+

WO1997034020A1 - Ferritic stainless steel for exhaust system equipment of vehicle - Google Patents

Ferritic stainless steel for exhaust system equipment of vehicle Download PDF

Info

Publication number
WO1997034020A1
WO1997034020A1 PCT/JP1997/000786 JP9700786W WO9734020A1 WO 1997034020 A1 WO1997034020 A1 WO 1997034020A1 JP 9700786 W JP9700786 W JP 9700786W WO 9734020 A1 WO9734020 A1 WO 9734020A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
temperature
amount
stainless steel
Prior art date
Application number
PCT/JP1997/000786
Other languages
English (en)
French (fr)
Inventor
Yuji Koyama
Akihiko Takahashi
Tetsuya Shimada
Nobuhiro Fujita
Shigeru Maeda
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to DE69709017T priority Critical patent/DE69709017T2/de
Priority to EP97907294A priority patent/EP0834590B1/en
Priority to US08/945,616 priority patent/US5843370A/en
Publication of WO1997034020A1 publication Critical patent/WO1997034020A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Definitions

  • the present invention relates to a flat stainless steel for automotive exhaust system devices having excellent moldability at normal temperature and high-temperature strength.
  • a technique for improving high-temperature strength by adding Nb to ferritic stainless steel is disclosed in, for example, Japanese Patent Laid-Open Publication No. Hei 3-294417, in which C and N are 0.03% or less and Nb is reduced to 0%.
  • a method of annealing a stainless steel containing 1% to 1% in a temperature range of 1100 to 1250 ° C is disclosed in Japanese Patent Application Laid-Open No. 5-331551, in which C: 0.02% or less and N: 0.03% or less.
  • Nb and Ti are added to add + Aiming to keep the N value to a low value. This is a very similar problem to the above patent because a large amount of Nb is added under a high C + N value.
  • U.S. Pat.No. 4,834,808 discloses ferritic stainless steel used for automobile exhaust system equipment, but this patent uses Nb and Ti together but contains an abnormally high N content. Therefore, a low C + N content cannot be ensured, and the problem of a small amount of added Nb reduces the amount of dissolved Nb and deteriorates the high-temperature strength. Also in US Patent No. 4,964,926, a high Si content is contained in order to ensure high-temperature strength, but there is no idea to increase the amount of solid-dissolved Nb by reducing the amount of C + N.
  • YUS450-MS JP-A-5-821356
  • this technology is based on the addition of Nb to increase the high-temperature strength, the addition of Mo, the solid-solution effect of Nb and Mo, and the addition of Ti to the Nb coal.
  • the present inventors have studied in detail a steel composition that increases the amount of solid-dissolved Nb with the aim of improving the high-temperature strength with a small amount of Nb that does not significantly increase the recrystallization temperature. As a result, C and N are kept extremely low, and C and N are fixed at Ti, which is added in combination, so that even if a small amount of Nb is added, Nb carbonitride formation is prevented and high-temperature strength is improved.
  • the present inventors have found that it is possible to secure the amount of solute Nb necessary for the present invention, and have accomplished the present invention.
  • the Nb-Ti composite-added steel Comparing the Nb-Ti-added steel with the Nb-Ti-added steel in the fusible stainless steel used for automobile exhaust system equipment, the Nb-Ti composite-added steel has the same solute Nb content even with the same added Nb content.
  • the force that takes a higher value than that of the addition is presumed to be because the free energy of formation of TiC is smaller than that of NbC.
  • C preferentially binds to Ti, so Nb does not bind to C by that amount, and the amount of solid solution Nb in the case of complex addition is smaller than that of the same Nb addition. I learned that it would be much more.
  • the present invention is based on the above-mentioned technical idea that, by adding Nb_Ti in a composite manner, C is fixed by Ti, so that necessary solid solution Nb is secured and high strength is achieved, and the gist is as follows. .
  • the gist of the present invention is that, by weight%, C: 0.005% or less, N: 0.008% or less, C + N is 0.009% or less, Si: 0.45% or less, Mn: 1.0% or less, Cr : 10 to 12.5%, Nb: 0.05 to 0.3%, and Ti: 8X (C + N) to 0.3%, with the balance being Fe and unavoidable impurities It is a ferritic stainless steel for exhaust system equipment, and Nb: 0.05 to 0.25% in the above steel components.
  • C Must be 0.005% or less. C in excess of 0.005% If it is contained in the steel, the room-temperature formability of the steel is deteriorated, and the amount of solute Nb is reduced, which hinders the improvement in high-temperature strength.
  • N Must be 0.008% or less. If N is contained in a large amount exceeding 0.008%, the formability of the steel at room temperature is degraded, and the amount of solute Nb is reduced.
  • the total amount of C and N must be 0.009% or less.
  • C and N are fixed by added Ti. However, if the total amount of C and N seems to exceed 0.009%, the amount of added Ti increases and the amount of solute Nb decreases.
  • C must be 0.005% or less
  • N must be 0.008% or less
  • C + N must be 0.009% or less. If a large amount of C or N is contained, the elongation of the steel decreases, and the formability at room temperature deteriorates.
  • C and N are fixed in the form of Ti (C, N) by adding Ti in an amount corresponding to the amount of C + N, and deterioration of formability is reduced. When a large amount of C and N is contained, the amount of expensive Ti added increases accordingly, and the precipitation of Ti (C, N) increases, resulting in poor formability at room temperature.
  • the figure shows the results of measuring the amount of solute Nb when kept at ° C.
  • the steel (N steel) combined with Nb and Ti has a longer holding time at 900 ° C near the exhaust gas environment than the steel with Nb added alone (1 steel).
  • the amount of solid-dissolved Nb also had a clear difference, indicating that the combined addition of Nb and Ti is effective.
  • Fig. 2 shows the results of an investigation on the relationship between the amount of C + N and the amount of solute Nb.
  • the steel used in this experiment showed the results of measuring the amount of solute Nb when 10.8% Cr-0.25% Nb-IOx (C% + N%) Ti% steel was held at 900 ° C for 100 hours. Things.
  • the values (% by weight) read from FIG. 2 are shown in Table 1.
  • Si is added as a deoxidizing agent, it must be contained at a certain level or more, but if it exceeds 0.45%, the moldability at room temperature is significantly deteriorated. Let it.
  • MnS Like Si, it is an effective element for deoxidation. However, if it is contained in a large amount exceeding 1%, the amount of MnS generated increases and the corrosion resistance of steel decreases. However, the addition of Mn exceeding 0.5% is effective for forming a dense oxide scale, and when it is necessary to suppress the separation of the oxide scale formed during use at a high temperature, the addition of Mn exceeds 0.5% It is desirable to add it.
  • the Cr content which is one of the elements effective for high-temperature strength, is reduced in order to enhance the formability at room temperature. It is an element, and it has no effect unless it contains at least 0.05%.
  • the recrystallization temperature of the steel rises significantly, and high-temperature finish annealing is required to recrystallize the metal structure of the steel and not deteriorate the formability at room temperature. . Finish annealing at high temperatures increases energy consumption, has adverse effects on the global environment, increases production costs, and has other adverse effects. Fig.
  • Nb content from 0.05% to 0.35%. This is the result of investigating the recrystallization temperature of steel that was changed up to. From Fig. 3, the Nb content must be less than 0.30% in order to keep the recrystallization temperature low and recrystallize the steel at a low finish annealing temperature. If it is necessary to manufacture steel sheets at a lower recrystallization temperature, that is, a finish annealing temperature, it is effective to reduce the Nb content to 0.25% or less.
  • Figure 1 shows the measurement results of the amount of dissolved Nb in Nb-only steel and Nb_Ti composite-added steel when held at 900 ° C.
  • FIG. 2 is a diagram showing the measurement results of the amount of C + N and the amount of solute Nb when the Nb—Ti composite added steel was kept at 900 ° C. for 100 hours.
  • Figure 3 is a graph showing the relationship between the Nb content and the recrystallization temperature on the low C + N-10.8% Cr-0.15% Ti steel.
  • Table 3 shows the elongation at break (%) at room temperature as an index of room-temperature formability, and 0.2% resistance (MPa) at 900 ° C as an index of high-temperature strength.
  • Steels A to D whose steel components are within the scope of the present invention are excellent in elongation at room temperature and strength at high temperature, and also have low recrystallization temperature, so that finish annealing at low temperature is possible.o
  • steel E and steel I each have a Si content and a Cr content larger than the range of the present invention, the elongation at break at normal temperature is small.
  • Steel F and steel G each had a higher C + N content and a higher C content than the range of the present invention.
  • the value is smaller than that of steel D containing 0.15% of Nb.
  • Steel H does not show the effect of Nb addition on high-temperature strength because the Nb addition amount is smaller than the range of the present invention.
  • Steel J has a Ti addition amount smaller than the range of the present invention, so that C and N cannot be sufficiently fixed with Ti, and the breaking elongation at room temperature and the high-temperature strength are small.
  • the present invention it has become possible to produce steel having excellent room-temperature formability and high-temperature strength at a low finish annealing temperature without adding a large amount of expensive alloy. As a result, it has become possible to reduce the energy consumption and manufacturing cost required when manufacturing ferritic stainless steel for automobile exhaust system equipment.
  • the contribution and significance of the present invention to the industry are extremely large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Exhaust Silencers (AREA)
  • Heat Treatment Of Steel (AREA)

Description

. 明 細 書 自動車排気系機器用フ ニ ラ イ ト系ステ ン レス鋼 技術分野
本発明は、 常温での成形性と、 高温強度に優れた自動車排気系機 器用フヱライ ト系ステンレス鋼に関するものである。 背景技術
自動車エン ジ ンの高出力化、 性能アップの要求により、 排気ガス の温度は上昇する傾向にある。 またこれにともない、 自動車排気系 機器に使用される鋼材に対しても、 さ らなる高温強度が求められて いる。
このような要求に対して、 Nbをフェライ ト系ステンレス鋼に添加 することで高温強度を向上させる技術が、 例えば、 特開平 3 — 2944 17号公報に C , Nが 0.03%以下で Nbを 0. 1〜 1 %添加したフ ヱライ ト系ステ ンレス鋼を 1100〜 1250°Cの温度範囲で焼鈍する方法が、 ま た特開平 5 — 331551号公報に C : 0.02%以下、 N : 0.03%以下で Nb を 0.4〜 1 %添加したフヱライ ト系ステンレス鋼を 1100°C〜 1200°C の温度範囲で仕上げ焼鈍する方法が開示されている。 これら公知技 術に開示されているように、 比較的高い C , N量では高温強度を得 るために多量の Nbを必要と し、 その結果鋼の再結晶温度が高く なり 、 1100 を越える高温で焼鈍する必要があった。
更に、 自動車排気系機器に使用されるフ ェ ライ 卜系ステ ン レス鋼 と しては、 特開平 6 — 248394号公報に見られるように、 自動車のフ ロ ン トパイプ、 センターパイプの溶接熱影響部の耐粒界腐食性を改 善するために、 特定範囲の Crを含有することに加え、 C , Nや安定 化元素と して Nb, Tiを特定範囲に限定し、 Si, Mo, Niを追加的に添 加して素材の耐高温塩害腐食性を向上させる技術が開示されている 、 多量の Si, Nbおよび Moを添加しているために鋼の再結晶温度が 高温になるため、 高温での仕上焼鈍が必要になり、 更に常温での成 形性が劣化するという問題がある。 また、 上記特許と同様の用途の ために開発された特開平 6 — 184705号公報および排気ガスマフラ一 材と して開発された特開平 3 — 264652号公報においては、 Nb, Tiを 添加して C + N値を低い値に抑えることを狙いとしている力 これ とても依然と して高い C + N値の下で多量の Nbを添加しているため に上記特許と同様の問題が発生している。
また、 米国特許第 4834808号は、 自動車排気系機器に使用される フ ェライ ト系ステンレス鋼を開示しているが、 この特許は Nb, Tiを 併用 しているが異常に高い N量を含有しているため低 C + N量を確 保できず少量の Nb添加量では固溶 Nb量が減少し、 高温強度が劣化す るという問題は解決されていない。 米国特許第 4964926号において も、 高温強度を確保するために高 Si量を含有させているが、 低 C + N量にして固溶 Nb量を增加させるという思想はない。
一方、 高温強度を高めた自動車排気系材料と して YUS450- MS (特開 平 5 — 821356号公報) と して市販されている。 この材料は、 Cr= 14 %、 C + N = 0.020%、 Ti = 0.1%、 Nb= 0.3%に加えて Mo二 1 % を添加した成分組成である。 確かに、 この技術は、 高温強度を高め るために Nbを添加している力 それ以上に Moを添加して、 Nb, Moの 固溶効果を狙い、 更に Tiを複合添加させることで Nb炭窒化物の析出 物の形態を制御することで固溶 Nb量を確保したものであるが、 Nb単 独添加では粗大に成長し易い Fe3Nb3C が析出する (これは C原子に 対して Nbが 3つ消費されることを意味する。 ) のに対し、 Tiを複合 添加することで析出物形態が (ΤΊ, Nb) C型になり、 高温で長時間 保持した際の固溶 Nb量の減少を抑制でき、 更に C, N化物を作らな い Moを添加し、 固溶 Moを活用して自動車排気系環境における高温強 度を高めた技術と しては画期的なものであった。 しかしながら、 こ の技術は、 C r, Mo量を多量に含有しているために常温での成形性が 劣るという最大の問題点を抱えていることに加え、 合金コス トが高 く なり汎用性に欠けるという問題点がある。
上述の特許以外に多くの自動車排気系機器に使用されるフ ユライ ト系ステンレス鋼に向けた特許があるが、 Moのような高価な元素を 使用せずに、 単に極低 C + N量に加え、 低 S i量にして Nb, T i量を複 合添加し、 更に Mn, C rを含めて最適な成分設計に基づいてバラ ンス させ、 高温での強度、 常温加工性を兼備し、 しかも低コス トの自動 車排気系機器に使用されるフ ェライ 卜系ステンレス鋼は未だ存在し ない。
常温で優れた成形性を得るためには、 金属組織を完全再結晶させ る必要がある。 高温強度向上のため N bを添加すると、 鋼の再結晶温 度が上昇する。 この結果、 優れた常温成形性と高温強度を合わせ持 つ鋼板を得るためには、 再結晶化のための焼鈍温度を高く 設定する 必要があり、 エネルギー消費量の増大、 製造コス トの上昇を招く も のとなつていた。 発明の開示
本発明者らは、 再結晶温度をさほど上昇させない少ない Nb添加量 で高温強度を向上させることを指向し、 固溶 Nb量を増大させる鋼組 成を詳細に検討した。 その結果、 C, Nを極低化しておき、 さ らに 複合添加する T iで C, Nを固定することで、 少量の Nb添加でも、 Nb の炭窒化物生成を阻止し、 高温強度向上に必要な固溶 Nb量を確保す ることが可能であるとの知見を得、 本発明を成し遂げた。 自動車排気系機器に使用されるフユライ ト系ステンレス鋼におい て、 Nb単独添加鋼と Nb— Ti添加鋼とを比較すると、 Nb— Ti複合添加 鋼の固溶 Nb量は同一添加 Nb量でも Nb単独添加の場合に比べて高い値 をとる力 、 これは TiC の生成自由エネルギーが NbC のそれに比べ小 さいためと推定される。 すなわち、 Tiと Nbを複合添加すると、 Cは Tiと優先的に結合するため、 その分 Nbは Cと結合せず、 同じ Nb添加 量に比べると複合添加の場合の方が固溶 Nb量は多く なることが分か つた。 時効に伴う組織変化についてみると、 Nb単独添加の場合には 、 焼鈍時に 0.2〜 0.5 mの炭窒化物およびラーべス相であったも のが時効後には粗大な M6C になる。 一方、 Tiを複合添加させた場合 は、 焼鈍状態では MC型の炭窒化物 ; (Ti, Nb)(C, N) の析出が認 められ、 時効後は (Ti, Nb)(C , N) およびラーべス相は認められ るも Nb単独添加のような粗大な M6C の析出は認められない。 すなわ ち、 Tiを複合添加することで粗大な M6C の析出を抑制し、 固溶 Nb量 が増大するという知見を得た。
本発明は、 Nb_Tiの複合添加で、 Tiにより Cを固着し、 その分必 要固溶 Nbを確保し高強度を達成するという上記技術思想に基づいた もので、 その要旨は以下のとおりである。
すなわち本発明の要旨は、 重量%で、 C : 0.005%以下、 N : 0 .008%以下でかつ、 C + Nが 0.009%以下と し、 Si : 0.45%以下、 Mn: 1.0%以下、 Cr : 10〜12.5%、 Nb : 0.05〜 0.3%、 さ らに、 Ti : 8 X ( C + N) 〜 0.3%の範囲で含有し、 残部が Feおよび不可避 的不純物からなることを特徴とする自動車排気系機器用フ ェライ ト 系ステンレス鋼であり、 さ らに上記鋼成分において、 Nb : 0.05〜0. 25%と してもよい。
以下に、 成分限定理由について述べる。
C : 0.005%以下とする必要がある。 Cを 0.005%を超えて多量 に含有すると鋼の常温成形性が劣化するとともに、 固溶 Nb量が低下 し、 高温強度向上の妨げとなるからである。
N : 0.008%以下とする必要がある。 Nを 0.008%を超えて多量 に含有すると、 鋼の常温成形性が劣化し、 また固溶 Nb量の低下につ ながるからである。
C , N量をこのような範囲に規定した上で、 さ らに Cと Nの合計 量が 0.009%以下とする必要がある。 本技術では添加 Tiにより C, Nを固定するが、 C, Nの合計量が 0.009%超えるようであると、 添加 Ti量の増大、 ならびに固溶 Nb量の低下を招く からである。
本発明においては、 特に、 Cは 0.005%以下、 Nは 0.008%以下 と し、 さらに C + Nを 0.009%以下とする必要がある。 Cや Nを多 く含有すると鋼の伸びが小さ く なり、 常温での成形性が劣化する。 本発明鋼は C + N量に応じた量の Tiを添加するこ とで、 C, Nを Ti ( C, N) の形で固定し成形性の劣化を緩和させる。 C, Nを多量 に含有するとそれに応じて高価な Ti添加量も多く なり、 さ らに Ti ( C, N) の析出量が多く なることで常温での成形性が劣ってしまう o
また高温強度の観点から C, N低減の必要性を論じると、 まず全 ての Nが Tiと TiN の形で結合するわけでなく、 一部は NbN の形で Nb と結合してしまう。 これにより固溶 Nb量が減少し、 高温強度が低下 する。 この低下分を補うためには高価な Nbを多量に添加する必要が 生じ、 さ らに再結晶温度が上昇することにより高温での仕上焼鈍が 余儀なく される。 Cについては、 一部の Cは Nbと Fe3Nb3 Cの形で結 合してしまい、 この形の析出物は一つの Cで 3つの Nbを消費するた め、 固溶 Nb量を大き く減少させてしまう。
以上の理由から、 C , Nを低減しなくてはならず、 特に Fe3Nb3C 型の析出物を形成する Cについては Nより もさ らに低減する必要が あ <3 o
更に、 上述した事実を図 1 および図 2 を用いて詳細に説明する。 図 1 は、 10.8%Cr— 0.25%Nb— 0.0020% C — 0.0080% N鋼 (①鋼) とこの成分組成に更に Ti = 0. 15%を Nbと複合添加した鋼 (②鋼) と を 900°Cで保持した際の固溶 Nb量を測定した結果を示したものであ る。 この図 1 から明らかなように、 Nb単独添加鋼 (①鋼) に比較し 、 Nbと Tiを複合添加した鋼 (②鋼) の場合には、 排気ガス環境近傍 の 900°Cに長時間保持された場合においても、 固溶 Nb量は歴然と し た差があり、 Nbと Tiを複合添加が有効であるかが分かる。
また、 図 2 に、 C + N量と固溶 Nb量との関係を調査した結果を示 す。 この実験で用いた鋼は、 10.8%Cr— 0.25%Nb— lOx ( C % + N %) Ti%鋼を 900°Cで 100時間保持した際の固溶 Nb量を測定した結 果を示したものである。 図 2から読み取った値 (重量%) を表 1 に 示した。
表 1
(重量%)
Figure imgf000008_0001
図 2および表 1 から分かるように、 C + N量を低減していく と、 固溶 Nb量は増加し、 特に C + N量が 0.0090%以下になると急激に固 溶 Nb量が増加していく ことが明瞭にわかる。 この理由は、 C + N量 が 0.0090%以下になると大部分の Cは Tiと TiC の形で結合してしま い、 Nbと結合する Cが殆どなく なるからであると考えられる。
Si :
0.45%以下とする必要がある。
Siは脱酸材と して添加されるため、 ある程度以上の含有はやむを 得ないが、 0.45%を超えて含有すると常温での成形性を著しく悪化 させる。
Mn:
1 %以下とする必要がある。
Siと同様に脱酸に有効な元素であるが、 1 %を超えて多量に含有 すると MnS 生成量が増加し、 鋼の耐食性が低下する。 ただし、 0.5 %を超える Mnを添加することは、 緻密な酸化スケール形成に有効で 、 高温で使用中に形成される酸化スケールの剝離を抑制する必要が ある場合には、 Mnを 0.5%を超える添加とすることが望ま しい。
Cr:
10%以上 12.5%以下とする必要がある。
ステンレス鋼の基本元素であり、 優れた耐食性を得るためには最 低でも 10%の含有が必要である。 しかしながら 12.5%を超えて含有 すると、 本発明鋼の主要目的の一つである常温での成形性が劣化し てしまう。 また、 耐食性の観点からも 12.5%の含有で要求される耐 食性はすでに十分満足されており、 また合金コス トの上昇を招いて しまう。
Ti :
C + Nの 8倍以上で 0.3%以下とする必要がある。
C , Nを Ti ( C , N) の形で固定し、 常温での成形性を高めるた めには少なく とも C + Nの 8倍は必要である。 また C, Nをこの様 な形で固定することにより、 高温強度の向上に有効な固溶 Nb量を高 めることが出来る。 さ らに Nbとともに Tiを複合で添加することによ り、 高温度で使用中に粗大に成長し固溶 Nb量を大き く低める Fe3Nb3 C型の析出物形成を阻止し、 微細な形の (Nb, Ti)(C , N) の型に することが出来る。 ただし、 Ti添加量は 0.3%で C, Nの固定や、 高温で使用中の析出物形態の制御を十分に達成でき、 0.3%を超え る添加は熱間圧延中での割れゃ疵発生の原因となり、 また合金コス 卜の上昇を招く ため上限は 0.3%と しなくてはならない。
Nb:
0.05%以上で 0.30%未満とする必要がある。
本発明鋼は常温での成形性を高めるために、 高温強度に有効な元 素の一つである Cr含有量を低減しているため、 高温強度の向上には 固溶 Nb量が最も重要な要素であり、 少なく とも 0.05%を含有しなく ては効果がない。 ただし、 Nb含有量の増加とと もに鋼の再結晶温度 は著しく上昇し、 鋼の金属組織を再結晶させ常温での成形性を劣化 させないためには、 高温での仕上焼鈍が必要になる。 高温での仕上 焼鈍はエネルギー消費量が増加し、 地球環境への悪影響、 製造コス 卜の增大などの弊害がある。 図 3 は C : 0.002%、 Si : 0.40%、 Mn : 0.40%、 Cr: 10.8%、 Ti : 0. 15%、 N : 0.006%を含有し、 さ ら に Nb含有量を 0.05 %から 0.35%まで変化させた鋼の再結晶温度を 調査した結果である。 図 3から再結晶温度を低く抑え、 低い仕上焼 鈍温度で鋼を再結晶させるためには、 Nb含有量を 0.30%未満とする 必要がある。 さ らに低い再結晶温度、 つま り仕上焼鈍温度で鋼板を 製造する必要がある場合には、 Nb含有量を 0.25%以下とすることが 有効である。 図面の簡単な説明
図 1 は、 Nb単独添加鋼と Nb_Ti複合添加鋼における 900°Cで保持 した際の固溶 Nb量の測定結果を示す図である。
図 2 は、 Nb— Ti複合添加鋼における 900°Cで 100時間保持した際 の C + N量と固溶 Nb量の測定結果を示す図である。
図 3 は、 低 C + N— 10.8%Cr— 0.15%Ti鋼に及ぼす Nb含有量と再 結晶温度との関係を示す図である。 発明を実施するための最良の形態
表 2 に示す成分を有する 10種の鋼 A— Jを真空溶解炉にて溶製、 イ ンゴッ トに铸造、 熱間圧延、 冷間圧延して 1.5rom 厚の鋼板と し、 その後表中の再結晶温度 + 25°Cの温度で仕上げ焼鈍を施した。
常温成形性の指標と して常温での破断伸び (%) を、 高温強度の 指標と して 900°Cでの 0.2%耐カ(MPa) を表 3 に示す。
鋼成分が本発明範囲である鋼 A〜Dが常温での伸びと高温での強 度に優れ、 更に再結晶温度が低いため低温での仕上焼鈍が可能であ る o
鋼 E、 鋼 I はそれぞれ S i量、 Cr量が本発明範囲より多く なつてい るため、 常温での破断伸びが小さ く なつている。
鋼 Fおよび鋼 Gはそれぞれ C + N量、 C量が本発明範囲より多く なっており、 間程度の Nb添加量 (0.25%) の綱 Aに比較して高温強 度が大き く低下し、 Nb添加量 0.15%の鋼 Dより も小さい値となって いる。 鋼 Hは Nb添加量が本発明範囲より少ないため、 Nb添加の効果 が高温強度に現れない。
鋼 Jは Ti添加量が本発明範囲より も少ないため、 十分に C , Nを Tiで固定することが出来ず、 常温での破断伸び、 高温強度が小さ く なっている。
表 2
鋼 C Si Mn Cr Nb Ti N C+N 雕
A 0.0020 0.41 0.55 10.8 0.25 0.15 0.0060 0.0080 840°C 本発明網
B 0.0040 0.40 0.52 10.8 0.28 0.15 0.0040 0.0080 855
C 0.0020 0.40 0.52 10.8 0.21 0.14 0.0060 0.0080 830
D 0.0020 0.41 0.53 10.9 0.15 0.15 0.0060 0.0080 820
E 0.0020 0.60 0.55 10.8 0.25 0.15 0.0060 0.0080 840T) 比 較 鋼
F 0.0045 0.40 0.52 10.9 0.24 0.15 0.0070 0.0115 838
G 0.0065 0.40 0.53 10.8 0.25 0.15 0.0020 0.0085 840
H 0.0020 0.40 0.55 10.8 0.02 0.15 0.0060 0.0080 800
I 0.0020 0.35 0.55 13.5 0.25 0.15 0.0060 0.0080 840
J 0.0020 0.41 0.53 10.8 0.25 0.03 0.0060 0.0080 840
表 3
Figure imgf000013_0001
産業上の利用可能性
本発明により、 高価な合金を多量に添加するこ となく 優れた常温 成形性、 高温強度を有する鋼を低い仕上焼鈍温度で製造するこ とが 可能となった。 この結果、 自動車排気系機器用フ ェライ ト系ステン レス鋼の製造時に要していたエネルギー消費量、 製造コス トの削減 が可能となった。 本発明の産業上への貢献、 意義は極めて多大なも のである。

Claims

請 求 の 範 囲
1. 重量%で、
C : 0.005%以下、
N : 0.008%以下
でかつ、
C + Nが 0.009%以下
と し、
Si 0.45%以下、
Mn 1.0%以下、
Cr: 10〜12.5%、
Nb : 0.05〜 0.3%、
さ り ίこ、
Ti : 8 X ( C + N) 〜 0.3%
の範囲で含有し、 残部が Feおよび不可避的不純物からなることを特 徴とする自動車排気系機器用フ ライ ト系ステンレス鋼。
2. 重量%で、
C : 0.005%以下、
N : 0.008%以下
でかつ、
C + Nが 0.009%以下
と し、
Si 0.45%以下、
Mn 1 %以下、
Cr 10-12.5%、
Nb 0.05〜0.25%、
さ りに、 Ti : 8 x ( C + N) 〜 0.3%
の範囲で含有し、 残部が Feおよび不可避的不純物からなることを特 徴とする自動車排気系機器用フ ライ ト系ステ ン レス鋼。
PCT/JP1997/000786 1996-03-15 1997-03-12 Ferritic stainless steel for exhaust system equipment of vehicle WO1997034020A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69709017T DE69709017T2 (de) 1996-03-15 1997-03-12 Ferritischer, rostfreier stahl für auspuffsystem
EP97907294A EP0834590B1 (en) 1996-03-15 1997-03-12 Ferritic stainless steel for exhaust system equipment of vehicle
US08/945,616 US5843370A (en) 1996-03-15 1997-03-12 Ferritic stainless steel for exhaust system equipment of vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP05973196A JP3706428B2 (ja) 1996-03-15 1996-03-15 自動車排気系機器用フェライト系ステンレス鋼
JP8/59731 1996-03-15

Publications (1)

Publication Number Publication Date
WO1997034020A1 true WO1997034020A1 (en) 1997-09-18

Family

ID=13121645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000786 WO1997034020A1 (en) 1996-03-15 1997-03-12 Ferritic stainless steel for exhaust system equipment of vehicle

Country Status (8)

Country Link
US (1) US5843370A (ja)
EP (1) EP0834590B1 (ja)
JP (1) JP3706428B2 (ja)
KR (1) KR100258128B1 (ja)
CN (1) CN1072271C (ja)
DE (1) DE69709017T2 (ja)
WO (1) WO1997034020A1 (ja)
ZA (1) ZA972176B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267730B2 (en) 2004-04-02 2007-09-11 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite stainless steel for automobile exhaust system member superior in thermal fatigue strength

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9805859A (pt) * 1998-12-30 2000-12-05 Acos Especiais Itabira Acesita Aço inoxidável ferrìtico para fabricação de tubos pelo processo erw-eletric resistence welding.
DE60100880T2 (de) * 2000-07-25 2004-09-02 Kawasaki Steel Corp., Kobe Ferritisch rostfreier Stahl mit guter Verformbarkeit bei Raumtemperatur und mit guten mechanischen Eigenschaften bei höheren Temperaturen, und Verfahren zur Herstellung derselben
JP4023106B2 (ja) * 2001-05-09 2007-12-19 住友金属工業株式会社 溶接熱影響部軟化の小さいフェライト系耐熱鋼
JP3886933B2 (ja) * 2003-06-04 2007-02-28 日新製鋼株式会社 プレス成形性,二次加工性に優れたフェライト系ステンレス鋼板及びその製造方法
JP4581630B2 (ja) * 2004-10-28 2010-11-17 Jfeスチール株式会社 フェライト系ステンレス鋼板の製造方法およびその連続焼鈍工程における目標温度設定方法
US8246767B1 (en) 2005-09-15 2012-08-21 The United States Of America, As Represented By The United States Department Of Energy Heat treated 9 Cr-1 Mo steel material for high temperature application
JP5178157B2 (ja) * 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
CN101538684B (zh) * 2008-09-23 2011-06-01 山西太钢不锈钢股份有限公司 铁路车辆制动系统用不锈钢管及其制造方法
CN108823382A (zh) * 2018-08-02 2018-11-16 安徽恒利增材制造科技有限公司 一种铁基高温合金堆积热处理工艺及其性能研究

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118218A (en) * 1977-03-25 1978-10-16 Nippon Steel Corp Stainless steel use in apparatus for purifying automotive exhaust gas
JPS53149111A (en) * 1977-06-02 1978-12-26 Kawasaki Steel Co Ultralowwcarbon nitrogen ferritic stainless steel with good toughness and processability of weld zone
JPS6468448A (en) * 1987-09-08 1989-03-14 Allegheny Int Inc Ferrite stainless steel and its production
JPH0586420A (ja) * 1991-09-26 1993-04-06 Nippon Steel Corp 溶融亜鉛メツキ特性に優れた良加工性冷延鋼板の製造方法
JPH05320772A (ja) * 1992-03-24 1993-12-03 Sumitomo Metal Ind Ltd フェライトステンレス鋼板の製造方法
JPH0633198A (ja) * 1992-05-21 1994-02-08 Kawasaki Steel Corp 高加工性高温高強度フェライト系ステンレス鋼
JPH06145938A (ja) * 1992-11-04 1994-05-27 Nisshin Steel Co Ltd 排ガス流路部材用フェライト系ステンレス鋼及び製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560032B2 (ja) * 1992-12-21 2004-09-02 住友金属工業株式会社 自動車排気系機器用フェライト系ステンレス鋼
JPH06287718A (ja) * 1993-04-02 1994-10-11 Nippon Steel Corp スラブ置き割れの生じないフェライト系ステンレス鋼およびその製造方法
JPH07268554A (ja) * 1994-03-28 1995-10-17 Nippon Steel Corp 成形加工性および耐熱性の優れた自動車排気系用フェライト系ステンレス鋼板
JPH08176750A (ja) * 1994-12-28 1996-07-09 Nippon Steel Corp ベローズ加工用フェライト系ステンレス鋼

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118218A (en) * 1977-03-25 1978-10-16 Nippon Steel Corp Stainless steel use in apparatus for purifying automotive exhaust gas
JPS53149111A (en) * 1977-06-02 1978-12-26 Kawasaki Steel Co Ultralowwcarbon nitrogen ferritic stainless steel with good toughness and processability of weld zone
JPS6468448A (en) * 1987-09-08 1989-03-14 Allegheny Int Inc Ferrite stainless steel and its production
JPH0586420A (ja) * 1991-09-26 1993-04-06 Nippon Steel Corp 溶融亜鉛メツキ特性に優れた良加工性冷延鋼板の製造方法
JPH05320772A (ja) * 1992-03-24 1993-12-03 Sumitomo Metal Ind Ltd フェライトステンレス鋼板の製造方法
JPH0633198A (ja) * 1992-05-21 1994-02-08 Kawasaki Steel Corp 高加工性高温高強度フェライト系ステンレス鋼
JPH06145938A (ja) * 1992-11-04 1994-05-27 Nisshin Steel Co Ltd 排ガス流路部材用フェライト系ステンレス鋼及び製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0834590A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267730B2 (en) 2004-04-02 2007-09-11 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite stainless steel for automobile exhaust system member superior in thermal fatigue strength

Also Published As

Publication number Publication date
DE69709017T2 (de) 2002-08-22
CN1072271C (zh) 2001-10-03
EP0834590A1 (en) 1998-04-08
JPH09256113A (ja) 1997-09-30
JP3706428B2 (ja) 2005-10-12
US5843370A (en) 1998-12-01
EP0834590A4 (en) 1999-04-07
DE69709017D1 (de) 2002-01-24
KR19990014738A (ko) 1999-02-25
EP0834590B1 (en) 2001-12-12
KR100258128B1 (ko) 2000-06-01
ZA972176B (en) 1997-09-29
CN1182458A (zh) 1998-05-20

Similar Documents

Publication Publication Date Title
US9279172B2 (en) Heat-resistance ferritic stainless steel
JP5138504B2 (ja) 排ガス流路部材用フェライト系ステンレス鋼
US4261739A (en) Ferritic steel alloy with improved high temperature properties
JP5025671B2 (ja) 高温強度に優れたフェライト系ステンレス鋼板およびその製造方法
JP5141296B2 (ja) 高温強度と靭性に優れるフェライト系ステンレス鋼
WO2013133429A1 (ja) フェライト系ステンレス鋼板
JP5012243B2 (ja) 高温強度、耐熱性および加工性に優れるフェライト系ステンレス鋼
JP4185425B2 (ja) 成形性と高温強度・耐高温酸化性・低温靱性とを同時改善したフェライト系鋼板
WO1997034020A1 (en) Ferritic stainless steel for exhaust system equipment of vehicle
JP2018119196A (ja) 耐熱性に優れた耐熱部材締結部品用フェライト系ステンレス鋼板および締結部品並びに耐熱管状部材用円状クランプ
JPH08260107A (ja) 耐酸化性と高温強度に優れたフェライト系ステンレス鋼
JP3744403B2 (ja) 軟質なCr含有鋼
JP3541458B2 (ja) 高温塩害特性に優れたフェライト系ステンレス鋼
JP2959934B2 (ja) 耐熱フェライト系ステンレス鋼
JP2010236001A (ja) フェライト系ステンレス鋼
JP5141295B2 (ja) 熱疲労特性に優れるフェライト系ステンレス鋼
JPH0741905A (ja) 自動車排気系用鋼
JP3021656B2 (ja) 耐高温塩害性及び高温強度に優れたフェライト系ステンレス鋼
JP5343444B2 (ja) 熱疲労特性、耐酸化性および加工性に優れるフェライト系ステンレス鋼
JP5343445B2 (ja) 熱疲労特性、耐酸化性および靭性に優れるフェライト系ステンレス鋼
JP2010043324A (ja) 熱疲労特性と耐酸化性に優れるフェライト系ステンレス鋼
JPH0762497A (ja) 高温強度と靱性の優れた高Crフェライト系耐熱鋼
JPH0741917A (ja) 自動車排気系用鋼
JP2024142069A (ja) フェライト系ステンレス鋼板
JP3707435B2 (ja) 高温強度に優れ、室温で軟質なCr含有鋼

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190205.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997907294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08945616

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970708080

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997907294

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970708080

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970708080

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997907294

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载