.
  • the second feature of this planar layout is that the blade electrode 216 is wired in the same direction as the lead wire (gate electrode) 203. Therefore, when the potential of the plate compressing electrode 216 is controlled by the peripheral circuit, the potential can be controlled in synchronization with the potential of the lead wire 203.
  • FIG. 22 shows a cross-sectional structure (cross-section A-A ′) of FIG. 21. This cross-sectional structure will be described below.
  • An S i 02 202 for element isolation is formed on an S i substrate 201.
  • a MISFET consisting of a gate oxide film (not shown), word lines (gate electrodes) 203 and diffusion layers 204 is formed.
  • Wa lead wire 203 is used Si02 222 Yes and re processed by the dry etching as a mask, and the insulating protective film as it leaves the word lines Si0 2 222.
  • the Si0 2 222 need not to leave it, to delete the structure and to Re when removing step of the present embodiment, also acts as a protective film at the time of forming the gate electrode spacer 221.
  • doped poly Si which is often used as a normal gate electrode, or a silicide such as WSi, oSi, or CoSi may be used.
  • a metal material such as W or TiN, or a film thereof may be used.
  • the word line (gate electrode) 203 has a gate electrode spacer 221 formed thereon. Although this gate electrode spacer is not essential, it has the effect of alleviating steps and the effect of preventing electrical shorts, so that a highly reliable C0B structure can be formed.
  • a word line insulating protective film 205 is formed on the word line (gate electrode) 203.
  • this protective film is not always necessary, it has an effect of preventing an electrical short-circuit when performing dry etching for forming the bit line plug 207 and the capacitor plug 211. If the material is changed (for example, Si 3 N, and Si 0 2 ) between the plug portion and the word line step flattening insulating film 206, the above-described plug portion can be self-aligned using high selective dry etching between insulating films. There is an effect that dry etching can also be performed.
  • the step formed by forming the word line (gate electrode) 203 is flattened by the word line step flattening insulating film 206.
  • a material for the insulating film a fluid insulating film (such as BPSG) or a CVD insulating film may be used. Planarization methods include reflow of the fluid insulating film and dry etching. W
  • the BPSG reflow film is polished by CMP to form the word line step flattening insulating film 206. Since this film is easily removed by dry etching, in this embodiment, an insulating protective film 223 for a planarizing insulating film is formed. If this film is formed by a CVD-sputter deposition method, a denser film can be formed than a reflow film. As the material of the film may be those used in the S i 0 2 and S 3 N ⁇ as any conventional S i LS I process.
  • bit line plug 207 is formed.
  • the bit line plug 207 is formed by forming a hole pattern by dry etching and then forming n + polySi by using a CVD method.
  • the bit line plug 207 may be made of a material such as T i N in addition to 11 + poly S i.
  • the bit line 208 shown in FIG. 21 is also formed.
  • a material such as n + polySi, silicide, or a laminated film thereof may be used.
  • the insulating protection film 209 for the bit line is formed.
  • This film is not essential, but has the same effect as the word line insulating protective film 205.
  • a bit line step flattening insulating film 210 is formed thereon. The formation method and material of this film may be considered in the same manner as the word line step flattening insulating film 206.
  • an insulating protective film 224 for flattening insulating film is formed in this embodiment. Although this protective film is not essential, it has the same effect as the above-described green protective film 223 for a planarizing insulating film.
  • the child of the film becomes the base film in the dry etching of the capacitor, when an insulating film containing A1 atoms such as A1 2 0 3, allows a high selective dry etching in the dry etching of the capacitor.
  • an insulating film containing A1 atoms such as A1 2 0 3
  • dry etching using an Ar or C1-based gas can be processed to a shape that is more vertical.
  • etching resistance can be high because high selective dry etching.
  • Pt dry etching with a high selectivity between the mask and the underlayer can be performed.
  • the capacitor plug 211 is formed.
  • a conductive material is embedded in the hole pattern.
  • n + poly Si used in the conventional Si LSI process may be used, or a material such as TiN, W, Ta, or Ti may be embedded by CVD.
  • the strong ⁇ of absolute ⁇ and good compatibility with Pt, Ru, Ir, Pd, Rh, 0s, Hf, Zr and those are electrically conductive and their oxides (for example Ru0 2, Ir0 2) even by using a Good.
  • a stacked film thereof may be used.
  • Ru0 be formed using a CVD process, such as 2 or Ir0 2, etc. are M0CVD method, can be formed without disconnection of the hole pattern, when the laminated and Ru or ⁇ r thereon, Ru Since materials such as Ir and Ir act as a barrier layer against oxygen, the oxidation resistance in subsequent steps can be improved.
  • the capacitor upper electrode 214, the capacitor insulating film 213, the side electrode spacer 217, the capacitor lower electrode 212, and the barrier metal 219 are formed by the process described in the third embodiment. It is formed.
  • the Pt etching may be performed by Ar sputtering, and the PZT etching may be performed by CF 4 + Ar gas collective dry etching using a W hard mask as described in the third embodiment.
  • an insulating material comprising A 1 atoms as I Douorusu spacers 217 e.g., A 1 2 0 3) dry etching Pt may be Doraietsuchin grayed by F-based gas.
  • the lower electrode of the capacitor other than PI, Ru, Ir, Pd, Rh, Os, Hf, or an oxide thereof and having conductivity may be used.
  • ferroelectric insulators other than PZT insulating films containing Bi, insulating films containing La or Y, insulating films containing Ba or Sr, insulating films containing Cu
  • W or A1 which can be used as a hard mask, TiN, Ta, Cu, Ag, Au, or the like may be used. It may be used, or a stacked film thereof may be used.
  • an insulating protective film 215 for a capacitor is formed in this embodiment.
  • this film is flattened by a combination of a reflow film and CMP.
  • complete flattening is not essential, it is desirable to flatten as much as possible to improve the reliability of the wiring thereafter.
  • the flattening method and material may be the same as the formation of the bit line step flattening insulating film and the formation of the word line step flattening insulating film.
  • an oxide film such as Ti, Zr, or Pb, which is compatible with the material of the capacitor part, is formed using a CVD method as a protective insulating film of the capacitor part, and then a reflow insulating film is formed to form a laminated film. Good.
  • the ferroelectric insulating film tends to deteriorate its characteristics in a reducing atmosphere or an atmosphere in which H atoms are generated.
  • CVD-S i 0 2 film it may be used an organic insulating material such as PI Q (Poryimi de I Seo India Loki mystery dione).
  • the plate electrode 216 is formed in this embodiment.
  • Such materials include 11+ pol y Si and W What is necessary is just to use a material conventionally used in the Si LSI process.
  • a conductive material deposited by sputtering may be used as the electrode material, and in the case of a stepped structure as shown in FIG. May be used to deposit a conductive material.
  • a structure shown in FIG. 22 can be formed.
  • FIG. 22 shows a cross-sectional view of the memory cell section up to the formation of the plate electrode. Needless to say, in actual memory, it is necessary to form two or more eyebrows to connect the memory cell part and peripheral circuits, and also to perform packaging.
  • FIG. 23 shows another embodiment of the planar layout of the memory cell according to the present invention.
  • This layout uses a two-intersection cell and a COB (Capacitor Over Bit Line) structure that forms a capacitor on a bit line.
  • the transistors (not explicitly shown) of each memory cell are connected to peripheral circuits (not shown) via bit lines 208.
  • the connection between the transistor and the bit line 208 is a bit line plug 207 formed in a part of the active region 218.
  • the operation of the transistor is controlled by a word line (gate / pole) 203.
  • This word line (gate gate) 203 is connected to peripheral circuits (not shown).
  • the transistor is connected to the capacitor section 220 via the capacitor plug 211.
  • the capacitor section 220 is connected to a peripheral circuit (not shown) via a plate electrode 216.
  • the first feature of this planar layout is that one plate electrode 216 is wired for one bit line 208.
  • the capacity of the plate electrode 216 is smaller than that of a normal DRAM. This makes it easier to control the potential of the plate electrode 216 by a peripheral circuit. Therefore, the operation of the nonvolatile memory using ferroelectricity becomes easy.
  • the number of plate electrodes is set to one plate electrode for two or more bit lines. Is also good. However, as the number of plate electrodes decreases, the capacitance of the plate electrode increases, making control by peripheral circuits difficult. The optimal number of plate electrodes depends on the application of the memory.
  • the second feature of this planar layout is that the plate electrode 216 is wired in the same direction as the bit line 208. Therefore, when the potential of the plate electrode 216 is controlled by the peripheral circuit, the potential can be controlled in synchronization with the potential of the bit line 208.
  • FIG. 24 shows another embodiment of the planar layout of the memory cell according to the present invention.
  • This layout uses a two-intersection cell and a COB (Capacitor Over Bitline) structure that forms a capacitor on a bit line.
  • the transistor (not explicitly shown) of each memory cell is connected to a peripheral circuit (not shown) via a bit line 208.
  • the connection between the transistor and the bit line 208 is a bit line plug 207 formed in a part of the active region 218.
  • the operation of the transistor is controlled by a word line (gate electrode) 203.
  • This word line (gate electrode) 203 is connected to a peripheral circuit (not shown).
  • the transistor is connected to the capacitor section 220 via the capacitor plug 211.
  • the capacitor section 220 is connected to a peripheral circuit (not shown) via a plate electrode 216.
  • the first feature of this planar layout is that the DRAM operation is considered That is, the capacitor is controlled by the plate electrode 216.
  • FIG. 25 shows a cross-sectional structure (cross-section AA ′) in FIG. This cross-sectional structure is basically the same as FIG. 202 described in Embodiment 8 except for the plate electrode 216.
  • the processing of the plate electrode 216 may be performed to a required size as in the eighth embodiment.
  • a problem occurs when a capacitor is processed in only one lithography step. It is possible to prevent a short circuit between the poles. As a result, a margin for mask alignment is not required, and a highly integrated semiconductor memory using a fine capacitor can be added.
  • the present invention is useful as a highly reliable and highly integrated capacitor, and is suitable for use in large-capacity DRAMs of 1 gigabit or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

Short circuits often occur between upper and lower capacitor electrodes due to particles deposited on side edges of a very small multilayer capacitor during its dry etching for a lithographic process. This problem is solved by using an electrode material (for example, Pt) whose reaction products caused by etching have low volatility. After the upper metallic electrode (111) is dry-etched, a side wall spacer (114) is formed before the dry etching of the lower metallic electrode (108) is started. Since nothing is deposited on the tapered part of the spacer (114) due to a self-cleaning action which occurs during the dry etching, no short circuit occurs between the electrodes (111 and 108).

Description

明 細 書 半導体記憶装置およびその製造方法 技術分野  Description: Semiconductor storage device and method of manufacturing the same

本発明は半導体記憶装置およびその製造方法に関し、 特に大規 模集積メモリ一に好適なダイナミックランダムアクセスメモリー ( D R A M ) または分極反転型不揮発性メモリーに関する。 背景技術  The present invention relates to a semiconductor memory device and a method of manufacturing the same, and more particularly to a dynamic random access memory (DRAM) or a domain-inverted nonvolatile memory suitable for a large-scale integrated memory. Background art

大規模集積メモリーに好適な小面積かつ大容量のキャパシタを 得るためには、 キャパシタ絶縁膜として Ta205 や BST のような 高誘電体絶縁膜を用いることが有効である。 キャパシタ絶縁膜と して PZT のような強誘電体絶縁膜を用いれば、 自発分極を利用 した不揮発性メモリ一が得られる。 強誘電体物質には、 比誘電率 が数百から数千と極めて大きなものがあるので、 ダイナミツクラ ンダムアクセスメモリ一のキャパシタ絶縁膜としても有効である < 高誘電体絶緣膜ゃ強誘電体絶緣膜をキャパシタ絶縁膜として用 いる場合には、 電極材料の選択が重要になる。 なぜならば、 絶縁 膜の形成時に電極材料が酸化されて低誘電率の絶縁物ができると、 キャパシタの容量が小さくなつてしまうからである。 To obtain a suitable small area and a large capacity capacitor in large-scale integrated memory, it is effective to use a high-dielectric insulating film such as Ta 2 0 5 and BST as a capacitor insulating film. If a ferroelectric insulating film such as PZT is used as a capacitor insulating film, a nonvolatile memory using spontaneous polarization can be obtained. Since ferroelectric substances have extremely large relative dielectric constants of hundreds to thousands, they are also effective as a capacitor insulating film of Dynamitsu Random Access Memory <High dielectric insulating film / ferroelectric insulating film When using as a capacitor insulating film, the selection of the electrode material becomes important. This is because if the electrode material is oxidized during the formation of the insulating film to form an insulator having a low dielectric constant, the capacity of the capacitor is reduced.

そこで、 罨極材料としては酸化されにくいものか、 酸化物が導 電体になる材料が選択されてきた。 酸化されにくいものとしては Pt, 0s, Au などがあり、 一般的には Pt が用いられている。 酸 化物が導電体になる材料には Ru02 , I r02 があり、 電極材料とし て Ru, Ru02 , I r, I r02 などが用いられている。 これらの絶縁膜 ·電極材料を用いたキャパシタ構造として、 第 2 6図に示したような構造が 1994 年 IEDM (International ELECTRON DEVICES Meeting) Technical Digest, P.843- P.846 に報告されている。 この構造は、 複数のマスクが必要であること と、 キャパシタ全体の面積に対して実効的な面積が小さい。 Therefore, materials that are difficult to be oxidized or materials in which oxides are used as conductors have been selected as compressible materials. Pt, 0s, Au, etc. are less susceptible to oxidation, and Pt is generally used. Oxides are the material becomes a conductor has Ru0 2, I r0 2, as an electrode material Ru, Ru0 2, I r, I r0 2 , etc. are used. As a capacitor structure using these insulating film and electrode materials, a structure as shown in Fig. 26 was reported in IEDM (International ELECTRON DEVICES Meeting) Technical Digest, 1994, P.843-P.846. This structure requires multiple masks and has a small effective area relative to the total area of the capacitor.

また、 第 2 7図に示したような、 上部電極 ·絶縁膜 ·下部亀極 を 1回のリソグラフィー工程で加工する技術が、 Mat. Res. Soc. Symp. Proc. Vol. 310 (1993) P.127- P.133、 特開平 05-2996 01号公報そして特開平 6-342774号公報に開示されている。  Also, as shown in Fig. 27, the technique of processing the upper electrode, insulating film, and lower electrode in one lithography process is described in Mat. Res. Soc. Symp. Proc. Vol. 310 (1993) P .127-P.133, Japanese Patent Application Laid-Open Nos. 05-299601 and 6-342774.

また、 Pt エッチング方法として、 Ti マスクを用いて Pt 再 付着を抑えてエッチングする技術が特開平 5- 89662号公報に開示 されている。  Further, as a Pt etching method, Japanese Patent Application Laid-Open No. 5-89662 discloses a technique of performing etching while suppressing Pt re-adhesion using a Ti mask.

さらに、 上部電極と下部電極の面積を変えるか、 もしくは強誘 電体絶縁膜の端部を斜めに加工することにより、 分極反転に伴う 膜厚変化のひずみを解消する技術が特開平 4-159679号公報に開 示されている。  Furthermore, Japanese Patent Laid-Open No. 4-159679 discloses a technique for changing the area of the upper electrode and the lower electrode, or processing the end of the strong dielectric insulating film obliquely to eliminate the distortion of the film thickness change due to the polarization reversal. It is disclosed in the official gazette.

そしてさらに、 下部電極と強誘鼋体絶縁膜をエッチングした後. サイ ドウオールを形成し、 その後に上部電極を形成することによ り、 マスクの合わせマージンを増やし、 電極間のショートを防ぐ 技術が、 特開平 6-132482号公報に開示されている。  Then, after etching the lower electrode and the strong dielectric insulating film. By forming a side wall and then forming an upper electrode, a technology to increase the mask alignment margin and prevent short-circuit between electrodes And Japanese Patent Application Laid-Open No. 6-132482.

ところで、 第 2 7図に示した構造をドライエッチ加工を行なう 場合に、 以下の問題点があることが本願発明者等によって認識さ れた。  By the way, it has been recognized by the present inventors that the following problems occur when dry etching is performed on the structure shown in FIG.

第 2 8図に示すように、 電極材料を主成分とする側壁付着膜 113 がマスク 112, 上部金属電極 111, キャパシタ絶縁膜 109, 下部金属電極 108 の側壁に付着するという問題があった。 これは電極材料として酸化されにくい Pt 等を用いたときに顕著 である。 酸化されにくいということは化学反応により揮発性の物 質に変えることが困難であるということであり、 電極材料は主と して物理スパッタによりエッチングされる。 このスパッタされた 電極材料が、 側壁に付着するわけである。 酸化物が導電体となるAs shown in FIG. 28, there is a problem that the side wall adhesion film 113 mainly composed of the electrode material adheres to the side walls of the mask 112, the upper metal electrode 111, the capacitor insulating film 109, and the lower metal electrode. This is remarkable when Pt or the like which is hardly oxidized is used as the electrode material. The fact that it is difficult to oxidize means that it is difficult to change to a volatile substance by a chemical reaction, and the electrode material is mainly etched by physical sputtering. This sputtered electrode material adheres to the side walls. Oxide becomes conductor

Ru02 や Ir02 でも、 エッチング反応生成物の揮発性が低いため、 やはり側壁付着膜 113 を形成する。 Even for RuO 2 and IrO 2 , the etching reaction product has low volatility, so that the sidewall adhesion film 113 is also formed.

この側壁付着膜 113 はキャパシタがショートする原因となる ので除去する必要があるが、 例えば、 酸などを用いた wet 洗浄 では、 キャパシタ絶縁膜が劣化してしまうという問題があった。 次に、 上述のような問題点の解決策として、 本発明に先立って 提案された技術を以下に述べる。  This side wall adhesion film 113 must be removed because it causes a short circuit of the capacitor. However, for example, wet cleaning using an acid or the like has a problem that the capacitor insulating film is deteriorated. Next, techniques proposed prior to the present invention as solutions to the above-described problems will be described below.

提案された技術は、 ドライエッチングにおけるエッチ速度が、 イオンの入射角度によリ異なることを利用することにより、 電極 材料の側壁付着物を ドライエッチング中にセルフクリ一ニングす ることによリ除去するというものである。  The proposed technology uses the fact that the etch rate in dry etching varies depending on the incident angle of ions, and removes side wall deposits on the electrode material by self-cleaning during dry etching. That is.

このセルフクリ一ニングの原理を第 2 9図に示す。 エッチ速度 は角度 0に依存する。 これを R(0) とする。 底面では e = oな ので、 電極材料の底面でのエッチ速度を R(0) とする。 エツチン グされた電極材料のうちの割合ながパターン側壁に付着するとす ると、 その付着速度は aR(0) である。 パターンのテーパー角が 0とすると、 側壁での付着膜のエッチ速度は R(0) である。 こ こでセルフクリーニングよリクリ一ンな側壁を得るためには、 付 着膜の垂直方向の厚み aR(O)/cos0以上に側壁でのエッチ速度 R ( Θ ) が速いことが必要である。 すなわち aR(0)/cos 0≤R( ø ) 力、'、 クリーン側壁を得るための条件である。 この条件式を変形す ると、 R ( 0 ) cos 0 /R (O)≥ aとなり、 左辺は文献値から計箅でき る値であり、 右辺は実験から求めることができる値である。 これ らの計算値および実験値を第 3 0図に示す。 実験値から求めた α = 0. 3 を用いると、 テーパー角が 75 度以下のときには、 セルフ クリーニングにより側壁付着膜のないドライエッチングが可能で あることがわかる。 すなわち、 マスクおよびキャパシタのテーパ 一角を 75 度以下にすれば、 側壁付着物の問題を解決できるわけ である。 The principle of this self-cleaning is shown in FIG. The etch speed depends on angle 0. Let this be R (0). Since e = o on the bottom surface, the etching speed on the bottom surface of the electrode material is R (0). Assuming that a proportion of the etched electrode material adheres to the pattern sidewall, the deposition rate is aR (0). Assuming that the taper angle of the pattern is 0, the etch rate of the deposited film on the side wall is R (0). Here, in order to obtain a clean side wall by self-cleaning, the etch rate R (Θ) on the side wall needs to be higher than the vertical thickness aR (O) / cos0 of the deposited film. In other words, aR (0) / cos 0≤R (ø) force, ', conditions for obtaining clean side walls. Transform this conditional expression Then, R (0) cos 0 / R (O) ≥ a, and the left side is a value that can be calculated from literature values, and the right side is a value that can be obtained from experiments. Figure 30 shows the calculated and experimental values. Using α = 0.3 obtained from experimental values, it can be seen that when the taper angle is 75 degrees or less, dry etching without side wall adhesion film is possible by self-cleaning. In other words, if the angle of the taper of the mask and capacitor is set to 75 degrees or less, the problem of sidewall deposits can be solved.

以上の知見を基に改善されたキャパシタ構造を第 3 1図に示す。 第 3 1 図に示された半導体記憶装 Sは、 半導体メモリーのキャパ シタまで形成した段階の要部断面図である。  Figure 31 shows an improved capacitor structure based on the above findings. The semiconductor memory device S shown in FIG. 31 is a cross-sectional view of a main part at the stage when a capacitor of a semiconductor memory is formed.

第 3 1図において、 半導体基板 101 にまず素子分離領域 102 を形成する。 次に、 ゲート電極 104 と拡散層 105 による M0S トランジスタを形成する。 次に層間絶緣膜 105 で平坦化した後、 プラグ 106 を CVD と ドライエッチとを用いて層間絶縁腠 105 のスルーホール内に形成する。 このプラグ上にバリア層 107 , 下 部金属電極 108, キャパシタ絶緣膜 109, 上部金属鼋極 1 1 1 を、 各厣の堆稷とマスク 1 12 によるドライエッチングにより形成す る。 ここでマスク 1 12 はあらかじめテーパー角 75 度以下のテ —パー形状としておき、 Ar 物理スパッタをベースとしたドライ エッチング加工で、 キャパシタのテーパー角も 75 度以下に形成 できる。 このようにして側壁付着膜のないキャパシタを形成する ことができる。 完成されたキャパシタはテーパー形状であるため に、 キャパシタの各層の膜厚によってはキャパシタの底面積が大 きくなることにより集積度に限界があるが、 実用上は問題はない, しカヽし、 ギガビッ 卜世代の D R A Mの如き半導体メモリーにお いては、 大容量化に伴ってセル面積を縮小させ、 集積度を向上さ せることが大きな課題である。 In FIG. 31, an element isolation region 102 is first formed on a semiconductor substrate 101. Next, an M0S transistor including the gate electrode 104 and the diffusion layer 105 is formed. Next, after flattening with an interlayer insulating film 105, a plug 106 is formed in the through hole of the interlayer insulating layer 105 by using CVD and dry etching. On this plug, a barrier layer 107, a lower metal electrode 108, a capacitor insulating film 109, and an upper metal electrode 111 are formed by dry etching using a mask and a mask 112 of each electrode. Here, the mask 112 is previously formed into a taper shape having a taper angle of 75 degrees or less, and the taper angle of the capacitor can be formed to 75 degrees or less by dry etching based on Ar physical sputtering. In this way, a capacitor having no sidewall adhesion film can be formed. The completed capacitor has a tapered shape, and depending on the thickness of each layer of the capacitor, there is a limit to the degree of integration due to an increase in the bottom area of the capacitor. However, there is no problem in practical use. Semiconductor memory such as DRAM The major challenge is to reduce the cell area as the capacity increases and to improve the degree of integration.

したがって、 本発明の代表的な目的は、 上記課題を克服するこ とにあり、 高集積及び高信頼度の半導体記憶装置を提供すること にある。  Therefore, a typical object of the present invention is to overcome the above-mentioned problems, and to provide a highly integrated and highly reliable semiconductor memory device.

本発明の他の代表的な目的は、 上述した半導体記憶装置を比較 的簡単なプロセスにより実現することのできる製造方法を提供す ることにある。 発明の開示  Another representative object of the present invention is to provide a manufacturing method capable of realizing the above-described semiconductor memory device by a relatively simple process. Disclosure of the invention

本発明の代表的な形態による半導体記憶装置によれば、 半導体 基体主面上に下部電極と、 絶縁膜と、 上部電極とから構成される 積層型キャパシタを有し、 このキャパシタに電荷を蓄積するか、 もしくは絶緣膜の分極反転によリ電気信号を記憶する機能を有し た半導体記億装置において、 前記キャパシタの側部にサイ ドウォ 一ルスぺーサ一を有し、 前記上部電極が前記サイ ドウォ一ルスべ ーサ一の内側に位置されている。 このことによって、 下部電極の 側部と上部電極の側部とが確実に電気的に分離されて両電極間の ショー卜の無い、 特に高集積化に適した半導体記憶装置となる。 本発明の代表的な形態による積層型キャパシタを有する半導体 記憶装置の製造方法によれば、 上部電極のドライエッチ加工した 後、 下部電極のドライエッチ加工に先立って、 サイ ドウォールス ぺーサ一を形成することを特徴としている。 このことによって、 サイ ドウォールスぺーサ一のテーパー部分はドライエッチング中 のセルフクリーニングにより、 側壁付着物が付着しないため、 シ ョートのない加工が可能になり、 高信頼度で、 かつ高集積化を図 つた半導体記憶装置が得られる。 図面の簡単な説明 According to a semiconductor storage device according to a representative embodiment of the present invention, a stacked capacitor including a lower electrode, an insulating film, and an upper electrode is provided on a main surface of a semiconductor substrate, and charges are stored in the capacitor. Alternatively, in a semiconductor storage device having a function of storing an electric signal by polarization inversion of an insulating film, a side wall of the capacitor has a side wall spacer, and the upper electrode is provided with the upper electrode. It is located inside the doorspacer. This ensures that the side of the lower electrode and the side of the upper electrode are electrically separated, so that there is no short between the two electrodes, and the semiconductor memory device is particularly suitable for high integration. According to a method of manufacturing a semiconductor memory device having a multilayer capacitor according to a typical embodiment of the present invention, after performing dry etching of an upper electrode, forming a sidewall spacer prior to dry etching of a lower electrode. It is characterized by: As a result, the tapered portion of the side wall spacer does not adhere to the side wall due to self-cleaning during dry etching, so that processing without a short shot becomes possible, and high reliability and high integration are achieved. Thus, a semiconductor memory device is obtained. BRIEF DESCRIPTION OF THE FIGURES

第 1図は、 本発明の第 1の実施例である半導体記憶装置の要部 断面図。  FIG. 1 is a sectional view of a main part of a semiconductor memory device according to a first embodiment of the present invention.

第 2図は、 本発明の第 1の実施例の半導体記億装置の製造工程 を示す要部断面図。  FIG. 2 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor memory device according to the first embodiment of the present invention.

第 3図は、 第 2図に続く、 本発明の第 1の実施例の半導体記憶 装置の製造工程を示す要部断面図。  FIG. 3 is a fragmentary cross-sectional view showing the manufacturing process of the semiconductor memory device according to the first embodiment of the present invention, following FIG. 2;

第 4図は、 第 3図に続く、 本発明の第 1の実施例の半導体記憶 装 Sの製造工程を示す要部断面図。  FIG. 4 is a fragmentary cross-sectional view following FIG. 3 showing the manufacturing steps of the semiconductor memory device S of the first embodiment of the present invention.

第 5図は、 第 4図に続く、 本発明の第 1の実施例の半導体記慷 装置の製造工程を示す要部断面図。  FIG. 5 is a fragmentary cross-sectional view following FIG. 4, showing the manufacturing steps of the semiconductor device according to the first embodiment of the present invention;

第 6図は、 第 5図に統く、 本発明の第 1の実施例の半導体記憶 装置の製造工程を示す要部断面図。  FIG. 6 is a fragmentary sectional view showing the manufacturing process of the semiconductor memory device according to the first embodiment of the present invention, following FIG. 5;

第 7図は、 第 6図に続く、 本発明の第 1の実施例の半導体記憶 装置の製造工程を示す要部断面図。  FIG. 7 is an essential part cross sectional view showing the manufacturing process of the semiconductor memory device of the first embodiment of the present invention, following FIG. 6;

第 8図は、 第 7図に続く、 本発明の第 1の実施例の半導体記憶 装置の製造工程を示す要都断面図。  FIG. 8 is a cross-sectional view of the essential part showing the manufacturing process of the semiconductor memory device according to the first embodiment of the present invention, following FIG.

第 9図は、 第 8図に続く、 本発明の第 1の実施例の半導体記億 装置の製造工程を示す要部断面図。  FIG. 9 is a fragmentary cross-sectional view following FIG. 8, showing the manufacturing steps of the semiconductor memory device of the first embodiment of the present invention.

第 1 0図は、 第 9図に続く、 本発明の第 1の実施例の半導体記 憶装置の製造工程を示す要部断面図。  FIG. 10 is an essential part cross sectional view showing the manufacturing step of the semiconductor memory device of the first embodiment of the present invention, following FIG. 9;

第 1 1図は、 第 1 0図に続く、 本発明の第 1の実施例の半導体 記憶装置の製造工程を示す要部断面図。  FIG. 11 is a fragmentary cross-sectional view showing the manufacturing process of the semiconductor memory device according to the first embodiment of the present invention, following FIG. 10;

第 1 2図は、 第 1 1図に続く、 本発明の第 1の実施例の半導体 記憶装置の製造工程を示す要部断面図。 FIG. 12 shows a semiconductor according to the first embodiment of the present invention, following FIG. FIG. 14 is a cross-sectional view of a main part showing a manufacturing step of the storage device.

第 1 3図は、 第 1 2図に続く、 本発明の第 1の実施例の半導体 記憶装置の製造工程を示す要部断面図。  FIG. 13 is a fragmentary cross-sectional view showing the manufacturing process of the semiconductor memory device according to the first embodiment of the present invention, following FIG. 12;

第 1 4図は、 第 1 3図に続く、 本発明の第 1の実施例の半導体 記憶装置の製造工程を示す要部断面図。  FIG. 14 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor memory device according to the first embodiment of the present invention, following FIG. 13;

第 1 5図は、 本発明の第 2の実施例の半導体記憶装置を示す要 部断面図。  FIG. 15 is a fragmentary cross-sectional view showing a semiconductor memory device according to a second embodiment of the present invention.

第 1 6図は、 本発明の第 3の実施例の半導体記憶装置を示す要 部断面図。  FIG. 16 is a sectional view showing a main part of a semiconductor memory device according to a third embodiment of the present invention.

第 1 7図は、 本発明の第 4の実施例の半導体記憶装置を示す要 部断面図。  FIG. 17 is a sectional view showing a main part of a semiconductor memory device according to a fourth embodiment of the present invention.

第 1 8図は、 本発明の第 5の実施例である半導体記憶装置の製 造工程を示す要部断面図。  FIG. 18 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor memory device according to the fifth embodiment of the present invention.

第 1 9図は、 第 1 8図に続く、 本発明の第 5の一実施例の半導 体記憶装置の製造工程を示す要部断面図。  FIG. 19 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor memory device of the fifth embodiment of the present invention, following FIG. 18;

第 2 0図は、 第 1 9図に続く、 本発明の第 6の一実施例の半導 体記億装置の製造工程を示す要部断面図。  FIG. 20 is a fragmentary cross-sectional view showing a manufacturing step of the semiconductor memory device according to the sixth embodiment of the present invention, following FIG. 19;

第 2 1図は、 第 6の実施例であり、 特に第 1の実施例を応用し たメモリセル · レイァゥ卜を示す平面図。  FIG. 21 is a plan view showing a sixth embodiment, in particular, a memory cell layout to which the first embodiment is applied.

第 2 2図は、 第 2 1図に示す A— A, 切断断面図。  FIG. 22 is a sectional view taken along the line AA of FIG. 21.

第 2 3図は、 第 7の実施例であり、 特に第 1の実施例を応用し た他のメモリセル · レイァゥ卜を示す平面図。  FIG. 23 is a plan view showing a seventh embodiment, in particular, another memory cell layout to which the first embodiment is applied.

第 2 4図は、 第 8の実施例であり、 特に第 1の実施例を応用し た他のメモリセル · レイァゥトを示す平面図。  FIG. 24 is a plan view showing an eighth embodiment, in particular, another memory cell layout to which the first embodiment is applied.

第 2 5図は、 第 2 4図に示す A— A ' 切断断面図。  FIG. 25 is a sectional view taken along the line AA ′ shown in FIG. 24.

第 2 6図は、 従来知られているメモリセルの要部断面図。 第 2 7図は、 従来知られている他のメモリセルの要部断面図。 第 2 8図は、 第 2 7図に示したメモリセルの製造方法における 問題点を説明する要部断面図。 FIG. 26 is a cross-sectional view of a main part of a conventionally known memory cell. FIG. 27 is a cross-sectional view of main parts of another conventionally known memory cell. FIG. 28 is a fragmentary cross-sectional view for explaining problems in the method of manufacturing the memory cell shown in FIG. 27;

第 2 9図は、 本発明の手段である、 クリーン側壁条件の求め方 の説明図。  FIG. 29 is an explanatory diagram of a method of obtaining a clean side wall condition, which is a means of the present invention.

第 3 0図は、 本発明の手段である、 クリーン側壁条件の範囲を 示すグラフ。  FIG. 30 is a graph showing a range of clean side wall conditions, which is a means of the present invention.

第 3 1図は、 先に提案されたキャパシタの要部断面図。 発明を実施するための最良の形態  Fig. 31 is a cross-sectional view of the main part of the capacitor proposed earlier. BEST MODE FOR CARRYING OUT THE INVENTION

本発明をより詳細に説述するために、 添付の図面を参照してこ れを説明する。  The present invention will be described in more detail with reference to the accompanying drawings.

(実施例 1 )  (Example 1)

本発明の第 1の実施例を、 第 1図を参照して説明する。  A first embodiment of the present invention will be described with reference to FIG.

第 1図は、 キャパシタまで形成した段階の半導体記愴装置 (以 下、 半導体メモリーという) の要部断面図である。 この半導体メ モリーの製造過程を簡単に述べると以下のとおリである。  FIG. 1 is a cross-sectional view of a main part of a semiconductor pathological device (hereinafter referred to as a semiconductor memory) at a stage where a capacitor is formed. The manufacturing process of this semiconductor memory is briefly described as follows.

基板 101 にまず素子分離領域 102 を形成する。 次に、 ゲート 電極 104 と半導体領域 (拡散層) 103 による M I S F E T (絶 緣ゲート電界効果型トランジスタ) を形成する。  First, an element isolation region 102 is formed on a substrate 101. Next, a MISFET (absolute gate field effect transistor) including the gate electrode 104 and the semiconductor region (diffusion layer) 103 is formed.

次に、 層間絶縁膜 105 で平坦化した後、 プラグ 106 を CVD とドライエッチとを用いて形成する。 このプラグ 106 上にバリ ァ層 107 , 下部金属電極 108, キャパシタ絶縁膜 109, 上部金属 電極 1 11 を、 各層の堆積と同一マスクを用いたドライエツチン グにより形成する。 このプラグ 106 上にバリア種 107, 下部金 属亀極 108, キャパシタ絶縁膜 109, 上部金属電極 1 11 を、 各 層の堆積と同一マスクを用いたドライエッチングにより形成する, 本実施例では、 上部電極 111 とキャパシタ絶縁膜 109 をエッチング した後に、 サイ ドウオールスぺーサ一 114 を形成し、 その後に下部金 属電極 108 とバリア層 107 をエッチングして、 キャパシタを形成する < サイ ドウオールスぺーサ一 114 の部分にテーパー角 ( Θ ) がつくので、 付着した電極材料はこの部分でセルフクリーニングにより除去されるた め、 側壁付着膜のないキャパシタを形成することができる。 Next, after flattening with an interlayer insulating film 105, a plug 106 is formed using CVD and dry etching. On this plug 106, a barrier layer 107, a lower metal electrode 108, a capacitor insulating film 109, and an upper metal electrode 111 are formed by dry etching using the same mask as the deposition of each layer. On the plug 106, a barrier species 107, a lower metal cladding 108, a capacitor insulating film 109, and an upper metal electrode 111 are formed by dry etching using the same mask as the deposition of each layer, In this embodiment, after etching the upper electrode 111 and the capacitor insulating film 109, a side wall spacer 114 is formed, and then the lower metal electrode 108 and the barrier layer 107 are etched to form a capacitor. Since a taper angle (Θ) is formed at the portion of the wall spacer 114, the deposited electrode material is removed by self-cleaning at this portion, so that a capacitor having no side wall deposition film can be formed.

本実施例から明らかなように、 完成された積層型キャパシタは、 上部 電極 U1 の側部はサイ ドウォ一ルスべ一サ一 114 に覆われている。 す なわち、 上部電極 111 がサイ ドウオールスぺ一サー 114 の内側に位置 される。  As is clear from the present embodiment, the completed multilayer capacitor has the side wall of the upper electrode U1 covered with the side wall base 114. That is, the upper electrode 111 is located inside the side wall spacer 114.

上記キャパシタの形成方法を、 第 2図から第 1 4図に示す製造過程を 示す要部断面図に基づいて具体的に説明する。  The method for forming the capacitor will be specifically described with reference to cross-sectional views of essential parts showing the manufacturing process shown in FIG. 2 to FIG.

まず、 第 2図に示すように、 半導体基体 (例えば P型 S i基板または P型ゥエル領域) 101 に素子分離領域 102 を形成する。 この素子分離 領域 102 は、 具体的には、 LOCO S (Local Oxidation of Silicon) 技術により半導体基体 101 の主面に選択的に形成された酸化膜よリ成 る。 次に、 ゲート電極 104 と拡散層 103 による M I S FETを形成す る。 なお、 ゲート電極 104 下のゲート酸化膜は、 第 2図では省略され ているが、 ゲ一ト電極形成に先立って所定の厚さに形成される。  First, as shown in FIG. 2, an element isolation region 102 is formed in a semiconductor substrate (for example, a P-type Si substrate or a P-type well region) 101. Specifically, the element isolation region 102 is formed of an oxide film selectively formed on the main surface of the semiconductor substrate 101 by LOCOS (Local Oxidation of Silicon) technology. Next, a MISFET is formed by the gate electrode 104 and the diffusion layer 103. Although not shown in FIG. 2, the gate oxide film below the gate electrode 104 is formed to a predetermined thickness prior to the formation of the gate electrode.

次に、 層間絶縁膜、 例えば S O G (Spin On Glass)膜 105 を被覆そ してリフロー処理により平坦化した後、 この層間絶緣膜 105 にスルー ホールを設ける。 そして、 W (タングステン) ブラグ 106 は CVD 技術 と ドライエッチによるエッチパックとを用いて層間絶縁膜 105 に設け られたそのスルーホール内を埋めるように形成される。 プラグ 106 上 にキャパシタが形成される。 すなわち、 プラグ 106 上にバリア層 107, 下部金属層 115, 絶縁膜層 116, 上部金属層 117, ハードマスク層 118, レジストマスク 119 を順次形成する。 下部金属層と上部金属層 として Pt を使う場合には、 ハードマスク層 118 には W を用いると、 Ar プラズマを用いたエッチングで Pt/W 選択比が 2以上得られる。 ノヽ ードマスク層 118 には Si02 や Si2N3 や A1203 などの絶縁物を用い てもよいし、 A1 や Cu などの金属を用いてもよい。 また、 バリア層 10 7 としては、 TiN が好ましい。 絶縁膜層 116 としては、 Ta205 や BST などの高誘電体や、 PZT や PLZT などの強誘電体のほか、 Si02 や Si2N 3 などの誘電体を用いる場合にも、 電極材料がエッチングで側壁付着物 を作る場合には効果がある。 Next, after an interlayer insulating film, for example, a SOG (Spin On Glass) film 105 is covered and flattened by a reflow process, a through hole is provided in the interlayer insulating film 105. Then, the W (tungsten) plug 106 is formed so as to fill the through hole provided in the interlayer insulating film 105 by using a CVD technique and an etch pack by dry etching. A capacitor is formed on the plug 106. That is, the barrier layer 107, the lower metal layer 115, the insulating film layer 116, the upper metal layer 117, the hard mask layer 118 and a resist mask 119 are sequentially formed. When Pt is used for the lower metal layer and the upper metal layer, if W is used for the hard mask layer 118, an etching using Ar plasma can obtain a Pt / W selectivity of 2 or more. The Nono Domasuku layer 118 may be an insulating material such as Si0 2 or Si 2 N 3 or A1 2 0 3, it may be used a metal such as A1 or Cu. Further, as the barrier layer 107, TiN is preferable. As the insulating film layer 116, high dielectric or the like Ta 2 0 5 or BST, other ferroelectrics such as PZT or PLZT, even in the case of using a dielectric such as Si0 2 or Si 2 N 3, the electrode material This is effective when the side wall is formed by etching.

次に、 第 3図に示すように、 ハードマスク 120 を形成する。 このハ ードマスク 120 は 75 度以下のテーパー角を有するように加工する。 テーパー加工法としては、 ハードマスクとして金属を用いる場合にはド ライエッチングでサイ ドエッチングが入る条件で加工すればテーパー加 ェができるし、 wet エッチングで加工してもよい。 またハードマスクと して絶縁物を使う場合には、 堆積と ドライエッチングを交互に行なうタ ィムモジュレーションドライエッチングによっても、 wet エッチングで も加工できる。 例えば、 W をハードマスクに使うときには、 SF6 ブラ ズマを用いたドライエッチングで基板 (半導体基体) の温度を室温付近 でエッチングすれば、 サイ ドエッチングによるテーパー加工が可能であ リ、 基板温度によるサイ ドエッチング量の制御とバイアスによるイオン エネルギーの制御によリ、 そのテーパー角を制御することができる。 次に、 第 4図に示すようにハードマスク 120 上のレジストマスクを、 ァッシング工程で除去する。 Next, as shown in FIG. 3, a hard mask 120 is formed. The hard mask 120 is processed so as to have a taper angle of 75 degrees or less. As for the taper processing method, when a metal is used as a hard mask, tapering can be performed by processing under conditions that allow side etching by dry etching, or processing may be performed by wet etching. If an insulator is used as a hard mask, it can be processed by either time modulation dry etching, in which deposition and dry etching are alternately performed, or wet etching. For example, when using W as a hard mask, if the temperature of the substrate (semiconductor substrate) is etched near room temperature by dry etching using SF 6 plasma, taper processing by side etching is possible. The taper angle can be controlled by controlling the side etching amount and controlling the ion energy by the bias. Next, as shown in FIG. 4, the resist mask on the hard mask 120 is removed by an ashing step.

次に第 5図に示すように、 上部金属 S (117) をドライエッチングし て上部金属電極 111 を形成する。 上部金属層として Pt を用いる場合 には、 例えば平行平板型のドライエッチング装 Sを用いて、 Ar ガスを 圧力 10 mTo r r, RF 500 W の条件でスパッタエツチすると、 エッチ速度 20 nm/m i n でエッチングできる。 ハードマスク 120 とじて を用い る場合、 この条件での対マスク選択比と して 3が得られる。 電極材料と して Pt や 0s や Pd や Ail などの酸化されにくい材料を用いる場合で も、 Ru や I r や Ru02 や I r02 などの酸化物が導電性を示す材料を用 いる場合でも、 Ar 等の希ガスプラズマを用いた物理スパッタでドライ エッチングしてもよいし、 F や C 1 や Br などを含んだハロゲ,ン系ガス による ドライエッチングでもよい。 Pt で Ar ガスプラズマを用いた物 理スパッタによる ドライエッチングでも、 ハードマスク 120 に 75 度 以下のテーパー角がついていれば、 ドライエッチング中のセルフクリー ニングによりハードマスク 120 の側壁に側壁付着物のないドライエツ チングができる。 Next, as shown in FIG. 5, the upper metal S (117) is dry-etched to form an upper metal electrode 111. When Pt is used as the upper metal layer, for example, Ar gas is When sputter etching is performed under the conditions of a pressure of 10 mTorr and RF of 500 W, etching can be performed at an etching speed of 20 nm / min. When using the same as the hard mask 120, 3 is obtained as the mask selectivity under this condition. Even when using a less oxidized material, such as an electrode material Pt and 0s and Pd and Ail, even if they are use a material oxide exhibits conductivity, such as Ru and I r and Ru0 2 and I r0 2 Dry etching may be performed by physical sputtering using a rare gas plasma such as Ar or Ar, or dry etching using a halogen-based gas containing F, C 1, or Br. Even in dry etching by physical sputtering using Ar gas plasma with Pt, if the hard mask 120 has a taper angle of 75 degrees or less, there is no side wall adhesion on the side wall of the hard mask 120 due to self-cleaning during dry etching. Dry etching is possible.

次に、 第 6図に示すように、 エッチングによりキャパシタ絶縁膜 109 を加工する。 このエッチングには、 Ar プラズマなどによるスパッタを 用いると、 下都金属層 1 15 との選択比が低いために、 エッチング終了 時に下地金属層 1 15 が削れて側壁付着膜をキャパシタ絶縁膜 109 の側 壁に形成することもあるという欠点があるが、 エッチング速度の面内分 布を均一に制御すれば実用上の問題はない。 また Cl 2 や や SF6 などのハロゲンを含むガスやその混合ガスや希ガスとの混合ガスなどを 用いれば、 下部金属層との選択比が高くなリ、 下地金属 S 1 15 の削れ はさらに起きにく くなる。 また、 後の実施例で説明するように、 キャパ シタ絶縁膜 109 のエッチングが終了する前に、 次の工程に進んでもよ い。 キャパシタ絶緣膜として PZT を用いる場合には、 例えばエツチン グガスとして Ar と CF4 ガスを 1 : 1 に混合したガスを用いて、 平行 平板型のエッチング装置で RF 500 W, 圧力 10 mTorr で、 PZT エッチ 速度が 40 nm/mi n でエッチングできる。 ハードマスク 120 として W を用いる場合、 この条件での対マスク選択比は 4が得られる。 下部金属 層として Pt を用いる場合、 このエッチング条件での対下部金属選択比 は 3が得られる。 Next, as shown in FIG. 6, the capacitor insulating film 109 is processed by etching. If sputtering by Ar plasma or the like is used for this etching, since the selectivity with the lower metal layer 115 is low, the base metal layer 115 is shaved at the end of the etching, and the side wall adhesion film is formed on the side of the capacitor insulating film 109. There is a drawback that it may be formed on the wall, but there is no practical problem if the in-plane distribution of the etching rate is controlled uniformly. Also, if a gas containing halogen such as Cl 2 or SF 6 or a mixed gas thereof or a mixed gas with a rare gas is used, the selectivity with the lower metal layer becomes higher, and the abrasion of the base metal S 115 is further reduced. It is difficult to get up. Further, as will be described in a later embodiment, the process may proceed to the next step before the etching of the capacitor insulating film 109 is completed. When PZT is used as the insulating film of the capacitor, for example, using a mixed gas of Ar and CF 4 gas as an etching gas, the PZT etch is performed at RF 500 W and a pressure of 10 mTorr in a parallel plate type etching apparatus. Etching can be performed at a speed of 40 nm / min. W as hard mask 120 In this case, a mask selectivity of 4 is obtained under these conditions. When Pt is used as the lower metal layer, a selectivity of 3 against the lower metal under this etching condition is obtained.

次に、 第 7図に示すように、 CVD 法により絶縁膜層 121 を堆積する。 具体的には、 絶緣膜層 121 は Si02膜である。 そして、 第 8図に示すよ うにエッチバックすることによリサイ ドウォールスぺーサ一 114 を形 成する。 絶緣膜層 121 の材質は、 Si02の他に S ^, A1203 , Ti02, Ta206 などのような、 CVD による堆積が可能なものが選択される。 次に、 第 9図に示すように、 下部金属屠 ( 115 ) をエッチングして 下部金属電極 108 を形成する。 この時、 パターン垂直部分には側壁付 着膜 113 が付着するが、 ハードマスク 120 とサイ ドウォールスぺーサ 一 114 の側壁には、 テーパー角がついているために側壁付着膜は付着 しない。 例えばサイ ドウオールスぺーサー 114 に Si02 を用いて下部 金属眉として Pt を用いる場合、 Ar ガスプラズマによるスパッタでは、 Pt/Si02 エッチ速度比は 1程度であるので、 下部 Pt エッチング中にサ ィ ドウオールスぺーサー 114 もエッチングされていく。 この下部 Pt エッチング時にサイ ドウオールスぺーサー 114 がハードマスク 120 の 高さ分だけエッチングされれば、 第 9図に示すような、 サイ ドウォール スぺーサー U4 が上部金属電極 111 とキャパシタ絶緣膜 109 の横だ けに形成されるような加工ができる。 このような加工は、 第 8図のサイ ドウォールスぺーサ一形成時のハードマスクの高さを制御する (これは ハードマスク層の堆積膜厚で制御できる) ことや、 ガスなどの添加 による Pt/Si02エッチ速度比を制御することにより形成できる。 この加 ェをするための条件や膜厚は、 下部電極の材料とサイ ドウオールスぺー サ一の材料とエッチングガスやエッチング装置により異なるが、 ハード マスク層の厚さとエッチ速度比の制御により加工できることには変わり ない。 Next, as shown in FIG. 7, an insulating film layer 121 is deposited by a CVD method. Specifically, absolute緣膜layer 121 is Si0 2 film. Then, as shown in FIG. 8, a reseal wall spacer 114 is formed by etching back. The material of the insulation緣膜layer 121, S ^ in addition to Si0 2, such as A1 2 0 3, Ti0 2, Ta 2 0 6, those capable of deposition by CVD is selected. Next, as shown in FIG. 9, the lower metal layer (115) is etched to form a lower metal electrode. At this time, the sidewall attachment film 113 adheres to the pattern vertical portion, but the sidewall of the hard mask 120 and the sidewall spacer 114 has a taper angle, so that the sidewall attachment film does not adhere. For example, when using cyclic Douorusu spacers 114 to Si0 2 using Pt as the lower metal eyebrows, the sputtering by Ar gas plasma, since Pt / Si0 2 etch rate ratio is about 1, Sa I Douorusu in the lower Pt etching The spacer 114 is also etched. If the side spacers 114 are etched by the height of the hard mask 120 during the lower Pt etching, as shown in FIG. 9, the side wall spacers U4 are located beside the upper metal electrode 111 and the capacitor insulating film 109. Processing that can be formed only can be performed. Such processing involves controlling the height of the hard mask at the time of forming the sidewall spacer in FIG. 8 (this can be controlled by the deposited film thickness of the hard mask layer), and the Pt / Si0 2 can be formed by controlling the etch rate ratio. The conditions and film thickness for this addition differ depending on the material of the lower electrode, the material of the sidewall spacer, the etching gas and the etching equipment, but it is necessary to control the thickness of the hard mask layer and control the etch rate ratio. Changes Absent.

側壁付着膜 1 13 は、 サイ ドウオールスぺーサー 1 14 があるのでショ ートなどの問題は起こさないので、 除去しなくてもいいが、 プ αセスの 信頼性を高め、 製品の特性ばらつきをおさえるためには除去することが 望ましい。 そこで本実施例では、 第 1 0図に示すように、 ウエッ ト処理 により側壁付着膜を取り除いた。 処理法としては Pt 付着物の場合には 王水が有効であり、 その他の物質の場合には、 その種類に応じた溶液処 理を行なえばよい。 また、 ダウンフロープラズマ処理やペイパー処理な ども、 下部金属材料の種類によっては有効である。 本実施例のように Pt を用いる場合には王水が有効でぁリ、 ハードマスクとして W のよ うな金属材料を用いる場合には、 同時にハードマスクも除去される。 次に、 第 1 1図に示すように、 バリア層 107 をエッチングする。 こ のエッチングと前記側壁付着膜除去の順序は入れ替えてもよい。  The sidewall adhesion film 113 does not need to be removed because there is no short-circuit problem because of the presence of the sidewall spacer 114, but it does not need to be removed, but it increases the reliability of the process and suppresses variations in product characteristics. Therefore, it is desirable to remove them. Therefore, in this embodiment, as shown in FIG. 10, the side wall adhesion film was removed by wet treatment. As a treatment method, aqua regia is effective in the case of Pt deposits, and in the case of other substances, a solution treatment appropriate for the type may be performed. It is also effective depending on the type of the lower metal material, such as a downflow plasma treatment and a paper treatment. When Pt is used as in this embodiment, aqua regia is effective, and when a metal material such as W is used as a hard mask, the hard mask is also removed at the same time. Next, as shown in FIG. 11, the barrier layer 107 is etched. The order of this etching and the removal of the side wall adhesion film may be interchanged.

次に、 第 1 2図に示すように、 絶縁膜層 122 を堆積させる。 この堆 積膜として BPSG や S0G などのリフ□一膜を使えば、 以下に続く配線 工程に必要な平坦な表面がこの時点で形成できる。 エッチパック技術や CMP ( Chemi cal Mechan i ca l Po l i shi ng) 技術等を用いれば平坦な表面 が作れるので、 スパッタ絶緣膜や CVD 絶縁膜などを用いてもよい。 次に、 第 1 3図に示すように、 エッチングもしくは CMP を用いて、 上部金属電極 1 1 1 が露出するまで、 絶縁膜層 122 を加工する。  Next, as shown in FIG. 12, an insulating film layer 122 is deposited. By using a riff film such as BPSG or S0G as the deposited film, a flat surface required for the following wiring process can be formed at this point. A flat surface can be created by using etch pack technology or CMP (chemical mechanical polishing) technology, etc., and a sputter insulating film or a CVD insulating film may be used. Next, as shown in FIG. 13, the insulating film layer 122 is processed by etching or CMP until the upper metal electrode 111 is exposed.

次に、 第 1 4図に示すように、 プレート電極 123 を形成する。 この プレート鼋極 123 は、 必要に応じて配線加工をする。 さらに必要な配 線加工をすることによリ、 D R A Mデバイスが形成される。  Next, as shown in FIG. 14, a plate electrode 123 is formed. This plate electrode 123 is subjected to wiring processing as necessary. Further, by performing necessary wiring processing, a DRAM device is formed.

以上で説明した製造方法を用いることによリ、 電極材料としてエッチ ング反応生成物の揮発性が低い材料を用いても、 側壁付着膜によるショ 一卜がない積層型キャパシタを形成することが可能であり、 このような 電極材料により高誘電体 · 強誘電体絶緣物の特性を劣化させることなく 高集積かつ高信頼度を有する半導体メモリを形成することができる。By using the manufacturing method described above, even if a material having low volatility of an etching reaction product is used as an electrode material, it is possible to form a multilayer capacitor having no short-circuit due to a sidewall adhesion film. And such A semiconductor memory having high integration and high reliability can be formed without deteriorating the characteristics of a high dielectric / ferroelectric insulator by the electrode material.

(実施例 2 ) (Example 2)

本発明の第 2の実施例を、 第 1 5図を用いて説明する。  A second embodiment of the present invention will be described with reference to FIG.

第 1 5図に示したように、 上部金属電極 1 1 1 のエッチング加工の直 後にサイ ドウォールスぺーサ一 1 14 を形成して、 その後にキャパシタ 絶縁膜 109, 下部金属電極 108 のエッチング加工をしても、 側壁付着 膜 1 13 による上部金属罨極 Π 1 と下部金属電極 108 のショートを防 ぐことができる。 この例の場合ではキャパシタ絶縁膜 109 が側壁付着 膜 1 に触れているために、 wet 処理により側壁付着膜 1 13 を除去し ようとするとキャパシタ絶縁膜 109 の電気特性が劣化する場合もある ため、 側壁付着膜 1 13 を残したままメモリ一を形成する。 側壁付着膜 113 を、 電気特性を劣化させることなく取り除く ことができる場合には、 その処理を行なってもよい。  As shown in FIG. 15, a side wall spacer 114 is formed immediately after the etching of the upper metal electrode 111, and thereafter, the etching of the capacitor insulating film 109 and the lower metal electrode 108 is performed. However, it is possible to prevent short-circuit between the upper metal compressing electrode 1 and the lower metal electrode 108 due to the side wall adhesion film 113. In this case, since the capacitor insulating film 109 is in contact with the side wall adhering film 1, if the wet process is performed to remove the side wall adhering film 113, the electrical characteristics of the capacitor insulating film 109 may be deteriorated. A memory cell is formed with the sidewall adhesion film 1 13 left. If the sidewall adhesion film 113 can be removed without deteriorating the electrical characteristics, the treatment may be performed.

本実施例によれば、 キャパシタ絶縁膜 109 と下部金属電極 108 の大 きさが略同一であり、 かつ上都金属電極 1 1 1 の下辺の長さがその絶縁 膜 109 の上辺の長さよりも短いことを特徴としている。 すなわち、 第 1 5図において、 L e < L i の閲係にある。  According to this embodiment, the size of the capacitor insulating film 109 and the lower metal electrode 108 are substantially the same, and the length of the lower side of the upper metal electrode 111 is longer than the length of the upper side of the insulating film 109. It is characterized by being short. In other words, in FIG. 15, the condition is that Le <Li.

(実施例 3 )  (Example 3)

本発明の第 3の実施例を、 第 1 6図を用いて説明する。  A third embodiment of the present invention will be described with reference to FIG.

第 1 6図に示したように、 キャパシタ絶縁膜 109 のエッチング処理 の途中でサイ ドウオールスぺ一サー 1 14 を形成する。 実施例 3で説明 した方法では、 エッチングの面内均一性が悪い場合には、 キャパシタ絶 縁膜 109 のエッチング終了時に下地金属膜が削れて、 サイ ドウォール スぺーサーを形成する前に上部金属電極と下部金属層との間が側壁付着 膜によりショートしてしまうことがある。 本実施例によれば、 絶縁膜 109 の上辺の長さがその絶縁物 109 の下 辺の長さよりも短いことを特徴としている。 すなわち、 第 1 6図におい て、 L b i〉 L u i の関係にある。 As shown in FIG. 16, during the etching process of the capacitor insulating film 109, a sidewall spacer 114 is formed. In the method described in the third embodiment, when the in-plane uniformity of the etching is poor, the base metal film is shaved at the end of the etching of the capacitor insulating film 109, and the upper metal electrode is formed before forming the sidewall spacer. And the lower metal layer may be short-circuited by the sidewall adhesion film. According to the present embodiment, the length of the upper side of the insulating film 109 is shorter than the length of the lower side of the insulator 109. That is, in FIG. 16, there is a relationship of L bi> L ui.

本実施例の構造にすることにより、 このショートの問題を防ぐことが できる。  With the structure of the present embodiment, the problem of the short circuit can be prevented.

(実施例 4 )  (Example 4)

本発明の第 4の実施例を、 第 1 7図を用いて説明する。  A fourth embodiment of the present invention will be described with reference to FIG.

第 1 7図は、 実施例 1で説明した方法から、 側壁付着膜 1 13 の除去 工程を省いた方法により、 形成された構造である。 側壁付着膜 113 が Pt などの安定なものである場合には、 除去しなくてもよいので、 工程 を省略することにより、 安価に製造することができる。  FIG. 17 shows a structure formed by a method in which the step of removing the sidewall adhesion film 113 is omitted from the method described in the first embodiment. If the sidewall adhesion film 113 is made of a stable material such as Pt, it does not need to be removed, so that it can be manufactured at low cost by omitting the steps.

(実施例 5 )  (Example 5)

本発明の第 5の実施例を、 第 1 8図から第 2 0図を用いて説明する。 本実施例は、 実施例 1の方法から、 いくつかの工程を省略したもので ある。 その省略した工程は、 キャパシタをエッチングにより形成した後 に、 リフロー膜や CMP で平坦にする工程である。  A fifth embodiment of the present invention will be described with reference to FIGS. This embodiment is obtained by omitting some steps from the method of the first embodiment. The omitted step is the step of forming the capacitor by etching and then flattening it with a reflow film or CMP.

第 1 8図に示した半導体メモリーは、 以下の工程で形成する。  The semiconductor memory shown in FIG. 18 is formed by the following steps.

半導体基体 101 上に素子分離領域 102 を形成し、 ゲート電極 (本図 中では省略) と拡散層 103 を形成する。 その後層間絶縁膜 105, ブラ グ 106 を形成してから、 上部金属電極 11 1 , キャパシタ絶縁膜 109, サ ィ ドウオールスぺーサー 1 14, 下部金属電極 108 を膜堆積とエツチン グ工程を用いて形成し、 側壁付着膜除去工程を行なってからバリア層 1 07 のエッチングをしてキャパシタを形成する。 ここまでは、 実施例 1 で説明した方法と同じである。  An element isolation region 102 is formed on a semiconductor substrate 101, and a gate electrode (omitted in this drawing) and a diffusion layer 103 are formed. Thereafter, an interlayer insulating film 105 and a plug 106 are formed, and then an upper metal electrode 111, a capacitor insulating film 109, a side spacer 114, and a lower metal electrode 108 are formed using a film deposition and etching process. After performing the sidewall adhesion film removing step, the barrier layer 107 is etched to form a capacitor. Up to this point, the method is the same as that described in the first embodiment.

その後、 CVD 絶縁膜層 121 を堆積させる。 堆積膜厚は、 図に示すよ うに、 隣り合ったキャパシタの間隔の 1/2 以上の膜厚を堆積させる。 絶縁膜層の材料は、 実施例 3で述べたような材料を用いればよい。 次に 第 1 9図に示すように、 CVD 絶緑膜層をエッチパックすることにより、 キャパシタ分離部 124 を形成する。 キャパシタ間隔の 1/2 以上堆積さ せた CVD 絶縁膜層をエッチバックすることにより、 キャパシタ間の段差 は緩和される。 次に第 2 0図に示すように、 プレート電極 123 を形成 する。 キャパシタ分離部 124 により段差を緩和してあるので、 プレー ト電極 123 はスパッタ法を用いても断線しない、 信頼性の高いブレー ト電極を形成することができる。 段差を緩和させるためには CVD 絶縁 膜層を厚くすればよいが、 厚くすると堆積およびエッチング工程の処理 時間が長くなつてスループットが落ちるという問題点があるが、 実用上 は問題がない。 また、 CVD 絶縁膜層が 1/2 よりも薄いと段差を緩和さ せる効果は少なくなるが、 キャパシタの膜厚が薄くて間隔の広い設計の 場合には、 キャパシタ分離部 124 が、 キャパシタ側壁の垂直段差を斜 めにするので効果がある。 本実施例は、 特に微細で高集積のメモリーを 作る場合に、 キャパシタの高さがキャパシタ間隔と同程度になって、 キ ャパシタ間の段差が急峻な場合に効果がある。 このような場合でも、 リ フローや CMP などの時間を要する処理を用いずに加工ができるために、 スルーブッ トを上げることができる。 After that, a CVD insulating film layer 121 is deposited. As shown in the figure, the deposited film thickness should be more than 1/2 of the distance between adjacent capacitors. As the material of the insulating film layer, the material described in Embodiment 3 may be used. Next, as shown in FIG. 19, the capacitor isolation portion 124 is formed by etching-packing the CVD insulating layer. By etching back the CVD insulating layer deposited more than half of the capacitor interval, the step between the capacitors is reduced. Next, as shown in FIG. 20, a plate electrode 123 is formed. Since the steps are alleviated by the capacitor separating portion 124, the plate electrode 123 can be formed as a highly reliable plate electrode which does not break even when the sputtering method is used. To alleviate the step, it is sufficient to increase the thickness of the CVD insulating film layer. However, if the thickness is increased, there is a problem that the processing time of the deposition and etching steps becomes longer and the throughput is reduced, but there is no problem in practical use. Also, if the CVD insulating film layer is thinner than 1/2, the effect of alleviating the step is reduced. However, in the case of a capacitor with a thin film thickness and a wide space, the capacitor separating portion 124 is formed by the side wall of the capacitor. This is effective because the vertical steps are inclined. The present embodiment is particularly effective when a fine and highly integrated memory is to be manufactured, when the height of the capacitors is almost equal to the interval between the capacitors and the step between the capacitors is steep. Even in such a case, since the processing can be performed without using a time-consuming process such as reflow or CMP, the throughput can be increased.

(実施例 6 )  (Example 6)

第 2 1図に、 本発明におけるメモリーセルの平面レイアウ トの一実施 例を示す。  FIG. 21 shows an embodiment of a planar layout of a memory cell according to the present invention.

このレイアウ トは、 2交点セルと、 キャパシタをビッ ト線上に形成す る COB (Capac i tor Over B i t l i ne) 構造とを用いるレイァゥ トである。 各メモリ一セルのトランジスタ (図中では明記していない) はビッ ト線 208 を介して周辺回路 (図示していない) に接続されている。 トラン ジスタとビッ ト線 208 の接続部分は、 アクティブ領域 218 の一部に形 成したビッ ト線用プラグ 207 の部分である。 トランジスタの動作は、 ワード線 (ゲート電極) 203 によ り制御される。 このワード線 (ゲート 電極) 203 は、 周辺回路 (図示していない) に接続されている。 トラン ジスタからキャパシタ部 220 へは、 キャパシタ用プラグ 21 1 を介して 接続する。 キャパシタ部 220 はプレート電極 216 を介して、 周辺回路 (図示していない) に接続されている。 This layout uses a two-intersection cell and a COB (Capacitor Over Bitline) structure that forms a capacitor on a bit line. The transistors (not explicitly shown) of each memory cell are connected to peripheral circuits (not shown) via bit lines 208. The connection between the transistor and bit line 208 is part of the active area 218 This is the portion of the formed bit line plug 207. The operation of the transistor is controlled by a word line (gate electrode) 203. This word line (gate electrode) 203 is connected to a peripheral circuit (not shown). The connection from the transistor to the capacitor section 220 is made via a capacitor plug 211. The capacitor section 220 is connected to a peripheral circuit (not shown) via a plate electrode 216.

この平面レイアウ トの第 1の特徴は、 ワード線 203 2本に対してプ レート電極 216 を 1本を配線することである。 このようなレイアウ ト とすることにより、 ブレート電極 216 の容量を通常の DRAM よリも小 さくできるので、 プレート電極 216 の電位を周辺回路で制御すること が容易になる。 そのため、 強誘電性を用いた不揮発メモリー動作が容易 になる。 本実施例では、 ワード線 2本に対してプレー卜電極を 1本の例 について説明したが、 プレート電極の本数としては、 ワード線 1本に対 してプレート電極を 1本にしてもよいし、 3本以上のヮード線に対して ブレート罨極を 1本にしてもよい。 ただしプレート電極の本数が多くな ると集積度を上げるのが難しくなリ、 プレート鼋極の本数が少なくな るとブレート電極の容量が大きくなつて、 周辺回路による制御が難しく なる。 プレート電極の本数は、 メモリーの用途によってその最適数が変 わってくる。  The first feature of this planar layout is that one plate electrode 216 is wired for two word lines 203. With such a layout, the capacity of the plate electrode 216 can be made smaller than that of a normal DRAM, so that the potential of the plate electrode 216 can be easily controlled by a peripheral circuit. Therefore, the operation of the nonvolatile memory using ferroelectricity becomes easy. In this embodiment, an example in which one plate electrode is provided for two word lines has been described. However, the number of plate electrodes may be one plate electrode for one word line. Alternatively, one plate may be used for three or more lead wires. However, if the number of plate electrodes increases, it becomes difficult to increase the degree of integration. If the number of plate electrodes decreases, the capacitance of the plate electrode increases, making control by peripheral circuits difficult. The optimal number of plate electrodes varies depending on the memory application.

この平面レイァゥ 卜の第 2の特徴は、 ブレー ト電極 216 をヮード線 (ゲート亀極) 203と同一方向に配線することである。 このため、 プレー ト罨極 216 の電位を周辺回路により制御するときに、 その電位をヮー ド線 203 の電位と同期して制御することが可能となる。  The second feature of this planar layout is that the blade electrode 216 is wired in the same direction as the lead wire (gate electrode) 203. Therefore, when the potential of the plate compressing electrode 216 is controlled by the peripheral circuit, the potential can be controlled in synchronization with the potential of the lead wire 203.

第 2 2図に、 第 2 1図の一断面構造 (断面 A— A ' ) を示す。 この断 面構造について以下に説明する。  FIG. 22 shows a cross-sectional structure (cross-section A-A ′) of FIG. 21. This cross-sectional structure will be described below.

S i 基板 201 上に素子分離用 S i 02 202 を形成してある。 素子領域に、 ゲート酸化膜 (明示していない) とワード線 (ゲート電極) 203 と拡散 層 204 からなる M I S F ETを形成してある。 この実施例では、 ヮー ド線 203 は Si02 222 をマスクとしてドライエッチングによリ加工し てあり、 かつ Si02 222 をそのまま残してワード線の絶縁保護膜として 用いている。 この Si02 222 は残す必要はないが、 本実施例の構造とす れば除去工程を削除できるし、 ゲート電極スぺーサー 221 の形成時の 保護膜としても作用する。 ワード線としては通常のゲ一卜電極としてよ く用いられる doped poly Si や、 WSi, oSi, CoSi のようなシリサイ ドを用いればよい。 または W, TiN などの金属材料、 またはそれらの稍 ]¾膜でもよい。 An S i 02 202 for element isolation is formed on an S i substrate 201. In the element area, A MISFET consisting of a gate oxide film (not shown), word lines (gate electrodes) 203 and diffusion layers 204 is formed. In this embodiment, Wa lead wire 203 is used Si02 222 Yes and re processed by the dry etching as a mask, and the insulating protective film as it leaves the word lines Si0 2 222. The Si0 2 222 need not to leave it, to delete the structure and to Re when removing step of the present embodiment, also acts as a protective film at the time of forming the gate electrode spacer 221. As the word line, doped poly Si, which is often used as a normal gate electrode, or a silicide such as WSi, oSi, or CoSi may be used. Alternatively, a metal material such as W or TiN, or a film thereof may be used.

ワード線 (ゲート電極) 203 には、 ゲート電極スぺーサー 221 を形 成してある。 このゲート電極スぺーサ一は必須ではないが、 段差を緩和 する効果と電気的ショートを防ぐ効果があるので、 信頼性の高い C0B 構造を形成できる。  The word line (gate electrode) 203 has a gate electrode spacer 221 formed thereon. Although this gate electrode spacer is not essential, it has the effect of alleviating steps and the effect of preventing electrical shorts, so that a highly reliable C0B structure can be formed.

ワード線 (ゲート電極) 203 の上にはワード線用絶縁保護膜 205 を 形成してある。 この保護膜は必ずしも必要はないが、 ビッ ト線用プラグ 207 やキャパシタ用プラグ 211 を形成するためのドライエッチングを するときに電気的ショートを防ぐ効果があり、 またこのヮード線用絶縁 保護膜 205 とワード線段差平坦化絶緣膜 206 とで材料を変える (例え ば Si3N, と Si02) にしておけば、 絶縁膜間高選択ドライエッチングを 用いて自己整合的に、 前述のプラグ部のドライエッチングをすることも できるという効果がある。 A word line insulating protective film 205 is formed on the word line (gate electrode) 203. Although this protective film is not always necessary, it has an effect of preventing an electrical short-circuit when performing dry etching for forming the bit line plug 207 and the capacitor plug 211. If the material is changed (for example, Si 3 N, and Si 0 2 ) between the plug portion and the word line step flattening insulating film 206, the above-described plug portion can be self-aligned using high selective dry etching between insulating films. There is an effect that dry etching can also be performed.

ワード線 (ゲート電極) 203 の形成によりできる段差は、 ワード線段 差平坦化絶緣膜 206 により平坦化してある。 この絶緣膜の材料として は、 流動性の絶緣膜 (BPSG など) や CVD 絶縁膜を用いればよい。 平坦 化方法としては、 流動性絶縁膜のリフローや、 ドライエッチングによる W The step formed by forming the word line (gate electrode) 203 is flattened by the word line step flattening insulating film 206. As a material for the insulating film, a fluid insulating film (such as BPSG) or a CVD insulating film may be used. Planarization methods include reflow of the fluid insulating film and dry etching. W

1 9 全面エッチバック、 CMP などの研磨、 またはそれらの組み合わせを用い ればよい。 本実施例では、 BPSG リフロー膜を CMP で研磨してワード線 段差平坦化絶縁膜 206 を形成している。 この膜はドライエッチングに より削れ易いため、 本実施例では平坦化絶縁膜用絶縁保護膜 223 を形 成している。 この膜を CVD ゃスパッタ堆積法で形成すれば、 リフロー 膜よりも緻密な膜を形成できる。 膜の材料としては、 S i 02 や S3 N< な どの通常の S i LS I プロセスで用いられるものでよい。 19 All-over etch back, polishing such as CMP, or a combination thereof may be used. In this embodiment, the BPSG reflow film is polished by CMP to form the word line step flattening insulating film 206. Since this film is easily removed by dry etching, in this embodiment, an insulating protective film 223 for a planarizing insulating film is formed. If this film is formed by a CVD-sputter deposition method, a denser film can be formed than a reflow film. As the material of the film may be those used in the S i 0 2 and S 3 N <as any conventional S i LS I process.

平坦化絶縁膜用絶縁保護膜 223 の形成の後に、 ビッ 卜線用プラグ 20 7 を形成してある。 本実施例では、 このビッ ト線用プラグ 207 を、 ド ライエッチングで孔パターンを形成した後に、 n+ po l y S i を CVD 法を 用いることによリ形成してある。 このビッ ト線用プラグ 207 としては 11+ po l y S i の他に、 T i N などの材料を用いてもよい。 またこのビッ ト 線用プラグ 207 の形成にともなって、 第 2 1図に示すビッ ト線 208 も 形成する。 この材質としては n+ po l y S i, シリサイ ドなどの材料や、 それらの積層膜などを用いればよい。  After the formation of the insulating protective film 223 for the planarizing insulating film, a bit line plug 207 is formed. In this embodiment, the bit line plug 207 is formed by forming a hole pattern by dry etching and then forming n + polySi by using a CVD method. The bit line plug 207 may be made of a material such as T i N in addition to 11 + poly S i. Also, with the formation of the bit line plug 207, the bit line 208 shown in FIG. 21 is also formed. As this material, a material such as n + polySi, silicide, or a laminated film thereof may be used.

本実施例では、 ビッ ト線用プラグ 207 とビッ 卜線 208 (第 2 1図に 図示) の形成後に、 ビッ ト線用絶緣保護膜 209 を形成してある。 この 膜は必須ではないが、 ワード線用絶縁保護膜 205 と同様の効果がある。 さらにその上にビッ ト線段差平坦化絶縁膜 210 を形成してある。 この 膜の形成法および材料としては、 ワード線段差平坦化絶縁膜 206 と同 様に考えればよい。 さらにこの膜の上に、 平坦化絶縁胰用絶縁保護膜 2 24 を、 本実施例では形成してある。 この保護膜は必須ではないが、 前 述した平坦化絶縁膜用絶緑保護膜 223 と同様な効果がある。 さらにこ の膜はキャパシタのドライエッチング加工における下地膜になるので、 A12 03 のような A1 原子を含む絶縁膜を用いると、 キャパシタのドライ エッチングにおいて高選択ドライエッチングを行なえる。 本実施例では キャパシタ下部電極 212 として Pt を用いている力、'、 Pt は F 系のガ スでドライエッチングすると、 Ar や C1 系のガスを用いたドライエツ チングょりもより垂直に近い形状の加工ができる。 この時に下地層とし て A1 原子を含む材料を用いれば、 反応生成物 A1F3 の揮発性が低いた めに、 エッチング耐性が高いので高選択ドライエッチングができる。 ま たこの加工では、 マスク材料にも A1 などの A1 原子を含む材料を用い れば、 対マスク ·対下地層選択比の高い Pt ドライエッチングが可能に なる。 In this embodiment, after the formation of the bit line plug 207 and the bit line 208 (shown in FIG. 21), the insulating protection film 209 for the bit line is formed. This film is not essential, but has the same effect as the word line insulating protective film 205. Further, a bit line step flattening insulating film 210 is formed thereon. The formation method and material of this film may be considered in the same manner as the word line step flattening insulating film 206. Further, on this film, an insulating protective film 224 for flattening insulating film is formed in this embodiment. Although this protective film is not essential, it has the same effect as the above-described green protective film 223 for a planarizing insulating film. Since Furthermore, the child of the film becomes the base film in the dry etching of the capacitor, when an insulating film containing A1 atoms such as A1 2 0 3, allows a high selective dry etching in the dry etching of the capacitor. In this embodiment, When Pt is used for the capacitor lower electrode 212, and Pt is dry-etched with an F-based gas, dry etching using an Ar or C1-based gas can be processed to a shape that is more vertical. By using a material containing an underlying layer and to A1 atoms at this time, in order volatile reaction products A1F 3 was low, etching resistance can be high because high selective dry etching. In this process, if a material containing A1 atoms such as A1 is also used as the mask material, Pt dry etching with a high selectivity between the mask and the underlayer can be performed.

平坦化絶縁膜用絶縁保護膜 224 の形成の後に、 キャパシタ用プラグ 211 を形成する。 この形成は、 ドライエッチングによる孔パターンの形 成の後に、 この孔パターンのなかに導電性の材料を埋め込む。 材料とし ては、 従来の Si LSI プロセスで用いられる n+ poly Si を用いてもよ いし、 TiN や W や Ta, Ti のような材料を CVD で埋め込んでもよい。 また強誘鼋性絶緣膜と相性のよい Pt, Ru, Ir, Pd, Rh, 0s, Hf, Zr や それらの酸化物であり導電性のもの (例えば Ru02, Ir02) などを用い てもよい。 さらにはそれらの積層膜を用いてもよい。 Ru02 や Ir02 な どは M0CVD 法のような CVD プロセスを用いて形成すれば、 孔パターン 内の断線がなく形成することができ、 その上に Ru や 〖r などを積層さ せると、 Ru や Ir などの材料は酸素に対するバリア層の役割をするた め、 この後の工程での対酸化性を向上することができる。 After the formation of the insulating protective film 224 for the planarizing insulating film, the capacitor plug 211 is formed. In this formation, after forming a hole pattern by dry etching, a conductive material is embedded in the hole pattern. As the material, n + poly Si used in the conventional Si LSI process may be used, or a material such as TiN, W, Ta, or Ti may be embedded by CVD. The strong誘鼋of absolute緣膜and good compatibility with Pt, Ru, Ir, Pd, Rh, 0s, Hf, Zr and those are electrically conductive and their oxides (for example Ru0 2, Ir0 2) even by using a Good. Further, a stacked film thereof may be used. Ru0 be formed using a CVD process, such as 2 or Ir0 2, etc. are M0CVD method, can be formed without disconnection of the hole pattern, when the laminated and Ru or 〖r thereon, Ru Since materials such as Ir and Ir act as a barrier layer against oxygen, the oxidation resistance in subsequent steps can be improved.

キャパシタ用プラグ 211 を形成の後に、 実施例 3で説明したような プロセスで、 キャパシタ上部電極 214、 キャパシタ絶縁膜 213、 サイ ド ゥォ一ルスぺーサ一 217、 キャパシタ下部電極 212、 バリアメタル 219 を形成してある。 この形成方法としては実施例 3で説明したように W ハードマスクを用いて Pt エッチングは Ar スパッタで、 PZT エツチン グは CF4 + Ar ガスで一括ドライエッチングで形成してもよい。 またサ ィ ドウオールスぺーサー 217 として A 1 原子を含む絶縁物を用いて ( 例えば A 12 03 ) Pt のドライエッチングを F 系のガスでドライエツチン グしてもよい。 また PZT のエッチングや Pt のエッチングに C 1 系や Br 系のガスを用いても、 エッチング条件等を十分に検討すれば、 実用 上は問題がない加工が可能である。 またキャパシタ下部電極としては P I 以外に Ru, I r, Pd, Rh, Os , Hf や、 それらの酸化物であり導電性の あるものを用いてもよい。 また PZT 以外の強誘電性絶縁物 (B i を含む 絶緣膜、 La や Y を含む絶縁膜、 Ba や Sr を含む絶縁膜、 Cu を含む絶 縁膜) を用いてもよい。 またキャパシタ上部電極としては、 キャパシタ 下部電極材料のほかに、 ハードマスクとして用いることのできる W や A1 を用いてもよいし、 Ti N, Ta を用いてもよいし、 Cu, Ag, Au などを 用いてもよいし、 それらの積層膜を用いてもよい。 After the capacitor plug 211 is formed, the capacitor upper electrode 214, the capacitor insulating film 213, the side electrode spacer 217, the capacitor lower electrode 212, and the barrier metal 219 are formed by the process described in the third embodiment. It is formed. As described in the third embodiment, the Pt etching may be performed by Ar sputtering, and the PZT etching may be performed by CF 4 + Ar gas collective dry etching using a W hard mask as described in the third embodiment. Also By using an insulating material comprising A 1 atoms as I Douorusu spacers 217 (e.g., A 1 2 0 3) dry etching Pt may be Doraietsuchin grayed by F-based gas. In addition, even if a C 1 -based or Br-based gas is used for PZT or Pt etching, it is possible to perform processing without any practical problems if the etching conditions are carefully examined. As the lower electrode of the capacitor, other than PI, Ru, Ir, Pd, Rh, Os, Hf, or an oxide thereof and having conductivity may be used. Also, ferroelectric insulators other than PZT (insulating films containing Bi, insulating films containing La or Y, insulating films containing Ba or Sr, insulating films containing Cu) may be used. As the capacitor upper electrode, in addition to the capacitor lower electrode material, W or A1, which can be used as a hard mask, TiN, Ta, Cu, Ag, Au, or the like may be used. It may be used, or a stacked film thereof may be used.

キャパシタ部形成の後に、 本実施例ではキャパシタ用絶縁保護膜 215 を形成してある。 本実施例ではこの膜はリフロー膜と CMP の組み合わ せにより平坦化してある。 完全な平坦化は必須ではないが、 この後の配 線の信頼性を高めるためには、 極力平坦化しておく ことが望ましい。 平 坦化の方法や材料はビッ ト線段差平坦化絶縁膜の形成や、 ワード線段差 平坦化絶緣膜の形成と同様にすればよい。 さらに、 キャパシタ部の材料 と相性のよい Ti や Zr や Pb などの酸化膜をキャパシタ部の保護絶縁 膜として CVD 法を用いて形成してから、 リフロー絶緣膜を形成して積 層膜にしてもよい。 また強誘電性絶縁膜は還元性の雰囲気や H 原子が 発生する雰囲気では特性劣化しやすいので、 オゾン- TE0S による  After the formation of the capacitor portion, an insulating protective film 215 for a capacitor is formed in this embodiment. In this embodiment, this film is flattened by a combination of a reflow film and CMP. Although complete flattening is not essential, it is desirable to flatten as much as possible to improve the reliability of the wiring thereafter. The flattening method and material may be the same as the formation of the bit line step flattening insulating film and the formation of the word line step flattening insulating film. Furthermore, an oxide film such as Ti, Zr, or Pb, which is compatible with the material of the capacitor part, is formed using a CVD method as a protective insulating film of the capacitor part, and then a reflow insulating film is formed to form a laminated film. Good. In addition, the ferroelectric insulating film tends to deteriorate its characteristics in a reducing atmosphere or an atmosphere in which H atoms are generated.

CVD-S i 02 膜や、 PI Q (ポリィミ ドィソインドロキナゾリンジオン) など の有機系絶縁物を用いるのもよい。 And CVD-S i 0 2 film, it may be used an organic insulating material such as PI Q (Poryimi de I Seo India Loki mystery dione).

キャパシタ用絶緣保護膜 215 形成の後に、 本実施例ではプレート電 極 216 を形成してある。 この材料としては、 11+ pol y S i や W のよう な従来 S i LS I プロセスで用いられている材料を用いればよい。 下地を 十分に平坦化していれば、 この電極材料としてスパッタ法で堆積した導 電性材料を用いればよいし、 第 2 0図に示したような段差のある構造の 場合には、 CVD 法などを用いて導電性材料を堆積すればよい。 堆積した 導電性材料をドライエッチングにより加工することにより、 第 2 2図に 示す構造を形成できる。 After the formation of the insulating protection film 215 for the capacitor, the plate electrode 216 is formed in this embodiment. Such materials include 11+ pol y Si and W What is necessary is just to use a material conventionally used in the Si LSI process. If the underlayer is sufficiently planarized, a conductive material deposited by sputtering may be used as the electrode material, and in the case of a stepped structure as shown in FIG. May be used to deposit a conductive material. By processing the deposited conductive material by dry etching, a structure shown in FIG. 22 can be formed.

第 2 2図には、 メモリーセル部の断面図の、 プレート電極形成までの 断面図を示した。 実際のメモリーは、 さらに 2眉程度の配線ほを形成し て、 メモリーセル部と周辺回路とをつなぐ必要があること、 さらにパッ ケージングをすることが必要であることはいうまでもない。  FIG. 22 shows a cross-sectional view of the memory cell section up to the formation of the plate electrode. Needless to say, in actual memory, it is necessary to form two or more eyebrows to connect the memory cell part and peripheral circuits, and also to perform packaging.

(実施例 7 )  (Example 7)

第 2 3図 に、 本発明におけるメモリーセルの平面レイアウ トの他の 実施例を示す。 このレイアウ トは、 2交点セルと、 キャパシタをビッ ト 線上に形成する COB (Capac i tor Ove r Bi t l ine) 構造とを用いるレイァ ゥ 卜である。 各メモリーセルのトランジスタ (図中では明記していない) はビット線 208 を介して周辺回路 (図示していない) に接続されてい る。 トランジスタとビッ ト線 208 の接統部分は、 アクティブ領域 218 の一部に形成したビッ ト線用プラグ 207 の部分である。 トランジスタ の動作は、 ワード線 (ゲート鬈極) 203 により制御される。 このワード 線 (ゲート菴極) 203 は、 周辺回路 (図示していない) に接統されてい る。 トランジスタからキャパシタ部 220 へは、 キャパシタ用プラグ 21 1 を介して接続する。 キャパシタ部 220 はプレート電極 216 を介して、 周辺回路 (図示していない) に接続されている。  FIG. 23 shows another embodiment of the planar layout of the memory cell according to the present invention. This layout uses a two-intersection cell and a COB (Capacitor Over Bit Line) structure that forms a capacitor on a bit line. The transistors (not explicitly shown) of each memory cell are connected to peripheral circuits (not shown) via bit lines 208. The connection between the transistor and the bit line 208 is a bit line plug 207 formed in a part of the active region 218. The operation of the transistor is controlled by a word line (gate / pole) 203. This word line (gate gate) 203 is connected to peripheral circuits (not shown). The transistor is connected to the capacitor section 220 via the capacitor plug 211. The capacitor section 220 is connected to a peripheral circuit (not shown) via a plate electrode 216.

この平面レイアウ トの第 1の特徴は、 ビット線 208 1本に対してブ レート電極 216 を 1本を配線することである。 このようなレイアウ ト とすることにより、 ブレート電極 216 の容量を通常の DRAM よりも小 さくできるので、 プレート電極 216 の電位を周辺回路で制御すること が容易になる。 そのため、 強誘電性を用いた不揮発メモリー動作が容易 になる。 本実施例では、 ビッ ト線 1本に対してプレー卜電極を 1本の例 について説明したが、 プレート電極の本数としては、 2本以上のビッ ト 線に対してプレート電極を 1本にしてもよい。 ただしプレート鼋極の本 数が少なくなるとプレート電極の容量が大きくなって、 周辺回路による 制御が難しくなる。 プレート電極の本数は、 メモリ一の用途によってそ の最適数が変わってくる。 The first feature of this planar layout is that one plate electrode 216 is wired for one bit line 208. With such a layout, the capacity of the plate electrode 216 is smaller than that of a normal DRAM. This makes it easier to control the potential of the plate electrode 216 by a peripheral circuit. Therefore, the operation of the nonvolatile memory using ferroelectricity becomes easy. In the present embodiment, an example in which one plate electrode is provided for one bit line is described. However, the number of plate electrodes is set to one plate electrode for two or more bit lines. Is also good. However, as the number of plate electrodes decreases, the capacitance of the plate electrode increases, making control by peripheral circuits difficult. The optimal number of plate electrodes depends on the application of the memory.

この平面レイァゥ 卜の第 2の特徴は、 プレー ト電極 216 をビッ ト線 208 と同一方向に配線することである。 このため、 プレート電極 216 の電位を周辺回路によリ制御するときに、 その電位をビッ ト線 208 の 電位と同期して制御することが可能となる。  The second feature of this planar layout is that the plate electrode 216 is wired in the same direction as the bit line 208. Therefore, when the potential of the plate electrode 216 is controlled by the peripheral circuit, the potential can be controlled in synchronization with the potential of the bit line 208.

(実施例 8 )  (Example 8)

第 2 4図に、 本発明におけるメモリーセルの平面レイァゥ 卜の他の実 施例を示す。 このレイアウ トは、 2交点セルと、 キャパシタをビッ ト線 上に形成する COB (Capac i to r Over B i t l i ne) 構造とを用いるレイァゥ トである。 各メモリーセルのトランジスタ (図中では明記していない) はビッ 卜線 208 を介して周辺回路 (図示していない) に接続されてい る。 トランジスタとビッ ト線 208 の接続部分は、 アクティブ領域 218 の一部に形成したビッ ト線用プラグ 207 の部分である。 トランジスタ の動作は、 ワード線 (ゲート電極) 203 によリ制御される。 このワード 線 (ゲート電極) 203 は、 周辺回路 (図示していない) に接続されてい る。 トランジスタからキャパシタ部 220 へは、 キャパシタ用プラグ 21 1 を介して接続する。 キャパシタ部 220 はプレート電極 216 を介して, 周辺回路 (図示していない) に接続されている。  FIG. 24 shows another embodiment of the planar layout of the memory cell according to the present invention. This layout uses a two-intersection cell and a COB (Capacitor Over Bitline) structure that forms a capacitor on a bit line. The transistor (not explicitly shown) of each memory cell is connected to a peripheral circuit (not shown) via a bit line 208. The connection between the transistor and the bit line 208 is a bit line plug 207 formed in a part of the active region 218. The operation of the transistor is controlled by a word line (gate electrode) 203. This word line (gate electrode) 203 is connected to a peripheral circuit (not shown). The transistor is connected to the capacitor section 220 via the capacitor plug 211. The capacitor section 220 is connected to a peripheral circuit (not shown) via a plate electrode 216.

この平面レイァゥ 卜の第 1の特徴は、 DRAM 動作を主と考えて 1つの プレート電極 216 でキャパシタを制御することである。 The first feature of this planar layout is that the DRAM operation is considered That is, the capacitor is controlled by the plate electrode 216.

このようなレイアウ トとすることにより、 DRAM 動作に必要な基準電位 をキャパシタに印加することができる。 また周辺回路の駆動能力を十分 に大きくすれば、 不揮発性動作も可能である。 1つのプレー卜電極 216 で制御するキャパシタ数は、 メモリ一の用途によリ調整すればよい。 第 2 5図に、 第 2 4図中の一断面構造 (断面 A— A ' ) を示す。 この 断面構造は、 プレート電極 216 以外は、 実施例 8で説明した図 202 と 基本的に同じである。 プレート電極 216 の加工も、 実施例 8と同様に、 必要な大きさに加工すればよい。 With such a layout, the reference potential required for DRAM operation can be applied to the capacitor. If the driving capability of the peripheral circuit is sufficiently increased, nonvolatile operation is possible. The number of capacitors controlled by one plate electrode 216 may be adjusted according to the application of the memory. FIG. 25 shows a cross-sectional structure (cross-section AA ′) in FIG. This cross-sectional structure is basically the same as FIG. 202 described in Embodiment 8 except for the plate electrode 216. The processing of the plate electrode 216 may be performed to a required size as in the eighth embodiment.

本発明により、 エッチング反応生成物の揮発性が低い笔極材料を用い た髙誘電体 · 強誘電体キャパシタを用いる半導体メモリーにおいて、 ― 回のリソグラフィ一工程のみでキャパシタを加工するときの問題であつ た鴛極間のショートを防ぐことができる。 その結果、 マスク合わせの余 裕が不要になリ、 微細なキャパシタを用いた高集積半導体メモリーを加 ェすることが可能になる。  According to the present invention, in a semiconductor memory using a dielectric / ferroelectric capacitor using an electrode material having a low volatility of an etching reaction product, a problem occurs when a capacitor is processed in only one lithography step. It is possible to prevent a short circuit between the poles. As a result, a margin for mask alignment is not required, and a highly integrated semiconductor memory using a fine capacitor can be added.

産業上の利用可能性  Industrial applicability

以上説明したように、 本発明は高信頼度、 高集積のキャパシタとして 有用であり、 1 ギガビッ卜以上の大容量 D R A Mに用いるのに適してい る。  As described above, the present invention is useful as a highly reliable and highly integrated capacitor, and is suitable for use in large-capacity DRAMs of 1 gigabit or more.

Claims

請 求 の 範 囲 The scope of the claims 1 . 半導体基体主面上に下部電極と、 絶縁膜と、 上部電極とから構成さ れる積層型キャパシタを有し、 このキャパシタに電荷を蓄積するか、 も しくは絶縁膜の分極反転によリ電気信号を記憶する機能を有した半導体 記憶装置において、 前記キャパシタの側部にサイ ドウオールスぺ一サー を有し、 前記上部電極が前記サイ ドウォールスぺーサ一の内側に位置さ れていることを特徴とする半導体記億装置。 1. A multilayer capacitor composed of a lower electrode, an insulating film, and an upper electrode is provided on the main surface of the semiconductor substrate, and charge is stored in the capacitor or the capacitor is inverted by polarization inversion of the insulating film. In a semiconductor memory device having a function of storing an electric signal, a side wall of the capacitor has a side wall spacer, and the upper electrode is located inside the side wall spacer. Semiconductor storage device. 2 . 前記サイ ドウオールスぺ一サ一は上部電極の側部を覆っていること を特徴とする請求の範囲第 1項記載の半導体記憶装置。  2. The semiconductor memory device according to claim 1, wherein said side walls cover side portions of an upper electrode. 3 . 前記サイ ドウォールスぺーサ一は上部電極および絶緣膜の側部を覆 つていることを特徴とする請求の範囲第 1項記載の半導体記憶装置。 3. The semiconductor memory device according to claim 1, wherein said side wall spacer covers a side portion of an upper electrode and an insulating film. 4 . 前記絶縁膜と前記下部電極の大きさが略同一であり、 かつ前記上部 電極の下辺の長さが絶緑膜の上辺の長さよりも短いことを特徴とする請 求の範囲第 2項記載の半導体記憧装置。 4. The range of claim 2, wherein the size of the insulating film and the lower electrode is substantially the same, and the length of the lower side of the upper electrode is shorter than the length of the upper side of the absolutely green film. The semiconductor memory device described. 5 . 前記絶縁膜の上辺の長さがその絶縁物の下辺の長さよリも短いこと を特徴とする請求の範囲第 2項記載の半導体記憶装置。  5. The semiconductor memory device according to claim 2, wherein a length of an upper side of the insulating film is shorter than a length of a lower side of the insulator. 6 . 前記絶縁膜の下辺の長さが前記下部金属電極の上辺の長さよリも短 いことを特徴とする請求の範囲第 3項記載の半導体記億装置。 6. The semiconductor memory device according to claim 3, wherein a length of a lower side of the insulating film is shorter than a length of an upper side of the lower metal electrode. 7 . 前記上部耄極が Pt、 0s、 Pd、 Au、 Ru、 I r、 Ru02そして I r02から選 択された少なくとも一つの材料から成ることを特徴とする請求の範囲第 1項記載の半導体記憶装置。 7. The upper耄極is Pt, 0s, Pd, Au, Ru, I r, Ru0 2 and claims, characterized in that it consists of at least one material which is selected from I r0 2 range as set forth in claim 1, wherein Semiconductor storage device. 8 . 前記サイ ドウォ一ルスぺーサ一が S i02、 S i3 N4、 A12038. The rhino Dowo one pulse spacer one is S i0 2, S i 3 N 4, A1 2 0 3, Ti 02、 Ta205から選択された少なくとも一つの材料から成る CVD 絶縁膜 であることを特徴とする請求の範囲第 1項記載の半導体記憶装置。 Ti 0 2, the semiconductor memory device as set forth in claim 1, wherein claims, characterized in that the Ta 2 0 5 is a CVD insulating film made of at least one material selected. 9 . 半導体基体と、 前記半導体基体の主面に形成された複数の半導体領域、 ゲー卜電極を 有する M I S F E Tと、 9. A semiconductor substrate, An MISFET having a plurality of semiconductor regions formed on a main surface of the semiconductor substrate and a gate electrode; 前記 M I S F E Tを覆うように前記半導体基体の主面上に形成され、 前記半導体領域の選択された一つの半導体領域主面上にスルーホールを 有する層間絶緣膜と、  An interlayer insulating film formed on the main surface of the semiconductor substrate so as to cover the MISFET, and having a through hole on a selected main surface of the semiconductor region of the semiconductor region; 前記スルーホールに設けられ、 選択された前記半導体領域に電気的接 続するプラグと、  A plug provided in the through hole and electrically connected to the selected semiconductor region; 前記プラグに電気的接続され、 前記 S間絶縁膜の主面にパターン形成 された、 下部雹極、 絶縁膜、 上部電極で構成される積層型キャパシタと、 前記層間絶縁膜上に配置された前記上部電極に電気的接続するプレー 卜配線とを有し、  A multilayer capacitor electrically connected to the plug and patterned on a main surface of the inter-S insulating film, comprising a lower hail pole, an insulating film, and an upper electrode; and And a plate wiring electrically connected to the upper electrode. 前記キャパシタの側部にサイ ドウオールスぺーサーを有し、 前記上部 電極が前記サイ ドウォールスぺーサ一の内側に位置されていることを特 徴とする半導体記憶装置。  A semiconductor memory device having a side wall spacer on a side portion of the capacitor, wherein the upper electrode is located inside the side wall spacer. 1 0 . 前記サイ ドウォールスぺーサ一は上部電極の側部を覆っているこ とを特徴とする請求の範囲第 9項記載の半導体記憶装置。  10. The semiconductor memory device according to claim 9, wherein said side wall spacer covers a side portion of an upper electrode. 1 1 . 前記サイ ドウォールスぺーサ一は上部電極および絶縁膜の側部を 覆っていることを特徴とする請求の範囲第 9項記載の半導体記憧装置。 11. The semiconductor memory device according to claim 9, wherein the side wall spacer covers a side portion of the upper electrode and the insulating film. 1 2 . 前記プラグはタングステンから成ることを特徴とする請求の範囲 第 9項記載の半導体記憶装置。 12. The semiconductor memory device according to claim 9, wherein said plug is made of tungsten. 1 3 . 半導体基体主面上に下部電極と、 誘電体膜と、 上都電極とから構 成される積層型キャパシタを有する半導体記憶装置の製造方法において, 前記半導体基体主面に第 1の金属層を堆稷する段階、  13. A method of manufacturing a semiconductor memory device having a multilayer capacitor composed of a lower electrode, a dielectric film, and an upper electrode on a main surface of a semiconductor substrate, wherein a first metal is provided on the main surface of the semiconductor substrate. The stage of corkscrew layers, 前記第 1の金属層主面に第 1の絶縁膜ほを堆積する段階、  Depositing a first insulating film on the first metal layer main surface, 前記第 1の絶縁膜層主面に第 2の金展層を堆積する段階、  Depositing a second gold-extended layer on the first insulating film layer main surface, 前記第 2の金属層主面に所定のパターン形状のマスクを設けし、 前記 O 97/35341 Providing a mask of a predetermined pattern shape on the main surface of the second metal layer, O 97/35341 2 7 マスクを用いて前記第 2の金属層をエッチングして上部電極を形成する 段階、 Etching the second metal layer using a 27 mask to form an upper electrode, 前記上部電極を覆うように第 2の絶縁膜層を堆積する段階、  Depositing a second insulating film layer so as to cover the upper electrode, 前記上部電極の側都に前記第 2の絶縁膜層よリ成るサイ ドウォ一ルス ぺ一サーを形成するように前記第 2の絶縁膜層をエッチする段階、 その後、 前記第 1の絶緣膜層と第 1の金属層とをエッチングし、 誘電 体膜および下都電極を形成する段階、  Etching the second insulating film layer so as to form a side wall spacer composed of the second insulating film layer on the side of the upper electrode, and thereafter, the first insulating film layer Etching the first metal layer and the first metal layer to form a dielectric film and a lower electrode, から成ることを特徴とする半導体記億装置の製造方法。 A method for manufacturing a semiconductor memory device, comprising: 1 4 . 半導体基体主面上に下部電極と、 誘電体膜と、 上都電極とから構 成される積層型キャパシタを有する半導体記憶装置の製造方法において, 前記半導体基体主面に第 1の金属層を堆積する段階、  14. A method for manufacturing a semiconductor memory device having a stacked capacitor composed of a lower electrode, a dielectric film, and an upper electrode on a main surface of a semiconductor substrate, wherein a first metal is provided on the main surface of the semiconductor substrate. Depositing layers, 前記第 1の金属層主面に第 1の絶緣胰層を堆積する段階、  Depositing a first insulating layer on the main surface of the first metal layer, 前記第 1の絶緣膜層主面に第 2の金属層を堆積する段階、  Depositing a second metal layer on the main surface of the first insulating film layer; 前記第 2の金属層主面に所定のパターン形状のマスクを設け、 前記マ スクを用いて前記第 2の金属層をエッチングして上部電極を形成する段 階、  Providing a mask of a predetermined pattern on the main surface of the second metal layer, and etching the second metal layer using the mask to form an upper electrode; 前記第 1の絶緣膜層の途中までエッチングする段階、  Etching halfway through the first insulating film layer, 第 2の絶縁膜層を前記上部電極及び前記第 1の絶縁膜層に堆積する段 階、  Depositing a second insulating film layer on the upper electrode and the first insulating film layer; 前記第 2の絶縁膜層をエッチバックする段階、  Etching back the second insulating film layer; 前記第 1の絶縁膜層の残リの部分と第 1の金属層をとエッチングし、 誘電体膜および下部電極を形成する段階、  Etching the remaining portion of the first insulating film layer and the first metal layer to form a dielectric film and a lower electrode; から成ることを特徴とする半導体記憧装置の製造方法。 A method for manufacturing a semiconductor memory device, comprising: 1 5 . 半導体基体主面上に下部電極と、 誘鴛体膜と、 上部罨極とから構 成される積層型キャパシタを有する半導体記憶装置の製造方法において、 前記半導体基体主面に第 1の金属展を堆積する段階、 前記第 1の金属眉主面に第 1の絶緣膜層を堆積する段階、 15. A method for manufacturing a semiconductor memory device having a multilayer capacitor composed of a lower electrode, a dielectric film, and an upper compressing electrode on a main surface of a semiconductor substrate, wherein the first surface of the semiconductor substrate is Depositing metal exhibition, Depositing a first insulating film layer on the first metal eyebrow main surface, 前記第 1の絶縁膜暦主面に第 2の金属層を堆積する段階、  Depositing a second metal layer on the main surface of the first insulating film, 前記第 2の金属層主面に所定のパターン形状のマスクを設け、 前記マ スクを用いて前記第 2の金属層及び前記第 1の絶緣膜層をエッチングし て上部電極及び誘電体膜を形成する段階、  A mask having a predetermined pattern is provided on the main surface of the second metal layer, and the second metal layer and the first insulating film layer are etched using the mask to form an upper electrode and a dielectric film. Stage to do 第 2の絶縁膜層を前記上部電極及び前記誘電体膜に堆積する段階、 前記第 2の絶緣膜屠をエッチバックし、 前記上部亀極及び前記誘電体 膜の側部にサイ ドウオールスぺーサ一を設ける段階、  Depositing a second insulating film layer on the upper electrode and the dielectric film; etching back the second insulating film; and providing a side wall spacer on the upper electrode and a side of the dielectric film. Providing, から成ることを特徴とする半導体記慷装置の製造方法。  A method for manufacturing a semiconductor useful device, comprising: 1 6 . 下部金属鬈極と、 絶緣膜と、 上部金属電極とから構成される積層 型キャパシタを有する半導体記 ¾装置の製造方法において、 第 1の金属 JSを堆積し、 第 1の絶緣膜層を堆積し、 第 2の金属層を堆積し、 マスク を形成し、 このマスクを用いて第 2の金属層をエッチングして上部 S極 を形成し、 第 1の絶縁膜層をエッチングし、 第 2の絶縁膜層を堆積し、 この第 2の絶緣膜層をエッチバッ  16. A method for manufacturing a semiconductor memory device having a multilayer capacitor composed of a lower metal electrode, an insulating film, and an upper metal electrode, wherein a first metal JS is deposited and a first insulating film layer is formed. Depositing a second metal layer, forming a mask, etching the second metal layer using the mask to form an upper south pole, etching the first insulating film layer, Deposit two insulating layers and etch back this second insulating layer. クし、 その後に第 1の金属層をエッチングすることによリキャパシタを 形成し、 キャパシタの側壁付着物を除去し、 その後にキャパシタの上部 電極に接続する配線形成を行なうことを特徴とする半導体記億装置の製 造方法。 Forming a capacitor by etching the first metal layer, removing deposits on a side wall of the capacitor, and thereafter forming a wiring connected to an upper electrode of the capacitor. Manufacturing method of storage device. 1 7 . 下部電極と、 絶緣膜と、 上都電極とから構成される積層型キャパ シタの製造方法であって、 上部電極をパターン形成し、 その上部菴極の 側部にサイ ドウオールスぺ一サーを形成した後、 前記サイ ドウォールス ぺーサ一を下部電極をパターン形成することを特徴とする積層型キャパ シタの製造方法。  17. A method for manufacturing a laminated capacitor including a lower electrode, an insulating film, and a upper electrode, in which an upper electrode is patterned and a side wall sensor is provided on a side of the upper electrode. Forming a lower electrode by patterning the side wall spacer after forming the multilayer capacitor. 1 8 . 下部電極と、 絶縁膜と、 上部電極とから構成される積 β型キャパ シタの製造方法であって、 上部電極のドライエッチ加工した後、 下部電 極のドライエッチ加工に先立って、 サイ ドウオールスぺーサーを形成す ることを特徴とする積層型キャパシタの製造方法。 18. A method of manufacturing a β-type capacitor comprising a lower electrode, an insulating film, and an upper electrode, wherein the upper electrode is dry-etched, and A method for manufacturing a multilayer capacitor, comprising forming a side spacer prior to pole dry etching.
PCT/JP1996/000685 1996-03-15 1996-03-15 Semiconductor storage device and its manufacture WO1997035341A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP53333997A JP3666877B2 (en) 1996-03-15 1996-03-15 Semiconductor memory device and manufacturing method thereof
PCT/JP1996/000685 WO1997035341A1 (en) 1996-03-15 1996-03-15 Semiconductor storage device and its manufacture
TW085115005A TW312832B (en) 1996-03-15 1996-12-05 Semiconductor memory device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/000685 WO1997035341A1 (en) 1996-03-15 1996-03-15 Semiconductor storage device and its manufacture

Publications (1)

Publication Number Publication Date
WO1997035341A1 true WO1997035341A1 (en) 1997-09-25

Family

ID=14153068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000685 WO1997035341A1 (en) 1996-03-15 1996-03-15 Semiconductor storage device and its manufacture

Country Status (3)

Country Link
JP (1) JP3666877B2 (en)
TW (1) TW312832B (en)
WO (1) WO1997035341A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10057444A1 (en) * 2000-11-20 2002-05-29 Infineon Technologies Ag Production of a capacitor arrangement used for an FeRAM storage device comprises filling exposed intermediate regions of the substrate with an electrically insulating intermediate layer up to the level of an capacitor device
WO2002082549A1 (en) * 2001-04-05 2002-10-17 Renesas Technology Corp. Semiconductor integrated circuit device and its manufacturing method
JP2002353414A (en) * 2001-05-22 2002-12-06 Oki Electric Ind Co Ltd Dielectric capacitor and method of manufacturing the same
US6586790B2 (en) 1998-07-24 2003-07-01 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US6611014B1 (en) 1999-05-14 2003-08-26 Kabushiki Kaisha Toshiba Semiconductor device having ferroelectric capacitor and hydrogen barrier film and manufacturing method thereof
JP2006185991A (en) * 2004-12-27 2006-07-13 Fujitsu Ltd Semiconductor device
JP2006303188A (en) * 2005-04-20 2006-11-02 Oki Electric Ind Co Ltd Ferroelectric capacitor and manufacturing method thereof
JP2007019276A (en) * 2005-07-07 2007-01-25 Oki Electric Ind Co Ltd Method for manufacturing ferroelectric element
JP2007335897A (en) * 2007-08-29 2007-12-27 Fujitsu Ltd Manufacturing method of semiconductor device
WO2008111199A1 (en) * 2007-03-14 2008-09-18 Fujitsu Microelectronics Limited Semiconductor device, and its manufacturing method
US10522467B2 (en) 2016-07-06 2019-12-31 Tokyo Electron Limited Ruthenium wiring and manufacturing method thereof
KR20210135914A (en) * 2020-05-05 2021-11-16 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Non-volatile memory device and manufacturing technology
EP4156313A1 (en) * 2021-09-24 2023-03-29 INTEL Corporation Multilayer capacitor with edge insulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132482A (en) * 1992-10-19 1994-05-13 Sharp Corp Semiconductor memory device
JPH0794600A (en) * 1993-06-29 1995-04-07 Mitsubishi Electric Corp Semiconductor device and fabrication thereof
JPH088348A (en) * 1994-06-20 1996-01-12 Hitachi Ltd Semiconductor integrated circuit device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132482A (en) * 1992-10-19 1994-05-13 Sharp Corp Semiconductor memory device
JPH0794600A (en) * 1993-06-29 1995-04-07 Mitsubishi Electric Corp Semiconductor device and fabrication thereof
JPH088348A (en) * 1994-06-20 1996-01-12 Hitachi Ltd Semiconductor integrated circuit device and manufacturing method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586790B2 (en) 1998-07-24 2003-07-01 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US6982444B2 (en) 1998-07-24 2006-01-03 Kabushiki Kaisha Toshiba Ferroelectric memory device having a hydrogen barrier film
US6611014B1 (en) 1999-05-14 2003-08-26 Kabushiki Kaisha Toshiba Semiconductor device having ferroelectric capacitor and hydrogen barrier film and manufacturing method thereof
US6982453B2 (en) 1999-05-14 2006-01-03 Kabushiki Kaisha Toshiba Semicondutor device having ferroelectric capacitor and hydrogen barrier film and manufacturing method thereof
DE10057444A1 (en) * 2000-11-20 2002-05-29 Infineon Technologies Ag Production of a capacitor arrangement used for an FeRAM storage device comprises filling exposed intermediate regions of the substrate with an electrically insulating intermediate layer up to the level of an capacitor device
US6649483B2 (en) 2000-11-20 2003-11-18 Infineon Technologies Ag Method for fabricating a capacitor configuration
WO2002082549A1 (en) * 2001-04-05 2002-10-17 Renesas Technology Corp. Semiconductor integrated circuit device and its manufacturing method
JP2002353414A (en) * 2001-05-22 2002-12-06 Oki Electric Ind Co Ltd Dielectric capacitor and method of manufacturing the same
JP2006185991A (en) * 2004-12-27 2006-07-13 Fujitsu Ltd Semiconductor device
JP2006303188A (en) * 2005-04-20 2006-11-02 Oki Electric Ind Co Ltd Ferroelectric capacitor and manufacturing method thereof
JP2007019276A (en) * 2005-07-07 2007-01-25 Oki Electric Ind Co Ltd Method for manufacturing ferroelectric element
JP4621081B2 (en) * 2005-07-07 2011-01-26 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device
WO2008111199A1 (en) * 2007-03-14 2008-09-18 Fujitsu Microelectronics Limited Semiconductor device, and its manufacturing method
JP5212358B2 (en) * 2007-03-14 2013-06-19 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
US8956881B2 (en) 2007-03-14 2015-02-17 Fujitsu Semiconductor Limited Method of manufacturing a FeRAM device
JP2007335897A (en) * 2007-08-29 2007-12-27 Fujitsu Ltd Manufacturing method of semiconductor device
JP4515492B2 (en) * 2007-08-29 2010-07-28 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
US10522467B2 (en) 2016-07-06 2019-12-31 Tokyo Electron Limited Ruthenium wiring and manufacturing method thereof
KR20210135914A (en) * 2020-05-05 2021-11-16 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Non-volatile memory device and manufacturing technology
KR102518679B1 (en) 2020-05-05 2023-04-05 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Non-volatile memory device and manufacturing technology
EP4156313A1 (en) * 2021-09-24 2023-03-29 INTEL Corporation Multilayer capacitor with edge insulator

Also Published As

Publication number Publication date
TW312832B (en) 1997-08-11
JP3666877B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
US6097051A (en) Semiconductor device and method of fabricating
US6461930B2 (en) Capacitor and method for forming the same
US5573979A (en) Sloped storage node for a 3-D dram cell structure
US6538272B2 (en) Semiconductor storage device and method of producing same
US6432767B2 (en) Method of fabricating semiconductor device
JPH0774313A (en) Thin film capacitor and manufacturing method thereof
US5631804A (en) Contact fill capacitor having a sidewall that connects the upper and lower surfaces of the dielectric and partially surrounds an insulating layer
JP4286439B2 (en) Manufacturing method of semiconductor device
WO1997035341A1 (en) Semiconductor storage device and its manufacture
US6437382B2 (en) Semiconductor device and manufacturing method thereof
JP3166746B2 (en) Capacitor and method of manufacturing the same
JP2002026135A (en) Semiconductor device capacitor manufacturing method
JPH10107223A (en) Dielectric capacitor, dielectric memory device, and manufacturing method thereof
JP2001036024A (en) Capacitor and manufacture thereof
JPH1022274A (en) Etching method and method of manufacturing semiconductor device
US6159791A (en) Fabrication method of capacitor
JPH10223855A (en) Semiconductor memory device and method of manufacturing semiconductor memory device
KR100213263B1 (en) Fabrication method of high dielectric capacitor
KR100190055B1 (en) White electrode manufacturing method of semiconductor device
KR100727494B1 (en) Capacitor over plug structure
KR100624926B1 (en) Capacitor Manufacturing Method of Semiconductor Device
KR0176162B1 (en) Semiconductor memory device and resistive layer forming method
CN117412605A (en) Trench semiconductor memory device and method of manufacturing the same
JP3675453B2 (en) Manufacturing method of semiconductor device
JP2000114489A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载