+

WO1997031285A1 - Verres de contact a foyer progressif - Google Patents

Verres de contact a foyer progressif Download PDF

Info

Publication number
WO1997031285A1
WO1997031285A1 PCT/JP1997/000436 JP9700436W WO9731285A1 WO 1997031285 A1 WO1997031285 A1 WO 1997031285A1 JP 9700436 W JP9700436 W JP 9700436W WO 9731285 A1 WO9731285 A1 WO 9731285A1
Authority
WO
WIPO (PCT)
Prior art keywords
curvature
curved surface
distance
optical axis
radius
Prior art date
Application number
PCT/JP1997/000436
Other languages
English (en)
French (fr)
Inventor
Osamu Wada
Yoshinori Awanohara
Toshihide Shinohara
Akira Komatu
Osamu Yokoyama
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to EP97904568A priority Critical patent/EP0822439A4/en
Priority to US08/945,073 priority patent/US6007201A/en
Publication of WO1997031285A1 publication Critical patent/WO1997031285A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/044Annular configuration, e.g. pupil tuned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00028Bifocal lenses; Multifocal lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/042Simultaneous type

Definitions

  • the present invention relates to a multifocal contact lens, a mold for the same, and a method for manufacturing the same, and in particular, a plurality of curved surfaces for distance viewing for viewing far away and a plurality of curved surfaces for near viewing for viewing near.
  • the present invention relates to a multifocal contact lens having a lens carp repeatedly formed in a belt shape, a molding die thereof, and a method of manufacturing the same.
  • the present invention also relates to a method for manufacturing these multifocal contact lenses. Background technology
  • a multifocal contact lens has been proposed in which a distance portion for seeing a distant place and a near portion for seeing a near side are alternately arranged in a concentric manner. — 1 4 6 0 2 0).
  • the wearer can select one of distant and near, which the wearer simultaneously views, depending on the consciousness of the wearer.
  • the wearer can use the distance portion and the near portion smoothly and smoothly, which is useful. .
  • such a contact lens 1 has a long-distance curved surface F 1, F 2-for viewing a distance and a near-distance curved surface ⁇ 1, ⁇ 2 ⁇ for a short distance.
  • the far portion curved surfaces F 1, F 2-and the near portion curved surface Nl, ⁇ 2 ⁇ in the front curve 2 have been formed as follows.
  • the radius of curvature of the distance portion curved RF the radius of curvature of the near portion curved as R N
  • a circle having a radius RF is drawn from a point P on the optical axis coincident with the Z axis, and an intersection with the optical axis is determined. This is defined as a curvature center position OF1 of the distance portion curved surface F1.
  • a circle having a radius RF is drawn with the center of curvature Op 1 as a center, and an intersection PF 1 with a straight line 1 F 1 parallel to the optical axis defining a predetermined area width of the distance portion curved surface F 1 is obtained.
  • a circle having a radius RN is drawn around the point PF1, and an intersection with the optical axis is obtained. This is defined as the curvature center position ON1 of the near surface N1.
  • a circle having a radius RN is drawn with the curvature center position ON 1 as a center, and an intersection PN 1 with a straight line 11 defining a predetermined area width of the near surface N 1 is obtained.
  • a circle having a radius RF is drawn around the point PN1, and an intersection with the optical axis is obtained. This is defined as a curvature center position 0F2 of the far-surface curved surface F2.
  • FIG. 7 shows Op 2 * ′ and the curvature center positions ON 1 and ⁇ N 2 ⁇ of Nl and N 2 ⁇ .
  • the curvature center positions Op1, OF2 of the distance portions curved surfaces Fl, F2- are sequentially shifted in the Z-axis direction, that is, in the direction from the front curve 2 to the base curve 3.
  • the curvature center positions 0 ⁇ 1, 0 '2' 'of the near surface curved surfaces Nl, N2 ⁇ are distributed in the ⁇ -axis direction and ii3 ⁇ 4 direction, that is, in the direction from the base curve 3 to the front curve 2 in order.
  • the rays parallel to the optical axis incident on the far-area curved surfaces F 1, F 2 ⁇ are the far-area focal points FF 1 of the respective far-area curved surfaces F 1, F 2 ⁇ . , FF 2 ⁇ image, not one point.
  • a multifocal contact lens has been proposed by the present invention (for example, Japanese Patent Application No. 5-508019 (International Publication No. 93-14434)).
  • the contact lens 1 is formed by alternately forming concentric belt-shaped curved surfaces F 1, F 2 • ′ for viewing the distance and near-surface curved surfaces Nl, ⁇ 2 for viewing the distance. It has a front curve 2 and a base curve 3.
  • the optical axis of the contact lens 1 is set to the ⁇ axis, and the ⁇ axis direction is the direction from the front curve 2 to the base curve 3.
  • the X axis is taken through the vertex ⁇ of the contact lens 1 and perpendicular to the ⁇ axis.
  • the curved shape of the base curve 3 is individually given corresponding to the curved surface of the wearer's cornea. Given the value of the curved surface shape of the given base curve 3, the radius of curvature of the distance portion curved surfaces F1, F2- ⁇ necessary to obtain the desired distance portion power and the addition power of the near portion are?
  • the radius of curvature of the curved surface for the near portion 1 ⁇ 1, ⁇ 2 ⁇ ⁇ is defined by the RN force.
  • the curvature center positions OF1, Op2 *, and ON1, ⁇ N2 of the distance portion curved surfaces F1, F2 in front curve 2 and the near portion curved surfaces Nl, N2 in front curve 2 are It is required as follows.
  • a point at which the light beam emitted from the base curve 3 intersects with the optical axis by injecting parallel 3 ⁇ 4 into the distance portion curved surface F 1 is obtained, and this point is defined as a distance portion focal point F F Define. Also, determine the point of intersection with the «respective optical axis emitted from the base curve 3 is incident parallel ⁇ II in the near portion curved surfaces N1, to define this point as the near use section focus F N. First, a position on the optical axis away from the vertex P by the radius of curvature RF of the distance portion is defined as a curvature center position 0 F ⁇ of the distance portion curved surface F1. Next, draw a circle of radius RF centered on the curvature center position 0 FI, and draw a straight line parallel to the optical axis that defines the predetermined area width of the distance-use curved surface F 1.
  • the curvature center position OF2 of the distance portion curved surface F2 is obtained as follows. That is, a circle having a radius RN is drawn around the curvature center position ON1, and an intersection PN1 with I11, which is parallel to the optical axis and defines a predetermined area width of the near surface N1, is determined. Next, a circle of radius RF around the PNI, find the intersection with the optical axis is defined as a candidate point center of curvature located to become should point 0 F 2 intersections of the distance portion curved surface F 2 of this.
  • the original curvature center position OF 2 is obtained by using the ray tracing method near the curvature center position point Op 2 as a starting point.
  • the radius of curvature center position 0 F 2 is obtained using the tracking method as follows.
  • a circle having a radius R F is drawn centering on the candidate point of the curvature center position OF 2
  • a ⁇ point of PF 2 is obtained as an intersection of the circle and the straight line 1 F 2
  • a candidate for the point PF 2 is obtained from the point PNI.
  • the curved surface extending over the point is set as a candidate surface for the far vision curved surface F2.
  • the candidate surface for the far vision curved surface F2 It rotates slightly counterclockwise in Fig. 5 around PN1.
  • the position that intersects with this optical axis is located in the positive Z direction with respect to the distance focus FF
  • the candidate surface for the distance portion surface F2 is rotated clockwise around the point PN1.
  • the curvature center position ON2 of the near portion curved surface N2 is obtained as follows. That is, a circle of radius RF is drawn centering on the determined center of curvature 0 F 2, and the intersection with the straight line 1 F 2 parallel to the optical axis that defines the predetermined area width of the distance portion curved surface F 2 And define this intersection as PF2. Next, a circle having a radius RN is drawn around the point PF2, an intersection with the optical axis is obtained, and this intersection is defined as the ⁇ i point of the curvature center position ON2 of the near surface N2. Next, using the tracking method as the starting point, the original curvature center position ON 2 is determined using the candidate point of the curvature center position ON 2 as a starting point.
  • a circle with a radius RN is drawn around the candidate point of the curvature center position ON 2 described above, an intersection between the circle and the straight line 1 N 2 is obtained, and this intersection is defined as the ⁇ point of PN 2 and the point Defines the shape of the near surface N2 candidate surface that extends from PF2 to the candidate point PN2.
  • the position where the incident parallel intersects the optical axis corresponds to the ⁇ curved surface If it is located in the positive Z direction, the near surface curved surface N2 is rotated clockwise around the point PF2.
  • the rotation direction and the amount of rotation of the ⁇ near surface N 2 around the point PF 2 are adjusted so as to pass through the near focal point F N of the parallel ray power incident on the front curve 2. And determine the rotational position.
  • the surface obtained by rotating the ⁇ curved surface of the near surface N2 to this rotation position around the point PF2 is the near surface N2 to be obtained, and the curvature of the determined near surface N2 is determined.
  • the center position is the curvature center position to be found 0 N 2 o
  • the center of curvature located 0 N ⁇ curvature center position 0 F 1 and the near portion songs surfaces N 1 of the distance portion curved surfaces F 1, as shown in FIG. 5 are present on the optical axis, but other distance curved
  • a tracking method has been applied. When the ray tracing method is applied, the degree of freedom in design is reduced, so that spherical aberration may remain as described below.
  • the incident light parallel to the light ⁇ exits from the base curve 3 and intersects the optical axis. Pay attention to ⁇ 1.
  • Each of these parallel rays converges before reaching the optical axis after exiting from the base curve 3 as shown in Fig. 4, and then diverges. Therefore, it is determined by the line connecting the [3 ⁇ 43 ⁇ 4P] of the contact lens and the curvature center position 0 F 1 of the distance portion curved surface F 1.
  • no image is formed at one point, and the spherical aberration force remains on each of the spherical surface of the far portion curved surface F2 and the near portion curved surface N2.
  • a parallel light beam incident on a predetermined area width of the distance portion curved surface F2 is drawn around the Z-axis after exiting from the base curve 3 and using the distance from the Z-axis to the point OF2 as a radius. After converging to each point on the ring, it becomes a divergent ray, and on the Z-axis, it forms an image not as a point but as a line.
  • the parallel to the predetermined area width of the near surface curved surface N2 corresponds to each point on the ringon drawn around the ⁇ axis with the radius from the ⁇ axis to the point 0 ⁇ 2 after exiting from the base curve 3.
  • the divergence becomes 3 ⁇ 4I, and the image is formed on the Z axis with a line spread instead of a point.
  • the parallel incident on each curved surface does not form an image at the far portion focal point F F and the near portion focal point F N on the optical axis as defined above.
  • spherical aberration remains. This is the same for the distance portion curved surfaces F 3, F 4- ⁇ and the near portion curved surfaces N 3, ⁇ 4 ⁇ ′ determined by the ray tracing method.
  • each curvature center positions OF 2 in determining the shape of ⁇ 3 ⁇ ⁇ , 0 F 3 ⁇ ⁇ And 0N2, O 3 * ⁇ are also affected by the magnitude of the absolute amount of change in the X direction. More specifically, each of the curvature center positions 0 F 2, when determining the shapes of the distance portion curved surfaces F 2 and F 3 and the near portion curved surfaces N 2 and ⁇ 3 by the ray tracing method, Op 3 * and ON 2, ⁇ 3
  • the center of curvature 0 F 1 and the center of curvature ON 1 exist on the optical axis, but the center of curvature of other distant curved surfaces F 2, F 3
  • the center of curvature 2N2, ⁇ N33 of the center position OF2, 0F3 'and the near portion curved surface N2, N3' is not on the optical axis, and the far portion curved surface F1, F2, F3 have the same radius of curvature R F , and the near surface Nl, N2, N3 Since the ray tracing method is applied under the restriction of having the radius of curvature RN, there is a problem that the spherical aberration power may remain instead of the design freedom force H ".
  • an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a spherical aberration having a lens curve formed by alternately and repeatedly forming a curved portion for a distance portion and a curved portion for a near portion in a concentric manner.
  • An object of the present invention is to provide a multifocal contact lens that can be removed and can obtain clear visual acuity.
  • Another object of the present invention is to provide a mold used for molding the multifocal contact lens.
  • Still another object of the present invention is to provide a multifocal contact lens having a function close to that of a single focus lens, and having a function for both long and short distances by selectively using the indoor and outdoor applications. It is to be.
  • Still another object of the present invention is to provide a method of manufacturing a multifocal contact lens that can be uniformly polished including a boundary portion between an adjacent distance portion curved surface and a near portion curved surface.
  • the present invention provides a plurality of distance portion curved surfaces for viewing the distance, a plurality of near portion curved surfaces for viewing the near portion, and alternately concentrically reciprocating with respect to the force optical axis.
  • a multifocal contact lens having a formed lens curve In a multifocal contact lens having a formed lens curve,
  • Each distance portion curved surface of the lens curve has a center of curvature on the optical axis, and has a single point on the optical axis parallel to the optical axis incident on each distance portion curved surface. Having a radius of curvature set so as to substantially form an image at the focal point of the
  • Each near portion curved surface of the lens curve has a center of curvature on the optical axis, and a light beam parallel to the optical axis incident on each near portion curved surface has a single near-axis shape on the optical axis. It has a radius of curvature set so as to form an image substantially at the focal point of the object.
  • a multifocal contact including a plurality of curved portions for viewing far away, a plurality of curved portions for near viewing, and a lens carp formed alternately and concentrically with respect to the optical axis.
  • Each distance portion curved surface of the lens curve has a center of curvature on the optical axis, and a predetermined principal ray parallel to the optical axis incident on each distance portion curved surface has a single shape on the optical axis.
  • Each near portion curved surface of the lens curve has a center of curvature on the optical axis, and a predetermined principal ray parallel to the optical axis incident on each near portion curved surface is a single principal ray on the optical axis. Characterized by having a radius of curvature set so as to substantially pass through the near focus. Further, as the predetermined principal, a predetermined position in the area width of each curved surface with respect to all the distance portion curved surfaces and the near portion curved surfaces including the distance portion curved surface including the optical axis or the near portion curved surface including the optical axis. It is characterized by selecting the passing ray
  • the predetermined position of the region width of each curved surface is a center position in the region width of each curved surface.
  • the distance portion curved surface including the optical axis or the near portion curved surface including the optical axis is selected that matches the optical axis, and the distance portion curved surface other than these curved surfaces and the near portion are selected.
  • the distance portion curved surface other than these curved surfaces and the near portion are selected.
  • For a curved surface is selected to pass through a predetermined position in the area width of each curved surface.
  • each of the distance portion curved surfaces has a radius of curvature substantially different from each other, and each of the near portion curved surfaces has a radius of curvature substantially different from each other.
  • the lens curve is a front curve.
  • each distance portion curved surface changes according to the distance from the optical axis of each distance portion curved surface
  • the area width of each near portion curved surface is the optical axis of each near portion curved surface. It changes according to the distance from to.
  • each distance portion curved surface increases according to the distance from the optical axis of each distance portion curved surface
  • the area width of each near portion curved surface increases with the optical axis of each near portion curved surface. It is characterized in that it increases according to the distance from.
  • each distance portion curved surface depends on the distance from the optical axis of each distance portion curved surface. It is characterized in that the area width of each near portion curved surface decreases in accordance with the distance from the optical axis of each near portion curved surface.
  • each distance portion curved surface decreases or increases according to the distance from the optical axis of each distance portion curved surface
  • the area width of each near portion curved surface is the width of each near portion curved surface. It is characterized by increasing or decreasing according to the distance from the optical axis.
  • the region widths of the respective far-use curved surfaces are substantially equal and the region widths of the respective near-use curved surfaces are substantially equal.
  • the energy ratio between the curved surface for the hit part and the curved surface for the near part is distributed as a ratio according to the indoor and outdoor use.
  • the energy ratio is a transmission fi ratio.
  • a multifocal contact having a lens curve formed by alternately forming a plurality of curved portions for far vision for viewing far away and a plurality of curved surfaces for near vision concentrically with respect to the optical axis.
  • a typical example used for molding a lens
  • Each distance portion curved surface of the lens curve has a center of curvature on the optical axis, and a ray parallel to the optical axis incident on each distance portion curved surface has a single distance on the optical axis. Having a radius of curvature set so as to substantially form an image at the focal point of the
  • Each near portion curved surface of the lens curve has a center of curvature on the optical axis, and a light beam parallel to the optical axis incident on each near portion curved surface has a single near-axis shape on the optical axis. It is characterized in that it has a radius of curvature set so as to form an image substantially at the focal point of the object.
  • a multifocal contact is provided with a lens curve that is formed by alternately forming concentric bands alternately with a plurality of near surface curved surfaces for viewing the distance and a plurality of near surface curved surfaces for viewing the near side.
  • a lens curve that is formed by alternately forming concentric bands alternately with a plurality of near surface curved surfaces for viewing the distance and a plurality of near surface curved surfaces for viewing the near side.
  • each of the lens cabs has a center of curvature on the optical axis, And a radius of curvature set so as to substantially pass through a single distance focus on a predetermined principal ray optical axis parallel to the optical axis incident on each distance portion curved surface;
  • Each near portion curved surface of the lens curve has a center of curvature on the optical axis, and a predetermined principal ray parallel to the optical axis incident on each near portion curved surface is a single principal ray on the optical axis. Characterized by having a radius of curvature set so as to substantially pass through the near focus. Also, a multifocal contact having a lens curve formed by alternately forming a plurality of curved portions for far vision for viewing far away and a plurality of curved surfaces for near vision concentrically with respect to the optical axis. In the method of manufacturing a lens,
  • Each of the curvature center positions and the curvature radii ⁇ i defining each curved surface is set as the curvature center position ⁇ «and the curvature radius candidate, and
  • the curvature center position ⁇ and the curvature ⁇ diameter ⁇ i are sequentially changed and a predetermined principal ray parallel to the optical axis is traced so as to pass through the focal point for far vision or the focal point for near vision.
  • the curvature center position of the curved surface is determined on the optical axis, and the radius of curvature of each curved surface is determined.
  • a distance portion focus and a near portion focus are defined on the optical axis
  • Each candidate of the first far portion curvature center position and the first far portion curvature radius defining the first far portion curved surface closest to the optical axis is converted to the first far portion curvature center position candidate and the first far portion.
  • the first distance section surface candidate is obtained by finding the intersection with the part, W 5
  • the first distance portion curvature center position trap and the first distance portion curvature radius candidate are sequentially changed, and the predetermined principal ray parallel to the optical axis incident on the first distance portion curved surface is the distance portion. Tracking so as to pass through the partial focal point, and determining the first far portion curvature center position and the first far portion curvature radius;
  • intersection of an arc drawn with the radius of curvature of the first distance portion curvature as the radius around the determined center position of the first distance portion curvature and the first distance portion straight line are determined as the first distance portion intersection point, and A curved surface from the vertex of the lens curve to the first far vision intersection is determined as the first far vision curved surface,
  • a first near portion curved radius is set as a candidate for a first near portion curvature radius defining a first near portion curved surface adjacent to the outside of the first far portion curved surface, and the first far portion curved radius is set.
  • An intersection between the optical axis and an arc drawn with the first near portion curvature radius candidate as a radius around the intersection is determined as a first near portion curvature center position candidate,
  • the first near portion curvature radius candidate is drawn as a radius centered on the first near portion curvature center position candidate, and the first near portion parallel to the optical axis that defines the arc and the area width of the first near portion curved surface. Find the first near vision surface ⁇ by finding the intersection with the straight line,
  • the first near portion curvature center position candidate and the first near portion curvature radius candidate are sequentially changed to pass through the near portion focal point at an optical axis incident on the first near portion curvature surface candidate. Ray tracing as described above to determine the first near portion curvature center position and the first near portion curvature radius,
  • the intersection of the first near portion straight line and the arc drawn with the radius of the first near portion curvature centered on the determined first near portion curvature center position is determined as the first near portion intersection point, and A curved surface from the first distance portion ⁇ to the first near portion intersection is determined as the first near portion curved surface,
  • a second distance portion curvature radius candidate is set as ⁇ i of a second distance portion curvature radius that defines a second distance portion curved surface adjacent to the outside of the first near portion curvature surface,
  • Near business An intersection between an optical axis and an arc drawn with the second candidate distance radius of curvature as a radius centered on a point is determined as a second candidate center curvature center position,
  • the second distance portion curvature radius candidate is drawn as a radius around the second distance portion curvature center position candidate, and the second distance parallel to the optical axis that defines the arc and the area width of the second distance portion curved surface is described. Find the second curved surface,, for and with the part I,
  • the second distance portion curvature center position candidate and the second distance portion curvature radius candidate are sequentially changed, and a predetermined principal ray parallel to the optical axis incident on the second distance portion curvature surface candidate is focused on the distance portion focus. Ray tracing so as to pass through, and determining the second far portion curvature center position and the second far portion curvature radius,
  • a second near portion radius of curvature is set as an indication of a second near portion radius of curvature that defines a second near portion curved surface adjacent to the outside of the second far portion curved surface, and the second near portion radius of curvature is set.
  • the intersection of the optical axis and the arc drawn with the second near portion curvature radius candidate as the radius centered on the intersection of the portion is determined as the second near portion curvature center position ⁇ ,
  • the second near portion curvature center position ⁇ i and the second near portion curvature radius are sequentially changed so that the optical axis incident on the second near portion curved surface candidate is located at a position where ⁇
  • the radius of curvature of the second near portion curvature is centered on the determined second near portion curvature center position. 3 ° between the arc drawn as and the second near portion straight line is determined as a second near portion intersection, and the curved surface from the second far portion intersection to the second near portion intersection is defined as the second near portion intersection. Determined as a curved surface.
  • a distance portion and a near portion focus are defined on the optical axis
  • Each candidate of the first near portion curvature center position and the first near portion curvature radius defining the first near portion curved surface including the optical axis is converted to the first near and far portion curvature center position candidate and the first near portion.
  • the first near portion curvature center position ⁇ and the first near portion curvature radius ⁇ i are successively changed, and the predetermined near or near portion is parallel to the optical axis incident on the first near portion curved surface ⁇ i. Tracking the lens so as to pass through the focal point, and determining the first near portion curvature center position and the first near portion curvature radius,
  • the intersection of the circle drawn with the radius of curvature of the first near portion as the radius around the determined center of curvature of the first near portion and the first near portion ⁇ 3 ⁇ 4 is determined as the first near portion intersection.
  • a curved surface from the vertex of the lens curve to the first near portion intersection is determined as the first near portion curved surface,
  • a first far portion curvature radius candidate is set as ⁇ of a first far portion curvature radius that defines a first far portion curved surface adjacent to the outside of the first near portion curved surface, and the first near portion curvature radius is set as: The intersection between the optical axis and an arc drawn with the first far portion curvature radius ⁇ as a radius around the intersection of the first portion is obtained as the first far portion curvature center position indicator,
  • the first distance portion curvature radius candidate is drawn as a radius centered on the first distance portion curvature center position candidate, and the first arc parallel to the optical axis defining the area width of the arc and the first distance portion curved surface.
  • First distance section curved surface ⁇ is obtained by finding ⁇ with distance section,
  • the first distance portion curvature center position ⁇ and the first distance portion curvature radius are sequentially changed, and the position parallel to the optical axis incident on the first distance portion curved surface candidate is changed in the direction of ' ray tracing so as to pass through the focal point for a3 ⁇ 4, determining the first far portion curvature center position and the first far portion curvature radius,
  • intersection of an arc drawn with the radius of curvature of the first distance portion curvature as the radius around the determined center position of the first distance portion curvature and the first distance portion straight line are determined as the first distance portion intersection point, and A curved surface from the first near portion ⁇ to the first far portion intersection is determined as the first far portion curved surface,
  • a second near portion curvature radius ⁇ i is set as a candidate for a second near portion curvature radius that defines a second near portion curved surface adjacent to the outside of the first far portion curved surface, and the first near portion curvature radius ⁇ i is set.
  • the second near portion curvature radius is drawn as a radius centered on the distance portion intersection, and the intersection between the circular arc and the light flux is obtained as the second near portion curvature center position ⁇ ,
  • the second near-portion curvature center position candidate and the second near-portion curvature radius ⁇ f are sequentially changed to produce an input parallel to the optical axis incident on the second near-portion curved surface ⁇ t. Ray tracing so as to pass through, and determining the second near portion curvature center position and the second near portion curvature radius,
  • the ⁇ of the second near portion straight line and the arc drawn with the second near portion curvature radius as the radius around the determined second near portion curvature center position is determined as the second near portion intersection, and A curved surface from the first distance portion ⁇ to the second near portion intersection is determined as the second near portion curved surface,
  • a second far portion curvature radius is set as a candidate for a second far portion curvature radius that defines a second far portion curved surface adjacent to the outside of the second near portion curved surface, and the second far portion curvature radius is set.
  • Near business An intersection between the optical axis and an arc drawn with the second distance portion curvature radius candidate as a radius around the point is determined as a second distance portion curvature center position ⁇ t,
  • the second distance portion curvature center position candidate and the second distance portion curvature radius candidate are sequentially changed, and a predetermined principal ray parallel to the optical axis incident on the second distance portion curvature surface candidate is focused on the distance portion focus. Ray tracing so as to pass through, and determining the second far portion curvature center position and the second far portion curvature radius,
  • intersection of an arc drawn with the radius of curvature of the second distance portion as the radius around the determined center position of the second distance portion curvature and the second distance portion straight line is determined as a second distance portion intersection, and A curved surface from the second near portion ⁇ to the second far portion intersection is determined as the second far portion curved surface.
  • the predetermined position of the region width of each curved surface is a special position that is the center position of the region width of each curved surface.
  • a light ray that matches the optical axis is selected for a distance portion curved surface including an optical axis or a near portion curved surface including an optical axis, and a near portion curved surface other than these curved surfaces is selected.
  • a character that passes through a predetermined position in the area width of each curved surface is selected.
  • each of the distance portion curved surfaces has a curvature radius of a value substantially different from each other
  • each of the near portion curved surfaces has a curvature of a substantially different value from each other.
  • the lens curve is a front curve. It also manufactures a multifocal contact lens with a lens curve formed by alternately forming concentric bands of a plurality of curved surfaces for viewing at a distance and a plurality of curved surfaces for near viewing of a near region. In the method
  • the multifocal contact lens is the multifocal contact lens
  • Each distance portion curved surface of the lens curve has a center of curvature on the optical axis, and a ray parallel to the optical axis incident on each distance portion curved surface has a single distance on the optical axis. Having a radius of curvature set so as to substantially form an image at the focal point of the
  • Each near portion curved surface of the lens curve has a center of curvature on the optical axis, and a light beam parallel to the optical axis incident on each near portion curved surface has a single near-axis shape on the optical axis.
  • a multifocal contact lens having a radius of curvature set so as to form an image substantially at the focal point of the lens,
  • the front curve is polished by pressing a polishing cloth made of a soft material by a fluid pressure and causing the front curve and the polishing cloth to face each other.
  • a multifocal point having a lens curve formed alternately and repeatedly in a concentric band shape with respect to the optical axis, and a plurality of distance portion curved surfaces for viewing the distance and a plurality of near portion curved surfaces for viewing the near portion.
  • the multifocal contact lens is the multifocal contact lens
  • Each distance portion curved surface of the lens curve has a center of curvature on the optical axis, and a predetermined principal ray parallel to the optical axis incident on each distance portion curved surface has a single shape on the optical axis.
  • Each near portion curved surface of the lens curve has a center of curvature on the optical axis, and a predetermined principal ray parallel to the optical axis incident on each near portion curved surface is a single principal ray on the optical axis.
  • Abrasive cloth made of soft material is pressed against by fluid pressure, and it is polished with front carp.
  • each distance portion curved surface of the lens curve has a center of curvature on the optical axis, and is parallel to the optical axis corresponding to each distance portion curved surface. It has a radius of curvature set so as to form an image substantially at the focal point of the distance portion. According to the present invention, there is no strict assumption or limitation as in the related art that all the curvature radii of the distance portion curved surfaces are equal to each other, and a high degree of freedom can be secured in designing a lens by a ray tracing method.
  • the curvature center position force of each distance portion curved surface is smaller than the optical axis.
  • the restriction on applying the tracking method is extremely small, and the lens can be designed with a high degree of freedom.
  • the center of curvature can be provided on the optical axis, and the shape of each curved surface of the lens can be appropriately determined by the ray tracing method, thereby making it possible to eliminate spherical aberration.
  • each distance portion curved surface of the lens curve has a center of curvature on the optical axis, and at the optical axis incident on each distance portion curved surface, the ray power ⁇ the optical axis. It has a radius of curvature set to substantially pass through a single distance focus. The same applies to each near-surface curved surface of the lens curve.
  • the present invention assumes two selection methods. You.
  • One of these two selection methods is to determine the distance width of each curved surface with respect to all the distance portion curved surfaces including the distance portion curved surface including the optical axis or the near portion curved surface including the optical axis and the near portion curved surface. This is to select a light beam passing through a predetermined position. That is, unlike the case of the contact lens shown in FIG.
  • the distance portion curved surface F 1 and the near portion curved surface N 1 unlike the case where the light ray coincident with the optical axis is mainly selected.
  • the curved surface F 1 and the near surface ⁇ 1 similarly to the other curved surface F 2, F 3- ⁇ and the near surface ⁇ 2, ⁇ 3 ⁇ ⁇ away from the optical axis, A parallel ray passing through a predetermined position in the area width of each curved surface is selected as a principal ray.
  • the distance portion curved surface F 1 and the near portion curved surface N 1 are equivalent to the other distance portion curved surfaces F 2, F 3-and the near portion curved surfaces ⁇ 2, ⁇ 3 Therefore, spherical aberration can be reduced.
  • each curved surface can have a uniform spherical aberration distribution around the focal point for the distance portion or the focal point for the near portion, such as a spherical aberration having a Gaussian distribution.
  • the contact lens shown in Fig. in the case of the contact lens shown in Fig.
  • the distribution of the spherical surface remaining on the distance portion curved surface F1 and the near portion curved surface ⁇ 1 and the other distance portion curved surfaces F2, F3 The distribution of spherical aberration remaining on the near surface curved surface N2, N3 ⁇ ⁇ tends to be different from each other, for example, Gaussian distribution and non-Gaussian distribution.
  • the other of these two selection methods selects a ⁇ which coincides with the optical axis for a distance portion curved surface including the optical axis or a near portion curved surface including the optical axis.
  • that passes through a predetermined position in the area width of each curved surface is selected.
  • the matching ⁇ ! Is selected as the chief ray, and the complex light trace can be omitted for the far surface curved surface F1 and the near surface curved surface N1 to simplify the design. Can be done.
  • the paraxial approximation is small due to the small region width of the distance portion curved surface F and the like. As far as we can, we can ignore spherical aberration.
  • each distance portion curved surface of the lens curve has a center of curvature on the optical axis, and has an optical line force parallel to the optical axis incident on each distance portion curved surface.
  • the lens has a radius of curvature set so as to substantially form an image at a single distance focal point on the optical axis
  • each near surface curved surface of the lens curve has a curvature center position on the optical axis
  • the light power parallel to the optical axis that ⁇ ⁇ ⁇ on the near surface curved surface of the lens has a radius of curvature set so that it almost forms an image at a single near focal point on the optical axis.
  • the spherical aberration of the wear portion can be removed, and therefore, the wearer can obtain clear visual acuity in both the distance portion and the near portion.
  • each distance portion curved surface changes according to the distance from the optical axis of each distance portion curved surface
  • the area width of each near portion curved surface is the optical axis of each near portion curved surface. Since it changes depending on the distance from the camera, it can be used in a room or the like when reading near desks or when using desk work. It is easy to see, and when looking far away, it can be seen through the distance section.
  • the front curve is polished by pressing a polishing cloth made of a soft material by fluid pressure and moving the front curve and the polishing cloth relative to each other.
  • the cloth can be made to conform to the curved shape of the foot curve flexibly by the liquid pressure, and the curved shape including the boundary between the adjacent distance portion curved surface and the near portion curved surface can be uniformly polished. it can.
  • a lens curve formed by alternately repeating a plurality of distance-use curved surfaces for viewing the distance and a plurality of near-use surface curved surfaces for viewing the near side concentrically with respect to the optical axis. May be a front curve or a basic scoop.
  • a distance portion curved surface F1 may be provided as a curved surface including the optical axis, or a near portion curved surface N1 may be provided as a curved surface including the optical axis instead of the distance portion curved surface F1. You may.
  • FIG. 1 is a cross-sectional view showing a curvature center position of a curved surface for a distance portion and a curved portion for a near portion of an embodiment of a contact lens according to the present invention.
  • FIG. 2 is a cross-sectional view showing an enlarged portion of FIG.
  • FIG. 3 is a cross-sectional view showing a distance focus and a near focus of one embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a center of curvature of a curved surface for distance and a curved portion for near use of a conventional contact lens.
  • FIG. 5 is an enlarged cross-sectional view of the portion of FIG.
  • FIG. 6 is a cross-sectional view showing a distance focus and a near focus of a conventional contact lens.
  • FIG. 7 is a cross-sectional view showing the center of curvature of the curved surface for far and near portions of a conventional contact lens.
  • FIG. 8 is an enlarged cross-sectional view of the portion of FIG.
  • FIG. 9 is a plan view showing first to eighth examples of the contact lens according to the present invention.
  • FIG. 10 is a plan view showing a ninth embodiment of the contact lens according to the present invention.
  • Figure 1 1 is a plan view showing a first 1 0 Personal Protection for First Aid or Rescue Personnel example of a contact lens according to the present invention ⁇ 1 2
  • c Figure 1 3 is a plan view showing a first 1 1 3 ⁇ 41 ⁇ 2 example of a contact lens according to the present invention
  • c Figure 1 4 is a plan view showing a first another embodiment of a contact lens according to the present invention
  • c Figure 1 5 is a plan view showing a first third example of a contact lens according to the present invention
  • Figure 1 6 is a plan view showing a first 1 4 3 ⁇ 4 ⁇ Fe example of a lens is a plan view showing a first 1 5 H1 ⁇ 2 example of a contact lens according to the present invention.
  • FIG. 17 is a plan view showing a sixteenth example of a contact lens according to the present invention.
  • FIG. 18 is a plan view showing a seventeenth example of the contact lens according to the present invention.
  • FIG. 19 is a cross-sectional view showing one embodiment of the method for manufacturing a contact lens of the present invention.
  • FIG. 20 is a cross-sectional view showing an enlarged portion of FIG.
  • FIG. 21 is a cross-sectional view of the contact lens ⁇ ⁇ type of the present invention.
  • FIG. 22 is an explanatory diagram illustrating a method for manufacturing a contact lens using the contact lens mold of the present invention.
  • FIG. 23 is an explanatory diagram illustrating a method for manufacturing a contact lens using the contact lens mold of the present invention.
  • FIG. 24 is an explanatory view illustrating another method for manufacturing a contact lens using the contact lens mold of the present invention.
  • the multifocal contact lens 1 has a concentric band shape ⁇ L with a distance portion curved surface F l, F 2 It has a front curve 2 as a lens curve formed repeatedly and a base curve 3.
  • the optical axis of the contact lens 1 is set to the Z axis, and the Z axis direction is a direction from the front curve 2 to the base curve 3.
  • contact lenses Take the X axis through the vertex P of 1 and perpendicular to the Z axis.
  • the curved shape of the base curve 3 is individually set in accordance with the curved surface of the wearer's cornea. It is also possible to use a base curve 3 instead of a front curve 2 as a lens curve.
  • the position of the near portion focal point FN is calculated from the near portion power obtained by subtracting the addition from the far portion power.
  • the distance portion curvature radiuses RF 1 and RF 2 * ⁇ and the near portion curvature radius RN 1 , RN2 ⁇ ⁇ , the distance center of curvature OF 1, 0 F 2 ⁇ ⁇ and the center of curvature of near vision ON i, ON 2 * ⁇ are obtained as follows.
  • each of the distance curved surfaces F1, F2,... Of the front curve 2 has a curvature center position OFi, op2, on the optical axis (Z-axis).
  • each of the distance portion curved surfaces F 1, F 2 ⁇ of the front curve 2 is determined by the ray power parallel to the optical axis incident on each of the distance portion curved surfaces F 1, F 2 ⁇ ⁇ It has a radius of curvature RF 1, F 2 ⁇ set so as to form an image substantially at a single far-field focal point F F.
  • Each near surface curved surface Nl, N2 'of the front curve 2 has a curvature center position ON1, ⁇ N2 ⁇ on the optical axis.
  • each near surface curved surface ⁇ 1, ⁇ 2 ⁇ ⁇ of the front curve 2 is a single on the optical axis parallel to the optical axis incident on each near surface curved surface ⁇ 1, ⁇ 2 ⁇ ⁇ .
  • the curvature center positions OF I, OF 2 and the radii of curvature RF I, F 2 are the distances from the optical axis incident on the respective curved surfaces Fl, F 2-'on the optical axis. It is set using the light tracing method so that it almost passes through the single far-field focal point FF, and the curvature center positions ON 1, ⁇ N2, and the small diameters RN1, RN2 Near portion
  • the predetermined principal ray power parallel to the optical axis incident on the curved surface Nl, N2 ' is set so as to substantially pass through a single near focus FN on the optical axis.
  • each distance portion curved surface F l, F 2-' has a distance portion formed as a plus lens in relation to the base curve 3
  • each near portion curved surface N l, N 2' has a base carp 3
  • the near portion is also formed as a plus lens.
  • a first candidate for the radius of curvature R F 1 of the arrested part curved surface F 1 is set based on the desired distance part frequency.
  • the position on the optical axis away from the vertex P by the length of the first radius of the curvature radius RF 1 of the distance portion is defined by the curvature center position 0 of the distance portion curved surface F 1.
  • the center of curvature SO F 1 is obtained by using the following ray tracing method. First, select parallel rays parallel to the optical axis within the range of the area between the optical axis and 1 F 1 as the place ⁇ , and enter these parallel rays into the first ⁇ of the distance portion curved surface F 1. Focus on the position where these parallel rays cross the optical axis after exiting from the base curve 3.
  • the predetermined principal ⁇ of the distance portion curved surface F1 for example, a parallel ray passing through the central position in the X direction in the region width sandwiched between the optical axis and 1F1, or ⁇ matching the optical axis is selected. Is preferred. If the parallel principal ray S passing through the center position in the X direction in the region width is selected as the predetermined principal ray, all other distance portion curved surfaces W
  • the other far portion curved surfaces distant from the optical axis in the case of the far portion curved surface F 1 and the near portion curved surface N 1 are also selected.
  • the spherical aberration can be reduced in the same way as for F 2, F 3 and the near surface F 2, F 3, and the distribution of the remaining spherical surface can be reduced for all the far surface curved surfaces and A uniform spherical aberration distribution can be provided over the near portion curved surface.
  • the predetermined principal ray is selected by any of the above-mentioned methods.
  • this position is located in the negative ⁇ direction with respect to the far-field focal point FF.
  • the first magnitude of the radius of curvature RF1 is slightly increased, and this increased value is defined as a second candidate of the curvature RF1.
  • draw a circle with P as the center position and the radius of the second radius of curvature of RF 1 as the radius find the intersection between this circle and the optical axis, and refer to this intersection as the curvature center position 0 F 1 Defined as two candidates.
  • the radius of curvature R F! Is set with the position of the second ⁇ ffi of the curvature center position 0 F 1 as the center position.
  • Draw a circle with a radius equal to the size of the second candidate of, and define the area width of this circle and the far vision curved surface F1 ⁇ ⁇ 1 Obtain the intersection with F1, and use this intersection as the second candidate of PF1
  • a surface extending from the point P to the second ⁇ point of the point PF1 is defined as the second ⁇ of the far-surface curved surface F1.
  • draw a circle with the radius of curvature of RF 1 as the radius of the second leak centered on P find the intersection of this circle and the optical axis, and define this intersection as the second candidate for the curvature center position OF 1 I do.
  • the position of the second ⁇ i of the curvature center position 0 F 1 is set to the center position.
  • the second candidate point is defined as a second candidate point
  • a curved surface extending from the point P to the second candidate point of the point PF1 is defined as a second ⁇ of the far vision curved surface F1.
  • the candidate for the curvature radius RF 1 and the curvature center position ⁇ F 1 are sequentially changed, and the part which enters the front curve 2 and exits from the base curve 3 passes through the far-field focal point FF at the point where ⁇ 6 ⁇ exits from the base curve 3. Such operations are sequentially repeated until the operation is started.
  • the point emitted from the base curve 3 becomes the same as the intersection point of the light beam and the optical axis, the point at which the distance coincides with the focal point FF, or almost within the allowable range.
  • the candidate for the center of curvature 0 F 1 is determined on the optical axis as the true center of curvature 0 F ⁇ , and ⁇ i of the radius of curvature RF 1 is determined as the true radius of curvature RF 1,
  • the sickle point at the intersection RF 1 is determined as true ⁇ PF 1
  • ⁇ i of the distance portion curved surface F 1 is determined as a true distance portion curved surface F 1.
  • the radius of curvature RN1 is set based on the desired near power.
  • the center position of curvature of N1 is defined as 0th of N1 ".
  • a ray parallel to the optical axis passing through the center position in the X direction of the area width between the straight lines 1 F 1 and 1 N 1 is selected as a ray, and ⁇ is the spot on the near surface N 1 Focus on the position where the light intersects with the optical axis after being made incident and exiting from base curve 3.
  • draw a circle with the determined point PF1 as the center position and the radius as the radius of the second candidate of radius RN1 find the intersection of this circle and the optical axis, and call this the second point at the curvature center position 0 N ⁇ Stipulated as Also, draw a circle centered on the position of the second M of the curvature center position ON 1 and the radius of the radius of the second symptom of the radius of curvature RN 1, and draw the circle and the area width of the near surface curved surface N 1
  • the intersection with the straight line 1 N1 that defines the intersection is defined, and this intersection is defined as the second ⁇ point of PN1. Defined as the second surface N1.
  • the first detection of the radius of curvature RN 1 Is slightly reduced, and this reduced value is defined as the second ⁇ i of the radius of curvature RNI.
  • draw a circle with the determined point PF1 as the center position and a radius equal to the second size of ⁇ RNI find the intersection between this circle and the optical axis, and use this intersection as the second of the curvature center position ON1 Stipulate.
  • the candidate for the radius of curvature RN 1 and the ⁇ f of the curvature center position 0 N 1 are sequentially changed, and the predetermined principal which is incident on the front curve 2 and exits from the base curve 3 sets the near focus FN. Such an operation is repeated until it passes.
  • the point where the light exits from the base curve 3 ⁇ the point where the intersection point of the light beam and the optical axis coincides with the near-point focal point FN L is the point where it almost matches within the allowable range
  • the candidate for the center of curvature ON 1 is determined on the optical axis as the true center of curvature 0 N ⁇
  • the candidate for the radius of curvature RN 1 is determined as the true radius of curvature RN 1
  • the intersection PNI is ⁇
  • the point is determined as the true intersection with PI
  • the near surface N1 is determined as the true near surface N1.
  • the number of the stem diameter RF2 is set based on a desired distance portion power.
  • a ray parallel to the optical axis passing through the center position in the X direction of the area width between the straight line 1 N 1 and 1 F 2 is selected as a ray, and the ray is converted to a far-field curved surface F 2
  • the magnitude of the radius of curvature RF 2 is slightly increased, and this increased value is defined as a second candidate for the radius of curvature RF 2.
  • draw a circle with the determined point PN 1 as the center position and the radius of the second candidate of the radius R F 2 as a radius find the intersection of this circle and the optical axis, and define this intersection as the curvature center position O p 2 Is defined as the second ⁇ .
  • draw a circle with the second ⁇ position of the curvature center position OF 2 as the center position and the radius of the second candidate for the radius of curvature RF 2 as the radius, and define the circle and the area width of the distance portion curved surface F 2 as the radius.
  • Obtain the intersection with the specified straight line 1 F 2 define this intersection as the second ⁇ point of PF 2, and define the surface from the determined point PN 1 to the second observation point of point PF 2 as the distance surface curved surface Defined as the second of F2.
  • the first candidate of the radius of curvature R F 2 Is slightly reduced, and this reduced value is defined as the second ⁇ of the radius of curvature RF2.
  • the candidate for the radius of curvature RF2 and the curvature center position 0F2 are sequentially changed, and the predetermined main body that is incident on the front curve 2 and exits from the base curve 3 passes through the distance focus FF. Such operations are sequentially repeated until the above conditions are satisfied.
  • the curvature is calculated.
  • the center position 0 F 2 is determined on the optical axis as the true curvature center position 0 F 2
  • the candidate for the radius of curvature RF 2 is determined as the true radius of curvature RF 2
  • a straight line 1 that defines the region width
  • the ⁇ point of the intersection with F 2 is determined as a true intersection with PF 2
  • the candidate for the far part curved surface F 2 is determined as a true far part curved surface F 2.
  • FIGS. 1 and 3 show the characteristics of the contact lens 1 obtained as described above. As shown in FIG. 1, the center of curvature SO F i, ⁇ 2 ′ of the distance portion and the center of curvature ON 1, 0 N 2- ⁇ of the near portion all exist on the optical axis.
  • a single distance portion on the optical axis which is parallel to the optical axis corresponding to the distance portion curved surfaces F1, F2,. substantially imaged at the focal FF, front curve 2 of the near portion curved surface of each .nu.1, flat line rays to the optical axis incident on .nu.2 ⁇ ⁇ is substantially in a single near portion focal point F New on the optical axis forming Image.
  • the center of curvature OF1, F2 of the curved surfaces Fl, F2 is located on the optical axis, so a high degree of freedom can be secured in designing the lens by the optical tracing method.
  • the spherical aberration of each distance portion can be eliminated.
  • each curvature center position ON 1, ON 2 ⁇ ′ is on the optical axis, so it is possible to secure a high degree of freedom in designing the lens by the optical ⁇ ii tracing method, and eliminate spherical aberration of each distance part. be able to.
  • the wearer can obtain clear visual acuity in both the distance and near portions.
  • a predetermined position in the area width of each curved surface is set with respect to all the curved surfaces F 1, F 2.
  • the distance portion curved surface F 1 and the near portion curved surface N 1 can be changed to other distance portion curved surfaces F 2, F 3, and the near portion.
  • the spherical surface iK ⁇ can be reduced as in the case of the surfaces N 2, N 3 ⁇ . Even when spherical aberration remains in the distance portion curved surface F1 and the near portion curved surface N1, the distribution of the remaining spherical aberration is changed to other distance portion curved surfaces F2, F3, and the near portion portion.
  • the distribution of the spherical surface ⁇ remaining on the curved surfaces N 2, N 3 ⁇ can be made similar to the distribution of the spherical surface ⁇ .
  • Each curved surface has, for example, a spherical aberration of Gaussian distribution. Have a systematic spherical aberration distribution around.
  • select ⁇ ! That coincides with the optical axis for the far surface curved surface F 1 including the optical axis or the near surface curved surface 1 including the optical axis, and select a ray other than these curved surfaces
  • select ⁇ ! That coincides with the optical axis for the far surface curved surface F 1 including the optical axis or the near surface curved surface 1 including the optical axis, and select a ray other than these curved surfaces
  • the far-distance surface F1, F2 of the front curve 2 has a larger radius of curvature as the far-distance surface is farther from the optical axis, and It has a curvature center position OF 1, Op 2 * ⁇ located farther from the curve 2.
  • each near portion curved surface Nl, N 2 ′ of the front curve 2 has a larger radius of curvature as the near portion curved surface is farther from the optical axis, and the curvature is located farther from the front curve 2. It has a center position ON 1, 0 N 2 * ⁇ .
  • the contact lens 1 shown in FIGS. 1 to 3 has a wide area width of each of the curved surfaces Fl, F2, and Nl, N2 'of the distance portion and the near portion.
  • the distance portion is formed as a plus lens in relation to the base curve 3 and the near portion is also formed as a plus lens in relation to the base curve 3 is shown.
  • the present invention is not limited to this, and spherical aberration can be similarly eliminated in the case of another combination of a brass lens and a Maens lens in the following distance portion and near portion.
  • the distance portion is a minus lens and the near portion is a plus lens, or when the distance portion and the near portion are both minus lenses, similarly, the spherical aberration of each distance portion curved surface and each near portion curved surface is eliminated. be able to.
  • each of the distance portion curved surfaces F 1 and F 2 of the front curve 2 has a curvature radius that is greater as the distance portion curved surface is farther from the optical axis. It becomes smaller and the curvature center positions O p 1 and O p 2 * 'are located closer to the front curve 2 force. Also, the near surface ⁇ 1, ⁇ 2 ⁇ ⁇ of the front curve has a larger radius of curvature as the near surface is farther from the optical axis, and the curvature center position 0 ⁇ ⁇ , ⁇ 2 ⁇ ⁇ is the front surface. Located farther from curve 2.
  • each distance portion curved surface F 1, F 2 ⁇ of the front curve has a smaller curvature radius as the distance portion curved surface farther from the optical axis.
  • the curvature center positions OF 1 and Op 2 * ⁇ are located closer to the front curve 2.
  • the near surface curved surfaces Nl, N2 'of the front curve have a smaller radius of curvature as the near surface is farther from the optical axis, and the curvature center positions ON 1, 0 2 Located closer to front curve 2.
  • the radius of curvature of each of the distance portion curved surfaces Fl and F2 of the front curve 2 is substantially equal even if the distance portion is far from the optical axis, but the center of curvature is OF 1, 0 F 2 ' ⁇ located farther from front curve 2.
  • the near surface curved surfaces Nl, N2 of the front curve have a larger radius of curvature as the near surface is farther from the optical axis, and the center of curvature ⁇ ⁇ , 0 ⁇ 2 Located further away from 2.
  • the radius of curvature of the far portion curved surfaces Fl and F2 of the front curve 2 is small even at the far portion curved surface away from the optical axis.
  • the curvature center position 0 F 1, Op 2 ⁇ ⁇ repeats the positions on the optical axis and farther and closer to the front curve 2.
  • the curvature radius of each near portion curved surface Nl, N2 of front curve 2 is almost the same even at the near portion curved surface away from the optical axis, but the curvature center position ON 1 and ⁇ N2 Located farther from.
  • the contact lens 1 used here is a hydrated soft contact lens, and the radius of curvature of the hydrated base curve 3 is 8. Omm. Further, as shown in FIG. 9, the width of each region of the distance portion and the near portion is equal to each other, and the width of each region of the distance portion is 0.5 mm as shown in FIG. 9. Each is 1.0 mm. In this case, the area ratio in the optical region is 60% in the distance portion and 40% in the near portion. Also, in the table showing the results of the contraction below, from the center of the contact lens 1 outward, the first zone for distance, the first zone for near, the second zone for distance, and the second zone for near * The first zone, the second zone, the third zone, and the fourth zone are shown in this order.
  • the first zone indicates the distance first zone composed of the distance portion curved surface F1 and the base curve 3
  • the second zone indicates the near portion composed of the near portion curved surface N1 and the base curve 3.
  • the first zone is shown
  • the third zone is a second distance zone composed of a distance portion curved surface F2 and a base curve 3
  • the fourth zone is a near distance portion composed of a near portion curved surface N2 and a base curve 3. Indicates the second zone.
  • the radius of curvature, X coordinate, and Y coordinate of the surface corresponding to the first zone, the second zone, the third zone, the fourth zone are respectively the surfaces F1, N1, F2, N2 ⁇
  • the amount of improvement in spherical aberration by the design according to the present invention and the conventional design is shown as the amount of improvement in spherical aberration.
  • the amount of improvement in spherical aberration is shown as a difference in spherical aberration in the fifth zone (F 3) as an example.
  • Tables 1 to 8 show Embodiments 1 to 8 with reference to FIG.
  • Table 1 shows the comparison results when the distance power is +3.00 D (dioptric) and the addition power for near is +200 D 'when the area width of the distance portion and the near portion is 1 mm.
  • the radius of curvature monotonically increases, and the Z coordinate monotonically increases.
  • the radius of curvature monotonically increases, and the z coordinate monotonically increases.
  • the X coordinate is zero for both the distance and near portions. According to the present invention, spherical aberration is improved by 0.36D.
  • Table 2 shows the comparison results when the distance power is -3.00 D (diopters), the addition power for near is + 4,00D, and the area width of the distance and near portions is 1 mm.
  • Table 3 shows the comparison results when the distance power is 1 3,000 D (dioptric), the addition power for near is +2.00 D, and the area width of the distance portion and the near portion is 1 mm.
  • the radius of the tune increases monotonically, and the Z coordinate monotonically increases.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the near zone.
  • the X coordinate is zero for both the distance and near portions.
  • the spherical surface was improved by 0.64 D according to the present invention.
  • Table 5 shows the comparison results when the distance power is -5.00 D (diopter), the add power for near power is +2.00 D, and the area width of the distance and near portions is 1 mm. Show.
  • the radius of curvature is approximately equal in the distance portion, and the Z coordinate increases monotonically.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the near zone.
  • the X coordinate is zero for both the distance and near portions. It should be noted that the present invention improved the spherical aberration by 0.02D.
  • Table 7 shows the comparison results when the distance power is 1 3,000 D (diopters) and the addition power for near is +4.00 D
  • the area width of the distance portion and the near portion is 0.5 mm.
  • the radius of curvature monotonically decreases, and the Z coordinate increases once and then decreases repeatedly.
  • the radius of curvature is approximately equal, and the Z coordinate increases monotonically.
  • the X coordinate is zero for both the distance and near portions. It should be noted that the spherical surface was improved by 0.05 D by the present invention.
  • Example 8 Distance power is one 3.00 D (diopter), near power addition is +2, 0 0 D one, ''
  • Table 8 shows the results when the distance width of the distance and near portions is 0.5 mm.
  • Spherical aberration improvement 0.05 D As can be seen from Table 8, the radius of curvature monotonically decreases in the distance portion, and the Z coordinate increases once and then decreases repeatedly. On the other hand, in the near portion, the diameter of the tune is almost equal, and the z coordinate increases monotonically. The X coordinate is zero for both the distance and near portions. The spherical aberration was reduced by 0.05 D by the present invention.
  • the area widths of the distance portion and the near portion are substantially equal to each other, and the spherical aberration in the case is significantly improved over the entire optical region as compared with the conventional design which is more powerful according to the present invention. Is done.
  • the spherical aberration is greatly improved.
  • the spherical JK3 ⁇ 4 improvement amount is shown only in the fifth zone as an example, and the same spherical aberration occurs in all zones of the second zone of the conventional design, but according to the present invention, similarly, Can be improved.
  • the region widths of both the distance portion and the near portion are substantially equal, and L is shown in each case. However, the different region widths of the distance portion and the near portion are used. You may.
  • the contact lens 1 used here is a hydrous soft contact lens, the base curve 3 in the hydrous state is 8. Omm, the distance power is + 3.00D (dioptry), and the near addition power is +2. 00D.
  • the first zone for distance use, the first zone for near use, the second zone for distance use, and the second zone for near use From the center of the contact lens 1 outward, the first zone for distance use, the first zone for near use, the second zone for distance use, and the second zone for near use.
  • Each curved surface changes in the order of F1, N1, F2, N2 ⁇ ⁇ and the center of curvature changes in the order of OF1, ⁇ NI, ⁇ F2, ⁇ 2 ⁇ ⁇ .
  • the amount of improvement of the spherical aberration by the present invention and the conventional design is shown as a difference of the spherical surface ⁇ 3 ⁇ 4 of the fifth zone (F3).
  • Tables 9 to 17 show Examples 9 to 17 with reference to FIGS. 10 to 18.
  • the radius of curvature monotonically increases in the distance portion, and the Z coordinate also increases monotonically.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the near zone.
  • the X coordinate is zero for both the distance and near portions.
  • the spherical aberration was improved by 0.14 D according to the present invention.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the distance portion.
  • the radius of curvature monotonically increases, and the z coordinate monotonically increases.
  • the X coordinate is zero for both the distance and near portions.
  • the spherical aberration was improved by 0.14 D according to the present invention.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the distance portion.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the near zone.
  • the X coordinate is zero for both the distance and near portions.
  • the spherical aberration was improved by 0.13D according to the present invention.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the distance portion.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the near zone.
  • the X coordinate is zero for both the distance and near portions.
  • the spherical aberration was improved by 0.12D according to the present invention.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the distance portion.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the near zone.
  • the X coordinate is zero for both the distance and near portions.
  • the spherical aberration was improved by 0.12D according to the present invention.
  • LT C adding.
  • the radius of curvature monotonically increases, and the Z coordinate monotonically increases.
  • the X coordinate is zero for both the distance and near portions. It should be noted that the present invention improved spherical aberration by 0.07D.
  • the radius of curvature monotonically increases in the distance portion, and the Z coordinate also increases monotonically.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the near zone.
  • the X coordinate is zero for both the distance and near portions. It should be noted that the present invention improved spherical aberration by 0.07D.
  • the radius of curvature monotonically increases and the Z coordinate monotonically increases in the distance portion.
  • the radius of curvature monotonically increases, and the Z-coordinate monotonically increases.
  • the X coordinate is zero for both the distance and near portions. It should be noted that the present invention improved spherical aberration by 0.07D.
  • the present invention is better than the conventional design in the entire optical area. Significantly improves the sphere.
  • both the distance portion and the near portion have a positive lens, and the change of the curvature ⁇ and the center of curvature when the distance portion is a minus lens and the near portion is a plus lens are as follows. As shown in Examples 1 to 8.
  • a method of manufacturing a contact lens using a polishing cloth made of a high quality material is disclosed in Japanese Patent Application Laid-Open No. 2-83153.
  • the method for manufacturing a contact lens described in Japanese Patent Application Laid-Open No. 2-83153 is repeated by turning a plurality of curved surfaces for distance use and a plurality of curved surfaces for near use back to concentric zones. This is applied to a contact lens 1 having a front curve 2 formed.
  • a polishing pad 10 made of a high quality material is mounted on the turntable 11.
  • the rotating table 11 rotates around the polishing cloth rotation center axis 12, and the polishing cloth 10 rotates together with the rotating table 11.
  • the upper part of the nozzle 13 is covered with a polishing pad 10.
  • a fixing jig 14 force is arranged above the nozzle 13.
  • the fixing jig 14 rotates around the fixing jig rotation axis 15. Further, as shown in FIG. 20 in an enlarged manner, the contact lens 1 in FIG. 1 is held on the bottom surface of the fixing jig 14 via an adhesive 16 attached to the base curve 3.
  • the compressed air 18 circulates from the lower part to the upper part in the nozzle 13.
  • the portion of the polishing cloth 10 covering the nozzle 13 is sprayed upward by the fluid pressure of the compressed air flowing through the inside of the nozzle 13, and the polishing cloth 10 is pressed against the front curve 2 of the contact lens 1. It has become.
  • a powder of A123 dispersed in water or oil is provided between the front curve 2 and the polishing cloth 10 as an abrasive.
  • the polishing cloth 10 is a commercially available polishing cloth lined with, for example, polyurethane. Is used.
  • the inner diameter of the nozzle 13 is set to be larger than the outer diameter of the front curve 2 so that the fluid pressure around the front force tube 2 does not decrease, and a uniform pressure contact force can be obtained over the entire front curve 2. is there.
  • the polishing cloth 10 made of a high quality material is pressed against by the pressure of the air 18 and the front curve is polished by relatively moving the front curve 2 and the polishing cloth 10, so that the polishing is performed.
  • the cloth 10 can be made to conform to the curved shape of the front curve 2 in a flexible manner, and can be uniformly polished, including the curved surfaces Fl, F2, and N1 and N2, which are the near portions. .
  • the contact lens molding die 20 has a front curve type surface 22 corresponding to the front curve 2 of the contact lens 1.
  • the front curve type surface 22 has a distance portion curved surface F ⁇ , F2 *, which has an uneven relationship with the distance portion curved surface F1, F2-of the contact lens 1 and the near portion curved surface Nl, N2. , Near-type curved surface ⁇ , N2 ' ⁇ ⁇ are formed.
  • the shapes of the distance-use curved surfaces F1 ', F2', ⁇ , and the near-use curved surfaces ⁇ , N2 ',' are obtained by the tracing method as shown in the first embodiment.
  • the shapes of the far-area curved surfaces Fl, F2, and the near-surface curved surfaces Nl, N2, of contact lens 1 are determined by the ray tracing method, and then the curved surfaces having a relationship between these curved surfaces and irregularities are determined. Obtained by asking.
  • the lens material 24 is placed on the front curve-shaped surface 22 on which the distance-shaped curved surfaces FT, F2 ', and the near-shaped curved surfaces ⁇ , N2', are formed. .
  • a base curve mold 25 having a base curve mold face 23 having an uneven relationship with the base curve 3 is combined with a front curve mold face 22 at a predetermined position. In this state, ultraviolet light or heat is applied to polymerize the lens material 24.
  • the gap between the front curve-shaped surface 22 and the base curve-shaped surface 23 forms a desired contact lens shape.
  • the lens material 24 is placed on the front curve-shaped surface 22 on which the distance-shaped curved surfaces Fl ', F2', and the near-shaped curved surfaces ⁇ , N2 ',' are formed.
  • FIG. 3 ⁇ 4 Rotate 20 The formation of the base curve 3 is performed by controlling the rotation speed of the contact lens molding die 20. Note that the base curve may be formed by the IJ.
  • the front curve mold surface 22 of the contact lens molding die 20 has a concave / convex relationship with the distance portion curved surfaces F1, F2, and the near portion curved surfaces Nl, N2 of the contact lens 1. Since a certain distance-shaped curved surface FT, F2 ', and a near-shaped curved surface ⁇ , N2', 'are formed, the spherical shape of the distance and near portions is obtained by using the contact lens ⁇ mold 20. A contact lens free of aberration can be manufactured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Eyeglasses (AREA)

Description

明 細 書 多焦点コンタクトレンズ
技 術 分 野
本発明は、 多焦点コンタク トレンズ、 その成形型およびその製造方法に係わり、 特に、 遠方を見るための複数個の遠用部曲面と近方を見るための複数個の近用部 曲面とが同心帯状に繰り返して形成されたレンズカープを備える多焦点コンタク トレンズ、 その成形型およびその製造方法に関する。 また、 これらの多焦点コン タクトレンズの製造方法に関する。 背 景 技 術
遠方を見るための遠用部と近方をみるための近用部とが同心帯状に交互に繰り 返して配置された多焦点を有するコンタクトレンズが提案されている (例えば、 特開昭 5 9— 1 4 6 0 2 0 ) 。 このようなコンタク トレンズを装用すると、 装用 者が同時視する遠方と近方のうち一方を装用者の意識により選択することができ る。 装用者は遠用部と近用部とを無理なく円滑に使い分けることができ、 有用で あ。。
図 8に示すように、 このようなコンタクトレンズ 1は、 遠方を見るための遠用 部曲面 F l、 F 2 - ·と近方を見るための近用部曲面 Ν 1、 Ν 2 · ·とが同心帯 状に交互に繰り返して形成されたフロントカーブ 2と、 装用者の角膜の曲面に対 応するベースカーブ 3とを有する。
従来は、 フロントカーブ 2における遠用部曲面 F 1、 F 2 - ·および近用部曲 面 N l、 Ν 2 · ·は次のようにして形成されていた。
すなわち、 遠用部曲面の曲率半径を R F、 近用部曲面の曲率半径を R Nとして、 まず Z軸に一致する光軸上の一点 Pから半径 R Fの円を描き、 光軸との交点を求 め、 これを遠用部曲面 F 1の曲率中心位置 O F 1とする。 次に曲率中心位置 Op 1を中心として半径 R Fの円を描き、 遠用部曲面 F 1の所定の領域幅を規定 する光軸に平行な直線 1 F 1との交点 P F 1を求める。 次に、 点 P F 1を中心に 半径 RNの円を描き、 光軸との交点を求め、 これを近用部曲面 N1の曲率中心位 置 ON 1とする。 次に曲率中心位置 ON 1を中心として半径 RNの円を描き、 近 用部曲面 N 1の所定の領域幅を規定する直線 1 1との交点 P N 1を求める。 同様にして、 点 PN 1を中心に半径 RFの円を描き、 光軸との交点を求め、 こ れを遠用部曲面 F 2の曲率中心位置 0 F 2とする。 次に曲率中心位置 0 F 2を中 心として半径 RFの円を描き、 遠用部曲面 F 2の所定の領域幅を規定する光軸に TOな il*¾l F 2との交点 P F 2を求める。 次に点 P F 2を中心に^ SRNの円 を描き、 光軸との交点を求め、 これを近用部曲面 N 2の曲率中心位置 0N 2とす このようにして求められた遠用部曲面 F 1、 F 2 - ·の曲率中心位 ϋθρ丄、
Op 2 * 'と、 Nl、 N2 · ·の曲率中心位置 ON 1、 〇N2 · ·とが図 7に示 されている。
図 7から明らかなように、遠用部曲面 Fl、 F 2 - ·の曲率中心位置 Op 1、 OF 2 · ·は順々に Z軸方向、 すなわちフロントカーブ 2からベースカーブ 3へ 向く方向にずれて分布する。 また、 近用部曲面 Nl、 N2 · ·の曲率中心位置 0Ν1、 0Ν2 · 'は順々に Ζ軸方向と ii¾向、 すなわちベースカーブ 3からフ ロン卜カーブ 2へ向く方向にずれて分布する。
この結果、 図 6に示すように遠用部曲面 F 1、 F2 · ·に入射する光軸に平行 な光線は各々の遠用部曲面 F 1、 F 2 · ·の遠用部焦点位置 F F 1、 F F 2 · · に結像し、 1点には結像しない。 同様に、 近用部曲面 Nl、 N2 · ·に入射する 光線に平行な光線は各々の近用部曲面 Nl、 N2 · 'の焦点位置 FN 1、 FN2 • 'に結像し、 1点には結像しない。 すなわち、 従来のコンタク トレンズは球面 収差が大きく、 鮮明な像を得ることができないという問題があつた。
なお、 図 6においてコンタクトレンズ 1の周辺部の球面収差が大きいため、 遠 用部焦点位置 F F 1、 F F 2 · ·の配列順序は、 遠用部曲面 F 1、 F 2 · ·の曲 率中心位置 OF 1、 Op 2 · 'の配列順序と反対になっている。
この様な問題を除去するために図 5に示すように、 本出 ϋΛによつて多焦点コ ンタクトレンズも提案されている (例えば、 特願平 5— 508019 〈国際公開 番号 93Ζ14434〉) 。
図 5において、 コンタクトレンズ 1は遠方をみるための遠用部曲面 F 1、 F 2 • 'と近方をみるための近用部曲面 Nl、 Ν 2とが同心帯状に交互に繰り返して 形成されたフロントカーブ 2と、 ベースカーブ 3とを有する。 ここで、 コンタク トレンズ 1の光軸を Ζ軸にとり、 Ζ軸方向をフロン卜カーブ 2からベースカーブ 3へ向く方向とする。 また、 コンタクトレンズ 1の頂点 Ρを通り、 Ζ軸に垂直に X軸をとる。
ベースカーブ 3の曲面形状は装用者の角膜の曲面に対応して個々に与えられる。 この与えられたベースカーブ 3の曲面形状の値を前提にして、 所望の遠用部度数 と近用部の加入度数を得るために必要な遠用部曲面 F 1、 F2 - ·の曲率半径 ?ぉょび近用部曲面1^1、 Ν2 · ·の曲率半径 RN力く規定される。
フロントカーブ 2にある遠用部曲面 F 1、 F2 · ·およびフロントカーブ 2に ある近用部曲面 Nl、 N2 · ·の曲率中心位置 O F 1、 Op 2 * ·および ON 1、 〇N2 · ·は次のように求められる。
ここで、 図 4に示すように、 遠用部曲面 F 1に平行 ¾ ^を入射させベースカー ブ 3から出射する光線が光軸と交わる点を求め、 この点を遠用部焦点 F Fとして 定義する。 また、 近用部曲面 N1に平行^ IIを入射させベースカーブ 3から出射 する «カく光軸と交わる点を求め、 この点を近用部焦点 FNとして定義する。 まず頂点 Pから遠用部の曲率半径 R Fだけ離れた光軸上の位置を遠用部曲面 F 1の曲率中心位置 0 F丄とする。 次に、 曲率中心位置 0 F Iを中心として半径 RFの円を描き、 遠用部曲面 F 1の所定の領域幅を規定する光軸に平行な直線
1 F 1との交点 PF 1を求める。 次に点 PF 1を中心に半径 RNの円を描き、 光 軸との交点を求め、 これを近用部曲面 N 1の曲率中心位置 0Νιとする。 ここま では、 図 8に示した従来の場合と同じである。
次に、 図 5において、 遠用部曲面 F 2の曲率中心位置 OF 2を以下のようにし て求める。 すなわち、 曲率中心位置 ON 1を中心として半径 RNの円を描き、 近 用部曲面 N 1の所定の領域幅を規定する光軸に平行な I 1 1との交点 P N 1 を求める。 次に、 PNIを中心に半径 RFの円を描き、 光軸との交点を求め、 こ の交点を遠用部曲面 F 2の曲率中心位置となるべき点 0F 2の候補点として定義 する。
次に、 曲率中心位置点 Op 2の 点を出発点としてその近傍に、 光線追跡法 を用い本来の曲率中心位置 OF 2を求める。 このために、 具体的には次のように 追跡法を用いて曲率半径中心位置 0 F 2を求める。
まず、 上記曲率中心位置 OF 2の候補点を中心に半径 RFの円を描き、 この円 と直線 1 F 2との交点として PF 2の^点を求め、 点 PNIから点 PF 2の候 補点に渡る曲面を遠用部曲面 F 2の候補曲面とする。
次に、 直線 I N 1と直線 1 F 2に挟まれた範囲にあるいくつかの平行光線を遠 用部曲面 F 2の候補曲面に入射させ、 これらの平行光線がベースカーブ 3から出 射した後光軸と交わる位置に着目する。
この入射平行光線が光軸と交わる位置が、 図 4で定義した遠用部焦点 F Fに対 し負の Z方向にずれて位置する場合には、 遠用部曲面 F 2の候補曲面を、 点 P N 1を中心にして図 5における反時計方向にわずかに回転する。
—方、 この光軸と交わる位置が、 遠用部焦点 FFに対し正の Z方向に位置する 場合には、 遠用部曲面 F 2の候補曲面を点 PN 1を中心にして時計方向に回転す る。
このようにして、 フロントカーブ 2に入射された平行光線力く遠用部焦点 FFを 通るように、 点 P N 1を中心にした遠用部曲面 F 2の^曲面の回転方向と回転 量とを求め、 回転位置を決める。 この回転位置まで遠用部曲面 F 2の候補曲面を 点 PN1を中心に回転させて得られた曲面力求めるべき遠用部曲面 F 2であり、 この確定した遠用部曲面 F 2の曲率中心位置が求めるべき曲率中心位置 0 F 2で のる。
次に、 近用部曲面 N2の曲率中心位置 ON2を以下のようにして求める。 すな わち、 確定した曲率中心位置 0F 2を中心として半径 RFの円を描き、 遠用部曲 面 F 2の所定の領域幅を規定する光軸に平行な直線 1 F 2との交点を求め、 この 交点を PF 2と定義する。 次に、 点 PF 2を中心に半径 RNの円を描き、 光軸と の交点を求め、 この交点を近用部曲面 N 2の曲率中心位置 ON 2の^ i点とする。 次に、 曲率中心位置 ON 2の候補点を出発点としてその近傍に、 追跡法を 用い本来の曲率中心位置 ON 2を求める。 このために、 まず、 上記曲率中心位置 ON 2の候補点を中心に半径 RNの円を描き、 この円と直線 1 N 2との交点を求 め、 この交点を PN 2の^点とし、 点 PF 2から点 PN2の候補点に渡る近用 部曲面 N 2の候補曲面の形状を規定する。
次に、 直線 1 F2と直線 1 N 2に挟まれた範囲にあるいくつかの平行光線を近 用部曲面 N 2の^ i曲面に入射させ、 これらの平行^ Iがベースカーブ 3から出 射した後光軸と交わる位置に着目する。
この入射 TO光線が光軸と交わる位置が、 図 4に示す近用部焦点 F Nに対し負 の Z方向に位置する場合には、 近用部曲面 N 2の候補曲面を点 P F 2を中心にし て図 5における反時計方向にわずかに回転する。
一方、 この入射平行 が光軸と交わる位置が近用部焦点 F Nの■曲面に対 し正の Z方向に位置する場合には、 近用部曲面 N 2の 曲面を点 P F 2を中心 にして時計方向に回転する。
このようにして、 フロントカーブ 2に入射された平行光線力近用部焦点 F Nを 通るように、 点 P F 2を中心にした近用部曲面 N 2の^ 曲面の回転方向と回転 量とを求め、 回転位置を決める。 この回転位置へ近用部曲面 N 2の^ 曲面を点 PF 2を中心に回転させて得られた曲面が求めるべき近用部曲面 N2であり、 こ の確定した近用部曲面 N 2の曲率中心位置が求めるべき曲率中心位置 0 N 2であ る o
同様な操作により他の曲率中心位置点 Op 3、 Op 4 * 'および ON 3、
ON 4 · ·を求め、 図 5に示すコンタク 卜レンズ 1が得られる。
しかしな力 ら、 図 5に示すコンタクトレンズは、 以下のような理由で球面収差 の捕正が充分ではないということが予想される。
すなわち、 図 5に示すように遠用部曲面 F 1の曲率中心位置 0 F 1と近用部曲 面 N 1の曲率中心位置 0N丄は光軸上に存在するが、 その他の遠用曲面 F 2、 F 3 · ·の曲率中心位置 0 F 2、 0 F 3 · ·および近用部曲面 N 2、 N 3 · ·の 曲率中心位置 0N2、 0N3 · 'は、 光軸上にはなく光軸上から X軸方向に離れ ている。 また、 遠用部曲面 F l、 F2、 F 3 - 'は同一の曲率半径 RFを有し、 また近用部曲面 Nl、 N2、 N3 · ·は同一の曲率半径 RNを有するという制限 下で光線追跡法が適用されている。 光線追跡法を適用する際に設計自由度が減少 しており、 このため、 以下のように、 球面収差が残存し得る。
例えば、 ここで、 遠用部曲面 F 2と近用部曲面 N 2の所定の領域幅全体に対し て、 光轴に平行な入射光線がべースカーブ 3から出射した後光軸と交わる位置ま での ¾1に着目する。 これらの平行^は各々、 図 4に示すようにベースカーブ 3から出射後、 光軸に至る手前で収束し、 その後発散 となる。 したがって、 コンタクトレンズの] ¾¾Pと遠用部曲面 F 1の曲率中心位置 0 F 1を結ぶ線で定 義される光軸上では一点に結像せず、 遠用部曲面 F 2と近用部曲面 N 2の各々の 球面には球面収差力残る。
さらに具体的には、 遠用部曲面 F 2の所定の領域幅に入射した平行光線は、 ベ ースカーブ 3から出射した後、 Z軸から点 OF 2までの距離を半径として Z軸の 回りに描いたリング上の各点に収束した後発散光線となり、 Z軸上では点ではな く線状に広がりをもって結像することになる。 また、 近用部曲面 N2の所定の領 域幅に Λίした平行 は、 ベースカーブ 3から出射した後、 Ζ軸から点 0Ν2 までの距離を半径として Ζ軸の回りに描いたリングン上の各点に収束した後発散 ¾ Iとなり、 Z軸上では点ではなく線状に広がりをもつて結像することになる。 このように、 各々の曲面に入射する平行 は、 上記に定義した光軸上の遠用部 焦点 FFおよび近用部焦点 FNには結像せず、 した力つて、 各々の曲面には各々 球面収差が残存する。 このことは、 上記光線追跡法により決定する遠用部曲面 F 3、 F4 - ·および近用部曲面 N 3、 Ν4 · 'についても同様である。
また、 この球面収差の大きさは、 遠用部曲面 F 2、 F 3 · ·および近用部曲面 Ν2、 Ν3 · ·の形状を決定する際の各々の曲率中心位置 OF 2、 0F 3 · ·お よび 0N2、 O 3 * ·の X方向の変化の絶対量の大きさによっても影響される。 さらに具体的には、 上記光線追跡法により遠用部曲面 F 2、 F 3 · ·および近 用部曲面 N 2、 Ν 3 · ·の形状を決定する際の各々の曲率中心位置 0F 2、 Op 3 * ·および ON 2、 〇Ν3 · 'が X方向へ離れるほど球面収差も大きくな る ο
このように、 図 5に示すコンタク卜レンズでは、 曲率中心位置 0 F 1と曲率中 心位置 ON 1は光軸上に存在するが、 その他の遠用曲面 F 2、 F 3 · ·の曲率中 心位置 OF 2、 0 F 3 ' ·および近用部曲面 N 2、 N 3 · 'の曲率中心位置 〇N2、 〇N3 · ·は光軸上にはなく、 また、 遠用部曲面 F 1、 F2、 F 3 · · は同一の曲率半径 RFを有し、 また近用部曲面 Nl、 N2、 N3 · ·は同一の曲 率半径 R Nを有するという制限下で光線追跡法が適用されているため設計自由度 力 H "分ではなく、 球面収差力く残存し得る、 という問題がある。
そこで、 本発明の目的は、 上記従来技術の有する問題を解消し、 遠用部曲面と 近用部曲面とが同心帯状に交互に繰り返して形成されたレンズカーブを備える球 面収差カ浪好に除去され明瞭な視力を得ることができる多焦点コンタク卜レンズ を提供することである。 また、 その多焦点コンタクトレンズの成形に用いられる き型を提供することである。
さらに他の本発明の目的は、 室内、 室外の用途に応じて使い分けることにより、 単焦点のレンズに近い性能を得ることができ、 それでいて遠、 近両用の機能を有 する多焦点コンタクトレンズを提供することである。
また、 さらに他の本発明の目的は、 隣接する遠用部曲面と近用部曲面との境界 部分を含めて均一に研磨することができる多焦点コンタクトレンズの製造方法を 提供することである。
上記目的を達成するために、 本発明は、 遠方を見るための複数の遠用部曲面と 近方を見るための複数の近用部曲面と力光軸に対し同心帯状に交互に操り返して 形成されたレンズカーブを備える多焦点コンタクトレンズにおいて、
前記レンズカーブの各々の遠用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な光線力光軸上の単一の遠用部焦 点にほぼ結像するように設定された曲率半径を有し、
前記レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の近用部曲面に入射する光軸に平行な光線が光軸上の単一の近用部焦 点にほぼ結像するように設定された曲率半径を有することを特徴とする。
また、 遠方を見るための複数の遠用部曲面と近方を見るための複数の近用部曲 面とカ光軸に対し同心帯状に交互に繰り返して形成されたレンズカープを備える 多焦点コンタクトレンズにおいて、 前記レンズカーブの各々の遠用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な所定主光線が光軸上の単一の遠 用部焦点をほぼ通過するように設定された曲率半径を有し、
前記レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の近用部曲面に入射する光軸に平行な所定主光線が光軸上の単一の近 用部焦点をほぼ通過するように設定された曲率半径を有することを特徴とする。 また、 前記所定主 として、 光軸を含む遠用部曲面または光軸を含む近用部 曲面を含む全ての遠用部曲面と近用部曲面に対して各々の曲面の領域幅における 所定位置を通る光線を選択したことを特徴とする
また、各々の曲面の領域幅の前記所定位置は、 各々の曲面の領域幅における中 心位置であることを特徴とする。
また、前記所定主 として、 光軸を含む遠用部曲面または光軸を含む近用部 曲面に対しては光軸に一致する を選択し、 これらの曲面以外の遠用部曲面と 近用部曲面に対しては各々の曲面の領域幅における所定位置を通る を選択し たことを特徴とする。
また、各々の前記遠用部曲面は互いにほぼ異なる値の曲率半径を有し、 各々の 前記近用部曲面は互いにほぼ異なる値の曲率半径を有することを特徵とする。 また、 前記レンズカーブはフロントカーブであることを特徴とする。
また、 各々の遠用部曲面の領域幅は各々の遠用部曲面の光軸からの距離に応じ て変化するとともに、 各々の近用部曲面の領域幅は各々の近用部曲面の光軸から の距離に応じて変化することを特徴とする。
また、 各々の遠用部曲面の領域幅は各々の遠用部曲面の光軸からの距離に応じ て增加するとともに、 各々の近用部曲面の領域幅は各々の近用部曲面の光軸から の距離に応じて増加することを特徵とする。
また、各々の遠用部曲面の領域幅は各々の遠用部曲面の光軸からの距離に応じ て減少するとともに、 各々の近用部曲面の領域幅は各々の近用部曲面の光軸から の距離に応じて減少することを特徵とする。
また、 各々の遠用部曲面の領域幅は各々の遠用部曲面の光軸からの距離に応じ て減少または增加するとともに、 各々の近用部曲面の領域幅は各々の近用部曲面 の光軸からの距離に応じて増加または減少することを特徴とする。
また、 各々の遠用部曲面の領域幅は略等しいとともに、 各々の近用部曲面の領 域幅は略等しいことを特徴とする。
また、 前言 Hit用部曲面と近用部曲面とのエネルギー比を室内用、 室外用の用途 に応じた割合として配分したことを特徴する。
また、 前記エネルギー比が面積比であることを特徵する請求項 1 3に記載の多 焦点コンタク卜レンズ。
また、前記エネルギー比が透過 ½fi比であることを特徴する。
また、 遠方を見るための複数の遠用部曲面と近方を見るための複数の近用部曲 面とが光軸に対し同心帯状に交互に繰り返して形成されたレンズカーブを備える 多焦点コンタクトレンズの成形に用いられる典型であって、
前記レンズカーブの各々の遠用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な光線が光軸上の単一の遠用部焦 点にほぼ結像するように設定された曲率半径を有し、
前記レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の近用部曲面に入射する光軸に平行な光線が光軸上の単一の近用部焦 点にほぼ結像するように設定された曲率半径を有することを特徵とする。
また、遠方を見るための複数の遠用部曲面と近方を見るための複数の近用部曲 面とが光岫に対し同心帯状に交互に繰り返して形成されたレンズカーブを備える 多焦点コンタクトレンズの成形に用いられる典型であって、
前記レンズカ一ブの各々の遠用部曲面は、光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な所定主光線力光軸上の単一の遠 用部焦点をほぼ通過するように設定された曲率半径を有し、
前記レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の近用部曲面に入射する光軸に平行な所定主光線が光軸上の単一の近 用部焦点をほぼ通過するように設定された曲率半径を有することを特徴とする。 また、 遠方を見るための複数の遠用部曲面と近方を見るための複数の近用部曲 面とが光軸に対し同心帯状に交互に繰り返して形成されたレンズカーブを備える 多焦点コンタクトレンズの製造方法において、
光軸上に遠用部焦点と近用部焦点とを定め、
光軸により近い位置にある遠用部曲面または近用部曲面から光軸により離れた 位置にある近用部曲面または遠用部曲面へ向かつて、 各々の近用部曲面または遠 用部曲面毎に順々に、
各々の曲面を規定する曲率中心位置と曲率半径の各々の^ iを前記曲率中心位 置^ «と前記曲率半径候補として設定するとともに、
前記曲率中心位置^ と前記曲^^径^ iとを逐次変化させ光軸に平行な所定 主光線力前記遠用部焦点または前記近用部焦点を通過するように光線追跡して、 各々の前記曲面の前記曲率中心位置を光軸上に決定するとともに各々の前記曲面 の前記曲率半径を決定する、 ことを特徴とする。
また、 光軸上に遠用部焦点と近用部焦点とを定め、
光軸に最も近い第 1遠用部曲面を規定する第 1遠用部曲率中心位置と第 1遠用 部曲率半径の各々の候補を第 1遠用部曲率中心位置候補と第 1遠用部曲率半径候 補として設定し、
前記第 1遠用部曲率中心位置候補を中心に前記第 1遠用部曲率半径候補を半径 として描いた円と前記第 1遠用部曲面の領域幅を定める光軸に平行な第 1遠用部 との交点を求めて第 1遠用部曲面候補を求め、 W 5
1 2 前記第 1遠用部曲率中心位置候捕と前記第 1遠用部曲率半径候補とを逐次変化 させ前記第 1遠用部曲面 に入射する光軸に平行な所定主光線が前記遠用部焦 点を通過するように 追跡して、 前記第 1遠用部曲率中心位置と前記第 1遠用 部曲率半径とを決定し、
決定した前記第 1遠用部曲率中心位置を中心に前記第 1遠用部曲率半径を半径 として描いた円弧と前記第 1遠用部直線との交点を第 1遠用部交点として求める とともに前記レンズカーブの頂点から前記第 1遠用部交点に至る曲面を前記第 1 遠用部曲面として決定し、
次に、 前記第 1遠用部曲面の外側に隣接する第 1近用部曲面を規定する第 1近 用部曲率半径の候補として第 1近用部曲^ 径 を設定し、 前記第 1遠用部交 点を中心に前記第 1近用部曲率半径候補を半径として描いた円弧と光軸との交点 を第 1近用部曲率中心位置候補として求め、
前記第 1近用部曲率中心位置候補を中心に前記第 1近用部曲率半径候補を半径 として描、た円弧と前記第 1近用部曲面の領域幅を定める光軸に平行な第 1近用 部直線との交点を求めて第 1近用部曲面^ を求め、
前記第 1近用部曲率中心位置候補と前記第 1近用部曲率半径候補を逐次変化さ せ前記第 1近用部曲面候補に入射する光軸に な所 力前記近用部焦点 を通過するように光線追跡して、 前記第 1近用部曲率中心位置と前記第 1近用部 曲率半径とを決定し、
決定した前記第 1近用部曲率中心位置を中心に前記第 1近用部曲率半径を半径 として描いた円弧と前記第 1近用部直線との交 を第 1近用部交点として求める とともに前記第 1遠用部^から前記第 1近用部交点に至る曲面を前記第 1近用 部曲面として決定し、
次に、 前記第 1近用部曲面の外側に隣接する第 2遠用部曲面を規定する第 2遠 用部曲率半径の^ iとして第 2遠用部曲率半径候補を設定し、 前記第 1近用部交 点を中心に前記第 2遠用部曲率半径候補を半径として描いた円弧と光軸との交点 を第 2遠用部曲率中心位置候補として求め、
前記第 2遠用部曲率中心位置候補を中心に前記第 2遠用部曲率半径候補を半径 として描 、た円弧と前記第 2遠用部曲面の領域幅を定める光軸に平行な第 2遠用 部 I との を求めて第 2遠用部曲面 ,を求め、
前記第 2遠用部曲率中心位置候補と前記第 2遠用部曲率半径候補を逐次変化さ せ前記第 2遠用部曲面候補に入射する光軸に平行な所定主光線が前記遠用部焦点 を通過するように光線追跡して、 前記第 2遠用部曲率中心位置と前記第 2遠用部 曲率半径とを決定し、
決定した前記第 2遠用部曲率中心位置を中心に前記第 2遠用部曲率半径を半径 として描いた円弧と前記第 2遠用部直線との 5¾¾を第 2遠用部交点として求める とともに前記第 1近用部交 から前記第 2遠用部交点に至る曲面を前記第 2遠用 部曲面として決定し、
次に、 前記第 2遠用部曲面の外側に隣接する第 2近用部曲面を規定する第 2近 用部曲率半径の候捕として第 2近用部曲率半径 を設定し、 前記第 2遠用部交 点を中心に前記第 2近用部曲率半径候補を半径として描いた円弧と光軸との交点 を第 2近用部曲率中心位置^として求め、
前記第 2近用部曲率中心位置候補を中心に前記第 2近用部曲率半径候補を半径 として描いた円弧と前記第 2近用部曲面の領域幅を定める光軸に平行な第 2近用 部直線との交点を求めて第 2近用部曲面 を求め、
前記第 2近用部曲率中心位置^ iと前記第 2近用部曲率半径候捕を逐次変化さ せ前記第 2近用部曲面候補に入射する光軸に ίϊな所 ^^力前S £用部焦点 を通過するように 追跡して、 前記第 2近用部曲率中心位置と前記第 2近用部 曲率半径とを決定し、
決定した前記第 2近用部曲率中心位置を中心に前記第 2近用部曲率半径を半径 として描いた円弧と前記第 2近用部直線との 3¾¾を第 2近用部交点として求める とともに前記第 2遠用部交 から前記第 2近用部交点に至る曲面を前記第 2近用 部曲面として決定する、 ことを特徴とする。
また、 光軸上に遠用部 と近用部焦点とを定め、
光軸を含む第 1近用部曲面を規定する第 1近用部曲率中心位置と第 1近用部曲 率半径の各々の候補を第 1近遠用部曲率中心位置候補と第 1近用部曲率半径候補 として設定し、
前記第 1近用部曲率中心位置候補を中心に前記第 1近用部曲率半径候捕を半径 として描いた円弧と前記第 1近用部曲面の領域幅を定める光軸に平行な第 1近用 部直線との^を求めて第 1近用部曲面 を求め、
前記第 1近用部曲率中心位置^ と前記第 1近用部曲率半径^ iとを逐次変化 させ前記第 1近用部曲面^ iに入射する光軸に平行な所定主 か 記近用部焦 点を通過するように^追跡して、 前記第 1近用部曲率中心位置と前記第 1近用 部曲率半径とを決定し、
決定した前記第 1近用部曲率中心位置を中心に前記第 1近用部曲率半径を半径 として描いた円と前記第 1近用部 ϋϋ¾との交点を第 1近用部交点として求めると ともに前記レンズカーブの頂点から前記第 1近用部交点に至る曲面を前記第 1近 用部曲面として決定し、
次に、 前記第 1近用部曲面の外側に隣接する第 1遠用部曲面を規定する第 1遠 用部曲率半径の^ として第 1遠用部曲率半径候補を設定し、 前記第 1近用部交 点を中心に前記第 1遠用部曲率半径^ を半径として描いた円弧と光軸との交点 を第 1遠用部曲率中心位置候捕として求め、
前記第 1遠用部曲率中心位置候補を中心に前記第 1遠用部曲率半径候補を半径 として描 t、た円弧と前記第 1遠用部曲面の領域幅を定める光軸に平行な第 1遠用 部 との^を求めて第 1遠用部曲面^ を求め、 前記第 1遠用部曲率中心位置^ と前記第 1遠用部曲率半径候捕を逐次変化さ せ前記第 1遠用部曲面候補に入射する光軸に平行な所 ^ ¾力、'前 §a¾用部焦点 を通過するように光線追跡して、 前記第 1遠用部曲率中心位置と前記第 1遠用部 曲率半径とを決定し、
決定した前記第 1遠用部曲率中心位置を中心に前記第 1遠用部曲率半径を半径 として描いた円弧と前記第 1遠用部直線との交点を第 1遠用部交点として求める とともに前記第 1近用部 ^から前記第 1遠用部交点に至る曲面を前記第 1遠用 部曲面として決定し、
次に、 前記第 1遠用部曲面の外側に隣接する第 2近用部曲面を規定する第 2近 用部曲率半径の候補として第 2近用部曲率半径^ iを設定し、 前記第 1遠用部交 点を中心に前記第 2近用部曲率半径 を半径として描 L、た円弧と光蚰との交点 を第 2近用部曲率中心位置^として求め、
前記第 2近用部曲率中心位置候補を中心に前記第 2近用部曲率半径候補を半径 として描いた円弧と前記第 2近用部曲面の領域幅を定める光軸に平行な第 2近用 部直線との交点を求めて第 2近用部曲面候補を求め、
前記第 2近用部曲率中心位置候補と前記第 2近用部曲率半径^ fを逐次変化さ せ前記第 2近用部曲面^ tに入射する光軸に平行な所 力前記近用部焦点 を通過するように光線追跡して、 前記第 2近用部曲率中心位置と前記第 2近用部 曲率半径とを決定し、
決定した前記第 2近用部曲率中心位置を中心に前記第 2近用部曲率半径を半径 として描いた円弧と前記第 2近用部直線との ^を第 2近用部交点として求める とともに前記第 1遠用部 ^から前記第 2近用部交点に至る曲面を前記第 2近用 部曲面として決定し、
次に、 前記第 2近用部曲面の外側に隣接する第 2遠用部曲面を規定する第 2遠 用部曲率半径の候補として第 2遠用部曲率半径^ «を設定し、 前記第 2近用部交 点を中心に前記第 2遠用部曲率半径候補を半径として描いた円弧と光軸との交点 を第 2遠用部曲率中心位置^ tとして求め、
前記第 2遠用部曲率中心位置候補を中心に前記第 2遠用部曲率半径候捕を半径 として描いた円弧と前記第 2遠用部曲面の領域幅を定める光軸に平行な第 2遠用 部直線との交点を求めて第 2遠用部曲面候補を求め、
前記第 2遠用部曲率中心位置候補と前記第 2遠用部曲率半径候補を逐次変化さ せ前記第 2遠用部曲面候補に入射する光軸に平行な所定主光線が前記遠用部焦点 を通過するように光線追跡して、 前記第 2遠用部曲率中心位置と前記第 2遠用部 曲率半径とを決定し、
決定した前記第 2遠用部曲率中心位置を中心に前記第 2遠用部曲率半径を半径 として描いた円弧と前記第 2遠用部直線との交点を第 2遠用部交点として求める とともに前記第 2近用部^から前記第 2遠用部交点に至る曲面を前記第 2遠用 部曲面として決定する、 ことを特徴とする。
また、 前記所定主光線として、 光軸を含む遠用部曲面または光軸を含む近用部 曲面を含む全ての遠用部曲面と近用部曲面に対して各々の曲面の領域幅の所定位 置を通る光線を選択したことを特徴とする。
また、 各々の曲面の領域幅の前記所定位置は、 各々の曲面の領域幅の中心位置 であることを特徽とする。
また、 前記所定主光線として、 光軸を含む遠用部曲面または光軸を含む近用部 曲面に対しては光軸に一致する光線を選択し、 これらの曲面以外の遠用部曲面と 近用部曲面に対しては各々の曲面の領域幅における所定位置を通る を選択し たことを特徴とする。
また、 各々の前記遠用部曲面は互いにほぼ異なる値の曲率半径を有し、 各々の 前記近用部曲面は互 、にほぼ異なる値の曲率 を有することを特徴とする。 前記レンズカーブはフロントカーブであることを特徴とする。 また、 遠方を見るための複数の遠用部曲面と近方を見るための複数の近用部曲 面とが同心帯状に交互に繰り返して形成されたレンズカーブを備える多焦点コン タクトレンズを製造する方法において、
前記多焦点コンタクトレンズは、
前記レンズカーブの各々の遠用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な光線が光軸上の単一の遠用部焦 点にほぼ結像するように設定された曲率半径を有し、
前記レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の近用部曲面に入射する光軸に平行な光線が光軸上の単一の近用部焦 点にほぼ結像するように設定された曲率半径を有する多焦点コンタクトレンズで あり、
軟質な材質からなる研磨布を流体圧力によって圧接し、 フロントカーブと研磨 布とを相対 させることにより、 フロントカーブを研磨することを特徴とする。 また、 遠方を見るための複数の遠用部曲面と近方を見るための複数の近用部曲 面と力 <光軸に対し同心帯状に交互に繰り返して形成されたレンズカーブを備える 多焦点コンタクトレンズにおいて、
前記多焦 コンタクトレンズは、
前記レンズカーブの各々の遠用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な所定主光線が光軸上の単一の遠 用部焦点をほぼ通過するように設定された曲率半径を有し、
前記レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の近用部曲面に入射する光軸に平行な所定主光線が光軸上の単一の近 用部焦点をほぼ通過するように設定された曲率半径を有する多焦点コンタクトレ ンズであり、
軟質な材質からなる研磨布を流体圧力によって圧接し、 フロントカープと研磨 W 1285
1 8 布とを相対運動させることにより、 フロントカーブを研磨することを特徴とする c 以下に本発明の作用について説明する。
上述の発明において、 レンズカーブの各々の遠用部曲面は、 光軸上に曲率中心 位置を有するとともに、 各々の遠用部曲面に Λ ίする光軸に平行な が光軸上 の単一の遠用部焦点にほぼ結像するように設定された曲率半径を有する。 本発明 では、 各々の遠用部曲面の曲率半径を全て等しくするという従来のような厳しい 前提あるいは制限がなく、光線追跡法によりレンズ設計する上で高い自由度を確 保することができる。
また、 本発明では、 各々の遠用部曲面の曲率中心位置力 <光軸上にあるという制 限を必要とする。 し力、し、 本発明では、 各々の遠用部曲面毎に曲率半径を適性に 設定することと相まつて遠用部曲面の曲率中心位置を光軸上で逐次的に移動させ ることができるので、 曲率中心位置が光軸上にあるという制限は^;§跡法を適 用する上で本質的な制限とはならな L、。
上述のことは、 レンズカーブの各々の近用部曲面についても遠用部曲面と同様 である。
これらの結果、 図 5等に示すコンタクトレンズに比べて 追跡法を適用する に当たつての制限を極めて小さくし高い自由度を確保してレンズ設計すること力 < でき、 また、 各々の球面の曲率中心位置を光軸上に設けることができ、 レンズ力 ーブの各々の曲面の形状を光線追跡法によつて適性に求めることにより球面収差 をなくすること力く可能になる。
また、 本発明では、 レンズカーブの各々の遠用部曲面は、 光軸上に曲率中心位 置を有するとともに、 各々の遠用部曲面に入射する光軸に な所 光線力 <光 軸上の単一の遠用部焦点をほぼ通過するように設定された曲率半径を有する。 レ ンズカーブの各々の近用部曲面についても同様である。
この所 ^光線の選択方法として、 本発明では、 2つの選択方法を想定してい る。
この 2つの選択方法の一つは、 光軸を含む遠用部曲面または光軸を含む近用部 曲面を含む全ての遠用部曲面と近用部曲面に対して各々の曲面の領域幅における 所定位置を通る光線を選択するものである。 すなわち、 図 5等に示すコンタクト レンズの場合のように遠用部曲面 F 1と近用部曲面 N 1に対しては光軸に一致す る光線を主 ¾ϋとして選択する場合とは異なり、 遠用部曲面 F 1と近用部曲面 Ν 1に対する場合も光軸から離れた他の遠用部曲面 F 2, F 3 - ·と近用部曲面 Ν 2 , Ν 3 · ·に対する場合と同様に各々の曲面の領域幅における所定位置を通る 平行光線を主光線として選択するのである。 これによつて、 遠用部曲面 F 1と近 用部曲面 N 1に対する場合も他の遠用部曲面 F 2 , F 3 - ·と近用部曲面 Ν 2 , Ν 3 · ·に対する場合と同等に球面収差を削減することができるのである。
また、遠用部曲面 F 1と近用部曲面 N 1に球面収差力 存した場合にでも、 残 存する球面収差の分布を他の遠用部曲面 F 2 , F 3 · ·と近用部曲面 Ν 2 , Ν 3 • ·に残存する球面収差の分布と同様にすることができる。 この結果、 各々の曲 面が、 例えばガウス分布の球面収差を有するというように、遠用部焦点あるいは 近用部焦点の回りに統一的な球面収差分布を有するようにできるのである。 これ に対して、 図 5等に示すコンタク トレンズの場合では、 遠用部曲面 F 1と近用部 曲面 Ν 1に残存する球面 の分布と、 他の遠用部曲面 F 2, F 3 · ·と近用部 曲面 N 2, N 3 · ·に残存する球面収差の分布とが、 例えばガウス分布と非ガウ ス分布というように互いに異なりやすいのである。
次に、 この 2つの選択方法のうちの他は、 所定主^ IIとして、 光軸を含む遠用 部曲面またはその光軸を含む近用部曲面に対しては光軸に一致する^を選択し、 これらの曲面以外の遠用部曲面と近用部曲面に対しては各々の曲面の領域幅にお ける所定位置を通る^を選択するものである。 すなわち、 図 5等に示すコンタ クトレンズの場合と同様に遠用部曲面 F 1と近用部曲面 N 1に対しては光袖に一 致する^!を主光線として選択するものであり、 複雑な光^ ϋ跡を遠用部曲面 F 1と近用部曲面 N 1に対しては省くことができ、 設計の簡易化を図ることができ る。 また、 遠用部曲面 F 1と近用部曲面 Ν 1に対して光軸に一致する光線を主光 線として選択したとしても、 遠用部曲面 F等の領域幅が小さくて近軸 近似が する限り、 球面収差を無視することができる。
上述のように、 本発明によれば、 レンズカーブの各々の遠用部曲面は、 光軸上 に曲率中心位置を有するとともに、 各々の遠用部曲面に入射する光軸に平行な光 線力光軸上の単一の遠用部焦点にほぼ結像するように設定された曲率半径を有し、 レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位置を有するとともに、 各々の近用部曲面に Λ ίする光軸に平行な光線力《光軸上の単一の近用部焦点にほ ぼ結像するように設定された曲率半径を有するので、 遠用部と近用部の球面収差 を除去することができ、 従って、 装用者は、 遠用部、 近用部ともに、 明瞭な視力 を得ることができる。
また、 各々の遠用部曲面の領域幅は各々の遠用部曲面の光軸からの距離に応じ て変化するとともに、 各々の近用部曲面の領域幅は各々の近用部曲面の光軸から の距離に応じて変化するので、 室内等において近用部を使用しての読害やデスク ワークの時に対応するものとしては近用部のエネルギー比の大きいコンタクトレ ンズを装用することにより近くが見やすく、 また遠くを見るときは遠用部を通し て見ることができる。
室外等において遠用部を主として使用するスポーツやドライブ時などに対応す るものとしては遠用部のエネルギー比の大きいコンタクトレンズを装用すること により遠方のものが見やすく、 また近くを見るときは近用部を通して見ること力く できる。
また、 軟質な材質からなる研磨布を流体圧力によって圧接し、 フロントカーブ と研磨布とを相対運動させることにより、 フロントカーブを研磨するので、 研磨 布を液体圧力によってフ口ン卜カーブの曲面形状に柔軟に従わせることができ、 隣接する遠用部曲面と近用部曲面との境界部分を含めて曲面形状を均一に研磨す ることができる。
なお、 本発明においては、 遠方を見るための複数の遠用部曲面と近方を見るた めの複数の近用部曲面とが光軸に対し同心帯状に交互に繰り返して形成されたレ ンズカーブは、 フロントカーブであってもべ一スカープであってもよい。
また、 本発明においては、 光軸を含む曲面として遠用部曲面 F 1を設けてもよ く、 あるいは光軸を含む曲面として遠用部曲面 F 1の代わりに近用部曲面 N 1を 設けてもよい。
図面の簡単な説明
図 1は、 本発明によるコンタクトレンズの一実施例の遠用部曲面および近用部 曲面の曲率中心位置を示した断面図である。
図 2は、 図 1の部分を拡大して示した断面図である。
図 3は、 本発明の一実施例の遠用部焦点および近用部焦点を示す断面図であ る。
図 4は、 従来のコンタクトレンズの遠用部曲面および近用部曲面の曲率中心位 置を示した断面図である。
図 5は、 図 4の部分を拡大して示した断面図である。
図 6は、 従来のコンタクトレンズの遠用部焦点および近用部焦点を示す断面図 である。
図 7は、 従来のコンタクトレンズの遠用部曲面および近用部曲面の曲率中心位 置を示した断面図である。
図 8は、 図 7の部分を拡大して示した断面図である。
図 9は、 本発明によるコンタクトレンズの第 1乃至 8 例を示す平面図であ る 0 図 1 0は、 本発明によるコンタクトレンズの第 9実施例を示す平面図である。 図 1 1は、 本発明によるコンタクトレンズの第 1 0 ¾¾例を示す平面図である < 図 1 2は、 本発明によるコンタクトレンズの第 1 1 ¾½例を示す平面図である c 図 1 3は、 本発明によるコンタクトレンズの第 1 2実施例を示す平面図である c 図 1 4は、 本発明によるコンタクトレンズの第 1 3 例を示す平面図である c 図 1 5は、 本発明によるコンタクトレンズの第 1 4 ¾§fe例を示す平面図である c 図 1 6は、 本発明によるコンタクトレンズの第 1 5 H½例を示す平面図である。 図 1 7は、 本発明によるコンタクトレンズの第 1 6 例を示す平面図である。 図 1 8は、 本発明によるコンタクトレンズの第 1 7 例を示す平面図である。 図 1 9は、 本発明のコンタクトレンズの製造方法の一実施例を示す断面図であ る o
図 2 0は、 図 1 9の部分を拡大して示した断面図である。
図 2 1は、 本発明のコンタクトレンズ β ^型の断面図である。
図 2 2は、 本発明のコンタクトレンズ成形型を用いたコンタクトレンズの製造 方法を説明する説明図である。
図 2 3は、 本発明のコンタクトレンズき型を用いたコンタクトレンズの製造 方法を説明する説明図である。
図 2 4は、 本発明のコンタクトレンズ 用型を用いたコンタクトレンズの他 の製造方法を説明する説明図である。
発明を実施するための最良の形態
図 2において、 多焦点のコンタク トレンズ 1は遠方をみるための遠用部曲面 F l、 F 2 · ·と近方をみるための近用部曲面 N l、 N 2とが同心帯状に ¾Lに 繰り返して形成されたレンズカーブとしてのフロントカーブ 2と、 ベースカーブ 3とを有する。 ここで、 コンタク トレンズ 1の光軸を Z軸にとり、 Z軸方向をフ ロン卜カーブ 2からベースカーブ 3へ向く方向とする。 また、 コンタク トレンズ 1の頂点 Pを通り、 Z軸に垂直に X軸をとる。
ベースカーブ 3の曲面形状は装用者の角膜の曲面に対応して個別的に設定され る。 なお、 レンズカーブとしてフロントカーブ 2の代りにベースカーブ 3をとる ことも可能である。
また、 この与えられたベースカーブ 3の曲面形状の値を前提にして求められた 遠用部度数から遠用部焦点 F Fの位置を演算して求める。 また、 遠用部度数から 加入度を引くことで求められた近用部度数から近用部焦点 F Nの位置を演算して 求める。
また、 フロントカーブ 2にある遠用部曲面 F 1、 F 2 · ·および近用部曲面 Nl、 N2 - ·について、 遠用部曲率半径 RF 1、 RF 2 * ·および近用部曲率 半径 RN 1、 RN2 · ·と、 遠用部曲率中心位置 OF 1、 0F 2 · ·および近用 部曲率中心位置 ON i、 ON 2 * ·とは次のように求められる。
すなわち、 フロントカーブ 2の各々の遠用部曲面 F 1、 F 2 · ·は、 光軸 (Z 軸) 上に曲率中心位置 OF i、 op 2 · ·を有する。 また、 フロントカーブ 2の 各々の遠用部曲面 F 1、 F 2 · ·は、 各々の遠用部曲面 F 1、 F 2 · ·に入射す る光軸に平行な光線力 <光軸上の単一の遠用部焦点 F Fにほぼ結像するように設定 された曲率半径 RF 1、 F 2 · ·を有する。 フロントカーブ 2の各々の近用部 曲面 Nl、 N2 · 'は、 光軸上に曲率中心位置 ON 1、 〇N2 · ·を有する。 ま た、 フロントカーブ 2の各々の近用部曲面 Ν 1、 Ν2 · ·は、 各々の近用部曲面 Ν 1、 Ν2 · 'に入射する光軸に平行な舰カ'光軸上の単一の近用部焦点 FNに ほぼ結像するように設定された曲率半径 RN 1、 N2 * ·を有する。
曲率中心位置 OF I、 OF 2 · ·と曲率半径 RF I、 F 2 · ·とは、 各々の 遠用部曲面 Fl、 F 2 - 'に入射する光軸に ¥ίϊな所 が光軸上の単一の 遠用部焦点 F Fをほぼ通過するように光 跡法を用いて設定され、 また、 曲率 中心位置 ON 1、 〇N2 · ·と曲輕径 RN 1、 RN2 · ·とは、 各々の近用部 曲面 N l、 N 2 · 'に入射する光軸に平行な所定主光線力 <光軸上の単一の近用部 焦点 F Nをほぼ通過するように設定される。
なお、 以下に図 1乃至図 3を参照して例示するコンタクトレンズ 1は、 遠用部、 近用部の各曲面 F l、 F 2 · 'および N l、 N 2 · ·の領域幅が広い場合であり、 各遠用部曲面 F l、 F 2 - 'はベースカーブ 3との関係で遠用部がプラスレンズ として形成され、 各近用部曲面 N l、 N 2 · 'がベースカープ 3との関係で近用 部もまたプラスレンズとして形成されている。
以下に具体的に説明する。
まず、 所望の遠用部度数から逮用部曲面 F 1の曲率半径 R F 1の第一候補を設 定する。 次に、 図 2に示すように、 頂点 Pから遠用部の曲^径 R F 1の第—候 捕の長さだけ離れた光軸上の位置を遠用部曲面 F 1の曲率中心位置 0 F!の第一 ^として求める。
次に、 曲率中心位置 0 F 1の第一^ iを中心位置として曲率半径 R F 1の第一 を半径とする円を描き、 この円と、 遠用部曲面 F 1の領域幅を規定する直線 1 F 1との 5¾¾を求め、 この交点を P F 1の第—候補点として求め、 点 Pから点 P F 1の第一候補点に渡る曲面を遠用部曲面 F 1の第一候捕として求める。
具体的には次のような光線追跡法を用いて、 曲率中心位 SO F 1を求める。 まず、 所^,として光軸と 1 F 1に挟まれた領域幅範囲内にある光軸 に平行な平行光線を選択し、 これらの平行光線を遠用部曲面 F 1の第一■に入 射させ、 これらの平行光線がベースカーブ 3から出射した後に光軸と交わる位置 に着目する。
なお、 遠用部曲面 F 1の所定主^としては例えば、 光軸と 1 F 1に挟ま れた領域幅における X方向における中心位置を通る平行光線、 あるいは光軸に一 致する^を選択することが好適である。 領域幅における X方向における中心位 置を通る平行^ Sを所定主光線として選択する場合には、 他の全ての遠用部曲面 W
2 5 と近用部曲面に対しても同様の主 ¾ ^を選択することにより、 遠用部曲面 F 1と 近用部曲面 N 1に対する場合においても光軸から離れた他の遠用部曲面 F 2 , F 3 · ·と近用部曲面 F 2 , F 3 · ·に対する場合と同等に球面収差を削'减する ことができ、 また、 残存する球面 の分布を全ての遠用部曲面および近用部曲 面に渡って統一的な球面収差分布を有するようにできる。 また、 光軸に一致する を所定主光線として選択する場合には、 な光線追跡を遠用部曲面 F 1と 近用部曲面 N 1に対しては省くことができ、 設計の簡易化を図ることができる。 とにかく、 上述ののいずれかの方法で所定主光線を選択する。
次に、 このようにして選択された所定主 ¾ϋがべースカーブ 3から出射した後 に光軸と交わる位置に着目し、 この位置が遠用部焦点 F Fに対し負の Ζ方向に位 置する場合には、 曲率半径 R F 1の第 の大きさをわずかに大きく し、 この 大きく した値を曲率 R F 1の第二候補と規定する。 再び、 Pを中心位置にし 曲率半径 R F 1の第二候捕の大きさを半径とする円を描き、 この円と光軸との交 点を求め、 この交点を曲率中心位置 0 F 1の第二候補として規定する。
また、 曲率中心位置 0 F 1の第二^ ffiの位置を中心位置とし曲率半径 R F!の 第二候補の大きさを半径とする円を描き、 この円と遠用部曲面 F 1の領域幅を規 定する ίΙί¾ 1 F 1との交点を求め、 この交点を P F 1の第二候補点として規定し、 点 Pから点 P F 1の第二^ 点に渡る曲面を遠用部曲面 F 1の第二^として規 定する。
—方、 ベースカーブ 3から出射した後の所 ¾ΐ と光軸との交わる位置が、 遠用部焦点 F Fに対し正の Z方向に位置する場合には、 曲率半径 R F丄の第一候 捕をわずかに小さくし、 この/ J、さくした値を曲率半径 R F 1の第二 と規定す る。 再び、 Pを中心に曲率半径 R F 1の第二漏の大きさを半径とする円を描き、 この円と光軸との交点を求め、 この交点を曲率中心位置 O F 1の第二候補として 規定する。 また、 同様にして、 曲率中心位置 0 F 1の第二^ iの位置を中心位置 とし曲率半径 RF 1の第二候補の大きさを半径とする円を描き、 この円と遠用部 曲面 F 1の領域幅を規定する直線 1 F 1との を求め、 この交点を P F 1の第 二候補点として規定し、 点 Pから点 P F 1の第二候補点に渡る曲面を遠用部曲面 F 1の第二^ として規定する。
上述したように、 曲率半径 RF 1の候補と曲率中心位置〇F 1の とを逐次 的に変化させ、 フロンドカーブ 2に入射されベースカーブ 3から出射した所^ ¾6¾が遠用部焦点 F Fを通過するようになるまで、 このような操作を逐次的に繰 り返す。
このように 追跡を繰り返した結果、 ベースカーブ 3から出射した所 ^光 線と光軸との交点位置カ遠用部焦点 F Fと一致するようになつた段階あるいは許 容範囲内でほぼ一致するようになつた段階で、 曲率中心位置 0 F 1の候補は真の 曲率中心位置 0 F丄として光軸上に確定し、 曲率半径 R F 1の^ iは真の曲率半 径 RF 1として確定し、 また、 交点 RF 1の鎌点を真の^ PF 1として確定 し、 遠用部曲面 F 1の^ iを真の遠用部曲面 F 1として確定する。
次に、 上述の確定した結果を前提にし曲率中心位置 ON 1、 曲率半径 RN1お よび近用部曲面 N 1を求めることについて以下に説明する。
まず、 所望の近用部度数から曲率半径 RN1の第— を設定する。 次に、 上 で確定した遠用部曲面 F 1の点 PF 1を中心に曲率半径 RN1の第—候補の大き さを半径とする円を描き、 この円と光軸との交点を求め、 この交点を近用部曲面
N 1の曲率中心位置 0 N 1の第" と規定する。
次に、 曲率中心位置 ON 1の第一候補を中心位置として曲率半径 RN 1の第— 候補を半径とする円を描き、 この円と近用部曲面 N 1の領域幅を規定する直線 1 N 1との 3 ^を求め、 この交点を PN 1の第一^ 点として規定し、 上で確定 した点 P F丄から点 P N 1の第一^点に渡る曲面を近用部曲面 N 1の第一 として規定する。 次に、 光線追跡法を用い、 曲率中心位置 0 F 1および曲率半径 R F 1を求めた のと同様のやり方で以下のように曲率中心位置 0 N 1および曲率半径 R N 1を求 める。
まず、 所 光線として直線 1 F 1と 1 N 1に挟まれた領域幅の X方向に おける中心位置を通る光軸に平行な光線を選択し、 この所 ^ を近用部曲面 N 1の第一 に入射させベースカーブ 3から出射した後に光軸と交わる位置に 着目する。
光軸と交わる位置が近用部焦点 FNに対し負の Z方向に位置する場合には、 図 2に示すように曲率半径 RN1の第—候補の大きさをわずかに大きく し、 この大 きくした値を曲率半径 RN1の第二候補と規定する。 再び、 確定した点 PF1を 中心位置にし半径 R N 1の第二候補の大きさを半径とする円を描き、 この円と光 軸との交点を求め、 この を曲率中心位置 0N丄の第二 として規定する。 また、 曲率中心位置 ON 1の第二 Mの位置を中心位置とし曲样径 RN 1の第 二候捕の大きさを半径とする円を描き、 この円と近用部曲面 N 1の領域幅を規定 する直線 1 N 1との交 を求め、 この交点を P N 1の第二^ 点として規定し、 確定した点 P F 1力、ら点 P N 1の第二候補点に渡る曲面を近用部曲面 N 1の第二 として規定する。
—方、 ベースカーブ 3から出射した後の所^光線と光軸との交わる位置が、 近用部焦点 FNに対し正の Z方向に位置する場合には、 曲率半径 RN 1の第一候 捕をわずかに小さくし、 この小さく した値を曲率半径 RN Iの第二^ iと規定す る。 再び、 確定した点 PF1を中心位置にし^ RNIの第二 の大きさを半 径とする円を描き、 この円と光軸との交点を求め、 この交点を曲率中心位置 ON 1の第二 として規定する。 また、 曲率中心位置 ON 1の第二 の位置 を中心位置とし曲率半径 R N 1の第二^ iの大きさを半径とする円を描き、 この 円と近用部曲面 N 1の領域幅を規定する 1 N Iとの交点を求め、 この交点を P N 1の第二候補点として規定し、 確定した点 P F 1から点 P N 1の第二^ 点 に渡る曲面を近用部曲面 N 1の第二候補として規定する。
上述したように、 曲率半径 R N 1の候補と曲率中心位置 0 N 1の^ fとを逐次 的に変化させ、 フロントカーブ 2に入射されベースカーブ 3から出射した所定主 が近用部焦点 F Nを通過するようになるまで、 このような操作を逐次的に繰 り返す。
このように光線追跡を繰り返した結果、 ベースカーブ 3から出射した所 ^光 線と光軸との交点位置が近用部焦点 F Nと一致した段階ある L、は許容範囲内でほ ぼ一致した段階で、 曲率中心位置 O N 1の候補は真の曲率中心位置 0 N丄として 光軸上に確定し、 曲率半径 R N 1の候補は真の曲率半径 R N 1として確定し、 ま た、 交点 P N Iの^ 点を P Iとの真の交点として確定し、 近用部曲面 N 1の を真の近用部曲面 N 1として確定する。
次に、上述の確定した結果を前提にし曲率中心位置 0 F 2、 曲率雜 R F 2お よび近用部曲面 F 2を求めることについて以下に説明する。
まず、 所望の遠用部度数から曲幹径 R F 2の第— を設定する。 次に、 上 で確定した近用部曲面 N 1の点 P N 1を中心に曲率半径 R F 2の第—候補の大き さを半径とする円を描き、 この円と光軸との交点を求め、 この交点を遠用部曲面 F 2の曲率中心位置 0 F 2の第一^ iと規定する。
次に、 曲率中心位置 0 F 2の第一^ tを中心位置として曲率半径 R F 2の第一 候補を半径とする円を描き、 この円と遠用部曲面 F 2の領域幅を規定する直線
1 F 2との交点を求め、 この交点を P F 2の第—候補点として規定し、 上で確定 した点 P N 1から点 P F 2の第一^ 点に渡る曲面を遠用部曲面 F 2の第一候補 として規定する。
次に、光^!跡法を用い、 曲率中心位置 O F 1等および曲率半径 R F 1等を求 めたのと同様のやり方で以下のように曲率中心位置 0 F 2および曲率半径 R F 2 を求める。
まず、 所 光線として直線 1 N 1と, 1 F 2に挟まれた領域幅の X方向に おける中心位置を通る光軸に平行な光線を選択し、 この所^光線を遠用部曲面 F 2の第一 に入射させベースカーブ 3から出射した後に光軸と交わる位置に 着目する。
光軸と交わる位置が遠用部焦点 F Fに対し負の Z方向に位置する場合には、 図
2に示すように曲率半径 R F 2の第—^の大きさをわずかに大きくし、 この大 きくした値を曲率半径 R F 2の第二候補と規定する。 再び、 確定した点 P N 1を 中心位置にし半径 R F 2の第二候補の大きさを半径とする円を描き、 この円と光 軸との交点を求め、 この交点を曲率中心位置 O p 2の第二^^として規定する。 また、 曲率中心位置 O F 2の第二^^の位置を中心位置とし曲率半径 R F 2の第 二候補の大きさを半径とする円を描き、 この円と遠用部曲面 F 2の領域幅を規定 する直線 1 F 2との交 を求め、 この交点を P F 2の第二^^点として規定し、 確定した点 P N 1から点 P F 2の第二候捕点に渡る曲面を遠用部曲面 F 2の第二 として規定する。
一方、 ベースカーブ 3から出射した後の所 ^光線と光軸との交わる位置が、 遠用部焦点 F Fに対し正の Z方向に位置する場合には、 曲率半径 R F 2の第一候 補をわずかに小さくし、 この小さくした値を曲率半径 R F 2の第二^ と規定す る。 再び、 確定した点 P N 1を中心位置にし半径 R F 2の第二候捕の大きさを半 径とする円を描き、 この円と光軸との交点を求め、 この交点を曲率中心位置
O F 2の第二候捕として規定する。 また、 曲率中心位置〇F 2の第二^ tの位置 を中心位置とし曲率半径 R F 2の第二候補の大きさを半径とする円を描き、 この 円と遠用部曲面 F 2の領域幅を規定する 1 F 2との交点を求め、 この交点を
P F 2の第二^ t点として規定し、 確定した点 P N 1から点 P F 2の第二^ i点 に渡る曲面を遠用部曲面 F 2の第二候補として規定する。 上述したように、 曲率半径 R F 2の候補と曲率中心位置 0 F 2の とを逐次 的に変化させ、 フロントカーブ 2に入射されベースカーブ 3から出射した所定主 が遠用部焦点 F Fを通過するようになるまで、 このような操作を逐次的に繰 り返す。
このように光線追跡を繰り返した結果、 ベースカーブ 3から出射した所^光 線と光軸との交点位置が遠用部焦点 F Fと一致した段階あるいは許容範囲内でほ ぼ一致した段階で、 曲率中心位置 0 F 2の は真の曲率中心位置 0 F 2として 光軸上に確定し、 曲率半径 RF 2の候補は真の曲率半径 RF 2として確定し、 ま た、 領域幅を規定する直線 1 F 2との交点の^ 点を P F 2との真の交点として 確定し、 遠用部曲面 F 2の候補を真の遠用部曲面 F 2として確定する。
以下、 同様な操作により他の曲率中心位置 OF 3、 Ορ4 - ·および 0Ν2、 O 3 * ·、 曲率半径 RF 3、 RF4 · 'および RN2、 RN3 · ·、 曲面 F 3、 F4 · ·および N2、 3 · ·を求める。
以上のようにして求めたコンタクトレンズ 1の特性を図 1および図 3に示す。 図 1に示すように、 遠用部の曲率中心位 SO F i、 Ορ2 ' ,および近用部の曲 率中心位置 ON 1、 0N2 - ·は、 全て光軸上に存在する。
また、 図 3に模式的に示すように、 フロントカーブ 2の各々の遠用部曲面 F 1、 F2 · ·に ^する光軸に平行な^ Iカヾ光軸上の単一の遠用部焦点 FFにほぼ結 像し、 フロントカーブ 2の各々の近用部曲面 Ν1、 Ν2 · ·に入射する光軸に平 行な光線は光軸上の単一の近用部焦点 F Νにほぼ結像する。
以上説明したように、 本発明によれば、 各々の遠用部曲面 Fl、 F2 · ·にお 、て各曲面の曲率半径を全て等しくするという厳しい前提あるいは制限をなく し、 各々の遠用部曲面 Fl、 F 2 · ·の曲率中心位置 OF 1、 〇F2 · ·力光軸上に あるようにしたので、 光 ϋίΐϋ跡法によりレンズ設計する上で高い自由度を確保す ることができ、 各々の遠用部の球面収差をなくすることができる。 同様に、 各々の近用部についても、 近用部曲面 N l、 N 2 · 'において各曲面 の曲率半径を全て等しくするという厳しい前提あるいは制限をなく し、 各々の曲 率中心位置 O N 1、 O N 2 · 'が光軸上にあるようにしたので、 光 ^ii跡法によ りレンズ設計する上で高い自由度を確保することができ、 各々の遠用部の球面収 差をなくすることができる。
これらの結果、 装用者は、 遠用部、 近用部ともに、 明瞭な視力を得ることがで さる。
また、 所 光線の選 法として、 遠用部曲面 F 1、 F 2 · ·および近用部 曲面 N l、 N 2 · ·の全ての曲面に対して、 各々の曲面の領域幅における所定位 置、 例えば中心位置を通る光軸に平行な を選択することにより、 遠用部曲面 F 1と近用部曲面 N 1に対する場合も他の遠用部曲面 F 2, F 3 · ·と近用部曲 面 N 2 , N 3 · ·に対する場合と同等に球面 iK^を削減することができる。 また、 遠用部曲面 F 1と近用部曲面 N 1に球面収差が残存した場合にでも、 残存する球 面収差の分布を他の遠用部曲面 F 2 , F 3 · ·と近用部曲面 N 2 , N 3 · ·に残 存する球面^の分布と同様にすることができ、 各々の曲面が、 例えばガウス分 布の球面収差を有するというように、 遠用部焦点あるいは近用部焦点の回りに統 —的な球面収差分布を有するようにすることができる。
また、 所 ^光線の選択方法として、 光軸を含む遠用部曲面 F 1または光軸を 含む近用部曲面 1に対しては光軸に一致する^!を選択し、 これらの曲面以外の 遠用部曲面 F 2、 F 3 · ·と近用部曲面 N 2、 N 3 · ·に対しては各々の曲面の 領域幅における所定位置、 例えば中心位置を通る^を選択することにより、 複 雑な 跡を遠用部曲面 F 1と近用部曲面 N 1に対しては省くことができ、 設 計の簡易ィ匕を図ることができる。
また、 図 1より認められるように、 フロントカーブ 2の各々の遠用部曲面 F 1、 F 2 · ·は、 光軸から離れた遠用部曲面ほど大きな曲率半径を有し、 かつフロン トカーブ 2からより遠方に位置する曲率中心位置 O F 1、 O p 2 * ·を有する。 また、 フロントカーブ 2の各々の近用部曲面 N l、 N 2 · 'は、 光軸から離れた 近用部曲面ほど大きな曲率半径を有し、 かつフロントカーブ 2からより遠方に位 置する曲率中心位置 O N 1、 0 N 2 * ·を有する。
なお、前述したように、 図 1乃至図 3に示したコンタクトレンズ 1は、 遠用部、 近用部の各曲面 F l、 F 2 · ·および N l、 N 2 · 'の領域幅が広い場合であつ て、 ベースカーブ 3との関係で遠用部がプラスレンズとして形成され、 ベース力 ーブ 3との関係で近用部もまたプラスレンズとして形成された場合を示した。 し力、し、 本発明はこれに限らず、 以下のような遠用部と近用部とにおいてブラ スレンズとマエナスレンズとの他の組み合わせの場合についても同様に球面収差 をなくすることができる。
また、 以下のような遠用部と近用部とにおいてプラスレンズとマエナスレンズ との他の組み合わせの場合において、 以下のような特性傾向を有する。
遠用部、 近用部の各曲面の領域幅が広い場合にあっては、
遠用部がマイナスレンズで近用部がプラスレンズの場合、 または遠用部、 近用 部ともにマイナスレンズの場合でも同様に、 各遠用部曲面および各近用部曲面の 球面収差をなくすることができる。
ただし、 遠用部がマイナスレンズで近用部がプラスレンズのときは、 フロント カーブ 2の各遠用部曲面 F 1、 F 2 · ·は、 光軸から離れた遠用部曲面ほど曲率 半径は小さくなり、 かつ曲率中心位置 O p 1、 O p 2 * 'はフロントカーブ 2力、 らより近方に位置する。 また、 フロントカーブの各近用部曲面 Ν 1、 Ν 2 · ·は、 光軸から離れた近用曲面ほど曲率半径は大きくなり、 かつ曲率中心位置 0 Ν ι、 〇Ν 2 · ·は、 フロントカーブ 2からより遠方に位置する。
また、 遠用部と近用部ともマイナスレンズのときは、 フロントカーブの各遠用 部曲面 F 1、 F 2 · ·は、 光軸から離れた遠用部曲面ほど曲率半径は小さくなり、 かつ曲率中心位置 O F 1、 Op 2 * ·は、 フロントカーブ 2からより近方に位置 する。 また、 フロン卜カーブの各近用部曲面 Nl、 N2 · 'は、 光軸から離れた 近用曲面ほど曲率半径は小さくなり、 かつ曲率中心位置 ON 1、 0 2 · ·は、 光軸上かつフロントカーブ 2からより近方に位置する。
一方、 遠用部、 近用部の各曲面の領域幅が狭い場合にあっては、
遠用部と近用部ともプラスレンズの場合は、 フロントカーブ 2の各遠用部曲面 Fl、 F2 · ·は、 光軸から離れた遠用曲面でも曲率半径は略等しいが、 曲率中 心位置 O F 1、 0F 2 ' ·は、 フロントカーブ 2からより遠方に位置する。 また、 フロントカーブの各近用部曲面 Nl、 N2 · ·は、 光軸から離れた近用曲面ほど 曲率半径は大きくなり、 かつ曲率中心位置 ΟΝ Ι、 0Ν2 · ·は、 光軸上かつフ ロントカーブ 2からより遠方に位置する。
また、 遠用部がマイナスレンズで近用部がブラスレンズの場合、 フロントカー ブ 2の各遠用部曲面 Fl、 F2 · ·は、 光軸から離れた遠用部曲面でも曲率半径 は小さくなり、 曲率中心位置 0 F 1、 Op 2 · ·は、 光軸上かつフロントカーブ 2からより遠方およびより近方位置を繰り返す。 また、 フロントカーブ 2の各近 用部曲面 Nl、 N2 · ·は、 光軸から離れた近用部曲面でも曲率半径は略等しい が、 曲率中心位置 ON 1、 〇N2 · ·は、 フロントカーブ 2からより遠方に位置 する。
次に、 以下に具体的な数値を運用して、 本発明と従来設計との球面収差の改善 比較例を示す。
ここで用いたコンタク トレンズ 1は含水性のソフトコンタク トレンズであり、 含水状態のベースカーブ 3の曲率半径は 8. Ommである。 また、 遠用部、 近用 部の各領域幅は、 図 9に示したように遠用部の各領域幅は等しく、 各々 0. 5 mmであり、 近用部の各領域幅も等しく、 それぞれ 1. 0mmである。 この場合、 光学領域内の面積比は遠用部で 60%、 近用部で 40%である。 また、 以下に比絞結果を示す表においては、 コンタクトレンズ 1の中心から外 方に向かって遠用第 1ゾーン、 近用第 1ゾーン、 遠用第 2ゾーン、 近用第 2ゾー ン * ·の順に第 1ゾーン、 第 2ゾーン、 第 3ゾーン、 第 4ゾーン ' ·という表示 で示されている。 従って、 各々の表において第 1ゾーンは、 遠用部曲面 F 1とべ ースカーブ 3とからなる遠用第 1ゾーンを示し、 第 2ゾーンは近用部曲面 N 1と ベースカーブ 3とからなる近用第 1ゾーンを示し、 第 3ゾーンは遠用部曲面 F 2 とベースカーブ 3とからなる遠用第 2ゾーンを示し、 第 4ゾーンは近用部曲面 N 2とベースカーブ 3とからなる近用第 2ゾーンを示す。 また、 第 1ゾーン、 第 2ゾーン、 第 3ゾーン、 第 4ゾーン · ·に対応する曲面の曲率半径、 X座標およ び Y座標は、各々曲面 F 1、 N 1、 F 2、 N 2 · ·の曲率半径と、 各々曲面 F 1、 N 1、 F 2、 N 2 · ·の曲率中心位置 0 F l、 〇N 1、 〇F 2、 0 Ν 2 · ·の X座標および Υ座標を示す。
また、 本発明による設計と従来設計による球面収差の改善量を球面収差改善量 として示す。 ここでは、 球面収差改善量として、 例として第 5ゾーン (F 3 ) に おける球面収差の差として示してある。
まず、 図 9を参照し実施例 1乃至実施例 8を表 1乃至表 8にしめす。
1 ) 例 1
遠用度数が + 3. 0 0 D (ディォプトリー) 、 近用の加入度数が + 2 0 0 D' 遠用部および近用部の領域幅は 1 mmのとき、 比較結果を表 1に示す。
Figure imgf000037_0001
表 1からわかるように、 遠用部では曲率半径は単調に増加、 Z座標は単調に增 加している。 一方、 近用部では曲率半径は単調に増加、 z座標も単調に増加して いる。 また、 X座標は遠用部と近用部ともにすべて零である。 本発明により、 球 面収差は 0. 3 6 D改善された。
(2) 例 2
遠用度数が— 3. 0 0 D (ディオプトリー) 、 近用の加入度数が + 4, 00D, 遠用部および近用部の領域幅は 1 mmのとき、 比較結果を表 2に示す。
表 2
Figure imgf000038_0001
o o
表 からわかるように、 遠用部では曲率半径は単調に減少、 CD
2 Z座檁は単調に減 少している。 一方、 近用部では曲率半径は単調に増加、 Z座標も単調に増加して いる。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明によ り球面 は 0. 6 9 D改善された。
(3) 例 3
遠用度数が一 3. 00 D (ディォプトリー) 、 近用の加入度数が + 2. 00 D、 遠用部および近用部の領域幅は 1 mmのとき、比較結果を表 3に示す。
表 3
Figure imgf000039_0001
表 4からわかるように、 遠用部では曲^^径は単調に増加、 Z座標も単調に増 加している。 一方、 近用部では曲率半径は単調に増加、 Z座標も単調に増加して いる。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明によ り球面 は 0. 6 4 D改善された。
( 5 ) 例 5
遠用度数が— 5 . 0 0 D (ディオプトリ―) 、 近用の加入度数が + 2 . 0 0 D、 遠用部および近用部の領域幅は 1 mmのとき、 比較結果を表 5に示す。
表 5
Figure imgf000040_0001
表 5からわかるように、 遠用部では曲率半径は単調に減少、 Z座標も単調に減 少している。 一方、 近用部では曲率半径は略等しく、 Z座標は単調に減少してい る。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明により 球面収差は 0. 5 3 D改善された。 (6) 例 6
遠用度数が + 3. 00 D (ディォプトリー) 、 近用の加入度数が + 2. 00 D. 遠用部および近用部の領域幅は 0. 5 mmのとき、 比較結果を表 6に示す。
表 6
Figure imgf000041_0001
表 6からわかるように、 遠用部では曲率半径は略等しく、 Z座標は単調に増加 している。 一方、 近用部では曲率半径は単調に増加、 Z座標も単調に増加してい る。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明により 球面収差は 0. 02D改善された。
(7) 例 7
遠用度数が一 3. 00D (ディオプトリー) 、 近用の加入度数が +4. 00D 遠用部および近用部の領域幅は 0. 5mmのとき、 比較結果を表 7に示す。
表 Ί
Figure imgf000041_0002
表 7からわかるように、 遠用部では曲率半径は単調に減少、 Z座標は一旦增加 した後、 減少を繰り返している。 一方、 近用部では曲率半径は略等しく、 Z座標 は単調に増加している。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明により球面^は 0. 0 5 D改善された。
( 8 ) 例 8 遠用度数が一 3. 0 0 D (ディオプトリー) 、 近用の加入度数が + 2 , 0 0 D 一—、' '
遠用部および近用部の領域幅は 0. 5 mmのとき、 比 果を表 8に示す。
表 8 本 発 明 従来設計
曲率半径 X座標 Z座標 曲率半径 X座標 Z座標 (mm) (mm) (mm) mm) gnn (mm) 第 1ゾーン
2
3
4
5
球面収差改善量 0. 05 D 表 8からわかるように、 遠用部では曲率半径は単調に減少、 Z座檁は一旦增加 した後、 減少を繰り返している。 一方、 近用部では曲^ ¥径は略等しく、 z座標 は単調に増加している。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 球面収差は本発明により球面収差は 0. 0 5 D改善された。
例 1乃至例 8に示したように、 遠用部と近用部ともに領域幅が略等し 、場合の 球面収差は、 本発明のほう力く従来設計に対して光学領域全体で有意に改善される。 特に遠用部、 近用部の領域幅が広い場合、 遠用度数の絶対値が大きい場合に、 球 面収差の改善カ大きい。 また、 ここでは球面 JK¾改善量を第 5ゾーンのみを一例 として示した力く、 従来設計の第 2ゾーン のすベてのゾーンで同様の球面収差 は生じるが、 本発明によれば、 同様に改善することができる。 また、上述した実施例には遠用部と近用部ともに領域幅が略等し ^、場合につ L、 て示したが、 各々の異なつた遠用部と近用部の領域幅を用いてもよい。
以下に図 10乃至図 18を参照し、 具体的な数値を運用して本発明と従来設計 との球面収差の改善比較例を示す。
ここで用いたコンタク トレンズ 1は含水性のソフトコンタク 卜レンズであり、 含水状態のベースカーブ 3は 8. Omm、遠用度数は +3. 00D (ディオプト リー) 、 近用の加入度数が +2. 00Dである。 なお、 コンタクトレンズ 1の中 心から外方に遠用第 1ゾーン、 近用第 1ゾーン、 遠用第 2ゾーン、 近用第 2ゾー ン · 'の順に第 1ゾーン、 第 2ゾーン ' ·とし、 各曲面は F 1、 N 1、 F 2、 N2 · ·の順に、 各曲率中心位置は OF 1、 〇N I、 〇F2、 〇Ν2 · ·の順に 推移する。 なお、 本発明と従来設計による球面収差の改善量を第 5ゾ一ン (F3) の球面 Φ¾の差として示す。
次に、 以下に図 10乃至図 18を参照し、 実施例 9乃至実施例 17を表 9乃至 表 17に示す。
(9) 例 9 (図 10参照)
遠用第 1ゾーン幅 0. 50mm 近用第 1ゾーン幅 0. 50mm
L
遠用第 2ゾーン幅 L OO C 10. 75mm 近用第 2ゾーン幅 1. 00mm 遠用第 3ゾーン幅 1. 00mm
光学領域内の面積比 (遠用部D O:近用部) 62 : 38
O
表 9
Figure imgf000044_0001
表 9からわかるように、 遠用部では曲率半径は単調に増加、 Z座標も単調に增 加している。 一方、 近用部では曲率半径は単調に增加、 Z座標も単調に増加して いる。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明によ り球面 は 0. 14 D改善された。 (10)例 10 (図 11参照)
遠用第 1ゾーン幅 0. 50mm 近用第 1ゾーン幅 0. 75mm 遠用第 2ゾーン幅 0. 75mm 近用第 2ゾーン幅 0. 75mm 遠用第 3ゾーン幅 1. 00mm
光学領域内の面積比 (遠用部:近用部) 65 : 35
表 10
Figure imgf000045_0001
表 10からわかるように、 遠用部では曲率半径は単調に増加、 Z座標も単調に 增加している。 一方、 近用部では曲率半径は単調に増加、 Z座標も単調に増加し ている。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明に より球面収差は 0. 14 D改善された。
(1 1) 例 1 1 (図 12参照)
遠用第 1ゾーン幅 0. 50 mm 近用第 1ゾーン幅 1. 00 mm 遠用第 2ゾーン幅 0. 75mm 近用第 2ゾーン幅 0. 50mm 遠用第 3ゾーン幅 1. 00mm
光学領域内の面積比 (遠用部:近用部) 68 : 32
表 11
Figure imgf000046_0001
表 1 1からわかるように、 遠用部では曲率半径は単調に增加、 Z座標も単調に 增加している。 一方、 近用部では曲率半径は単調に増加、 z座標も単調に増加し ている。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明に より球面収差は 0. 14 D改善された。
(12) 例 12 (図 13参照)
遠用第 1ゾーン幅 0. 75mm 近用第 1ゾーン幅 0. 50mm 遠用第 2ゾーン幅 0. 75mm 近用第 2ゾーン幅 1. 00mm 遠用第 3ゾーン幅 0. 75mm
光学領域内の面積比 (遠用部:近用部) 58 : 42
表 12
Figure imgf000047_0001
表 12からわかるように、 遠用部では曲率半径は単調に增加、 Z座標も単調に 増加している。 一方、 近用部では曲率半径は単調に増加、 Z座標も単調に増加し ている。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明に より球面収差は 0. 13D改善された。
(13) 例 13 (図 14参照)
遠用第 1ゾーン幅 0. 75mm 近用第 1ゾーン幅 0. 75mm 遠用第 2ゾーン幅 0. 75mm 近用第 2ゾーン幅 0. 75mm 遠用第 3ゾーン幅 0. 75 mm
光学領域内の面積比 (遠用部:近用部) 60 : 40
表 13
Figure imgf000048_0001
表 13からわかるように、 遠用部では曲率半径は単調に増加、 Z座標も単調に 增加している。 一方、 近用部では曲率半径は単調に増加、 Z座標も単調に増加し ている。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明に より球面収差は 0. 12D改善された。
(14)例 14 (図 15参照)
遠用第 1ゾーン幅 0. 75 mm 近用第 1ゾーン幅 00mm 遠用第 2ゾーン幅 0. 75mm 近用第 2ゾーン幅 0 D 0mm 遠用第 3ゾーン幅 0. 75mm
光学領域内の面積比 (遠用部:近用部) 63 : 37
表 14
Figure imgf000049_0001
表 14からわかるように、 遠用部では曲率半径は単調に増加、 Z座標も単調に 増加している。 一方、 近用部では曲率半径は単調に増加、 Z座標も単調に増加し ている。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明に より球面収差は 0. 12D改善された。
/0046
48
(15) 例 15 (図 16参照)
遠用第 1ゾーン幅 1. 00 mm 近用第 1ゾ一ン幅 0, 50 mm 遠用第 2ゾーン幅 0. 75mm 近用第 2ゾーン幅 1. 00 mm 遠用第 3ゾーン幅 0. 50mm
光学領域内の面積比 (遠用部:近用部) 52 : 48
表 15
Figure imgf000050_0001
表 15からわかるように、 遠用部では曲率半径は単調に增加、 Z座標も単— 調に
LT C— 增加している。 一方、近用部では曲率半径は単調に増加、 Z座標も単調に増加し ている。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明に より球面収差は 0. 07 D改善された。
(16) 例 16 (図 17参照)
遠用第 1ゾーン幅 1. 00mm 近用第 1ゾーン幅 0. 75 mm 遠用第 2ゾーン幅 0. 75mm 近用第 2ゾーン幅 0. 75 mm 遠用第 3ゾーン幅 0. 50 mm
光学領域内の面積比 (遠用部:近用部) 55 : 45
表 16
Figure imgf000051_0001
表 16からわかるように、 遠用部では曲率半径は単調に増加、 Z座標も単調に 增加している。 一方、 近用部では曲率半径は単調に増加、 Z座標も単調に増加し ている。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明に より球面収差は 0. 07 D改善された。
(17) 例 17 (図 18参照)
遠用第 1ゾーン幅 1. 00mm 近用第 1ゾーン幅 1 00mm 遠用第 2ゾーン幅 0. 75mm 近用第 2ゾーン幅 0 00 mm 遠用第 3ゾーン幅 0. 50mm
光学領域内の面積比 (遠用部:近用部) 58 : 42
表 1 Ί
Figure imgf000052_0001
表 17からわかるように、 遠用部では曲率半径は単調に増加、 Z座標も単調に 增加している。 一方、 近用部では曲率半径は単調に増加、 Z座檁も単調に増加し ている。 また、 X座標は遠用部と近用部ともにすべて零である。 なお、 本発明に より球面収差は 0. 07 D改善された。
図 10乃至図 18を参照し、 例 9乃至例 17に示したように、 遠用部と近用部 ともに領域幅が異なつている場合でも、 本発明のほうが従来設計に対して光学領 域全体で有意に球面 が改善される。
さらに、 光学領域内の遠用部と近用部の面 «fitを自由に変えることができるの で、 近用部のエネルギー比の大きいコンタクトレンズを装用することにより、 読 書やデスクワークの時により近くが見やすくするようにできる。 また、 上述した実施例には遠用部、 近用部ともにプラスレンズについて示した 力く、 遠用部がマイナスレンズ、 近用部がプラスレンズのときの曲率^と曲率中 心位置の変化は例 1乃至 8に示した通りである。
次に、 図 1 9および図 2 0を参照して本発明のコンタクトレンズの製造方法の
—実施例を説明する。
钦質な材質からなる研磨布を用いたコンタクトレンズの製造法については、 特 開平 2 - 8 3 1 5 3に開示されている。 本実施例は特開平 2 - 8 3 1 5 3に記載 のコンタクトレンズの製造方法を、 複数個の遠用部曲面と、 複数個の近用部曲面 とが同心帯上に^に操り返して形成されたフロントカーブ 2を備えるコンタク トレンズ 1に適用したものである。
図 1 9において、 钦質な材質からなる研磨布 1 0が回転テーブル 1 1上に取り 付けられている。 回転テーブル 1 1は研磨布回転中心軸 1 2の回りに回転し、 研 磨布 1 0は回転テーブル 1 1とともに回転する。 回転テーブル 1 1から突き出な いように下方にノズル 1 3を置く。 一方、 ノズル 1 3の上方は研磨布 1 0で ¾わ れている。 ノズル 1 3の上方には、 固定治具 1 4力配置されている。 この固定治 具 1 4は固定治具回転軸 1 5の回りに回転する。 また、 図 2 0に拡大して示すよ うに、 ¾1 中のコンタクトレンズ 1はベースカーブ 3に付着させた接着剤 1 6を 介して、 固定治具 1 4の底面に保持されている。
また、 圧縮空気 1 8カ^ ノズル 1 3の内部の下方から上方へ向かって流通して いる。 そして、 ノズル 1 3内部を流通する圧縮空気の流体圧力によって、 ノズル 1 3を覆う研磨布 1 0の部分は上方に吹き付けられ、 コンタクトレンズ 1のフロ ントカーブ 2には研磨布 1 0が圧接されるようになっている。 フロントカーブ 2 と研磨布 1 0の間に研磨剤として水または油に分散させた A 1 2 0 3の粉末を供 B ^る。
ここで研磨布 1 0として市販の研磨布に例えばポリゥレタンを裏打ちしたもの を用いている。
なお、 ノズル 13の内径をフロントカーブ 2の外径より大きく し、 フロント力 ーブ 2の周辺部の流体圧力が低くならないようにし、 フロントカーブ 2全体に均 —な圧接力を得られるようにしてある。
研磨布回転中心軸 12および固定治具回転軸 15が回転すると、 フロン卜カー ブ 2と研磨布 10とが相対運動し、 フロントカーブ 2力 <研磨される。
コンタクトレンズ 1を製造する他の工程は従来と同様に行う。
本実施例の構成によれば、 钦質な材質からなる研磨布 10を空気 18の圧力に よって圧接し、 フロントカーブ 2と研磨布 10とを相対運動させることによりフ ロントカーブを研磨するので、 研磨布 10をフロントカーブ 2の曲面形状に柔钦 に従わせることができ、 ¾する遠用部曲面 Fl、 F2 · ·、 近用部曲面 Nl、 N2 · ·を含めて均一に研磨することができる。
次に本発明によるコンタクトレンズを製造するための型についての 例を図 21乃至図 22を参照して説明する。
図 21において、 コンタクトレンズ成型用型 20はコンタクトレンズ 1のフロ ントカーブ 2に対応するフロントカーブ型面 22を有する。
フロントカーブ型面 22には、 コンタク トレンズ 1の遠用部曲面 F 1、 F2 - ·、 近用部曲面 Nl、 N2 · ·と凹凸の関係にある遠用部型曲面 F Γ 、 F2* • ·、 近用部型曲面 ΝΓ 、 N2' · ·が形成されている。 遠用部型曲面 F1' 、 F2' · ·、 近用部型曲面 ΝΓ 、 N2' · 'の形状は、 第 1実施例に示したの と同様に 跡法によって求められている。実際には、 まずコンタクトレンズ 1の遠用部曲面 Fl、 F2 · ·、 近用部曲面 Nl、 N2 · ·の形状を光線追跡法 によって求め、 次にこれらの曲面と凹凸の関係にある曲面を求めることによって 得られる。
なお、 図 21において、 遠用部型曲面 Fl' 、 F2' · ·、 近用部型曲面 ΝΓ 、 N2' · ·の数は数個のみ示したが、 実際には数個から 100個^まで任意 に設けられる。
次に、 図 22および 23に、 コンタクトレンズ成型用型 20を用いたコンタク トレンズを製造する方法を説明する。
図 22に示すように、 遠用部型曲面 FT 、 F2' · ·、 近用部型曲面 Ν 、 N2' · ·の形成されたフロントカーブ型面 22上に、 レンズ原料 24を載値す る。 次に図 23に示すように、 ベースカーブ 3と凹凸関係にあるベースカーブ型 面 23を有するベースカーブ型 25を、 フロントカーブ型面 22と所定の位置で 組み合わせる。 この状態で、 紫外線または熱を与え、 レンズ材料 24を重合させ る。 なお、 フロントカーブ型面 22とベースカーブ型面 23との間の隙間は所望 のコンタクトレンズの形状を形成するようになっている。
次に、 図 22および 24を参照して、 コンタクトレンズ 用型 20を用いた コンタクトレンズを製造する他の方法について説明する。
図 22に示すように、 遠用部型曲面 Fl' 、 F2' · ·、 近用部型曲面 ΝΓ 、 N2' · 'の形成されたフロントカーブ型面 22上にレンズ原料 24を載値し、 次に図 24に示すようにコンタクトレンズ成? ¾20を回転する。 ベースカーブ 3の形成は、 コンタクトレンズ成形用型 20の回転数を制御することによって行 われる。 なお、 による切肖 IJによってベースカーブを形成してもよい。
本実施例の構成によれば、 コンタクトレンズ成形用型 20のフロントカーブ型 面 22にコンタクトレンズ 1の遠用部曲面 F 1、 F2 · ·、 近用部曲面 Nl、 N2 · ·と凹凸関係にある遠用部型曲面 FT 、 F2' · ·、 近用部型曲面 ΝΓ 、 N2' · 'を形成したので、 コンタクトレンズ ^用型 20を用いることによ り遠用部および近用部の球面収差の除去されたコンタクトレンズを製造すること ができる。

Claims

請 求 の 範 囲
1. 遠方を見るための複数の遠用部曲面と近方を見るための複数の近用部曲 面とが光軸に対し同心帯状に交互に繰り返して形成されたレンズカーブを備える 多焦点コンタクトレンズにおいて、
前記レンズカーブの各々の遠用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な光線が光軸上の単一の逮用部焦 点にほぼ結像するように設定された曲率半径を有し、
前記レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の近用部曲面に入射する光軸に平行な光線が光軸上の単一の近用部焦 点にほぼ結像するように設定された曲率半径を有することを特徴とする多焦点コ ンタク 卜レンズ o
2. 遠方を見るための複数の遠用部曲面と近方を見るための複数の近用部曲 面とが光軸に対し同心帯状に交互に繰り返して形成されたレンズカーブを備える 多焦点コンタク トレンズにおいて、
前記レンズカーブの各々の遠用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な所 ¾i光線が光軸上の単一の遠 用部焦点をほぼ通過するように設定された曲率半径を有し、
前記レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位匮を有するとと もに、 各々の近用部曲面に入射する光軸に平行な所定主光線が光軸上の単一の近 用部焦点をほぼ通過するように設定された曲率半径を有することを特徴とする多 焦点コンタク卜レンズ O
3. 前 ^!として、 光軸を含む遠用部曲面または光軸を含む近用部 曲面を含む全ての遠用部曲面と近用部曲面に対して各々の曲面の領域幅における 所定位置を通る光線を選択したことを特徴とする蹐求項 2に記載の多焦点コンタ ク 卜レンズ o
4. 各々の曲面の領域幅の前記所定位置は、 各々の曲面の領域幅における中 心位置であることを特徴とする請求項 3に記載の多焦点コンタクトレンズ。
5. 前記所定主 ^として、 光軸を含む遠用部曲面または光軸を含む近用部 曲面に対しては光軸に一致する を選択し、 これらの曲面以外の遠用部曲面と 近用部曲面に対しては各々の曲面の領域幅における所定位置を通る^!を選択し たことを特徴とする請求項 2に記載の多焦点コンタクトレンズ。
6. 各々の前記遠用部曲面は互いにほぼ異なる値の曲率半径を有し、 各々の 前記近用部曲面は互いにほぼ異なる値の曲率半径を有することを特徴とする請求 項 1または請求項 2に記載の多焦点コンタクトレンズ。
7. 前記レンズカーブはフロントカープであることを特徴とする請求項 1ま たは請求項 2に記載の多焦 J¾コンタクトレンズ。
8. 各々の遠用部曲面の領域幅は各々の遠用部曲面の光軸からの距離に応じ て変化するとともに、各々の近用部曲面の領域幅は各々の近用部曲面の光軸から の距離に応じて変化することを特徴とする請求項 1または請求項 2に記載の多焦 点コンタク卜レンズ。
9. 各々の遠用部曲面の領域幅は各々の遠用部曲面の光軸からの距離に応じ て增加するとともに、 各々の近用部曲面の領域幅は各々の近用部曲面の光軸から の距離に応じて増加することを特徴とする請求項 1または請求項 2に記載の多焦 点コンタクトレンズ。
1 0. 各々の遠用部曲面の領域幅は各々の遠用部曲面の光軸からの距離に応 じて減少するとともに、 各々の近用部曲面の領域幅は各々の近用部曲面の光軸か らの距離に応じて減少することを特徴とする請求項 1または請求項 2に記載の多 コンタクトレンズ。
1 1. 各々の遠用部曲面の領域幅は各々の遠用部曲面の光軸からの距離に応 じて減少または増加するとともに、 各々の近用部曲面の領域幅は各々の近用部曲 面の光軸からの距離に応じて増加または減少することを特徽とする請求項 1また は請求項 2に記載の多焦点コンタク 卜レンズ。
1 2. 各々の遠用部曲面の領域幅は略等しいとともに、各々の近用部曲面の 領域幅は略等しいことを特徴とする請求項 1または請求項 2に記載の多焦点コン タク 卜レンズ 0
1 3. 前記遠用部曲面と近用部曲面とのエネルギー比を室内用、 室外用の用 途に応じた割合として配分したことを特徴する請求項 1または請求項 2に記載の 多焦点コンタクトレンズ。
1 4. 前記エネルギー比力く面穰比であることを特徴する請求項 1 3に記載の 多焦点コンタクトレンズ。
1 5. 前記エネルギー比が透過 比であることを特徽する請求項 1 3に記 載の多焦点コンタク トレンズ。
1 6. 遠方を見るための複数の遠用部曲面と近方を見るための複数の近用部 曲面とが光軸に対し同心帯状に に緣り返して形成されたレンズカーブを備え る多焦点コンタクトレンズの成形に用いられる成形型であって、
前記レンズカーブの各々の遠用部曲面は、光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な^力光軸上の単一の遠用部焦 点にほぼ結像するように された曲率半径を有し、
前記レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の近用部曲面に入射する光軸に平行な光線力光軸上の単一の近用部焦 点にほぼ結像するように設定された曲率^を有することを特徴とする多焦点コ ンタクトレンズの成形に用いられる成形型。
1 7. 遠方を見るための複数の遠用部曲面と近方を見るための の近用部 曲面とが光軸に対し同心帯状に交互に繰り返して形成されたレンズカープを備え る多焦点コンタクトレンズの成形に用いられる成形型であって、
前記レンズカーブの各々の遠用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な所定主光線が光軸上の単一の遠 用部焦点をほぼ通過するように設定された曲率半径を有し、
前記レンズ力一ブの各々の近用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の近用部曲面に入射する光軸に平行な所定主光線が光軸上の単一の近 用部焦点をほぼ通過するように設定された曲率半径を有することを特徴とする多 焦点コンタクトレンズの に用いられる成形型。
1 8. 遠方を見るための複数の遠用部曲面と近方を見るための複数の近用部 曲面とが光軸に対し同心帯状に交互に繰り返して形成されたレンズカーブを備え る多焦点コンタクトレンズの製造方法において、
光軸上に遠用部焦点と近用部焦点とを定め、
光軸により近い位置にある遠用部曲面または近用部曲面から光軸により離れた 位置にある近用部曲面または遠用部曲面へ向かって、 各々の近用部曲面または遠 用部曲面毎に順々に、
各々の曲面を規定する曲率中心位置と曲率半径の各々の^を前記曲率中心位 置^ iと前記曲率半径^ として設定するとともに、
前記曲率中心位置^ と前記曲^径^ iとを逐次変化させ光軸に平行な所定 主光線か H5記逮用部焦 または前 §SS用部焦点を通過するように 追跡して、 各々の前記曲面の前記曲率中心位置を光軸上に決定するとともに各々の前記曲面 の前記曲率半径を決定する、 ことを特徴とする多焦点コンタクトレンズの 方 法。
1 9. 光軸上に遠用部焦点と近用部焦点とを定め、
光軸を含む第 1遠用部曲面を規定する第 1遠用部曲率中心位置と第 1遠用部曲 率半径の各々の^ tを第 1遠用部曲率中心位置^ tと第 1遠用部曲率半径 と して設定し、
前記第 1遠用部曲率中心位置候補を中心に前記第 1遠用部曲率半径候補を半径 として描いた円と前記第 1遠用部曲面の領域幅を定める光軸に平行な第 1遠用部 との交点を求めて第 1遠用部曲面 を求め、
前記第 1遠用部曲率中心位置 と前記第 1遠用部曲率 候補とを逐次変化 させ前記第 1遠用部曲面^ iに入射する光軸に平行な所定主光線か ii記遠用部焦 点を通過するように !^して、 前記第 1遠用部曲率中心位置と前記第 1逮用 部曲率半径とを決定し、
決定した前記第 1遠用部曲率中心位置を中心に前記第 1遠用部曲率半径を半径 として描いた円弧と前記第 1遠用部 との^を第 1遠用部交点として求める とともに前記レンズカーブの頂点から前記第 1遠用部^に至る曲面を前言 1 遠用部曲面として決定し、
次に、 前記第 1遠用部曲面の外側に隣接する第 1近用部曲面を規定する第 1近 用部曲率半径の候補として第 1近用部曲 ^径^ iを設定し、 前記第 1遠用部交 点を中心に前記第 1近用部曲率半径^ を半径として描 t、た円弧と光軸との交点 を第 1近用部曲率中心位置^ として求め、
前記第 1近用部曲率中心位置候補を中心に前記第 1近用部曲率半径候補を半径 として描 L、た円弧と前記第 1近用部曲面の領域幅を定める光軸に平行な第 1近用 部直線との^を求めて第 1近用部曲面^ iを求め、
前記第 1近用部曲率中心位置候補と前記第 1近用部曲率半径 を逐次変化さ せ前記第 1近用部曲面候補に入射する光軸に平行な所定主光線か 言 Ξ¾用部焦点 を通過するように舰追跡して、 前記第 1近用部曲率中心位置と前言 em 1近用部 曲率半径とを决定し、
決定した前記第 1近用部曲率中心位 を中心に前記第 1近用部曲率半径を半径 として描いた円弧と前記第 1近用部 H Sとの^を第 1近用部^として求める とともに前記第 1遠用部^から前記第 1近用部^に至る曲面を前記第 1近用 部曲面として決定し、
次に、 前記第 1近用部曲面の外側に隣接する第 2遠用部曲面を規定する第 2遠 用部曲率半径の^ fとして第 2遠用部曲率半径候捕を設定し、 前記第 1近用部交 点を中心に前記第 2遠用部曲率半径^を半径として描 1た円弧と光軸との交点 を第 2遠用部曲率中心位置候補として求め、
前記第 2遠用部曲率中心位置候補を中心に前記第 2遠用部曲率半径候捕を半径 として描 t、た円弧と前記第 2遠用部曲面の領域幅を定める光軸に平行な第 2遠用 部直線との交 を求めて第 2遠用部曲面^ iを求め、
前記第 2遠用部曲率中心位匿候捕と前記第 2遠用部曲率半径候補を逐次変化さ せ前記第 2遠用部曲面^ tに入射する光軸に平行な所 ^ Iが前 S¾用部焦点 を通過するように^!跡して、 前記第 2遠用部曲率中心位置と前記第 2遠用部 曲率半径とを決定し、
決定した前記第 2遠用部曲率中心位置を中心に前記第 2遠用部曲率半径を半径 として描いた円弧と前記第 2遠用部 E との交 を第 2遠用部交点として求める とともに前記第 1近用部^から前記第 2遠用部交点に至る曲面を前記第 2遠用 部曲面として決定し、
次に、 前 B 2遠用部曲面の外側に隣接する第 2近用部曲面を規定する第 2近 用部曲率半径の^ として第 2近用部曲率半径^ ffiを設定し、 前記第 2遠用部交 点を中心に前記第 2近用部曲率半径^ tを半径として描 L、た円弧と光軸との交点 を第 2近用部曲率中心位置^ fとして求め、
前記第 2近用部曲率中心位置候補を中心に前記第 2近用部曲率半径候補を半径 として描いた円弧と前記第 2近用部曲面の領域幅を定める光軸に平行な第 2近用 部直線との^を求めて第 2近用部曲面^ tを求め、
前記第 2近用部曲率中心位置贿と前記第 2近用部曲幹径^ iを逐次変化さ せ前記第 2近用部曲面候捕に入射する光軸に ¥ίϊな所 力、'前 S5用部焦点 を通過するように 跡して、 前記第 2近用部曲率中心位置と前記第 2近用部 曲率半径とを決定し、
決定した前記第 2近用部曲率中心位置を中心に前記第 2近用部曲率半径を半径 として描いた円弧と前記第 2近用部直線との^を第 2近用部交点として求める とともに前記第 2遠用部 から前記第 2近用部交点に至る曲面を前記第 2近用 部曲面として決定する、 ことを特徴とする請求項 1 8に記載の多焦点コンタクト レンズの製造方法。
2 0. 光軸上に遠用部焦点と近用部焦点とを定め、
光軸を含む第 1近用部曲面を規定する第 1近用部曲率中心位置と第 1近用部曲 率半径の各々の候補を第 1近遠用部曲率中心位置候補と第 1近用部曲率半径漏 として設定し、
前記第 1近用部曲率中心位置候補を中心に前記第 1近用部曲率半径候補を半径 として描いた円弧と前記第 1近用部曲面の領域幅を定める光軸に平行な第 1近用 部直線との交点を求めて第 1近用部曲面候補を求め、
前記第 1近用部曲率中心位置候捕と前記第 1近用部曲率半径 Mとを逐 化 させ前記第 1近用部曲面^ ϋに入射する光軸に平行な所定主 が前記近用部焦 点を通過するように して、 前記第 1近用部曲率中心位置と前記第 1近用 部曲率半径とを決定し、
決定した前記第 1近用部曲率中心位置を中心に前記第 1近用部曲率半径を半径 として描いた円と前言 am 1近用部 との交点を第 1近用部^として求めると ともに前記レンズカーブの頂点から前記第 1近用部交点に至る曲面を前記第 1近 用部曲面として決定し、
次に、 前記第 1近用部曲面の外側に隣接する第 1逮用部曲面を規定する第 1逮 用部曲率半径の として第 1遠用部曲畔^ iを!^し、前記第 1近用部交 点を中心に前記第 1遠用部曲率半径候捕を半径として描いた円弧と光軸との交点 を第 1遠用部曲率中心位置 として求め、
前記第 1遠用部曲率中心位置候補を中心に前記第 1遠用部曲率半径候補を半径 として描いた円弧と前記第 1遠用部曲面の領域幅を定める光軸に平行な第 1遠用 部直線との交点を求めて第 1遠用部曲面候補を求め、
前記第 1遠用部曲率中心位置^ iと前記第 1遠用部曲率半径^ iを逐次変化さ せ前記第 1遠用部曲面候補に入射する光軸に平行な所 が前 §a¾用部焦点 を通過するように^ l t跡して、 前記第 1遠用部曲率中心位置と前記第 1遠用部 曲率半径とを決定し、
決定した前記第 1遠用部曲率中心位置を中心に前記第 1遠用部曲率半径を半径 として描、た円弧と前記第 1遠用部直線との交 を第 1遠用部交点として求める とともに前記第 1近用部^から前記第 1遠用部交点に至る曲面を前記第 1遠用 部曲面として決定し、
次に、前記第 1遠用部曲面の外側に隣接する第 2近用部曲面を規定する第 2近 用部曲畔径の^ として第 2近用部曲率半径候捕を設定し、 前記第 1遠用部交 点を中心に前記第 2近用部曲率半径 を半径として描いた円弧と光軸との交点 を第 2近用部曲率中心位置 として求め、
前記第 2近用部曲率中心位置候補を中心に前記第 2近用部曲率半径候捕を半径 として描いた円弧と前記第 2近用部曲面の領域幅を定める^ Ιώに平行な第 2近用 部直線との^を求めて第 2近用部曲面^ iを求め、
前記第 2近用部曲率中心位置^ «と前記第 2近用部曲率 を逐次変化さ せ前記第 2近用部曲面^ fに Λ ίする光軸に ¥ίϊな所 が前言 ffiS用部焦点 を通過するように 跡して、 前記第 2近用部曲率中心位置と前記第 2近用部 曲^径とを決定し、
決定した前記第 2近用部曲率中心位 を中心に前記第 2近用部曲率半径を半 として描いた円弧と前記第 2近用部直線との交点を第 2近用部交点として求める とともに前記第 1遠用部^から前記第 2近用部交点に至る曲面を前記第 2近用 部曲面として決定し、
次に、 前記第 2近用部曲面の外側に隣接する第 2遠用部曲面を規定する第 2遠 用部曲率半径の^ tとして第 2遠用部曲率半径候補を設定し、 前記第 2近用部交 点を中心に前記第 2遠用部曲率半径候補を半径として描いた円弧と光軸との交点 を第 2遠用部曲率中心位置候補として求め、
前記第 2遠用部曲率中心位置^ iを中心に前記第 2遠用部曲率半径候補を半径 として描 tヽた円弧と前記第 2遠用部曲面の領域幅を定める光軸に平行な第 2遠用 部直線との交点を求めて第 2遠用部曲面候補を求め、
前記第 2遠用部曲率中心位置候補と前記第 2遠用部曲率半径^ iを逐次変化さ せ前記第 2遠用部曲面候補に入射する光軸に平行な所定主光線が前記遠用部焦点 を通過するように^ ϋ跡して、 前記第 2遠用部曲率中心位置と前言 em 2遠用部 曲率半径とを決定し、
決定した前記第 2遠用部曲率中心位置を中心に前記第 2遠用部曲率半径を半径 として描いた円弧と前記第 2遠用部直線との交 を第 2遠用部交点として求める とともに前記第 2近用部 から前記第 2遠用部交点に至る曲面を前記第 2遠用 部曲面として決定する、 ことを特徴とする請求項 1 8に記載の多焦点コンタクト レンズの製造方法。
2 1. 前記所定主光線として、光軸を含む遠用部曲面または光軸を含む近用 部曲面を含む全ての遠用部曲面と近用部曲面に対して各々の曲面の領域幅の所定 位置を通る を選択したことを特徴とする請求項 1 8に記載の多 コンタク トレンズの製造方法。
2 2. 各々の曲面の領域幅の前記所定位置は、 各々の曲面の領域幅の中心位 置であることを特徴とする請求項 2 1に記載の多焦点コンタクトレンズの製造方 法。
2 3. 前記所定主光線として、 光軸を含む遠用部曲面のたは光軸を含む近用 部曲面に対しては光軸に一致する^を選択し、 これらの曲面以外の遠用部曲面 と近用部曲面に対しては各々の曲面の領域幅における所定位置を通る^を選択 したことを特徴とする請求項 1 8に記載の多焦点コンタクトレンズの製造方法。
2 4. 各々の前 ^用部曲面は互いにほぼ異なる値の曲率半径を有し、 各々 の前記近用部曲面は互いにほぼ異なる値の曲^径を有することを特徴とする請 求項 1 8に記載の多焦点コンタクトレンズの製造方法。
2 5. 前記レンズカーブはフロントカーブであることを特徽とする請求項 1 8に記載の多焦点コンタクトレンズの製造方法。
2 6. 遠方を見るための複数の遠用部曲面と近方を見るための^^の近用部 曲面とが同心帯状に^!:に繰り返して形成されたレンズカーブを備える多^^コ ンタクトレンズを製造する方法において、
前記多焦点コンタクトレンズは、
前記レンズカーブの各々の遠用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な光線力光軸上の単一の遠用部焦 点にほぼ結像するように! ^された曲率半径を有し、
前記レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の近用部曲面に入射する光軸に平行な光線が光軸上の単一の近用部焦 点にほぼ結像するように設定された曲率半径を有する多焦点コンタクトレンズで あり、
钦 ®な材質からなる研磨布を流体圧力によって圧接し、 フロントカーブと研磨 布とを相対 i!Siさせることにより、 フロントカーブを研磨することを特徴とする 多焦点コンタクトレンズの製造方法。
2 7. 遠方を見るための複数の遠用部曲面と近方を見るための^:の近用部 曲面とが光軸に対し同心蒂伏に交互に繰り返して形成されたレンズカーブを備え る多焦点コンタクトレンズにおいて、
前記多焦点コンタクトレンズは、
前記レンズ力一ブの各々の遠用部曲面は、 光軸上に曲率中心位置を有するとと もに、 各々の遠用部曲面に入射する光軸に平行な所定主光線が光軸上の単一の遠 用部焦点をほぼ通過するように設定された曲率半径を有し、
前記レンズカーブの各々の近用部曲面は、 光軸上に曲率中心位 fiを有するとと もに、 各々の近用部曲面に入射する光軸に平行な所定主光線が光軸上の単一の近 用部焦点をほぼ通過するように設定された曲率半径を有する多焦点コンタク卜レ ンズであり、
钦質な材質からなる研磨布を流体圧力によって圧接し、 フロントカーブと研 磨布とを相対運動させることにより、 フロントカーブを研磨することを特徵と する多焦点コンタクトレンズの製^法。
PCT/JP1997/000436 1996-02-21 1997-02-19 Verres de contact a foyer progressif WO1997031285A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97904568A EP0822439A4 (en) 1996-02-21 1997-02-19 MULTIFOCALE CONTACT LENS
US08/945,073 US6007201A (en) 1996-02-21 1997-02-19 Multifocal contact lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3412896 1996-02-21
JP8/34128 1996-02-21

Publications (1)

Publication Number Publication Date
WO1997031285A1 true WO1997031285A1 (fr) 1997-08-28

Family

ID=12405604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000436 WO1997031285A1 (fr) 1996-02-21 1997-02-19 Verres de contact a foyer progressif

Country Status (3)

Country Link
US (1) US6007201A (ja)
EP (1) EP0822439A4 (ja)
WO (1) WO1997031285A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2326950A (en) * 1997-05-23 1999-01-06 Aspect Vision Care Ltd Decentred multifocal contact lenses
GB2616709A (en) * 2022-01-19 2023-09-20 Coopervision Int Ltd Contact lenses and methods relating thereto

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW532488U (en) * 1998-02-11 2003-05-11 Euro Lens Technology S P A A progressive multifocal contact lens suitable for compensating presbyopia
US6280435B1 (en) * 1998-03-04 2001-08-28 Visx, Incorporated Method and systems for laser treatment of presbyopia using offset imaging
US6511178B1 (en) * 1999-07-19 2003-01-28 Johnson & Johnson Vision Care, Inc. Multifocal ophthalmic lenses and processes for their production
ATE368236T1 (de) * 1999-09-03 2007-08-15 Carle John Trevor De Bifokallinsen
US7044597B2 (en) 2003-12-16 2006-05-16 Bausch & Lomb Incorporated Multifocal contact lens and method of manufacture thereof
BRPI0511299A (pt) 2004-05-21 2007-12-04 Pressco Tech Inc interface de preparação de usuário para re-inspeção gráfica
US7322695B2 (en) * 2006-03-27 2008-01-29 Johnson & Johnson Vision Care, Inc. Multifocal contact lenses
US7503652B2 (en) * 2006-06-29 2009-03-17 Johnson & Johnson Vision Care, Inc. Translating multifocal ophthalmic lenses
US7753521B2 (en) * 2008-03-31 2010-07-13 Johnson & Johnson Vision Care, Inc. Lenses for the correction of presbyopia and methods of designing the lenses
WO2011107723A1 (en) * 2010-03-05 2011-09-09 John Trevor De Carle Multifocal lens
EP2616876B1 (en) * 2010-09-13 2021-06-23 The Hong Kong Polytechnic University System for retarding progression of myopia
US9717404B1 (en) * 2015-01-20 2017-08-01 Specialeyes, Llc Multifocal lens and system and method for simulating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144927A (en) * 1980-04-14 1981-11-11 Matsushita Electric Ind Co Ltd Manufacture of fresnel lens
JPH0749471A (ja) * 1993-08-06 1995-02-21 Kuraray Co Ltd 眼 鏡

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3381691D1 (de) * 1982-10-13 1990-08-02 Ng Trustees & Nominees Ltd Bifokale kontaktlinsen.
EP0574590B1 (en) * 1992-01-06 1998-07-08 Seiko Epson Corporation Contact lens
US5619289A (en) * 1993-03-31 1997-04-08 Permeable Technologies, Inc. Multifocal contact lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144927A (en) * 1980-04-14 1981-11-11 Matsushita Electric Ind Co Ltd Manufacture of fresnel lens
JPH0749471A (ja) * 1993-08-06 1995-02-21 Kuraray Co Ltd 眼 鏡

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0822439A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2326950A (en) * 1997-05-23 1999-01-06 Aspect Vision Care Ltd Decentred multifocal contact lenses
GB2616709A (en) * 2022-01-19 2023-09-20 Coopervision Int Ltd Contact lenses and methods relating thereto
GB2616709B (en) * 2022-01-19 2024-07-03 Coopervision Int Ltd Contact lenses and methods relating thereto
GB2629918A (en) * 2022-01-19 2024-11-13 Coopervision Int Ltd Contact lenses and methods relating thereto
GB2629918B (en) * 2022-01-19 2025-05-21 Coopervision Int Ltd Contact lenses and methods relating thereto

Also Published As

Publication number Publication date
US6007201A (en) 1999-12-28
EP0822439A4 (en) 2007-01-31
EP0822439A1 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
JP3286977B2 (ja) コンタクトレンズ
WO1997031285A1 (fr) Verres de contact a foyer progressif
US2405989A (en) Lens
US7108373B2 (en) Spectacle lens designing method and spectacle lens
US8020990B2 (en) System and method of surfacing a lens, such as a lens for use with eyeglasses
US5835187A (en) Aspheric multifocal contact lens having concentric front surface
JP2002350785A (ja) 眼用レンズの設計方法
JP2022538346A (ja) 光学的パワーの異なる子午線を有する螺旋状ディオプトリ
US10642070B2 (en) Progressive addition lens
JP2000066148A (ja) 累進屈折力レンズ
JPH0147767B2 (ja)
RU2650734C2 (ru) Бифокальная без коридора прогрессии линза, по существу, с касательной границей ближнего и дальнего полей видения
JP2005242346A (ja) 眼鏡レンズの設計方法および眼鏡レンズ
CN106461977A (zh) 渐进屈光力镜片
CN114303090B (zh) 双焦点眼镜镜片及其数字表示的计算机实现的方法
JP2008090103A (ja) コンタクトレンズ
JP2004109813A (ja) 累進多焦点レンズ及びその設計方法
CN115867229A (zh) 眼科透镜
US20250004300A1 (en) A method for determining an ophthalmic lens adapted to slow down the progression of a vision impairment and a corresponding ophthalmic lens
CN116157712A (zh) 眼镜镜片及其设计方法
CN220289977U (zh) 旨在由配戴者配戴的光学镜片
JPH06342136A (ja) 眼用レンズのデザイン方法
TWI876633B (zh) 非正交及非軸對稱之隱形眼鏡鏡片及其光學區度數分佈設計方法
JP6707040B2 (ja) 眼鏡用レンズの設計方法
CN119902387A (zh) 非正交及非轴对称的隐形眼镜镜片及其光学区度数分布设计方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997904568

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 945073

Date of ref document: 19971203

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997904568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08945073

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 1997904568

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载