+

WO1997030184A1 - Joint de soudure a haute resistance a la fatigue - Google Patents

Joint de soudure a haute resistance a la fatigue Download PDF

Info

Publication number
WO1997030184A1
WO1997030184A1 PCT/JP1996/002308 JP9602308W WO9730184A1 WO 1997030184 A1 WO1997030184 A1 WO 1997030184A1 JP 9602308 W JP9602308 W JP 9602308W WO 9730184 A1 WO9730184 A1 WO 9730184A1
Authority
WO
WIPO (PCT)
Prior art keywords
welded joint
haz
fatigue strength
welded
fatigue
Prior art date
Application number
PCT/JP1996/002308
Other languages
English (en)
French (fr)
Inventor
Katsumi Kurebayashi
Syuji Aihara
Hidesato Mabuchi
Naoki Saito
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP02519996A external-priority patent/JP3795949B2/ja
Priority claimed from JP05501696A external-priority patent/JP3822665B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US08/930,295 priority Critical patent/US5964964A/en
Priority to MX9707729A priority patent/MX9707729A/es
Publication of WO1997030184A1 publication Critical patent/WO1997030184A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the present invention relates to a welded joint having excellent fatigue strength used mainly for welded structures such as ships, marine structures, bridges, construction machines, and the like.
  • Affected Zone: HAZ which relates to welded joints that have improved fatigue strength by increasing the area fraction of the light microstructure that can reduce the rate of fatigue crack propagation.
  • Japanese Patent Application Laid-Open No. 3-264645 discloses that Si favors the formation of clean polygonal ferrite, B strengthens the steel, improves the hardenability, and improves the elongation flangeability, fatigue properties, and resistance welding.
  • C 0.01 to 0.2%
  • Mn 0.6 to 2.5 96
  • Si 0.02 to 1.5%
  • B 0.0005 to 0.1%
  • Japanese Patent Application Laid-Open No. 6-207245 discloses that the addition of Ni to the surface of steel causes the residual stress of compression to be generated at the weld toe and increases the life up to the occurrence of fatigue cracks.
  • a multi-layer steel sheet having excellent fatigue properties is disclosed, in which the addition amount of Ni in the region of 0.2% or more and 25% or less of the sheet thickness from the front and back sides is 3% or more.
  • JP-A-6-228707 the use of fine precipitation of Cu while lowering the Ceq makes uniform the hardness distribution near the weld toe to prevent the concentration of plastic deformation, and reduces the HAZ by lowering the Ceq.
  • JP-A-59-110490 and JP-A-1-301823 require special work after welding, and it is not possible to improve the fatigue strength without welding. Can not.
  • the method of post-weld heat treatment is also not preferred because the number of steps increases and the welding work becomes complicated. Its effects are also limited.
  • the thin steel sheet disclosed in Japanese Patent Application Laid-Open No. 3-264645 is mainly used for automobile wheels and disc base materials, and is used in shipbuilding and marine structures targeted by the present invention. Since the purpose, the thickness, and the method of use are completely different from those of steel sheets, the knowledge here cannot be applied to thick steel sheets as they are. Furthermore, since there is no description about welded joints, no effect on the fatigue strength of welded joints has been studied. It is unclear whether polygonal light tissues that are considered to be contained in the base metal are formed in HAZ.
  • the steel plate disclosed in Japanese Patent Publication No. 56301/1 relates to spot welding of ultra-low carbon steel sheets, and is intended to control the hardness distribution of the spot welding.
  • This is a type of resistance welding method, in which welding is performed by pressing a welded part of a steel sheet with an electrode and scissoring it to apply a large current in a short time.
  • the main welding method used for welding thick steel plates is not only welding residual stress, but also the welding methods such as electrode shape, presence of welding material, welding conditions, etc. Since the controlling factors of fatigue strength are different in welding, knowledge on spot welding cannot be applied as it is.
  • the steel sheet disclosed in Japanese Patent Application Laid-Open No. 6-207245 is a structural steel and therefore has the same application, but is limited to a multi-layered steel containing Ni. Therefore, ordinary single-layer steel cannot improve the fatigue strength. It is unclear whether the fatigue strength of the welded joint improves.
  • the present invention does not improve fatigue strength by performing additional welding work to reduce stress concentration after welding, but can slow the propagation speed of fatigue cracks in the HAZ of welded joints
  • An object of the present invention is to provide a welded joint having excellent fatigue strength as it is welded by increasing the area ratio of a flight structure.
  • the fatigue strength of the welded joint is improved by increasing the area ratio of the ferrite structure capable of slowing the propagation speed of fatigue cracks.
  • the present invention is intended to improve the fatigue strength of a welded joint by the effect of the above (1), and further provides a case where (2) or (3) is combined. In addition, higher fatigue strength can be achieved.
  • the gist of the present invention is:
  • the area ratio of the ferrite structure in the heat-affected zone of the welded joint is 20 to 100%, and the balance is one or more of the payite structure, martensite structure, perlite structure, and residual austenite structure.
  • Welded joint with excellent fatigue strength characterized by consisting of the above.
  • the steel according to (1) wherein the steel is made from a steel sheet containing iron and the unavoidable impurity elements, and having a carbon equivalent (Ceq) of 0.275 or less. Welded joint with excellent strength.
  • Ceq C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 + Nb / 3.
  • V 0.005 to 0.10%
  • the welded joint having excellent fatigue strength according to any one of the above (2) to (4), wherein the welded joint is prepared using a steel sheet containing one or more of the above.
  • the welded joint having excellent fatigue strength according to any one of the above (2) to (5), wherein the welded joint is prepared using a steel sheet containing: BRIEF DESCRIPTION OF THE FIGURES
  • Figure 1 (A) is a diagram showing the change in crack opening displacement and load in HAZ bainitic steel.
  • Figure 1 (B) is a diagram showing the change in crack opening displacement and load in HAZ ferritic steel.
  • Figure 2 shows the relationship between the HAZ ferrite microstructure area ratio of welded joints and the fatigue strength of two-thousand joints for 200,000 cycles.
  • the ratio of the fatigue crack initiation propagation life in the HAZ to the total life until the ultimate fracture was about 70% for the T-type fillet welded joint and about 70% for the cruciform fillet welded joint. It was about 80% and about 40% for corner fillet welded joints.
  • the HAZ structure of steel plates used in ships, marine structures, bridges, and construction machinery is the bainite structure when the tensile strength is in the 400 to 580 MPa class, and the bainite structure when the tensile strength exceeds 580 MPa.
  • Organization or martensite organization Depending on the composition of the steel sheet and heat treatment, in addition to these microstructures, a pearlite structure or a retained austenite structure may be included.
  • the HAZ structure is largely unaffected by the base metal structure, but rather is determined by the composition of the steel sheet and the cooling rate during welding.
  • the present inventors considered that when examining the fatigue strength of a welded joint, it was necessary to investigate the fatigue crack propagation rate in the HAZ of each microstructure.
  • the welding heat cycle conditions were a maximum heating temperature of 1400, a cooling time of 800 to 500 and a cooling time of 1 to 161 seconds.
  • the tissue was reproduced.
  • the test was carried out using a three-point bending crack propagation test specimen of 20 ⁇ 10 ⁇ 100 with a sharp notch of 6 sleep lengths, a stress ratio of 0.1, and a crack opening displacement using a clip gauge.
  • the crack length was calculated by the compliance method.
  • the fatigue crack propagation life when the HAZ was a bright structure was more than twice as long as that when the HAZ was a bainite structure or a martensite structure.
  • the crack propagation velocity when the stress intensity factor range is over if the crack length is already long and the stress intensity factor range is high, micro-assembly No difference was found due to the difference in the weave, but when the crack length was still short and the stress intensity factor range was low, a difference due to the microstructure appeared, and when the area ratio of the ferrite structure in the HAZ was high, The crack propagation speed decreased remarkably.
  • Figures 1 (A) and 1 (B) show the crack opening displacement and the load in the HAZ payite with a HAZ ferrite tissue area of 2% and the HAZ ferrite with an 88% HAZ ferrite. The result of observing the change in detail is shown. A marked crack closure was observed at a higher percentage of ferrite tissue. This crack closure is a phenomenon in which the tip of a fatigue crack undergoes plastic deformation beyond the yield point at the maximum load, and the tip of the fatigue crack closes before the minimum load is reached. Compared to other structures, the ferrite structure is considered to be susceptible to crack closure because the dislocation strengthening rate is low and it is very soft and plastic deformation is easy. When this crack closure occurs, the propagation of the fatigue crack does not occur when the tip of the fatigue crack is closed, and the stress range effective for the propagation of the fatigue crack decreases. It is considered that the propagation life in HAZ was improved in the case of tissue.
  • the present invention increases the area ratio of the frit structure, which can reduce the propagation speed of fatigue cracks, in the HAZ of a welded joint, thereby increasing the fatigue strength of the welded joint. Is to improve
  • HAZ The area ratio of the new light organization must be at least 20% or more.
  • the area ratio of the ferrite organization is 20% or more, bainite, martensite, and no. — There is no problem with light and residual austenite structure.
  • the area ratio of the ferrite structure of the HAZ be 60% or more, and the upper limit is 100%.
  • the area ratio of the microstructure was determined by observing the polished surface of the welded joint so that it contained the weld metal, HAZ, and base metal with an optical microscope. The ratio of each microstructure in the area from the position to the boundary between the HAZ and the base metal is measured by the point counting method and used.
  • C is an element that increases the strength of the base metal, and is desirably added in a large amount to increase the strength of the base metal.
  • the addition of more than 0.15% of C makes the hardenability too high, so that the ferrite structure in HAZ cannot be obtained, and also reduces the weldability and the toughness of the weld. Therefore, the upper limit of C is set to 0.15%. Further, if C is less than 0.015%, it is difficult to secure the strength of the base metal as structural steel, so the lower limit of C was set to 0.015%.
  • Si is an element necessary for deoxidation during smelting, and when added in an appropriate amount, strengthens the matrix by solid solution. If Si is less than 0.06%, the deoxidizing effect during smelting decreases, so the lower limit was set to 0.06%. Also, Si is a ferrite-forming element and is not included in the formula for carbon equivalent, so if added over 0.6%, the area ratio of the ferrite structure in HAZ remains the same carbon equivalent. Has the effect of increasing the On the other hand, when Si is added in excess of 2.0%, not only hardenability is increased, but also toughness is reduced. Therefore, the upper limit was set to 2.0%.
  • Mn is an element that increases the base metal strength without significantly reducing toughness. If Mn is less than 0.2%, sufficient base material strength cannot be obtained and S embrittlement is likely to occur, so the lower limit was set to 0.2%. Also, when Mn is contained in excess of 1.5%, the hardenability becomes too high, so that the ferrite structure in HAZ cannot be obtained, the toughness of the welded structure is reduced, and the weldability and ductility are reduced. Because of deterioration, the upper limit was set to 1.5%.
  • the upper limit was set to 0.5%.
  • the upper limit was set to 0.05%.
  • A1 is used as a deoxidizing element.
  • the content is usually 0.001% or more, so the lower limit was set to 0.001%.
  • the upper limit was set to 0.08%.
  • N is at least 0.002% as an impurity in steel
  • the lower limit is set to 0.002%.
  • the upper limit was set to 0.015% .N causes interaction with Ti, which will be described next.
  • Ti and Ti nitrides suppress HAZ structure coarsening and refine crystal grains As a result, the hardenability is reduced, and the formation of the fly tissue in the HAZ structure is promoted.
  • the Ti / N value is less than 2.0, the N content is excessive and the solid solution in the graphite lowers the toughness.
  • Ti / N value exceeds 3.4 Ti nitride is formed. Is saturated and the toughness is reduced by the generated Ti carbide. Therefore, the ratio of the addition is preferably in the range of 2.0 to 3.4.
  • the amount of A1 added is small, it also acts as a deoxidizing element, and the generated Ti oxide acts as a nucleus for intragranular transformation in HAZ, improving the area ratio of the fine structure.
  • the lower limit was set to 0.003% or more as an addition amount at which the effect of forming a fine structure was remarkable. Also, if Ti is added in an amount exceeding 0.05%, a large amount of precipitates are produced and the toughness is reduced, so the upper limit is set to 0.05%.
  • the oxide or nitride of Ti in here including Ti 2 0 3, TiN, TiO , (Ti. AO x 0 y, Tix (0, N) but y is considered, the HAZ of ferrite tissue in terms of accelerating the generated particle diameter preform excluding the HAZ is 0. 1 to 3.0 m, causing the Ti 2 0 3 of particle number 5 X 10 4 ⁇ 1 x 10 8 Kono ⁇ 2 finely finely dispersed Alternatively, it is preferable to finely disperse the TiN generated by adding Ti / N at a ratio of 2.0 to 3.4.
  • Ni not only increases the strength of the base metal, but also significantly improves toughness.
  • the lower limit was set to 0.1% for the amount of addition to obtain the effect. The effect is saturated even if added over 2.0%, so the upper limit was set to 2.0%.
  • Cr has the effect of improving the base metal strength and toughness, has the effect of forming carbides and nitrides, strengthening the HAZ structure, and also improves fatigue strength Let it. To obtain these effects, 0.05% addition is required. Further, even if added over 1.0%, the effect is saturated, and conversely, the weldability is impaired. Therefore, the lower limit was set to 0.05% and the upper limit was set to 1.0%.
  • Mo has the effect of improving not only the strength of the base material but also the toughness, and has the same effect as Cr in that carbides and nitrides are formed.
  • the lower limit was set to 0.02% for the amount of the effect that appears, and the upper limit was set to 1.0% for the amount at which the effect was saturated.
  • V forms carbides and is effective in improving the strength of the base material and reducing the grain size. If the V content is less than 0.005%, this effect is not remarkable, so the lower limit was set to 0.005%. Conversely, if added in excess of 0.10%, the hardenability of HAZ becomes too high and the area ratio of the light structure decreases, so the upper limit was set to 0.10%.
  • Nb is an element that has an effect on increasing the strength of the base metal, and when the TMCP process is applied during steel sheet production, it must be added in an amount of 0.005% or more to suppress recrystallization during rolling. However, when Mb is contained in a large amount, the toughness of the weld is reduced. Therefore, the upper limit of Nb is set to 0.08%.
  • Ca has the effect of fixing sulfide, which is the source of fatigue cracks, and improving ductility. If the added amount is less than 0.0005%, the effect cannot be expected, and if it exceeds 0.010%, the toughness is reduced. Therefore, the lower limit was set to 0.0005% and the upper limit was set to 0.010%.
  • REM has the same effect as Ca in fixing sulfides that cause fatigue cracks and improving ductility.
  • REM ⁇ , S
  • REMCO finely disperse REMCO (S) having a particle diameter of 0.1 to 3 ⁇ m and a particle number of 10 to 100 / band 2 .
  • REM is a rare earth element.Each element is considered to have the same effect. But especially, La and Ce are representative of them.
  • the HAZ structure becomes bainite or martensite, and it is difficult to obtain a ferrite structure. Therefore, in order to increase the area ratio of the ferrite structure of HAZ, it is necessary to first reduce the carbon equivalent to 0.275 or less.
  • the carbon equivalent is preferably set to 0.25 or less. On the other hand, if the carbon equivalent is less than 0.10, sufficient base material strength cannot be obtained, so that 0.10 or more is preferable.
  • the present invention improves the fatigue strength of a welded joint by increasing the area ratio of the ferrite structure in the HAZ of the welded joint.
  • the steel sheet used in the welded joint it is desirable to use the steel sheet specified above for all the steel sheets to be joined, but fatigue damage is a problem due to the shape of the welded joint and stress load conditions, etc.
  • the steel sheet specified above may be applied only to the side suffering fatigue damage.
  • the present invention provides a method for compressively welding residual stresses, such as T-fillet weld joints. This is particularly effective for welded joints where crack opening and closing behavior is likely to occur due to force.However, if crack closure occurs in welded joints such as cross fillet welded joints, fillet welded joints, and butt welded joints, etc. Fatigue strength can be improved.
  • the present invention is applicable to the case of performing gas shielded arc welding such as arc welding using inert gas (MIG), arc welding using mixed gas (MAG), and tungsten arc welding (TIG).
  • gas shielded arc welding such as arc welding using inert gas (MIG), arc welding using mixed gas (MAG), and tungsten arc welding (TIG).
  • MIG inert gas
  • MAG arc welding using mixed gas
  • TOG tungsten arc welding
  • welding methods such as covered arc welding (SMAW) and submerged arc welding (SAW), as well as welding heat input, are usually performed in the small and medium 1-5 kJ Z mm. Due to heat input, fatigue strength can be improved even with a weld joint using adult heat welding of about 20 kJZ maraud if crack closure occurs.
  • SAW covered arc welding
  • SAW submerged arc welding
  • a fatigue test was conducted to investigate the relationship between the area ratio of the ferrite structure and the fatigue strength in the HAZ of the welded joint.
  • a total of 19 steel grades were melted using a 50-kg vacuum melting furnace. Since the carbon equivalent is low and there is a concern that the strength of the base metal may be insufficient, rolling of the slab is performed by controlled rolling and controlled cooling. In other words, after heating at 1100 for 60 minutes, rough rolling is performed to a thickness of three times the finished thickness, and after waiting for the temperature below the non-recrystallization temperature, finish rolling is performed to a thickness of 6 to 30 bands. Immediately after the end of the rolling, the sample was controlled and cooled to 500 ° C or less, and then air-cooled to room temperature.
  • Table 1 shows the chemical composition, carbon equivalent, and mechanical properties of the manufactured steel, where the tensile test pieces were sampled and the yield stress, tensile strength, and total elongation of the base metal were measured. Using these steels, a total of three types of welded joints, T-shaped fillets, cruciform fillets, and turning fillets, were created. The same steel plate as the base material was used for the rib plate used for welding, and welding was performed in one pass each.
  • Welding method as MAG welding using a C0 2 gas the welding material is covered electrode, source Li Tsu Dowaiya, but hula click scan entering any of the wires can and Mochiiruko, for 50 kg steel here A flux-cored wire was used. After welding, a microstructure observation specimen of the welded portion was cut out, and the ferrite structure and area ratio of the HAZ were determined by a point counting method.
  • the fatigue test was performed in the atmosphere at room temperature.For T-shaped fillet welded joints, the stress ratio was 0.1 at a three-point bending, and for cross fillet and turned fillet welded joints, the stress ratio was 0 due to axial force. The test was carried out.
  • Table 2 shows the steel sheet symbols used, the sheet thickness, the area ratio of the X-light structure in the HAZ, the total area ratio of the payite, martensite, and perlite 'residual austenite structures, the shape of the welded joint, and the fatigue strength. Is shown.
  • Figure 2 shows the relationship between the area ratio of the HAZ light structure and the fatigue strength of the T-joint for 2 million cycles.
  • the joint 1 is an example of the invention in which the ferrite structure area ratio of the HAZ is 20% or more.
  • the joints 2 to 4 are examples of the invention in which the HAZ has an area ratio of the flat structure of 20% or more and a carbon equivalent of 0.275 or less. As the carbon equivalent decreases, the area ratio of the ferrite structure increases, and the fatigue strength of the welded joint also increases.
  • the joints 17 and 18 are comparative examples in which the HAZ has a low area ratio of the light microstructure and the carbon equivalent is larger than the claimed range, and the fatigue strength of the welded joint is lower than those of the invention examples 4.
  • Joints 5 to 16 are examples of invention in which one or more of Cu, Ni, Cr, o, V, Nb, Ti, Ca. REM are added in addition to the basic components, and all maintain high fatigue strength.
  • the joints 5 to 11 have improved base metal strength, and the joints 12 to 14 have an increased HAZ fiber microstructure area ratio due to the refinement of TiO or TiN.
  • the fatigue strength of the welded joints is improved in the joints 21 to 23 with cross fillet welding and the joints 24 to 26 with round fillet welding when the HAZ fly area ratio is high.
  • the welded joints satisfying the conditions of the present invention have a HAZ flat structure area ratio of 20% or more, and all of the welded joints have excellent fatigue strength as they are welded. It has been achieved that Table 2
  • Fatigue strength is the fatigue strength at which the number of repeated breaks is 2 million times. Industrial applicability
  • a ship As described above in detail, according to the present invention, a ship, an offshore structure, a bridge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Description

明 細 書 疲労強度が優れた溶接継手 技術分野
本発明は、 おもに船舶、 海洋構造物、 橋梁、 建設機械などの溶接 構造物に用いられる疲労強度が優れた溶接継手であり、 さらに詳し く は、 溶接継手の溶接熱影響部 (以下、 Hea t Af f e c t e d Zone : HAZと 記す) において、 疲労き裂の伝播速度を遅くするこ とが可能なフ ライ ト組織の面積率を高くすることにより、 疲労強度を向上させた 溶接継手に関するものである。 背景技術
構造物の大型化にともない、 構造部材の重量低減が近年の重要な 課題となっており、 これを実現するために構造物に使用される鋼の 高張力化が進んでいる。 しかしながら、 船舶、 海洋構造物、 橋梁、 建設機械などでは使用期間中に繰り返し荷重を受けるために、 この ような構造物においては疲労破壊を防止するための配慮が必要であ る。 疲労破壊が最も発生し易い部位は溶接継手部であるこ とから、 溶接継手の疲労強度を向上することが求められている。
これまでに、 溶接継手の疲労強度支配要因と疲労強度改善に関す る膨大な研究がなされており、 溶接継手の疲労強度改善は、 グライ ンダー研削や溶接ビー ド最終層を加熱 · 再溶融により止端部形状を 整形するなどの溶接止端部の形状改善によるもの、 ショ ッ ト ピーニ ング処理などの溶接止端部圧縮応力生成によるものなど、 溶接後の 付加的な施工による改善がほとんどであつた。 (特開昭 59— 1 1 0490 号公報、 特開平 1 - 301 823号公報など) 。 また、 溶接後熱処理によ る残留応力低減効果も従来からよく知られている。
一方、 上記のような特殊な施工や溶接後熱処理を用いず、 溶接し たままでも鋼材の成分によって、 溶接部の疲労強度を改善する方法 も提案されている。
特開平 3 — 264645号公報では、 Siにより清浄なポリ ゴナルフェラ ィ ト形成を有利にし、 Bにより鋼を強化し、 焼入れ性を向上するこ とにより、 良好な伸びフラ ンジ性、 疲労特性、 抵抗溶接性を得るこ とを目的として、 C : 0.01〜0.2 %, Mn: 0.6 〜2.5 96, Si : 0.02 〜1.5 %, および、 B : 0.0005〜0.1 %等からなる、 伸びフ ラ ン ジ 性等に優れた高強度鋼板が開示されている。
特公平 3 — 56301 号公報では、 B等の添加により、 鋼中成分と鋼 板中の未再結晶組織の割合に工夫を加えるこ とにより、 スポッ ト溶 接部の継手疲労強度の有利な改善を図ることを目的と して、 C : 0. 006 %以下、 Mn: 0.5 %以下、 A1 : 0.05%以下、 および、 窒化物、 硫化物は不算入とした Ti及び Zまたは Nbの 1 種または 2種の合計 : 0.001 〜0.100 %等からなる、 スポッ ト溶接性の良好な極低炭素鋼 板が登録されている。
特開平 6 - 207245号公報では、 鋼材表層への Niの添加により、 溶 接止端部に圧縮の残留応力を発生せしめ、 疲労き裂発生までの寿命 を増大させるこ とを目的として、 鋼板の表裏面からそれぞれ 0.2 關 以上でかつ板厚の 25%以下の領域における Niの添加量が 3 %以上で あることからなる、 疲労特性の優れた複層鋼板が開示されている。 特開平 6 — 228707号公報では、 Ceq を低く しながら Cuの微細析出 を用いて、 溶接止端部近傍の硬度分布を均一にするこ とにより塑性 変形の集中を防ぎ、 かつ低 Ceq 化により HAZ 硬化をなくすこ とによ り、 平均応力として作用する溶接止端部の残留応力を低減させるこ とを目的として、 C : 0.001 〜0.01%, Si : 0.005 〜 0.05%, Cu : 0. 5 〜 2 %で、 Ceq が 0. 2 以下であるこ とからなる、 溶接継手疲労 特性の優れた構造用鋼及びその溶接方法が開示されている。
これらのうち、 特開昭 59 - 1 1 0490号公報、 および、 特開平 1 — 30 1 823号公報は、 溶接後に特殊な施工をする必要があり、 溶接のまま で疲労強度を改善することは出来ない。 溶接後熱処理による方法も 、 工程が増加し溶接施工が煩雑となるため好ま しくない。 また、 そ の効果も限られたものである。
特開平 3 — 264645号公報に示されている薄鋼板は、 用途が主に自 動車用ホイールやディ スクの母材に関するものであって、 本発明の 対象とする造船、 海洋構造物で用いられる鋼板とは用途、 板厚、 使 用方法が全く異なるものであるため、 こ こでの知見をそのまま厚鐧 板に適用することは出来ない。 さらに、 溶接継手に関する記載はな いため、 溶接継手の疲労強度に及ぼす影響については何ら検討され ていない。 また、 母材に含有するとされるポリ ゴナルフヱライ ト組 織が HAZ に生成するかどうかは不明である。
特公平 3 — 5630 1 号公報に示されている鋼板は、 極低炭素鋼板の スポッ ト溶接部に関するもので、 スポッ ト溶接部の硬度分布を制御 しょう とするものであるが、 スポッ ト溶接は抵抗溶接法の 1 種であ り、 鋼板の溶接部を電極で加圧して鋏み込み、 大電流を短時間に流 すことにより行われるが、 本発明の対象とする溶接継手の溶接方法 は板厚が厚い鋼板の溶接で使用される溶接方法が主体であり、 溶接 残留応力だけでなく、 電極形状、 溶接材料の有無、 溶接条件などの 溶接方法も異なり、 薄板のスボッ ト溶接と厚い鋼板の溶接では疲労 強度の支配要因が異なるため、 スボッ ト溶接での知見をそのまま適 応することは出来ない。
特開平 6 - 207245号公報に示されている鋼板は、 構造用鋼である ため用途は同じであるが、 N iを含有する複層鋼に限定したものであ り、 通常の単層鋼で、 疲労強度を向上させることは出来ない。 また 、 溶接継手の疲労強度が向上するかどうかは不明である。
特開平 6 - 228707号公報に示されている発明では、 溶接継手の HA Z 組織に関する記載はなく、 ミ ク口組織と疲労強度の関係は不明で あり、 本発明とは異なる。 また、 鋼板の C添加量が 0. 01 %以下、 S i 添加量が 0. 05 %以下と非常に少なく、 また、 Cu添加が必須である点 でも、 本発明の請求範囲とは異なる。 発明の開示
本発明は、 溶接後に応力集中を低減するための付加的な溶接施工 を実施することによる疲労強度改善ではなく、 溶接継手の HAZ にお いて、 疲労き裂の伝播速度を遅くすることが可能なフ ライ ト組織 の面積率を高くすることにより、 溶接したままで疲労強度が優れた 溶接継手を提示することを目的とする。
上記の課題を解決するための本発明の主要原理は以下のように総 括できる。
( 1 ) 溶接継手の HAZ において、 疲労き裂の伝播速度を遅く する ことが可能なフ ェ ライ ト組織の面積率を高くするこ とによ り、 溶接 継手の疲労強度を向上させる。
( 2 ) 鋼板の化学成分および炭素当量を限定するこ とによ り、 溶 接継手の HAZ におけるフ ライ ト組織の面積率を高く して、 溶接継 手の疲労強度を向上させる。
( 3 ) Tiと Nを適量添加し、 HAZ 組織を細粒化することにより、 溶接継手の HAZ におけるフ ユ ライ ト組織の面積率を高く して、 溶接 継手の疲労強度を向上させる。
本発明は上記 ( 1 ) の効果により、 溶接継手の疲労強度を向上さ せるものであり、 さらに ( 2 ) あるいは ( 3 ) を組み合わせた場合 に、 より高い疲労強度を達成させるこ とが出来る。
即ち、 本発明の要旨とするところは、
( 1 ) 溶接継手の溶接熱影響部におけるフェライ ト組織の面積率 力 、 20〜100 %で、 残部がペイナイ ト組織、 マルテンサイ ト組織、 パーライ ト組織および残留オーステナイ ト組織の 1 種または 2種以 上からなるこ とを特徴とする疲労強度が優れた溶接継手。
( 2 ) 重量%で、
C : 0.015 〜0.15%,
Si : 0.06〜2.0 %,
Mn : 0.2 〜1.5 %,
P : 0.05%以下,
S : 0.05%以下,
A1 : 0.001 〜0.08%,
N : 0.002 〜0.015 %
を含有し、 残部が鉄および不可避的不純物元素よりなり、 かつ炭素 等量(Ceq) が、 Ceq : 0.275 以下である鋼板を用いて作成するこ と を特徴とする前記 ( 1 ) に記載の疲労強度が優れた溶接継手。
こ こで、 炭素当量(Ceq) は、
Ceq = C +Mn/ 6 + (Cu + Ni) /15+ (Cr + Mo+ V) / 5 +Nb/ 3 とする。
( 3 ) 重量%で、 さらに、
Ti : 0.003 〜0.05%
を含有する鋼板を用いて作成することを特徴とする前記 ( 2 ) 記載 の疲労強度が優れた溶接継手。
( 4 ) 重量%で、 さらに、 TiZNの値が 2.0 〜3.4 である鋼板を 用いて作成することを特徴とする前記 ( 3 ) に記載の疲労強度が優 れた溶接継手。 ( 5 ) 重量%で、
Cu : 0.1 〜2.0 %,
Ni : 0.1 〜2.0 %,
Cr: 0.05〜し 0 %,
Mo: 0.02〜1.0 %,
V : 0.005 〜0.10%,
Nb : 0.005 〜0.08%
の 1 種または 2種以上を含有する鋼板を用いて作成することを特徴 とする前記 ( 2 ) 〜 ( 4 ) のいずれか 1項に記載の疲労強度が優れ た溶接継手。
( 6 ) 重量%で、 さらに、
Ca: 0.0005〜0.010 %,
REM : 0.0050〜0.050 %
を含有する鋼板を用いて作成することを特徴とする前記 ( 2 ) 〜 ( 5 ) のいずれか 1 項に記載の疲労強度が優れた溶接継手、 にある。 図面の簡単な説明
図 1 ( A) は、 HAZ ベイナイ ト鋼におけるき裂開口変位と荷重の 変化を示す図である。
図 1 ( B ) は、 HAZ フ ェ ライ ト鋼におけるき裂開口変位と荷重の 変化を示す図である。
図 2は、 溶接継手の HAZ のフ ェ ライ ト組織面積率と丁字継手の 20 0 万回疲労強度の関係を示す図である。 発明を実施するための最良な形態
以下の ( 1 ) 〜 ( 2 ) に、 本発明の技術的思想と限定理由につい て詳細に述べる。 ( 1 ) まず、 溶接継手の HAZ における ミ クロ組織を限定した理由 を述べる。 本発明者らは溶接継手の疲労強度向上に対する HAZ の重 要性を検討した。 一般に、 溶接構造物の疲労破壊は構造的な応力集 中を有する溶接継手部で発生する場合が多い。 溶接欠陥や鋼板のキ ズ等のない正常な溶接継手部では、 局所的な応力集中を有する母材 と溶接金属の境界部にあたる HAZ から疲労き裂が発生し、 HAZ 内を 伝播した後、 母材へ伝播して、 最終的に構造物の機能を損なう破壤 へ至る場合が多い。
そこで、 HAZ における疲労き裂の発生伝播寿命が全破断寿命に占 める割合を調査した。 試験には構造物で多く使用される溶接継手で ある、 T型隅肉溶接継手、 十字隅肉溶接継手、 廻し隅肉溶接継手の 3つの継手を用いた。 母材と溶接金属の境界部から母材側に 5〜10 mm (継手の種類による) 離れた位置に歪ゲージを貼って、 繰り返し 負荷中の歪の値を測定した場合、 試験開始時より も歪の値が 5 %低 下した時の繰り返し数は、 疲労き裂の先端が HAZ を通過して、 母材 に達する繰り返し数とほぼ一致するため、 この繰り返し数を HAZ に おける疲労き裂の発生伝播寿命とした。 溶接継手疲労試験の結果、 最終的に破断に至るまでの全寿命に対する HAZ における疲労き裂の 発生伝播寿命の割合は、 T型隅肉溶接継手では約 70 %、 十字隅肉溶 接継手では約 80 %、 角廻し隅肉溶接継手では約 40 %であった。
したがって、 全疲労寿命に対する疲労き裂の発生寿命はかなりの 割合を占めることが上記の試験で明らかになる一方、 一旦き裂が伝 播を開始するとその抑制は非常に困難であることから、 溶接継手の 疲労強度を向上させるためには HAZ における疲労き裂の発生を困難 にするか、 あるいは疲労き裂が発生しても HAZ における疲労き裂の 伝播を極力遅く させることが有効な手段と考えられる。
次に、 本発明者らは HAZ のミ クロ組織と疲労強度に関する検討を 行い、 以下に示す重要な知見を得た。
一般に、 船舶、 海洋構造物、 橋梁、 建設機械分野で使用されてい る鋼板の HAZ 組織は、 引張強度が 400 〜580MPa級の場合ではべイナ ィ ト組織、 引張強度が 580MPaを越える場合はべイナィ ト組織あるい はマルテンサイ ト組織が主体となる。 鋼板の成分や熱処理によって はこれらのミ ク ロ組織に加えて、 パーライ 卜組織や残留オーステナ ィ ト組織が含まれる場合もある。 HAZ 組織は母材組織の影響はあま り受けず、 むしろ鋼板の成分と溶接時の冷却速度で決まるため、 一 般に使用されている 400MPa級の溶接構造用軟鋼 (例えば 0. 14 % C - 0. 2 % S i - 0. 9 % n) でさえも、 50kJ/ cm以下の通常の溶接条件で は、 焼き入れ性の指標である炭素当量が高いため、 HAZ がフ ヱライ ト組織主体となるこ とはほとんどない。
本発明者らは、 溶接継手の疲労強度を検討するにあたって、 それ ぞれの ミ ク口組織の HAZ における疲労き裂伝播速度を調査する必要 がある と考えた。 応力集中係数や残留応力などの力学的な要因の影 響を受けず、 同一の力学条件でミ クロ組織の影饗を調査するため、 小型再現 HAZ 試験片により、 き裂伝播試験を実施した。 溶接再現熱 サイ クル条件は最高加熱温度を 1400で, 800 て〜 500 での冷却時間 を 1 秒〜 161 秒と し、 化学成分と冷却速度の違いにより フ ライ ト 組織、 ペイナイ ト組織、 マルテンサイ ト組織を再現した。 試験は 6 睡長の鋭い切欠をつけた 20 X 10 X 100 關の 3点曲げき裂伝播試験片 を用いて、 応力比は 0. 1 、 き裂開口変位をク リ ップ · ゲージを用い て測定し、 き裂長さをコ ンプライアンス法により算出した。
き裂伝播試験の結果、 HAZ がフ ライ ト組織の場合の疲労き裂の 伝播寿命は、 HAZ がべイナィ ト組織やマルテンサイ ト組織の場合よ り も 2倍以上向上した。 応力拡大係数範囲とき裂伝播速度を観察す ると、 き裂長さが既に長く応力拡大係数範囲が高い場合は ミ クロ組 織の違いによる差は見られなかったが、 まだき裂長さが短く 応力拡 大係数範囲が低い場合にはミ クロ組織による差が現れ、 HAZ におけ るフ ェライ ト組織の面積率が高い場合に顕著にき裂伝播速度が低下 した。
さ らに、 図 1 ( A ) および図 1 ( B ) に HAZ のフ ェライ ト組織面 積率が 2 %の HAZ ペイナイ ト鐧と 88 %の HAZ フェライ ト鐧における 、 き裂開口変位と荷重の変化を詳細に観察した結果を示す。 フ ェラ ィ ト組織の割合が高く なると顕著なき裂閉口が観察された。 このき 裂閉口 というのは、 最大荷重時に疲労き裂の先端が降伏点を越えて 塑性変形し、 最少荷重になる前に疲労き裂の先端が閉じてしま う現 象である。 フ ェライ ト組織は他の組織と比べて、 転位強化の割合が 少なく非常に軟質で塑性変形が容易であるために、 き裂閉口が起こ りやすいと考えられる。 このき裂閉口が起こると、 疲労き裂の先端 が閉じている時は疲労き裂の伝播は起こ らず、 疲労き裂の伝播に有 効な応力範囲は減少するために、 HAZ がフェライ ト組織の場合に HA Z における伝播寿命が向上したものと考えられる。
以上の技術的思想に基づき、 本発明は溶接継手の HAZ において、 疲労き裂の伝播速度を遅くするこ とが可能なフ ライ ト組織の面積 率を高くするこ とにより、 溶接継手の疲労強度を向上させる もので ある。
ただし、 ペイナイ ト組織の粒界に 20 %未満の面積率で生成する粒 界フ Xライ トは、 フェライ ト組織が含まれている とはいっても疲労 き裂が粒界フェライ トから容易に発生するため、 伝播を遅く させて も疲労強度は向上しない。 また、 HAZ のフヱライ ト組織の面積率が 20%未満では、 疲労き裂の閉口が起こ っても非常に小さいため、 疲 労強度の向上は期待できない。
従って、 溶接継手の疲労強度を向上させるためには、 HAZ におけ るフユライ ト組織の面積率を少なく とも 20 %以上にする必要がある 。 また、 HAZ において、 フ ェ ライ ト組織の面積率が 20 %以上であれ ば、 ベイナイ ト、 マルテンサイ ト、 ノ、。—ライ ト、 および残留オース テナイ ト組織を含有しても問題はない。 さ らに、 安定して疲労強度 を向上させるためには、 HAZ のフ ェ ライ ト組織の面積率を 60 %以上 にするこ とが望ま しく、 その上限値は 100 %となる。
こ こで、 ミ ク口組織の面積率は溶接金属、 HAZ 、 母材が含まれる ように溶接継手を切断 · 研磨した面を光学顕微鏡で観察して、 溶接 金属から HAZ 側に約 50 mの位置から HAZ と母材の境界線までの領 域に占める各ミ クロ組織の割合をポイ ン ト · カウンティ ング法によ り測定した値を用いることとする。
( 2 ) 次に、 溶接継手に使用する鋼板の化学成分および炭素当量 を限定した理由を述べる。
まず、 鋼板の基本的な化学成分として限定した各元素について述 ベる。
Cは、 母材強度を上昇させる元素であり、 母材強度上昇のために は多量に添加することが望ま しい。 しかしながら、 0. 15 %超の Cの 添加は、 焼き入れ性が高くなりすぎて、 HAZ におけるフ ェ ライ ト組 織が得られなく なるとともに、 溶接性や溶接部の靭性を低下させる 。 従って、 Cの上限を 0. 15 %とした。 また、 Cが 0. 015 %未満では 構造用鋼としての母材強度の確保が困難になるため、 Cの下限値を 0. 015 %とした。
S iは、 溶製時の脱酸に必要な元素であり、 適量添加するとマ ト リ ッ クスを固溶強化する。 S iが 0. 06 %未満では、 溶製時の脱酸効果が 減少するため、 下限値を 0. 06 %とした。 また、 S iはフ ェ ライ ト生成 元素であり、 炭素当量の式に含まれていないため、 0. 6 %以上添加 すると同じ炭素当量のままで HAZ におけるフェライ ト組織の面積率 を増加させる効果を有する。 一方、 Siを 2.0 %超添加すると、 焼き 入れ性が高くなるだけでなく、 靭性も低下する。 従って、 上限値を 2.0 %とした。
Mnは、 靭性をあまり低下させることなく母材強度を上昇させる 元素である。 Mnが 0.2 %未満では十分な母材強度が得られず、 S脆 化が起こ りやすくなるため、 下限値を 0.2 %とした。 また、 1.5 % 超の Mnを含有すると、 焼き入れ性が高く なりすぎて、 HAZ における フ ェ ライ 卜組織が得られなくなるとともに、 溶接部の組織溶接部の 靱性が低下し、 溶接性、 延性も劣化するため、 上限値を 1.5 %とし た。
Pは、 少ないほど好ま しく、 0.05%超添加すると母材の粒界に偏 折して粒界脆化するために HAZ の靭性が低下する。 よって上限値を 0.5 %とした。
Sは、 低いほど好ま しく、 0.05%超含有すると A系介在物が顕著 となり、 母材と溶接部の靭性を害し、 板厚方向の延性も低下させる 。 従って、 上限値を 0.05%とした。
A1は、 脱酸元素として用いられる。 脱酸元素として他の元素を用 いた場合には、 通常 0.001 %以上含有されるため、 その下限値を 0. 001 %とした。 一方、 0.08%超添加すると、 A1酸化物や窒化物が多 量に生成して、 溶接部の靱性を劣化させるため、 上限値を 0.08%と した。
Nは、 鋼中に不純物として最低でも 0.002 %含有されるため、 そ の下限値を 0.002 %とした。 逆に 0.015 %超含有すると、 フ ヱ ライ ト中に固溶して靭性低下を来す。 従って、 上限値を 0.015 %と した また、 Nは Tiとの相互作用を生じるがこれについては次に述べる
T i、 Ti窒化物が HAZ 組織の粗大化を抑制し、 結晶粒が微細化す るこ とにより焼入れ性が低下して、 HAZ 組織におけるフ ライ ト組 織の生成を促進させる。 Tiと Nの添加割合は、 Ti/Nの値が 2.0 未 満では Nが過剰となりフヱライ ト中に固溶して靭性が低下し、 Tiノ Nの値が 3.4 を超えると Ti窒化物の生成が飽和し、 生成した Ti炭化 物により、 靱性が低下するため、 その添加の割合は 2.0 〜3.4 の範 囲が好ましい。 また、 A1の添加量が少ない場合には脱酸元素として も作用し、 生成した Ti酸化物は HAZ において粒内変態の生成核とし て作用し、 フヱライ ト組織の面積率を向上させる。 フヱライ ト組織 を生成する効果が顕著となる添加量として、 下限値を 0.003 %以上 とした。 また、 Tiを 0.05%超添加すると析出物を多量に生産して靭 性を低下させるため、 上限値を 0.05%とした。
こ こで Tiの酸化物や窒化物としては、 Ti 203,TiN をはじめ、 TiO, (Ti. AO x 0 y , Tix (0, N)y が考えられるが、 HAZ のフェライ ト組織の生成を促進させる上では、 HAZ を除いた母材に粒子径が 0. 1 〜3.0 m、 粒子数が 5 X 104 〜 1 x 108 個ノ隨 2 の Ti 203 を微 細分散させるか、 Ti/N比が 2.0 〜3.4 の割合で添加することによ り生成した TiN を微細分散させるこ とが好ま しい。
は、 母材強度を向上させる効果があり、 さらに炭化物は生成し ないが固溶強化により疲労強度を向上させる。 0.1 %以上添加しな いとその効果はなく、 2.0 %超添加すると、 スラブの凝固割れの原 因になるため、 下限値を 0.1 %、 上限値を 2.0 %とした。
Niは、 母材強度を上げるだけでなく、 靭性を大幅に向上させる。 その効果が得られる添加量として、 下限値を 0.1 %とした。 また、 2.0 %超添加してもその効果は飽和するため、 上限値を 2.0 %とし た。
Crは、 母材強度ならびに靭性を向上させる効果があり、 炭化物や 窒化物を生成して HAZ 組織を強化する効果があり、 疲労強度も向上 させる。 これらの効果を得るには、 0.05%の添加が必要である。 ま た、 1.0 %超添加してもその効果は飽和し、 逆に溶接性が損なわれ る。 そのため、 下限値を 0.05%、 上限値を 1.0 %とした。
Moは、 母材強度を向上させるだけでなく靭性も向上させる効果が あり、 炭化物や窒化物を生成する点で、 Crと同様の作用をする。 そ の効果が現われる添加量として下限値を 0.02%とし、 その効果が飽 和する添加量として、 上限値を 1.0 %とした。
Vは、 炭化物を形成して母材の強度向上と細粒化に効果がある。 V量が 0.005 %未満では、 この効果が顕著でないので、 下限値を 0. 005 %とした。 逆に、 0.10%超添加すると、 HAZ の焼き入れ性が高 くなりすぎて、 フ ライ ト組織の面積率が減少するため、 上限値を 0.10%とした。
Nbは、 母材強度上昇に効果を有する元素であり、 さらに、 鋼板製 造時に TMCPプロセスが適用される場合には圧延中の再結晶を抑制す るために 0.005 %以上添加する必要がある。 しかしながら、 Mbを多 量に含有すると溶接部の靱性を低下させる。 従って、 Nbの上限値を 0.08%とした。
Caは、 疲労き裂の発生源となる硫化物を固定し、 延性を向上させ る効果かある。 添加量が 0.0005%以下ではその効果が期待できず、 また、 0, 010 %超では靭性を低下させる。 よって、 下限値を 0.0005 %、 上限値を 0.010 %とした。
REM は、 疲労き裂の発生源となる硫化物を固定し、 延性を向上さ せる点で、 Caと同様の効果がある。 また、 HAZ では REM(〇, S ) が 粒内変態の生成核となり、 フ ライ ト組織の生成を促進する効果も ある。 粒子径が 0.1 〜 3 〃 m、 粒子数が 10〜100 個/匪2 の REMCO , S ) を微細分散させることが好ましい。 REM は希土類元素であれ ぱいずれの元素も同様の効果を有すると考えられるが、 これらの中 でも特に、 Laと Ceがそれらの代表として挙げられる。 REM 添加によ る効果が発揮されるには、 合計で 0. 0050 %以上添加することが必要 であり、 0. 050 %以上添加してもその効果は飽和し、 経済的でもな く なる。 よって、 下限値を 0. 0050 %、 上限値を 0. 050 %とした。 さらに、 溶接継手に使用する鋼板の炭素当量を限定した理由を述 ベる。
溶接時の冷却速度が同じ場合、 HAZ 組織と鋼板の成分の関係は 1【 W で提案されている炭素当量の式を用いることにより表すこ とがで きる。 I IW の炭素当量 (Ceq)の式は、 Ceq = C + Mn/ 6 + ( Cu + Ni ) / 15 + ( Cr + Mo + V ) / 5 + Nb/ 3
で与えられる。 従来の鋼材のように、 炭素当量が 0. 275 を超える場 合には、 HAZ 組織はべイナィ ト組織あるいはマルテンサイ 卜組織と なるため、 フェライ ト組織を得ることは困難である。 よって、 HAZ のフ ェ ライ ト組織の面積率を高くするためには、 まず炭素当量を 0. 275 以下にする必要がある。
また、 HAZ のフェライ ト組織の面積率を高く して、 より高い疲労 強度を得るためには、 炭素当量が 0. 25以下にするこ とが好ま しい。 一方, 炭素当量が 0. 10未満では、 十分な母材強度が得られないため 、 0. 10以上が好ま しい。
以上の技術的思想に基づき、 本発明は溶接継手の HAZ におけるフ エライ ト組織の面積率を高くすることにより、 溶接継手の疲労強度 を向上させるものである。 こ こで、 溶接継手で用いられる鋼板とし ては、 接合されるいずれの鋼板にも上記で規定した鋼板を用いるこ とが望ましいが、 溶接継手の形状や応力負荷条件等から、 疲労損傷 が問題となる部位が予め明らかな場合には、 疲労損傷を受ける側だ けに、 上記で規定した鋼板を適用してもよい。
さらに、 本発明は T字隅肉溶接継手のような、 圧縮の溶接残留応 力によりき裂開閉口挙動が起こ りやすい溶接継手で特に有効である が、 十字隅肉溶接継手、 廻し隅肉溶接継手、 突き合せ溶接継手等の 溶接継手でも、 き裂閉口が起こる場合には疲労強度を向上させるこ とができる。
一方、 本発明は不活性ガスを用いたアーク溶接 (M I G)や、 混合ガ スを用いたアーク溶接 (MAG)、 タ ングステ ン · アーク溶接 (T I G)の ようなガスシール ドアーク溶接をした場合に特に有効であるが、 被 覆アーク溶接 (SMAW) や、 サブマージアーク溶接 (SAW)のような溶 接方法、 さらに、 溶接入熱においても、 通常実施される 1 〜 5 kJ Z mmの小、 中入熱から、 〜20kJZ匪程度の大人熱溶接を用いた溶接継 手でも、 き裂閉口が起こる場合には疲労強度を向上させるこ とがで きる。 実施例
以下に、 本発明の実施例について述べる。
溶接継手の HAZ におけるフェライ ト組織の面積率と疲労強度の関 係を調査するこ とを目的に疲労試験を実施した。 50キロ真空溶解炉 を用いて、 合計 1 9鋼種を溶製した。 炭素当量が低く、 母材の強度不 足が懸念されるため、 制御圧延と制御冷却により、 溶製したスラブ の圧延を実施した。 すなわち、 1 100でで 60分間加熱した後、 仕上げ 板厚の 3倍の板厚まで粗圧延を行い、 未再結晶温度以下まで温度待 ちした後に、 板厚 6〜30匪に仕上げ圧延を行い、 圧延終了後ただち に 500 °C以下まで制御冷却した後、 室温まで空冷した。 さらに、 引 張試験片を採取し、 母材の降伏応力、 引張強度、 全伸びを測定した 表 1 に製造した鋼の化学成分、 炭素当量、 および機械的性質を示 す。 これらの鋼を用いて、 T字隅肉、 十字隅肉、 廻し隅肉の計 3種類 の溶接継手を作成した。 溶接に用いる リ ブ板は母材と同じ鋼板を用 レ、、 溶接は各 1 パスで行った。 溶接方法は C0 2 ガスを用いた MAG 溶 接と し、 溶接材料は被覆アーク溶接棒、 ソ リ ッ ドワイヤ、 フラ ッ ク ス入りワイヤのいずれも用いるこ とが出来るが、 ここでは 50キロ鋼 用フラ ッ クス入り ワイヤを用いた。 溶接後に、 溶接部の ミ クロ組織 観察試験片を切り出し、 ポイ ン ト · カウンティ ング法により HAZ の フ ェライ ト組織と面積率を求めた。
疲労試験は大気中、 室温と し、 T字隅肉溶接継手の場合は 3点曲 げで応力比が 0. 1 、 十字隅肉および廻し隅肉溶接継手の場合は軸力 で応力比が 0で試験を実施した。
表 1
Is 化 学 成 分 (W9<) 機械的性 K
m
分 Si Hn A! N Cu Ni Cr Uo V Nb Ti Ca REU Ti/N YP TS EL
A 0.14 1.15 0.84 0.022 0.008 0.032 0.004 0.28 344 485 27.4
0.02 1.91 0.90 0.021 0.008 0.035 0.002 0.17 291 428 34.6
0.06 1.10 0.84 0.034 0.004 0.004 0.00-1 0.20 313 447 28.9
D 0.02 1.25 1.44 0.005 0.031 0.076 0.012 0.26 333 478 28.1
0.03 1.33 0.66 0.024 0.011 0.045 0.005 1.95 0.27 358 532 2S.4
0.02 1.53 0.72 0.021 0.011 0.031 0.004 1.80 0.26 364 529 26.8 発
G 0.02 1.15 0.36 0.019 0.018 0.025 0.005 0.95 0.27 358 512 27.4
H 0.03 1.31 0.30 0.017 0.022 0.028 0.006 0.95 0.27 356 508 27.4
'明
0.04 1.51 0.96 0.015 0.022 0.036 0.003 0.090 0.22 332 474 28.8
0.03 1.41 0.78 0.022 0.017 0.045 0.004 0.11 0.12 0.06 0.03 O.006 0.19 354 508 27.7 例
0.02 0.10 0.78 0.011 0.007 0.056 0.004 0.079 0.15 305 407 36.1
0.09 0.57 0.78 0.011 0.007 0.001 0.010 0.032 0.22 3.20 334 446 31.
0.03 0.49 1.02 0.008 0.011 0.056 0.007 0.015 0.0087 0.20 2.14 311 434 30.6
U2 0.03 0.49 1.02 0.008 0.011 0.001 0.002 0.0は 0.0087 0.20 0.75 311 434 30.6
N 0.10 0.58 0.90 0.015 0.006 0.037 0.005 0.0460 0.25 355 491 27.1
0 0.06 0.41 0.78 0.012 0.007 0.045 0.004 0.006 0.004 0.0059 0.23 1.00 348 479 28.9
0.14 0.21 0.96 0.012 0.011 0.048 0.005 0.30 373 510 21.2
I比
0.18 0.25 1.02 0.022 0.009 0.035 0.004 0.33 382 512 23.7 較
0.16 0.15 1.20 0.023 0.012 0.024 0.003 0.12 0.14 0.07 0.04 0.011 0.40 403 579 18.4 I
0.05 0.62 1.12 0.019 0.010 0.031 0.004 0.20 0.11 0.13 0.25 0.006 0.007 0.010 0.0010 0.0092 0.34 2.50 411 556 20.9
* 1 : Ceq = C+Mn/6+ (Cu+Ni) /15+ (Cr+Ho+V) /5+Nb/3
* 2 : \P:降伏応力 (MPa)、 TS: 5I¾¾度 OlPa) 、 EL :均一伸び(《)
K S当.
素量 t 表 2に、 使用した鋼板記号、 板厚、 HAZ におけるフ Xライ ト組織 の面積率、 ペイナイ ト、 マルテンサイ ト、 パーライ ト ' 残留オース テナイ ト組織の合計の面積率、 溶接継手の形状、 疲労強度を示す。 図 2に、 HAZ のフ ライ ト組織面積率と T字継手の 200 万回疲労 強度の関係を示す。
継手 1 は、 HAZ のフェライ ト組織面積率が 20 %以上の発明例であ る。 継手 2〜 4は、 HAZ のフヱライ ト組織面積率が 20 %以上で、 炭 素当量は 0. 275 以下の発明例である。 炭素当量が低く なると、 フエ ライ ト組織面積率が増加し、 溶接継手の疲労強度も向上する。 しか し、 継手 17, 18は、 HAZ のフ ライ ト組織面積率が低く、 炭素当量 も請求範囲より も多い比較例で、 発明例 〜 4 より も溶接継手の疲 労強度は低い。
継手 5 〜16は基本成分以外に、 Cu, N i , Cr, o, V , Nb, T i , Ca . REM を 1 種または 2種以上添加した発明例で、 いずれも高い疲労 強度を維持しており、 継手 5〜1 1は母材強度が向上し、 継手 12〜14 は Ti O あるいは T i N の微細化により HAZ のフヱライ ト組織面積率が 増加している。
一方、 継手 19, 20はこれらの元素を添加したものの、 HAZ のフエ ライ ト組織面積率が低く、 炭素当量が請求範囲より も多い比較例で 、 やはり溶接継手の疲労強度は向上しない。
十字隅肉溶接を行った継手 21〜23、 廻し隅肉溶接を行った継手 24 〜26でも、 HAZ のフ ライ ト面積率が高い場合は溶接継手の疲労強 度が向上する。
従って、 本発明の条件を満たす溶接継手 (表中に本発明例と表示 ) は、 HAZ のフヱライ ト組織面積率が 20 %以上であり、 いずれの溶 接継手でも溶接したままで優れた疲労強度を達成しているこ とがわ 力、る。 表 2
Figure imgf000021_0001
* 3 :ペイナイト> マルチンサイト、 パーライト、 残留オーステナイト組織を 合計した面輪率
* 4 :疲労強度は破断繰り返し数が 200万回となる疲労強度 産業上の利用可能性
以上詳述したように、 本発明によれば、 船舶、 海洋構造物、 橋梁
、 建設機械等に用いられる溶接継手の HAZ に関して、 疲労き裂の伝 播速度を遅くするこ とが可能なフ Xライ ト組織の面積率を高く し、 あるいは、 これを実現するために、 鋼板の化学成分および炭素当量 を限定するこ とにより、 溶接継手の疲労強度を向上させることが可 能であり、 本発明の溶接継手を用いれば溶接構造物の疲労破壤に対 する信頼性を著しく 向上させることが可能となった。 このような効 果を有する本発明の溶接継手の意義は、 極めて著しいものである。

Claims

請 求 の 範 囲
1. 溶接継手の溶接熱影響部におけるフ ライ ト組織の面積率が 、 20〜100 %で、 残部がペイナイ ト組織、 マルテンサイ ト組織、 パ 一ライ ト組織および残留オーステナイ ト組織の 1種または 2種以上 からなることを特徴とする疲労強度が優れた溶接継手。
2. 重量%で、
C : 0.015 〜0.15%.
Si : 0.06〜2.0 %、
Mn : 0.2 〜1.5 %、
P : 0.05%以下、
S : 0.05%以下、
A1 : 0.001 〜0.08%、
N : 0.002 〜0.015 %、
を含有し、 残部が鉄および不可避的不純物元素よりなり、 かつ炭素 当量 (Ceq)が、 Ceq : 0.275 以下である鋼板を用いて作成すること を特徴とする請求項 1 に記載の疲労強度が優れた溶接継手。
こ こで、 炭素当量(Ceq) は、
Ceq = C +MnZ 6 + (Cu + Ni) /15+ (Cr + Mo+ V) / 5 + NbZ 3 とする。
3. 重量%で、 さらに、
Ti : 0.003 〜0.05%
を含有する鋼板を用いて作成することを特徵とする請求項 2記載の 疲労強度が優れた溶接継手。
4. 重量 で、 さらに、 TiZNの値が 2.0 〜3.4 である鋼板を用 いて作成することを特徴とする請求項 3に記載の疲労強度が優れた 溶接継手。
5. 重量%で、
Cu: 0. 1 〜2.0 %、
Ni : 0. 1 〜2· 0 %、
Cr: 0.05〜1.0 %、
o: 0.02〜1.0 %、
V : 0.005 〜0.10%、
Nb: 0.005 〜0.08%,
の 1 種または 2種以上を含有する鋼板を用いて作成することを特徵 とする請求項 2〜 4のいずれか 1項に記載の疲労強度が優れた溶接 継手。
6. 重量%で、 さ らに、
Ca: 0.0005〜0.010 %、
REM: 0.0050—0.050 %、
を含有する鋼板を用いて作成するこ とを特徴とする請求項 2〜 5の いずれか 1 項に記載の疲労強度が優れた溶接継手。
PCT/JP1996/002308 1996-02-13 1996-08-16 Joint de soudure a haute resistance a la fatigue WO1997030184A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/930,295 US5964964A (en) 1996-02-13 1996-08-16 Welded joint of high fatigue strength
MX9707729A MX9707729A (es) 1996-02-13 1996-08-16 Junta solida que tiene excelente resistencia a la fatiga.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/25199 1996-02-13
JP02519996A JP3795949B2 (ja) 1995-02-16 1996-02-13 疲労強度が優れた溶接継手
JP05501696A JP3822665B2 (ja) 1996-03-12 1996-03-12 疲労強度が優れた溶接継手
JP8/55016 1996-03-12

Publications (1)

Publication Number Publication Date
WO1997030184A1 true WO1997030184A1 (fr) 1997-08-21

Family

ID=26362793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002308 WO1997030184A1 (fr) 1996-02-13 1996-08-16 Joint de soudure a haute resistance a la fatigue

Country Status (6)

Country Link
US (1) US5964964A (ja)
KR (1) KR19980703593A (ja)
CN (1) CN1078910C (ja)
MX (1) MX9707729A (ja)
MY (1) MY115840A (ja)
WO (1) WO1997030184A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052303A2 (en) * 1999-05-10 2000-11-15 Kawasaki Steel Corporation High tensile strength steel product for high heat input welding, having excellent toughness in heat-affected zone

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3619168B2 (ja) * 2001-05-11 2005-02-09 エフシーアイ アジア テクノロジー ピーティーイー リミテッド 溶着金属の溶接方法
JP4426400B2 (ja) * 2004-08-11 2010-03-03 日本碍子株式会社 ハニカム構造体成形用口金及びその製造方法
KR100762057B1 (ko) 2006-03-08 2007-09-28 가부시키가이샤 고베 세이코쇼 용접이음부의 인성이 우수한 강판 및 그 제조방법
EP1995339B1 (en) * 2006-03-16 2017-10-18 Nippon Steel & Sumitomo Metal Corporation Steel sheet for submerged arc welding
JP4995066B2 (ja) * 2007-01-05 2012-08-08 新日本製鐵株式会社 耐脆性き裂伝播特性に優れた突合せ多パス溶接継手及び溶接構造体
KR101322067B1 (ko) * 2009-12-28 2013-10-25 주식회사 포스코 용접 후 열처리 저항성이 우수한 고강도 강판 및 그 제조방법
US8726599B2 (en) * 2010-01-04 2014-05-20 General Electric Company Fatigue load resistant structures and welding processes
CN102753300B (zh) * 2010-06-07 2014-04-30 新日铁住金株式会社 超高强度焊接接头及其制造方法
CN102419290B (zh) * 2011-12-12 2013-10-30 敦化市拜特科技有限公司 一种判断热处理改善马氏体时效钢带激光焊接强度的方法
KR20160000963A (ko) * 2014-06-25 2016-01-06 주식회사 포스코 저온 충격인성이 우수한 초고강도 가스 메탈 아크 용접금속부
JP6802660B2 (ja) * 2016-08-04 2020-12-16 株式会社神戸製鋼所 アークスポット溶接方法
MX2019010128A (es) * 2017-02-28 2019-10-02 Nippon Steel Corp Union soldada en filete y metodo de fabricacion de la misma.
CN109868412A (zh) * 2019-02-18 2019-06-11 山东钢铁股份有限公司 一种焊前免预热大厚度低碳当量500MPa级高强钢及其制造方法
CN112388199B (zh) * 2020-11-02 2022-03-22 首钢集团有限公司 一种对包含钛铌元素钢材的焊接性能进行预估的方法、应用和仪器
CN114855085B (zh) * 2022-05-19 2023-08-15 南京钢铁股份有限公司 一种船用低温l型钢及其焊接工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637328A (ja) * 1986-06-27 1988-01-13 Nippon Kokan Kk <Nkk> 耐硫化物腐食割れ性に優れた鋼の製造方法
JPS6357741A (ja) * 1986-08-27 1988-03-12 Kobe Steel Ltd 大入熱溶接用高強度低温用鋼
JPH0277523A (ja) * 1988-06-13 1990-03-16 Nippon Steel Corp 耐火性の優れた建築用低降伏比鋼材の製造方法およびその鋼材を用いた建築用鋼材料
JPH04268040A (ja) * 1991-02-22 1992-09-24 Sumitomo Metal Ind Ltd クリープ強度と靭性に優れた低合金耐熱鋼
JPH06207241A (ja) * 1993-01-06 1994-07-26 Nippon Steel Corp 継手部の脆性破壊伝播停止性能の優れた溶接用構造用鋼とその製造方法
JPH06240406A (ja) * 1993-02-15 1994-08-30 Kobe Steel Ltd 高強度高靭性鋼板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637328A (ja) * 1986-06-27 1988-01-13 Nippon Kokan Kk <Nkk> 耐硫化物腐食割れ性に優れた鋼の製造方法
JPS6357741A (ja) * 1986-08-27 1988-03-12 Kobe Steel Ltd 大入熱溶接用高強度低温用鋼
JPH0277523A (ja) * 1988-06-13 1990-03-16 Nippon Steel Corp 耐火性の優れた建築用低降伏比鋼材の製造方法およびその鋼材を用いた建築用鋼材料
JPH04268040A (ja) * 1991-02-22 1992-09-24 Sumitomo Metal Ind Ltd クリープ強度と靭性に優れた低合金耐熱鋼
JPH06207241A (ja) * 1993-01-06 1994-07-26 Nippon Steel Corp 継手部の脆性破壊伝播停止性能の優れた溶接用構造用鋼とその製造方法
JPH06240406A (ja) * 1993-02-15 1994-08-30 Kobe Steel Ltd 高強度高靭性鋼板

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IRON AND STEEL, 61(11), (1975), SHOGO KANAZAWA et al., pages 2589-2603. *
IRON AND STEEL, 71(13), (1985), SHINJI ISHIKAWA et al., page S1511. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052303A2 (en) * 1999-05-10 2000-11-15 Kawasaki Steel Corporation High tensile strength steel product for high heat input welding, having excellent toughness in heat-affected zone
EP1052303A3 (en) * 1999-05-10 2006-03-22 JFE Steel Corporation High tensile strength steel product for high heat input welding, having excellent toughness in heat-affected zone

Also Published As

Publication number Publication date
MY115840A (en) 2003-09-30
CN1078910C (zh) 2002-02-06
US5964964A (en) 1999-10-12
KR19980703593A (ko) 1998-11-05
CN1181786A (zh) 1998-05-13
MX9707729A (es) 1998-02-28

Similar Documents

Publication Publication Date Title
EP2105513B1 (en) High strength thick welded steel pipe for a line pipe superior in low temperature toughness and process for producing the same.
JP5061483B2 (ja) 超高強度溶接鋼管の製造方法
JP5137032B2 (ja) サブマージアーク溶接用鋼板
WO1997030184A1 (fr) Joint de soudure a haute resistance a la fatigue
JP5407478B2 (ja) 1層大入熱溶接熱影響部の靭性に優れた高強度厚鋼板およびその製造方法
JP5493659B2 (ja) 大入熱溶接熱影響部の靭性に優れた高強度鋼
JPH06220577A (ja) 耐hic特性に優れた高張力鋼及びその製造方法
JP3770106B2 (ja) 高強度鋼とその製造方法
JPH05186823A (ja) 高靱性Cu含有高張力鋼の製造方法
JP4341395B2 (ja) 大入熱溶接用高張力鋼と溶接金属
JP3487262B2 (ja) Ctod特性に優れた高強度厚鋼板及びその製造方法
JP6665515B2 (ja) 耐サワー鋼板
JP3795949B2 (ja) 疲労強度が優れた溶接継手
JPH0873983A (ja) 溶接継手の疲労強度に優れた溶接構造用厚鋼板およびその製造方法
JP2012188749A (ja) 多パス溶接部の靭性に優れた厚鋼板および多パス溶接継手
JPH08253821A (ja) 優れた疲労強度を有する溶接継手の製造方法
JP2688312B2 (ja) 高強度高靭性鋼板
JP6835054B2 (ja) 高張力鋼板およびその製造方法
JP2002224835A (ja) 溶接熱影響部靭性に優れた高靱性高張力鋼の溶接方法
JPH08309428A (ja) 溶接鋼管の製造方法
JP2003171731A (ja) 溶接継手の疲労強度に優れた溶接構造用高張力鋼板および溶接継手
JP3822665B2 (ja) 疲労強度が優れた溶接継手
JPH0813087A (ja) シーム部の耐ssc性に優れた溶接鋼管用鋼
JP6327186B2 (ja) 非調質低降伏比高張力厚鋼板およびその製造方法
JP4456292B2 (ja) 溶接部の疲労特性に優れた溶接構造用鋼およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96193272.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR MX SG US VN

WWE Wipo information: entry into national phase

Ref document number: 08930295

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970706998

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/007729

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1199701055

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 1019970706998

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019970706998

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载