WO1997032986A2 - Process for the production of degradation and/or conversion products of storage substances present in transgenic plant material with the help of a malting process - Google Patents
Process for the production of degradation and/or conversion products of storage substances present in transgenic plant material with the help of a malting process Download PDFInfo
- Publication number
- WO1997032986A2 WO1997032986A2 PCT/EP1997/001255 EP9701255W WO9732986A2 WO 1997032986 A2 WO1997032986 A2 WO 1997032986A2 EP 9701255 W EP9701255 W EP 9701255W WO 9732986 A2 WO9732986 A2 WO 9732986A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transgenic plant
- plant material
- plant
- malting
- transgenic
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 107
- 230000008569 process Effects 0.000 title claims abstract description 89
- 230000009261 transgenic effect Effects 0.000 title claims abstract description 78
- 239000000463 material Substances 0.000 title claims abstract description 75
- 239000000126 substance Substances 0.000 title claims abstract description 49
- 238000004890 malting Methods 0.000 title claims abstract description 46
- 238000003860 storage Methods 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 230000015556 catabolic process Effects 0.000 title claims abstract description 24
- 238000006731 degradation reaction Methods 0.000 title claims abstract description 23
- 239000012084 conversion product Substances 0.000 title claims abstract description 10
- 239000007857 degradation product Substances 0.000 title claims abstract description 10
- 241000196324 Embryophyta Species 0.000 claims description 189
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 52
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 51
- 229920001184 polypeptide Polymers 0.000 claims description 49
- 108090000623 proteins and genes Proteins 0.000 claims description 46
- 108010025880 Cyclomaltodextrin glucanotransferase Proteins 0.000 claims description 29
- 102000004190 Enzymes Human genes 0.000 claims description 24
- 108090000790 Enzymes Proteins 0.000 claims description 24
- 230000014509 gene expression Effects 0.000 claims description 22
- 229920002472 Starch Polymers 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 235000019698 starch Nutrition 0.000 claims description 20
- 239000008107 starch Substances 0.000 claims description 20
- 235000018102 proteins Nutrition 0.000 claims description 18
- 102000004169 proteins and genes Human genes 0.000 claims description 18
- 230000001105 regulatory effect Effects 0.000 claims description 18
- 230000035784 germination Effects 0.000 claims description 17
- 150000007523 nucleic acids Chemical class 0.000 claims description 17
- 240000008042 Zea mays Species 0.000 claims description 16
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 15
- 235000021307 Triticum Nutrition 0.000 claims description 14
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 14
- 235000007340 Hordeum vulgare Nutrition 0.000 claims description 13
- 230000002255 enzymatic effect Effects 0.000 claims description 13
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims description 11
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 11
- 229930195729 fatty acid Natural products 0.000 claims description 11
- 239000000194 fatty acid Substances 0.000 claims description 11
- 150000004665 fatty acids Chemical class 0.000 claims description 11
- 239000005015 poly(hydroxybutyrate) Substances 0.000 claims description 11
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 10
- 235000009973 maize Nutrition 0.000 claims description 10
- 108020004707 nucleic acids Proteins 0.000 claims description 10
- 102000039446 nucleic acids Human genes 0.000 claims description 10
- 240000002791 Brassica napus Species 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 150000002632 lipids Chemical class 0.000 claims description 7
- 239000004382 Amylase Substances 0.000 claims description 6
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 6
- 244000020551 Helianthus annuus Species 0.000 claims description 6
- 235000007164 Oryza sativa Nutrition 0.000 claims description 6
- 230000002503 metabolic effect Effects 0.000 claims description 6
- 235000009566 rice Nutrition 0.000 claims description 6
- 108010065511 Amylases Proteins 0.000 claims description 5
- 241001057636 Dracaena deremensis Species 0.000 claims description 5
- 244000068988 Glycine max Species 0.000 claims description 5
- 235000010469 Glycine max Nutrition 0.000 claims description 5
- 150000001720 carbohydrates Chemical class 0.000 claims description 5
- 239000003925 fat Substances 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 5
- 102000013142 Amylases Human genes 0.000 claims description 4
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 4
- 244000062793 Sorghum vulgare Species 0.000 claims description 4
- 108010050181 aleurone Proteins 0.000 claims description 4
- 235000019418 amylase Nutrition 0.000 claims description 4
- 244000075850 Avena orientalis Species 0.000 claims description 3
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims description 3
- 241000588747 Klebsiella pneumoniae Species 0.000 claims description 3
- 241001465754 Metazoa Species 0.000 claims description 3
- 108091005804 Peptidases Proteins 0.000 claims description 3
- 239000004365 Protease Substances 0.000 claims description 3
- 235000007238 Secale cereale Nutrition 0.000 claims description 3
- 150000001413 amino acids Chemical class 0.000 claims description 3
- 235000014633 carbohydrates Nutrition 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 235000019713 millet Nutrition 0.000 claims description 3
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims description 3
- 235000007319 Avena orientalis Nutrition 0.000 claims description 2
- 201000008225 Klebsiella pneumonia Diseases 0.000 claims description 2
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 2
- 240000004713 Pisum sativum Species 0.000 claims description 2
- 206010035717 Pneumonia klebsiella Diseases 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims description 2
- 108010043943 Starch Phosphorylase Proteins 0.000 claims description 2
- 230000001580 bacterial effect Effects 0.000 claims description 2
- 230000000593 degrading effect Effects 0.000 claims description 2
- 235000015097 nutrients Nutrition 0.000 claims description 2
- 239000003921 oil Substances 0.000 claims description 2
- 239000003375 plant hormone Substances 0.000 claims description 2
- 150000008442 polyphenolic compounds Chemical class 0.000 claims description 2
- 235000013824 polyphenols Nutrition 0.000 claims description 2
- 150000003431 steroids Chemical class 0.000 claims description 2
- 230000001225 therapeutic effect Effects 0.000 claims description 2
- 229960005486 vaccine Drugs 0.000 claims description 2
- 108090000344 1,4-alpha-Glucan Branching Enzyme Proteins 0.000 claims 1
- 102000003925 1,4-alpha-Glucan Branching Enzyme Human genes 0.000 claims 1
- 240000005979 Hordeum vulgare Species 0.000 claims 1
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims 1
- 244000082988 Secale cereale Species 0.000 claims 1
- 244000098338 Triticum aestivum Species 0.000 claims 1
- 230000002538 fungal effect Effects 0.000 claims 1
- 229920000157 polyfructose Polymers 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 34
- 229940088598 enzyme Drugs 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 19
- 238000003786 synthesis reaction Methods 0.000 description 18
- 230000009466 transformation Effects 0.000 description 18
- 239000000047 product Substances 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 15
- 241000209219 Hordeum Species 0.000 description 15
- 229920000858 Cyclodextrin Polymers 0.000 description 13
- 241000209140 Triticum Species 0.000 description 13
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 12
- 229940097362 cyclodextrins Drugs 0.000 description 11
- 108091026890 Coding region Proteins 0.000 description 10
- 239000013598 vector Substances 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 7
- 241000209094 Oryza Species 0.000 description 7
- 108010076504 Protein Sorting Signals Proteins 0.000 description 7
- 210000001938 protoplast Anatomy 0.000 description 7
- 235000013339 cereals Nutrition 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 235000006008 Brassica napus var napus Nutrition 0.000 description 5
- 206010020649 Hyperkeratosis Diseases 0.000 description 5
- 241000178960 Paenibacillus macerans Species 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 108010068086 Polyubiquitin Proteins 0.000 description 4
- 241000209056 Secale Species 0.000 description 4
- 244000061456 Solanum tuberosum Species 0.000 description 4
- 235000002595 Solanum tuberosum Nutrition 0.000 description 4
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 4
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 4
- 235000005822 corn Nutrition 0.000 description 4
- 210000002257 embryonic structure Anatomy 0.000 description 4
- 239000004009 herbicide Substances 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 229920000856 Amylose Polymers 0.000 description 3
- 102100037935 Polyubiquitin-C Human genes 0.000 description 3
- 102000004139 alpha-Amylases Human genes 0.000 description 3
- 108090000637 alpha-Amylases Proteins 0.000 description 3
- 229940024171 alpha-amylase Drugs 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- -1 desaturases Chemical class 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 230000002363 herbicidal effect Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000010474 transient expression Effects 0.000 description 3
- DSCFFEYYQKSRSV-UHFFFAOYSA-N 1L-O1-methyl-muco-inositol Natural products COC1C(O)C(O)C(O)C(O)C1O DSCFFEYYQKSRSV-UHFFFAOYSA-N 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 240000006240 Linum usitatissimum Species 0.000 description 2
- 235000004431 Linum usitatissimum Nutrition 0.000 description 2
- 244000305267 Quercus macrolepis Species 0.000 description 2
- 235000016976 Quercus macrolepis Nutrition 0.000 description 2
- 241000219873 Vicia Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 101150067366 adh gene Proteins 0.000 description 2
- 229940025131 amylases Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 101150103518 bar gene Proteins 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 235000004426 flaxseed Nutrition 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 102000005396 glutamine synthetase Human genes 0.000 description 2
- 108020002326 glutamine synthetase Proteins 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 210000004397 glyoxysome Anatomy 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000002255 vaccination Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- DSCFFEYYQKSRSV-GESKJZQWSA-N 1D-4-O-methyl-myo-inositol Chemical compound CO[C@@H]1[C@@H](O)[C@@H](O)[C@@H](O)[C@H](O)[C@H]1O DSCFFEYYQKSRSV-GESKJZQWSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- UPMXNNIRAGDFEH-UHFFFAOYSA-N 3,5-dibromo-4-hydroxybenzonitrile Chemical compound OC1=C(Br)C=C(C#N)C=C1Br UPMXNNIRAGDFEH-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102000008146 Acetate-CoA ligase Human genes 0.000 description 1
- 108010049926 Acetate-CoA ligase Proteins 0.000 description 1
- 108700016155 Acyl transferases Proteins 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 241000589156 Agrobacterium rhizogenes Species 0.000 description 1
- 241001677738 Aleuron Species 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 108090000935 Antithrombin III Proteins 0.000 description 1
- 102100022977 Antithrombin-III Human genes 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 235000005781 Avena Nutrition 0.000 description 1
- 241000193407 Bacillus ohbensis Species 0.000 description 1
- 241000193388 Bacillus thuringiensis Species 0.000 description 1
- 108700003860 Bacterial Genes Proteins 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 241000219198 Brassica Species 0.000 description 1
- 235000011331 Brassica Nutrition 0.000 description 1
- 239000005489 Bromoxynil Substances 0.000 description 1
- 208000016057 CHAND syndrome Diseases 0.000 description 1
- 102000004031 Carboxy-Lyases Human genes 0.000 description 1
- 108090000489 Carboxy-Lyases Proteins 0.000 description 1
- 241000220455 Cicer Species 0.000 description 1
- 235000010521 Cicer Nutrition 0.000 description 1
- 244000045195 Cicer arietinum Species 0.000 description 1
- 102100034229 Citramalyl-CoA lyase, mitochondrial Human genes 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 241000252867 Cupriavidus metallidurans Species 0.000 description 1
- VJXUJFAZXQOXMJ-UHFFFAOYSA-N D-1-O-Methyl-muco-inositol Natural products CC12C(OC)(C)OC(C)(C)C2CC(=O)C(C23OC2C(=O)O2)(C)C1CCC3(C)C2C=1C=COC=1 VJXUJFAZXQOXMJ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- DSCFFEYYQKSRSV-KLJZZCKASA-N D-pinitol Chemical compound CO[C@@H]1[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@H]1O DSCFFEYYQKSRSV-KLJZZCKASA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000221079 Euphorbia <genus> Species 0.000 description 1
- 102000018389 Exopeptidases Human genes 0.000 description 1
- 108010091443 Exopeptidases Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 108020003285 Isocitrate lyase Proteins 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108010036940 Levansucrase Proteins 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 108020004687 Malate Synthase Proteins 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108090000428 Mannitol-1-phosphate 5-dehydrogenases Proteins 0.000 description 1
- 244000021685 Mesembryanthemum crystallinum Species 0.000 description 1
- 235000009071 Mesembryanthemum crystallinum Nutrition 0.000 description 1
- 241000705677 Monocotyle Species 0.000 description 1
- 102000003797 Neuropeptides Human genes 0.000 description 1
- 108090000189 Neuropeptides Proteins 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- OMBMFTUITNFNAW-UHFFFAOYSA-N OCC(CO)(CO)N(P)CC(O)=O Chemical compound OCC(CO)(CO)N(P)CC(O)=O OMBMFTUITNFNAW-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- DSCFFEYYQKSRSV-QQTVYWKESA-N Ononitol Natural products COC1[C@@H](O)[C@@H](O)C(O)[C@@H](O)[C@H]1O DSCFFEYYQKSRSV-QQTVYWKESA-N 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 241000209117 Panicum Species 0.000 description 1
- 235000006443 Panicum miliaceum subsp. miliaceum Nutrition 0.000 description 1
- 235000009037 Panicum miliaceum subsp. ruderale Nutrition 0.000 description 1
- 241000209046 Pennisetum Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000015731 Peptide Hormones Human genes 0.000 description 1
- 108010038988 Peptide Hormones Proteins 0.000 description 1
- 241000219833 Phaseolus Species 0.000 description 1
- 244000042209 Phaseolus multiflorus Species 0.000 description 1
- 241000219843 Pisum Species 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 101710118538 Protease Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 235000003846 Ricinus Nutrition 0.000 description 1
- 241000322381 Ricinus <louse> Species 0.000 description 1
- 241000228160 Secale cereale x Triticum aestivum Species 0.000 description 1
- 235000005775 Setaria Nutrition 0.000 description 1
- 241000232088 Setaria <nematode> Species 0.000 description 1
- 241000221095 Simmondsia Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 101710154134 Stearoyl-[acyl-carrier-protein] 9-desaturase, chloroplastic Proteins 0.000 description 1
- 101000712605 Theromyzon tessulatum Theromin Proteins 0.000 description 1
- 229940122388 Thrombin inhibitor Drugs 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 235000019714 Triticale Nutrition 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 241000190079 Turnera Species 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 241000209149 Zea Species 0.000 description 1
- 108010055615 Zein Proteins 0.000 description 1
- 102000045404 acyltransferase activity proteins Human genes 0.000 description 1
- 108700014220 acyltransferase activity proteins Proteins 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 101150115889 al gene Proteins 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940019748 antifibrinolytic proteinase inhibitors Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 229960005348 antithrombin iii Drugs 0.000 description 1
- 229940097012 bacillus thuringiensis Drugs 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 230000001925 catabolic effect Effects 0.000 description 1
- 230000006652 catabolic pathway Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- CRQQGFGUEAVUIL-UHFFFAOYSA-N chlorothalonil Chemical compound ClC1=C(Cl)C(C#N)=C(Cl)C(C#N)=C1Cl CRQQGFGUEAVUIL-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 244000038559 crop plants Species 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229930002203 giberellic acid Natural products 0.000 description 1
- JLJLRLWOEMWYQK-GDUNQVSHSA-N giberellic acid Chemical compound C([C@@]1(O)C(=C)C[C@@]2(C1)C1C(O)=O)CC2[C@@]2(OC3=O)C1[C@]3(C)[C@@H](O)CC2 JLJLRLWOEMWYQK-GDUNQVSHSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 108010089692 inositol O-methyltransferase Proteins 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- ODBLHEXUDAPZAU-UHFFFAOYSA-N isocitric acid Chemical compound OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 101150091492 mtlD gene Proteins 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- LQRJAEQXMSMEDP-XCHBZYMASA-N peptide a Chemical group N([C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](C)C(=O)NCCCC[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)C(\NC(=O)[C@@H](CCCCN)NC(=O)CNC(C)=O)=C/C=1C=CC=CC=1)C(N)=O)C(=O)C(\NC(=O)[C@@H](CCCCN)NC(=O)CNC(C)=O)=C\C1=CC=CC=C1 LQRJAEQXMSMEDP-XCHBZYMASA-N 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 101150082998 pi gene Proteins 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 229940070353 protamines Drugs 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000003868 thrombin inhibitor Substances 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 125000000647 trehalose group Chemical group 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
- C12N9/1074—Cyclomaltodextrin glucanotransferase (2.4.1.19)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
Definitions
- the present invention relates to processes for the production of degradation and/or conversion products of storage substances present in transgenic plant material with the help of malting processes, as well as to the malted transgenic plant material and the malting solution produced by such processes .
- heterologous products namely of heterologous polypeptides
- trans ⁇ genic plants are also more and more used for the production of heterologous products normally not occurring in plants, for example bacterial toxins, mammalian proteins, biode ⁇ gradable plastics or specific kinds of carbohydrates, such as saccharides and the like.
- the storage substances (starch, fat, etc.) contained in the plant material are, however, not consumed in said malting process.
- starch, fat, etc. contained in the plant material
- the present invention addresses the problem of pro ⁇ viding processes which allow for the production of desired products from storage substances in transgenic plant tissue under conditions which may be easily controlled.
- the present invention relates to a process for the pro ⁇ duction of degradation and/or conversion products of storage substances present in transgenic plant material, which pro ⁇ cess comprises
- transgenic plant material comprises at least one recombinant nucleic acid molecule containing
- malting process a process is meant which comprises the germination of plant material under artificial or controlled environmental conditions. Conventionally such a process is carried out during the production of beer and comprises steps of steeping of the plant material that should be malted and subsequent germination under controlled conditions.
- con ⁇ trolled conditions it is meant that physical parameters like humidity, temperature, salt concentrations, and agitation are controlled by human intervention. Generally this process may be essentially carried out as described, for example, “Die Bierbrauerei” , Band 1: Die Technologie der Malzzurung, originally Enke Verlag Stuttgart. Depending on the plant material used the conditions employed in the malting process may vary. Malting processes are mainly described for the malting of seeds of corn plants, mainly of wheat and barley.
- the product obtained by the malting process in the case of corn called “green malt", is a product especially rich in enzymes which are necessary for the conversion of storage substances.
- the malting process is a highly controlled pro ⁇ cess which allows a specific regulation of the production of enzymes in the malted material. Normally, the product ob ⁇ tained is subsequently kiln-dried leading to the so-called "cured malt" .
- transgenic plant material comprises transgenic plant cells which contain stably integrated into the genome at least one recombinant nucleic acid molecule which is either heterologous with respect to the transgenic plant material and normally not present in nontransformed cells or which is homologous with respect to the transgenic plant material but located in a different genomic environment in the transgenic cells in comparison to wildtype cells.
- the transgenic plant material which is used in the process according to the invention may be any plant material which may be subjected to a malting process and contains a degra ⁇ dable and/or convertable storage substance.
- the plant material is a seed.
- the material may be derived from any suitable transgenic plant, in particular from any sui ⁇ table monocotyledonous or dicotyledonous plants. Preferred are agricultural or horticultural plants, in particular plants which set seeds.
- the transgenic plant material is derived from a plant which is able to synthesize and store starch, such as corn or cereal plants or leguminous plants.
- Preferred corn or cereal plants are those of the family Poaceae, such as wheat (Triticum) , barley (Hordeum) , rye (Secale) , oats (Avena) , rice (Oryza) , maize (Zea) , millet (Panicum, Setaria, Pennisetum or Sorghum) etc.
- Preferred starch-storing leguminous plants are, for example those of the genus Vicia (e.g. V. faber) , Pisum (e.g. P. sativum) , Cicer (e.g. C. arietinum) , Lens (e.g. L. culinarum) and Phaseolus (e.g. P. vulgaris or P. coccineus) .
- the heterologous polypeptide may be any poly ⁇ peptide having an enzymatic activity which leads to the modification or conversion of starch in order to obtain a desired product.
- enzymes are all kinds of amylases, glucanases, branching enzymes, debranching enzymes, disproportioning enzymes, starch phosphorylases, dextrinases, etc.
- DNA sequences coding for the above mentioned enzymes are well known in the art.
- Preferred polypeptides used in the process according to the invention are those which catalyse the conversion of starch, namely of amylose, to cyclodex- trins.
- CGTase cyclodextrin glycosyltrans- ferases
- DNA sequences coding for a cyclodextrin glycosyltransferase are those described in Takano et al . (loc. cit.) , Binder et al. (Gene 47 (1986) 269- 277) or Kimura et al . (Appl. Microbiol. Biotechnol. 26 (1987) , 149-153) . Further sequences are publicly available in data bases such as the EMBL data base. Cyclodextrins are cyc ⁇ lic oligosaccharides consisting of six, seven or eight ⁇ -1,4- linked glucose molecules.
- one advantage of the process according to the invention is, for example, that it is possible to bring the polypeptide in direct contact with the starch which allows a high efficiency of the enzymatic con ⁇ version.
- the polypeptide can, for instance, be specifically expressed in the aleurone layer of starch storing seeds of corn plants. This leads to secretion of the polypeptide by the aleurone cells upon germination and subsequent diffusion into the endosperm.
- the starch which makes up as much as 70% of the seed weight in some corn species is directly accessible to degradation and thereby allowing a highly efficient degradation and/or conversion of the starch.
- the preferred transgenic plant material for producing cyclodextrins are wheat and barley seeds and potatoes.
- the transgenic plant material is derived from a plant which uses as a storage substance predominantly oil or fat, such as rapeseed, sunflower, soy bean (Glycine soja) , pea nut (Arachis hypogaea) , linseed (Linum usitatissimum) , plants of the orders Euphorbia (e.g. Simmondsia species) , Turnera, Vernonica or the like.
- the heterologous polypeptide may be any polypeptide having an enzymatic activity which leads to the degradation or modification of oil, fats, fatty acids or lipids in the transgenic plant material. This may lead either to the synthesis of fatty acids or lipids having desired properties or to the conversion of fatty acids or lipids into other metabolic intermediates which may serve as starting material for the synthesis of other desired products.
- Examp ⁇ les of such enzymes are enzymes involved in the introduction of hydroxy or epoxy groups in fatty acids, enzymes which modify the degree of desaturation or saturation of fatty acids, such as desaturases, e.g.
- stearoyl-ACP desaturase, enzymes that modify the length of fatty acids, acyltransfe- rases, 3-ketoacyl-ACP synthetase, acetyl-CoA synthetase, lipases, decarboxylases, etc.
- lipid modi ⁇ fication or of the modification of the composition of lipids in plant seeds has been described, for example, in Ohlrogge (Plant Physiol. 104 (1994) , 821-826) . These possibilities include, for example, the degree of desaturation and the variation of length of fatty acids.
- PHF polyhydroxy fatty acids
- the transgenic material is derived from a plant which uses as a storage substance protein(s) , such as soy beans or the above-defined starch- storing corn and leguminous plants which are also producing protein rich seeds.
- the storage proteins may belong, for example, to the group consisting of glutelines, prolamines, globulines and albumines.
- heterologous polypeptide may be a polypep ⁇ tide catalysing the degradation of proteins, for example, proteases such as endo- or exoproteases or -peptidases.
- the obtained degradation and/or conversion product is either an amino acid or a derivative thereof, an oligopeptide, or a polypeptide.
- polypeptides are industrial and technical enzymes (for a long but not exhaustive list, see, for example, WO 92/01042) or any polypeptides which may be useful in pharmaceutical or diagnostic applications, such as polypeptide hormones such as growth hormones, neuropepti- des, growth factors, clotting factors, clotting inhibiting factors like protamines or the thrombin inhibitor huridin, proteinase inhibitors like antithrombin III, perforines, interferones, interleukines, colony stimulating factors, erythropoietin, antiviral or antibacterial proteins, lectins, proteins with tumor suppressor activity, such as ricin of the seeds of Ricinus, etc.
- first gene first gene
- second gene a second enzyme
- first gene first gene
- second gene a protease or another protein- modifying enzyme
- poly ⁇ peptides which may be used for vaccination, such as specific antigens of viruses, bacteria or other pathogenes as, for example, protozoa (see “Transgenic plants as vaccine produc ⁇ tion systems", H. S. Mason, C. I. Arentzen, TIBTECH, Sept. 1995 (Vol. 13) , p. 388) .
- heterologous with regard to the polypeptide which is synthesized in the transgenic plant material during the malting process is meant that such a polypeptide is encoded by a DNA molecule which either originates from a different organism, such as a bacterium, fungus, animal or another plant having another genotype than the transformed plant or by a DNA sequence which originates from a plant displaying the same genotype as the transformed plant but which is not in the same genomic environment as is such a DNA sequence when it is naturally found in the organism from which it originates.
- this polypeptide may be encoded, for example, by a DNA sequence which is endogenous to the transgenic plant cell and which is also under the control of the same regulatory elements as the endogenous counterpart, but which is inserted in a different place in the nuclear genome of the transformed plant than it is in the plant of origin, so that it is not surrounded in the transformed plant by the genes that surround it naturally in the plant of ori ⁇ gin.
- the heterologous polypeptide synthesized during the malting process may be any polypeptide which may facili ⁇ tate due to its biological and/or enzymatic activities the degradation or conversion of substances present in the trans ⁇ genic material.
- the nucleic acid molecule encoding the heterologous polypeptide synthesized during the process according to the invention may be derived from any organism, in particular from bacteria, fungi, animals or plants. It may be a naturally occurring nucleic acid molecule or a molecule which has been genetically modified. It may be a cDNA or genomic DNA isolated from appropriate libraries as well as a chemically synthesized molecule.
- the hete ⁇ rologous polypeptide is a polypeptide normally not present in plant cells, in particular a polypeptide that has a biolo ⁇ gical or enzymatic activity naturally not present in such cells.
- a general advantage of the process according to the invention is that the expression of the heterologous polypeptide does normally not occur during cultivation of the transgenic plants in the field but is specifically induced during the malting process, namely during germination of the malted material and/or during the subsequent development of the embryo. Therefore, the heterologous polypeptide is only pro ⁇ quizd in the transgenic plant material during the malting process in closed vessels which allows a tight control of expression and thus, provides better safety conditions.
- a further important feature of the process according to the invention is that it provides a high level of safety in comparison to the production of heterologous products in transgenic plants in planta, since it is carried out in closed vessels, is highly regulated by human intervention and is carried out by using non-pathogenic, harmless material.
- the synthesized hetero ⁇ logous polypeptide is an enzyme which leads to the conversion of a storage substance present in the transgenic plant mate ⁇ rial into a desired product. Said enzyme is set free from the transgenic material and used to act directly on the storage substance in the malting solution.
- the degradation and/or conversion of the storage substance leads to the increased production of a substance normally present in plant cells.
- a substance normally present in plant cells examples include amino acids, fatty acids, lipids, proteins, peptides, polyphenols, steroids, alkaloids, plant hormones, carbohydrates such as polysaccharides, monosaccharides or oligosaccharides, secondary metabolites, especially those which accumulate in plants only in very low concentrations and which may have medical applications, etc.
- Further examples are sugar alcohols like mannitol, pinitol or ononitol .
- Enzymes catalysing the synthesis of these sugar alcohols are, for example, the mannitol-1-phosphate dehydro- genase encoded by the mtlD gene of E. coli or the myo-inosi- tol-O-methyl transferase encoded by the imt gene of Mesembry- anthemum crystallinum. Yet another example is trehalose.
- the degradation and/or conversion of the storage substance leads to the synthesis of a substance or a metabolic intermediate normally not present in plants.
- substances cate ⁇ gorised as "renewable resources” such as bioplastics, for example, polyhydroxyalkanoate (PHA) or polyhydroxybutyrate (PHB) which normally do not occur in plants but are syn ⁇ thesized in bacteria as storage substances, for example, in Alcaligenes eutrophus.
- PHA polyhydroxyalkanoate
- PB polyhydroxybutyrate
- These substances are in particular interesting since they resemble synthetic thermoplastics and display the advantage that they are biodegradable.
- the genes responsible for PHB synthesis in bacteria have been isolated and published and may be genetically modified and introduced into plant cells (see, for instance, Poirier et al . , FEMS Microbiol. Rev. 103 (1992), 237-246; Nawrath et al . , Mol. Breeding 1 (1995) , 105-122) .
- polyfructans which occur mainly as sto ⁇ rage substances in bacteria, such as Bacillus species or Erwinia amylophora.
- DNA sequences coding for enzymes which catalyse the synthesis of polyfructans, such as levan sucrases, are known in the art.
- hete ⁇ rologous polypeptides which lead to the synthesis of other non-plant substances like saccharides (e.g. cyclodextrins) or fatty acids normally not synthesized in plant cells.
- the process according to the invention makes use of the sub ⁇ stantial amounts of storage substances normally present in seeds.
- Approaches to produce various products in transgenic plants in planta by overexpression appropriate DNA sequences often result in drastic retardation in plant growth since the synthesis of the desired product often significantly inter ⁇ feres with normal plant metabolism.
- this problem may result from the shuttling of important metabolic intermediates, namely of acetyl-CoA, into the PHB synthesis. These compounds will then not be available for other essential metabolic pathways.
- the expression of the genes leading to PBH synthesis during the germination in the malting process helps to circumvent these problems.
- the amount of storage substances present in the seed normally exceeds by far the amount required for the first days of development of the seedling after germination.
- the storage substances can be easily used during germination and/or during the subsequent development of the seedling to produce other desired substances without significantly interfering with the metabolism of the developing seedling.
- the process of germination is a highly regulated process occurring during a short period of time in which due to the catabolic conversion of storage substances extremely high amounts of metabolic intermediates are available.
- germination provides for extremely high levels of acetyl-CoA due to the breakdown of the storage substance oleic acid into sugars in the glyoxysomes. Since this is the appropriate substrate for PHB synthesis it is preferable to use transgenic oilseed rape in which the proteins responsible for PHB synthesis are located in the glyoxysomes.
- Signal sequences providing for localisation in this compartment are known, for example, from Zhang et al . (Plant Physiol. 104 (1994) , 857-864) .
- the nucleic acid sequence which codes for the polypeptide having the desired enzymatic activity is placed under the control of regulatory elements which allow for the expression of the nucleic acid molecule in the transgenic plant material during the malting process.
- regulatory elements are meant regions of a nucleic acid molecule which regulate expression of a nucleic acid sequence. Such elements may encompass promoters, enhancers, translational enhancers, ribosome binding sites, etc. and optionally poly-A signals.
- any regulatory element which is functional in plant cells and which is active under the conditions of the malting process according to the invention may be used.
- the regulatory elements may be homologous or heterologous with respect to the used trans ⁇ genic plant material and with respect to the nucleic acid molecule encoding the heterologous polypeptide.
- a list of suitable plant promoters is given, for example, in Nover (Ed.) , "Plant Promoters and Transcription Factors", Springer Verlag 1994, Germany. Promoters which direct constitutive expression are, for example, the 35 S promoter of CaMV (Odell et al . , Nature 313 (1985) , 810-812) or polyubiquitin promo ⁇ ters as those of the polyubiquitin genes of maize (Plant. Mol. Biol. 18 (1992) , 675-689) .
- a promoter which is especially useful for the expression in monocoty- ledonous plants, namely in cereal cells is the pEmu promoter (Last et al., Theor. Appl. Genet. 81 (1991), 581-588) .
- the regulatory elements are ele ⁇ ments which allow expression specifically in the plant material used for the malting process according to the invention.
- Preferred regulatory elements are those which comprise promoters specifically active in seeds.
- Such promoters are, for example, the USP promoter of Vicia faba which directs seed specific expression in Vicia or other plants (Fiedler et al., Plant Mol. Biol. 22 (1993) , 669-679; Baumlein et al . , Mol. Gen Genet. 225 (1991) , 459-467) .
- Promoters known to be specifically active in the endosperm of maize kernels are, for example, the promoters of the zein genes (Pedersen et al . , Cell 29 (1982) , 1015-1026; Quattrocchio et al . , Plant Mol. Biol. 15 (1990) , 81-93) .
- the regulatory elements comprise a promoter specifically active during germination of seeds, preferably a promoter which is specifically active in the aleurone layer of germinating seeds of corn plants.
- a promoter examples include the promoters of cv-amylase genes, for instance, of barley (see, for example, Khursheed and Rogers, J. Biol. Chem. 263 (1988) 18953-18960; Jacobson and Close, Plant Mol. Biol. 16 (1991) , 713-724) and wheat (Huttly and Baulcombe, EMBO J. 8 (1989) , 1907-1913; Baulcombe et al., Mol. Gen. Genet. 209 (1989) , 33-40) and rice (Huang et al., Nucl. Acids Res. 18 (1990) , 7007-7014) which are induced by giberellic acid specifically occurring during germination.
- Another promoter specifically active during germination is, for example, the promoter of the isocitrate lyase of rice (Zhang et al . , Plant Physiol . 104 (1994) , 857- 864) .
- promoters which are active during germi ⁇ nation of seeds are, for instance, those of the glucanase genes.
- Harada et al . (Mol. Gen. Genet. 212 (1988) , 466- 473) describe the expression of a distinct set of mRNA during germination of Brassica seeds. These include, for example, the transcripts of the genes coding for isocitrate synthase and malate synthase.
- the promoters of these genes can be isolated according to conventional techniques known to those skilled in the art from genomic libraries, for example, from oilseed rape or from sunflower.
- regulatory elements may be used which are indu- proficient by external influences and thereby allow the exact control of the expression of the heterologous polypeptide of interest.
- regulatory elements are promoters which are inducible by specific chemical or physical influen ⁇ ces.
- promoters of heat shock pro ⁇ teins which may be easily activated by an increase in temperature during the malting process.
- Other examples are wound inducible promoters (Velten et al. , EMBO J. 3 (1984) , 2723-2730) .
- the synthe ⁇ sized heterologous polypeptide is either located in the transgenic plant cells or is transported to the apoplast. If the polypeptide is located in the cell, it may be located in any suitable compartment, such as the cytoplasm, the plasti- des, the vacuole, the mitochondria or the endoplasmatic re- ticulum. Signal sequences or leader peptides which ensure the location of proteins in the above mentioned compartments of plant cells are known in the art and the corresponding DNA sequences can be fused to the coding region of the hetero ⁇ logous polypeptide of interest by the skilled person ac ⁇ cording to well known techniques.
- the location of the hetero ⁇ logous polypeptide in the apoplast of the transgenic material may be achieved by fusing to the coding region of the poly ⁇ peptide a signal sequence leading to transport in the apo ⁇ plast.
- sequences are also known in the art, for example, from apoplastic invertase of potato.
- the location in the apoplast may be desired if it is intended that the hetero ⁇ logous protein acts on a substance present outside the transgenic material, namely in the malt solution.
- nucleic acid sequences are used which are not derived from plants, it might be necessary to modify these sequences in order to obtain efficient expression in plant cells. This applies especially to sequences derived from microorganisms, for example from bacteria.
- transgenic plant material comprising several nucleic acid sequences coding for heterologous polypeptides which act in concert in the degradation or synthesis of substances in plant cell. Examples would be coding sequences from bacterial operons encoding proteins which catalyse a biochemical pathway not present in plant cells, for example, PHA or PHB synthesis.
- one or more heterologous polypeptides are synthesized which may be present in the malted transgenic plant material and/or in the malting solution and which lead, due to their biological and/or enzymatic activity, to the production of a desired degradation and/or conversion product of the storage substance.
- Said degradation and/or conversion product present in the malted material or the malting solution can be isolated from said material by methods known in the art.
- the malted transgenic material and/or the malting solution may be useful for different purposes.
- the present invention also relates to the malted trans ⁇ genic material as well as to the malting solution obtainable by the process according to the invention, whereby the malted material or malted solution may be used as such or after par ⁇ tial purification and/or combination with other known com ⁇ pounds for different purposes in various kinds of fields.
- the present invention also relates to compositions comprising the malted transgenic plant material or the malting solution obtainable by the process according to the solution in raw or purified form.
- the composition may be useful, for example, as a nutrient or as a pharmaceutical composition.
- Other possible applications are in the chemical industry as analytical means or catalysts or as additives, for example, in non-food or food sector. Also the use as diagnostic tools is possible.
- composition ac ⁇ cording to the invention is useful in therapeutic applica ⁇ tions or in prophylactic applications.
- Of particular interest is, for example, the possible use for vaccination by oral ap ⁇ plication.
- the construction and introduction of the recombinant nucleic acid molecule which is present in the transgenic plant mate ⁇ rial can be carried out according to methods known in the art. These methods comprise, for example, techniques for the preparation, manipulation, characterization and cloning of nucleic acid molecules as described, for instance, in Sam- brook et al . (Molecular Cloning, A Laboratory Manual, 2nd Ed. (1989) , Cold Spring Harbor Laboratory Press, Cold Spring Har ⁇ bor, N.Y. ) .
- the DNA used for transformation further contains a DNA coding for a selectable marker in order to facilitate the identification and propagation of transformed cells.
- marker genes are those encoding proteins that can confer resistance against an antibiotic, such as Kanamycin, Hygro ⁇ mycin, G418 or Bleomycin.
- Other preferred marker DNAs code for proteins that can provide a distinguishable colour to the plant cell, such as the Al gene encoding dihydroquercetin-4- reductase (Meyer et al . , Nature 330 (1987) , 677-678) and the glucoronidase gene (Jefferson et al . , Proc. Natl. Acad. Sci.
- marker DNAs which confer improved stress tolerance or disease or pest resistance, for example DNAs coding for endotoxins of Bacillus thuringiensis.
- markers are those conferring resistance to herbicides by inhibiting or neutra ⁇ lising their action, such as bar gene, the sfr gene and the sfrv gene which confer resistance to glutamine synthetase inhibitors such as bialaphos.
- marker DNAs which encode modified target enzymes that have a lower affinity for a specific herbicide, such as a mo ⁇ dified glutamine synthetase resistant to phosphinotricine.
- Other examples are marker DNAs encoding proteins which neu ⁇ tralise the action of the herbicide bromoxynil (Stalker et al . (1988) , in: Genetic Improvements of Agriculturally Important Crops, Ed: Fraley, Frey and Schell, Cold Spring Harbor Laboratories) .
- vital markers like the "green fluorescent protein” (Sheen et al . , Plant J. 8 (1995), 777-784) may be used.
- Methods for the integration of foreign DNA into plant cells include, for example, the transformation of plant cells or of plant tissue with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as transformants . These methods have been extensively examined and described in detail (see, for example, EP-A 116 718; EP-A 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V., Ablasser- dam, Chapter V; Fraley et al . , Crit . Rev. Plant. Sci. 4, 1-46 and An et al . , EMBO J. 4 (1985) , 277-287) .
- An alternative method for the transformation of monocotyle ⁇ donous plants is also the biolistic method (see, for example, Wan and Lemaux, Plant Physiol. 104 (1994) , 37 48; Vasil et al., Bio/Technology 11 (1993), 1553-1558; Spencer et al. , Theor. Appl. Genet. 79 (1990) , 625-631; Ritala et al. , Plant Mol. Biol. 24 (1994), 317-325) . Described are also methods which are based on the transformation of monocotyledonous protoplasts, the electroporation of partially permeabilised cells or the introduction with the help of glass fibres.
- transgenic rice plants has been described, for example, in Christou et al . (Biotechnology 9 (1991) , 957- 962) and Peng et al . (Theor. Appl. Genet. 83 (1992) , 855-863) and Somers et al . (Biotechnology 10 (1992), 1589-1594) describes the transformation and regeneration of fertile rye plants.
- Christou et al . Biotechnology 9 (1991) , 957- 962
- Peng et al . Theor. Appl. Genet. 83 (1992) , 855-863
- Somers et al . Biotechnology 10 (1992), 1589-1594
- monocotyledonous plants as well as dicotyledonous plants may be genetically modified according to techniques known in the art to obtain plants which may be used as a source for the transgenic material employed in the process according to the invention.
- Figure 1 shows schematically the structure of plasmid pEmuBmCGTase used for the transient expression in transformed protoplasts.
- the coding region of the gene coding for CGTase from Bacillus macerans is fused to the pEmu promoter as described by Last et al . ( loc. cit.) .
- ARE and OCS are enhancer elements;
- dADH is the promoter of the Adh gene from maize and Adhl Intrl stands for the first intron of the Adh gene.
- Nos stands for the termination signal of the nopalin synthase gene of Agrobacterium tumefaciens.
- FIG. 2 shows schematically the structure of plasmid pEmuKpCGTase used for the transient expression in transformed protoplasts.
- the coding region of the gene coding for CGTase from Xlebsiella pneumonieae is fused to the pEmu promoter as described by Last et al . (loc. cit.) .
- Figure 3 shows schematically the structure of plasmid pAmyBmCGTase used for transformation of wheat and barley.
- the coding region of the gene coding for CGTase from Bacillus macerans is fused to the signal sequence of the ⁇ -amylase and to the promoter of the amylase high pi gene.
- E9 trm stands for the transcriptional termination sequence E9.
- Figure 4 shows schematically the structure of plasmid pAmyKpCGTase used for transformation of wheat and barley.
- the coding region of the gene coding for CGTase from Klebsiella pneumonieae is fused to the signal sequence of the ⁇ -amylase and to the promoter of the a- amylase gene.
- CGTases cyclodextrin glycosyltransferases
- Recombinant plasmids in which the coding sequence is linked in sense-orientation to the promoter are selected. From these the expression cassettes are isolated by restriction digest and inserted into suitable plant transformation vectors. These vectors carried also a uid-A gene coding for GUS (Jefferson et al . , (1987) loc. cit.) and a bar gene, which confers resistance to the herbicide bialaphos.
- aleuron cell protoplasts are prepared from wheat and barley (Lee et al . , Plant Mol. Biol. 13 (1989) , 1- 29) and transfected with the transformation vectors described in Example 1 which contain the maize polyubiquitin promoter in the presence of polyethylene glycol (Chand et al . , J. Plant Physiol. (1988), 480-485) .
- the transformed protoplasts are cultivated for 36 hours in induction medium.
- the cell free medium is then mixed with starch (7% final concentration) and incubated for 12-24 at room temperature.
- the medium is passed through a C18 Seppak column (Millipore) in order to remove starch and recovered cyclodextrins are analysed; see infra.
- Example 1 The plant transformation vectors described in Example 1 con ⁇ taining the barley ⁇ -amylase promoter are used to transform wheat and barley immature zygotic embryos, young callus or microspore-derived embryos according to the method described in Wan and Lemaux (loc. cit.) .
- grains of wheat and barley plants are germinated under conditions described by Wan and Lemaux (1994, loc. cit.) and developing plants are kept in the chamber until immature embryos develop. These are subsequently placed on callus medium to induce proliferation and callus formation.
- the developing calli are several times divided, removed and placed onto new medium before the cell material is competent for transfomation via particle bombardment.
- the bombardment is carried out as described by (Weeks et al . , (1993) , loc. cit.; Nehra at al. , (1994), loc. cit.; Wan and Lemaux, (1994) , loc. cit.; Becker et al. , (1994), loc. cit.; or Ritala et al . , (1994) , loc. cit.) .
- Bialaphos resistant callus tissue is further cultivated and after re ⁇ generation of plants transferred to hormone free plant medium
- nuclear DNA is prepared from leaf tissue of transformed plants according to standard techniques.
- the DNA is digested with a set of restriction enzymes and sepa ⁇ rated on agarose gels.
- the restriction fragments are trans ⁇ ferred to a nylon membrane and hybridised with labelled the CGTase gene fragment according to Chowdhury et al . (Theor. Appl . Genet. 87 (1994), 821-828) and Wan and Lemaux (1994, loc. cit.) .
- the presence of the CGTase coding sequence is verified by PCR technique using suitable oligo- nucleotide primers.
- Transformed plants which harbour the CGTase coding sequence are placed in climate chambers in order to allow regeneration of fully developed and fertile plants.
- This step was carried out in two different ways :
- the green malt is subsequently kiln dried or dried by micro ⁇ wave treatment.
- the cyclodextrins can be isolated from the cured malt.
- the conversion of starch into cyclodextrins took place in liquid medium.
- the green malt was broken up mechanically.
- the endo ⁇ sperm was the converted into a mesh by adding water using an agitator.
- the enzymatic conversion then took place in the liquid medium.
- Synthesized cyclodextrins can be recovered di ⁇ rectly from the mash by appropriate extraction steps, such as precipitation with the help of additives or of chromatogra ⁇ phy.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Nutrition Science (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97908223A EP0885304A2 (en) | 1996-03-05 | 1997-03-05 | Process for the production of degradation and/or conversion products of storage substances present in transgenic plant material with the help of a malting process |
AU20266/97A AU715778B2 (en) | 1996-03-05 | 1997-03-05 | Process for the production of degradation and/or conversion products of storage substances present in transgenic plant material with the help of a malting process |
JP09531482A JP2001501451A (en) | 1996-03-05 | 1997-03-05 | Method for producing a decomposed substance and / or a converted substance from a storage substance present in a transformed plant material by a malting process |
PL97328707A PL328707A1 (en) | 1996-03-05 | 1997-03-05 | Method of obtaining degraded and/or converted products of reserve substances being present in transgenous plant material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96103413.9 | 1996-03-05 | ||
EP96103413 | 1996-03-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1997032986A2 true WO1997032986A2 (en) | 1997-09-12 |
WO1997032986A3 WO1997032986A3 (en) | 1997-11-20 |
Family
ID=8222533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1997/001255 WO1997032986A2 (en) | 1996-03-05 | 1997-03-05 | Process for the production of degradation and/or conversion products of storage substances present in transgenic plant material with the help of a malting process |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0885304A2 (en) |
JP (1) | JP2001501451A (en) |
AU (1) | AU715778B2 (en) |
CA (1) | CA2248023A1 (en) |
HU (1) | HUP9902151A3 (en) |
PL (1) | PL328707A1 (en) |
WO (1) | WO1997032986A2 (en) |
ZA (1) | ZA971885B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000000619A2 (en) * | 1998-06-26 | 2000-01-06 | Iowa State University Research Foundation, Inc. | MATERIALS AND METHODS FOR THE ALTERATION OF ENZYME AND ACETYL CoA LEVELS IN PLANTS |
WO2000011199A1 (en) * | 1998-08-20 | 2000-03-02 | Pioneer Hi-Bred International, Inc. | COMPOSITIONS AND METHODS FOR ALTERING AN ACETYL-CoA METABOLIC PATHWAY OF A PLANT |
WO2000029591A1 (en) * | 1998-11-12 | 2000-05-25 | Novozymes A/S | Transgenic plant expressing maltogenic alpha-amylase |
WO2001033977A1 (en) * | 1999-11-05 | 2001-05-17 | Metabolic Pharmaceuticals Limited | Product and method for control of obesity |
WO2001041559A1 (en) * | 1999-12-10 | 2001-06-14 | Unicrop Ltd | A process for converting storage reserves of dicot seeds into compositions comprising one or more gene products |
WO2001059141A2 (en) * | 2000-02-10 | 2001-08-16 | Washington State University Research Foundation | Methods and compositions that utilize barley as a foodstuff for animals |
WO2003018766A3 (en) * | 2001-08-27 | 2004-01-29 | Syngenta Participations Ag | Self-processing plants and plant parts |
US6940002B1 (en) | 1998-11-12 | 2005-09-06 | Novozymes A/S | Transgenic plant expressing maltogenic alpha-amylase |
AU2006225290B2 (en) * | 2001-08-27 | 2008-07-24 | Syngenta Participations Ag | Self-processing plants and plant parts |
US7635799B2 (en) | 2005-03-16 | 2009-12-22 | Syngenta Participations Ag | Corn event 3272 and methods for detection thereof |
US7727726B2 (en) | 2007-06-01 | 2010-06-01 | Syngenta Participations Ag | Process for starch liquefaction and fermentation |
US7914993B2 (en) | 2007-06-01 | 2011-03-29 | Syngenta Participations Ag. | Process for starch liquefaction and fermentation |
US7915020B2 (en) | 2007-06-01 | 2011-03-29 | Syngenta Participations Ag | Process for starch liquefaction and fermentation |
WO2020069914A1 (en) | 2018-10-05 | 2020-04-09 | Basf Se | Compounds stabilizing amylases in liquids |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD275704A1 (en) * | 1988-09-23 | 1990-01-31 | Akad Wissenschaften Ddr | PROCESS FOR PRODUCING BARLEY PLANTS |
WO1990001551A1 (en) * | 1988-07-29 | 1990-02-22 | Washington University School Of Medicine | Producing commercially valuable polypeptides with genetically transformed endosperm tissue |
WO1991014772A1 (en) * | 1990-03-23 | 1991-10-03 | Gist-Brocades N.V. | Production of enzymes in seeds and their use |
WO1991019808A1 (en) * | 1990-06-11 | 1991-12-26 | Calgene, Inc. | Production of cyclodextrins in transgenic plants |
WO1992005258A1 (en) * | 1990-09-20 | 1992-04-02 | La Trobe University | Gene encoding barley enzyme |
EP0479359A1 (en) * | 1990-09-13 | 1992-04-08 | Gist-Brocades N.V. | Transgenic plants having a modified carbohydrate content |
WO1994011520A2 (en) * | 1992-11-09 | 1994-05-26 | Zeneca Limited | Novel plants and processes for obtaining them |
WO1994011519A1 (en) * | 1992-11-06 | 1994-05-26 | Zeneca Limited | Production of polyhydroxyalkanoate in plants |
WO1995014099A2 (en) * | 1993-11-16 | 1995-05-26 | The Regents Of The University Of California | Process for protein production in plants |
WO1995023230A1 (en) * | 1994-02-24 | 1995-08-31 | Olsen Odd Arne | Promoter from a lipid transfer protein gene |
-
1997
- 1997-03-05 AU AU20266/97A patent/AU715778B2/en not_active Ceased
- 1997-03-05 EP EP97908223A patent/EP0885304A2/en not_active Withdrawn
- 1997-03-05 ZA ZA9701885A patent/ZA971885B/en unknown
- 1997-03-05 JP JP09531482A patent/JP2001501451A/en active Pending
- 1997-03-05 WO PCT/EP1997/001255 patent/WO1997032986A2/en not_active Application Discontinuation
- 1997-03-05 CA CA002248023A patent/CA2248023A1/en not_active Abandoned
- 1997-03-05 HU HU9902151A patent/HUP9902151A3/en unknown
- 1997-03-05 PL PL97328707A patent/PL328707A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990001551A1 (en) * | 1988-07-29 | 1990-02-22 | Washington University School Of Medicine | Producing commercially valuable polypeptides with genetically transformed endosperm tissue |
DD275704A1 (en) * | 1988-09-23 | 1990-01-31 | Akad Wissenschaften Ddr | PROCESS FOR PRODUCING BARLEY PLANTS |
WO1991014772A1 (en) * | 1990-03-23 | 1991-10-03 | Gist-Brocades N.V. | Production of enzymes in seeds and their use |
WO1991019808A1 (en) * | 1990-06-11 | 1991-12-26 | Calgene, Inc. | Production of cyclodextrins in transgenic plants |
EP0479359A1 (en) * | 1990-09-13 | 1992-04-08 | Gist-Brocades N.V. | Transgenic plants having a modified carbohydrate content |
WO1992005258A1 (en) * | 1990-09-20 | 1992-04-02 | La Trobe University | Gene encoding barley enzyme |
WO1994011519A1 (en) * | 1992-11-06 | 1994-05-26 | Zeneca Limited | Production of polyhydroxyalkanoate in plants |
WO1994011520A2 (en) * | 1992-11-09 | 1994-05-26 | Zeneca Limited | Novel plants and processes for obtaining them |
WO1995014099A2 (en) * | 1993-11-16 | 1995-05-26 | The Regents Of The University Of California | Process for protein production in plants |
WO1995023230A1 (en) * | 1994-02-24 | 1995-08-31 | Olsen Odd Arne | Promoter from a lipid transfer protein gene |
Non-Patent Citations (3)
Title |
---|
GODDIJN, O.J.M., ET AL.: "Plants as bioreactors" TRENDS IN BIOTECHNOLOGY, vol. 13, no. 9, September 1995, pages 379-387, XP002005043 * |
PEN, J., ET AL.: "Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquefaction" BIOTECHNOLOGY, vol. 10, no. 3, March 1992, pages 292-296, XP002008442 * |
VICKERS J E ET AL: "THERMOSTABLE ALPHA-AMYLASE CLONED FOR GENETIC TRANSFORMATION OF BARLEY" PROCEEDINGS OF THE AUSTRALIAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, 26 September 1994, page 26 XP000617525 * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7524678B2 (en) | 1998-06-26 | 2009-04-28 | Iowa State University Research Foundation, Inc. | Materials and methods for the alteration of enzyme and acetyl CoA levels in plants |
US6942994B2 (en) | 1998-06-26 | 2005-09-13 | Iowa State University Research Foundation, Inc. | Materials and methods for the alteration of enzyme and acetyl CoA levels in plants |
WO2000000619A3 (en) * | 1998-06-26 | 2000-06-15 | Univ Iowa State Res Found Inc | MATERIALS AND METHODS FOR THE ALTERATION OF ENZYME AND ACETYL CoA LEVELS IN PLANTS |
US6764851B2 (en) | 1998-06-26 | 2004-07-20 | Iowa State University Research Foundation, Inc. | Materials and methods for the alteration of enzyme and acetyl CoA levels in plants |
WO2000000619A2 (en) * | 1998-06-26 | 2000-01-06 | Iowa State University Research Foundation, Inc. | MATERIALS AND METHODS FOR THE ALTERATION OF ENZYME AND ACETYL CoA LEVELS IN PLANTS |
US6566584B1 (en) | 1998-08-20 | 2003-05-20 | Pioneer Hi-Bred International, Inc. | Compositions and methods for altering an acetyl-CoA metabolic pathway of a plant |
WO2000011199A1 (en) * | 1998-08-20 | 2000-03-02 | Pioneer Hi-Bred International, Inc. | COMPOSITIONS AND METHODS FOR ALTERING AN ACETYL-CoA METABOLIC PATHWAY OF A PLANT |
US6940002B1 (en) | 1998-11-12 | 2005-09-06 | Novozymes A/S | Transgenic plant expressing maltogenic alpha-amylase |
WO2000029591A1 (en) * | 1998-11-12 | 2000-05-25 | Novozymes A/S | Transgenic plant expressing maltogenic alpha-amylase |
US7348470B2 (en) | 1998-11-12 | 2008-03-25 | Jack Bech Nielsen | Transgenic plant expressing maltogenic alpha-amylase |
WO2001033977A1 (en) * | 1999-11-05 | 2001-05-17 | Metabolic Pharmaceuticals Limited | Product and method for control of obesity |
US7098029B1 (en) | 1999-11-05 | 2006-08-29 | Metabolic Pharmaceuticals Limited | Product and method for control of obesity |
JP2003515350A (en) * | 1999-12-10 | 2003-05-07 | ユニクロップ・リミテッド | Methods of converting a dicot seed reserve into a composition comprising one or more gene products |
WO2001041559A1 (en) * | 1999-12-10 | 2001-06-14 | Unicrop Ltd | A process for converting storage reserves of dicot seeds into compositions comprising one or more gene products |
AU782169B2 (en) * | 1999-12-10 | 2005-07-07 | Unicrop Ltd | A process for converting storage reserves of dicot seeds into compositions comprising one or more gene products |
EP1857557A3 (en) * | 1999-12-10 | 2009-02-25 | Unicrop Oy | A process for converting storage reserves of dicot seeds into compositions comprising one or more gene products |
EP1857557A2 (en) * | 1999-12-10 | 2007-11-21 | Unicrop Ltd. | A process for converting storage reserves of dicot seeds into compositions comprising one or more gene products |
WO2001059141A3 (en) * | 2000-02-10 | 2001-12-06 | Univ Washington | Methods and compositions that utilize barley as a foodstuff for animals |
WO2001059141A2 (en) * | 2000-02-10 | 2001-08-16 | Washington State University Research Foundation | Methods and compositions that utilize barley as a foodstuff for animals |
US7102057B2 (en) | 2001-08-27 | 2006-09-05 | Syngenta Participations Ag | Self-processing plants and plant parts |
AU2006225290B2 (en) * | 2001-08-27 | 2008-07-24 | Syngenta Participations Ag | Self-processing plants and plant parts |
WO2003018766A3 (en) * | 2001-08-27 | 2004-01-29 | Syngenta Participations Ag | Self-processing plants and plant parts |
US7557262B2 (en) | 2001-08-27 | 2009-07-07 | Syngenta Participations Ag | Self processing plants and plant parts |
US7855322B2 (en) | 2001-08-27 | 2010-12-21 | Syngenta Participations Ag | Self processing plants and plant parts |
US7919681B2 (en) | 2001-08-27 | 2011-04-05 | Syngenta Participations Ag | Self-processing plants and plant parts |
US7635799B2 (en) | 2005-03-16 | 2009-12-22 | Syngenta Participations Ag | Corn event 3272 and methods for detection thereof |
US8093453B2 (en) | 2005-03-16 | 2012-01-10 | Syngenta Participations Ag | Corn event 3272 and methods of detection thereof |
US7727726B2 (en) | 2007-06-01 | 2010-06-01 | Syngenta Participations Ag | Process for starch liquefaction and fermentation |
US7914993B2 (en) | 2007-06-01 | 2011-03-29 | Syngenta Participations Ag. | Process for starch liquefaction and fermentation |
US7915020B2 (en) | 2007-06-01 | 2011-03-29 | Syngenta Participations Ag | Process for starch liquefaction and fermentation |
WO2020069914A1 (en) | 2018-10-05 | 2020-04-09 | Basf Se | Compounds stabilizing amylases in liquids |
Also Published As
Publication number | Publication date |
---|---|
CA2248023A1 (en) | 1997-09-12 |
WO1997032986A3 (en) | 1997-11-20 |
AU2026697A (en) | 1997-09-22 |
EP0885304A2 (en) | 1998-12-23 |
HUP9902151A3 (en) | 2001-11-28 |
PL328707A1 (en) | 1999-02-15 |
HUP9902151A2 (en) | 1999-11-29 |
ZA971885B (en) | 1997-10-16 |
JP2001501451A (en) | 2001-02-06 |
AU715778B2 (en) | 2000-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ebskamp et al. | Accumulation of fructose polymers in transgenic tobacco | |
KR100352532B1 (en) | DNA Sequences Coding For Enzymes Capable Of Facilitating The Synthesis Of Linear 1,4 Glucans In Plants, Fungi and Microorganism | |
JP4673431B2 (en) | Novel plastid targeting nucleic acid sequence, novel β-amylase sequence, stimulus-responsive promoter, and uses thereof | |
US6891088B1 (en) | Transgenic plants with a modified activity of a plastidial ADP/ATP translocator | |
US5986173A (en) | Method for obtaining transgenic plants showing a modified fructan pattern | |
Oakes et al. | Production of cyclodextrins, a novel carbohydrate, in the tubers of transgenic potato plants | |
Yip et al. | The introduction of a phytase gene from Bacillus subtilis improved the growth performance of transgenic tobacco | |
AU715778B2 (en) | Process for the production of degradation and/or conversion products of storage substances present in transgenic plant material with the help of a malting process | |
WO2002079410A2 (en) | Glucan chain length domains | |
CN101103115A (en) | Transformed plant expressing a mutansucrase and synthesizing a modified starch | |
AU9257298A (en) | Processes for increasing the yield in plants | |
ES2368657T3 (en) | SYNTHESIS OF SYALICAL ACID IN PLANTS. | |
JP2004522420A (en) | Transgenic plants producing isomalt | |
WO1997024448A1 (en) | Potato alpha-glucosidase gene | |
RU2272842C2 (en) | Linear ?-1,4-glucanes and method for their preparing | |
US20040168214A1 (en) | Process for increasing the yield in plants by expressing stably integrated recombinant polypeptides | |
AU5417299A (en) | Method to alter the fatty acid metabolism in plants | |
Koivu | Novel sprouting technology for recombinant protein production | |
EP2412814A1 (en) | Method for the production of transgenic plants having high starch and biomass content and yield | |
CZ20004088A3 (en) | Transgenic plants with modified activity of plastidial ADP/ATP translocator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1997908223 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2248023 Country of ref document: CA Ref country code: CA Ref document number: 2248023 Kind code of ref document: A Format of ref document f/p: F |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1997 531482 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1997908223 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997908223 Country of ref document: EP |