+

WO1997033620A2 - Verbindungen zur behandlung von tumoren - Google Patents

Verbindungen zur behandlung von tumoren Download PDF

Info

Publication number
WO1997033620A2
WO1997033620A2 PCT/EP1997/001337 EP9701337W WO9733620A2 WO 1997033620 A2 WO1997033620 A2 WO 1997033620A2 EP 9701337 W EP9701337 W EP 9701337W WO 9733620 A2 WO9733620 A2 WO 9733620A2
Authority
WO
WIPO (PCT)
Prior art keywords
icg
tumor
tumors
compounds
tissue
Prior art date
Application number
PCT/EP1997/001337
Other languages
English (en)
French (fr)
Other versions
WO1997033620A3 (de
Inventor
Alwin Goetz
Ulrich Pfeiffer
Gabriela PÜHLER
Original Assignee
Pulsion Verw. Gmbh & Co. Medical Systems Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1996110348 external-priority patent/DE19610348A1/de
Application filed by Pulsion Verw. Gmbh & Co. Medical Systems Kg filed Critical Pulsion Verw. Gmbh & Co. Medical Systems Kg
Publication of WO1997033620A2 publication Critical patent/WO1997033620A2/de
Publication of WO1997033620A3 publication Critical patent/WO1997033620A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent

Definitions

  • the present invention relates to compounds for the treatment of tumors and their use for the manufacture of medicaments.
  • tumors are currently either surgically removed and / or the treatment is carried out with the help of chemotherapy and / or by ionizing radiation.
  • all three treatment methods represent massive interventions that either cause serious damage to the tissue or greatly impair the general well-being of the patient.
  • Another previously known therapy method which is currently not widely used, is the so-called photodynamic therapy.
  • photodynamic therapy is the reduction in invasive interventions on the patient and thus a reduction in the operative risk. It is also a relatively painless method. In contrast to conventional surgical procedures, only local or regional anesthesia is necessary for photodynamic therapy. Since major surgical interventions are avoided, the length of stay of the patients in the hospital can be reduced.
  • a light-sensitive drug is injected intravenously into the patient, which after a certain period of time accumulates in the tumor tissue, where it is activated with visible light.
  • a conventional (pump) laser serves as the light source for the treatment and is guided to the tumor via various special fiber-optic probes.
  • the irradiation of the photosensitive drug with high-energy light leads to the formation of the active form of the molecular oxygen (radical formation).
  • the chemically altered oxygen molecules cause local vascular congestion and consequently bleeding and the destruction of the tumor cells (Dougherty, TJ, Marcus, SL: Eur. J. Cancer 28A (10) (1992), 1734-1742).
  • Photodynamic therapy is already being used successfully for superficial bladder cancer, lung cancer and esophageal cancer.
  • the limiting factor of photodynamic therapy is the ability of the activating light to penetrate the tumors to be treated.
  • the depth of penetration of the light increases with the wavelength, i. H. Long-wave light can penetrate deeper into the tissue than short-wave light.
  • the penetration at 600 nm is approx. 4 mm, at 800 nm up to 8 mm.
  • the absorption maxima of most of the drugs used in photodynamic therapy are in the range of 400-630 n.
  • the tissue penetration of the activating light rays of low wavelength is therefore not sufficiently deep (Ash, D.V., Brown, S.B .: Eur. J. Cancer Vol. .29A (12), (1993), 1781-1783).
  • Another disadvantage of the previously known drugs used in photodynamic therapy is that they have a lower selectivity with regard to the accumulation in the tumor tissue and sometimes remain for a relatively long time (four to six weeks) in the patient, who must be protected from visible light during this period.
  • the previously known drugs require a complex and expensive Laser equipment.
  • the object of the invention is to provide compounds for photodynamic therapy which do not have the disadvantages known from the prior art.
  • Another object of the invention is to enable the use of these compounds for the production of medicaments for photodynamic therapy.
  • ICG active ingredient indocyanine green
  • FR Pfeiffer, UJ: EDS, Springer Verlag Berlin, Heidelberg, New York (1990); Haneda, K., Horiuchi, T.: Tohoku J. Exp. Med. 148 (1986), 49; Schad, H., Brechteisbauer, H., Kramer, K.: Pfluegers Arch. 370 (1977), 139-144), in liver function diagnostics (Gott Kunststoff, ME et al .: Arch. Surg.
  • ICG In contrast to the previously known drugs for photodynamic therapy, ICG accumulates in tumor tissues in a short time after intravenous injection. In addition, ICG has an ideal absorption maximum around 805 nm and thus enables the light to penetrate into deeper tissue layers (up to 8 mm). The ICG emission maximum of 830 nm also allows tumor localization and therapeutic see control of the treatment by determining the fluorescence.
  • ICG intracranial pressure
  • a portable 805 nm diode laser can be used as the light source during therapy, which is much cheaper than a low wavelength laser.
  • the properties of the active ingredient indocyanine green described above are also of great advantage in immunophotodetection. If, for example, specific, monoclonal tumor antibodies are marked in vitro with indocyanine green and the marked antibodies are injected into patients, then in vivo tumors can be localized via fluorescence determination at 830 nm, since the ICG-antibody conjugates have been specifically enriched in the tumors. The tumors localized with ICG antibodies can then be subjected to photodynamic therapy at 805 nm. If the specific antibodies for this are available, the treatment of all known tumors should be possible with this method.
  • the active ingredient ICG binds to globulins, preferably to a-lipoprotein ⁇ Paumgartner, G.: Switzerland. Med. Schuz. (Sup.) 105 (1975) 1-30). If the endothelium is intact and the vascular permeability is normal, the quantitative binding in seconds prevents the active substance from being absorbed into the peripheral tissue.
  • the treatment method is selective because the active substance remains strictly in the blood vessel system in surrounding normal tissues and diffuses extravascularly in the tumor. After a few minutes there is no ICG in the blood vessels, so that the tumor tissue containing ICG can be clearly distinguished from the surrounding tissue. Compared to normal vessels, tumor vessels appear more fragile and more permeable.
  • Tumors show one increased tendency to vascular permeability, which is noticeable by the increased diffusion of plasma proteins into the tumor interstitium.
  • the photodynamically active ICG bound to the plasma proteins also exits into the interstitial space.
  • a secondary and selective accumulation of ICG is therefore found in tissues with increased vascular permeability.
  • laser radiation which causes a chemical change induced by high-energy light in the irradiated tumor tissues, does not have to take place immediately after the ICG injection, but can be carried out when there is no ICG in the bloodstream.
  • the permeability of the vessels, the ability of a tumor to accumulate and its extent are determined by means of fluorescence at 830 nm.
  • the ICG binding capacity of the liver is partially saturated by the first injection, so that a further injection leads to a higher ICG plasma concentration, thereby expanding the therapeutic window.
  • the ICG preparation is given either as a second intravenous bolus or as an intravenous infusion.
  • a second bolus administration is predominantly carried out in tumors with fewer vessels, the display and the increased absorption of the tumor by irradiation with infrared light using a diode laser being successful primarily after ICG has disappeared from the bloodstream.
  • a continuous ICG infusion is preferred to a bolus dose in particularly well vascularized tumors. These tumors can primarily be displayed in the fluorescence infrared image via the tumor vascular system and destroyed with infrared light.
  • a higher infrared light absorption at 805 nm can be achieved in the tumor using ICG.
  • the continuous determination of the ICG concentration in the tissue via fluorescence measurement is important in order to be able to increase the light energy at 805 nm as the ICG concentration decreases. This happens by fluorescence excitation of the active ingredient by light with a wavelength of approx. 700 nm, which is generated by a tungsten halogen lamp.
  • the tissue or vascular coagulation and thus the therapeutic success is checked with the aid of a third injection. If there is no perfusion of the tumor that can be determined with ICG, therapeutic success can be assumed.
  • the dose of ICG should not exceed 5 mg / kg / day.
  • the continuous determination of the ICG concentration is decisive for the radiation duration and intensity with a diode laser at 805 nm and can be carried out online by measuring the fluorescence at 830 nm.
  • the ICG accumulation in the tissue and thus the exact localization of the tumor boundaries should be able to be monitored on an image monitor.
  • a difference image analysis (before and after the laser treatment) with subsequent therapeutic control is advantageous.
  • a device in the form of a dermatoscope can be used for the treatment of flat tumors (subsequent expansion to other disciplines, e.g. endoscopic surgery possible).
  • a handpiece similar to a very small microscope / capillary anemometer) that enables focusing over a certain distance could be used.
  • z. B. Neurofibroma, breast cancer or colon cancer can be treated with ICG as a therapeutic agent.
  • virus-induced tissue changes such as. B. Condylomata acuminata infections.
  • the standard therapy is currently used Treatment a C0 2 laser used.
  • the tissue is vaporized as a result and virus particles are formed when burned, with the risk of infection of the treating personnel.
  • Coagulation with ICG does not result in burn-off during laser treatment. A secondary risk of infection is therefore very low.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Indocyaningrün (ICG) oder ICG-Antikörperkonjugat, ggf. in Mischung mit üblichen Arzneimittelzusätzen oder -trägern, zur therapeutischen Behandlung von Tumoren, ihre Verwendung zur Herstellung von Arzneimitteln für die therapeutische Behandlung von Tumoren und die Verwendung von ICG zur Herstellung von Antikörperkonjugaten.

Description

VERBINDUNGEN ZUR BEHANDLUNG VON TUMOREN
Die vorliegende Erfindung betrifft Verbindungen zur Behandlung von Tumoren und deren Verwendung zur Herstellung von Arzneimitteln.
Konventionell werden Tumore derzeit entweder operativ entfernt und/oder die Behandlung erfolgt mit Hilfe von Che¬ motherapie und/oder durch ionisierende Strahlen. Alle drei Behandlungsmethoden stellen jedoch massive Eingriffe dar, die dem Gewebe entweder schwere Schäden zufügen oder das Allgemeinbefinden des Patienten in hohem Maße beeinträch¬ tigen. Eine weitere vorbekannte Therapiemethode, die derzeit noch keine breite Anwendung findet, ist die sogenannte pho¬ todynamische Therapie.
Der Vorteil der photodynamischen Therapie (PDT) be¬ steht in der Reduktion der invasiven Eingriffe am Patienten und damit Senkung des operativen Risikos. Zudem handelt es sich um eine relativ schmerzfreie Methode. Im Gegensatz zu konventionellen operativen Verfahren ist bei der photodyna¬ mischen Therapie nur eine Lokal- oder Regionalanästhesie notwendig. Da größere operative Eingriffe vermieden werden, kann die Aufenthaltsdauer der Patienten im Krankenhaus redu¬ ziert werden. Bei der photodynamischen Therapie wird den Patienten ein lichtempfindlicher Arzneistoff intravenös injiziert, der sich nach gewisser Zeit im Tumorgewebe anreichert, wo er mit sichtbarem Licht aktiviert wird. Als Lichtquelle für die Behandlung dient ein konventioneller (Pumpen-) Laser, der über verschiedene, spezielle faseroptische Sonden an den Tumor herangeführt wird. Die Bestrahlung des lichtempfindli¬ chen Arzneistoffes mit energiereichem Licht führt zur Bil¬ dung der aktiven Form des molekularen Sauerstoffs (Radikal- bildung) . Die chemisch veränderten Sauerstoffmoleküle ver¬ ursachen eine lokale vaskuläre Stauung und in Folge eine Blutung und die Zerstörung der Tumorzellen (Dougherty, T. J., Marcus, S. L. : Eur. J. Cancer 28A (10) (1992), 1734- 1742) . Die photodynamische Therapie wird bereits bei ober¬ flächigem Blasenkrebs, Lungenkrebs und Speise-röhrenkrebs erfolgreich eingesetzt.
Der limitierende Faktor der photodynamischen Therapie ist die Fähigkeit des aktivierenden Lichtes, in die zu be¬ handelnden Tumore vorzudringen. Die Penetrationstiefe des Lichtes nimmt dabei mit der Wellenlänge zu, d. h. , langwel¬ liges Licht kann tiefer in das Gewebe eindringen als kurz¬ welliges Licht. So ist die Penetration bei 600 nm ca. 4 mm, bei 800 nm bis zu 8 mm.
Die Absorptionsmaxima der meisten in der photodynami¬ schen Therapie verwendeten Arzneistoffe liegen in einem Be¬ reich von 400-630 n . Die Gewebepenetration der aktivieren¬ den Lichtstrahlen niedriger Wellenlängen ist darum nicht ausreichend tief genug (Ash, D. V., Brown, S. B.: Eur. J. Cancer Vol. .29A (12), (1993), 1781-1783) .
Nachteilig an den vorbekannten, in der photodynamischen Therapie verwendeten Arzneistoffen ist außerdem, daß sie eine geringere Selektivität bezüglich der Akkumulation im Tumorgewebe aufweisen und teilweise relativ lange (vier bis sechs Wochen) im Patienten verweilen, der in diesem Zeitraum vor sichtbarem Licht geschützt werden muß. Zudem benötigen die vorbekannten Arzneistoffe eine aufwendige und teure Laserausstattung.
Aufgabe der Erfindung ist, Verbindungen zur photodyna¬ mischen Therapie zur Verfügung zu stellen, die die aus dem Stand der Technik bekannten Nachteile nicht aufweisen.
Aufgabe der Erfindung ist ferner, die Verwendung die¬ ser Verbindungen zur Herstellung von Arzneimitteln für die photodynamische Therapie zu ermöglichen.
Diese Aufgabe wird durch Arzneimittel gemäß Anspruch 1 gelöst. Weitere Ausgestaltungen der Erfindung werden in den Ansprüchen 2 bis 4 beschrieben. Die Wirksubstanz der bean¬ spruchten Arzneimittel ist Indocyaningrün (ICG) bzw. ICG- Antikörperkonjugat.
Der Wirkstoff Indocyaningrün (ICG, chemische Formel C43 H47N2Na06S2) ist ein Diagnostikum, welches bereits erfolgreich in der Herz-, Kreislauf- und Mikrozirkulationsdiagnostik (Lewis, F. R., Pfeiffer, U. J. : EDS, Springer Verlag Berlin, Heidelberg, New York (1990); Haneda, K., Horiuchi, T. : Toho- ku J. Exp. Med. 148 (1986), 49; Schad, H. , Brechteisbauer, H., Kramer, K. : Pfluegers Arch. 370 (1977), 139-144), in der Leberfunktionsdiagnostik (Gottlieb, M. E. et al.: Arch. Surg. 119 (1984), 264-268; Leevy, C. M. et al. : Davidson C. (ed.), Thieme, Stuttgart-New York (1979), 42-52; Paumgart- ner, G. et al. : NY Acad. Sei. 170 (1970), 134-170) und in der Augenhintergrund-Diagnostik (Craandijk A. , Van Beek, C. A. : Brit. J. Ophthal. 6j0 (1976), 377-386; Flower, R. W. , Hochheimer, B. F.: The Johns Hopkins Medical Journal 138 (1976) , 33-42) eingesetzt wird. Das Absorptionsmaximum des Farbstoffes ICG liegt um 805 nm und das Emmissionsmaximum um 830 nm.
Im Gegensatz zu den vorbekannten Arzneistoffen für die photodynamische Therapie akkumuliert ICG nach der intrave¬ nösen Injektion in kurzer Zeit in Tumorgeweben. Außerdem besitzt ICG ein ideales Absorptionsmaximum um 805 nm und ermöglicht somit das Vordringen des Lichtes in tiefere Gewe¬ beschichten (bis zu 8 mm) . Das Emmissionsmaximum von ICG von 830 nm läßt zudem die Tumorlokalisation und eine therapeuti- sehe Kontrolle der Behandlung über die Bestimmung der Fluo¬ reszenz zu.
Ein weiterer Vorteil von ICG bei der Verwendung als photodynamisches Therapeutikum ist seine relativ kurze Ver¬ weildauer im Kreislauf (Halbwertzeit 3 - 5 Minuten) , da der Wirkstoff von der Leber aufgenommen und über diese ausge¬ schieden wird. Als Lichtquelle während der Therapie kann ein portabler Diodenlaser mit 805 nm verwendet werden, der wesentlich billiger als ein Laser mit niedriger Wellenlänge ist.
Die oben beschriebenen Eigenschaften des Wirkstoffes Indocyaningrün sind auch in der Immunophotodetektion von großem Vorteil. Markiert man beispielsweise spezifische, monoklonale Tumor-Antikörper in vitro mit Indocyaningrün und injiziert die markierten Antikörper in Patienten, so kann man in vivo über die Fluoreszenzbestimmung bei 830 nm Tumore lokalisieren, da die ICG-Antikörperkonjugate in den Tumoren spezifisch angereichert wurden. Die mit ICG-Antikörpern lokalisierten Tumore können anschließend einer photodynami¬ schen Therapie bei 805 nm unterzogen werden. Sofern die spezifischen Antikörper dafür vorhanden sind, sollte mit dieser Methode die Behandlung aller bekannten Tumore möglich sein.
Nach intravenöser Injektion bindet der Wirkstoff ICG innerhalb weniger Sekunden an Globuline, vorzugsweise an a - Lipoprotein {Paumgartner, G. : Schweiz. Med. Wochenz. (Sup- pl.) 105 (1975), 1-30). Die sekundenschnelle, quantitative Bindung verhindert bei intaktem Endothel und normaler Gefä߬ permeabilität die Wirkstoffaufnähme in das periphere Gewebe. Die Behandlungsmethode ist selektiv, da der Wirkstoff in umgebenden Normalgewebe streng im Blutgefäßsystem bleibt und im Tumor extravasal diffundiert. Nach wenigen Minuten befin¬ det sich kein ICG mehr in den Blutgefäßen, so daß das ICG- enthaltende Tumorgewebe vom umgebenden Gewebe gut zu unter¬ scheiden ist. Im Vergleich zu normalen Gefäßen erscheinen Tumorgefäße fragiler und durchlässiger. Tumore zeigen eine gesteigerte Tendenz zu vaskulärer Permeabilität, die sich durch die vermehrte Diffusion von Plasmaproteinen in das Tumorinterstitium bemerkbar macht. Dadurch tritt auch das an die Plasmaproteine gebundene und photodynamisch wirksame ICG in den interstitiellen Raum aus. In Geweben mit erhöhter Gefäßpermeabilität findet man deshalb eine sekundäre und selektive Akkumulation von ICG. Die Laserbestrahlung, die eine durch energiereiches Licht induzierte chemische Ver¬ änderung in den bestrahlten Tumorgeweben verursacht, muß in diesem Fall nicht unmittelbar nach der ICG-Injektion erfol¬ gen, sondern kann vorgenommen werden, wenn sich kein ICG mehr in der Blutbahn befindet.
Mit einer ersten Injektion des ICG-Präparats wird die Permeabilität der Gefäße, das Akkumulationsvermögen eines Tumors und seine Ausdehnung mittels Fluoreszenz bei 830 nm bestimmt. Durch die erste Injektion wird die ICG-Bindungs- kapazität der Leber teilweise gesättigt, so daß eine weitere Injektion zu einer höheren ICG-Plasmakonzentration führt und dadurch das therapeutische Fenster erweitert wird.
In Abhängigkeit vom Vaskularisierungsgrad des Tumors (i. e. Gehalt an Blutgefäßen) wird das ICG-Präparat entweder als zweiter intravenöser Bolus oder als intravenöse Infusion gegeben. Eine zweite Bolusgabe wird vorwiegend bei gefä߬ ärmeren Tumoren durchgeführt, wobei die Darstellung und die erhöhte Absorption des Tumors durch Bestrahlung mit Infra- rotlicht mittels eines Diodenlasers primär nach Verschwinden von ICG aus dem Blutkreislauf gelingt. Eine kontinuierliche ICG-Infusion wird bei besonders gut vaskularisierten Tumoren einer Bolusgabe vorgezogen. Diese Tumore können primär über das Tumorgefäßsystem im Fluoreszenz-Infrarotbild dargestellt und mit Infrarotlicht zerstört werden. In jedem Fall kann mittels ICG eine höhere Infrarotlichtabsorption bei 805 nm im Tumor erreicht werden. Dabei ist die kontinuierliche Bestimmung der ICG-Konzentration im Gewebe über Fluoreszenz- messung wichtig, um gegebenenfalls die Lichtenergie bei 805 nm mit abnehmender ICG-Konzentration erhöhen zu können. Dies geschieht durch Fluoreszenzanregung des Wirkstoffes durch Licht mit einer Wellenlänge von ca. 700 nm, das von einer Wolfram-Halogenlampe erzeugt wird.
Die Gewebe- bzw. Gefäßkoagulation und damit der thera¬ peutische Erfolg wird mit Hilfe einer dritten Injektion überprüft. Tritt keine mit ICG feststellbare Perfusion des Tumors auf, kann von einem therapeutischen Erfolg ausgegan¬ gen werden. Die Dosierung von ICG sollte 5 mg/kg/Tag nicht überschreiten.
Zur Durchführung der photodynamischen Therapie mit ICG wird eine einfache und kostengünstige Geräteausstattung angestrebt, die es auch niedergelassenen Ärzten ermöglicht, kleinere operative Eingriffe nach dieser Methode vorzuneh¬ men.
Die kontinuierliche Bestimmung der ICG-Konzentration ist für die Bestrahlungsdauer und -intensität mit einem Diodenlaser bei 805 nm entscheidend und kann online über die Messung der Fluoreszenz bei 830 nm durchgeführt werden. Parallel zur Laserbehandlung sollte die ICG-Akkumulation im Gewebe und damit die genaue Lokalisation der Tumorgrenzen auf einem Bildmonitor verfolgt werden können. Eine Diffe¬ renzbildanalyse (vor und nach der Laserbehandlung) mit an¬ schließender therapeutischer Kontrolle ist vorteilhaft.
In der Dermatologie ist zur Behandlung von flachen Tumoren (anschließende Ausweitung auf andere Disziplinen, z. B. endoskopische Chirugie möglich) ein Gerät in Form eines Dermatoskops einsetzbar. Für unebene Tumore könnte ein Hand¬ stück (ähnlich einem sehr kleinen Mikroskop/Kapillaranemome¬ ter) , das die Fokussierung über einen bestimmten Abstand hinweg ermöglicht, verwendet werden.
Neben vaskularen Malformationen und anderen vom Gefä߬ system ausgehenden Tumoren sollen z. B. Neurofibrome, Mamma- karzinome oder Colonkarzinome mit ICG als Therapeutikum behandelt werden. Weitere mögliche Indikation sind Virus¬ induzierte Gewebeveränderungen, wie z. B. Condylomata acumi- nata Infektionen. Als Standardtherapie wird derzeit zur Behandlung ein C02-Laser eingesetzt. Allerdings wird dadurch das Gewebe vaporisiert und es entstehen Viruspartikel im Abbrand mit der Gefahr der Infektion des behandelnden Perso¬ nals. Eine Koagulation mit ICG läßt dagegen keinen Abbrand bei der Laserbehandlung entstehen. Ein sekundäres Infek¬ tionsrisiko ist deshalb sehr gering.

Claims

Ansprüche
1. Indocyaningrün (ICG) oder ICG-Antikörperkonjugat, gegebenenfalls in Mischung mit üblichen Arzneimittelzusätzen oder -trägem, zur therapeutischen Behandlung von Tumoren.
2. Verwendung von Indocyaningrün (ICG) oder ICG-Anti¬ körperkonjugat zur Herstellung von Arzneimitteln für die therapeutische Behandlung von Tumoren.
3. Verwendung von ICG zur Herstellung von Antikörper¬ konjugaten.
. Verwendung von ICG nach Anspruch 3 zur Herstellung von monoklonalen Tumor-Antikörperkonjugaten.
PCT/EP1997/001337 1996-03-15 1997-03-17 Verbindungen zur behandlung von tumoren WO1997033620A2 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19610348.7 1996-03-15
DE1996110348 DE19610348A1 (de) 1996-03-15 1996-03-15 Verbindung zur Behandlung von Tumoren und deren Verwendung zur Herstellung von Arzneimitteln
DE19654186.7 1996-12-23
DE19654186A DE19654186A1 (de) 1996-03-15 1996-12-23 Verbindungen zur Behandlung von Tumoren und deren Verwendung zur Herstellung von Arzneimitteln

Publications (2)

Publication Number Publication Date
WO1997033620A2 true WO1997033620A2 (de) 1997-09-18
WO1997033620A3 WO1997033620A3 (de) 1998-02-05

Family

ID=26023855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/001337 WO1997033620A2 (de) 1996-03-15 1997-03-17 Verbindungen zur behandlung von tumoren

Country Status (1)

Country Link
WO (1) WO1997033620A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911023A1 (de) * 1998-03-20 1999-04-28 Mario Luca Russo Photosensibilisierende Stoffe enthaltende pharmazeutische oder kosmetische Zubereitung
WO2001003772A1 (fr) * 1999-07-13 2001-01-18 Inserm (Institut National De La Sante Et De La Recherche Medicale) Photocoagulateur laser a adaptation de fluence
WO2000071162A3 (en) * 1999-05-20 2001-07-05 Mallinckrodt Inc Cyanine and indocyanine dye bioconjugates for biomedical applications
US6351663B1 (en) 1999-09-10 2002-02-26 Akorn, Inc. Methods for diagnosing and treating conditions associated with abnormal vasculature using fluorescent dye angiography and dye-enhanced photocoagulation
US6443976B1 (en) 1999-11-30 2002-09-03 Akorn, Inc. Methods for treating conditions and illnesses associated with abnormal vasculature
US6944493B2 (en) 1999-09-10 2005-09-13 Akora, Inc. Indocyanine green (ICG) compositions and related methods of use
US7767208B2 (en) * 1999-01-15 2010-08-03 Light Sciences Oncology, Inc. Noninvasive vascular therapy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986001720A1 (en) * 1984-09-13 1986-03-27 Cytogen Corporation Antibody therapeutic agent conjugates
DE3828360A1 (de) * 1988-08-20 1990-02-22 Stanowsky Alexander Dr Farbstoff-markierter antitumor-antikoerper und verfahren zu seiner herstellung
GB9014307D0 (en) * 1990-06-27 1990-08-15 Scient Generics Ltd Method of treatment and compositions therefor
WO1996031237A2 (en) * 1995-04-04 1996-10-10 Wound Healing Of Oklahoma Cancer treatment by photodynamic therapy, in combination with an immunoadjuvant
AU2118497A (en) * 1996-02-29 1997-09-16 Cytopharm, Inc. A novel phototherapeutic method for treating cancer and/or dermatological diseases and conditions

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911023A1 (de) * 1998-03-20 1999-04-28 Mario Luca Russo Photosensibilisierende Stoffe enthaltende pharmazeutische oder kosmetische Zubereitung
WO1999048474A1 (en) * 1998-03-20 1999-09-30 Mario Luca Russo Pharmaceutical or cosmetic compositions containing photosensitizing substances
US7767208B2 (en) * 1999-01-15 2010-08-03 Light Sciences Oncology, Inc. Noninvasive vascular therapy
WO2000071162A3 (en) * 1999-05-20 2001-07-05 Mallinckrodt Inc Cyanine and indocyanine dye bioconjugates for biomedical applications
EP2058007A3 (de) * 1999-05-20 2009-05-27 Mallinckrodt, Inc. Cyanin- und Indocyanin-Farbstoff-Biokonjugate für biomedizinische Anwendungen
WO2001003772A1 (fr) * 1999-07-13 2001-01-18 Inserm (Institut National De La Sante Et De La Recherche Medicale) Photocoagulateur laser a adaptation de fluence
FR2796295A1 (fr) * 1999-07-13 2001-01-19 Inst Nat Sante Rech Med Photocoagulateur laser a adaptation de fluence
US6351663B1 (en) 1999-09-10 2002-02-26 Akorn, Inc. Methods for diagnosing and treating conditions associated with abnormal vasculature using fluorescent dye angiography and dye-enhanced photocoagulation
US6944493B2 (en) 1999-09-10 2005-09-13 Akora, Inc. Indocyanine green (ICG) compositions and related methods of use
US6443976B1 (en) 1999-11-30 2002-09-03 Akorn, Inc. Methods for treating conditions and illnesses associated with abnormal vasculature

Also Published As

Publication number Publication date
WO1997033620A3 (de) 1998-02-05

Similar Documents

Publication Publication Date Title
DE69630285T2 (de) Ultraschalltherapievorrichtung
Stewart et al. Human central nervous system distribution of cis-diamminedichloroplatinum and use as a radiosensitizer in malignant brain tumors
Lundquist et al. Photochemotherapy of oral lichen planus: A cotrolled study
RU2270003C2 (ru) Лекарственное средство для лечения солидных опухолей на основе паклитаксела, стабилизированного альбумином
US6984655B1 (en) Photodynamic therapy for selectively closing neovasa in eyeground tissue
PT660712E (pt) Activacao in vivo transdermal de agentes fotossensiveis no sangue
DE3323365A1 (de) Verfahren und vorrichtung zur ausleuchtung von hohlraeumen
EP2204218B1 (de) Anordnung zur Reduktion von Mikroorganismen
Yonas et al. Stable xenon-enhanced CT measurement of cerebral blood flow in reversible focal ischemia in baboons
US5163898A (en) Medical treatment of tumors with phycocyanin
DE60127552T2 (de) Intrakorporale medikamente zur hoch-energetischen phototherapeutischen behandlung einer erkrankung
WO1997033620A2 (de) Verbindungen zur behandlung von tumoren
CH658595A5 (de) Retinoprotektor zur behandlung von augenerkrankungen.
Galloon et al. Comparison of lorazepam and diazepam as premedicants
Fingar et al. Changes in tumor interstitial pressure induced by photodynamic therapy
EP1019037B9 (de) Delta-aminolävulinsäure enthaltendes arzneimittel
Angelborg et al. The microsphere method for studies of inner ear blood flow
DE19654186A1 (de) Verbindungen zur Behandlung von Tumoren und deren Verwendung zur Herstellung von Arzneimitteln
DE3834944A1 (de) Arzneimittelfreigabevorrichtung
WO2007108958A2 (en) Methods of treating cancer using hypofractionated radiation and texaphyrins
Blisard et al. Degeneration of axons in the corticospinal tract secondary to spinal cord ischemia in rats
DE69921980T2 (de) Periadventitiales verabreichungssystem
Schilling et al. Lack of effect of topically applied nicotine on pial arteriole diameter and blood-brain barrier integrity in the cat
CN106659910A (zh) 治疗创伤后应激障碍(pstd)和热潮红的试剂盒和方法
DE60038105T2 (de) Inhibition der vaskulären restenose nach einer angioplastie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97532300

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载