+

WO1997029049A1 - Sea water reverse osmosis desalination system, with permanent renewal of the water to be de-salted - Google Patents

Sea water reverse osmosis desalination system, with permanent renewal of the water to be de-salted Download PDF

Info

Publication number
WO1997029049A1
WO1997029049A1 PCT/ES1997/000028 ES9700028W WO9729049A1 WO 1997029049 A1 WO1997029049 A1 WO 1997029049A1 ES 9700028 W ES9700028 W ES 9700028W WO 9729049 A1 WO9729049 A1 WO 9729049A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
chamber
chambers
valves
sea
Prior art date
Application number
PCT/ES1997/000028
Other languages
Spanish (es)
French (fr)
Inventor
Manuel Barreto Avero
Original Assignee
Manuel Barreto Avero
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES09600294A external-priority patent/ES2103211B1/en
Priority claimed from ES09600485A external-priority patent/ES2103240B1/en
Application filed by Manuel Barreto Avero filed Critical Manuel Barreto Avero
Priority to AU16029/97A priority Critical patent/AU1602997A/en
Publication of WO1997029049A1 publication Critical patent/WO1997029049A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the invention relates to a system for desalination of seawater by reverse osmosis, based on the fact that the pressure chamber in which the actual desalination is carried out is alternatively in communication with two other low pressure chambers, although the one If it is in communication with the first one, it will be pressurized, all in such a way that through such chambers a permanent renewal of the sea water is communicated, with a minimum energy consumption, using for this purpose properly designed valves to open and close in the opportune and required moments for the system to work correctly.
  • the system that has been recommended has been designed to solve this problem to full satisfaction based on a simple and effective solution that, as a first advantage, can be mentioned energy saving, simplicity and low cost of installation, as well as low cost maintenance reduction of faults in the installation, since this is very simple.
  • the procedure that is recommended is based on pressurizing at high pressure the chamber where reverse osmosis occurs with another chamber, or nurse tank, which had been filled with low pressure seawater.
  • Is Nursing chamber is used to exchange the brine produced in the osmosis chamber, for new water. This renewal will occur until the degree of salinity of the set reaches a certain value.
  • a valve system incommunicates both chambers, osmosis and nurse. Then, at low pressure, the brine will be evicted by fresh seawater in the nurse tank. Simultaneously, another valve system will communicate the osmosis chamber with another parallel nurse tank filled with new seawater. Repeating the process described above.
  • the system includes a sea water pump for renewal and a recycling pump so that the work done by such pumps is reduced and consequently the energy required small.
  • a sea water pump for renewal
  • a recycling pump so that the work done by such pumps is reduced and consequently the energy required small.
  • what is intended with the invention is to introduce without cost that 60 or 70 percent of water that will leave in the form of brine when leaving, without any energy or without pressure and supply the high pressure of reverse osmosis around 30
  • the remaining 40% at 70 atmospheres is the amount of water that will be desalinated, that is, the one that will cross the osmosis membrane. Only a separate pump, operating at high pressure, will be needed for the water that has to pass through the membrane, that is, the effective power for the water to be desalinated.
  • the piston can be large diameter, because it is between two equal pressures (compensated) quite the opposite to conventional high pressure pumps that are trying to make a small diameter so that the product pressure per surface is small and that the rest of the mechanism, such as the connecting rod, crankshaft, bearings, brackets etc. do not be subjected to great efforts, and therefore affect the robustness and price.
  • Only the cylinder will have to be sized for high pressure.
  • the construction of the pistons for high pressures has to have a great adjustment and therefore a great friction with the cylinder walls.
  • the low speed of the pump does not decrease the performance and this makes it particularly interesting to combine it with wind energy, since as we deal with pressures, a slow piston travel makes a displacement of the water, which does not happen with centrifugal pumps and turbines.
  • the costs of the pump according to the invention are much lower than conventional.
  • the pump that materializes the system also has special application to recirculate water from wells with large differences in dimensions, or renewal of pool water, counting on the difference in dimensions or the difference in Pressures between water containers is not a reason to increase engine power, although frictional load losses.
  • Deposits that contain water can be opened or closed interchangeably.
  • FIG 3 a a schematic view of an alternative embodiment of the system is shown, constituting in this case a brine exchange pump that originates in the process of reverse osmosis itself by the water to be desalinated.
  • FIG 4 a a schematic view is shown equal to the previous one, with the cylinder piston changed position like all the valves involved in the system.
  • the system of the invention comprises two nurse chambers (1 and 1 ') that on the one hand communicate through the conduits (2 and 2') with an inlet ( 3) of seawater, in which a pump (4) is intercalated with low pressure water renewal, while on the other hand those nurse chambers (1 and 1 ') are in communication with an outlet (5) through of respective pipes (6 and 6 ').
  • a pump (4) is intercalated with low pressure water renewal
  • those nurse chambers (1 and 1 ') are in communication with an outlet (5) through of respective pipes (6 and 6 ').
  • such chambers (1 and 1 ') communicate with an intermediate chamber (7) of high pressure or osmosis through the pairs of conduits (8-8') and (9-9 1 ).
  • This intermediate chamber includes an inlet (10) for seawater to be desalinated, as well as an outlet (1 1) for the desalinated water, a membrane (12) existing prior to said outlet (1 1). Seawater to be desalinated is propelled into the intermediate or osmosis chamber (7) by means of the high pressure pump (13), with a third recycling pump (14) existing in the intermediate chamber itself (7) with the nurse by the ducts (8-8 ') and (9-9').
  • valves (15-15') are provided in the pipes (6 and 6'); valves (17-17 ') are provided in the pipes (8-8'), and the valves (18-18 ') are provided in the pipes (9-9').
  • the operation is as follows:
  • seawater will begin to be introduced by the conduit (2) to the chamber (1) at the same time as the eviction of the water that this chamber contains begins, and that evacuation of water is carried out through the conduit (6) towards the outlet (5).
  • Such events occur as a consequence of the fact that the valves (15) and (16) are open and the valves (17), (18), (15 ') and (16') are closed.
  • the pump (4) performs only the work necessary to overcome friction, as a result of the input (3) and output (5) are at the same level.
  • the high pressure pump (13) is also put into operation, driving water from the sea through the inlet (10) to the chamber intermediate or osmosis (7).
  • This water inlet will result in the chamber (1), which was previously at sea level pressure, being pressurized with the high pressure of the said pump (13), since the chambers (1) and (7) are communicated through the valves (17) and (18), but closed with respect to the outside because the valves (15), (16), (17 ') and (18') are closed.
  • the pump (13) is a pump that has to give a high pressure capable of overcoming the pressure of the reverse osmosis, so that the flow of water entering will leave through the membrane (12), that being the flow desalinated.
  • (6 ') being the amount of water that enters the same as that which comes out or is evicted.
  • controls to change the position of the valves may be any, that is, they may be of the mechanical type or computerized, based, for example, on the salt concentrations at the strategic points of the system, the flows that pass through pumps, elapsed times, etc.
  • the system can operate with only two chambers, one of them osmosis and the other one that is filled with seawater and closed to the outside, and both are pressurized, communicating with the appropriate valves.
  • the size and shape of the nurse chambers that are loaded with salt water will be adequate for the capacity of the installation.
  • the tubular cylindrical shape is suitable so that there is no turbulence, in this way the water that enters with the brine that comes out is not mixed.
  • the smaller diameter also improves the mechanical resistance of the nurse chamber at the high pressure they are going to work on.
  • the system can work with horizontal or vertical tanks.
  • the valves can be simple multi-way valves to decrease the number of them.
  • the system determines what can be considered as a brine exchange pump for seawater, in this case comprising a high pressure chamber (20) containing the membrane of osmosis (21), and that communicates by two conduits (22) and (22 ') and through the respective valves of these (23) and (23') to one and another end of the cylinder (24).
  • This cylinder (24) has a piston (25) that is driven by the rod (31) which in principle can be considered to be practically negligible in diameter and is supposed to go to an alternative power source, such as a connecting rod mechanism, crankshaft and engine.
  • the cylinder (24) has two other ducts (26) and (26 '), which through their respective valves (27) and (27') communicate with the container (28) which may be the sea, a well. . etc.
  • the pump is at sea level.
  • This mechanism is complemented by the entry of water to be desalinated by the duct (29), driven by the high pressure pump (30) to the described chamber (20) and which will pass through the osmosis membrane (21) and finally the duct (32) where the product or desalinated water comes out.
  • the entire system is loaded with seawater.
  • valves (23) and (23 ') are closed, with high pressure in the osmosis chamber (20) due to the pressure supplied by the pump (30).
  • the piston is to the left of the cylinder (24) and the valves (27) and (27 ') are open, as the pressure requested by the piston on both sides is that of sea level, and the high chamber pressure ( 20) it does not arrive because the valves (23) are closed and (23 ') the piston will be in total balance. If the piston is moved from left to right, water enters through the conduit (26) through the valve (27) that is open and the one to the right of the piston comes out down the conduit (26 ') through of the valve (27 ') which is also open.
  • the placement of the same can be in the same rod, opposite 180 °, in V, radial, etc., that is, like any pump or explosion engine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The system is comprised of a high pressure intermediary chamber and two auxiliary side chambers which may be alternatingly pressurized or not with the prior chamber, said intermediary chamber communicating through its two extremities with the extremities of the auxiliary chamber. In the conduits which make the chambers communicate, there are provided valves which occupy different opening/closing positions so that when there is a pressurization in one of the auxiliary chambers of the sea water which is introduced in the intermediary chamber, the reverse osmosis desalination is performed through both chambers, while in the other auxiliary chamber the sea water is simultaneously renewed. In an alternative, the auxiliary chambers may be defined within a cylinder wherein a piston can slide, making these two chambers of the cylinder communicate with the high pressure intermediary chamber and with the tank of water to be de-salted, the corresponding communication conduits being provided with opening/closing valves.

Description

SISTEMA DESALINIZADOR DE AGUA DEL MAR MEDIANTE OSMOSIS INVERSA, CON RENOVACIÓN PERMANENTE DEL AGUA A DESALINIZARSEA WATER DESALINATION SYSTEM THROUGH REVERSE OSMOSIS, WITH PERMANENT RENEWAL OF WATER TO DESALINATE
La invención se refiere a un sistema para desalinizar agua del mar por osmosis inversa, basándose en que la cámara a presión en la que se realiza la desalinización propiamente dicha, se encuentra alternativamente en comunicación con otras dos cámaras de baja presión, aunque la que se encuentre en comunicación con la primera se verá presurizada, todo ello de manera que a través de tales cámaras se comunique una renovación permanente del agua del mar, con un mínimo consumo de energía, utilizando para ello unas válvulas debidamente concebidas para que abran y cierren en los momentos oportunos y requeridos para que el sistema funcione correctamente.The invention relates to a system for desalination of seawater by reverse osmosis, based on the fact that the pressure chamber in which the actual desalination is carried out is alternatively in communication with two other low pressure chambers, although the one If it is in communication with the first one, it will be pressurized, all in such a way that through such chambers a permanent renewal of the sea water is communicated, with a minimum energy consumption, using for this purpose properly designed valves to open and close in the opportune and required moments for the system to work correctly.
Es por tanto objeto de la invención, proporcionar un sistema basado en unas cámaras con presiones compensadas que permitan realizar las fases operativas y funcionales con el mínimo gasto energético, requiriéndose por ello una potencia muy inferior a la necesaria en los sistemas tradicionales y actualmente utilizados para las mismas finalidades.It is therefore an object of the invention, to provide a system based on chambers with compensated pressures that allow the operational and functional phases to be carried out with the minimum energy expenditure, therefore requiring a power much lower than that required in traditional systems and currently used for The same purposes.
Es también objeto de la invención, proporcionar un sistema que se materializa en lo que puede considerarse como una bomba intercambiadora del agua de salmuera por agua del mar en proceso de osmosis inversa, basándose en producir una recirculación de agua contenida en las dos cámaras establecidas en un cilindro que por uno de sus extremos está en comunicación o conectado con la cámara a presión en la que se produce la osmosis inversa, lo que hace que el pistón de ese cilindro se vea compensado por ambas caras, de manera que al mover éste, el agua en circuito cerrado entra por un lado y sale por el otro de la cámara de presión sin más esfuerzo que las pérdidas de carga y rozamientos en conductos y en la correspondiente membrana de osmosis. La desalinización del agua del mar, utilizando el principio de la osmosis inversa, requiere complejas y caras instalaciones, a lo cual debe añadirse el elevado coste energético necesario para bombear grandes caudales de agua a alta presión, aprovechándose como máxima un 40 por ciento. Además, estas plantas desalinizadoras precisan un alto coste de mantenimiento. En estos momentos, para la osmosis inversa se emplean bombas de gran potencia y de alta presión y que suelen ser de diferentes tipos: centrífugas, de pistón, de tornillo, etc., capaces de introducir el total del caudal bruto que se distribuirá en dos partes, una será el agua a desalinizar que está entre el 30 y el 40 por ciento del bruto, y el 70 ó 60 por ciento restante, se revertirá al mar en forma de salmuera. El tirar el 60 por ciento de agua de mar no tiene prácticamente importancia, pero perder la energía que se ha gastado en aumentarle la presión hasta unas 70 atmósferas sí que es un gran gasto inútil. En la actualidad este caudal de la salmuera se aprovecha lo más que se puede, por sistemas muy costosos y con bajos rendimientos, como es el poner una turbina del tipo Kaplan o Pelton, a la salida del chorro y conectar la turbina a un alternador para aligerar el consumo de la bomba, o también unirla al eje de la bomba, con el de la turbina y así se recupera algo de este setenta por ciento de gasto inútil. Son conocidos los rendimientos de estas costosas máquinas que no superan el 20 por ciento. Otras soluciones para instalaciones menos importantes es poner una bomba centrífuga invertida a la salida en el eje de la bomba de entrada. De todas las formas en estos momentos los sistemas de más rendimiento se basan en recuperar la energía en forma de energía cinética, por lo que interesa velocidad en el agua de salida, que es precisamente lo malo para las pérdidas por rozamientos.It is also the object of the invention to provide a system that materializes in what can be considered as a brine water exchange pump for sea water in the process of reverse osmosis, based on producing a recirculation of water contained in the two chambers established in a cylinder that by one of its ends is in communication or connected with the pressure chamber in which the reverse osmosis occurs, which makes the piston of that cylinder is compensated by both sides, so that when it moves, Closed circuit water enters on one side and exits from the other side of the pressure chamber with no more effort than load losses and friction in ducts and in the corresponding osmosis membrane. The desalination of seawater, using the principle of reverse osmosis, requires complex and expensive facilities, to which the high energy cost necessary to pump large flows of water at high pressure must be added, taking advantage of a maximum of 40 percent. In addition, these desalination plants require a high maintenance cost. At this time, high-power and high-pressure pumps are used for reverse osmosis and are usually of different types: centrifugal, piston, screw, etc., capable of introducing the total gross flow that will be distributed in two parts, one will be the water to desalinate that is between 30 and 40 percent of the gross, and the remaining 70 or 60 percent, will revert to the sea in the form of brine. Throwing 60 percent of seawater is virtually unimportant, but losing the energy that has been spent on increasing the pressure to about 70 atmospheres is a great useless expense. Currently, this brine flow is used as much as possible, by very expensive systems and with low yields, such as putting a Kaplan or Pelton type turbine, at the outlet of the jet and connecting the turbine to an alternator to lighten the consumption of the pump, or also join it to the axis of the pump, with that of the turbine and thus some of this seventy percent of wasteful use is recovered. The yields of these expensive machines that do not exceed 20 percent are known. Other solutions for less important installations is to put an inverted centrifugal pump at the outlet on the input pump shaft. Of all the forms at the moment the systems of more performance are based on recovering the energy in the form of kinetic energy, reason why it is of interest speed in the water of exit, which is precisely the bad thing for the losses by friction.
El sistema que se preconiza ha sido concebido para resolver esa problemática a plena satisfacción en base a una solución sencilla y eficaz que como primera ventaja puede citarse el ahorro energético, la simplicidad y bajo coste de la instalación, así como un mantenimiento poco costoso por la reducción de averías en la instalación, ya que ésta es muy simple.The system that has been recommended has been designed to solve this problem to full satisfaction based on a simple and effective solution that, as a first advantage, can be mentioned energy saving, simplicity and low cost of installation, as well as low cost maintenance reduction of faults in the installation, since this is very simple.
Además, el costo energético en la propia desalinización se ve reducido considerablemente, ya que la utilización de unas bombas por sectores permiten controlar los rendimientos en cada sector. También puede citarse como ventaja fundamental el poder utilizar energía eólica y fotovoltáica para el funcionamiento de la instalación o sistema propiamente dicho, debido a la poca potencia que se necesita.In addition, the energy cost in the desalination itself is considerably reduced, since the use of pumps by sectors allows to control the yields in each sector. It can also be cited as a fundamental advantage to be able to use wind and photovoltaic energy for the operation of the installation or system itself, due to the low power that is needed.
El procedimiento que se preconiza se basa en presurizar a alta presión la cámara donde se produce la osmosis inversa con otra cámara, o tanque nodriza, que se había llenado con agua de mar a baja presión. Esta cámara nodriza es utilizada para intercambiar la salmuera producida en la cámara de osmosis, por agua nueva. Esta renovación se producirá hasta que el grado de salinidad del conjunto alcance un valor determinado. En este momento, un sistema de válvulas incomunica ambas cámaras, de osmosis y nodriza. A continuación, a baja presión, se procederá al desalojo de la salmuera por agua nueva de mar en el tanque nodriza. Simultáneamente, otro sistema de válvulas comunicará la cámara de osmosis con otro tanque nodriza paralelo lleno con agua nueva de mar. Repitiéndose el proceso anteriormente descrito. Además de la bomba de impulsión de agua a la cámara intermedia de alta presión, el sistema incluye una bomba de impulsión de agua del mar para la renovación y una bomba de reciclado de manera que el trabajo realizado por tales bombas es reducido y consecuentemente la energía requerida pequeña. Por otro lado, y en relación con la pérdida del 60 a 70 por ciento del restante agua no desalinizada, originada en los sistemas tradicionales, queda resuelto con el sistema de la invención, según una alternativa de realización del mismo.The procedure that is recommended is based on pressurizing at high pressure the chamber where reverse osmosis occurs with another chamber, or nurse tank, which had been filled with low pressure seawater. Is Nursing chamber is used to exchange the brine produced in the osmosis chamber, for new water. This renewal will occur until the degree of salinity of the set reaches a certain value. At this time, a valve system incommunicates both chambers, osmosis and nurse. Then, at low pressure, the brine will be evicted by fresh seawater in the nurse tank. Simultaneously, another valve system will communicate the osmosis chamber with another parallel nurse tank filled with new seawater. Repeating the process described above. In addition to the water pump to the intermediate high pressure chamber, the system includes a sea water pump for renewal and a recycling pump so that the work done by such pumps is reduced and consequently the energy required small. On the other hand, and in relation to the loss of 60 to 70 percent of the remaining non-desalinated water, originated in traditional systems, it is resolved with the system of the invention, according to an alternative embodiment thereof.
Más concretamente, lo que se pretende con la invención es introducir sin gasto ese 60 ó 70 por ciento de agua que al salir saldrá en forma de salmuera y sin ninguna energía o sea sin presión y suministrar a la presión alta de osmosis inversa alrededor del 30 al 40% restante a 70 atmósferas que es la cantidad de agua que saldrá desalinizada , o sea la que atravesará la membrana de osmosis. Sólo se necesitará una bomba aparte, que funcione a alta presión, para el agua que tiene que atravesar la membrana, o sea la potencia efectiva para el agua a desalinizar.More specifically, what is intended with the invention is to introduce without cost that 60 or 70 percent of water that will leave in the form of brine when leaving, without any energy or without pressure and supply the high pressure of reverse osmosis around 30 The remaining 40% at 70 atmospheres is the amount of water that will be desalinated, that is, the one that will cross the osmosis membrane. Only a separate pump, operating at high pressure, will be needed for the water that has to pass through the membrane, that is, the effective power for the water to be desalinated.
Lo que más puede sorprender al construir esta bomba es que el pistón puede ser de gran diámetro, pues está entre dos presiones iguales (compensado) todo lo contrario a las bombas convencionales para alta presión que se intentan hacer de poco diámetro para que el producto presión por superficie sea pequeño y que el resto del mecanismo, como puede ser la biela, cigüeñal, cojinetes, soportes etc. no se vean sometidos a grandes esfuerzos, y por consiguiente incidan en la robustez y precio. Sólo el cilindro tendrá que estar dimensionado para la alta presión. La construcción de los pistones para altas presiones tiene que tener un gran ajuste y por consiguiente un gran rozamiento con las paredes del cilindro. En el presente caso nos podemos imaginar, de forma esquemática, un simple disco de plástico de poco espesor, más o menos ajustado al cilindro, que empuja el agua a modo de remo, puesto que si se para en cualquier punto no habrá fugas aunque el ajuste sea deficiente. Por lo tanto se podrán diseñar pistones con poco rozamiento.What may surprise most when building this pump is that the piston can be large diameter, because it is between two equal pressures (compensated) quite the opposite to conventional high pressure pumps that are trying to make a small diameter so that the product pressure per surface is small and that the rest of the mechanism, such as the connecting rod, crankshaft, bearings, brackets etc. do not be subjected to great efforts, and therefore affect the robustness and price. Only the cylinder will have to be sized for high pressure. The construction of the pistons for high pressures has to have a great adjustment and therefore a great friction with the cylinder walls. In the present case we can imagine, in a schematic way, a simple plastic disk of little thickness, more or less adjusted to the cylinder, which pushes the water as a paddle, since if it stops at any point there will be no leaks although the Adjustment is poor. Therefore, pistons with little friction can be designed.
En el sistema de la invención la baja velocidad de la bomba no disminuye el rendimiento y esto lo hace particularmente interesante para combinarlo con energía eólica, puesto que como tratamos con presiones, un lento recorrido del pistón hace un desplazamiento del agua, cosa que no ocurre con las bombas centrífugas y con las turbinas. Los costes de la bomba según la invención son muy inferiores a los convencionales.In the system of the invention the low speed of the pump does not decrease the performance and this makes it particularly interesting to combine it with wind energy, since as we deal with pressures, a slow piston travel makes a displacement of the water, which does not happen with centrifugal pumps and turbines. The costs of the pump according to the invention are much lower than conventional.
La bomba que materializa el sistema, de acuerdo con lo que se acaba de exponer, tiene también especial aplicación para recircular agua de pozos con grandes diferencias de cotas, o renovación del agua de piscinas, contando con que la diferencia de cotas o la diferencia de presiones entre los contenedores del agua no es motivo para aumentar la potencia del motor, aunque si las pérdidas de carga por rozamientos. Los depósitos que contienen el agua pueden ser abiertos o cerrados indistintamente. Esas y otras particularidades se comprenderán más fácilmente en base a la descripción que seguidamente se va a realizar con ayuda de un juego de planos que se acompañan a esta memoria descriptiva, formando parte integrante de la misma, y en donde con carácter meramente orientativo y no limitativo se ha representado lo siguiente: En la figura Ia, se muestra el sistema en planta en la fase inicial de funcionamiento, pudiéndose ver una de las cámaras laterales o nodrizas con sus válvulas abiertas y la opuesta con sus válvulas cerradas.The pump that materializes the system, according to what has just been exposed, also has special application to recirculate water from wells with large differences in dimensions, or renewal of pool water, counting on the difference in dimensions or the difference in Pressures between water containers is not a reason to increase engine power, although frictional load losses. Deposits that contain water can be opened or closed interchangeably. These and other particularities will be more easily understood based on the description that will then be made with the help of a set of drawings that accompany this descriptive memory, forming an integral part of it, and where with a merely indicative nature and not limiting the following has been represented: In Figure I a , the system is shown in the plant in the initial phase of operation, being able to see one of the side or nurse chambers with its valves open and the opposite with its valves closed.
En la figura 2a, se muestra el mismo sistema de la figura anterior con las válvulas en posición invertida, es decir, las que antes estaban cerradas, ahora están abiertas y viceversa.In Figure 2 a , the same system as in the previous figure is shown with the valves in an inverted position, that is, those that were previously closed, are now open and vice versa.
En la figura 3a, se muestra una vista esquemática de una forma alternativa de realización del sistema, constituyendo en este caso una bomba intercambiadora de salmuera que se origina en el propio proceso de osmosis inversa por el agua a desalinizar. En la figura 4a, se muestra una vista esquemática igual a la anterior, con el pistón del cilindro cambiado de posición al igual que todas las válvulas que intervienen en el sistema.In figure 3 a , a schematic view of an alternative embodiment of the system is shown, constituting in this case a brine exchange pump that originates in the process of reverse osmosis itself by the water to be desalinated. In figure 4 a , a schematic view is shown equal to the previous one, with the cylinder piston changed position like all the valves involved in the system.
Según y como puede verse en las figuras Ia y 2a, el sistema de la invención comprende dos cámaras nodrizas (1 y 1') que por una parte se comunican a través de las conducciones (2 y 2') con una entrada (3) de agua del mar, en la que va intercalada una bomba (4) de renovación de agua a baja presión, mientras que por otro lado esas cámaras nodrizas (1 y 1') están en comunicación con una salida (5) a través de respectivas conducciones (6 y 6'). Además, tales cámaras (1 y 1') se comunican con una cámara intermedia (7) de alta presión o de osmosis a través de las parejas de conducciones (8-8') y (9-91). Esa cámara intermedia incluye una entrada (10) para agua del mar a desalinizar, así como una salida (1 1) para el agua desalinizada, existiendo con anterioridad a dicha salida (1 1) una membrana (12). El agua del mar a desalinizar es impulsada a la cámara intermedia o de osmosis (7) mediante la bomba de alta presión (13), existiendo una tercera bomba (14) de reciclado en la propia cámara intermedia (7) con la nodriza por los conductos (8-8') y (9-9').According to and as can be seen in Figures I a and 2 a , the system of the invention comprises two nurse chambers (1 and 1 ') that on the one hand communicate through the conduits (2 and 2') with an inlet ( 3) of seawater, in which a pump (4) is intercalated with low pressure water renewal, while on the other hand those nurse chambers (1 and 1 ') are in communication with an outlet (5) through of respective pipes (6 and 6 '). In addition, such chambers (1 and 1 ') communicate with an intermediate chamber (7) of high pressure or osmosis through the pairs of conduits (8-8') and (9-9 1 ). This intermediate chamber includes an inlet (10) for seawater to be desalinated, as well as an outlet (1 1) for the desalinated water, a membrane (12) existing prior to said outlet (1 1). Seawater to be desalinated is propelled into the intermediate or osmosis chamber (7) by means of the high pressure pump (13), with a third recycling pump (14) existing in the intermediate chamber itself (7) with the nurse by the ducts (8-8 ') and (9-9').
En cada una de las conducciones de intercomunicación con las cámaras existe una válvula. Así, en las conducciones (2 y 2') están previstas las válvulas (15-15'); en las conducciones (6 y 6') están previstas las válvulas (16-16'); en las conducciones (8-8') están previstas las válvulas (17-17'), y en las conducciones (9-9') están previstas las válvulas (18-18'). El funcionamiento es como sigue:In each of the intercom lines with the cameras there is a valve. Thus, in the pipes (2 and 2 ') the valves (15-15') are provided; valves (16-16 ') are provided in the pipes (6 and 6'); valves (17-17 ') are provided in the pipes (8-8'), and the valves (18-18 ') are provided in the pipes (9-9'). The operation is as follows:
Partiendo de la posición representada en la figura Ia, y dando por sentado que todo el sistema se encuentre cargado con agua del mar y con las bombas cebadas, si se inicia el funcionamiento de la bomba (4) comenzará a introducirse agua del mar por el conducto (2) a la cámara ( 1 ) a la vez que se inicia el desalojo del agua que esta cámara contiene, efectuándose ese desalojo de agua a través del conducto (6) hacia la salida (5). Tales hechos se producen como consecuencia de que las válvulas (15) y (16) se encuentran abiertas y las válvulas (17), (18), (15') y (16') se encuentran cerradas. En esta operación la bomba (4) realiza únicamente el trabajo necesario para vencer rozamientos, como consecuencia de que la entrada (3) y la salida (5) están al mismo nivel.Starting from the position represented in figure I a , and assuming that the entire system is loaded with seawater and with the primed pumps, if the pump operation starts (4), seawater will begin to be introduced by the conduit (2) to the chamber (1) at the same time as the eviction of the water that this chamber contains begins, and that evacuation of water is carried out through the conduit (6) towards the outlet (5). Such events occur as a consequence of the fact that the valves (15) and (16) are open and the valves (17), (18), (15 ') and (16') are closed. In this operation the pump (4) performs only the work necessary to overcome friction, as a result of the input (3) and output (5) are at the same level.
Cuando se termina de renovar toda el agua contenida en la cámara (1), todas las válvulas cambian de posición, abriéndose las válvulas (17), (18), (15') y (16') y cerrándose las válvulas (15), (16), (17") y (18'), quedando el sistema como se representa en la figura 2a.When all the water contained in the chamber (1) is finished, all the valves change position, the valves (17), (18), (15 ') and (16') are opened and the valves (15) are closed. , (16), (17 ") and (18 '), leaving the system as shown in Figure 2 a .
En dicho momento se inicia la misma operación en la cámara (1'), es decir, se inicia la renovación del agua en ésta como consecuencia de que la bomba (4) sigue funcionando, produciéndose entrada de agua del mar a la cámara (T) y saliendo o desalojándose el agua que ésta contiene (salmuera). Como quiera que el agua que entra en las cámaras (1) ó (l1) y la que se desaloja de éstas debe ser la misma, será necesario controlar esa igualdad mediante, por ejemplo, un caudalímetro o mediante controladores de salinidad.At that time the same operation starts in the chamber (1 '), that is, the renewal of the water in it starts as a result of the pump (4) still running, producing water from the sea into the chamber (T ) and leaving or discharging the water it contains (brine). Since the water entering the chambers (1) or (l 1 ) and the water discharged from them must be the same, it will be necessary to control that equality by means of, for example, a flowmeter or by salinity controllers.
En el momento en que las válvulas cambian de posición de la figura Ia a la figura 2a, se pone también en funcionamiento la bomba de alta presión (13), impulsando agua del mar a través de la entrada (10) a la cámara intermedia o de osmosis (7). Esa entrada de agua va a dar lugar a que la cámara (1), que antes se encontraba a la presión de nivel del mar, se presuriza con la presión alta de la referida bomba (13), ya que las cámaras (1) y (7) están comunicadas a través de las válvulas (17) y (18), pero cerradas respecto del exterior por encontrarse cerradas las válvulas (15), (16), (17') y (18').At the moment when the valves change position from figure I a to figure 2 a , the high pressure pump (13) is also put into operation, driving water from the sea through the inlet (10) to the chamber intermediate or osmosis (7). This water inlet will result in the chamber (1), which was previously at sea level pressure, being pressurized with the high pressure of the said pump (13), since the chambers (1) and (7) are communicated through the valves (17) and (18), but closed with respect to the outside because the valves (15), (16), (17 ') and (18') are closed.
La bomba (13) es una bomba que tiene que dar una presión alta capaz de vencer la presión de la osmosis inversa, por lo que el caudal de agua que entra saldrá a través de la membrana (12), siendo ese el caudal desalinizado.The pump (13) is a pump that has to give a high pressure capable of overcoming the pressure of the reverse osmosis, so that the flow of water entering will leave through the membrane (12), that being the flow desalinated.
La salmuera que se origina en la desalinización y que queda en la cara interna o del lado de presión de la membrana (12), lógicamente queda en la cámara (7) y se empieza a renovar con el flujo que proporciona la bomba (14), siendo ésta una bomba de baja presión que solo tiene que recircular el agua que entra a las cámaras (7) y (1) que están presurizadas con la presión alta de la bomba (13). Por lo tanto, la potencia de dicha bomba (14) únicamente será la requerida para vencer el rozamiento de la salmuera con la membrana (12) y para recircular el agua de la cámara (7) a la cámara (1). El agua desalinizada sale a través de la membrana (12) hacia la conducción (1 1), mientras que la salmuera pasa por la conducción (8) y la válvula (17) a la cámara (1), empujando el agua sin desalinizar de ésta a través de la válvula (18) y la conducción (9) a la cámara (7) donde se realiza la desalinización en la membrana (12).The brine that originates in the desalination and remains in the inner face or the pressure side of the membrane (12), logically remains in the chamber (7) and begins to renew with the flow provided by the pump (14) , this being a low pressure pump that only has to recirculate the water entering the chambers (7) and (1) that are pressurized with the high pressure of the pump (13). Therefore, the power of said pump (14) will only be that required to overcome the friction of the brine with the membrane (12) and to recirculate the water from the chamber (7) to the chamber (1). Desalinated water exits through the membrane (12) towards the conduit (1 1), while the brine passes through the conduit (8) and the valve (17) to the chamber (1), pushing the water without desalination of this through the valve (18) and the conduit (9) to the chamber (7) where the membrane desalination is performed (12).
De este modo el agua de la cámara (7) se irá renovando con el agua de la cámara (1). Ahora bien, como en la cámara (1) va entrando salmuera por la válvula (17), llegará un momento en que dicha salmuera empiece a salir de la cámara (1) a través de la válvula (18), en cuyo momento un detector de salinidad previsto en los alrededores de las válvulas (18) y (18'), darán una orden a un sistema automatizado para que se realice el cambio de posición de todas las válvulas, volviéndose a repetir el ciclo de desalinización ahora a través de la cámara (l1). Hay que tener presente que mientras ocurre el ciclo de desalinización en la cámara (7), según la figura 2a, el agua del mar mediante la bomba (4) pasará a través de la conducciónIn this way the water in the chamber (7) will be renewed with the water in the chamber (1). Now, as in the chamber (1) brine is entering through the valve (17), there will come a time when said brine begins to leave the chamber (1) through the valve (18), at which time a detector expected salinity around the valves (18) and (18 '), will give an order to an automated system to change the position of all the valves, repeating the desalination cycle now through the camera (l 1 ). Keep in mind that while the desalination cycle is taking place in the chamber (7), according to figure 2 a , the seawater through the pump (4) will pass through the conduction
(2') a la cámara (1'), desalojando agua (salmuera) a través de la conducción(2 ') to the chamber (1'), dislodging water (brine) through conduction
(6'), siendo la cantidad de agua que entra igual a la que sale o se desaloja.(6 '), being the amount of water that enters the same as that which comes out or is evicted.
Es obvio decir que los controles para hacer cambiar de posición las válvulas, podrán ser cualesquiera, es decir, pueden ser del tipo mecánico o informatizados, basándose, por ejemplo, en las concentraciones salinas en los puntos estratégicos del sistema, los caudales que pasan por las bombas, los tiempos transcurridos, etc.It is obvious to say that the controls to change the position of the valves may be any, that is, they may be of the mechanical type or computerized, based, for example, on the salt concentrations at the strategic points of the system, the flows that pass through pumps, elapsed times, etc.
Como se puede comprobar el sistema puede funcionar con sólo dos cámaras una de ellas la de osmosis y la otra la que se llena de agua de mar y se cierra al exterior, y se presurizan ambas, comunicándose con las válvulas oportunas. Aunque habría el inconveniente de la falta de continuidad en la producción, por eso se incorporan tres en el esquema, pero pueden ser más, las necesarias para que sea todo lo continuo que se quiera. El tamaño y forma de las cámaras nodriza que se cargan con agua salada, serán las adecuadas para la capacidad de la instalación. La forma cilindrica tubular es adecuada para que no haya turbulencias, de esta manera no se mezcla el agua que entra con la salmuera que sale. También el menor diámetro mejora la resistencia mecánica de la cámara nodriza a la alta presión a que van a trabajar. El sistema puede trabajar con los tanques horizontales o verticales. Las válvulas pueden ser válvulas simples de varias vías para disminuir el número de ellas.As you can see, the system can operate with only two chambers, one of them osmosis and the other one that is filled with seawater and closed to the outside, and both are pressurized, communicating with the appropriate valves. Although there would be the inconvenience of the lack of continuity in production, that is why three are incorporated into the scheme, but they may be more, the necessary ones to make it as continuous as you want. The size and shape of the nurse chambers that are loaded with salt water will be adequate for the capacity of the installation. The tubular cylindrical shape is suitable so that there is no turbulence, in this way the water that enters with the brine that comes out is not mixed. The smaller diameter also improves the mechanical resistance of the nurse chamber at the high pressure they are going to work on. The system can work with horizontal or vertical tanks. The valves can be simple multi-way valves to decrease the number of them.
En una forma alternativa de realización, mostrada en las figuras 3a y 4a, el sistema determina lo que puede considerarse como una bomba intercambiadora de salmuera por agua del mar, comprendiendo en este caso una cámara de alta presión (20) que contiene la membrana de osmosis (21 ), y que se comunica por dos conductos (22) y (22') y a través de las válvulas respectivas de estos (23) y (23') a uno y otro extremo del cilindro (24). Este cilindro (24) tiene un pistón (25) que es accionado por el vastago (31) que en principio puede ser considerado de diámetro prácticamente despreciable y se supone que va a una fuente de potencia alternativa, como puede ser un mecanismo de biela, cigüeñal y motor. El cilindro (24) tiene otros dos conductos (26) y (26'), que a través de sus respectivas válvulas (27) y (27') se comunican con el contenedor (28) que podrá ser el mar, un pozo.. etc. Para el ejemplo consideramos que la bomba está a nivel del mar. Este mecanismo se complementa con la entrada del agua a desalinizar por el conducto (29), impulsada por la bomba de alta presión (30) a la descrita cámara (20) y que atravesará la membrana de osmosis (21 ) y por último el conducto (32) por donde sale el producto o agua desalinizada. Para entender mejor el proceso de funcionamiento, se supone que todo el sistema es cargado con agua de mar. Partiendo de la Fig. 3a, las válvulas (23) y (23') están cerradas, existiendo presión alta en la cámara de osmosis (20) por la presión que le suministra la bomba (30). El pistón está a la izquierda del cilindro (24) y las válvulas (27) y (27') están abiertas, como la presión que solicita al pistón por ambas caras es la del nivel del mar, y la alta presión de la cámara (20) no le llega por estar cerradas las válvulas (23) y (23') el pistón estará en total equilibrio. Si se desplaza el pistón de izquierda a derecha, el agua entra por el conducto (26) a través de la válvula (27) que está abierta y sale la que está a la derecha del pistón bajando por el conducto (26') a través de la válvula (27') que también está abierta. Como se ve, no hay esfuerzos por presión del agua, el trabajo sólo serán los rozamientos y pérdidas de cargas. Finaliza la carrera del pistón a la derecha, y en este momento se cierran las válvulas (27) y (27') y se abren la pareja (23) y (23'), quedando todo como indica la Fig. 4a. Ahora en el cilindro (24) la presión ha variado puesto que le llega la alta presión de la cámara (20) a través de los conductos (22) y (22') al estar abiertas las válvulas (23) y (23'); el pistón (25) tiene entonces la misma presión por ambas caras y estará en equilibrio. Si es desplazado hacia la izquierda el agua que cogió del mar la introducirá en la cámara (20) por el conducto (22) y la salmuera bajará por el conducto (22') y entrará en el cilindro (24) a la derecha del pistón (25) que se desplaza hacia la izquierda, sin ejercer más trabajo, que el de vencer rozamientos y pérdidas de carga. En este momento se cierran las válvulas (23) y (23') y se abren a continuación las válvulas (27) y (27') quedando la bomba en la posición de la fig. 3a, iniciándose un nuevo ciclo.In an alternative embodiment, shown in Figures 3 a and 4 a , the system determines what can be considered as a brine exchange pump for seawater, in this case comprising a high pressure chamber (20) containing the membrane of osmosis (21), and that communicates by two conduits (22) and (22 ') and through the respective valves of these (23) and (23') to one and another end of the cylinder (24). This cylinder (24) has a piston (25) that is driven by the rod (31) which in principle can be considered to be practically negligible in diameter and is supposed to go to an alternative power source, such as a connecting rod mechanism, crankshaft and engine. The cylinder (24) has two other ducts (26) and (26 '), which through their respective valves (27) and (27') communicate with the container (28) which may be the sea, a well. . etc. For the example we consider that the pump is at sea level. This mechanism is complemented by the entry of water to be desalinated by the duct (29), driven by the high pressure pump (30) to the described chamber (20) and which will pass through the osmosis membrane (21) and finally the duct (32) where the product or desalinated water comes out. To better understand the operation process, it is assumed that the entire system is loaded with seawater. Starting from Fig. 3 a , the valves (23) and (23 ') are closed, with high pressure in the osmosis chamber (20) due to the pressure supplied by the pump (30). The piston is to the left of the cylinder (24) and the valves (27) and (27 ') are open, as the pressure requested by the piston on both sides is that of sea level, and the high chamber pressure ( 20) it does not arrive because the valves (23) are closed and (23 ') the piston will be in total balance. If the piston is moved from left to right, water enters through the conduit (26) through the valve (27) that is open and the one to the right of the piston comes out down the conduit (26 ') through of the valve (27 ') which is also open. As you can see, there are no efforts due to water pressure, the work will only be friction and loss of loads. The piston stroke to the right ends, and at this time the valves (27) and (27 ') are closed and the pair (23) and (23') are opened, leaving everything as indicated in Fig. 4 a . Now in the cylinder (24) the pressure has changed since the high pressure arrives of the chamber (20) through the ducts (22) and (22 ') when the valves (23) and (23') are open; The piston (25) then has the same pressure on both sides and will be in equilibrium. If it is displaced to the left, the water that it took from the sea will introduce it into the chamber (20) through the conduit (22) and the brine will descend through the conduit (22 ') and will enter the cylinder (24) to the right of the piston (25) that moves to the left, without exercising more work, than to overcome friction and load losses. At this time the valves (23) and (23 ') are closed and then the valves (27) and (27') are opened, leaving the pump in the position of fig. 3 a , starting a new cycle.
Para que la recirculación sea de forma continua y no intermitente deben colocarse dos cilindros en paralelo, si bien pueden ser todos los cilindros que se deseen.For the recirculation to be continuous and non-intermittent, two cylinders must be placed in parallel, although they may be all the desired cylinders.
La colocación de los mismos puede ser en un mismo vastago, opuestos a 180°, en V, radiales, etc., es decir, como cualquier bomba o motor de explosión.The placement of the same can be in the same rod, opposite 180 °, in V, radial, etc., that is, like any pump or explosion engine.
Si se utiliza un vastago (31) de gran diámetro con la consiguiente variación de la superficie útil de la correspondiente cara del pistón (25), podría entonces suprimirse la bomba (30) de alta presión, en cuyo caso la potencia de osmosis la suministraría el pistón (25) mediante una mayor fuente de potencia alternativa. If a large diameter rod (31) is used with the consequent variation of the useful surface of the corresponding piston face (25), then the high pressure pump (30) could be suppressed, in which case the osmosis power would supply it the piston (25) by means of a greater alternative power source.

Claims

REIVINDICACIONES
Ia.- SISTEMA DESALINIZADOR DE AGUA DEL MAR MEDIANTE OSMOSIS INVERSA, CON RENOVACIÓN PERMANENTE DEL AGUA A DESALINIZAR, que basándose en que se bombea a alta presión únicamente el caudal de agua a desalinizar, introduciéndose el resto del agua desalinizada que interviene para evacuar la salmuera, a baja presión y posteriormente presurizada con la presión alta el agua a desalinizar; con la particularidad de que la osmosis inversa se realiza en la correspondiente cámara de alta presión, a la que accede igual cantidad de agua del mar que la que en forma de salmuera resulta como desaprovechada en la propia desalinización, efectuándose la recirculación o intercambio correspondiente sin más gasto de energía que el resultante de las pérdidas de carga y rozamientos, caracterizado porque incluye tres cámaras intercomunicadas entre sí a través de respectivas conducciones, en las que se han previsto válvulas cuya posición es tal que la cámara intermedia a través de la que se produce la osmosis puede estar en comunicación alternativamente con una u otra de las otras dos cámaras o más consideradas como nodrizas, de manera que la cámara nodriza que no se encuentre en comunicación con la cámara intermedia, considerada esta última como cámara de presión, se encuentra en comunicación con una entrada del agua del mar y una salida, para conseguir la renovación del agua en tal cámara mientras se produce la presurización y correspondiente osmosis inversa en la cámara intermedia y la otra cámara nodriza; habiéndose previsto que las dos cámaras nodrizas estén comunicadas, a través de respectivas parejas de conducciones, con una entrada común del agua del mar dotada de una bomba y con una salida común o independiente del agua renovada, existiendo en cada una de esas conducciones una válvula; con la particularidad de que la cámara intermedia o de presión incluye una bomba de reciclado de agua así como una bomba de presión para impulsar al interior de dicha cámara el agua del mar a desalinizar, estando las conducciones que comunican los extremos de esa cámara intermedia de presión con los extremos de las dos cámaras nodrizas, dotadas de las correspondientes válvulas. 2a.- SISTEMA DESALINIZADOR DE AGUA DEL MAR MEDIANTE OSMOSIS INVERSA, CON RENOVACIÓN PERMANENTE DEL AGUA A DES ALINIZAR, de acuerdo con la reivindicación Ia, caracterizado porque la bomba de renovación de agua prevista en la conducción de entrada común para las dos cámaras nodrizas, impulsa el agua a través de una de dichas cámaras y desaloja el agua (salmuera) contenida en ésta a través de la salida común correspondiente, manteniéndose las válvulas en las conducciones de entrada y salida a tal cámara nodriza en posición de apertura; mientras que las válvulas previstas en las conducciones de entrada y salida de la otra cámara nodriza se mantienen en posición cerrada, estableciéndose la comunicación de esta segunda cámara nodriza con la cámara intermedia de presión al encontrarse abiertas las válvulas en las conducciones entre tal cámara nodriza y la cámara intermedia de presión, encontrándose cerradas las válvulas previstas en las conducciones entre tal cámara intermedia de presión y la primera cámara nodriza. 3a.- SISTEMA DESALINIZADOR DE AGUA DEL MAR MEDIANTE OSMOSIS INVERSA, CON RENOVACIÓN PERMANENTE DEL AGUA A DESALINIZAR, de acuerdo con la reivindicación Ia caracterizado porque las cámaras nodrizas se constituyen mediante un cilindro en cuyo interior es desplazable un pistón vinculado a un eje de diámetro despreciable, unido a una fuente de potencia alternativa, estableciéndose en dicho cilindro dos cámaras independientes, una a cada lado del pistón, cuyas cámaras y a través de conductos independientes están en comunicación con la cámara de alta presión en la que tiene lugar la osmosis; con la particularidad de que dichas dos cámaras del cilindro están a su vez comunicadas, a través de conductos independientes, con un contenedor de baja presión, como puede ser el propio mar; habiéndose previsto en cada conducto una válvula capaz de cerrar/abrir la comunicación entre las cámaras; con la particularidad de que la posición de las válvulas correspondientes a los conductos de comunicación entre la cámara de alta presión y el cilindro es contraria a la de las válvulas previstas en los conductos de comunicación entre el cilindro y el contenedor de baja presión, de manera que a partir de una posición de cebado y equilibrio, y mediante el desplazamiento a uno y otro lado del pistón, se establece alternativamente la entrada de agua de mar desde el contenedor de baja presión al cilindro y la salida de salmuera de la cámara de alta presión hacia el cilindro, así como la entrada de aquel agua de mar desde el cilindro a la cámara de alta presión, y la salida de la salmuera desde el cilindro al contenedor de baja presión.I a .- SEA WATER DESALINATION SYSTEM THROUGH REVERSE OSMOSIS, WITH PERMANENT RENEWAL OF WATER TO BE DESALINATED, based on the fact that only the flow of water to be desalinated is pumped at high pressure, introducing the rest of the desalinated water that intervenes to evacuate the brine, at low pressure and then pressurized with high pressure the water to be desalinated; with the particularity that the reverse osmosis is carried out in the corresponding high-pressure chamber, which is accessed by the same amount of water from the sea as the one in the form of brine is wasted in the desalination itself, the corresponding recirculation or exchange being carried out without more energy expenditure than that resulting from load losses and friction, characterized in that it includes three chambers interconnected with each other through respective conduits, in which valves are provided whose position is such that the intermediate chamber through which produces the osmosis can be in communication alternately with one or the other of the other two cameras or more considered as nurses, so that the nurse chamber that is not in communication with the intermediate chamber, considered the latter as a pressure chamber, is in communication with an entrance of the sea water and an exit, to get the renovation water ion in such a chamber while pressurization occurs and corresponding reverse osmosis in the intermediate chamber and the other nurse chamber; having provided that the two nurse chambers are communicated, through respective pairs of conduits, with a common inlet of seawater provided with a pump and with a common or independent outlet of the renewed water, existing in each of those pipes a valve ; with the particularity that the intermediate or pressure chamber includes a water recycling pump as well as a pressure pump to impel the sea water to be desalinated inside said chamber, the conduits communicating the ends of that intermediate chamber of pressure with the ends of the two nurse chambers, equipped with the corresponding valves. 2 .- WATER SYSTEM DESALINATION BY REVERSE OSMOSIS SEA WITH PERMANENT RENEWAL OF WATER A DES ALINIZAR of according to claim Ia, wherein the pump renewal planned water conducting common input for the two nurses chambers, forces water through one of said chambers and dislodges the water (brine) contained therein through of the corresponding common outlet, the valves being kept in the inlet and outlet ducts to such a nurse chamber in the open position; while the valves provided in the inlet and outlet ducts of the other nurse chamber are kept in a closed position, the communication of this second nurse chamber being established with the intermediate pressure chamber when the valves are open in the conduits between said nurse chamber and the intermediate pressure chamber, the valves provided in the conduits between said intermediate pressure chamber and the first nurse chamber being closed. 3 .- SYSTEM DESALINATION OF WATER SEA BY REVERSE OSMOSIS WITH RENEWAL PERM WATER desalinated according to claim I to wherein the Wetnurses chambers are constituted by a cylinder inside which is movable a piston connected to a shaft of negligible diameter, together with an alternative power source, establishing in said cylinder two independent chambers, one on each side of the piston, whose chambers and through independent ducts are in communication with the high pressure chamber in which the osmosis takes place ; with the particularity that said two cylinder chambers are in turn communicated, through independent ducts, with a low pressure container, such as the sea itself; having provided in each conduit a valve capable of closing / opening the communication between the chambers; with the particularity that the position of the valves corresponding to the communication conduits between the high pressure chamber and the cylinder is contrary to that of the valves provided in the communication conduits between the cylinder and the low pressure container, so that from a position of priming and equilibrium, and by moving on either side of the piston, the entry of seawater from the low pressure container to the cylinder and the brine output of the high chamber are alternately established pressure towards the cylinder, as well as the entry of that seawater from the cylinder to the high pressure chamber, and the brine outlet from the cylinder to the low pressure container.
4a.- SISTEMA DESALINIZADOR DE AGUA DEL MAR MEDIANTE OSMOSIS INVERSA, CON RENOVACIÓN PERMANENTE DEL AGUA A DESALINIZAR, según reivindicación 3a, caracterizado porque en la entrada de agua del mar desde el contenedor de baja presión al cilindro y salida de salmuera de éste al contenedor de baja presión, las válvulas de los conductos correspondientes se encuentran abiertas, mientras que las válvulas previstas en los conductos de comunicación con la cámara de alta presión, se encuentran en posición de cierre, y viceversa. 5a.- SISTEMA DESALINIZADOR DE AGUA DEL MAR MEDIANTE OSMOSIS4 .- SYSTEM DESALINATION OF WATER SEA BY REVERSE OSMOSIS WITH RENEWAL PERM WATER desalinated according to claim 3, wherein the water inlet of the sea from the container low pressure cylinder and brine outlet thereof to the low pressure container, the valves of the corresponding ducts are open, while the valves provided in the communication ducts with the high pressure chamber are in the closed position, and vice versa. 5 .- SYSTEM WATER DESALINATION SEA by osmosis
INVERSA, CON RENOVACIÓN PERMANENTE DEL AGUA A DESALINIZAR, de acuerdo con las reivindicaciones 3a y 4a, caracterizado porque la cámara de alta presión cuenta con una entrada de agua a desalinizar, en cuyo conducto se ha previsto una bomba de impulsión de alta presión, mientras que la parte opuesta de tal cámara, a continuación de la membrana en la que se produce la desalinización por osmosis inversa, cuenta con una salida para el agua desalinizada.REVERSE, WITH PERMANENT RENEWAL OF THE WATER TO BE DESALINATED, according to claims 3 a and 4 a , characterized in that the high-pressure chamber has a water inlet to be desalinated, in which conduit a high-pressure discharge pump is provided , while the opposite part of such a chamber, following the membrane in which the reverse osmosis desalination occurs, has an outlet for desalinated water.
6a.- SISTEMA DESALINIZADOR DE AGUA DEL MAR MEDIANTE OSMOSIS INVERSA, CON RENOVACIÓN PERMANENTE DEL AGUA A DESALINIZAR, de acuerdo con las reivindicaciones 3a, 4a y 5a, caracterizado porque se disponen dos o más cilindros con una disposición convencional entre ellos, para conseguir una recirculación continua.6 .- SYSTEM DESALINATION OF WATER SEA BY REVERSE OSMOSIS WITH RENEWAL PERM WATER desalinated according to claims 3, 4 th and 5, characterized in that two or more cylinders are arranged with a conventional arrangement including , to achieve continuous recirculation.
7a.- SISTEMA DESALINIZADOR DE AGUA DEL MAR MEDIANTE OSMOSIS INVERSA, CON RENOVACIÓN PERMANENTE DEL AGUA A DESALINIZAR, de acuerdo con las reivindicaciones 3a a 6a, caracterizado porque el vastago al que está vinculado el pistón del cilindro, es susceptible de ser de gran diámetro permitiendo la eliminación de la bomba de alta presión prevista en el conducto de entrada a la cámara de alta presión, siendo suministrada la potencia de osmosis mediante el pistón conectado a una mayor fuente de potencia alternativa. 7 .- SYSTEM DESALINATION OF WATER SEA BY REVERSE OSMOSIS WITH RENEWAL PERM WATER desalinated according to claims 3 to to 6, characterized in that the rod to which is connected the piston of the cylinder is capable of being large diameter allowing the elimination of the high pressure pump provided in the inlet duct to the high pressure chamber, the osmosis power being supplied by means of the piston connected to a larger alternative power source.
PCT/ES1997/000028 1996-02-07 1997-02-06 Sea water reverse osmosis desalination system, with permanent renewal of the water to be de-salted WO1997029049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU16029/97A AU1602997A (en) 1996-02-07 1997-02-06 Sea water reverse osmosis desalination system, with permanent renewal of the water to be de-salted

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES09600294A ES2103211B1 (en) 1996-02-07 1996-02-07 SYSTEM TO DESALINIZE SEA WATER THROUGH REVERSE OSMOSIS BY PRESSURIZED CHAMBERS.
ESP9600294 1996-02-07
ES09600485A ES2103240B1 (en) 1996-02-29 1996-02-29 SEA WATER BRINE EXCHANGER PUMP FOR REVERSE OSMOSIS.
ESP9600485 1996-02-29

Publications (1)

Publication Number Publication Date
WO1997029049A1 true WO1997029049A1 (en) 1997-08-14

Family

ID=26154946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1997/000028 WO1997029049A1 (en) 1996-02-07 1997-02-06 Sea water reverse osmosis desalination system, with permanent renewal of the water to be de-salted

Country Status (2)

Country Link
AU (1) AU1602997A (en)
WO (1) WO1997029049A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011360A1 (en) * 1997-09-03 1999-03-11 Manuel Barreto Avero Desalting apparatus for the desalting of water by reverse osmosis through pressurised chambers with suspension piston and system for detecting the piston position
WO2000000274A1 (en) * 1998-06-30 2000-01-06 Manuel Barreto Avero Water desalting installation through reverse osmosis with pressurized supply tanks in continuous kinetic cycle
WO2001005491A1 (en) * 1999-07-19 2001-01-25 Manuel Barreto Avero Hydraulic damping device for reverse osmosis water desalting with supply chambers pressurized in continuous kinetic cycle
ES2153290A1 (en) * 1998-06-30 2001-02-16 Barrero Avero Manuel Reverse osmosis water desalination apparatus
RU2223813C2 (en) * 1998-06-30 2004-02-20 АВЕРО Мануэль БАРРЕТО Plant for desalting of water by reverse osmosis provided with primary chambers working at increased pressure at continuous kinetic cycle
US7901580B2 (en) 2009-06-09 2011-03-08 Salyer Ival O Method, apparatus, and processes for producing potable water utilizing reverse osmosis at ocean depth in combination with shipboard moisture dehumidification
US8282830B2 (en) 2009-06-09 2012-10-09 Salyer Ival O Method, apparatus, and processes for producing potable water utilizing reverse osmosis at ocean depth in combination with shipboard moisture dehumidification
CN105271470A (en) * 2014-06-17 2016-01-27 王淳 Non-grid-connected wind power sea water desalination combination system, and operation control method thereof
GB2540603A (en) * 2015-07-23 2017-01-25 Ide Technologies Ltd Imroved reverse osmotic process for cleaning water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187173A (en) * 1977-03-28 1980-02-05 Keefer Bowie Reverse osmosis method and apparatus
ES8203308A1 (en) * 1981-01-05 1982-04-01 Mesple Jose L R Device for desalting water
US4432876A (en) * 1980-07-30 1984-02-21 Seagold Industries Corporation Reverse osmosis apparatus and method incorporating external fluid exchange
US4814086A (en) * 1985-10-03 1989-03-21 Bratt Russell I Method and apparatus for fluid treatment by reverse osmosis
US4983301A (en) * 1987-03-06 1991-01-08 Szuecz Laszlone Method and apparatus for treating fluids containing foreign materials by membrane filter equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187173A (en) * 1977-03-28 1980-02-05 Keefer Bowie Reverse osmosis method and apparatus
US4432876A (en) * 1980-07-30 1984-02-21 Seagold Industries Corporation Reverse osmosis apparatus and method incorporating external fluid exchange
ES8203308A1 (en) * 1981-01-05 1982-04-01 Mesple Jose L R Device for desalting water
US4814086A (en) * 1985-10-03 1989-03-21 Bratt Russell I Method and apparatus for fluid treatment by reverse osmosis
US4983301A (en) * 1987-03-06 1991-01-08 Szuecz Laszlone Method and apparatus for treating fluids containing foreign materials by membrane filter equipment

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011360A1 (en) * 1997-09-03 1999-03-11 Manuel Barreto Avero Desalting apparatus for the desalting of water by reverse osmosis through pressurised chambers with suspension piston and system for detecting the piston position
AP1140A (en) * 1998-06-30 2003-01-29 Barreto Avero Manuel Inverse osmosis water desalinating plant fitted pressurized continuous kinetic cycle motor chamber.
ES2153290A1 (en) * 1998-06-30 2001-02-16 Barrero Avero Manuel Reverse osmosis water desalination apparatus
ES2158792A1 (en) * 1998-06-30 2001-09-01 Avero Manuel Barreto Reverse osmosis water desalination apparatus
ES2161142A1 (en) * 1998-06-30 2001-11-16 Avero Manuel Barreto Reverse osmosis water desalination apparatus
WO2000000274A1 (en) * 1998-06-30 2000-01-06 Manuel Barreto Avero Water desalting installation through reverse osmosis with pressurized supply tanks in continuous kinetic cycle
US6579451B1 (en) 1998-06-30 2003-06-17 Manuel Barreto Avero Water desalting installation through reverse osmosis with pressurized supply tanks in continuous kinetic cycle
AU764490B2 (en) * 1998-06-30 2003-08-21 Manuel Barreto Avero Water desalting installation through reverse osmosis with pressurized supply tanks in continuous kinetic cycle
RU2223813C2 (en) * 1998-06-30 2004-02-20 АВЕРО Мануэль БАРРЕТО Plant for desalting of water by reverse osmosis provided with primary chambers working at increased pressure at continuous kinetic cycle
WO2001005491A1 (en) * 1999-07-19 2001-01-25 Manuel Barreto Avero Hydraulic damping device for reverse osmosis water desalting with supply chambers pressurized in continuous kinetic cycle
US7901580B2 (en) 2009-06-09 2011-03-08 Salyer Ival O Method, apparatus, and processes for producing potable water utilizing reverse osmosis at ocean depth in combination with shipboard moisture dehumidification
US8282830B2 (en) 2009-06-09 2012-10-09 Salyer Ival O Method, apparatus, and processes for producing potable water utilizing reverse osmosis at ocean depth in combination with shipboard moisture dehumidification
CN105271470A (en) * 2014-06-17 2016-01-27 王淳 Non-grid-connected wind power sea water desalination combination system, and operation control method thereof
GB2540603A (en) * 2015-07-23 2017-01-25 Ide Technologies Ltd Imroved reverse osmotic process for cleaning water

Also Published As

Publication number Publication date
AU1602997A (en) 1997-08-28

Similar Documents

Publication Publication Date Title
AU599592B2 (en) Fluid operated double acting pump
ES2358622T3 (en) A HYDROELECTRIC ENERGY SYSTEM WITH MULTIPLE ENERGY INPUTS.
WO1997029049A1 (en) Sea water reverse osmosis desalination system, with permanent renewal of the water to be de-salted
TW365546B (en) Water purifier for drinking water
CN102162703A (en) Vertical fluid heat exchanger arranged in natural temperature energy body
WO2000000274A1 (en) Water desalting installation through reverse osmosis with pressurized supply tanks in continuous kinetic cycle
ES2623177T3 (en) System for the impulsion of a fluid by recirculation of a medium at low pressure to a medium at high pressure
CN101634535B (en) Dual-flow path heat exchange device with periodic forward and reverse pumping
ES2321997A1 (en) Split-chamber pressure exchangers
CH708072A1 (en) Device for the production of electrical energy.
CN208183702U (en) One kind is two-way to cross ship ship lock
CN203229405U (en) Gas-liquid transmission system taking compressed air as power, and seawater desalination system
WO2007147914A1 (en) Split-chamber pressure exchangers
ES2353782B1 (en) DESALINIZING PLANT WITH FLUCTUANT FLOW AND VARIABLE ELECTRICAL ENERGY RECOVERY.
ES2663729T3 (en) Deanilization Procedure
KR101239440B1 (en) Power generation system using salinity gradient of salt water and fresh water
WO2014013093A9 (en) Electricity co - generating desalinator by hydrotermal means
WO2013057328A1 (en) Reverse osmosis desalination plant having a system for recovering energy and method for same
US9869274B2 (en) Two-stage thermal hydraulic engine for smooth energy conversion
CN103185422A (en) Seawater source heat pump for seawater breeding farm
ES2264618B1 (en) IMPROVED MECHANICAL SYSTEM FOR THE DISTRIBUTION OF FLUIDS IN SYSTEM ENERGY RECOVERERS FOR WATER DESALATION.
WO2017093826A1 (en) Reciprocating hydraulic system
ES2410264B1 (en) AXIAL PISTON PUMP WITH ENERGY USE
RU2778103C1 (en) Wind turbine for injecting air into the pool water (variants)
JPS5526638A (en) Water cooled type cooling device for transformer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97528182

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载