+

WO1997033295A2 - Röhrensysteme und herstellungsverfahren hierzu - Google Patents

Röhrensysteme und herstellungsverfahren hierzu Download PDF

Info

Publication number
WO1997033295A2
WO1997033295A2 PCT/DE1997/000427 DE9700427W WO9733295A2 WO 1997033295 A2 WO1997033295 A2 WO 1997033295A2 DE 9700427 W DE9700427 W DE 9700427W WO 9733295 A2 WO9733295 A2 WO 9733295A2
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
electrodes
pipe systems
field
electrode
Prior art date
Application number
PCT/DE1997/000427
Other languages
English (en)
French (fr)
Other versions
WO1997033295A3 (de
Inventor
Hans W. P. Koops
Original Assignee
Deutsche Telekom Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Telekom Ag filed Critical Deutsche Telekom Ag
Priority to EP97918006A priority Critical patent/EP0885453A2/de
Publication of WO1997033295A2 publication Critical patent/WO1997033295A2/de
Publication of WO1997033295A3 publication Critical patent/WO1997033295A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J21/00Vacuum tubes
    • H01J21/02Tubes with a single discharge path
    • H01J21/06Tubes with a single discharge path having electrostatic control means only
    • H01J21/10Tubes with a single discharge path having electrostatic control means only with one or more immovable internal control electrodes, e.g. triode, pentode, octode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/40Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes
    • H01J17/44Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes having one or more control electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/02Electron-emitting electrodes; Cathodes
    • H01J19/24Cold cathodes, e.g. field-emissive cathode

Definitions

  • the invention relates to pipe systems of the kind defined in the preamble of claim 1 and to a production method for such pipe systems.
  • Such micro-tube systems are known in vacuum micro-electrical engineering [Brodle, J. J. Muray “The physics of micro and nano-fabrication” Plenum Press, NY (1992)]
  • Such tube systems are equipped with "Spmdt" cathodes called lithographically made cathodes. These cathodes are produced with complicated lithographic processes in multilayer structuring with optical or corpuscular beam lithography with partly self-adjusting processes.
  • the field emission cathode can be etched from silicon, covered with heavy metals or built up from metal by vapor deposition.
  • the reproducibility of the production process is so low that many cathodes arranged in an array must always be used in order to ensure the emittance of the cathode and to achieve the required low internal resistance "transconductance" of the tubes.
  • the object of the invention is to provide pipe systems which are suitable for substantially higher frequencies and to specify a practical manufacturing process for this purpose.
  • the invention achieves the first part of this object with a system described in the characterizing part of patent claim 1.
  • Fig. 1 Principle structure for diode, triode and deflection
  • Fig. 2 Top: triode made of cathode, emitter and anode.
  • triode consisting of several cathodes, grid and anode to increase the emission current
  • FIG. 4 Micro pentode from field emitter cathode K, grids Gl to G3 and anode A with potentials
  • Fig. 5 Micro tubes constructed using the
  • the tube systems described consist of one or more field emission or field ionization cathodes connected in parallel for electrons or ions, a grid electrode with one or more ring-shaped openings and one or more anodes. All electrodes are built up one after the other using corpuscular beam lithography with induced deposition or simultaneously on a planar conductor track structure which supplies the voltages.
  • the electrode spacing is chosen so small that on average only a medium free path of the molecules at normal pressure fits between the emitter and anode electrode. At air and normal pressure, this distance is approximately 0.5 ⁇ m.
  • the electrodes supplying voltage are thick and the conductor tracks are made far apart. Diameters of 0.1 ⁇ m and distances of> 0.5 ⁇ m are sufficient to keep the field strengths in the pipes at the operating voltage of ⁇ 50 V below the limit required for permanent operation.
  • Such tubes require no or only a mild vacuum (1 Torr) for permanent operation and are therefore not called vacuum microelectronic tubes, but miniaturized multi-electrode tubes.
  • the tubes can be operated with different polarities, since electrons are ionized at 2 ⁇ IO 7 V / cm and water at IO 7 V / cm. These field strengths are achieved when etched single crystals are not used as field emitters or field ionizers, but when the nanocrystalline composite materials that are generated during electron beam or ion beam-reduced deposition are used.
  • These materials are nanocrystalline and can be used as super tips on blunt, prefabricated tips or electrodes be put on. Due to their nanocrystalline structure, these super peaks emit or ionize absorbed water or other gases at the specified field strengths, which are already achieved at low voltages below 50 V, if the cathode-anode distance is smaller than the mean free path length of the gases at normal pressure.
  • Such tubes have very small capacities and a flight time of the electrons of less than 1 ps or ⁇ 40 psec of the ions. This means that these tubes can be successfully used as an electronic component in ultra-high frequency technology. Due to the small space requirement of a few ⁇ m ⁇ several of these tubes can be interconnected in close proximity to arithmetic circuits. With the corpuscular beam-induced deposition, resistors with very small capacitances, small capacitances and inductivities with ⁇ m dimensions can be manufactured and built into the circuits, so that the integrated tube electronics for GHz applications is possible.
  • Diodes, triodes, tetrodes, pentodes, miniaturized accelerators and filters and other corpuscular beam optical arrangements can be built using this technique. Tips as field emission cathodes for electron emitters and for ion emitters can be used in other prefabricated circuits and tubes and the operating voltage required can thus be greatly reduced. With the help of electron beam-induced deposition, nanocrystalline composite material can be built with nanometer precision into nanoelectronic assemblies and circuits in a given wiring level.
  • Some preferred embodiments of tube systems which are built up on an insulating medium on conductor path structures prefabricated in planar technology with lithography using field current emission cathodes with a passive current stabilizing resistor and which are assigned at least one anode made of one or more wires are:
  • a diode connected as an ion emitter and operated with H 3 O + ions since all surfaces are covered with water in air and therefore field ionization is used for field strengths above IO 7 volts / cm and the inner tube resistance is determined
  • triode of conventional design, which can also be operated again with ions or electrons, in which in addition to the cathode and anode em grid in the form of one or more openings or even only in the form of 2 rods without upper and lower limits of the field between the two Electrodes is connected, • a tetrode or pentode, in which one or more grids are connected downstream of the first grid,
  • a tetrode or pentode in which a plurality of gratings and partial gratings are connected downstream of the first grid and which can be switched separately by two potential feeds, and thereby additionally also enable fast switching between two anodes which are insulated from one another.
  • All of these tubes can be operated in a moderate vacuum of 1 Torr, so that the mean free path of the electrons or ions in the gas is set at this pressure such that the tubes become functional due to the tube dimensions.
  • the tubes can be hermetically encapsulated in an evacuated vessel and the electrical feeds through the capsule be run as thin lines or the electrical leads are made through the walls of the encapsulation as lead-through wires in insulated filled bores.
  • the resistors for passive current control of the emitters connected upstream of the electron or ion emitters can, depending on the position m of the tubes, be designed in such a way that the field strength variation m of the tubes is compensated for and uniform current emission is achieved from the individual cathodes .
  • conductive and insulating wires can be built up in the plane and in space.
  • the wire diameter is approx. 0.1 ⁇ m, the length up to 10 ⁇ m.
  • the wires can withstand 2 mA / cm 2 current densities. The value is 8 times higher than for example with aluminum (250000 A / cm2).
  • Field emission is possible from the wire tips with approximately 15 times less internal resistance per emitter than with conventional field emitters in vacuum microelectronics.
  • field emitter electron sources can be built with a built-in current stabilizing resistor. Each tip works independently and in a controlled manner and passively stabilizes its emission current. So that the request for Redundancy at the tips in the tubes or m the parallel emitters reduced.
  • the wires end in a very fine tip with radii> 5 nm, but with nanometer-sized crystals that protrude from the tip and thus cause a field strengthening. This manifests itself in a greatly reduced extraction voltage for the field electron current.
  • the resistance of the deposited materials can be set in the range of 5 orders of magnitude via the deposition conditions.
  • the computer-controlled deposition produces 3-dimensional structures which serve as electrodes for micro tubes and tube systems, which generate individual beams, or which can often be produced side by side.
  • a technology has thus been found with which multiple electron beams can be produced on lithographic circuits and carrier boards, which in turn can then be used as production means for deposition structures. With this, the production technology has been found with which microtubes, Dynatron oscillators and fast amplifying switches or fast digital memories that can be erased with 100 GHz can be produced in parallel production technology.
  • FIG. 1 shows the basic structure for a diode, triode and deflection tetrode with THz Switching characteristics.
  • the deflection electrode With the deflection electrode, the amplification factor and a superimposed circuit can be carried out on 2 anodes, which enables particularly stable operation.
  • FIG. 2 shows a triode made of cathode, emitter and anode at the top and a triode made of several cathodes, grating and anode at the bottom for increasing the emission current and reducing the internal resistance.
  • the cathode is at 0 V, the grid at 50 V and the anode at 60 V.
  • Multiple electrodes that are installed between the cathode and anode can be used to thaw multi-electrode tubes, accelerators and decelerators and other tubes.
  • FIG. 4 shows a micro pentode consisting of field emitter cathode K, grids G1 to G3 and anode A with potentials.
  • triodes Structures already implemented to form triodes are shown in FIG. 5.
  • the structure of two micro tubes is shown here.
  • the tubes are constructed in a non-optimized form with the help of electron beam-induced deposition and computer control in the scanning electron microscope. Above the two pipes are shown m top view and below m side view.
  • FIG. 6 shows 2 micro-tube structures made of platinum-containing nanocrystalline material in the oblique view.
  • the picture shows the technical feasibility for structuring with additive lithography.
  • the hairpin carrying the tip can be designed as a low-resistance heating element and the shaft carrying the tip as a high-resistance passive stabilizing resistor.
  • Peak adsorbed gases can be desorbed and the emissions stabilized during operation. This is also due to continued heating or occasional "flashing", i.e. H. the tip is heated briefly, the tip being cleaned in a conventional manner by these methods.
  • the characteristic data that can be achieved with the triodes can be determined from the following data.
  • the field emitter tube operates at 150 uA emission current, with an acceleration voltage U e ⁇ r ⁇ 10 V. Then the internal resistance (“transconductance") R ⁇ > 15 ⁇ S.
  • Conventional field emitters achieve 1 - 2 ⁇ S! ,
  • the field emission tubes can be switched in different ways:
  • Switching with 0.1 ps can take place at 160 ⁇ A discharge current (voltage pulse at the extractor tube). This means that these tubes, which are constructed without semiconductor materials, considerably exceed the switching speed of circuits made of III / V or II / VI semiconductors.

Landscapes

  • Electron Beam Exposure (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

Bei den bekannten Röhrensystemen werden die obere Grenzfrequenz und die Rauscheigenschaften durch die bekannten Verfahren zur Herstellung von miniaturisierten Mehr-Elektroden-Röhren, das sind Dioden, Trioden-Röhren und Mehrelektroden-Röhren, begrenzt. Die beschriebenen Röhrensysteme bestehen aus einer oder mehreren parallel geschalteten Feldemissions- oder Feldionisation-Kathoden für Elektronen oder Ionen, einer Gitter-Elektrode mit einer oder mehreren ringförmigen Öffnungen und einer oder mehreren Anoden. Alle Elektroden werden mit Hilfe der Korpuskularstrahl-Lithographie mit indizierter Deposition nacheinander oder gleichzeitig auf einer die Spannungen zuführenden planaren Leiterbahnstruktur aufgebaut. Der Elektrodenabstand wird dabei so klein gewählt, daß im Mittel nur eine mittlere freie Weglänge der Moleküle bei Normaldruck zwischen die Emitter und Anonden-Elektrode paßt. Die Anwendungsmöglichkeiten der Erfindung sind sehr universell, beziehen sich aber bevorzugt auf die Höchstfrequenztechnik.

Description

Rohrensysteme und Herstellungsverfahren hierzu
Beschreibung:
Die Erfindung bezieht sich auf Rohrensysteme der im Oberbe¬ griff des Patentanspruch 1 naher definierten Art und auf ein Herstellungsverfahren für solche Rohrensysteme. Derartige Mikro-Rohrensystem sind in der Vakuum-Mikroelek- trotechnik bekannt [Brodle, J. J. Muray "The physics of micro and nano-fabrication" Plenum Press, NY (1992)]
Solche Rohrensysteme sind mit "Spmdt"-Kathoden genannten lithographisch gestellten Kathoden ausgerüstet. Diese Kathoden werden mit komplizierten lithographiscnen Ver¬ fahren in Mehrlagen-Strukturierung mit optischer oder Korpuskularstrahl-Lithographie mit teilweise selbstjustie- renden Verfahren hergestellt. Dabei kann die Feldemissions- Kathode aus Silizium geatzt, mit Schwermetallen bezogen oder aus Metall durch Aufdampfen aufgebaut werden. Die Reproduzierbarkeit der Herstellungsverfahren ist dabei jedoch so gering, daß stets viele in einem Array angeord¬ neten Kathoden eingesetzt werden müssen, um die Emittanz der Kathode zu gewährleisten und den erforderlichen nied¬ rigen Innenwiderstand "Transconductance" der Rohre zu erreichen.
Durch die Vielzahl der in Flachen angeordneten Kathoden wachst die parasitäre Streukapazitat der Anordnung und begrenzt die Systeme auf den Betrieb bei wenigen GHz, wie der erwähnten Literaturstelle [Brodle, J. J. Muray "The physics of micro and nano-fabrication" Plenum Press, NY (1992)] entnehmbar ist. Aufgabe der Erfindung ist es, Rohrensysteme zu schaffen, die für wesentlich höhere Frequenzen geeignet sind und hierzu ein praktikables Herstellungsverfahren anzugeben.
Die Erfindung lost den ersten Teil dieser Aufgabe mit einem im Kennzeichen des Patentanspruchs 1 beschriebenen System.
Eine vorteilhafte Weiterbildung hierzu ist im Kennzeichen des Patentanspruchs 2 beschrieben.
Den zweiten Teil dieser Aufgabe lost em Herstellungsver¬ fahren entsprechend dem Kennzeichen des Patentanspruchs 3.
Eine vorteilhafte Weiterbildung dieses Verfahrens ist im Kennzeichen des Patentanspruchs 4 beschrieben.
In den nachfolgenden Ausführungsbeispielen wird die Erfindung mit ihren vielfaltigen Variationsmoglichkeiten und Wirkungsvarianten naher erklart. In den zugehörigen Zeichnungen zeigen die
Fig. 1: Prinzipaufbau für Diode, Triode und Ablenk-
Tetrode mit THz-Schalteigenschaften, Fig. 2: Oben: Triode aus Kathode, Emitter und Anode.
Unten: Triode aus mehreren Kathoden , Gitter und Anode zur Vergrößerung des Emissionsstromes,
Fig. 3: Mikro-Triode mit Potentialverlauf, Kathode 0 V,
Gitter 50 V, Anode 60 Volt, Fig. 4: Mikro-Pentode aus Feldemitter-Kathode K, Gittern Gl bis G3 und Anode A mit Potentialen, Fig. 5: Mikro-Rohren aufgebaut mit Hilfe der
Elektronenstrahl-mduzierten Deposition und Rechnersteuerung im Rasterlektronenmikroskop, Oben Aufsicht, unten Seitansicht von 2 Rohren, Fig. 6: Schragbild von 2 Mikrorohren-Aufbauten aus Platinhaltigem nanokristallmem Material. Die beschriebenen Rohrensysteme bestehen aus einer oαer mehreren parallel geschalteten Feldemissions- oαer Feldionisation-Kathoden für Elektronen oαer Ionen, einer Gitter-Elektrode mit einer oder mehreren ringförmigen Offnungen und einer oder mehreren Anoden. Alle Elektroden werden mit Hilfe der Korpuskularstrahl-Lithographie mit induzierter Deposition nacheinander oder gleichzeitig auf einer die Spannungen zufuhrenden planaren Leiterbahnstruk¬ tur aufgebaut. Der Elektrodenabstand wird dabei so klein gewählt, daß im Mittel nur eine mittlere freie Weglange der Moleküle bei Normaldruck zwischen die Emitter und Anoden- Elektrode paßt. Bei Luft und Normaldruck ist diese Strecke ca. 0, 5 μm groß.
Um elektrische Überschlage durch das Wachstum von Molekul- ketten, das oberhalb 10^ V/cm einsetzt, zu vermeiden, sinα die Spannung zufuhrenden Elektroden dick und die Leiterbah¬ nen weit auseinander ausgeführt. Durchmesser von 0.1 μm und Abstände von > 0.5 μm reichen dabei aus, um die Feldstarken in der Rohre bei der Betriebsspannung von < 50 V unter der für dauerhaften Betrieb erforderlichen Grenze zu halten.
Derartige Rohren benotigen kein oder nur ein mildes Vakuum (1 Torr) für den dauerhaften Betrieb und werden deshalb nicht Vakuum-mikroelektronische Rohren, sondern miniaturi¬ sierte Mehr-Elektroden-Rohren genannt. Die Rohren können mit verschiedenen Polaritäten betrieben werden, da Elek¬ tronen bei 2 IO7 V/cm und Wasser bei IO7 V/cm ionisiert wird. Diese Feldstarken werden erreicht, wenn nicht geatzte Einkristalle als Feldemitter oder Feldionisierer verwendet werden, sondern, wenn die nanokristallmen Verbundmate- rialien, die bei der Elektronenstrahl- oder Ionenstrahl- mduzierten Deposition entstehen, verwendet werden.
Diese Materialien sind nanokristallm und können als Super¬ spitzen auf stumpfe vorgefertigte Spitzen oder Elektroden aufgesetzt werden. Durch ihren nanokristallinen Aufbau emittieren diese Superspitzen oder ionisieren diese absor¬ biertes Wasser oder andere Gase schon bei den angegebenen Feldstärken, die bei den niedrigen Spannungen unter 50 V bereits erreicht werden, wenn der Kathoden-Anoden-Abstand kleiner als die mittlere freie Weglänge der Gase bei Nor¬ maldruck ist. Derartige Röhren besitzen sehr kleine Kapa¬ zitäten und eine unter 1 ps liegende Flugzeiten der Elek¬ tronen oder < 40 psec der Ionen. Das bedeutet, diese Röhren können in der Höchstfrequenztechnik mit Erfolg als elektro¬ nisches Bauelement eingesetzt werden. Durch den geringen Platzbedarf von wenigen μm^ können mehrere dieser Röhren in naher Nachbarschaft zu Rechenschaltungen zusammengeschaltet werden. Mit der Korpuskularstrahl-induzierten Deposition können auch Widerstände mit sehr geringen Kapazitäten, kleine Kapazitäten und Induktivitäten mit μm Abmessungen hergestellt und in die Schaltungen eingebaut werden, so daß die integrierte Röhren-Elektronik für GHz-Anwendungen möglich wird.
Dioden, Trioden, Tetroden, Pentoden, miniaturisierte Beschleuniger und Filter und andere korpuskularstrahl- optische Anordnungen können mit dieser Technik aufgebaut werden. Spitzen als Feldemissionskathoden für Elektronen- emitter und für Ionenemitter können in auf andere vorge¬ fertigte Schaltungen und Röhren eingesetzt werden und so die erforderliche Betriebsspannung stark gesenkt werden. Mit Hilfe der Elektronenstrahl-induzierten Deposition kann mit Nanometer-Präzision nanokristallines Verbundmaterial zu nanoelektronischen Baugruppen und Schaltungen in eine vorgelegte Verdrahtungsebene hinein aufgebaut werden.
Mit dieser neuartigen Technik, die neuartiges Material und Rechnersteuerung und Automatisierung benützt, können neuar- tige, bisher nicht erreichte Leistungen erreicht werden. Einige bevorzugte Ausführungsformen von Rohrensystemen, die auf einem isolierenden Medium auf in Planartechnik mit Lithographie vorgefertigten Leiterbahnstrukturen Feldemis- sions-Kathoden mit passivem Stromstabilisier-Wiαerstand aufgebaut sind, und denen gegenüber wenigstens eine Anode aus einem oder mehreren Drahten zugeordnet sind, sind:
• eine Diode mit Feldelektronen-Emitter geschaltet und mit Elektronen betrieben,
• eine Diode als Ionen-Emitter geschaltet und mit H3O+- Ionen betrieben, (da an Luft alle Oberflachen mit Wasser überzogen sind und daher bei Feldstärken über IO7 Volt/cm die Feldionisation einsetzt und den Rohrenmnenwiderstand bestimmt) ,
• eine Triode herkömmlicher Bauart, welche auch wieder mit Ionen oder Elektronen betrieben werden kann, bei der außer Kathode und Anode em Gitter in Form von einer oder mehreren Offnungen oder auch nur in Form von 2 Stäben ohne obere und untere Begrenzung des Feldes zwischen die beiden Elektroden geschaltet ist, • eine Tetrode bzw. Pentode, bei der dem ersten Gitter eins oder mehrere Gitter nachgeschaltet sind,
• eine Tetrode bzw. Pentode, bei der dem ersten Gitter mehrere Gitter und Teilgitter nachgeschaltet sind, und die durch zwei Potentialzufuhrungen getrennt emschalt- bar sind, und dadurch zusätzlich auch noch em schnelles Schalten zwischen zwei gegeneinander isoliert angebrach¬ ten Anoden ermöglichen.
Alle diese Rohren können in maßigem Vakuum von 1 Torr betrieben werden, so daß die mittlere freie Weglange der Elektronen oder Ionen in dem Gas bei diesem Druck so ein¬ gestellt ist, daß die Rohre durch die Rohrendimensionen funktionsfähig wird.
Die Rohren können in einem evakuierten Gefäß hermetisch gekapselt und die elektrischen Zufuhrungen durch die Kapse- lung als Dunnfllm-Leitungen gefuhrt sein oder die elektri¬ schen Zufuhrungen sind durch die Wände der Kapselung als Durchfuhrungsdrahte in isolierend gefüllten Bohrungen ausgeführt.
Mehrere Rohren, 3a ganze Schaltungen können in einem größe¬ ren mit geeignetem Druck und Gas oder Wasser vom ausrei¬ chenden Partialdruck gefüllten Vakuumraum aufgebaut und hermetisch abgeschlossen sein und der Hohlraum kann mit einem eingebrachten Getterstoff konstant auf Vakuum gehal¬ ten werden, wie das in der Rohrentechnik üblich ist.
Zur Erzielung eines geringeren Rohrenmnenwiderstandes und um den Emissionsstrom zu erhohen, können mehrere Elektro- nen- oder Ionen-Emitter parallel geschaltet sein.
Die den Elektronen- oder Ionen-Emittern vorgeschalteten Widerstände zur passiven Stromregelung der Emitter können, entsprechend der Stellung m der Rohre, m ihrer Große so ausgebildet sein, daß die Feldstarkevariation m der Rohre ausgeglichen wird und gleichmäßige Strom-Emission aus den einzelnen Kathoden erzielt wird.
Mit der Korpuskularstrahl-mdizierten Deposition können leitfahige und isolierende Drahte in der Ebene und im Raum aufgebaut werden. Die Drahtdurchmesser sind ca. 0,1 μm, die Lange bis 10 μm. Die Drahte können 2 MA/crn^ große Strom¬ dichten vertragen. Der Wert ist 8 mal hoher als zum Beispiel bei Aluminium (250000 A/cm2) . Feldemission ist aus den Drahtspitzen möglich mit ca. 15-fach geringerem Innen¬ widerstand pro Emitter als bei herkömmlichen Feldemittern der Vakuummikroelektronik. Feldemitter-Elektronenquellen können mit dieser Technik mit eingebautem Strom-Stabili- sierwiderstand aufgebaut werden. Damit arbeitet jede Spitze unabhängig und kontrolliert und in ihrem Emissionsstrom passiv stabilisiert. Damit wird die Anforderung nach Redundanz an die Spitzen in der Rohre oder m die parallel angeordneten Emitter verringert.
Die Drahte enden in einer sehr feinen Spitze mit Radien > 5 nm, aber mit nanometergroßen Kristallen, die aus der Spitze herausragen und dadurch eine Feldverstarkung bewirken. Das äußert sich in einer stark verringerten Extraktionsspannung für den Feld-Elektronen-Strom. Der Widerstand der deponier¬ ten Materialien ist über die Depositions-Bedmgungen im Bereich von 5 Größenordnungen einstellbar. Mit der rechner¬ gesteuerten Deposition werden 3-dιmensιonale Strukturen hergestellt, die als Elektrode für Mikro-Rohren und Rohren¬ systeme dienen, die einzelne Strahlen erzeugen, oder die vielmals nebeneinander hergestellt werαen können. Damit ist eine Technik gefunden, mit der vielfache Elektronenstrahlen auf lithographischen Schaltungen und Tragerplatinen herge¬ stellt werden können, die dann wiederum als Produktions¬ mittel für Depositions-Strukturen einsetzbar sind. Damit ist die Produktionstechnik gefunden, mit der Mikrorohren, Dynatron-Oszillatoren und schnelle verstärkende Schalter oder auch schnelle mit 100 GHz loschbare Digital-Speicher in paralleler Herstellungstechnik produziert werden können.
Durch die Feinheit der Definition der Materialerzeugung bei der Korpuskularstrahl-mduzierten Deposition mit Rechner¬ steuerung können neuartige Rohren Bauelemente, Differenz- verstarker und Schaltungen ohne die Verwendung von Halb- leitermateπalien direkt aufgeschrieben werden. Diese Schaltungen können auf Grund der Kleinheit und der Nanome- terprazision bei höheren Frequenzen, als sie mit herkömm¬ lichen Rohren erreichbar sind, betrieben werden. Die Her¬ stellungstechnik für elektronische Schaltungen ist stark vereinfacht, die Packungsdichte stark erhöht.
Als erstes Anwendungsbeispiel zeigt Fig. 1 den Prinzipauf¬ bau für eine Diode, Triode und Ablenk-Tetrode mit THz- Schalteigenschaften. Bei der Ablenktetrode kann der Ver¬ stärkungsfaktor und eine überlagerte Schaltung auf 2 Anoden durchgeführt werden, was einen besonders stabilen Betrieb ermöglicht.
Die Fig. 2 zeigt oben eme Triode aus Kathode, Emitter und Anode und unten eine Triode aus mehreren Kathoden, Gitter und Anode zur Vergrößerung des Emissionsstromes und Ver¬ ringerung des Innenwiderstandes.
In Fig. 3 ist eine Mikro-Triode mit Potentialverlauf wie¬ dergegeben. Die Kathode liegt dabei auf 0 V, das Gitter auf 50 V und die Anode auf 60 v. Durch mehrere Gitter, die zwischen Kathode und Anode eingebaut werden, können Mehr- Elektrodenrohren, Beschleuniger und Verzogerer und andere Rohren aufgeoaut werden.
In Fig. 4 ist eine Mikro-Pentode aus Feldemitter-Kathode K, Gittern Gl bis G3 und Anode A mit Potentialen dargestellt.
Bereits realisierte Aufbauten zu Trioden sind m Fig. 5 wiedergegeben. Hier ist der Aufbau zweier Mikro-Rohren dargestellt. Die Rohren sind in nicht optimierter Form mit Hilfe der Elektronenstrahl-mduzierten Deposition und Rechnersteuerung im Rasterelektronenmikroskop aufgebaut. Oben sind die beiden Rohren m Aufsicht und unten m Seitenansicht wiedergegeben.
Die Fig. 6 zeigt 2 Mikrorohren-Aufbauten aus platinhaltigem nanokristallmem Material im Schragbild. Das Bild zeigt die technische Machbarkeit für die Strukturierung mit Additiver Lithographie.
Die Fig. 5 und 6 zeigen den erstmaligen Aufbau der Anord- nung aus bestehenden Makros "FEBOGEN" und "STACIR" mit
Hilfe der VIDAS Strahlsteuerung am JSM 840 F. Die Anoden- Drahte sind m 1 mm gewachsen. Durch Variation der Para¬ meter kann die Hoheneinstellung der Spitzenlage zum Gitter- Viereck noch optimiert werden. Durch Parametervariation im Makro "STACIR" kann em annähernd rundes Gitter erzeugt werden.
Durch geeignete Depositionsbedmgungen kann die die Spitze tragende Haarnadel als niederohmiges Heizelement und der die Spitze tragende Schaft als hochohmiger passiver Stabi- lisierwiderstand ausgebildet werden. Durch Hitzen der
Spitze können adsorbierte Gase desorbiert werden und die Emission im Betrieb stabilisiert werden. Dies wird auch durch andauernde Heizung oder gelegentliches "flashen", d. h. kurzes Aufheizen der Spitze erreicht, wobei die Spitze durch diese Verfahren in konventioneller Weise gereinigt wird.
Die mit den Trioden erreichbaren Kenndaten lassen sich aus folgenden Daten ermitteln. Die Feldemitter-Rohre arbeitet bei 150 uA Emissionsstrom, bei einer Beschleunigungsspan¬ nung Upr < 10 V. Dann betragt der Innenwiderstand ("transconductance") Rχ > 15 μS. Konventionelle Feldemitter kommen auf 1 - 2 μS ! . Die Feldemissions-Rohre kann auf verschiedene Weise geschaltet werden:
1. Anlegen Schaltspannung auf die Extraktionsspannung an der Spitze von -Up . Der Extraktor und die Anode sind dabei auf 0 V oder positiv.
2. Anlegen der Schaltspannung auf den Extraktor auf +Uextr. Die Spitze liegt dabei auf 0 V.
3. Ablenkung des Strahles mit Ablenkplatten Up < 10 V, indem das Extraktionsgitter zweigeteilt wird und an die beiden Hälften unterschiedliche Spannungen angelegt werden. Dann wird der Strahl auf die beiden getrennt aufgebauten Anoden gelenkt (Schaltrohre mit Dauerstrahl) . Die zu ladende Speicherkapazität betragt C = eo*er*F/d = 8.86-10-12*!* (0.2*10_6)2/10-6 As/V = 3.5*10~18F.
Bei einem Stabdurchmesser von 0.2 μm und einer Lange von 1 μm im Abstand von 1 μm und mit dem Dielektrikum von Vaku¬ um oder Luft er = 1 hat die Kapazität die Größe von 3.5 attoFarad. Um diese Kapazität auf 5 Volt Ablenkspannung zu laden, ist eine Ladung von Q = C*U = 1.6 • 10~17 As = lOOe = 100 Elektronen! erforderlich. Diese Ladung kann in 1 psec (1 THz) mit einem Strom von 16 uA aufgebracht werden. Der statistische Fehler ist dann 10% oder SN = 10 (entspricht dem Signal-Rausch-Verhältnis) .
Das Schalten mit 0.1 ps kann bei 160 μA Entladestrom erfol- gen (Spannungspuls an der Extraktor-Röhre) . Damit übertref¬ fen diese ohne Halbleitermaterialien aufgebauten Rohren die aus III/V- oder II/VI-Halbleitern aufgebauten Schaltungen hinsichtlich ihrer Schaltgeschwindigkeit erheblich.

Claims

Patentansprüche:
1. Rohrensysteme, bestehend aus Mehrelektroden-Anordnungen mit beliebigen Kombinationen von Elektroden, Ver¬ bindungen und Funktionen, die in einem evakuierten Gefäß hermetisch abgeschlossen gekapselt sind, d a d u r c h g e k e n n z e i c h n e t , daß die Elektroden und deren Abstände so klein gewählt sind, daß im Mittel nur eine mittlere freie Weglange der Moleküle bei Normaldruck zwischen die Emitter und Anoden-Elektrode paßt, daß dabei die Spannung zufuhren¬ den Elektroden dick und die Leiterbahnen weit auseinan¬ der ausgeführt, die Kathoden/Emitter in Nadelform nano- kristallm bzw. als Superspitzen auf stumpfe vorgefer¬ tigte Spitzen bzw. Elektroden aufgesetzt ausgebildet sind, und daß die evakuierten Gefäße Restgase besonders definierter Arten und Druckbereiche enthalten.
2. Rohrensysteme nach Anspruch 1, dadurch gekennzeichnet, daß Rohrensysteme unterschiedlicher Betriebsarten durch unterschiedliche Ergänzungen mit Gittern, Anoden und anderen mtegrationsfahigen Bauelementen, sowie durch Trennung in über Durchfuhrungen verbundene Teilgefaße miteinander verbunden sind.
3. Herstellungsverfahren für Rohrensysteme, d a d u r c h g e k e n n z e i c h n e t, daß auf emem m Planar¬ technik mit Lithographie vorgefertigten isolierenden Medium mittels rechnergesteuerter Korpuskularstrahl- mduzierten Deposition in teils gleichzeitigen und teils aufeinanderfolgenden Schritten mit Nanometer- Präzision nanokristallines Verbundmateπal zu nanoelek- tromschen Baugruppen und Schaltungen in eine vorgeleg¬ te Verdrahtungsebene hinein aufgebaut werden, die zuletzt in ein Gefaßsystem eingeschlossen werden wah¬ rend gleichzeitig die Betriebsart der Rohren mittels der Art und des Druckes der Restgase bestimmt wird.
4. Herstellungsverfahren für Rohrensysteme nach Anspruch
3, dadurch gekennzeichnet, daß Rohren als Ionen-Emitter verwendet und mit H30+-Ionen betrieben werden, indem ungetrocknete bzw. aus einem Vorrat gezielt befeuchtete
Restgase verwendet werden, bis bei Feldstarken über IO7 Volt/cm die Feldionisation einsetzt und den Rohrenm- nenwiderstand bestimmt.
PCT/DE1997/000427 1996-03-09 1997-03-03 Röhrensysteme und herstellungsverfahren hierzu WO1997033295A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97918006A EP0885453A2 (de) 1996-03-09 1997-03-03 Röhrensysteme und herstellungsverfahren hierzu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19609234.5 1996-03-09
DE1996109234 DE19609234A1 (de) 1996-03-09 1996-03-09 Röhrensysteme und Herstellungsverfahren hierzu

Publications (2)

Publication Number Publication Date
WO1997033295A2 true WO1997033295A2 (de) 1997-09-12
WO1997033295A3 WO1997033295A3 (de) 1997-12-04

Family

ID=7787766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000427 WO1997033295A2 (de) 1996-03-09 1997-03-03 Röhrensysteme und herstellungsverfahren hierzu

Country Status (4)

Country Link
EP (1) EP0885453A2 (de)
DE (1) DE19609234A1 (de)
TW (1) TW357932U (de)
WO (1) WO1997033295A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508403A (ja) * 2007-12-28 2011-03-10 セレックス システミ インテグラティ エッセ. ピ. ア. 高周波三極管型電界放出デバイスおよびその製造プロセス
JP2013533598A (ja) * 2010-07-26 2013-08-22 クープス,ハンス,ダブリュー.,ピー. 自由電子ビームを備えたTHz放射線生成用デバイス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198557B1 (en) 1997-06-25 2001-03-06 Deutsche Telekom Ag Telecommunication system having frequency-dividing optical components for the parallel processing of optical pulses
JP3792126B2 (ja) 1999-05-25 2006-07-05 ナヴォテック・ゲーエムベーハー 小型テラヘルツ放射源
DE10006361A1 (de) * 1999-05-25 2000-11-30 Deutsche Telekom Ag Miniaturisierte Terahertz-Strahlungsquelle
EP1363164B1 (de) 2002-05-16 2015-04-29 NaWoTec GmbH Verfahren zum Ätzen einer Oberfläche mittels durch fokussierten Elektronenstrahl hervorgerufenen chemischen Reaktionen auf dieser Oberfläche
DE10302794A1 (de) * 2003-01-24 2004-07-29 Nawotec Gmbh Verfahren und Vorrichtung zur Herstellung von Korpuskularstrahlsystemen
US20070029046A1 (en) * 2005-08-04 2007-02-08 Applied Materials, Inc. Methods and systems for increasing substrate temperature in plasma reactors

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4721885A (en) * 1987-02-11 1988-01-26 Sri International Very high speed integrated microelectronic tubes
US4855636A (en) * 1987-10-08 1989-08-08 Busta Heinz H Micromachined cold cathode vacuum tube device and method of making
JP2968014B2 (ja) * 1990-01-29 1999-10-25 三菱電機株式会社 微小真空管及びその製造方法
US5192240A (en) * 1990-02-22 1993-03-09 Seiko Epson Corporation Method of manufacturing a microelectronic vacuum device
DE69027611T2 (de) * 1990-07-18 1997-01-23 Ibm Herstellungsverfahren und struktur einer integrierten vakuum-mikroelektronischen vorrichtung
US5203731A (en) * 1990-07-18 1993-04-20 International Business Machines Corporation Process and structure of an integrated vacuum microelectronic device
US5150019A (en) * 1990-10-01 1992-09-22 National Semiconductor Corp. Integrated circuit electronic grid device and method
EP0490536B1 (de) * 1990-11-28 1998-01-14 Matsushita Electric Industrial Co., Ltd. Mikroelektronische Feldemissionsvorrichtung
JP3235172B2 (ja) * 1991-05-13 2001-12-04 セイコーエプソン株式会社 電界電子放出装置
US5249340A (en) * 1991-06-24 1993-10-05 Motorola, Inc. Field emission device employing a selective electrode deposition method
CA2070478A1 (en) * 1991-06-27 1992-12-28 Wolfgang M. Feist Fabrication method for field emission arrays
EP0525763B1 (de) * 1991-08-01 1995-10-25 Texas Instruments Incorporated Verfahren zur Herstellung eines Mikroelektronisches Bauelement
US5382867A (en) * 1991-10-02 1995-01-17 Sharp Kabushiki Kaisha Field-emission type electronic device
JPH05182609A (ja) * 1991-12-27 1993-07-23 Sharp Corp 画像表示装置
JPH05314891A (ja) * 1992-05-12 1993-11-26 Nec Corp 電界放出冷陰極およびその製造方法
GB9210419D0 (en) * 1992-05-15 1992-07-01 Marconi Gec Ltd Cathode structures
US5409568A (en) * 1992-08-04 1995-04-25 Vasche; Gregory S. Method of fabricating a microelectronic vacuum triode structure
DE19502966A1 (de) * 1995-01-31 1995-06-14 Ignaz Prof Dr Eisele Anwendung von elektrisch leitenden Spitzen als Feldemitter in einer Gasatmosphäre zur Herstellung von flachen Bildschirmen oder Gassensoren

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508403A (ja) * 2007-12-28 2011-03-10 セレックス システミ インテグラティ エッセ. ピ. ア. 高周波三極管型電界放出デバイスおよびその製造プロセス
JP2013533598A (ja) * 2010-07-26 2013-08-22 クープス,ハンス,ダブリュー.,ピー. 自由電子ビームを備えたTHz放射線生成用デバイス

Also Published As

Publication number Publication date
DE19609234A1 (de) 1997-09-11
TW357932U (en) 1999-05-01
WO1997033295A3 (de) 1997-12-04
EP0885453A2 (de) 1998-12-23

Similar Documents

Publication Publication Date Title
DE60122747T2 (de) Feldemissionsvorrichtung mit kohlenstoffhaltigen spitzen
DE69027611T2 (de) Herstellungsverfahren und struktur einer integrierten vakuum-mikroelektronischen vorrichtung
EP0801805B1 (de) Feldemissionskathodeneinrichtung und verfahren zur herstellung
DE60112427T2 (de) Gitterlose fokussierungsvorrichtung zur extraktion von ionen für einen flugzeitmassenspektrometer
DE69328977T2 (de) Flache feldemissionskathode anwendende flache anzeigevorrichtung mit triodenstruktur
DE69601094T2 (de) Eine mehrschichtige säulenförmige Struktur für Feldemissionsvorrichtungen
DE69205094T2 (de) Ionisierungs-Vakuum-Messgerät.
DE69320712T2 (de) Verfahren zur Herstellung von Nano-Anordnungen und nach diesem Verfahren hergestellte Nano-Anordnungen
DE10228545A1 (de) Verfahren und System zur Erzeugung eines Elektronenstrahls in Röntgenstrahl-Erzeugungsvorrichtungen
EP1595266A1 (de) Quantenpunkt aus elektrisch leitendem kohlenstoff, verfahren zur herstellung und anwendung
DE2719660A1 (de) Steuergitter fuer eine elektronenquelle, damit ausgestattete elektronenquelle und verfahren zu deren herstellung
DE4426594A1 (de) Schaltvorrichtung
EP0885453A2 (de) Röhrensysteme und herstellungsverfahren hierzu
DE69506375T2 (de) Partikel-optisches gerät mit einer elektronenquelle versehen die eine nadel und eine membranartige extraktionselektrode aufweist
EP0823711B1 (de) Digatalspeicherelement
DE10210006A1 (de) Vorrichtung und Verfahren zum Erzeugen geladener Teilchen
AT408157B (de) Verfahren zur herstellung eines feldemissions-displays
EP0662703A1 (de) Steuerbarer thermionischer Elektronenemitter
EP1590825A2 (de) Verfahren und vorrichtung zur herstellung von korpuskularstrahlsystemen
DE102007010462A1 (de) Verfahren zur Herstellung einer Teilchenstrahlquelle
DE19802779A1 (de) Elektronenemittervorrichtung
EP2130211B1 (de) Feldemissionsquelle für elektronen als feldemissionskathode
DE60128063T2 (de) Elektronengenerierende kathode und herstellungsverfahren
DE19700856C2 (de) Ionenquelle für eine Ionenstrahlanlage
EP3803367B1 (de) Ionentransportvorrichtung, ionenmobilitätsspektrometer und ionentrichter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP KP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP KP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997918006

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97531349

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997918006

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载