WO1997033205A1 - Systeme d'interferometre differentiel et dispositif lithographique a balayage par etapes pourvu d'un tel systeme - Google Patents
Systeme d'interferometre differentiel et dispositif lithographique a balayage par etapes pourvu d'un tel systeme Download PDFInfo
- Publication number
- WO1997033205A1 WO1997033205A1 PCT/IB1997/000197 IB9700197W WO9733205A1 WO 1997033205 A1 WO1997033205 A1 WO 1997033205A1 IB 9700197 W IB9700197 W IB 9700197W WO 9733205 A1 WO9733205 A1 WO 9733205A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measuring
- substrate
- interferometer
- mask
- reflector
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims description 205
- 230000005855 radiation Effects 0.000 claims description 15
- 238000003384 imaging method Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 abstract description 40
- 230000010287 polarization Effects 0.000 description 16
- 230000035945 sensitivity Effects 0.000 description 12
- 238000006073 displacement reaction Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 102100028043 Fibroblast growth factor 3 Human genes 0.000 description 5
- 102100024061 Integrator complex subunit 1 Human genes 0.000 description 5
- 101710092857 Integrator complex subunit 1 Proteins 0.000 description 5
- 108050002021 Integrator complex subunit 2 Proteins 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 2
- 230000004304 visual acuity Effects 0.000 description 2
- 101710092886 Integrator complex subunit 3 Proteins 0.000 description 1
- 102100025254 Neurogenic locus notch homolog protein 4 Human genes 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70358—Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02001—Interferometers characterised by controlling or generating intrinsic radiation properties
- G01B9/02007—Two or more frequencies or sources used for interferometric measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02015—Interferometers characterised by the beam path configuration
- G01B9/02017—Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
- G01B9/02018—Multipass interferometers, e.g. double-pass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02015—Interferometers characterised by the beam path configuration
- G01B9/02017—Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
- G01B9/02019—Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different points on same face of object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02015—Interferometers characterised by the beam path configuration
- G01B9/02017—Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
- G01B9/02021—Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different faces of object, e.g. opposite faces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02015—Interferometers characterised by the beam path configuration
- G01B9/02027—Two or more interferometric channels or interferometers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70775—Position control, e.g. interferometers or encoders for determining the stage position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/15—Cat eye, i.e. reflection always parallel to incoming beam
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/70—Using polarization in the interferometer
Definitions
- Differential interferometer system and lithographic step-and-scan apparatus provided with such a system.
- the invention relates to an interferometer system for measuring the mutual position and movement of a first and a second object in at least one direction, said system comprising, for at least one of all possible mutual directions of movement:
- a first interferometer unit associated with the first object, provided with a first beam splitter, a first measuring reflector and a plurality of first reflectors, and
- a second interferometer unit associated with the second object, provided with a second beam splitter, a second measuring reflector and a plurality of second reflectors.
- the invention also relates to a lithographic apparatus for projecting a mask pattern on a substrate in accordance with the step-and-scan principle.
- a lithographic apparatus for projecting a mask pattern on a substrate in accordance with the step-and-scan principle.
- Such an apparatus which is known as a step-and-scan apparatus and can be used, inter alia, in the manufacture of integrated circuits, or ICs, is known from, inter alia, United States Patent 5, 194,893.
- a projection lens system having a numerical aperture of 0.6 and an image field of 22 mm has been made for the manufacture of ICs of the 64 Mbit type.
- Line widths of 0.35 ⁇ can be imaged on the substrate by means of this projection lens system.
- the limit of a projection lens system which can still be made and is not too unwieldy is then virtually achieved. If even smaller details are to be imaged, i.e. if even smaller line widths are to be formed on the substrates, in other words, if the projection lens system must be given an even larger numerical aperture, then this will only be at the expense of the image field size.
- a step-and-scan apparatus As described in US Patent 5, 194,893.
- a stepping projection apparatus the full mask pattern is exposed and imaged in one run on an IC area on the substrate.
- a step is made, i.e. the substrate is moved with respect to the projection lens system and the mask pattern until a second IC area is situated opposite the mask pattern and within the image field of the projection lens system, and a second image of the mask pattern is formed in that area.
- a step is made to a third IC area and imaged again, and so forth until images of the mask patterns have been formed in all IC areas.
- a step-and-scan apparatus In a step-and-scan apparatus, the same stepping movements are performed, but every time only a small part of the mask pattern is imaged on a corresponding partial area of the substrate.
- an image of the entire mask pattern is obtained on an IC area.
- the mask pattern is exposed with a projection beam which has a small cross-section, for example a rectangular or arcuate cross-section, at the area of the mask pattern, and the mask table and the substrate table are moved in opposite sense in a direction, the scanning direction, with respect to the projection lens system and the projection beam, the speed of movement of the substrate table being M times that of the mask table.
- M is the magnification with which the mask pattern is imaged.
- a conventional value for M is currently 1/4, but other values, for example 1, are alternatively possible.
- the projection beam cross-section has its largest dimension in the direction transverse to the scanning direction. This dimension may be equal to the width of the mask pattern, so that this pattern is imaged in one scanning movement. However, it is alternatively possible that said dimension is half that of the mask pattern or is even smaller. In that case, the entire mask pattern is imaged in two or more opposite scanning movements. It should then be ensured that the movements of the mask and the substrate are synchronized very accurately, i.e. the speed v of the mask should always be equal to M times the speed of the substrate.
- the condition of speed must be additionally measured in a step-and-scan projection apparatus, in other words, whether the substrate and the mask pattern stand still, as it were, with respect to each other during scan-imaging of the substrate and the mask pattern. Based on this measurement, the speed of one of the tables can then be adapted to that of the other.
- two interferometer systems are used to check the condition of speed.
- the measuring reflector of the first interferometer system is secured to the substrate table so that the displacement of the substrate table in the shunting direction, hereinafter also referred to as the X direction can be measured with this system.
- the measuring reflector of the second interferometer system is secured to the mask table, so that the displacement of this table in the scanning direction can be measured with this system.
- the output signals from the two interferometer systems are applied to an electronic processing unit, for example a microcomputer, in which the signals are subtracted from each other and processed to control signals for the actuators, or driving devices, for the tables.
- the interferometer signals Due to the high speeds of the tables, required because of the desired large feed-through rate of the substrates through the apparatus, the interferometer signals have a high frequency, or bitrate. When comparing these high-frequency signals, the speed of the processing electronics becomes a limiting factor. Then the delay time, i.e. the time elapsing between the instant when a measurement is performed and the instant when the measuring result becomes available, will play a large role. In a closed servoloop comprising the measuring systems and the actuators or driving devices for the tables, delay time differences in the electronic signal processing will lead to an unwanted offset between the mask table and the substrate table. Moreover, the tables will then have a limited maximum speed.
- the present invention provides a novel measuring concept for a step-and- scan projection apparatus, obviating the above-mentioned problems.
- This novel concept has a number of aspects which may be used separately or in combination.
- the interferometer system is characterized in that, in operation, a measuring beam passes through both the first and the second interferometer unit and is reflected at least once by both the first measuring reflector and the second measuring reflector, in that the first and second interferometer units have a common radiation-sensitive detector, and in that the reference beam associated with the measuring beam traverses the same path as the measuring beam between the first and the second interferometer unit.
- the position signals of the two tables are now no longer compared electronically, or subtracted from each other, but compared optically and in the interferometer system itself.
- the frequency of the interferometer signal will always be independent of the speed of the tables, so that this speed can no longer be a restrictive factor.
- an interferometer system having a first and a second measuring reflector and a first and a second beam splitter is described in the English- language abstract of Japanese Patent Application 3-199.905, in which a measuring beam is used which passes the first and the second beam splitter.
- the measuring beam is reflected by only one of the measuring mirrors, whereas the other measuring mirror reflects a reference beam.
- the known system is not used for measuring the mutual movement, in one direction, of two objects but for measuring the relative displacement of an X table with respect to a Y table.
- An embodiment of the differential interferometer system which is notably suitable for use in a lithographic apparatus, in which the mask pattern is imaged in a reduced size, is further characterized in that the ratio between the number of times the measuring beam is reflected by the measuring reflector associated with the first object and the number of times the measuring beam is reflected by the measuring reflector associated with the second object is equal to the ratio between the speed of the second object and the speed of the first object.
- the interferometer system is preferably further characterized in that the second interferometer unit is adapted in such a way that the measuring beam coming from the first interferometer unit is reflected m+ 1 times in the second interferometer unit before returning to the first interferometer unit, m being an even number which is larger than 2.
- This measure prevents a tilt or rotation of the first object from influencing the interferometer signal.
- the invention also relates to an apparatus for imaging a mask pattern on a substrate a number of times in accordance with the step-and-scan principle, which apparatus comprises a mask holder arranged in a mask table, a substrate holder arranged in a substrate table and a projection system arranged between the mask table and the substrate table.
- This apparatus is characterized by an interferometer system as described above for measuring the mutual position of the mask and the substrate constituting the first and the second object.
- the use of the invention is not limited to a step-and-scan projection apparatus. It may generally be used in circumstances and apparatuses in which two bodies must be moved rapidly and very precisely with respect to each other.
- a mask pattern having a magnification M is imaged on a substrate in this projection apparatus, it may be further characterized in that the ratio between the number of times the measuring beam is reflected by the measuring reflector associated with the substrate and the number of times the measuring beam is reflected by the measuring reflector associated with the mask is equal to 1/M.
- this apparatus is further characterized in that a measuring reflector associated with the substrate and a measuring reflector associated with the mask are constituted by a reflecting side face of the substrate holder and the mask holder, respectively.
- a reflecting side face is understood to mean that the side face itself is reflective or that a reflector is secured to this side face.
- the measuring reflectors are rigidly connected to the substrate and the mask, the movements of these elements themselves are measured directly and hence reliably, including the movements which are left outside consideration in known apparatuses and result from movements of substrate table elements relative to each other and movements of mask table elements relative to each other.
- an interferometer system can be constructed for measuring linear displacements, rotations and tilts of a substrate, hereinafter referred to as substrate interferometer, and how it can be built into a lithographic projection apparatus, reference is made to US Patents 4,251, 160 and 4,737,283 describing a two-axis interferometer system and a three-axis interferometer system, respectively. Further embodiments of a substrate interferometer system are described in EP Patent Application 0 498 499.
- the apparatus according to the invention is preferably further characterized in that the interferometer system comprises a projection system interferometer unit for measuring the position of the projection system at one location, and in that the projection system is provided with a further measuring reflector at said location. The position of the projection system can then be measured independently of a possible tilt of this system.
- a further preferred embodiment of the apparatus is further characterized in that the projection system is provided with two further measuring reflectors at locations proximate to the mask holder and proximate to the substrate holder, respectively, and in that said reference beam is reflected by both measuring reflectors.
- Fig. 5 shows the difference between the interferometric measurements in a known apparatus and in an apparatus according to the invention
- Fig. 6 shows the mutual position of a mask and a substrate after they have been aligned in the apparatus
- Fig. 7 shows an alternative to the embodiment shown in Fig. 2;
- Figs. 8 and 9 show embodiments of special interferometers for measuring the tilt of a substrate holder
- Fig. 10 shows the computation of the point of a projection lens around which this lens can be tilted without offsetting the image
- Fig. 11 shows an interferometer system with a separate measurement of the position of the projection lens
- Fig. 12 shows a differential interferometer system in which the measurement, at one point, of the position of the projection lens is integrated
- Fig. 13 shows a differential interferometer system in which the measurement, at two points, of the position of the projection lens is integrated;
- Fig. 14 shows the mutual offset of a measuring beam and a reference beam upon a rotation of the substrate holder;
- Figs. 15 and 16 show special reflector units which can be placed near a mask interferometer so as to eliminate the effect of this offset;
- Fig. 17 shows an embodiment of a differential interferometer system with a projection lens position measurement in which the effect of a rotation or tilt of the substrate holder is eliminated;
- Fig. 18 shows a mask interferometer sub-system for use in this embodiment
- Fig. 19 shows an embodiment of a differential interferometer system in which the effect of a rotation or tilt of the substrate holder is eliminated;
- Figs. 20-22 show different embodiments of mask interferometer sub ⁇ systems for use in the embodiment of Fig. 19;
- Figs. 23 and 24 show two further embodiments of a differential interferometer system in which the effect of a rotation or tilt of the substrate holder is eliminated;
- Fig. 25 shows the effect of a rotation or tilt of the substrate holder on the interferometer signal when using or not using an offset compensation
- Figs. 26a, 26b and 26c show a single interferometer system in which the beam offset caused by a rotation or tilt of the substrate holder is compensated.
- This Figure and further Figures of the projection apparatus only show those elements with which the differential interferometer system cooperates, namely the mask holder MH provided with the reflector RM and the substrate holder WH provided with the reflector RW.
- the measuring beam b m emitted by a radiation source (not shown) and the reference beam b r are denoted by solid lines and broken lines, respectively.
- These beams are, for example, the two mutually pe ⁇ endicularly polarized components having different frequencies of a radiation beam, emitted by a Zeeman laser, so that the measurement is based on a phase measurement.
- the direction of the measuring beam and the reference beam is denoted by arrows.
- the embodiment shown in Fig. 1 comprises a polarization-sensitive beam splitter 1 , a quarter- wavelength ( ⁇ /4) plate 2 and two retroreflectors 3 and 4.
- a polarization-sensitive beam splitter 5, a ⁇ /4 plate 8 and two retroreflectors 6 and 7 are also present at the location of the mask holder MH provided with a reflector RM.
- a stationary reflector MI is present in situ.
- the beam splitters 1 and 5 have polarization-sensitive interfaces 9 and 10 which pass a first component having a first direction of polarization of the beam from the source and a second component having a second direction of polarization pe ⁇ endicular to the first direction of polarization, and reflect them, or conversely.
- the passed beam component is the reference beam b r and the reflected component is the measuring beam b m .
- the quarter-wavelength plates 2 and 8 which have a direction of polarization at an angle of 45° to that of the beam components, ensure that the direction of polarization of a beam component is rotated through 90° if this component passes such a plate twice.
- the measuring beam b m passed by the interface 9 traverses the ⁇ /4 plate 2 and impinges upon the reflector RW at the position PI .
- the reflected beam traverses the ⁇ /4 plate a second time so that its direction of polarization is rotated 90° with respect to the original direction of polarization, and is then passed by the interface 9 towards the retroreflector 3.
- the measuring beam enters the beam splitter 1 again and is then passed by this beam splitter so as to impinge upon the reflector RW a second time, at the position P2.
- the measuring beam coming from the position P2 is reflected by the interface 9 to the interface 10 of the beam splitter 5 placed proximate to the mask holder.
- the interface 10 reflects the measuring beam via the ⁇ /4 plate 8 to the mask holder reflector RM where the measuring beam is incident at the position P3.
- the measuring beam reflected by the reflector RM traverses the ⁇ /4 plate a second time so that its direction of polarization is rotated 90° again and is passed by the interface to the retroreflector 6.
- the beam reaches the reflector MI, at the position P4.
- the beam reflected by the reflector MI again traverses the ⁇ /4 plate 8 so that its direction of polarization is again rotated 90° so that this beam is reflected by the interface 10 to the interface 9.
- the measuring beam is again sent to the substrate reflector RW so as to be consecutively incident and reflected at the positions P5 and P6, analogously as described for the positions PI and P2.
- the beam reflected at the position P6 is reflected by the interface 9 from the interferometer system towards a detector (not shown).
- the reference beam b r passed by the interface 9 also traverses the entire system, but it bypasses the reflectors RW, RM and MI.
- the mutually pe ⁇ endicular polarized beams b m and b r emerging from the system pass an analyzer (not shown) on their way to the detector, which analyzer has a direction of polarization extending at an angle of 45° to that of the beams, and passes two components of this beam, which components can interfere with each other.
- a projection lens system is situated between the mask holder MH and the substrate holder WH.
- this projection lens system has a magnification M of 1/4.
- This embodiment differs from that of Fig. 1 in that two extra reflectors 15 and 16 are inco ⁇ orated, in that the first retroreflector 3 associated with the first beam splitter 1 is omitted and the two retroreflectors 6 and 7 of Fig. 1 at the second beam splitter are replaced by the retroreflectors 18 and 19.
- the measuring beam b m entering from the left is first reflected twice by the substrate reflector RW at the positions PI and P2 via the beam splitter 1 and the ⁇ /4 plate 2.
- the reflectors 15 and 16 reflect the measuring beam reflected at the position P2 to the stationary reflector MI.
- the measuring beam reflected by this reflector at the position P3 is reflected by the interface 10 to the retroreflector 19. Via reflections on the oblique sides of the reflector 10, the measuring beam is sent back to the interface 10 where it is reflected to the position P4 on the mask reflector RM.
- the measuring beam from this reflector travels via reflections on the reflectors 16 and 15 to the position P5 on the substrate reflector RW. There, the measuring beam is reflected again and subsequently the beam is again passed via reflections consecutively on the interface 9, the two oblique sides of the retroreflector 14 and again the interface 9 to the position P6 on the substrate reflector RW.
- the measuring beam b' which is reflected there reaches a detector (not shown) via the ⁇ /4 plate 2 and the beam splitter 1.
- the reference beam b r is passed through the system by reflections consecutively on the interface 9, the two oblique sides of the retroreflector 4, the interface 9, the reflectors 15 and 16, the interface 10, two oblique sides of the reflector 18, the reflectors 16 and 15, the interface 9, the two oblique sides of the reflector 4, and is finally sent via reflection on the interface 9 as beam b' to the same detector as the measuring beam b'.
- the reference beam b thus bypasses all reflectors RW, RM and MI.
- the measuring beam b m is first reflected by the substrate reflector RW twice consecutively at the positions PI and P2.
- the measuring beam coming from the position P2 is passed via reflections on the interfaces 9 and 10 to the position P3 on the mask reflector RM where it is reflected.
- the reflected measuring beam is subsequently passed via reflections on the oblique sides of the retroreflector 6 to the position P4 on the mask reflector RM where it is reflected again to the interface 10.
- This interface reflects the measuring beam b' m to a detector (not shown) .
- the reference beam b r is passed by the interfaces 9 and 10 of the beam splitters 1 and 5 and reflected only by the oblique sides of the retroreflectors 4 and 7. This beam bypasses one of the reflectors RW and RM.
- This embodiment differs from that shown in Fig. 3 in that an extra ⁇ /4 plate 20 is arranged under the first beam splitter 1 and the retroreflector 3 has been omitted.
- the measuring beam b m entering from the left is first reflected by the substrate mirror RW at the position PI .
- the measuring beam is passed to the position P2 on the mask reflector RM via reflections on the interfaces 9 and 10.
- the measuring beam reflected at this reflector is reflected to the position P3 on the mask reflector RM by the oblique sides of the retroreflector 6.
- the measuring beam returns to the substrate reflector RW where it is reflected as beam b' m at the position P4 towards a detector (not shown).
- the ⁇ /4 plate 20 is situated in the path of the reference beam b r only and ensures that this beam, which is first reflected by the interface 9, is passed towards the retroreflector 7 by the interfaces 9 and 10 after reflection on the oblique sides of the retroreflector 4. Via reflections on the two oblique sides of this reflector, the reference beam is sent back to the retroreflector 4.
- the interface 9 finally sends the reference beam coming from this reflector as beam b' r to the detector which also receives the measuring beam b' .
- a differential interferometer system adapted for this pu ⁇ ose may have the same structure as that shown in Figs. 1 and 2, while the stationary reflector MI has been removed.
- the differential interferometer system may be used in a projection apparatus with a magnification M, in which the system is then constructed in such a way that the total optical path length for the measuring beam does not change and that the ratio between the number of times the measuring beam is reflected by the substrate reflector and the number of times the measuring beam is reflected by the mask reflector is 1/M. Also if the latter condition is not satisfied, the bitrate of the interferometer signal can be considerably reduced with respect to known systems when using the inventive idea of reflecting the measuring beam both on the substrate reflector and on the mask reflector. It is important in the interferometer system according to the invention that the measuring beam and the reference beam cover the same path as much as possible.
- a projection lens system is arranged between these holders.
- the substrate holder and the mask holder form part of a substrate table (stage) and a mask table, respectively, with which the substrate and the mask can be displaced and positioned with respect to each other. These movements are performed under the control of interferometer systems.
- the apparatus comprises a separate alignment system, for example, the system described in US Patent 4,251 , 160, which aligns special mask alignment marks with respect to special substrate alignment marks.
- a separate alignment system for example, the system described in US Patent 4,251 , 160, which aligns special mask alignment marks with respect to special substrate alignment marks.
- both the mask and the substrate In the Z direction, both the mask and the substrate must be accurately positioned with respect to the projection lens system.
- the Z position of the substrate with respect to the projection lens system can be adjusted accurately by means of a focus and leveling system as described, for example in US Patent 5, 191,200.
- An erroneous Z position of the mask initially causes magnification errors. To prevent these errors, the distance between the mask and the projection lens system should be and remain adjusted with an accuracy of, for example 1 ⁇ m. This can be realized by means of a satisfactory air bearing between the mask and the projection lens system.
- the mutual X and Y positions of the mask and substrate should then also be measured. Furthermore, as described in EP Patent Application 0 489 499, the tilt of the substrate about the X axis and the Y axis, ⁇ and ⁇ v may be measured to prevent Abbe errors, for which pu ⁇ ose an interferometer system having five measuring axes can be used for the substrate.
- the five parameters: X position, Y position, the tilts ⁇ x and ⁇ y about the X axis and the Y axis and the rotation about the Z axis, ⁇ ⁇ can be determined from the combination of the signals of these measuring axes. These measuring axes are shown in Fig. 5a. In this very diagrammatic
- the substrate is denoted by W
- the mask is denoted by MA
- the substrate holder is denoted by WH.
- the references RR1 and RR2 denote stationary reference reflectors with respect to which the positions and orientations of the substrate reflectors RW, and RW 2 are measured.
- the interferometer system comprises two units, a first of which cooperates with the reflector RW, and has two measuring axes, and the second cooperates with the reflector RW 2 and has three measuring axes.
- the X position of the substrate is measured along the X measuring axis with the first interferometer unit.
- This unit has a second measuring axis denoted by ⁇ y which also extends in the X direction but is offset in the Z direction with respect to the first measuring axis.
- the tilt about the Y axis, ⁇ y can be determined from the difference between the signals coming from the first and second X measuring axes.
- the second interferometer unit has a first Y measuring axis, denoted by Yl , with which the Y position of the substrate can be determined.
- the tilt about the X axis, ⁇ ,, can be determined from the combination of the signals of this measuring axis and from that denoted by ⁇ x and offset with respect to Yl in the Z direction.
- the rotation of the substrate about the Z axis, ⁇ z can be determined from the combination of the signals of the measuring axes Yl and Y2 offset with respect to each other in the X direction.
- an interferometer system having three measuring axes would be necessary, namely for determining the X position, the Y position and the rotation about the Z axis.
- the number of measuring axes of the total interferometer system may be reduced from eight to five, as is shown in Fig. 5b.
- the X measuring axis dx the relative position of the mask with respect to the substrate is now measured.
- the relative Y position of the mask with respect to the substrate and the relative rotation ⁇ z about the Z axis of the mask and the substrate with respect to each other are measured.
- the tilt about the Y axis and that about the X axis of the substrate must be measured, which is realized by means of a second X measuring axis, ⁇ y , and a second Y measuring axis, ⁇ ., to the substrate.
- the interferometer systems described with reference to Figs. 1-4 and to be further described hereinafter may be used. Since only the relative position of the mask is measured relative to the substrate, a special procedure must be used when introducing the mask and the substrate into the lithographic apparatus. It will be explained with reference to Fig. 6 how the introduction procedure may be performed. First, the mask table MT and the substrate table WT are brought to zero, or reset, positions which are fixed by means of stops, for example in the form of Tesa feelers. The interferometers are set to zero.
- the mask table is arranged above the projection lens system by means of the scanning servoloop. Due to the coupling via the differential interferometer system, the substrate table follows this movement.
- the mask MA which has alignment marks M, and M 2 , is placed in the holder of the mask table.
- the mask is retained and the substrate table is brought to a position where a substrate is placed in the holder of the mask table.
- the substrate table is then again displaced in such a way that the substrate is brought under the mask and the projection lens system.
- the substrate is aligned with respect to the mask by the alignment system present in the apparatus, in which the mask marks M,, M 2 and similar alignment marks in the substrate are imaged on each other and in which it is determined whether these marks are positioned correctly with respect to each other.
- the situation shown in Fig. 6 is achieved.
- the X and Y positions of the substrate marks with respect to a two-dimensional system of coordinates, fixed by the X and Y interferometers, are then also known.
- This system of coordinates is further used during the stepping movements of the substrate table, i.e. the movements which this table must perform to bring a complete IC area under the mask and the projection lens system after the mask pattern has been imaged in one IC area (die) of the substrate.
- the substrate table After the substrate and the mask have been aligned with respect to each other, the substrate table performs a first stepping movement so that a first IC area is brought under the mask, while maintaining the found dy,-dy 2 value, i.e. the ⁇ z value.
- the mask and the substrate perform a synchronous movement while the projection beam is switched on, taking the magnification with respect to the projection lens system and the projection beam into account, i.e. the scanning movement, by which the mask is imaged on the first IC area.
- the projection beam is switched off and the substrate table moves one step so that a subsequent IC area of the substrate is placed under the mask.
- a scanning movement follows again, so that the mask pattern is imaged on the second IC area. This step-and-scan procedure continues until an image of the mask pattern has been formed in all IC areas of the substrate.
- dx, dy, and dy 2 in Fig. 6 may be measured with the differential interferometer systems shown in Figs. 1-4.
- a simpler embodiment of such an interferometer system is shown in Fig. 7. This system resembles that of Fig. 2 but has the difference that a retroreflector 22 is arranged on the mask holder or on the mask table and that the ⁇ /4 plate 8 and the retroreflector 19 are absent.
- the incoming measuring beam b m in the embodiment of Fig. 7 impinges upon the substrate reflector RW first at the position PI and then at the position P2 and subsequently crosses over to the mask via the reflectors 15 and 16. There, it impinges upon the mask reflector constituted by the retroreflector 22, consecutively at the positions P3 and P4.
- the measuring beam reflected at these positions is passed, similarly as in Fig. 2, consecutively to the positions P5 and P6 of the substrate reflector RW and is finally reflected as measuring beam b' m from the system.
- the reference beam b r travels the same path as in Fig. 2.
- the interferometer systems described consist of two interferometer units which are arranged in series. In the systems shown in Figs. 1, 2 and 7, the distance to the substrate reflector RW in one interferometer unit is traversed eight times and the distance to the mask reflector in the other unit is traversed twice. The result is that the measurement of the substrate position is four times as sensitive as the measurement of the mask position. Since the measuring beam and the reference beam travel the same path between the substrate interferometer and the mask interferometer, the measurement is insensitive to, for example, air turbulences and other irregularities. In principle, a large number of sensitivities related to the magnification of the projection lens system can be realized by choosing the correct combinations of interferometer units.
- X M + _ X constant (1) is satisfied, in which X M and X w are the X positions of the mask and the substrate, respectively. Then the optical path length for the measuring beam b m remains constant and the detector for the measuring beam b' m will not detect any frequency shift.
- the measuring frequency will always be equal to the frequency of the radiation source supplying the measuring beam, for example, equal to the Zeeman frequency, if use is made of a Zeeman laser which is a frequently used radiation source in interferometers.
- the measuring frequency is then independent of the speeds of the mask and the substrate.
- the X positions of the mask and the substrate are now added optically and no longer electronically, as is done when two separate interferometers are used. Problems due to delay time differences in the detector signal processing electronics and occurring when separate interferometers are used can thus be prevented.
- the + sign in the condition (1) applies to the embodiments of Figs. 1-4 and 7 in which the measuring beam comes in contact with the substrate reflector RW as well as the mask reflector RM. If the measuring beam only measures the position of one of the reflectors, substrate reflector and mask reflector, and if the reference beam measures the position of the other one of these reflectors, then the + sign in the condition (1) should be replaced by the - sign.
- the embodiment shown in Fig. 7, with a retroreflector on the mask holder, is insensitive to tilts of this holder.
- the holder cannot be moved during the measurement in a direction pe ⁇ endicular to the measuring direction.
- Such a pe ⁇ endicular direction is necessary, for example, if two opposed movements in the X direction must be performed for forming a mask pattern image on an IC area, between which movements a displacement of the mask and the substrate in the Y direction is necessary.
- the mask reflector is a flat reflector
- the mask can be moved pe ⁇ endicularly to the measuring direction.
- Fig. 8 shows a first embodiment of such an interferometer for measuring the tilt of the substrate about the Y axis.
- This interferometer comprises a polarization- sensitive beam splitter 23 around which three ⁇ /4 plates 24, 25 and 26 are arranged. Furthermore, the interferometer comprises a retroreflector 29 and two reflecting prisms 28 and 27.
- the measuring beam b m entering from the left impinges upon the substrate reflector RW at the position Al and is subsequently reflected by the interface 23a of the beam splitter to the prism 27.
- This prism sends the measuring beam b m via reflections on its oblique sides to the retroreflector 29 which reflects the beam to the interface 23a again. This interface now reflects the measuring beam to the prism 28.
- this prism subsequently reflect the measuring beam to the interface 23a which reflects the measuring beam to the retroreflector 29 again.
- This reflector sends the measuring beam back to the prism 27 which reflects the beam to the interface 23a.
- This interface now reflects the measuring beam to the substrate reflector RW where the measuring beam is incident at the position A2.
- the measuring beam reflected at this position is finally passed by the interface 23a so that it can reach a detector (not shown).
- the reference beam b r is first reflected by the interface 23a to the retroreflector 29, subsequently by this retroreflector to the prism 27, then by this prism to the interface and by this interface to the position A3 on the substrate reflector.
- the reference beam reflected at this position is again sent by the prism 28 to the substrate reflector RW where it is incident on the position A4.
- the reference beam reflected at this position is reflected by the interface 23a to the prism 27, subsequently by this prism to the retroreflector 29 and then by this reflector to the interface again.
- This interface finally reflects the reference beam b' r to the detector.
- both the measuring beam b m and the reference beam b r measure the X position of the substrate reflector RW.
- Fig. 9 shows a second embodiment of an interferometer for measuring the tilt ⁇ y of the substrate reflector RW about the Y axis. This embodiment differs from that of Fig. 8 in that the reflecting prism 27 is replaced by a flat reflector M2. This reflector reflects the pe ⁇ endicularly incident measuring beam b m and reference beam b r in itself. The sequence in which the measuring beam and the reference beam in Fig.
- the differential interferometer system for use in a lithographic projection apparatus may be further improved by taking measures to prevent possible instabilities in the apparatus from affecting the measurement of the mutual position of the mask and the substrate. To this end, the influence of the position and tilt of the projection lens system, hereinafter referred to as projection lens for short, must be eliminated.
- a point can be indicated around which the lens can be tilted without changing the position of the image formed by this lens.
- This is the point C in Fig. 10.
- v and b are the object length and the image length, respectively
- OP and IP are the object plane and the image plane, respectively.
- the point C is between the two nodes of the lens.
- the nodes coincide with the main points A and B of the projection lens.
- H and H' indicate the main faces of this lens.
- the lens should satisfy the condition:
- the position of the point C is independent of all kinds of lens parameters such as the focal length and the positions of the main faces, but is only influenced by the magnification and the distance between the object plane and the image plane. This means that the position of the point C is the same for substantially all projection lenses.
- OC a lens
- the position of the projection lens is to be measured in order to be able to correct its influence on the position of the image formed by this lens, it is preferred to perform the projection lens position measurement at the location of the point C. In fact, the measurement is then insensitive to a tilt of the projection lens.
- the result can be shown of a horizontal displacement dC, for example in the X direction, of the projection lens.
- This Figure shows the mask holder MH, the projection lens PL and the substrate holder WH.
- the X positions of these components are denoted by X M , X L and X w , respectively.
- INT1 , INT2 and INT3 are interferometers which may be used for measuring the positions of the substrate, the mask and the projection lens.
- FIG. 12 An interferometer system, in which this is the case, is shown diagrammatically in Fig. 12.
- the measuring beam b m is denoted by a solid line and the reference beam b r is denoted by a broken line.
- the - sign in the equations (11) and (12) applies if the reference beam b r is used for measuring the projection lens position X L .
- the system shown in Fig. 12 is provided with an extra reflector M 5 .
- the measuring beam b m is used for measuring the mutual position of the mask and the substrate.
- the position of the mask, X M is measured twice, that of the substrate, X w , is measured eight times and that of the projection lens, X L , is measured ten times. Since the paths for the measuring beam and the reference beam are partly different, it should be ensured that no air turbulences and other irregularities can occur in the radiation paths.
- FIG. 13 An interferometer system which is insensitive to air turbulences and the like is shown diagrammatically in Fig. 13.
- the measurement of the projection lens position is split up into two measurements of the lens position at different heights.
- a first lens position measurement is performed in the proximity of the mask, which measurement has the sensitivity of the mask position measurement.
- the second lens position measurement is performed in the proximity of the substrate, which measurement has the sensitivity of the substrate position measurement.
- the advantages of the interferometer system of Fig. 13 are: there is a compensation for both the displacement and the tilt of the projection lens; the measurement is insensitive to irregularities in the radiation path between INT1 and INT2; the positions of INT1 and INT2 are unimportant, so the measurement is insensitive to vibrations and instabilities in the apparatus. Only a tilt of INT1 and INT2 could be of influence. To eliminate this influence, 5. ⁇ should preferably be equal to L.
- An important condition for accurately measuring the mutual positions of the substrate and the mask, hence of dX, dY, and dY 2 is that these measurements are not affected by rotations about the Z axis and tilts about the X axis and Y axis.
- the differential interferometers themselves insensitive to this rotation and tilts. If the mask holder moves in the X direction only and is fixed in the other directions by means of air bearings, the rotation ⁇ z of the substrate holder is initially important.
- Fig. 14 illustrates the effect of a rotation ⁇ ⁇ of the substrate about the Z axis.
- This Figure shows the elements of the lower part of Fig. 2.
- the measuring beam b m is first reflected twice by the substrate reflector RW at the positions PI and P2, subsequently crosses over to the mask reflector RM where it is reflected, then returns to the substrate reflector so as to be reflected consecutively at the positions P3 and P4 and is passed as beam b' m to the detector (not shown).
- This is the situation when the measuring beam is pe ⁇ endicularly incident on the substrate reflector, hence when ⁇ z 0.
- This measuring beam is denoted by b m .
- the measuring beam traverses the path denoted by the broken lines.
- the measuring beam is then first reflected at the position PI again, but no longer pe ⁇ endicularly.
- This measuring beam is denoted by b m a .
- the beam b m a Via reflections at the points 100-103 of the interface 9 of the beam splitter 1 and of the retroreflector 19, the beam b m a is sent towards the position P2' of the substrate reflector.
- the beam b m a reflected there is then parallel again to the beam b m and hence also to the reference beam (not shown in Fig. 14), but offset through a distance ⁇ .
- the offset between the measuring beam b m a from the mask reflector and the reference beam is point-mirrored with respect to this offset between the measuring beam b m a going to the mask reflector and the reference beam.
- the measuring beam b m a coming from the mask reflector impinges upon the substrate reflector first at the position P5'
- the measuring beam reflected there is then passed to the position P6' via reflections on the points 105-108 and at this position it is reflected as beam b' m a to the detector.
- the offset between the measuring beam and the reference beam is doubled. Due to its twice greater sensitivity, the differential interferometer is also twice as sensitive to rotation of the substrate.
- the overlap between the measuring beam and the reference beam becomes smaller at the location of the detector, so that the signal, which is representative of the mutual position of the substrate reflector and the mask reflector, becomes smaller.
- the beams have a diameter of, for example 5 mm
- This margin could be increased by increasing the diameters of the beam.
- an extra beam-widening optical system is required for this pu ⁇ ose. But it is an even greater drawback that the optical components must be increased in order that vignetting of the beams on these components will not occur.
- Fig. 15 shows the mask interferometer, hence the part of the differential interferometer which is situated in the proximity of the mask reflector RM and the projection lens reflector RL which is used in the embodiment of Fig. 13.
- the mask interferometer comprises a polarization-sensitive beam splitter 5 with an interface 10, two reflecting prisms 111 and 112 and two ⁇ /4 plates 113 and 114.
- the measuring beam b m going to the mask reflector, and the reference beam b r , going to the lens reflector RL2, are denoted by solid lines and broken lines, respectively.
- arrows at right angles to the measuring beam and broken lines at right angles to the reference beam indicate how these beams are mirrored upon their passage through the interferometer.
- the measuring beam b m is reflected five times and the reference beam is reflected three times, which means that they mutually maintain the same orientation and that a possible offset between the incoming beams is maintained and is not mirrored.
- the measuring beam b m and the reference beam b r coming from the mask interferometer traverse the substrate interferometer a second time.
- a first offset has occurred between the measuring beam and the reference beam
- a second, similar offset will occur upon the second passage through the substrate interferometer. Since the first offset upon passage through the mask interferometer does not change, said second offset will compensate said first offset.
- the solution to the problem of rotation and tilt sensitivity of the differential interferometer which solution consists of an odd number of reflections in the mask interferometer, may be alternatively realized by arranging a special reflector unit between the substrate interferometer and the mask interferometer.
- An embodiment of this reflector unit is shown in Fig. 16.
- This unit which may be arranged, for example at the position of the reflector 16 in Fig. 2, consists of a prism 37 and a penta-prism 40.
- the incoming measuring beam b m traverses the prism 37 and is then reflected consecutively by the sides 38 and 39 of the penta-prism and subsequently passed by the prism 37 towards the mask reflector.
- Fig. 17 shows an embodiment of the differential interferometer system in accordance with the principle of Fig. 13, in which this reflection unit is inco ⁇ orated.
- This Figure shows a first, or substrate, interferometer unit with a polarization-sensitive beam splitter 1 , a retroreflector 4 and a ⁇ /4 plate 2, as well as a second, or mask, interferometer unit, again with a polarization- sensitive beam splitter 5, a retroreflector 19, a ⁇ /4 plate 8 and a reflector MI.
- the system of Fig. 17 comprises a splitting mirror 30 and a coupling-out prism 32.
- the projection lens PL of the projection apparatus with which the mask pattern is imaged on the substrate is arranged between the mask holder MH and the substrate holder WH.
- the projection lens is provided with two extra reflectors RL1 and RL2 which constitute the reference reflectors for the second and the first interferometer unit, respectively.
- a reflector 33, a ⁇ /4 plate 35 and a reflector 35 are arranged proximate to the lens reflector RL1, and a reflector 31 is arranged proximate to the lens reflector RL2.
- the measuring beam in Fig. 17 is also denoted by solid lines and the reference beam is denoted by broken lines.
- the arrows in these lines show the path followed by the measuring beam through the system via two first reflections on the substrate reflector RW, a reflection on the mask reflector RM and a reflection on the reflector MI, and the path of the reference beam through the system via two first reflections on the lens reflector RL2, a reflection on the lens reflector RL1 and a reflection on the reflector 35, and via two further reflections on the lens reflector RL2.
- the reflector unit comprising the penta-prism 40 with an interface 41 and the prism 37 are arranged proximate to the mask interferometer.
- Fig. 18 shows how the measuring beam coming from the substrate interferometer and the reference beam pass through the sub-system consisting of the reflector unit and the second mask interferometer.
- This sub-system comprises a further reflector 45 and a quarter- wavelength plate 46.
- the arrows in the beam show the path of the measuring beam through the sub-system via reflections consecutively at the positions q,-q .
- the sensitivity of the differential interferometer system to rotation about the Z axis of the substrate has been referred to so far.
- the method described above for eliminating this sensitivity may of course also be used for eliminating a possible sensitivity of the differential interferometer system to tilts about the X and/or Y axis of the substrate or of the mask.
- the substrate interferometer unit not only comprises the polarization-sensitive beam splitter 1 and the ⁇ /4 plate 2, but also a further ⁇ /4 plate 50, a reflector 52 for the reference beam and a retroreflector 51.
- the broken lines again show the path of the reference beam in so far as this path does not coincide with that of the measuring beam.
- This beam is first reflected twice by the substrate reflector RW at the positions r, and r 2 , and the reference beam is first reflected twice on the reference reflector 52.
- the mask interferometer unit 60 is shown on a larger scale.
- This unit not only comprises the polarization-sensitive beam splitter 5 and the ⁇ /4 plate 8 but also a further ⁇ /4 plate 53, a reflector 57 for the reference beam and three retroreflectors 54, 55 and 56.
- the arrows in the measuring beam b m and the reference beam b r show the paths of these beams through the unit.
- the measuring beam is reflected consecutively at the positions r 3 -r 9 and then returns to the substrate interferometer unit and the substrate reflector where it is again reflected twice at the positions r 10 and r u before it is passed to the detector.
- Fig. 21 shows another embodiment of a sub-system comprising the mask interferometer and a reflector unit.
- This unit comprises a first prism 60 having a reflecting face 61 and a second prism 65 having reflecting faces 66 and 67.
- the measuring beam and the reference beam upon passage through the sub-system, are not reversed, i.e. the left part and the right part of these beams are not interchanged. This is denoted by the arrows at right angles to the beams.
- the measuring beam denoted by the solid lines, is reflected consecutively at the positions s,-s 7 , inter alia, once by the mask reflector RM and once by the reflector MI.
- Fig. 22 shows an embodiment which is similar to that shown in Fig. 21 but in which the prisms 60 and 65 have been replaced by a trapezoidal prism 70 having reflecting faces 71, 72 and 73. Also in this embodiment, the measuring beam is reflected seven times, at the positions t,-t 7 , likewise as the reference beam.
- the beam may have a width of only 1/4. a, in which a is the height of the beam splitter 5, whereas the beam width may be 1/2. a in the embodiment shown in Fig. 21. Fig.
- FIG. 23 shows a further embodiment of the differential interferometer system in which the rotation of the substrate reflector RW is compensated because the measuring beam b m undergoes an odd number of reflections upon its passage through the mask interferometer sub-system.
- This Figure also shows the required radiation source 80, for example a HeNe Zeeman laser, and two lenses 82 and 83 which constitute a beam-widening optical system.
- the substrate interferometer has the same structure as that in Fig. 1.
- the mask interferometer differs from that shown in Fig. 1 in that a retroreflector 87 replacing the reflector MI in Fig. 1 is arranged between the ⁇ /4 plate 8 and the substrate reflector RM.
- the path of the reference beam inco ⁇ orates a ⁇ /4 plate 46 and an extra reflector 88 is arranged above the retroreflector 7.
- the measuring beam b m coming from the position P2 on the substrate reflector is reflected to the retroreflector 87 by the interface 10 of the beam splitter 5. Via reflections on the oblique sides of this reflector, the measuring beam is sent to the retroreflector 6.
- This reflector subsequently passes the measuring beam to the mask reflector RM .
- the measuring beam reflected at the position P4 of this reflector is reflected by the interface 10 to the substrate interferometer.
- the measuring beam b' m is sent to the detector 90 via the reflectors 86 and 85.
- the reference beam b r coming from the substrate interferometer is passed by the interface 10 towards the retroreflector 7 by which it is reflected to the interface 10 again.
- This interface then reflects the reference beam to the retroreflector 6 which reflects the reference beam to the interface 10 again.
- This interface subsequently reflects the reference beam to the reflector 88.
- the reference beam reflected by the reflector 88 is then passed by the interface 10 towards the substrate interferometer.
- Fig. 24 shows an alternative to the embodiment shown in Fig. 23, in which the retroreflectors 7 and 87 in the mask interferometer have been replaced by a penta- prism unit 92 and a reflector MI.
- the measuring beam b m coming from the substrate interferometer is reflected by the interface 10 to the reflector MI which reflects the measuring beam to the unit 92.
- This unit reflects the measuring beam to the position P4 on the mask reflector RM.
- the measuring beam coming from the position P4 is reflected by the interface 10 towards the substrate interferometer.
- the reference beam b r coming from the substrate interferometer is passed by the interface 10 towards the reflector 88 which reflects this beam to the interface again.
- Fig. 25 illustrates the effect of the described compensation by means of an odd number of reflections in the mask interferometer.
- This Figure shows the contrast (con) in the interferometer signal as a function of the rotation (rot in mrad) of the substrate reflector.
- the curve 95 applies to the case where there is no compensation and the curve 96 applies to the case where said compensation is used.
- the described compensation for the substrate reflector tilt or rotation may not only be used in a differential interferometer system but also in a single system, i.e.
- FIG. 26a, 26b and 26c show an embodiment of such an interferometer system in different cross- sections.
- the incoming measuring beam is first passed, via reflection u, on the interface 9 of the beam splitter 1 , to the substrate reflector RW where it is reflected at the position u 2 . Subsequently, the measuring beam traverses the beam splitter 1 via reflections at the positions u 3 and u 4 of the retroreflector 4 so as to be subsequently reflected once more at the position u 5 by the substrate reflector, after which it leaves the beam splitter via reflection on the interface 9.
- the reference beam is reflected consecutively at the positions u 7 , u 3 , u 4 , u 6 and u 8 , thus, inter alia, twice on a reference reflector 130, via the ⁇ /4 plate 131.
- the measuring beam and reference beam coming from the beam splitter 1 are subsequently reflected by the faces 126, 127 and 121 of the prisms 125 and 120, respectively, at the positions u 9 , u 10 and u ⁇ , as is shown in Fig. 26a, whereafter these beams again enter the beam splitter 1.
- the measuring beam is subsequently reflected at the positions u 13 and u, 4 of the substrate reflector.
- the measuring beam and reference beam coming from the beam splitter thus undergo three reflections before they re- enter the beam splitter.
- a substrate interferometer system having five measuring axes may be used in a stepping lithographic projection apparatus, not only for measuring the X position but also the Y position, the rotation of the substrate about the optical axis, or Z axis, and the tilts of the substrate about the X and Y axes.
- two interferometer units are then used, one of which has three measuring axes and the other has two measuring axes.
- differential interferometer system may be extended to five measuring axes, the system then having five measuring axes, for example, both at the location of the substrate and at the location of the mask, and a differential measurement takes place, for example, along all of these axes.
- the measurements are insensitive to disturbances, such as air turbulences, between the mask interferometer and the substrate interferometer,
- the invention has been described with reference to its use in an apparatus for step-and-scan imaging of a mask pattern on a substrate for manufacturing integrated circuits. However, it may be alternatively used in such an apparatus for manufacturing integrated optical systems, planar optical systems, guidance and detection patterns for magnetic domain memories, or liquid crystalline image display panels.
- the projection apparatus may not only be a photolithographic apparatus, in which the projection beam is a beam of electromagnetic radiation such as deep UV radiation, and in which the projection system is an optical projection lens system, but also an apparatus in which the projection radiation is a charged-particle radiation such as electron radiation, ion radiation or X-ray radiation and in which an associated projection system, for example, an electron lens system is used.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69705779T DE69705779T2 (de) | 1996-03-06 | 1997-03-04 | Differential-interferometer-system und lithographischer "step and scan" apparat ausgestattet mit diesem system |
KR1019970707885A KR100503877B1 (ko) | 1996-03-06 | 1997-03-04 | 차동간섭계시스템및이시스템을구비한리소그래픽스텝-앤드-스캔장치 |
EP97904550A EP0824722B1 (fr) | 1996-03-06 | 1997-03-04 | Systeme d'interferometre differentiel et dispositif lithographique a balayage par etapes pourvu d'un tel systeme |
JP53161397A JP4075966B2 (ja) | 1996-03-06 | 1997-03-04 | 差分干渉計システム及びこのシステムを具えたリソグラフステップアンドスキャン装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96200615.1 | 1996-03-06 | ||
EP96200615 | 1996-03-06 | ||
US08/812,283 US6046792A (en) | 1996-03-06 | 1997-03-06 | Differential interferometer system and lithographic step-and-scan apparatus provided with such a system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997033205A1 true WO1997033205A1 (fr) | 1997-09-12 |
Family
ID=26142575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB1997/000197 WO1997033205A1 (fr) | 1996-03-06 | 1997-03-04 | Systeme d'interferometre differentiel et dispositif lithographique a balayage par etapes pourvu d'un tel systeme |
Country Status (4)
Country | Link |
---|---|
US (1) | US6046792A (fr) |
EP (1) | EP0824722B1 (fr) |
JP (1) | JP4075966B2 (fr) |
WO (1) | WO1997033205A1 (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999032848A1 (fr) * | 1997-12-22 | 1999-07-01 | Asm Lithography B.V. | Systeme interferometrique a deux longueurs d'onde, et appareil lithographique pourvu de ce systeme |
EP0957275A2 (fr) | 1998-05-14 | 1999-11-17 | Asm Lithography B.V. | Palier à gaz et appareil de lithographie comprenant un tel palier |
GB2358920A (en) * | 1999-10-07 | 2001-08-08 | Mitutoyo Corp | Method and apparatus for measuring opposite surfaces |
EP1347336A1 (fr) * | 1997-12-02 | 2003-09-24 | ASML Netherlands B.V. | Système interférométrique et appareil lithographique comprenant un tel système |
US6721035B1 (en) | 1999-04-21 | 2004-04-13 | Asml Netherlands B.V. | Lithographic projection apparatus |
US6855486B1 (en) | 1999-09-29 | 2005-02-15 | Asml Netherlands B.V. | Lithographic method and apparatus |
US6924882B2 (en) | 1999-12-21 | 2005-08-02 | Asml Netherlands B.V. | Balanced positioning system for use in lithographic apparatus |
US7012672B2 (en) | 2003-03-10 | 2006-03-14 | Asml Netherlands B.V. | Lithographic apparatus, system, method, computer program, and apparatus for height map analysis |
US7684012B2 (en) | 2005-03-29 | 2010-03-23 | Asml Netherlands B.V. | Lithographic device, device manufacturing method and device manufactured thereby |
CZ304317B6 (cs) * | 2012-12-18 | 2014-02-26 | Ústav přístrojové techniky Akademie věd ČR, v.v.i. | Interferometrická sestava pro diferenční měření vzdálenosti |
Families Citing this family (418)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030145353A1 (en) * | 1997-05-07 | 2003-07-31 | Lightner Jonathan E. | Starch biosynthetic enzymes |
DE69933903T2 (de) * | 1998-04-14 | 2007-05-24 | Asml Netherlands B.V. | Lithograpischer Projektionsapparat und Verfahren zur Herstellung einer Vorrichtung |
US7139080B2 (en) | 1998-09-18 | 2006-11-21 | Zygo Corporation | Interferometry systems involving a dynamic beam-steering assembly |
US6888638B1 (en) | 1999-05-05 | 2005-05-03 | Zygo Corporation | Interferometry system having a dynamic beam steering assembly for measuring angle and distance |
TWI231405B (en) * | 1999-12-22 | 2005-04-21 | Asml Netherlands Bv | Lithographic projection apparatus, position detection device, and method of manufacturing a device using a lithographic projection apparatus |
TW588222B (en) * | 2000-02-10 | 2004-05-21 | Asml Netherlands Bv | Cooling of voice coil motors in lithographic projection apparatus |
TW509823B (en) | 2000-04-17 | 2002-11-11 | Asml Netherlands Bv | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
JP2004510129A (ja) * | 2000-05-17 | 2004-04-02 | ザイゴ コーポレイション | 干渉装置および干渉方法 |
US7508487B2 (en) * | 2000-06-01 | 2009-03-24 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
US6630984B2 (en) | 2000-08-03 | 2003-10-07 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
US7561270B2 (en) * | 2000-08-24 | 2009-07-14 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and device manufactured thereby |
TW527526B (en) * | 2000-08-24 | 2003-04-11 | Asml Netherlands Bv | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
TWI232356B (en) | 2000-09-04 | 2005-05-11 | Asml Netherlands Bv | Lithographic projection apparatus, device manufacturing method and device manufactured thereby |
TW548524B (en) * | 2000-09-04 | 2003-08-21 | Asm Lithography Bv | Lithographic projection apparatus, device manufacturing method and device manufactured thereby |
EP1197803B1 (fr) | 2000-10-10 | 2012-02-01 | ASML Netherlands B.V. | Appareil lithographique |
EP1679551A1 (fr) | 2000-11-07 | 2006-07-12 | ASML Netherlands B.V. | Appareil lithographique et procédé de fabrication du dispositif |
TW591342B (en) * | 2000-11-30 | 2004-06-11 | Asml Netherlands Bv | Lithographic projection apparatus and integrated circuit manufacturing method using a lithographic projection apparatus |
US7113258B2 (en) * | 2001-01-15 | 2006-09-26 | Asml Netherlands B.V. | Lithographic apparatus |
US6792591B2 (en) * | 2001-02-28 | 2004-09-14 | Asml Masktools B.V. | Method of identifying an extreme interaction pitch region, methods of designing mask patterns and manufacturing masks, device manufacturing methods and computer programs |
KR100597035B1 (ko) * | 2001-03-01 | 2006-07-04 | 에이에스엠엘 네델란즈 비.브이. | 마스크핸들링방법, 마스크, 그를 위한 그리퍼를 포함하는기구 또는 장치, 디바이스 제조방법 및 그 디바이스 |
EP1390690A4 (fr) * | 2001-03-13 | 2009-07-08 | Zygo Corp | Reduction d'erreurs cycliques dans des mesures de position interferometriques moyennes |
US7735052B2 (en) * | 2001-04-24 | 2010-06-08 | Asml Masktools Netherlands B.V. | Method of identifying an extreme interaction pitch region, methods of designing mask patterns and manufacturing masks, device manufacturing methods and computer programs |
KR100583694B1 (ko) | 2001-05-23 | 2006-05-25 | 에이에스엠엘 네델란즈 비.브이. | 정렬마크가 제공된 기판, 마스크 설계방법, 컴퓨터프로그램, 상기 마크를 노광하는 마스크, 디바이스제조방법 및 그 디바이스 |
KR100548713B1 (ko) * | 2001-06-20 | 2006-02-02 | 에이에스엠엘 네델란즈 비.브이. | 디바이스제조방법, 이것에 의하여 제조된 디바이스 및상기 방법에 사용하기 위한 마스크 |
US6795197B2 (en) | 2001-06-21 | 2004-09-21 | Zygo Corporation | Interferometer system and litographic step-and-scan apparatus provided with such a system |
TW529172B (en) * | 2001-07-24 | 2003-04-21 | Asml Netherlands Bv | Imaging apparatus |
US6847452B2 (en) * | 2001-08-02 | 2005-01-25 | Zygo Corporation | Passive zero shear interferometers |
US6987569B2 (en) * | 2001-08-23 | 2006-01-17 | Zygo Corporation | Dynamic interferometer controlling direction of input beam |
US6762845B2 (en) * | 2001-08-23 | 2004-07-13 | Zygo Corporation | Multiple-pass interferometry |
WO2003019112A1 (fr) * | 2001-08-23 | 2003-03-06 | Zygo Corporation | Interferometrie optique |
US6912054B2 (en) * | 2001-08-28 | 2005-06-28 | Zygo Corporation | Interferometric stage system |
US7026081B2 (en) | 2001-09-28 | 2006-04-11 | Asml Masktools B.V. | Optical proximity correction method utilizing phase-edges as sub-resolution assist features |
KR100592822B1 (ko) * | 2001-10-19 | 2006-06-23 | 에이에스엠엘 네델란즈 비.브이. | 리소그래피장치, 디바이스제조방법 |
US7042574B2 (en) * | 2001-12-03 | 2006-05-09 | Zygo Corporation | Compensating for effects of non-isotropic gas mixtures in interferometers |
US6757066B2 (en) * | 2002-01-28 | 2004-06-29 | Zygo Corporation | Multiple degree of freedom interferometer |
TWI278599B (en) * | 2002-01-28 | 2007-04-11 | Zygo Corp | Multi-axis interferometer |
US6819434B2 (en) * | 2002-01-28 | 2004-11-16 | Zygo Corporation | Multi-axis interferometer |
WO2003069264A2 (fr) * | 2002-02-12 | 2003-08-21 | Zygo Corporation | Classification et correction des erreurs non cycliques des systemes d'interferometrie |
US7057739B2 (en) * | 2002-02-12 | 2006-06-06 | Zygo Corporation | Separated beam multiple degree of freedom interferometer |
JP4147785B2 (ja) * | 2002-02-27 | 2008-09-10 | 株式会社ニコン | 干渉計、露光装置、露光方法及びステージ装置 |
US6906784B2 (en) * | 2002-03-04 | 2005-06-14 | Zygo Corporation | Spatial filtering in interferometry |
US7333178B2 (en) * | 2002-03-18 | 2008-02-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7170587B2 (en) * | 2002-03-18 | 2007-01-30 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1349010B1 (fr) | 2002-03-28 | 2014-12-10 | ASML Netherlands B.V. | Appareil lithographique et méthode de fabrication d'un dispositif |
EP1349008A1 (fr) * | 2002-03-28 | 2003-10-01 | ASML Netherlands B.V. | Appareil lithographique et méthode de fabrication d'un dispositif |
US7030993B2 (en) * | 2002-04-24 | 2006-04-18 | Zygo Corporation | Athermal zero-shear interferometer |
EP1359469B1 (fr) | 2002-05-01 | 2011-03-02 | ASML Netherlands B.V. | Support, appareil de projection lithographique et méthode de fabrication d'un dispositif |
US7330274B2 (en) * | 2002-05-13 | 2008-02-12 | Zygo Corporation | Compensation for geometric effects of beam misalignments in plane mirror interferometers |
EP1367446A1 (fr) | 2002-05-31 | 2003-12-03 | ASML Netherlands B.V. | Appareil lithographique |
AU2003247779A1 (en) | 2002-07-08 | 2004-01-23 | Zygo Corporation | Cyclic error compensation in interferometry systems |
US7428685B2 (en) * | 2002-07-08 | 2008-09-23 | Zygo Corporation | Cyclic error compensation in interferometry systems |
US7616322B2 (en) * | 2002-07-08 | 2009-11-10 | Zygo Corporation | Cyclic error compensation in interferometry systems |
CN100401193C (zh) * | 2002-07-11 | 2008-07-09 | Asml荷兰有限公司 | 光刻装置及制造集成电路的方法 |
EP1383007A1 (fr) * | 2002-07-16 | 2004-01-21 | ASML Netherlands B.V. | Appareil lithographique et méthode de fabrication d'un dispositif |
US7262860B2 (en) * | 2002-07-29 | 2007-08-28 | Zygo Corporation | Compensation for errors in off-axis interferometric measurements |
SG109523A1 (en) * | 2002-08-15 | 2005-03-30 | Asml Netherlands Bv | Lithographic projection apparatus and reflector assembly for use in said apparatus |
US7274462B2 (en) * | 2002-09-09 | 2007-09-25 | Zygo Corporation | In SITU measurement and compensation of errors due to imperfections in interferometer optics in displacement measuring interferometry systems |
AU2003267144A1 (en) * | 2002-09-09 | 2004-03-29 | Zygo Corporation | Measurement and compensation of errors in interferometrs |
JP4222927B2 (ja) * | 2002-09-20 | 2009-02-12 | エーエスエムエル ネザーランズ ビー.ブイ. | 少なくとも2波長を使用するリソグラフィ装置用アライメント・システム |
EP2204697A3 (fr) | 2002-09-20 | 2012-04-18 | ASML Netherlands B.V. | Structure de marqueur, appareil de projection lithographique, procédé pour alignement de substrats et substrat comprenant une telle structure de marqueur |
KR100573665B1 (ko) * | 2002-09-30 | 2006-04-24 | 에이에스엠엘 네델란즈 비.브이. | 리소그래피장치 및 디바이스 제조방법 |
AU2003298613A1 (en) * | 2002-11-04 | 2004-06-07 | Zygo Corporation | Compensation of refractivity perturbations in an intererometer path |
SG121822A1 (en) * | 2002-11-12 | 2006-05-26 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
US9482966B2 (en) | 2002-11-12 | 2016-11-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
SG137657A1 (en) * | 2002-11-12 | 2007-12-28 | Asml Masktools Bv | Method and apparatus for performing model-based layout conversion for use with dipole illumination |
EP2495613B1 (fr) | 2002-11-12 | 2013-07-31 | ASML Netherlands B.V. | Appareil lithographique |
US7110081B2 (en) * | 2002-11-12 | 2006-09-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
CN101713932B (zh) | 2002-11-12 | 2012-09-26 | Asml荷兰有限公司 | 光刻装置和器件制造方法 |
SG116510A1 (fr) * | 2002-11-12 | 2005-11-28 | ||
US10503084B2 (en) | 2002-11-12 | 2019-12-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1429188B1 (fr) | 2002-11-12 | 2013-06-19 | ASML Netherlands B.V. | Appareil lithographique à projection |
TWI304157B (en) * | 2002-11-27 | 2008-12-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
SG111171A1 (en) * | 2002-11-27 | 2005-05-30 | Asml Netherlands Bv | Lithographic projection apparatus and device manufacturing method |
SG115590A1 (en) * | 2002-11-27 | 2005-10-28 | Asml Netherlands Bv | Lithographic projection apparatus and device manufacturing method |
US7075619B2 (en) * | 2002-12-12 | 2006-07-11 | Zygo Corporation | In-process correction of stage mirror deformations during a photolithography exposure cycle |
DE60323927D1 (de) * | 2002-12-13 | 2008-11-20 | Asml Netherlands Bv | Lithographischer Apparat und Verfahren zur Herstellung einer Vorrichtung |
EP1431825A1 (fr) * | 2002-12-20 | 2004-06-23 | ASML Netherlands B.V. | Appareil lithographique, méthode de fabrication d'un dispositif et porte-substrat |
TWI254841B (en) * | 2002-12-23 | 2006-05-11 | Asml Netherlands Bv | Lithographic apparatus |
EP1434092A1 (fr) * | 2002-12-23 | 2004-06-30 | ASML Netherlands B.V. | Appareil lithographique, procédé pour la production d'un dispositif et dispositif produit par ce procédé |
TWI230847B (en) * | 2002-12-23 | 2005-04-11 | Asml Netherlands Bv | Contamination barrier with expandable lamellas |
TWI286674B (en) * | 2002-12-27 | 2007-09-11 | Asml Netherlands Bv | Container for a mask, method of transferring lithographic masks therein and method of scanning a mask in a container |
TWI237744B (en) | 2003-01-14 | 2005-08-11 | Asml Netherlands Bv | Level sensor for lithographic apparatus |
TWI277827B (en) * | 2003-01-14 | 2007-04-01 | Asml Masktools Bv | Method of optical proximity correction design for contact hole mask |
TWI304158B (en) * | 2003-01-15 | 2008-12-11 | Asml Netherlands Bv | Detection assembly and lithographic projection apparatus provided with such a detection assembly |
US6943941B2 (en) * | 2003-02-27 | 2005-09-13 | Asml Netherlands B.V. | Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems |
US7206059B2 (en) * | 2003-02-27 | 2007-04-17 | Asml Netherlands B.V. | Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems |
EP1457833B1 (fr) | 2003-03-11 | 2012-05-30 | ASML Netherlands B.V. | Appareil lithographique, procédé pour la production d'un dispositif et dispositif produit par ce procédé |
SG115630A1 (en) * | 2003-03-11 | 2005-10-28 | Asml Netherlands Bv | Temperature conditioned load lock, lithographic apparatus comprising such a load lock and method of manufacturing a substrate with such a load lock |
SG115631A1 (en) * | 2003-03-11 | 2005-10-28 | Asml Netherlands Bv | Lithographic projection assembly, load lock and method for transferring objects |
SG115629A1 (en) * | 2003-03-11 | 2005-10-28 | Asml Netherlands Bv | Method and apparatus for maintaining a machine part |
SG125108A1 (en) * | 2003-03-11 | 2006-09-29 | Asml Netherlands Bv | Assembly comprising a sensor for determining at least one of tilt and height of a substrate, a method therefor and a lithographic projection apparatus |
CN101840163B (zh) * | 2003-03-31 | 2012-06-06 | Asml蒙片工具有限公司 | 照明源和掩模优化 |
JP4394500B2 (ja) * | 2003-04-09 | 2010-01-06 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ装置、デバイス製造方法、及びコンピュータ・プログラム |
JP4071733B2 (ja) | 2003-04-17 | 2008-04-02 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ装置、デバイス製造方法、およびコンピュータ・プログラム |
DE602004019835D1 (de) | 2003-04-22 | 2009-04-23 | Asml Netherlands Bv | Träger und Verfahren zur Herstellung eines Trägers |
EP1475666A1 (fr) | 2003-05-06 | 2004-11-10 | ASML Netherlands B.V. | Dispositif de maintien de substrat pour appareil lithographique |
EP1475667A1 (fr) * | 2003-05-09 | 2004-11-10 | ASML Netherlands B.V. | Appareil lithographique et méthode de fabrication d'un dispositif |
US20040263816A1 (en) * | 2003-05-12 | 2004-12-30 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1477861A1 (fr) * | 2003-05-16 | 2004-11-17 | ASML Netherlands B.V. | Méthode de calibration d'un appareil lithographique, méthode d'alignement, programme d'ordinateur, appareil lithographique et procédé de fabrication d'un dispositif |
SG141228A1 (en) * | 2003-05-19 | 2008-04-28 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
TWI442694B (zh) * | 2003-05-30 | 2014-06-21 | Asml Netherlands Bv | 微影裝置及元件製造方法 |
US7213963B2 (en) | 2003-06-09 | 2007-05-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1486828B1 (fr) | 2003-06-09 | 2013-10-09 | ASML Netherlands B.V. | Appareil lithographique et méthode de fabrication d'un dispositif |
US7684008B2 (en) | 2003-06-11 | 2010-03-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7317504B2 (en) * | 2004-04-08 | 2008-01-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1486824A1 (fr) * | 2003-06-11 | 2004-12-15 | ASML Netherlands B.V. | Système porte-objet mobile pour un appareil d'exposition, appareil d'exposition et méthode de fabrication d'un dispositif |
US7327465B2 (en) * | 2003-06-19 | 2008-02-05 | Zygo Corporation | Compensation for effects of beam misalignments in interferometer metrology systems |
US7286240B2 (en) * | 2003-06-19 | 2007-10-23 | Zygo Corporation | Compensation for geometric effects of beam misalignments in plane mirror interferometer metrology systems |
US7180603B2 (en) * | 2003-06-26 | 2007-02-20 | Zygo Corporation | Reduction of thermal non-cyclic error effects in interferometers |
EP1491967A1 (fr) * | 2003-06-27 | 2004-12-29 | ASML Netherlands B.V. | Méthode et appareil pour positionner un substrat sur une table à substrat |
TWI251129B (en) * | 2003-06-27 | 2006-03-11 | Asml Netherlands Bv | Lithographic apparatus and integrated circuit manufacturing method |
US7355673B2 (en) * | 2003-06-30 | 2008-04-08 | Asml Masktools B.V. | Method, program product and apparatus of simultaneous optimization for NA-Sigma exposure settings and scattering bars OPC using a device layout |
DE60321779D1 (de) | 2003-06-30 | 2008-08-07 | Asml Netherlands Bv | Lithographischer Apparat und Verfahren zur Herstellung eines Artikels |
JP4520787B2 (ja) * | 2003-06-30 | 2010-08-11 | エーエスエムエル マスクツールズ ビー.ブイ. | 半波長以下リソグラフィ模様付けの改良型散乱バーopc適用方法 |
SG144723A1 (en) * | 2003-06-30 | 2008-08-28 | Asml Masktools Bv | A method, program product and apparatus for generating assist features utilizing an image field map |
TWI284253B (en) * | 2003-07-01 | 2007-07-21 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
US7248339B2 (en) * | 2003-07-04 | 2007-07-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1496397A1 (fr) * | 2003-07-11 | 2005-01-12 | ASML Netherlands B.V. | Procédé et système de correction anticipé de type overlay de distortion et décalage induits par un motif, et appareil de projection lithographique utilisant ces procédé et système |
US7384149B2 (en) | 2003-07-21 | 2008-06-10 | Asml Netherlands B.V. | Lithographic projection apparatus, gas purging method and device manufacturing method and purge gas supply system |
EP1500979A1 (fr) * | 2003-07-21 | 2005-01-26 | ASML Netherlands B.V. | Appareil lithographique et méthode pour la fabrication d'un dispositif |
EP1500987A1 (fr) * | 2003-07-21 | 2005-01-26 | ASML Netherlands B.V. | Appareil lithographique, méthode de fabrication d'un dispositif et dispositif fabriqué par cette méthode |
EP1500980A1 (fr) * | 2003-07-22 | 2005-01-26 | ASML Netherlands B.V. | Appareil lithographique, méthode de fabrication d'un dispositif et dispositif produit par cette méthode |
TWI254188B (en) * | 2003-07-23 | 2006-05-01 | Asml Netherlands Bv | Lithographic projection apparatus and article holder therefor |
US7456932B2 (en) * | 2003-07-25 | 2008-11-25 | Asml Netherlands B.V. | Filter window, lithographic projection apparatus, filter window manufacturing method, device manufacturing method and device manufactured thereby |
JP2005057294A (ja) * | 2003-08-07 | 2005-03-03 | Asml Netherlands Bv | インタフェースユニット、該インタフェースユニットを含むリソグラフィ投影装置、及びデバイス製造方法 |
JP4146825B2 (ja) * | 2003-08-27 | 2008-09-10 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィック装置、デバイス製造方法及びスライド・アセンブリ |
TWI245163B (en) | 2003-08-29 | 2005-12-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
US6873938B1 (en) | 2003-09-17 | 2005-03-29 | Asml Netherlands B.V. | Adaptive lithographic critical dimension enhancement |
US8064730B2 (en) * | 2003-09-22 | 2011-11-22 | Asml Netherlands B.V. | Device manufacturing method, orientation determination method and lithographic apparatus |
US6973636B2 (en) * | 2003-10-17 | 2005-12-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of defining forbidden pitches for a lithography exposure tool |
WO2005045529A2 (fr) * | 2003-11-04 | 2005-05-19 | Zygo Corporation | Caracterisation et compensation d'erreurs dans un systeme interferometrique multiaxial |
US7253077B2 (en) * | 2003-12-01 | 2007-08-07 | Asml Netherlands B.V. | Substrate, method of preparing a substrate, method of measurement, lithographic apparatus, device manufacturing method and device manufactured thereby, and machine-readable storage medium |
US7565219B2 (en) * | 2003-12-09 | 2009-07-21 | Asml Netherlands B.V. | Lithographic apparatus, method of determining a model parameter, device manufacturing method, and device manufactured thereby |
US7288779B2 (en) * | 2003-12-17 | 2007-10-30 | Asml Netherlands B.V. | Method for position determination, method for overlay optimization, and lithographic projection apparatus |
US20050134865A1 (en) * | 2003-12-17 | 2005-06-23 | Asml Netherlands B.V. | Method for determining a map, device manufacturing method, and lithographic apparatus |
US7292315B2 (en) * | 2003-12-19 | 2007-11-06 | Asml Masktools B.V. | Optimized polarization illumination |
US6955074B2 (en) * | 2003-12-29 | 2005-10-18 | Asml Netherlands, B.V. | Lithographic apparatus, method of calibration, calibration plate, device manufacturing method, and device manufactured thereby |
US7349101B2 (en) * | 2003-12-30 | 2008-03-25 | Asml Netherlands B.V. | Lithographic apparatus, overlay detector, device manufacturing method, and device manufactured thereby |
US7145641B2 (en) * | 2003-12-31 | 2006-12-05 | Asml Netherlands, B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
WO2005067815A1 (fr) * | 2004-01-05 | 2005-07-28 | Zygo Corporation | Alignement d'etages dans des outils lithographiques |
US7283248B2 (en) * | 2004-01-06 | 2007-10-16 | Zygo Corporation | Multi-axis interferometers and methods and systems using multi-axis interferometers |
US7256873B2 (en) * | 2004-01-28 | 2007-08-14 | Asml Netherlands B.V. | Enhanced lithographic resolution through double exposure |
US7342646B2 (en) * | 2004-01-30 | 2008-03-11 | Asml Masktools B.V. | Method of manufacturing reliability checking and verification for lithography process using a calibrated eigen decomposition model |
US7352472B2 (en) * | 2004-02-18 | 2008-04-01 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, and method for determining z-displacement |
US7113256B2 (en) * | 2004-02-18 | 2006-09-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method with feed-forward focus control |
JP2005243928A (ja) * | 2004-02-26 | 2005-09-08 | Fujitsu Ltd | トレンチアイソレーションで分離されたトランジスタ対を有する半導体装置 |
US7310152B2 (en) * | 2004-03-03 | 2007-12-18 | Zygo Corporation | Interferometer assemblies having reduced cyclic errors and system using the interferometer assemblies |
US7184123B2 (en) * | 2004-03-24 | 2007-02-27 | Asml Netherlands B.V. | Lithographic optical system |
US7856606B2 (en) * | 2004-03-31 | 2010-12-21 | Asml Masktools B.V. | Apparatus, method and program product for suppressing waviness of features to be printed using photolithographic systems |
TWI327685B (en) * | 2004-04-09 | 2010-07-21 | Asml Masktools Bv | Optical proximity correction using chamfers and rounding at corners |
US7375823B2 (en) * | 2004-04-22 | 2008-05-20 | Zygo Corporation | Interferometry systems and methods of using interferometry systems |
US7280224B2 (en) * | 2004-04-22 | 2007-10-09 | Zygo Corporation | Interferometry systems and methods of using interferometry systems |
US7289858B2 (en) * | 2004-05-25 | 2007-10-30 | Asml Netherlands B.V. | Lithographic motion control system and method |
US7298493B2 (en) | 2004-06-30 | 2007-11-20 | Zygo Corporation | Interferometric optical assemblies and systems including interferometric optical assemblies |
US7403264B2 (en) | 2004-07-08 | 2008-07-22 | Asml Netherlands B.V. | Lithographic projection apparatus and a device manufacturing method using such lithographic projection apparatus |
US7620930B2 (en) | 2004-08-24 | 2009-11-17 | Asml Masktools B.V. | Method, program product and apparatus for model based scattering bar placement for enhanced depth of focus in quarter-wavelength lithography |
KR100841729B1 (ko) | 2004-09-14 | 2008-06-27 | 에이에스엠엘 마스크툴즈 비.브이. | 풀-칩 제조 신뢰성 체크 및 보정 수행 방법 및 이를 수행하기 위한 컴퓨터 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체 |
US7489407B2 (en) * | 2004-10-06 | 2009-02-10 | Zygo Corporation | Error correction in interferometry systems |
US7262831B2 (en) * | 2004-12-01 | 2007-08-28 | Asml Netherlands B.V. | Lithographic projection apparatus and device manufacturing method using such lithographic projection apparatus |
EP1696273B1 (fr) | 2005-02-23 | 2008-08-06 | ASML MaskTools B.V. | Méthode et appareil pour optimiser l'illumination d'une couche de puce en entier |
WO2006102234A2 (fr) * | 2005-03-18 | 2006-09-28 | Zygo Corporation | Interferometre multiaxial, et procedures et traitement de donnees pour realiser un mappage au moyen d'un miroir |
US20070085984A1 (en) * | 2005-10-18 | 2007-04-19 | Asml Netherlands B.V. | Lithographic projection apparatus, device manufacturing method and device manufactured thereby |
US7548302B2 (en) * | 2005-03-29 | 2009-06-16 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7317506B2 (en) * | 2005-03-29 | 2008-01-08 | Asml Netherlands B.V. | Variable illumination source |
US7738075B2 (en) * | 2005-05-23 | 2010-06-15 | Asml Netherlands B.V. | Lithographic attribute enhancement |
US7298455B2 (en) * | 2005-06-17 | 2007-11-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7528962B2 (en) * | 2005-06-29 | 2009-05-05 | Zygo Corporation | Apparatus and methods for reducing non-cyclic non-linear errors in interferometry |
US7512928B2 (en) * | 2005-08-12 | 2009-03-31 | Texas Instruments Incorporated | Sub-resolution assist feature to improve symmetry for contact hole lithography |
US7239371B2 (en) * | 2005-10-18 | 2007-07-03 | International Business Machines Corporation | Density-aware dynamic leveling in scanning exposure systems |
US7569309B2 (en) * | 2005-11-09 | 2009-08-04 | Texas Instruments Incorporated | Gate critical dimension variation by use of ghost features |
US7626181B2 (en) * | 2005-12-09 | 2009-12-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7493589B2 (en) | 2005-12-29 | 2009-02-17 | Asml Masktools B.V. | Method, program product and apparatus for model based geometry decomposition for use in a multiple exposure process |
US7649611B2 (en) | 2005-12-30 | 2010-01-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7486854B2 (en) * | 2006-01-24 | 2009-02-03 | Uni-Pixel Displays, Inc. | Optical microstructures for light extraction and control |
US7450799B2 (en) * | 2006-01-24 | 2008-11-11 | Uni-Pixel Displays, Inc. | Corner-cube retroreflectors for displays |
US7804646B2 (en) * | 2006-01-31 | 2010-09-28 | Asml Masktools B.V. | Method for decomposition of a customized DOE for use with a single exposure into a set of multiple exposures using standard DOEs with optimized exposure settings |
US20070212649A1 (en) * | 2006-03-07 | 2007-09-13 | Asml Netherlands B.V. | Method and system for enhanced lithographic patterning |
US7598024B2 (en) | 2006-03-08 | 2009-10-06 | Asml Netherlands B.V. | Method and system for enhanced lithographic alignment |
EP1843202B1 (fr) * | 2006-04-06 | 2015-02-18 | ASML Netherlands B.V. | Procédé pour effectuer une lithographie dipôle à double fond noir |
US7818151B2 (en) * | 2006-05-02 | 2010-10-19 | Asml Masktools B.V. | Method, program product and apparatus for obtaining short-range flare model parameters for lithography simulation tool |
US7583359B2 (en) * | 2006-05-05 | 2009-09-01 | Asml Netherlands B.V. | Reduction of fit error due to non-uniform sample distribution |
US7936443B2 (en) * | 2006-05-09 | 2011-05-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7697115B2 (en) * | 2006-06-23 | 2010-04-13 | Asml Holding N.V. | Resonant scanning mirror |
JP4607151B2 (ja) * | 2006-07-06 | 2011-01-05 | エーエスエムエル マスクツールズ ビー.ブイ. | 改良型cplマスクおよびそれを生成する方法およびプログラム製品 |
JP4922112B2 (ja) * | 2006-09-13 | 2012-04-25 | エーエスエムエル マスクツールズ ビー.ブイ. | パターン分解フィーチャのためのモデルベースopcを行うための方法および装置 |
SG141355A1 (en) | 2006-09-13 | 2008-04-28 | Asml Masktools Bv | A method for performing pattern decomposition based on feature pitch |
US8908144B2 (en) * | 2006-09-27 | 2014-12-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8120753B2 (en) * | 2006-11-08 | 2012-02-21 | Asml Masktools B.V. | Method, program product and apparatus for generating a calibrated pupil kernel and method of using the same in a lithography simulation process |
JP4700672B2 (ja) | 2006-11-08 | 2011-06-15 | エーエスエムエル マスクツールズ ビー.ブイ. | ライン幅粗さおよびレジストパターン不良を予測する方法、プログラム、および装置、ならびにそのリソグラフィシミュレーションプロセスでの使用 |
JP5032948B2 (ja) | 2006-11-14 | 2012-09-26 | エーエスエムエル マスクツールズ ビー.ブイ. | Dptプロセスで用いられるパターン分解を行うための方法、プログラムおよび装置 |
US7576868B2 (en) | 2007-06-08 | 2009-08-18 | Zygo Corporation | Cyclic error compensation in interferometry systems |
US7999920B2 (en) | 2007-08-22 | 2011-08-16 | Asml Netherlands B.V. | Method of performing model-based scanner tuning |
US9779186B2 (en) | 2007-08-28 | 2017-10-03 | Asml Netherlands B.V. | Methods for performing model-based lithography guided layout design |
CN101118377B (zh) * | 2007-10-26 | 2010-05-19 | 西安交通大学 | 气压半悬浮二自由度共基面运动工作台 |
JP4779003B2 (ja) * | 2007-11-13 | 2011-09-21 | エーエスエムエル ネザーランズ ビー.ブイ. | フルチップ設計のパターン分解を行うための方法 |
US7673278B2 (en) * | 2007-11-29 | 2010-03-02 | Tokyo Electron Limited | Enhanced process yield using a hot-spot library |
NL1036189A1 (nl) | 2007-12-05 | 2009-06-08 | Brion Tech Inc | Methods and System for Lithography Process Window Simulation. |
NL1036750A1 (nl) * | 2008-04-14 | 2009-10-15 | Brion Tech Inc | A Method Of Performing Mask-Writer Tuning and Optimization. |
NL1036647A1 (nl) * | 2008-04-16 | 2009-10-19 | Asml Netherlands Bv | A method of measuring a lithographic projection apparatus. |
NL1036891A1 (nl) * | 2008-05-02 | 2009-11-03 | Asml Netherlands Bv | Dichroic mirror, method for manufacturing a dichroic mirror, lithographic apparatus, semiconductor device and method of manufacturing therefor. |
US9046788B2 (en) * | 2008-05-19 | 2015-06-02 | International Business Machines Corporation | Method for monitoring focus on an integrated wafer |
CN102057330B (zh) * | 2008-06-03 | 2013-07-17 | Asml荷兰有限公司 | 基于模型的扫描器调节方法 |
JP5225463B2 (ja) * | 2008-06-03 | 2013-07-03 | エーエスエムエル ネザーランズ ビー.ブイ. | レンズ加熱補償方法 |
JP4636449B2 (ja) * | 2008-06-10 | 2011-02-23 | 横河電機株式会社 | 遅延干渉計 |
JP4893969B2 (ja) * | 2008-06-10 | 2012-03-07 | 横河電機株式会社 | 遅延干渉計 |
TW201007383A (en) * | 2008-07-07 | 2010-02-16 | Brion Tech Inc | Illumination optimization |
US10025198B2 (en) * | 2008-07-07 | 2018-07-17 | Asml Netherlands B.V. | Smart selection and/or weighting of parameters for lithographic process simulation |
US8340394B2 (en) * | 2008-07-28 | 2012-12-25 | Asml Netherlands B.V. | Method, program product and apparatus for performing a model based coloring process for geometry decomposition for use in a multiple exposure process |
US8224061B2 (en) * | 2008-07-28 | 2012-07-17 | Asml Netherlands B.V. | Method, program product, and apparatus for performing a model based coloring process for pattern decomposition for use in a multiple exposure process |
NL2003654A (en) * | 2008-11-06 | 2010-05-10 | Brion Tech Inc | Methods and system for lithography calibration. |
NL2003696A (en) * | 2008-11-10 | 2010-05-11 | Brion Tech Inc | Scanner model representation with transmission cross coefficients. |
US8092122B2 (en) | 2008-11-10 | 2012-01-10 | Reynolds Consumer Products, Inc. | Connection device for fastening expanded cell confinement structures and methods for doing the same |
NL2003702A (en) | 2008-11-10 | 2010-05-11 | Brion Tech Inc | Pattern selection for lithographic model calibration. |
NL2003718A (en) | 2008-11-10 | 2010-05-11 | Brion Tech Inc | Methods and system for model-based generic matching and tuning. |
JP5629691B2 (ja) | 2008-11-21 | 2014-11-26 | エーエスエムエル ネザーランズ ビー.ブイ. | 高速自由形式ソース・マスク同時最適化方法 |
NL2003699A (en) | 2008-12-18 | 2010-06-21 | Brion Tech Inc | Method and system for lithography process-window-maximixing optical proximity correction. |
NL2004322A (en) * | 2009-04-13 | 2010-10-14 | Asml Netherlands Bv | Cooling device, cooling arrangement and lithographic apparatus comprising a cooling arrangement. |
NL2004242A (en) | 2009-04-13 | 2010-10-14 | Asml Netherlands Bv | Detector module, cooling arrangement and lithographic apparatus comprising a detector module. |
NL2005523A (en) | 2009-10-28 | 2011-05-02 | Asml Netherlands Bv | Selection of optimum patterns in a design layout based on diffraction signature analysis. |
US20110157595A1 (en) * | 2009-12-30 | 2011-06-30 | Yerazunis William S | Rotary Interferometer |
EP2526373B1 (fr) * | 2010-01-22 | 2013-12-11 | Universität Stuttgart | Procédé et agencement d'interférométrie robuste |
CN102236232B (zh) * | 2010-04-29 | 2012-11-28 | 中国科学院上海光学精密机械研究所 | 波面差动干涉空间光解调器 |
NL2007579A (en) | 2010-11-10 | 2012-05-14 | Asml Netherlands Bv | Pattern-dependent proximity matching/tuning including light manipulation by projection optics. |
NL2007577A (en) | 2010-11-10 | 2012-05-14 | Asml Netherlands Bv | Optimization of source, mask and projection optics. |
NL2007642A (en) | 2010-11-10 | 2012-05-14 | Asml Netherlands Bv | Optimization flows of source, mask and projection optics. |
NL2007578A (en) | 2010-11-17 | 2012-05-22 | Asml Netherlands Bv | Pattern-independent and hybrid matching/tuning including light manipulation by projection optics. |
US9588439B1 (en) * | 2010-12-21 | 2017-03-07 | Asml Netherlands B.V. | Information matrix creation and calibration test pattern selection based on computational lithography model parameters |
NL2009982A (en) | 2012-01-10 | 2013-07-15 | Asml Netherlands Bv | Source mask optimization to reduce stochastic effects. |
NL2010163A (en) | 2012-02-07 | 2013-08-08 | Asml Netherlands Bv | Substrate-topography-aware lithography modeling. |
US9940427B2 (en) | 2012-02-09 | 2018-04-10 | Asml Netherlands B.V. | Lens heating aware source mask optimization for advanced lithography |
NL2010647A (en) | 2012-05-04 | 2013-11-06 | Asml Netherlands Bv | Design rule and lithographic process co-optimization. |
KR101757780B1 (ko) | 2012-05-31 | 2017-07-14 | 에이에스엠엘 네델란즈 비.브이. | 구배-기반 패턴 및 평가 지점 선택 |
NL2011592A (en) | 2012-10-31 | 2014-05-06 | Asml Netherlands Bv | Compensation for patterning device deformation. |
CN105074575B (zh) | 2013-02-22 | 2018-06-22 | Asml荷兰有限公司 | 用于三维图案形成装置的光刻模型 |
NL2012197A (en) | 2013-02-25 | 2014-08-26 | Asml Netherlands Bv | Discrete source mask optimization. |
WO2015049099A1 (fr) | 2013-10-01 | 2015-04-09 | Asml Netherlands B.V. | Optimisation d'un masque de source sur la base d'un profil |
EP3105637A1 (fr) | 2014-02-11 | 2016-12-21 | ASML Netherlands B.V. | Modèle pour calculer une variation stochastique dans un motif arbitraire |
KR102146437B1 (ko) | 2014-03-18 | 2020-08-21 | 에이에스엠엘 네델란즈 비.브이. | 패턴 배치 에러 인식의 최적화 |
KR102006321B1 (ko) | 2014-04-14 | 2019-08-01 | 에이에스엠엘 네델란즈 비.브이. | 리소그래피 공정들에 대한 최적화의 흐름들 |
CN106462086B (zh) | 2014-06-25 | 2019-10-15 | Asml荷兰有限公司 | 蚀刻变化容差优化 |
WO2016008711A1 (fr) | 2014-07-14 | 2016-01-21 | Asml Netherlands B.V. | Optimisation des éléments d'assistance et d'une source d'assistance |
WO2016045901A1 (fr) | 2014-09-22 | 2016-03-31 | Asml Netherlands B.V. | Identifiant de fenêtre de traitement |
CN107111237B (zh) | 2014-10-02 | 2020-02-28 | Asml荷兰有限公司 | 辅助特征的基于规则的部署 |
WO2016096309A1 (fr) | 2014-12-15 | 2016-06-23 | Asml Netherlands B.V. | Optimisation basée sur un apprentissage machine |
US10372043B2 (en) | 2014-12-17 | 2019-08-06 | Asml Netherlands B.V. | Hotspot aware dose correction |
US10685158B2 (en) | 2014-12-18 | 2020-06-16 | Asml Netherlands B.V. | Lithography model for 3D features |
TWI620980B (zh) | 2015-02-13 | 2018-04-11 | Asml荷蘭公司 | 影像對數斜率(ils)最佳化 |
WO2016128189A1 (fr) | 2015-02-13 | 2016-08-18 | Asml Netherlands B.V. | Inspection adaptative et métrologie sensibles à la variabilité des processus |
US10459345B2 (en) | 2015-03-06 | 2019-10-29 | Asml Netherlands B.V. | Focus-dose co-optimization based on overlapping process window |
CN107430351B (zh) | 2015-03-16 | 2019-06-11 | Asml荷兰有限公司 | 用于确定抗蚀剂变形的方法 |
US10670973B2 (en) | 2015-05-20 | 2020-06-02 | Asml Netherlands B.V. | Coloring aware optimization |
CN107667315B (zh) | 2015-05-29 | 2021-04-16 | Asml荷兰有限公司 | 使用对源辐射的角分布的多次采样的光刻术模拟 |
EP3387481B1 (fr) | 2015-12-07 | 2024-09-25 | ASML Holding N.V. | Système d'objectif |
US10416566B2 (en) | 2015-12-14 | 2019-09-17 | Asml Netherlands B.V. | Optimization of source and bandwidth for new and existing patterning devices |
US10656531B2 (en) | 2015-12-22 | 2020-05-19 | Asml Netherlands B.V. | Apparatus and method for process-window characterization |
WO2017114662A1 (fr) | 2015-12-31 | 2017-07-06 | Asml Netherlands B.V. | Sélection d'emplacements de mesure pour des processus de formation de motifs |
WO2017114725A1 (fr) | 2015-12-31 | 2017-07-06 | Asml Netherlands B.V. | Dispositifs d'assistance à la gravure |
WO2017162471A1 (fr) | 2016-03-24 | 2017-09-28 | Asml Netherlands B.V. | Optimisation d'appareil de projection lithographique tenant compte d'une caractéristique inter-couche |
US10796063B2 (en) | 2016-04-14 | 2020-10-06 | Asml Netherlands B.V. | Mapping of patterns between design layout and patterning device |
US10896282B2 (en) | 2016-07-12 | 2021-01-19 | Asml Netherlands B.V. | Visualization performance metrics of computational analyses of design layouts |
DE102017103455A1 (de) | 2017-02-20 | 2018-08-23 | Etalon Ag | Messsystem zum Messen von Längen und/oder Längenänderungen |
WO2018033342A1 (fr) | 2016-08-17 | 2018-02-22 | Asml Netherlands B.V. | Conception de procédure de mesure de substrat d'une cible, ou pour cette dernière, comprenant une image latente |
US20210294218A1 (en) | 2016-08-19 | 2021-09-23 | Asml Netherlands B.V. | Modeling post-exposure processes |
WO2018050432A1 (fr) | 2016-09-13 | 2018-03-22 | Asml Netherlands B.V. | Optimisation d'un appareil de lithographie ou d'un processus de formation de motifs sur la base d'une aberration sélectionnée |
CN110121681B (zh) | 2016-12-28 | 2022-04-01 | Asml荷兰有限公司 | 在制造过程中引导过程模型和检查的方法 |
US11016395B2 (en) | 2016-12-28 | 2021-05-25 | Asml Netherlands B.V. | Methods of determining scattering of radiation by structures of finite thicknesses on a patterning device |
CN114415478B (zh) | 2017-01-26 | 2025-01-03 | Asml荷兰有限公司 | 微调过程模型的方法 |
US10996565B2 (en) | 2017-02-22 | 2021-05-04 | Asml Netherlands B.V. | Methods of determining scattering of radiation by structures of finite thicknesses on a patterning device |
KR102449586B1 (ko) | 2017-02-24 | 2022-10-04 | 에이에스엠엘 네델란즈 비.브이. | 기계 학습에 의해 공정 모델들을 결정하는 방법들 |
WO2018206275A1 (fr) | 2017-05-12 | 2018-11-15 | Asml Netherlands B.V. | Procédés d'évaluation de développement de réserve |
WO2018215172A1 (fr) | 2017-05-25 | 2018-11-29 | Asml Holding N.V. | Substrats et procédés d'utilisation de ces substrats |
EP3462240A1 (fr) | 2017-09-27 | 2019-04-03 | ASML Netherlands B.V. | Procede de determination de parametres de commande d'un procede de fabrication d'un dispositif |
EP3688529B1 (fr) | 2017-09-27 | 2023-12-13 | ASML Netherlands B.V. | Procede de determination de parametres de commande d'un procede de fabrication d'un dispositif |
CN118169959A (zh) | 2017-10-11 | 2024-06-11 | Asml荷兰有限公司 | 图案化过程的优化流程 |
WO2019158682A1 (fr) | 2018-02-18 | 2019-08-22 | Asml Netherlands B.V. | Procédé de binarisation et flux d'optimisation de masque de forme libre |
US20200380362A1 (en) | 2018-02-23 | 2020-12-03 | Asml Netherlands B.V. | Methods for training machine learning model for computation lithography |
KR102481727B1 (ko) | 2018-03-19 | 2022-12-29 | 에이에스엠엘 네델란즈 비.브이. | 패터닝 디바이스에 대한 곡선적 패턴들을 결정하는 방법 |
CN116841129A (zh) | 2018-05-07 | 2023-10-03 | Asml荷兰有限公司 | 用于确定与计算光刻掩模模型相关联的电磁场的方法 |
TWI791196B (zh) | 2018-05-24 | 2023-02-01 | 荷蘭商Asml荷蘭公司 | 判定基板之堆疊組態之方法及其相關非暫時性電腦可讀媒體 |
WO2019233711A1 (fr) | 2018-06-04 | 2019-12-12 | Asml Netherlands B.V. | Procédé d'amélioration d'un modèle de processus pour un processus de formation de motifs |
CN117724300A (zh) | 2018-06-15 | 2024-03-19 | Asml荷兰有限公司 | 基于机器学习的逆光学邻近效应校正和过程模型校准 |
KR102529085B1 (ko) | 2018-06-25 | 2023-05-08 | 에이에스엠엘 네델란즈 비.브이. | 성능 매칭에 기초하는 튜닝 스캐너에 대한 파면 최적화 |
EP3594750A1 (fr) | 2018-07-10 | 2020-01-15 | ASML Netherlands B.V. | Détection de défaut caché et estimation d'epe sur la base des informations 3d extraites d'images de faisceau électronique |
WO2020011513A1 (fr) | 2018-07-12 | 2020-01-16 | Asml Netherlands B.V. | Amélioration automatique de la précision et de la stabilité de mesure de contour de sem basée sur la reconnaissance de formes |
CN112543892B (zh) | 2018-07-26 | 2025-01-03 | Asml荷兰有限公司 | 针对模拟系统的用于确定晶片的层的蚀刻轮廓的方法 |
EP3605231A1 (fr) | 2018-08-01 | 2020-02-05 | ASML Netherlands B.V. | Lithographie optique sans masque |
KR20210033496A (ko) | 2018-08-15 | 2021-03-26 | 에이에스엠엘 네델란즈 비.브이. | 원시 이미지들로부터 고품질 평균 sem 이미지들의 자동 선택 시 기계 학습 활용 |
TWI794544B (zh) | 2018-10-09 | 2023-03-01 | 荷蘭商Asml荷蘭公司 | 用於高數值孔徑穿縫源光罩最佳化之方法 |
US20210357566A1 (en) | 2018-10-17 | 2021-11-18 | Asml Netherland B.V. | Methods for generating characteristic pattern and training machine learning model |
WO2020078844A1 (fr) | 2018-10-19 | 2020-04-23 | Asml Netherlands B.V. | Procédé permettant de créer les spectres sources idéaux comportant une optimisation de source et de masque |
CN112969966B (zh) | 2018-11-05 | 2024-12-03 | Asml控股股份有限公司 | 在硬陶瓷涂层中制造纳米脊的方法 |
US11354484B2 (en) | 2018-11-08 | 2022-06-07 | Asml Netherlands B.V. | Failure model for predicting failure due to resist layer |
EP3650940A1 (fr) | 2018-11-09 | 2020-05-13 | ASML Netherlands B.V. | Procédé dans le processus de fabrication d'un dispositif, support lisible par ordinateur non transitoire et système conçu pour effectuer le procédé |
WO2020109074A1 (fr) | 2018-11-30 | 2020-06-04 | Asml Netherlands B.V. | Procédé de réduction d'incertitude dans des prédictions de modèle d'apprentissage machine |
KR102610060B1 (ko) | 2018-11-30 | 2023-12-06 | 에이에스엠엘 네델란즈 비.브이. | 제조성에 기초한 패터닝 디바이스 패턴을 결정하기 위한 방법 |
EP3660744A1 (fr) | 2018-11-30 | 2020-06-03 | ASML Netherlands B.V. | Procédé de réduction de l'incertitude dans des prédictions de modèle d'apprentissage par machine |
EP3663855A1 (fr) | 2018-12-04 | 2020-06-10 | ASML Netherlands B.V. | Empreinte du champ de vision sem dans des mesures epe stochastiques et positionnement dans des dispositifs sem grand champ de vision |
EP3663856A1 (fr) | 2018-12-07 | 2020-06-10 | ASML Netherlands B.V. | Procédé de réglage d'un élément cible dans un modèle d'un procédé de motifs basé sur des champs électriques locaux |
US20220028052A1 (en) | 2018-12-14 | 2022-01-27 | Asml Netherlands B.V. | Apparatus and method for grouping image patterns to determine wafer behavior in a patterning process |
KR20240052072A (ko) | 2018-12-28 | 2024-04-22 | 에이에스엠엘 네델란즈 비.브이. | 패치 경계에서 패터닝 디바이스 패턴을 생성하는 방법 |
TWI738169B (zh) | 2019-01-29 | 2021-09-01 | 荷蘭商Asml荷蘭公司 | 用於為佈局圖案化程序判定訓練圖案之方法及相關的電腦程式產品 |
US11086230B2 (en) | 2019-02-01 | 2021-08-10 | Asml Netherlands B.V. | Method and apparatus for source mask optimization configured to increase scanner throughput for a patterning process |
CN119376192A (zh) | 2019-02-19 | 2025-01-28 | Asml控股股份有限公司 | 激光粗加工:工程化突节顶部的粗糙度 |
KR102641682B1 (ko) | 2019-02-20 | 2024-02-27 | 에이에스엠엘 네델란즈 비.브이. | 반도체 디바이스의 제조 프로세스를 특성화하기 위한 방법 |
KR102730938B1 (ko) | 2019-02-21 | 2024-11-18 | 에이에스엠엘 네델란즈 비.브이. | 마스크에 대한 광학 근접 보정을 결정하기 위한 머신 러닝 모델의 트레이닝 방법 |
WO2020173654A1 (fr) | 2019-02-25 | 2020-09-03 | Asml Netherlands B.V. | Procédé de détermination de variation stochastique de motifs imprimés |
WO2020173687A1 (fr) | 2019-02-27 | 2020-09-03 | Asml Netherlands B.V. | Amélioration de sélection de gabarit pour étalonnage de modèle |
US11747739B2 (en) | 2019-03-03 | 2023-09-05 | Asml Netherlands | Method and apparatus for imaging using narrowed bandwidth |
US11846889B2 (en) | 2019-03-08 | 2023-12-19 | Asml Netherlands B.V. | Method and apparatus for diffraction pattern guided source mask optimization |
KR102701616B1 (ko) | 2019-03-25 | 2024-09-04 | 에이에스엠엘 네델란즈 비.브이. | 패터닝 공정에서 패턴을 결정하는 방법 |
KR102711835B1 (ko) | 2019-04-04 | 2024-10-02 | 에이에스엠엘 네델란즈 비.브이. | 기판 이미지를 예측하는 장치 및 방법 |
EP3742229A1 (fr) | 2019-05-21 | 2020-11-25 | ASML Netherlands B.V. | Systèmes et procédés permettant de régler des modèles de prédiction entre des emplacements d'installation |
CN113678064B (zh) | 2019-04-09 | 2023-12-08 | Asml荷兰有限公司 | 用于在设施位置之间调整预测模型的系统和方法 |
CN113924525B (zh) | 2019-04-15 | 2024-07-19 | Asml荷兰有限公司 | 用于确定对掩模的特征的校正的方法 |
WO2020216572A1 (fr) | 2019-04-25 | 2020-10-29 | Asml Netherlands B.V. | Procédé de détermination de caractéristique de processus de formation de motifs sur la base d'un défaut pour réduire la présence d'un point chaud |
KR102700458B1 (ko) | 2019-04-30 | 2024-08-30 | 에이에스엠엘 네델란즈 비.브이. | 포토리소그래피 이미징을 위한 장치 및 방법 |
EP3734365A1 (fr) | 2019-04-30 | 2020-11-04 | ASML Netherlands B.V. | Procédé et appareil d'imagerie photolithographique |
CN113874787B (zh) * | 2019-05-21 | 2024-04-16 | Asml荷兰有限公司 | 用于确定与期望图案相关联的随机变化的方法 |
US11875101B2 (en) | 2019-06-20 | 2024-01-16 | Asml Netherlands B.V. | Method for patterning process modelling |
WO2021001109A1 (fr) | 2019-07-03 | 2021-01-07 | Asml Netherlands B.V. | Procédé d'application de modèle de dépôt dans un processus de fabrication de semi-conducteurs |
CN114096917B (zh) | 2019-07-10 | 2024-04-16 | Asml荷兰有限公司 | 用于减小模型预测不确定性的模型校准的预测数据选择 |
US20220276564A1 (en) | 2019-08-08 | 2022-09-01 | Asml Netherlands B.V. | Method and apparatus for photolithographic imaging |
WO2021028126A1 (fr) | 2019-08-13 | 2021-02-18 | Asml Netherlands B.V. | Procédé de modélisation d'empreintes digitales informatiques |
US20220327364A1 (en) | 2019-08-30 | 2022-10-13 | Asml Netherlands B.V. | Semiconductor device geometry method and system |
KR102745234B1 (ko) | 2019-09-03 | 2024-12-23 | 에이에스엠엘 네델란즈 비.브이. | 패턴들의 수차 감도를 결정하는 방법 |
US20220335290A1 (en) | 2019-09-06 | 2022-10-20 | Asml Netherlands B.V. | Method for increasing certainty in parameterized model predictions |
EP3789923A1 (fr) | 2019-09-06 | 2021-03-10 | ASML Netherlands B.V. | Procédé d'augmentation de la certitude dans des prédictions de modèles paramétrées |
WO2021052712A1 (fr) | 2019-09-16 | 2021-03-25 | Asml Netherlands B.V. | Procédés de génération de motif caractéristique et d'entraînement de modèle d'apprentissage automatique |
WO2021063728A1 (fr) | 2019-10-02 | 2021-04-08 | Asml Netherlands B.V. | Surveillance et réglage de processus à l'aide de modèles de prédiction |
US20230023153A1 (en) | 2019-10-08 | 2023-01-26 | Asml Netherlands B.V | Method for determining a field-of-view setting |
EP3822703A1 (fr) | 2019-11-18 | 2021-05-19 | ASML Netherlands B.V. | Procédé de détermination du réglage du champ de vision |
WO2021073854A1 (fr) | 2019-10-14 | 2021-04-22 | Asml Holding N.V. | Structure de marque de métrologie et procédé de détermination de structure de marque de métrologie |
US20240126183A1 (en) | 2019-10-24 | 2024-04-18 | Asml Netherlands B.V. | Method for rule-based retargeting of target pattern |
KR20220073828A (ko) | 2019-11-01 | 2022-06-03 | 에이에스엠엘 네델란즈 비.브이. | 모델 베이스 정렬들을 위한 기계 학습 기반 이미지 생성 |
KR102762472B1 (ko) | 2019-11-07 | 2025-02-03 | 에이에스엠엘 홀딩 엔.브이. | 리소그래피 장치의 부분을 세정하기 위한 시스템 |
EP4055445A1 (fr) | 2019-11-07 | 2022-09-14 | ASML Holding N.V. | Composant optique et pince utilisée dans un appareil lithographique |
WO2021099408A1 (fr) | 2019-11-19 | 2021-05-27 | Asml Holding N.V. | Optimisation à l'aide d'un profil d'intensité d'illumination non uniforme |
CN114787715A (zh) | 2019-12-02 | 2022-07-22 | 西默有限公司 | 用于增强成像到衬底上的图案的目标特征的方法和系统 |
US12092964B2 (en) | 2019-12-19 | 2024-09-17 | Asml Netherlands B.V. | Optically determining electrical contact between metallic features in different layers in a structure |
EP3839631A1 (fr) | 2019-12-19 | 2021-06-23 | ASML Netherlands B.V. | Détermination de positions relatives de différentes couches dans une structure |
WO2021140020A2 (fr) | 2020-01-07 | 2021-07-15 | Asml Netherlands B.V. | Source d'électrons pulsés à faible diffusion d'énergie et luminosité élevée |
EP3848953A1 (fr) | 2020-01-07 | 2021-07-14 | ASML Netherlands B.V. | Source d'électrons à haute luminosité |
WO2021160522A1 (fr) | 2020-02-12 | 2021-08-19 | Asml Netherlands B.V. | Procédé de détermination d'un motif de masque comprenant des corrections de proximité optique utilisant un modèle d'apprentissage machine entraîné |
EP3872567A1 (fr) | 2020-02-25 | 2021-09-01 | ASML Netherlands B.V. | Systèmes et procédés de commande de processus sensible aux métriques de processus |
US20230107556A1 (en) | 2020-03-03 | 2023-04-06 | Asml Netherlands B.V. | Machine learning based subresolution assist feature placement |
WO2021191005A1 (fr) | 2020-03-27 | 2021-09-30 | Asml Holding N.V. | Appareil optique et appareil lithographique utilisant l'appareil optique |
WO2021197838A1 (fr) | 2020-04-03 | 2021-10-07 | Asml Holding N.V. | Systèmes et procédés pour former des structures sur une surface |
KR20220166326A (ko) | 2020-05-09 | 2022-12-16 | 에이에스엠엘 네델란즈 비.브이. | 기판 상의 패턴의 일부에 대한 메트릭 결정 |
WO2021233642A1 (fr) | 2020-05-19 | 2021-11-25 | Asml Holding N.V. | Génération d'un signal d'alignement sur la base de distorsions locales de repère d'alignement |
TWI792198B (zh) | 2020-06-01 | 2023-02-11 | 荷蘭商Asml控股公司 | 用於清潔微影設備之一部分之清潔工具及方法 |
KR20230008778A (ko) | 2020-06-02 | 2023-01-16 | 에이에스엠엘 네델란즈 비.브이. | 마스크 디자인의 프리폼 곡선적 피처 검증 |
JP7532550B2 (ja) | 2020-06-03 | 2024-08-13 | エーエスエムエル ネザーランズ ビー.ブイ. | パターニングデバイス及びそのパターンを生成するためのシステム、製品、及び方法 |
WO2021249720A1 (fr) | 2020-06-10 | 2021-12-16 | Asml Netherlands B.V. | Systèmes d'impact d'aberration, modèles et processus de fabrication |
TWI838628B (zh) | 2020-06-24 | 2024-04-11 | 荷蘭商Asml荷蘭公司 | 用於判定輔助特徵之列印機率之系統、方法和產品及其應用 |
WO2022012888A1 (fr) | 2020-07-14 | 2022-01-20 | Asml Netherlands B.V. | Appareil et procédés pour générer un modèle de débruitage |
EP3951496A1 (fr) | 2020-08-07 | 2022-02-09 | ASML Netherlands B.V. | Appareil et procédé de sélection de motifs informatifs pour l'apprentissage de modèles d'apprentissage machine |
KR20230051510A (ko) | 2020-08-19 | 2023-04-18 | 에이에스엠엘 네델란즈 비.브이. | 이미지 기반 패턴 선택을 위한 시스템, 제품 및 방법 |
CN115917438A (zh) | 2020-08-19 | 2023-04-04 | Asml荷兰有限公司 | 用于从原始图像自动选择高品质图像的设备和方法 |
KR20230070230A (ko) | 2020-09-25 | 2023-05-22 | 에이에스엠엘 네델란즈 비.브이. | 패터닝 공정을 위한 스캐너 스루풋 및 이미징 품질의 최적화 |
TWI834063B (zh) | 2020-09-30 | 2024-03-01 | 荷蘭商Asml荷蘭公司 | 減輕幫浦故障造成之損害之真空系統 |
KR20230087492A (ko) | 2020-10-13 | 2023-06-16 | 에이에스엠엘 네델란즈 비.브이. | 디블러링 모델 및 디블러 이미지를 생성하는 장치 및 방법들 |
WO2022111945A1 (fr) | 2020-11-24 | 2022-06-02 | Asml Netherlands B.V. | Procédé de détermination d'une structure de marque pour empreintes de recouvrement |
WO2022128373A1 (fr) | 2020-12-15 | 2022-06-23 | Asml Netherlands B.V. | Appareil et procédé de détermination de données tridimensionnelles sur la base d'une image d'un substrat à motifs |
CN116648672A (zh) | 2020-12-18 | 2023-08-25 | Asml荷兰有限公司 | 用于确定掩模图案和训练机器学习模型的方法 |
US20240045341A1 (en) | 2020-12-23 | 2024-02-08 | Asml Netherlands B.V. | Optimization of lithographic process based on bandwidth and speckle |
US20240119212A1 (en) | 2021-03-03 | 2024-04-11 | Asml Netherlands B.V. | Configuration of patterning process |
US20240184213A1 (en) | 2021-03-08 | 2024-06-06 | Asml Netherlands B.V. | Method of pattern selection for a semiconductor manufacturing related process |
KR20240011719A (ko) | 2021-05-25 | 2024-01-26 | 에이에스엠엘 네델란즈 비.브이. | 마스크 규칙 체크 위반 및 마스크 디자인 결정 |
US20240272543A1 (en) | 2021-06-07 | 2024-08-15 | Asml Netherlands B.V. | Determining rounded contours for lithography related patterns |
US20240385530A1 (en) | 2021-06-23 | 2024-11-21 | Asml Netherlands B.V. | Etching systems, models, and manufacturing processes |
WO2023280511A1 (fr) | 2021-07-06 | 2023-01-12 | Asml Netherlands B.V. | Détermination des erreurs localisées de la prédiction d'image pour améliorer un modèle d'apprentissage machine dans la prédiction d'une image |
WO2023285025A1 (fr) | 2021-07-16 | 2023-01-19 | Asml Netherlands B.V. | Systèmes et procédés de pavage d'un substrat avec des motifs à forme irrégulière |
WO2023001458A1 (fr) | 2021-07-20 | 2023-01-26 | Asml Netherlands B.V. | Systèmes et procédés pour outils lithographiques à tolérances accrues |
WO2023001459A1 (fr) | 2021-07-21 | 2023-01-26 | Asml Netherlands B.V. | Systèmes et procédés de montage thermiquement stable de colonnes optiques |
JP2024525947A (ja) | 2021-07-23 | 2024-07-12 | エーエスエムエル ネザーランズ ビー.ブイ. | システムおよび光デリバリを分配するための方法 |
WO2023016752A1 (fr) | 2021-08-10 | 2023-02-16 | Asml Netherlands B.V. | Mise en correspondance de la sensibilité à l'aberration du repère de métrologie et du motif de dispositif |
WO2023030807A1 (fr) | 2021-09-02 | 2023-03-09 | Asml Netherlands B.V. | Procédé d'évaluation d'ensemble sélectionné de motifs |
JP2024536685A (ja) | 2021-09-09 | 2024-10-08 | エーエスエムエル ネザーランズ ビー.ブイ. | 計測データを変換する方法 |
WO2023046385A1 (fr) | 2021-09-22 | 2023-03-30 | Asml Netherlands B.V. | Systèmes et procédés de sélection de motif |
US20240394454A1 (en) | 2021-10-19 | 2024-11-28 | Asml Netherlands B.V. | Pattern matching method |
WO2023084063A1 (fr) | 2021-11-15 | 2023-05-19 | Asml Netherlands B.V. | Génération de données augmentées pour entraîner des modèles d'apprentissage machine à préserver des tendances physiques |
US20250021015A1 (en) | 2021-11-17 | 2025-01-16 | Asml Netherlands B.V. | Determining an etch effect based on an etch bias direction |
CN118265950A (zh) | 2021-11-19 | 2024-06-28 | Asml荷兰有限公司 | 模拟模型稳定性确定方法 |
EP4449204A1 (fr) | 2021-12-14 | 2024-10-23 | ASML Netherlands B.V. | Systèmes de régulation thermique, modèles et procédés de fabrication en lithographie |
US20240353749A1 (en) | 2021-12-14 | 2024-10-24 | Asml Netherlands B.V. | Methods, software, and systems for determination of constant-width sub-resolution assist features |
WO2023110318A1 (fr) | 2021-12-17 | 2023-06-22 | Asml Netherlands B.V. | Modèle d'apprentissage automatique destiné à la correction d'une erreur de superposition induite par asymétrie |
JP2025501481A (ja) | 2021-12-22 | 2025-01-22 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ結像のための方法及び装置 |
CN118647937A (zh) | 2021-12-23 | 2024-09-13 | Asml荷兰有限公司 | 产生对准信号而无需专用对准结构 |
WO2023117611A1 (fr) | 2021-12-23 | 2023-06-29 | Asml Netherlands B.V. | Systèmes et procédés de génération de multiples points d'éclairage à partir d'une seule source d'éclairage |
CN118525250A (zh) | 2022-01-05 | 2024-08-20 | Asml荷兰有限公司 | 用于确定局部焦点的软件、方法和系统 |
CN118511132A (zh) | 2022-01-10 | 2024-08-16 | Asml荷兰有限公司 | 机械控制的应力工程光学系统和方法 |
KR20240136352A (ko) | 2022-01-21 | 2024-09-13 | 에이에스엠엘 네델란즈 비.브이. | 리소그래피 장치의 일부분을 검사하기 위한 시스템 및 방법 |
CN118715485A (zh) | 2022-02-10 | 2024-09-27 | Asml荷兰有限公司 | 用机器学习从光学量测数据生成sem质量量测数据的系统和方法 |
CN118891512A (zh) | 2022-02-21 | 2024-11-01 | Asml荷兰有限公司 | 用于半导体制造相关联的量测的视场选择 |
CN118765387A (zh) | 2022-02-25 | 2024-10-11 | Asml荷兰有限公司 | 用于清洁光刻设备的一部分的系统和方法 |
WO2023165824A1 (fr) | 2022-03-01 | 2023-09-07 | Asml Netherlands B.V. | Analyse d'image basée sur une pondération adaptative de contours de modèle |
WO2023169806A1 (fr) | 2022-03-09 | 2023-09-14 | Asml Netherlands B.V. | Procédés, systèmes et logiciel pour la détermination de taux d'échec de processus lithographiques |
KR20240163644A (ko) | 2022-03-22 | 2024-11-19 | 에이에스엠엘 네델란즈 비.브이. | 곡선적 요소들을 갖는 리소그래피 패턴 표현 |
IL316476A (en) | 2022-05-12 | 2024-12-01 | Asml Netherlands Bv | Optical arrangement for a metrological system |
KR20250009430A (ko) | 2022-05-16 | 2025-01-17 | 에이에스엠엘 네델란즈 비.브이. | 공간적인 광학적 가간섭성을 줄이기 위한 수동형 통합 광학 시스템 및 방법 |
CN119156569A (zh) | 2022-05-17 | 2024-12-17 | Asml荷兰有限公司 | 用于优化光刻过程的基于衍射的光瞳确定 |
WO2024013038A1 (fr) | 2022-07-12 | 2024-01-18 | Asml Netherlands B.V. | Optimisation de masque de source sensible aux effets stochastiques sur la base d'une distribution de probabilité de placement de bord |
TW202419963A (zh) | 2022-07-14 | 2024-05-16 | 荷蘭商Asml荷蘭公司 | 基於局部特徵維度判定光罩規則檢查違反及光罩設計 |
WO2024017807A1 (fr) | 2022-07-19 | 2024-01-25 | Asml Netherlands B.V. | Systèmes et procédés d'optimisation de repères de métrologie |
CN119487444A (zh) | 2022-07-28 | 2025-02-18 | Asml荷兰有限公司 | 训练机器学习模型以生成mrc和工艺感知掩模版 |
CN119487456A (zh) | 2022-08-15 | 2025-02-18 | Asml荷兰有限公司 | 用于光刻的辐射光谱感知的源掩模优化的方法 |
CN119422105A (zh) | 2022-08-25 | 2025-02-11 | Asml荷兰有限公司 | 多层级蚀刻过程的建模 |
CN119365826A (zh) | 2022-09-28 | 2025-01-24 | Asml荷兰有限公司 | 用于用移动物镜进行路径补偿的系统 |
WO2024088666A1 (fr) | 2022-10-26 | 2024-05-02 | Asml Netherlands B.V. | Procédés et logiciels assistés par simulation pour guider la sélection de motifs ou de calibres pour des processus lithographiques |
WO2024094385A1 (fr) | 2022-10-31 | 2024-05-10 | Asml Netherlands B.V. | Optimisation de source pour réduire les conséquences d'une erreur de masque |
WO2024110141A1 (fr) | 2022-11-22 | 2024-05-30 | Asml Netherlands B.V. | Récupération de polygone curviligne pour conception de masque opc |
WO2024156452A1 (fr) | 2023-01-23 | 2024-08-02 | Asml Netherlands B.V. | Capteur de front d'onde pour système de métrologie |
WO2024156457A1 (fr) | 2023-01-27 | 2024-08-02 | Asml Netherlands B.V. | Pince électrostatique à excitation progressive pour appareil de lithographie |
WO2024184017A1 (fr) | 2023-03-06 | 2024-09-12 | Asml Netherlands B.V. | Systèmes et procédés de métrologie à large spectre pour divers types de repères de métrologie |
WO2025016684A1 (fr) | 2023-07-20 | 2025-01-23 | Asml Netherlands B.V. | Appareil et procédé de détermination de zones critiques d'un substrat à motifs |
EP4498161A1 (fr) | 2023-07-24 | 2025-01-29 | ASML Netherlands B.V. | Système et procédé de nettoyage in situ d'une pince d'un appareil de lithographie par mouvement oscillatoire d'un corps de nettoyage |
WO2025021417A1 (fr) | 2023-07-25 | 2025-01-30 | Asml Netherlands B.V. | Modélisation de masque 3d (m3d) pour simulation de lithographie |
WO2025031711A1 (fr) | 2023-08-10 | 2025-02-13 | Asml Netherlands B.V. | Optimisation de motif de masque |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4843563A (en) * | 1985-03-25 | 1989-06-27 | Canon Kabushiki Kaisha | Step-and-repeat alignment and exposure method and apparatus |
EP0433008A2 (fr) * | 1989-12-11 | 1991-06-19 | Konica Corporation | Appareil de mesure par interférométrie laser |
WO1991017409A1 (fr) * | 1990-04-30 | 1991-11-14 | International Business Machines Corporation | Interferometre a miroir plan et a deux axes |
US5194893A (en) * | 1991-03-06 | 1993-03-16 | Nikon Corporation | Exposure method and projection exposure apparatus |
EP0623801A2 (fr) * | 1993-05-03 | 1994-11-09 | Dr. Johannes Heidenhain GmbH | Dispositif et procédé interférométrique à laser pour des mesures absolues |
US5379115A (en) * | 1991-01-28 | 1995-01-03 | Excel Precision | Differential interferometer |
-
1997
- 1997-03-04 WO PCT/IB1997/000197 patent/WO1997033205A1/fr active IP Right Grant
- 1997-03-04 JP JP53161397A patent/JP4075966B2/ja not_active Expired - Fee Related
- 1997-03-04 EP EP97904550A patent/EP0824722B1/fr not_active Expired - Lifetime
- 1997-03-06 US US08/812,283 patent/US6046792A/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4843563A (en) * | 1985-03-25 | 1989-06-27 | Canon Kabushiki Kaisha | Step-and-repeat alignment and exposure method and apparatus |
EP0433008A2 (fr) * | 1989-12-11 | 1991-06-19 | Konica Corporation | Appareil de mesure par interférométrie laser |
WO1991017409A1 (fr) * | 1990-04-30 | 1991-11-14 | International Business Machines Corporation | Interferometre a miroir plan et a deux axes |
US5379115A (en) * | 1991-01-28 | 1995-01-03 | Excel Precision | Differential interferometer |
US5194893A (en) * | 1991-03-06 | 1993-03-16 | Nikon Corporation | Exposure method and projection exposure apparatus |
EP0623801A2 (fr) * | 1993-05-03 | 1994-11-09 | Dr. Johannes Heidenhain GmbH | Dispositif et procédé interférométrique à laser pour des mesures absolues |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1347336A1 (fr) * | 1997-12-02 | 2003-09-24 | ASML Netherlands B.V. | Système interférométrique et appareil lithographique comprenant un tel système |
WO1999032848A1 (fr) * | 1997-12-22 | 1999-07-01 | Asm Lithography B.V. | Systeme interferometrique a deux longueurs d'onde, et appareil lithographique pourvu de ce systeme |
US6122058A (en) * | 1997-12-22 | 2000-09-19 | Asm Lithography B.V. | Interferometer system with two wavelengths, and lithographic apparatus provided with such a system |
EP0957275A2 (fr) | 1998-05-14 | 1999-11-17 | Asm Lithography B.V. | Palier à gaz et appareil de lithographie comprenant un tel palier |
US6721035B1 (en) | 1999-04-21 | 2004-04-13 | Asml Netherlands B.V. | Lithographic projection apparatus |
US6855486B1 (en) | 1999-09-29 | 2005-02-15 | Asml Netherlands B.V. | Lithographic method and apparatus |
GB2358920B (en) * | 1999-10-07 | 2004-01-28 | Mitutoyo Corp | Interferometer system for measuring parallelism |
US6633387B1 (en) | 1999-10-07 | 2003-10-14 | Mitutoyo Corporation | Method and apparatus for measuring opposite surfaces |
GB2358920A (en) * | 1999-10-07 | 2001-08-08 | Mitutoyo Corp | Method and apparatus for measuring opposite surfaces |
US6924882B2 (en) | 1999-12-21 | 2005-08-02 | Asml Netherlands B.V. | Balanced positioning system for use in lithographic apparatus |
US7012672B2 (en) | 2003-03-10 | 2006-03-14 | Asml Netherlands B.V. | Lithographic apparatus, system, method, computer program, and apparatus for height map analysis |
US7684012B2 (en) | 2005-03-29 | 2010-03-23 | Asml Netherlands B.V. | Lithographic device, device manufacturing method and device manufactured thereby |
CZ304317B6 (cs) * | 2012-12-18 | 2014-02-26 | Ústav přístrojové techniky Akademie věd ČR, v.v.i. | Interferometrická sestava pro diferenční měření vzdálenosti |
Also Published As
Publication number | Publication date |
---|---|
JPH11504724A (ja) | 1999-04-27 |
US6046792A (en) | 2000-04-04 |
JP4075966B2 (ja) | 2008-04-16 |
EP0824722A1 (fr) | 1998-02-25 |
EP0824722B1 (fr) | 2001-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0824722B1 (fr) | Systeme d'interferometre differentiel et dispositif lithographique a balayage par etapes pourvu d'un tel systeme | |
US6084673A (en) | Lithographic apparatus for step-and-scan imaging of mask pattern with interferometer mirrors on the mask and wafer holders | |
EP0956518B1 (fr) | Systeme interferometrique et appareil lithographique comprenant ledit systeme | |
US6122058A (en) | Interferometer system with two wavelengths, and lithographic apparatus provided with such a system | |
KR100632427B1 (ko) | 시간절약형 높이측정을 이용하여 마스크패턴을 반복적으로 투영하는 방법 및 장치 | |
EP0498499B1 (fr) | Méthode et dispositif pour former de façon répétitive des images d'un motif de masque sur un substrat | |
CA1078240A (fr) | Alignement de masque par modulation par rapport au substrat de semiconducteur | |
US6813000B1 (en) | Exposure method and apparatus | |
US6819434B2 (en) | Multi-axis interferometer | |
EP0388594A2 (fr) | Interféromètre à miroirs pour mesures angulaires et linéaires | |
KR100503877B1 (ko) | 차동간섭계시스템및이시스템을구비한리소그래픽스텝-앤드-스캔장치 | |
JPH09171954A (ja) | 位置測定装置 | |
JP3064614B2 (ja) | 高精度座標測定装置 | |
JP3218570B2 (ja) | 干渉計 | |
Miller et al. | JAAAA Sggtttu y O |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 97190435.9 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997904550 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 1997 531613 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019970707885 Country of ref document: KR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 1997904550 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1019970707885 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1997904550 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1019970707885 Country of ref document: KR |