WO1997027304A1 - Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media - Google Patents
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media Download PDFInfo
- Publication number
- WO1997027304A1 WO1997027304A1 PCT/US1997/001175 US9701175W WO9727304A1 WO 1997027304 A1 WO1997027304 A1 WO 1997027304A1 US 9701175 W US9701175 W US 9701175W WO 9727304 A1 WO9727304 A1 WO 9727304A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- para
- esterase
- modified
- ala
- leu
- Prior art date
Links
- 230000000694 effects Effects 0.000 title claims abstract description 128
- 101710112824 Para-nitrobenzyl esterase Proteins 0.000 title claims abstract description 70
- 239000012736 aqueous medium Substances 0.000 title description 3
- 239000012457 nonaqueous media Substances 0.000 title description 3
- 108090000371 Esterases Proteins 0.000 claims abstract description 151
- 125000006503 p-nitrobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1[N+]([O-])=O)C([H])([H])* 0.000 claims abstract description 134
- 239000000758 substrate Substances 0.000 claims abstract description 115
- 238000006243 chemical reaction Methods 0.000 claims abstract description 92
- 238000000034 method Methods 0.000 claims abstract description 63
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 49
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 49
- -1 modified para-nitrobenzyl nucleic acid Chemical class 0.000 claims abstract description 48
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 48
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 22
- 238000010931 ester hydrolysis Methods 0.000 claims abstract description 12
- 238000006467 substitution reaction Methods 0.000 claims description 85
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 79
- YBADLXQNJCMBKR-UHFFFAOYSA-M (4-nitrophenyl)acetate Chemical compound [O-]C(=O)CC1=CC=C([N+]([O-])=O)C=C1 YBADLXQNJCMBKR-UHFFFAOYSA-M 0.000 claims description 45
- 150000001413 amino acids Chemical class 0.000 claims description 40
- 150000001875 compounds Chemical class 0.000 claims description 17
- 229960001977 loracarbef Drugs 0.000 claims description 16
- 150000002148 esters Chemical class 0.000 claims description 12
- 239000012634 fragment Substances 0.000 claims description 11
- 239000003960 organic solvent Substances 0.000 claims description 9
- 230000003115 biocidal effect Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 4
- 102220028415 rs386352302 Human genes 0.000 claims description 4
- 102220103991 rs764149793 Human genes 0.000 claims description 4
- 239000013604 expression vector Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 102220217056 rs745420669 Human genes 0.000 claims description 3
- 238000005215 recombination Methods 0.000 claims 4
- 230000006798 recombination Effects 0.000 claims 4
- JAPHQRWPEGVNBT-UTUOFQBUSA-M loracarbef anion Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CC[C@@H]32)C([O-])=O)=O)N)=CC=CC=C1 JAPHQRWPEGVNBT-UTUOFQBUSA-M 0.000 claims 1
- 102000004190 Enzymes Human genes 0.000 abstract description 158
- 108090000790 Enzymes Proteins 0.000 abstract description 158
- 108090000623 proteins and genes Proteins 0.000 abstract description 34
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 15
- 230000007062 hydrolysis Effects 0.000 abstract description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 312
- 229940088598 enzyme Drugs 0.000 description 155
- 238000012216 screening Methods 0.000 description 58
- 235000001014 amino acid Nutrition 0.000 description 51
- 108020004414 DNA Proteins 0.000 description 49
- 229940024606 amino acid Drugs 0.000 description 39
- 239000000243 solution Substances 0.000 description 31
- 108010064235 lysylglycine Proteins 0.000 description 25
- 108010093581 aspartyl-proline Proteins 0.000 description 24
- 210000004027 cell Anatomy 0.000 description 22
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 21
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 20
- 108010025153 lysyl-alanyl-alanine Proteins 0.000 description 20
- HMRWQTHUDVXMGH-GUBZILKMSA-N Ala-Glu-Lys Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CCCCN HMRWQTHUDVXMGH-GUBZILKMSA-N 0.000 description 19
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 18
- 230000035772 mutation Effects 0.000 description 16
- 235000018102 proteins Nutrition 0.000 description 16
- 108010005233 alanylglutamic acid Proteins 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 108010013835 arginine glutamate Proteins 0.000 description 14
- 230000000295 complement effect Effects 0.000 description 14
- 230000006872 improvement Effects 0.000 description 14
- JAPHQRWPEGVNBT-UTUOFQBUSA-N loracarbef Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CC[C@@H]32)C([O-])=O)=O)[NH3+])=CC=CC=C1 JAPHQRWPEGVNBT-UTUOFQBUSA-N 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 14
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 13
- YYSWCHMLFJLLBJ-ZLUOBGJFSA-N Ala-Ala-Ser Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O YYSWCHMLFJLLBJ-ZLUOBGJFSA-N 0.000 description 13
- 239000007990 PIPES buffer Substances 0.000 description 13
- 230000003197 catalytic effect Effects 0.000 description 13
- PAIHPOGPJVUFJY-WDSKDSINSA-N Ala-Glu-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O PAIHPOGPJVUFJY-WDSKDSINSA-N 0.000 description 12
- HYIDEIQUCBKIPL-CQDKDKBSSA-N Ala-Phe-His Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N HYIDEIQUCBKIPL-CQDKDKBSSA-N 0.000 description 12
- DXTYEWAQOXYRHZ-KKXDTOCCSA-N Ala-Phe-Tyr Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)O)N DXTYEWAQOXYRHZ-KKXDTOCCSA-N 0.000 description 12
- YHBDGLZYNIARKJ-GUBZILKMSA-N Ala-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](C)N YHBDGLZYNIARKJ-GUBZILKMSA-N 0.000 description 12
- XSLGWYYNOSUMRM-ZKWXMUAHSA-N Ala-Val-Asn Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O XSLGWYYNOSUMRM-ZKWXMUAHSA-N 0.000 description 12
- OZNSCVPYWZRQPY-CIUDSAMLSA-N Arg-Asp-Glu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O OZNSCVPYWZRQPY-CIUDSAMLSA-N 0.000 description 12
- YBZMTKUDWXZLIX-UWVGGRQHSA-N Arg-Leu-Gly Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O YBZMTKUDWXZLIX-UWVGGRQHSA-N 0.000 description 12
- JKRPBTQDPJSQIT-RCWTZXSCSA-N Arg-Thr-Met Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N)O JKRPBTQDPJSQIT-RCWTZXSCSA-N 0.000 description 12
- GMUOCGCDOYYWPD-FXQIFTODSA-N Asn-Pro-Ser Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O GMUOCGCDOYYWPD-FXQIFTODSA-N 0.000 description 12
- KRXIWXCXOARFNT-ZLUOBGJFSA-N Asp-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O KRXIWXCXOARFNT-ZLUOBGJFSA-N 0.000 description 12
- FTNVLGCFIJEMQT-CIUDSAMLSA-N Asp-Cys-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CC(=O)O)N FTNVLGCFIJEMQT-CIUDSAMLSA-N 0.000 description 12
- SNDBKTFJWVEVPO-WHFBIAKZSA-N Asp-Gly-Ser Chemical compound [H]N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(O)=O SNDBKTFJWVEVPO-WHFBIAKZSA-N 0.000 description 12
- UAXIKORUDGGIGA-DCAQKATOSA-N Asp-Pro-Lys Chemical compound C1C[C@H](N(C1)C(=O)[C@H](CC(=O)O)N)C(=O)N[C@@H](CCCCN)C(=O)O UAXIKORUDGGIGA-DCAQKATOSA-N 0.000 description 12
- YKLNMGJYMNPBCP-ACZMJKKPSA-N Glu-Asn-Asp Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N YKLNMGJYMNPBCP-ACZMJKKPSA-N 0.000 description 12
- WATXSTJXNBOHKD-LAEOZQHASA-N Glu-Asp-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O WATXSTJXNBOHKD-LAEOZQHASA-N 0.000 description 12
- KUTPGXNAAOQSPD-LPEHRKFASA-N Glu-Glu-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)O)N)C(=O)O KUTPGXNAAOQSPD-LPEHRKFASA-N 0.000 description 12
- UGSVSNXPJJDJKL-SDDRHHMPSA-N Glu-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCC(=O)O)N UGSVSNXPJJDJKL-SDDRHHMPSA-N 0.000 description 12
- SJJHXJDSNQJMMW-SRVKXCTJSA-N Glu-Lys-Arg Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O SJJHXJDSNQJMMW-SRVKXCTJSA-N 0.000 description 12
- DCBSZJJHOTXMHY-DCAQKATOSA-N Glu-Pro-Pro Chemical compound OC(=O)CC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DCBSZJJHOTXMHY-DCAQKATOSA-N 0.000 description 12
- TWYSSILQABLLME-HJGDQZAQSA-N Glu-Thr-Arg Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O TWYSSILQABLLME-HJGDQZAQSA-N 0.000 description 12
- YQAQQKPWFOBSMU-WDCWCFNPSA-N Glu-Thr-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O YQAQQKPWFOBSMU-WDCWCFNPSA-N 0.000 description 12
- DLISPGXMKZTWQG-IFFSRLJSSA-N Glu-Thr-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O DLISPGXMKZTWQG-IFFSRLJSSA-N 0.000 description 12
- XIJOPMSILDNVNJ-ZVZYQTTQSA-N Glu-Val-Trp Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O XIJOPMSILDNVNJ-ZVZYQTTQSA-N 0.000 description 12
- LJPIRKICOISLKN-WHFBIAKZSA-N Gly-Ala-Ser Chemical compound NCC(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O LJPIRKICOISLKN-WHFBIAKZSA-N 0.000 description 12
- IEFJWDNGDZAYNZ-BYPYZUCNSA-N Gly-Glu Chemical compound NCC(=O)N[C@H](C(O)=O)CCC(O)=O IEFJWDNGDZAYNZ-BYPYZUCNSA-N 0.000 description 12
- UFPXDFOYHVEIPI-BYPYZUCNSA-N Gly-Gly-Asp Chemical compound NCC(=O)NCC(=O)N[C@H](C(O)=O)CC(O)=O UFPXDFOYHVEIPI-BYPYZUCNSA-N 0.000 description 12
- FGPLUIQCSKGLTI-WDSKDSINSA-N Gly-Ser-Glu Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCC(O)=O FGPLUIQCSKGLTI-WDSKDSINSA-N 0.000 description 12
- TVTZEOHWHUVYCG-KYNKHSRBSA-N Gly-Thr-Thr Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O TVTZEOHWHUVYCG-KYNKHSRBSA-N 0.000 description 12
- RIYIFUFFFBIOEU-KBPBESRZSA-N Gly-Tyr-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CC=C(O)C=C1 RIYIFUFFFBIOEU-KBPBESRZSA-N 0.000 description 12
- FULZDMOZUZKGQU-ONGXEEELSA-N Gly-Val-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)CN FULZDMOZUZKGQU-ONGXEEELSA-N 0.000 description 12
- JBCLFWXMTIKCCB-UHFFFAOYSA-N H-Gly-Phe-OH Natural products NCC(=O)NC(C(O)=O)CC1=CC=CC=C1 JBCLFWXMTIKCCB-UHFFFAOYSA-N 0.000 description 12
- FDQYIRHBVVUTJF-ZETCQYMHSA-N His-Gly-Gly Chemical compound [O-]C(=O)CNC(=O)CNC(=O)[C@@H]([NH3+])CC1=CN=CN1 FDQYIRHBVVUTJF-ZETCQYMHSA-N 0.000 description 12
- PYNPBMCLAKTHJL-SRVKXCTJSA-N His-Pro-Glu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O PYNPBMCLAKTHJL-SRVKXCTJSA-N 0.000 description 12
- 108010065920 Insulin Lispro Proteins 0.000 description 12
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 description 12
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 12
- LHSGPCFBGJHPCY-UHFFFAOYSA-N L-leucine-L-tyrosine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 LHSGPCFBGJHPCY-UHFFFAOYSA-N 0.000 description 12
- SENJXOPIZNYLHU-UHFFFAOYSA-N L-leucyl-L-arginine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CCCN=C(N)N SENJXOPIZNYLHU-UHFFFAOYSA-N 0.000 description 12
- KFKWRHQBZQICHA-STQMWFEESA-N L-leucyl-L-phenylalanine Natural products CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 KFKWRHQBZQICHA-STQMWFEESA-N 0.000 description 12
- QOOWRKBDDXQRHC-BQBZGAKWSA-N L-lysyl-L-alanine Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](N)CCCCN QOOWRKBDDXQRHC-BQBZGAKWSA-N 0.000 description 12
- LZDNBBYBDGBADK-UHFFFAOYSA-N L-valyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)C(N)C(C)C)C(O)=O)=CNC2=C1 LZDNBBYBDGBADK-UHFFFAOYSA-N 0.000 description 12
- SENJXOPIZNYLHU-IUCAKERBSA-N Leu-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CCCN=C(N)N SENJXOPIZNYLHU-IUCAKERBSA-N 0.000 description 12
- WXHFZJFZWNCDNB-KKUMJFAQSA-N Leu-Asn-Tyr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 WXHFZJFZWNCDNB-KKUMJFAQSA-N 0.000 description 12
- BPANDPNDMJHFEV-CIUDSAMLSA-N Leu-Asp-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O BPANDPNDMJHFEV-CIUDSAMLSA-N 0.000 description 12
- ULXYQAJWJGLCNR-YUMQZZPRSA-N Leu-Asp-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O ULXYQAJWJGLCNR-YUMQZZPRSA-N 0.000 description 12
- PVMPDMIKUVNOBD-CIUDSAMLSA-N Leu-Asp-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O PVMPDMIKUVNOBD-CIUDSAMLSA-N 0.000 description 12
- RVVBWTWPNFDYBE-SRVKXCTJSA-N Leu-Glu-Arg Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O RVVBWTWPNFDYBE-SRVKXCTJSA-N 0.000 description 12
- QVFGXCVIXXBFHO-AVGNSLFASA-N Leu-Glu-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O QVFGXCVIXXBFHO-AVGNSLFASA-N 0.000 description 12
- LLBQJYDYOLIQAI-JYJNAYRXSA-N Leu-Glu-Tyr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O LLBQJYDYOLIQAI-JYJNAYRXSA-N 0.000 description 12
- OXRLYTYUXAQTHP-YUMQZZPRSA-N Leu-Gly-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(O)=O OXRLYTYUXAQTHP-YUMQZZPRSA-N 0.000 description 12
- MJWVXZABPOKJJF-ACRUOGEOSA-N Leu-Phe-Phe Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O MJWVXZABPOKJJF-ACRUOGEOSA-N 0.000 description 12
- JDBQSGMJBMPNFT-AVGNSLFASA-N Leu-Pro-Val Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(O)=O JDBQSGMJBMPNFT-AVGNSLFASA-N 0.000 description 12
- ADJWHHZETYAAAX-SRVKXCTJSA-N Leu-Ser-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N ADJWHHZETYAAAX-SRVKXCTJSA-N 0.000 description 12
- XOWMDXHFSBCAKQ-SRVKXCTJSA-N Leu-Ser-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC(C)C XOWMDXHFSBCAKQ-SRVKXCTJSA-N 0.000 description 12
- ZGGVHTQAPHVMKM-IHPCNDPISA-N Leu-Trp-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)N[C@@H](CCCCN)C(=O)O)N ZGGVHTQAPHVMKM-IHPCNDPISA-N 0.000 description 12
- IXHKPDJKKCUKHS-GARJFASQSA-N Lys-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCCCN)N IXHKPDJKKCUKHS-GARJFASQSA-N 0.000 description 12
- MYZMQWHPDAYKIE-SRVKXCTJSA-N Lys-Leu-Ala Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O MYZMQWHPDAYKIE-SRVKXCTJSA-N 0.000 description 12
- XIZQPFCRXLUNMK-BZSNNMDCSA-N Lys-Leu-Phe Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](CCCCN)N XIZQPFCRXLUNMK-BZSNNMDCSA-N 0.000 description 12
- UQJOKDAYFULYIX-AVGNSLFASA-N Lys-Pro-Pro Chemical compound NCCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 UQJOKDAYFULYIX-AVGNSLFASA-N 0.000 description 12
- JHNOXVASMSXSNB-WEDXCCLWSA-N Lys-Thr-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O JHNOXVASMSXSNB-WEDXCCLWSA-N 0.000 description 12
- HLQWFLJOJRFXHO-CIUDSAMLSA-N Met-Glu-Ser Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O HLQWFLJOJRFXHO-CIUDSAMLSA-N 0.000 description 12
- KZKVVWBOGDKHKE-QTKMDUPCSA-N Met-Thr-His Chemical compound CSCC[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CC1=CNC=N1 KZKVVWBOGDKHKE-QTKMDUPCSA-N 0.000 description 12
- OTKQHDPECKUDSB-SZMVWBNQSA-N Met-Val-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CCSC)C(O)=O)=CNC2=C1 OTKQHDPECKUDSB-SZMVWBNQSA-N 0.000 description 12
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 12
- 108010079364 N-glycylalanine Proteins 0.000 description 12
- 108010002311 N-glycylglutamic acid Proteins 0.000 description 12
- 108010066427 N-valyltryptophan Proteins 0.000 description 12
- QPQDWBAJWOGAMJ-IHPCNDPISA-N Phe-Asp-Trp Chemical compound C([C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)C1=CC=CC=C1 QPQDWBAJWOGAMJ-IHPCNDPISA-N 0.000 description 12
- WPTYDQPGBMDUBI-QWRGUYRKSA-N Phe-Gly-Asn Chemical compound N[C@@H](Cc1ccccc1)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O WPTYDQPGBMDUBI-QWRGUYRKSA-N 0.000 description 12
- ZLGQEBCCANLYRA-RYUDHWBXSA-N Phe-Gly-Glu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(O)=O ZLGQEBCCANLYRA-RYUDHWBXSA-N 0.000 description 12
- MGLBSROLWAWCKN-FCLVOEFKSA-N Phe-Phe-Thr Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(O)=O MGLBSROLWAWCKN-FCLVOEFKSA-N 0.000 description 12
- IFMDQWDAJUMMJC-DCAQKATOSA-N Pro-Ala-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O IFMDQWDAJUMMJC-DCAQKATOSA-N 0.000 description 12
- CJZTUKSFZUSNCC-FXQIFTODSA-N Pro-Asp-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H]1CCCN1 CJZTUKSFZUSNCC-FXQIFTODSA-N 0.000 description 12
- ZCXQTRXYZOSGJR-FXQIFTODSA-N Pro-Asp-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O ZCXQTRXYZOSGJR-FXQIFTODSA-N 0.000 description 12
- SFECXGVELZFBFJ-VEVYYDQMSA-N Pro-Asp-Thr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O SFECXGVELZFBFJ-VEVYYDQMSA-N 0.000 description 12
- LXVLKXPFIDDHJG-CIUDSAMLSA-N Pro-Glu-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O LXVLKXPFIDDHJG-CIUDSAMLSA-N 0.000 description 12
- XYSXOCIWCPFOCG-IHRRRGAJSA-N Pro-Leu-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O XYSXOCIWCPFOCG-IHRRRGAJSA-N 0.000 description 12
- CPRLKHJUFAXVTD-ULQDDVLXSA-N Pro-Leu-Tyr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O CPRLKHJUFAXVTD-ULQDDVLXSA-N 0.000 description 12
- AJBQTGZIZQXBLT-STQMWFEESA-N Pro-Phe-Gly Chemical compound C([C@@H](C(=O)NCC(=O)O)NC(=O)[C@H]1NCCC1)C1=CC=CC=C1 AJBQTGZIZQXBLT-STQMWFEESA-N 0.000 description 12
- XYAFCOJKICBRDU-JYJNAYRXSA-N Pro-Phe-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(O)=O XYAFCOJKICBRDU-JYJNAYRXSA-N 0.000 description 12
- SXJOPONICMGFCR-DCAQKATOSA-N Pro-Ser-Lys Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)O SXJOPONICMGFCR-DCAQKATOSA-N 0.000 description 12
- DLZBBDSPTJBOOD-BPNCWPANSA-N Pro-Tyr-Ala Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C)C(O)=O DLZBBDSPTJBOOD-BPNCWPANSA-N 0.000 description 12
- FUOGXAQMNJMBFG-WPRPVWTQSA-N Pro-Val-Gly Chemical compound OC(=O)CNC(=O)[C@H](C(C)C)NC(=O)[C@@H]1CCCN1 FUOGXAQMNJMBFG-WPRPVWTQSA-N 0.000 description 12
- BTKUIVBNGBFTTP-WHFBIAKZSA-N Ser-Ala-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)NCC(O)=O BTKUIVBNGBFTTP-WHFBIAKZSA-N 0.000 description 12
- BGOWRLSWJCVYAQ-CIUDSAMLSA-N Ser-Asp-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O BGOWRLSWJCVYAQ-CIUDSAMLSA-N 0.000 description 12
- LAFKUZYWNCHOHT-WHFBIAKZSA-N Ser-Glu Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CCC(O)=O LAFKUZYWNCHOHT-WHFBIAKZSA-N 0.000 description 12
- WEQAYODCJHZSJZ-KKUMJFAQSA-N Ser-His-Tyr Chemical compound C([C@H](NC(=O)[C@H](CO)N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CN=CN1 WEQAYODCJHZSJZ-KKUMJFAQSA-N 0.000 description 12
- OQSQCUWQOIHECT-YJRXYDGGSA-N Ser-Tyr-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(O)=O OQSQCUWQOIHECT-YJRXYDGGSA-N 0.000 description 12
- DGDCHPCRMWEOJR-FQPOAREZSA-N Thr-Ala-Tyr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 DGDCHPCRMWEOJR-FQPOAREZSA-N 0.000 description 12
- YBXMGKCLOPDEKA-NUMRIWBASA-N Thr-Asp-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O YBXMGKCLOPDEKA-NUMRIWBASA-N 0.000 description 12
- CQNFRKAKGDSJFR-NUMRIWBASA-N Thr-Glu-Asn Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N)O CQNFRKAKGDSJFR-NUMRIWBASA-N 0.000 description 12
- NCXVJIQMWSGRHY-KXNHARMFSA-N Thr-Leu-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@@H]1C(=O)O)N)O NCXVJIQMWSGRHY-KXNHARMFSA-N 0.000 description 12
- SCSVNSNWUTYSFO-WDCWCFNPSA-N Thr-Lys-Glu Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O SCSVNSNWUTYSFO-WDCWCFNPSA-N 0.000 description 12
- WVVOFCVMHAXGLE-LFSVMHDDSA-N Thr-Phe-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C)C(O)=O WVVOFCVMHAXGLE-LFSVMHDDSA-N 0.000 description 12
- AOAMKFFPFOPMLX-BVSLBCMMSA-N Trp-Arg-Phe Chemical compound C([C@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)N)C(O)=O)C1=CC=CC=C1 AOAMKFFPFOPMLX-BVSLBCMMSA-N 0.000 description 12
- RZRDCZDUYHBGDT-BVSLBCMMSA-N Trp-Met-Tyr Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O RZRDCZDUYHBGDT-BVSLBCMMSA-N 0.000 description 12
- XGFOXYJQBRTJPO-PJODQICGSA-N Trp-Pro-Ala Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O XGFOXYJQBRTJPO-PJODQICGSA-N 0.000 description 12
- AYPAIRCDLARHLM-KKUMJFAQSA-N Tyr-Asn-Lys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCCCN)C(=O)O)N)O AYPAIRCDLARHLM-KKUMJFAQSA-N 0.000 description 12
- GFJXBLSZOFWHAW-JYJNAYRXSA-N Tyr-His-Glu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(O)=O)C(O)=O GFJXBLSZOFWHAW-JYJNAYRXSA-N 0.000 description 12
- AEOFMCAKYIQQFY-YDHLFZDLSA-N Tyr-Val-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 AEOFMCAKYIQQFY-YDHLFZDLSA-N 0.000 description 12
- DIOSYUIWOQCXNR-ONGXEEELSA-N Val-Lys-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)NCC(O)=O DIOSYUIWOQCXNR-ONGXEEELSA-N 0.000 description 12
- LJSZPMSUYKKKCP-UBHSHLNASA-N Val-Phe-Ala Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](C)C(O)=O)CC1=CC=CC=C1 LJSZPMSUYKKKCP-UBHSHLNASA-N 0.000 description 12
- JAIZPWVHPQRYOU-ZJDVBMNYSA-N Val-Thr-Thr Chemical compound C[C@H]([C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)O)NC(=O)[C@H](C(C)C)N)O JAIZPWVHPQRYOU-ZJDVBMNYSA-N 0.000 description 12
- HTONZBWRYUKUKC-RCWTZXSCSA-N Val-Thr-Val Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O HTONZBWRYUKUKC-RCWTZXSCSA-N 0.000 description 12
- JVGDAEKKZKKZFO-RCWTZXSCSA-N Val-Val-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)N)O JVGDAEKKZKKZFO-RCWTZXSCSA-N 0.000 description 12
- 108010076324 alanyl-glycyl-glycine Proteins 0.000 description 12
- 108010086434 alanyl-seryl-glycine Proteins 0.000 description 12
- 108010087924 alanylproline Proteins 0.000 description 12
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 12
- 230000004075 alteration Effects 0.000 description 12
- 230000000692 anti-sense effect Effects 0.000 description 12
- 108010060199 cysteinylproline Proteins 0.000 description 12
- 239000000499 gel Substances 0.000 description 12
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 12
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 12
- 108010075431 glycyl-alanyl-phenylalanine Proteins 0.000 description 12
- 108010089804 glycyl-threonine Proteins 0.000 description 12
- 108010081551 glycylphenylalanine Proteins 0.000 description 12
- 108010025306 histidylleucine Proteins 0.000 description 12
- 108010053037 kyotorphin Proteins 0.000 description 12
- 108010044056 leucyl-phenylalanine Proteins 0.000 description 12
- 108010000761 leucylarginine Proteins 0.000 description 12
- 108010057821 leucylproline Proteins 0.000 description 12
- 108010012058 leucyltyrosine Proteins 0.000 description 12
- 238000002703 mutagenesis Methods 0.000 description 12
- 231100000350 mutagenesis Toxicity 0.000 description 12
- 108010074082 phenylalanyl-alanyl-lysine Proteins 0.000 description 12
- 238000003752 polymerase chain reaction Methods 0.000 description 12
- 108010079317 prolyl-tyrosine Proteins 0.000 description 12
- 108010048397 seryl-lysyl-leucine Proteins 0.000 description 12
- 108010031491 threonyl-lysyl-glutamic acid Proteins 0.000 description 12
- 108010029384 tryptophyl-histidine Proteins 0.000 description 12
- 108010071635 tyrosyl-prolyl-arginine Proteins 0.000 description 12
- 108010073969 valyllysine Proteins 0.000 description 12
- QUIGLPSHIFPEOV-CIUDSAMLSA-N Ala-Lys-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O QUIGLPSHIFPEOV-CIUDSAMLSA-N 0.000 description 11
- BSYKSCBTTQKOJG-GUBZILKMSA-N Arg-Pro-Ala Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O BSYKSCBTTQKOJG-GUBZILKMSA-N 0.000 description 11
- KBKGRMNVKPSQIF-XDTLVQLUSA-N Glu-Ala-Tyr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O KBKGRMNVKPSQIF-XDTLVQLUSA-N 0.000 description 11
- RBXSZQRSEGYDFG-GUBZILKMSA-N Glu-Lys-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O RBXSZQRSEGYDFG-GUBZILKMSA-N 0.000 description 11
- LVXFNTIIGOQBMD-SRVKXCTJSA-N His-Leu-Ser Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O LVXFNTIIGOQBMD-SRVKXCTJSA-N 0.000 description 11
- HYIFFZAQXPUEAU-QWRGUYRKSA-N Leu-Gly-Leu Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC(C)C HYIFFZAQXPUEAU-QWRGUYRKSA-N 0.000 description 11
- MAXILRZVORNXBE-PMVMPFDFSA-N Leu-Phe-Trp Chemical compound C([C@H](NC(=O)[C@@H](N)CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)C1=CC=CC=C1 MAXILRZVORNXBE-PMVMPFDFSA-N 0.000 description 11
- FZIJIFCXUCZHOL-CIUDSAMLSA-N Lys-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCCN FZIJIFCXUCZHOL-CIUDSAMLSA-N 0.000 description 11
- IDCKUIWEIZYVSO-WFBYXXMGSA-N Ser-Ala-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)CO)C)C(O)=O)=CNC2=C1 IDCKUIWEIZYVSO-WFBYXXMGSA-N 0.000 description 11
- OHKLFYXEOGGGCK-ZLUOBGJFSA-N Ser-Asp-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O OHKLFYXEOGGGCK-ZLUOBGJFSA-N 0.000 description 11
- UGTZYIPOBYXWRW-SRVKXCTJSA-N Ser-Phe-Asp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(O)=O)C(O)=O UGTZYIPOBYXWRW-SRVKXCTJSA-N 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 11
- NLSNVZAREYQMGR-HJGDQZAQSA-N Thr-Asp-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O NLSNVZAREYQMGR-HJGDQZAQSA-N 0.000 description 11
- JKUZFODWJGEQAP-KBPBESRZSA-N Tyr-Gly-Lys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)O)N)O JKUZFODWJGEQAP-KBPBESRZSA-N 0.000 description 11
- 108010038633 aspartylglutamate Proteins 0.000 description 11
- 238000010511 deprotection reaction Methods 0.000 description 11
- 238000002708 random mutagenesis Methods 0.000 description 11
- 108010011667 Ala-Phe-Ala Proteins 0.000 description 10
- XRUJOVRWNMBAAA-NHCYSSNCSA-N Ala-Phe-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=CC=C1 XRUJOVRWNMBAAA-NHCYSSNCSA-N 0.000 description 10
- KMFPQTITXUKJOV-DCAQKATOSA-N Arg-Ser-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O KMFPQTITXUKJOV-DCAQKATOSA-N 0.000 description 10
- AXVIGSRGTMNSJU-YESZJQIVSA-N Leu-Tyr-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N2CCC[C@@H]2C(=O)O)N AXVIGSRGTMNSJU-YESZJQIVSA-N 0.000 description 10
- HYSVGEAWTGPMOA-IHRRRGAJSA-N Lys-Pro-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O HYSVGEAWTGPMOA-IHRRRGAJSA-N 0.000 description 10
- VMRFIKXKOFNMHW-GUBZILKMSA-N Val-Arg-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CO)C(=O)O)N VMRFIKXKOFNMHW-GUBZILKMSA-N 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 10
- 108010031719 prolyl-serine Proteins 0.000 description 10
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 9
- DKJPOZOEBONHFS-ZLUOBGJFSA-N Ala-Ala-Asp Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(O)=O DKJPOZOEBONHFS-ZLUOBGJFSA-N 0.000 description 9
- 108020004705 Codon Proteins 0.000 description 9
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 9
- AUEJLPRZGVVDNU-UHFFFAOYSA-N N-L-tyrosyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CC1=CC=C(O)C=C1 AUEJLPRZGVVDNU-UHFFFAOYSA-N 0.000 description 9
- 108700026244 Open Reading Frames Proteins 0.000 description 9
- FKNHDDTXBWMZIR-GEMLJDPKSA-N acetic acid;(2s)-1-[(2r)-2-amino-3-sulfanylpropanoyl]pyrrolidine-2-carboxylic acid Chemical compound CC(O)=O.SC[C@H](N)C(=O)N1CCC[C@H]1C(O)=O FKNHDDTXBWMZIR-GEMLJDPKSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 108010077515 glycylproline Proteins 0.000 description 9
- 108010009298 lysylglutamic acid Proteins 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- 108010078580 tyrosylleucine Proteins 0.000 description 9
- 241000588724 Escherichia coli Species 0.000 description 8
- WYSJPCTWSBJFCO-AVGNSLFASA-N His-Met-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CC1=CN=CN1)N WYSJPCTWSBJFCO-AVGNSLFASA-N 0.000 description 8
- YOKVEHGYYQEQOP-QWRGUYRKSA-N Leu-Leu-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O YOKVEHGYYQEQOP-QWRGUYRKSA-N 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 229930186147 Cephalosporin Natural products 0.000 description 7
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 7
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 7
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 7
- 229940124587 cephalosporin Drugs 0.000 description 7
- 150000001780 cephalosporins Chemical class 0.000 description 7
- 239000013615 primer Substances 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 235000011130 ammonium sulphate Nutrition 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 5
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 238000001597 immobilized metal affinity chromatography Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000002864 sequence alignment Methods 0.000 description 5
- 239000004474 valine Substances 0.000 description 5
- CRTADXBPEXSZLH-UHFFFAOYSA-N (4-nitrophenyl)methyl benzoate Chemical compound C1=CC([N+](=O)[O-])=CC=C1COC(=O)C1=CC=CC=C1 CRTADXBPEXSZLH-UHFFFAOYSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 4
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 4
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 229940088710 antibiotic agent Drugs 0.000 description 4
- 239000012062 aqueous buffer Substances 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000037429 base substitution Effects 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000011210 chromatographic step Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- GREONXVWZTVIIG-JTQLQIEISA-N (4-nitrophenyl)methyl (2s)-2,5-diamino-5-oxopentanoate Chemical compound NC(=O)CC[C@H](N)C(=O)OCC1=CC=C([N+]([O-])=O)C=C1 GREONXVWZTVIIG-JTQLQIEISA-N 0.000 description 3
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 3
- 102100033639 Acetylcholinesterase Human genes 0.000 description 3
- 108010022752 Acetylcholinesterase Proteins 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 108010053652 Butyrylcholinesterase Proteins 0.000 description 3
- 102100032404 Cholinesterase Human genes 0.000 description 3
- KQJBFMJFUXAYPK-AVGNSLFASA-N His-Met-Met Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CC1=CN=CN1)N KQJBFMJFUXAYPK-AVGNSLFASA-N 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 229940022698 acetylcholinesterase Drugs 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 108010085013 carbamate hydrolase Proteins 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 235000014304 histidine Nutrition 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 3
- JKTYGPATCNUWKN-UHFFFAOYSA-N 4-nitrobenzyl alcohol Chemical compound OCC1=CC=C([N+]([O-])=O)C=C1 JKTYGPATCNUWKN-UHFFFAOYSA-N 0.000 description 2
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 244000153158 Ammi visnaga Species 0.000 description 2
- 235000010585 Ammi visnaga Nutrition 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000003914 Cholinesterases Human genes 0.000 description 2
- 108090000322 Cholinesterases Proteins 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 239000003155 DNA primer Substances 0.000 description 2
- 241000222175 Diutina rugosa Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- OQXDUSZKISQQSS-GUBZILKMSA-N Glu-Lys-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O OQXDUSZKISQQSS-GUBZILKMSA-N 0.000 description 2
- BMWFDYIYBAFROD-WPRPVWTQSA-N Gly-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)CN BMWFDYIYBAFROD-WPRPVWTQSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 239000006137 Luria-Bertani broth Substances 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- FMLRRBDLBJLJIK-DCAQKATOSA-N Pro-Leu-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H]1CCCN1 FMLRRBDLBJLJIK-DCAQKATOSA-N 0.000 description 2
- XNCUYZKGQOCOQH-YUMQZZPRSA-N Ser-Leu-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O XNCUYZKGQOCOQH-YUMQZZPRSA-N 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 108010055297 Sterol Esterase Proteins 0.000 description 2
- 102000000019 Sterol Esterase Human genes 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- 102000005488 Thioesterase Human genes 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- FZSPNKUFROZBSG-ZKWXMUAHSA-N Val-Ala-Asp Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(O)=O FZSPNKUFROZBSG-ZKWXMUAHSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 2
- 239000008366 buffered solution Substances 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- OKBVVJOGVLARMR-QSWIMTSFSA-N cefixime Chemical compound S1C(N)=NC(C(=N\OCC(O)=O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 OKBVVJOGVLARMR-QSWIMTSFSA-N 0.000 description 2
- 229960002129 cefixime Drugs 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007257 deesterification reaction Methods 0.000 description 2
- 230000002939 deleterious effect Effects 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 150000002411 histidines Chemical class 0.000 description 2
- 238000007327 hydrogenolysis reaction Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000003367 kinetic assay Methods 0.000 description 2
- 239000012160 loading buffer Substances 0.000 description 2
- 108010017391 lysylvaline Proteins 0.000 description 2
- 239000012533 medium component Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- ZHCAAFJSYLFLPX-UHFFFAOYSA-N nitrocyclohexatriene Chemical group [O-][N+](=O)C1=CC=C=C[CH]1 ZHCAAFJSYLFLPX-UHFFFAOYSA-N 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 239000003495 polar organic solvent Substances 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000012925 reference material Substances 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229960001153 serine Drugs 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229960002180 tetracycline Drugs 0.000 description 2
- 229930101283 tetracycline Natural products 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- 108020002982 thioesterase Proteins 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- QXCDWEAQVXHGRM-QFIPXVFZSA-N (2S)-2-[diphenylphosphoryl(phenylmethoxycarbonyloxy)amino]-4-hydroxybutanoic acid Chemical compound C=1C=CC=CC=1P(=O)(C=1C=CC=CC=1)N([C@@H](CCO)C(O)=O)OC(=O)OCC1=CC=CC=C1 QXCDWEAQVXHGRM-QFIPXVFZSA-N 0.000 description 1
- KBCDNFAVIYSGPR-WYGHCFQGSA-N (2r)-2-[[(2s)-4-amino-2-[[(2s)-5-amino-2-[[(2s,3s)-2-[[(2s)-2-[[(2r)-2-amino-3-sulfanylpropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-methylpentanoyl]amino]-5-oxopentanoyl]amino]-4-oxobutanoyl]amino]-3-sulfanylpropanoic acid Chemical compound SC[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](NC(=O)[C@@H](N)CS)CC1=CC=C(O)C=C1 KBCDNFAVIYSGPR-WYGHCFQGSA-N 0.000 description 1
- UBXPAGGJJMSWLC-JTQLQIEISA-N (2s)-4-hydroxy-2-(phenylmethoxycarbonylamino)butanoic acid Chemical compound OCC[C@@H](C(O)=O)NC(=O)OCC1=CC=CC=C1 UBXPAGGJJMSWLC-JTQLQIEISA-N 0.000 description 1
- CTJMTYUXEWDGEW-UHFFFAOYSA-N 2-(phenylmethoxycarbonylamino)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1NC(=O)OCC1=CC=CC=C1 CTJMTYUXEWDGEW-UHFFFAOYSA-N 0.000 description 1
- 108010054792 4-nitrobenzyl esterase Proteins 0.000 description 1
- FJVAQLJNTSUQPY-CIUDSAMLSA-N Ala-Ala-Lys Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCCN FJVAQLJNTSUQPY-CIUDSAMLSA-N 0.000 description 1
- ZIWWTZWAKYBUOB-CIUDSAMLSA-N Ala-Asp-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O ZIWWTZWAKYBUOB-CIUDSAMLSA-N 0.000 description 1
- NWVVKQZOVSTDBQ-CIUDSAMLSA-N Ala-Glu-Arg Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O NWVVKQZOVSTDBQ-CIUDSAMLSA-N 0.000 description 1
- WKOBSJOZRJJVRZ-FXQIFTODSA-N Ala-Glu-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O WKOBSJOZRJJVRZ-FXQIFTODSA-N 0.000 description 1
- AWZKCUCQJNTBAD-SRVKXCTJSA-N Ala-Leu-Lys Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCCCN AWZKCUCQJNTBAD-SRVKXCTJSA-N 0.000 description 1
- DEWWPUNXRNGMQN-LPEHRKFASA-N Ala-Met-Pro Chemical compound C[C@@H](C(=O)N[C@@H](CCSC)C(=O)N1CCC[C@@H]1C(=O)O)N DEWWPUNXRNGMQN-LPEHRKFASA-N 0.000 description 1
- AENHOIXXHKNIQL-AUTRQRHGSA-N Ala-Tyr-Ala Chemical compound [O-]C(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@@H]([NH3+])C)CC1=CC=C(O)C=C1 AENHOIXXHKNIQL-AUTRQRHGSA-N 0.000 description 1
- QRIYOHQJRDHFKF-UWJYBYFXSA-N Ala-Tyr-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=C(O)C=C1 QRIYOHQJRDHFKF-UWJYBYFXSA-N 0.000 description 1
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- UGKZHCBLMLSANF-CIUDSAMLSA-N Asp-Asn-Leu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(O)=O UGKZHCBLMLSANF-CIUDSAMLSA-N 0.000 description 1
- UJGRZQYSNYTCAX-SRVKXCTJSA-N Asp-Leu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O UJGRZQYSNYTCAX-SRVKXCTJSA-N 0.000 description 1
- MYOHQBFRJQFIDZ-KKUMJFAQSA-N Asp-Leu-Tyr Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O MYOHQBFRJQFIDZ-KKUMJFAQSA-N 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 108010051152 Carboxylesterase Proteins 0.000 description 1
- 102000013392 Carboxylesterase Human genes 0.000 description 1
- 102000004308 Carboxylic Ester Hydrolases Human genes 0.000 description 1
- 108090000863 Carboxylic Ester Hydrolases Proteins 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002271 DEAE-Sepharose Polymers 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 108020001019 DNA Primers Proteins 0.000 description 1
- 230000009946 DNA mutation Effects 0.000 description 1
- 238000012270 DNA recombination Methods 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 241000168726 Dictyostelium discoideum Species 0.000 description 1
- 244000168141 Geotrichum candidum Species 0.000 description 1
- 235000017388 Geotrichum candidum Nutrition 0.000 description 1
- KUBFPYIMAGXGBT-ACZMJKKPSA-N Gln-Ser-Ala Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O KUBFPYIMAGXGBT-ACZMJKKPSA-N 0.000 description 1
- TUTIHHSZKFBMHM-WHFBIAKZSA-N Glu-Asn Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(O)=O TUTIHHSZKFBMHM-WHFBIAKZSA-N 0.000 description 1
- UHPAZODVFFYEEL-QWRGUYRKSA-N Gly-Leu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)CN UHPAZODVFFYEEL-QWRGUYRKSA-N 0.000 description 1
- TVUWMSBGMVAHSJ-KBPBESRZSA-N Gly-Leu-Phe Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 TVUWMSBGMVAHSJ-KBPBESRZSA-N 0.000 description 1
- QSQXZZCGPXQBPP-BQBZGAKWSA-N Gly-Pro-Cys Chemical compound C1C[C@H](N(C1)C(=O)CN)C(=O)N[C@@H](CS)C(=O)O QSQXZZCGPXQBPP-BQBZGAKWSA-N 0.000 description 1
- RVKIPWVMZANZLI-UHFFFAOYSA-N H-Lys-Trp-OH Natural products C1=CC=C2C(CC(NC(=O)C(N)CCCCN)C(O)=O)=CNC2=C1 RVKIPWVMZANZLI-UHFFFAOYSA-N 0.000 description 1
- WSEITRHJRVDTRX-QTKMDUPCSA-N His-Met-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CC1=CN=CN1)N)O WSEITRHJRVDTRX-QTKMDUPCSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- BRTVHXHCUSXYRI-CIUDSAMLSA-N Leu-Ser-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O BRTVHXHCUSXYRI-CIUDSAMLSA-N 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- WEDDFMCSUNNZJR-WDSKDSINSA-N Met-Ser Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CO)C(O)=O WEDDFMCSUNNZJR-WDSKDSINSA-N 0.000 description 1
- WUGMRIBZSVSJNP-UHFFFAOYSA-N N-L-alanyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)C(N)C)C(O)=O)=CNC2=C1 WUGMRIBZSVSJNP-UHFFFAOYSA-N 0.000 description 1
- DDYIRGBOZVKRFR-AVGNSLFASA-N Phe-Asp-Glu Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N DDYIRGBOZVKRFR-AVGNSLFASA-N 0.000 description 1
- KCIKTPHTEYBXMG-BVSLBCMMSA-N Phe-Trp-Arg Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O KCIKTPHTEYBXMG-BVSLBCMMSA-N 0.000 description 1
- 239000005594 Phenmedipham Substances 0.000 description 1
- OOLOTUZJUBOMAX-GUBZILKMSA-N Pro-Ala-Val Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(O)=O OOLOTUZJUBOMAX-GUBZILKMSA-N 0.000 description 1
- CYQQWUPHIZVCNY-GUBZILKMSA-N Pro-Arg-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(O)=O CYQQWUPHIZVCNY-GUBZILKMSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- IDQFQFVEWMWRQQ-DLOVCJGASA-N Ser-Ala-Phe Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O IDQFQFVEWMWRQQ-DLOVCJGASA-N 0.000 description 1
- ZIFYDQAFEMIZII-GUBZILKMSA-N Ser-Leu-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O ZIFYDQAFEMIZII-GUBZILKMSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 241000251733 Tetronarce californica Species 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- MBLJBGZWLHTJBH-SZMVWBNQSA-N Trp-Val-Arg Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)=CNC2=C1 MBLJBGZWLHTJBH-SZMVWBNQSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- HPYDSVWYXXKHRD-VIFPVBQESA-N Tyr-Gly Chemical compound [O-]C(=O)CNC(=O)[C@@H]([NH3+])CC1=CC=C(O)C=C1 HPYDSVWYXXKHRD-VIFPVBQESA-N 0.000 description 1
- AUZADXNWQMBZOO-JYJNAYRXSA-N Tyr-Pro-Arg Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)C1=CC=C(O)C=C1 AUZADXNWQMBZOO-JYJNAYRXSA-N 0.000 description 1
- HQYVQDRYODWONX-DCAQKATOSA-N Val-His-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CO)C(=O)O)N HQYVQDRYODWONX-DCAQKATOSA-N 0.000 description 1
- UMPVMAYCLYMYGA-ONGXEEELSA-N Val-Leu-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O UMPVMAYCLYMYGA-ONGXEEELSA-N 0.000 description 1
- STTYIMSDIYISRG-UHFFFAOYSA-N Valyl-Serine Chemical compound CC(C)C(N)C(=O)NC(CO)C(O)=O STTYIMSDIYISRG-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 239000012445 acidic reagent Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 108010045350 alanyl-tyrosyl-alanine Proteins 0.000 description 1
- 108010041407 alanylaspartic acid Proteins 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 108010060035 arginylproline Proteins 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 102000038379 digestive enzymes Human genes 0.000 description 1
- 108091007734 digestive enzymes Proteins 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000009088 enzymatic function Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004362 fungal culture Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 108010050848 glycylleucine Proteins 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 description 1
- 238000010667 large scale reaction Methods 0.000 description 1
- 229940059904 light mineral oil Drugs 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- SOXAGEOHPCXXIO-DVOMOZLQSA-N menthyl anthranilate Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1OC(=O)C1=CC=CC=C1N SOXAGEOHPCXXIO-DVOMOZLQSA-N 0.000 description 1
- 229960002248 meradimate Drugs 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002741 methionine derivatives Chemical group 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- IDOWTHOLJBTAFI-UHFFFAOYSA-N phenmedipham Chemical compound COC(=O)NC1=CC=CC(OC(=O)NC=2C=C(C)C=CC=2)=C1 IDOWTHOLJBTAFI-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108010029020 prolylglycine Proteins 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 108020002447 serine esterase Proteins 0.000 description 1
- 102000005428 serine esterase Human genes 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000005062 synaptic transmission Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 108700006080 tocinamide Proteins 0.000 description 1
- 238000006257 total synthesis reaction Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
Definitions
- This invention relates to the creation, optimization and use of new enzyme catalysts for deprotection in organic synthesis. More specifically, the invention relates to enzymes optimized to remove ester-linked para-nitrobenzyl (pNB) protecting groups from carboxyl functional groups on 3-lactam antibiotics and other compounds. This invention also relates to methods by which such enzymes can be altered and optimized for specific substrates and reaction conditions.
- pNB ester-linked para-nitrobenzyl
- the array of protecting group techniques can be substantially enriched by the application of enzymes.
- Enzymes can discriminate stereoisomers as well as offer the opportunity to carry out highly chemo- and regioselective transformations.
- the highly selective nature of enzymes may be exploited advantageously in the manipulation of protecting groups and in the synthesis of chiral compounds such as drugs and natural products.
- enzymes function under mild conditions, often operating at or near room temperature and at neutral, weakly acidic or weakly basic pH values. In many cases they combine a high selectivity for the reactions they catalyze and the structures they recognize with a broad substrate tolerance. Therefore, the application of enzymes can be viable alternatives to classical chemical protection/deprotection methods for the introduction and/or removal of suitable protecting groups (1).
- the introduction of new enzymes with reactivities and substrate tolerances differing from existing enzymes is highly desirable.
- Carboxy groups are often protected by conversion to the benzyl or para- nitrobenzyl (pNB) esters (2).
- Benzyl esters are resistant to treatment with reagents such as trifluoroacetic acid, triethylamine, diisopropylethylamine, but are readily removed by hydrogenolysis (over a Pd catalyst). Hydrogenolysis is not appropriate, however, for compounds containing double bonds, azides, i mines, or activated aldehydes, or other functional groups that will be reduced.
- Benzyl esters can also be cleaved using a zinc catalyst under anhydrous conditions, but the extent of hydrolysis is variable and dependent on the conditions (e.g., time and temperature) of the reaction. The reaction must be carried out under anhydrous conditions, in an organic solvent. Both the organic solvent and catalyst can give rise to toxicity or disposal problems for large-scale reactions.
- Modification by substitution in the aromatic ring can alter the sensitivity of the benzyl group towards deprotection by acidic reagents.
- PNB esters display increased resistance to acid hydrolysis.
- Para-nitrobenzyl alcohol (pNB-OH) is commonly used to protect carboxylic acid functionalities in cephalosporin-derived antibiotics (U.S. Patent 3,725,359 [1975]) (3).
- the pNB ester linkage is stable enough to withstand the various reaction conditions used in subsequent chemical steps.
- pNB esterase para-nitrobenzyl esterase
- pNB esterase A chromatographically pure solution of pNB esterase was isolated at Eli Lilly, and its amino acid sequence partially determined. Using this partial sequence, DNA primers were constructed and used to isolate and sequence the gene for pNB esterase. This gene was cloned into E. coli, where it was over-expressed to produce pNB esterase in large quantities (4). However, partially purified enzyme prepara ⁇ tions of "pNB esterase" could not compete with the speed, economy, or the small reaction volumes (due to lack of solubility of substrate in purely aqueous environ ⁇ ments) of the zinc-catalyzed deprotection reaction. The targeted reaction substrates have changed over the fifteen year period as well.
- Cephalosporin-derived antibiotics continued to evolve from the first generation cephalexin (one of the two original cephalosporin substrates used to search for pNB esterase), second generation cefaclor, third generation cefixime, and fourth generation loracarbef. These antibiotics have been developed to be readily absorbed (generation one), more potent (generation two), much more potent (generation three), and, finally, enormous more stable in the body (generation four)
- the pNB esterase enzyme has been further characterized (6). It is a water soluble, monomeric serine esterase of 54 kD molecular weight and a pl of 4.1.
- the enzyme is active on a variety of ester substrates, ranging from the cephalosporin- derived compounds on which it was screened to a number of simple organic esters. Reported KM values for cephalosporin-derived substrates are in 0.5 to 2 mM range. The enzyme functions best at temperatures below 50°C, and its pH optimum is between 8 and 9.
- the pNB esterase still suffers from a problem common to a large number of enzyme reactions in the performance of synthetic chemistry: the desired substrates are only sparingly soluble in water, and the enzyme's catalytic ability is drastically reduced by even small quantities of water-miscible non-aqueous solvents.
- new enzymes which have expanded catalytic capabilities.
- new enzymes are needed which can be used to provide ester cleavage for a variety of substrates and settings, including polar non-aqueous solvents.
- modified para-nitrobenzyl esterases which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.
- Unmodified para-nitrobenzyl esterase has an amino acid sequence which includes numbered positions ranging sequentially from 1 to 489 (SEQ. ID. NO. 2).
- SEQ. ID. NO. 2 As a feature of the present invention, it was discovered that substitution of amino acids at one or more specific amino acid positions resulted in the formation of enzymes having improved capabilities in aqueous and aqueous-organic media.
- the specific amino acid position numbers at which substitutions are made to achieve the modified para-nitrobenzyl esterases in accordance with the present invention are position Nos. 60, 94, 96, 144, 267, 271, 322, 334, 343, 358 and 370.
- specific amino acid substitutions are disclosed which provide specific modified para-nitrobenzyl esterases having improved stability and/or ester hydrolysis activity in organic media.
- the specific amino acid substitutions include I60V, S94G, N96S, L144M, K267R, F271L,
- one or more of the specific substitutions increases the enzymatic activity and/or stability of the esterases in aqueous and aqueous-organic media.
- Ten specific modified para-nitrobenzyl esterases are disclosed which show enhanced activity in aqueous or aqueous-organic media over naturally occurring para- nitrobenzyl esterase.
- the amino acid sequences for these modified esterases are set forth in SEQ. ID. NOS. 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22.
- a method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase.
- the method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase.
- the library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes.
- the clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Further modified variants can be produced by accumulating the beneficial mutations identified in this manner.
- improvements in the catalytic activity of modified para-nitrobenzyl esterases with respect to a particular para-nitrobenzyl ester compound is determined by screening the modified enzymes with a substrate that is the para-nitrophenyl ester of the compound of interest. For example, screening of esterases for their ability to hydrolyze para-nitrobenzyl loracarbef is accomplished by screening the enzymes ability to hydrolyze para- nitrophenyl loracarbef .
- the use of para-nitrophenyl ester as a screening substrate is especially well-suited for screening large numbers of modified esterases because enzymatic activity is easily measured due to the generation of a colored product, i.e. para-nitrophenol.
- the yellow colored para-nitrophenyl cleavage product is easily measured to provide an accurate measure of the modified esters ability to hydrolyze the specific para-nitrobenzyl ester compound. Further, the ability of the modified enzymes to hydrolyze para-nitrophenyl ester is a good indication of the enzyme's ability to hydrolyze para-nitrobenzyl groups. This method allows the screening of large numbers of slightly different variations of enzymes which have been produced by random mutagenesis. This ability to easily screen large numbers of modified enzymes for their esterase activity increases the likelihood of identifying additional enzymes having increased activity in aqueous or aqueous-organic media and on other related substrates.
- FIG. 1 is a diagrammatic representation of the substrates and products of reactions catalyzed by para-nitrobenzyl esterase and modifications thereof.
- FIG. la shows the reaction wherein loracarbef nucleus-para-nitrobenzyl ester is hydrolyzed.
- FIG. lb shows the reaction wherein para-nitrophenyl acetate is hydrolyzed.
- FIG. lc shows the reaction wherein loracarbef nucleus-para-nitrophenyl ester is hydrolyzed.
- FIG. 2 is a diagram showing the amino acid substitution progression in para- nitrobenzyl esterase variants.
- the esterase variants are labeled in bold-type and boxed beneath each label are the amino acid substitutions present in each variant.
- the amino acid substitutions were determined by translation of DNA sequencing results.
- FIGS. 3a-3o show the DNA sequence alignment of enzyme variants identified in accordance with the present invention as they align with naturally occurring para-nitrobenzyl esterase (0-Wtpnb).
- the variants are listed from top to bottom by generation. Boxed regions indicate DNA sequence regions where all variants are identical.
- the columns of DNA bases not boxed are those where at least one mutation in one of the variants has occurred.
- FIGS. 4a-4e are the amino acid sequence alignment of the enzyme variants.
- the variants are listed from top to bottom by generation.
- the boxed regions indicate amino acid sequence regions where the variants are all identical with naturally occurring para-nitrobenzyl esterase.
- the columns of amino acids not boxed are those where at least one mutation in one of the variants has occurred.
- FIG. 5a shows variant and wild type pNB reaction kinetics on p-nitrophenyl acetate (pNPA) in 15% dimethylformamide (DMF). Enzymes were added to a 30°C reaction solution consisting of 0.1 M Tris-HCl pH 7.0, 15% DMF, and varying concentrations of pNPA.
- FIG. 5b is a plot of variant and wild type pNB esterase reaction kinetics on p-nitrophenyl loracarbef nucleus (LCN-pNP) in 15% dimethylformamide (DMF). Enzymes were added to a 30°C reaction solution consisting of 0.1 M Tris-HCl pH 7.0, 15% DMF, and varying concentrations of LCN-pNP.
- FIG. 5c shows graphic results of hydrolysis product formation, as measured by HPLC, by variant and wild type pNB esterase on 1.0 mM p-nitrobenzyl loracarbef nucleus (LCN-pNB) in 15% dimethylformamide (DMF). Enzyme were added to a 30°C reaction solution consisting of 0.1 mM Tris-HCl pH 7.0, 15%
- FIG. 6 shows hydrolysis product formation, as measured by HPLC, of variant and wild type pNB esterases on 0.25 M p-nitrobenzyl loracarbef nucleus (LCN-pNB) in 2.5 and 15% dimethylformamide (DMF) at 30°C.
- the resulting peak areas were normalized to that of the parent of generation three, 2-19E10.
- FIG. 7a is a plot of hydrolysis rates of fourth generation variants on the
- LCN-pNP and LCN-pNB substrates were prepared from a 0.1 mM Tris-HCl pH 7.0, 15% dimethylforma ⁇ mide reaction solution containing 0.8 mM of either p-nitrophenyl loracarbef nucleus (LCN-pNP) or p-nitrobenzyl loracarbef nucleus (LCN-pNB).
- FIG. 7b is graphic results of the screening activity of ligation mixture 4-38B9 and 4-54B9.
- the horizontal line indicates the activity of the most active fourth round variant, 4-54B9.
- Colony 12 which exhibits an approximate 2-fold improvement in activity, corresponds to pNB esterase variant 5-1A12.
- FIG. 8a is a plot of variant and wild type pNB esterase reaction kinetics on p-nitrophenyl acetate (pNPA) in aqueous buffer (0% dimethylformamide). Enzymes were added to a 30°C reaction solution consisting of 0.1 M PIPES pH 7.0 and varying concentrations of pNPA.
- FIG. 8b is a plot of variant and wild type pNB esterase reaction kinetics on p-nitrophenyl acetate (pNPA) in 15% dimethylformamide (DMF). Enzymes were added to a 30°C reaction solution consisting of 0.1 M PIPES pH 7.0, 15% DMF, and varying concentrations of pNPA.
- FIG. 8c is a plot of variant and wild type pNB esterase reaction kinetics on p-nitrophenyl acetate (pNPA) in 30% dimethylformamide (DMF). Enzyme were added to a 30°C reaction solution consisting of 0.1 M PIPES pH 7.0, 30% DMF, and varying concentrations of pNPA.
- FIG. 9a is a plot of variant wild type pNB esterase kinetics on p-nitrophenyl loracarbef nucleus (LCN-pNP) in 1 % dimethylformamide (DMF). Enzymes listed were added to a 30°C reaction solution consisting of 0.1 M PIPES pH 7.0, 1 % DMF, and varying concentrations of LCN-pNP.
- FIG. 9b is a plot of variant and wild type pNB esterase reaction kinetics on p-nitrophenyl loracarbef nucleus (LCN-pNP) in 15% dimethylformamide (DMF). Enzymes were added to a 30°C reaction solution consisting of 0.1 M PIPES pH 7.0, 15% DMF, and varying concentrations of LCN-pNP.
- FIG. 9c is a plot of variant and wild type pNB esterase reaction kinetics on p-nitrophenyl loracarbef nucleus (LCN-pNP) in 30% dimethylformamide (DMF). Enzymes were added to a 30° C reaction solution consisting of 0.1 M PIPES pH 7.0, 30% DMF, and varying concentrations of LCN-pNP.
- FIG. 10a is a plot of variant and wild type pNB esterase reaction kinetics on p-nitrobenzyl loracarbef nucleus (LCN-pNB) in 1 % dimethylformamide (DMF). Enzymes were added to a 30°C reaction solution consisting of 0.1 M PIPES pH 7.0, 1 % DMF, and varying concentrations of LCN-pNB.
- FIG. 10b is a plot of variant and wild type pNB esterase reaction kinetics on p-nitrobenzyl loracarbef nucleus (LCN-pNB) in 15% dimethylformamide (DMF). Enzyme were added to a 30°C reaction solution consisting of 0.1 M PIPES pH 7.0, 15% DMF, and varying concentrations of LCN-pNB.
- FIG. 11 shows graphic results of HPLC measurement of the product of variant wild type pNB esterase reaction on 1.0 mM L-glutamine p-nitrobenzyl ester in 1 % dimethylformamide (DMF) after a fixed reaction time.
- Enzyme were added to a 25°C reaction solution consisting of 0.1 M PIPES pH 7.0, 1 % (a) or 20% (b) DMF.
- FIG. 12 shows graphic results of HPLC measurement of product of variant and wild type pNB esterase reaction on 1.0 mM p-nitrobenzyl benzoate in 20% dimethylformamide (DMF). The reaction was performed in 0.1 M PIPES pH 7.0, 20% DMF and 1.0 mM substrate, 30°C.
- FIG. 13 shows the pH-activity profiles from pH 7.0 to 8.25 for a variant from each generation.
- the activity values for each variant are normalized to its maximal value.
- the enzyme samples were added to a 30°C reaction solution consisting of 1 % dimethylformamide (DMF), 0.5 M p-nitrophenyl loracarbef nucleus, and 0.1 M PIPES pH 7.0 to 8.25.
- DMF dimethylformamide
- PIPES pH 7.0 to 8.25
- a method of directed evolution is used to identify and isolate modified enzymes which have improved catalytic performance over naturally occurring para-nitrobenzyl (pNB) esterases.
- This technique relies on being able to screen a large number of slightly different variations of the enzyme (changes in the amino acid sequence), and then to accumulate those sequence changes.
- Generating the variations in a random fashion utilizes random mutagenesis, and effective mutations are accumulated in sequential generations of mutagenesis and screening for the property of interest.
- the serine protease subtilisin for example, has been evolved to be almost five hundred times more active than the naturally occurring enzyme in the presence of 60% dimethyl ⁇ formamide (DMF) (7, 8 and 9).
- the present invention utilizes a related approach to identify and isolate pNB esterases which exhibit improved activity toward selected substrates, such as loracarbef-p-nitrobenzyl ester, and which exhibit improved activity under selected reaction conditions, such as in the presence of polar organic solvents.
- the method in accordance with the present invention which is used to identify and isolate modified esterases having improved activity includes three basic procedures.
- the first procedure involves the generation of large numbers of randomly mutated esterases.
- the second procedure involves screening the many mutated esterases to determine which ones exhibit increased catalytic activity in selected substrates under specific reaction conditions.
- the third procedure involves accumulating further beneficial mutations in an 'evolved' or modified esterase.
- the generation of large numbers of randomly mutated esterases may be accomplished by any number of known protocols.
- the preferred procedure involves generating a library of modified esterase nucleic acid segments which have nucleotide sequences that differ from the nucleotide sequence of the naturally occurring or unmodified enzyme sequence.
- the library of mutated nucleotide sequences is then expressed in accordance with known methods for producing amino acid sequences.
- the proce ⁇ dures for random nucleic acid mutagenesis and expression of the mutated nucleic acids is described in References 7, 8, 9 and in United States Patent No. 5,316,935. Many other methods for random mutagenesis and expression are known, however, and can be implemented for this purpose.
- the screening of the amino acid sequences is accomplished by measuring the ability of the expressed enzymes to hydrolyze a selected substrate under selected reaction conditions. While screening can be performed directly on the desired substrate, the ease of screening can be greatly improved by using the p-nitrophenyl ester of the desired substrate.
- the compound of interest is loracarbef
- the p-nitrophenyl ester of the loracarbef is substituted for the p- nitrobenzyl ester (see FIG. lc).
- the sequence has the desired esterase enzyme activity
- the para-nitrophenyl group will be cleaved from the substrate, as shown in FIG. lc.
- the resulting free para-nitrophenol produces a yellow color in the reaction solution, which can be easily measured for both qualitative and quantitative evalua ⁇ tion of the amino acid sequences' performance as an esterase.
- This screening procedure is well-suited for evaluating the performance of modified para-nitrobenzyl esterases.
- This screening procedure may be used alone or in combination with the screening on the para-nitrobenzyl ester to provide confirmation of enzyme activity or to provide a more direct measurement of the ability of the amino acid sequences to catalyze p-nitrobenzyl ester cleavage for a particular compound.
- suitable nucleus compounds include other 3-lactam antibiotics, peptides, peptide antibiotics
- glycosylated peptides or amino acids (17, 18), peptides (19, 20, 21, 22, 23), natural amino acids (protected both at the C-terminus and/or acidic side chains) (21, 24, 22), non-natural amino acids (25), and other synthetic intermediates such as 2- aminobenzoate, 2-carbobenzoxyaminobenzoate (26), benzyloxycarbonyl-homoserine and benzyloxycarbonyl-O-diphenylphosphoryl-homoserine (27).
- the term "stability,” when used in reference to the stability of para-nitrobenzyl enzymes means the half-life of said enzyme when exposed to a particular set of reaction conditions, such as elevated temperature and/or organic media. In general, the higher the temperature to which the enzyme is exposed, the shorter the half-life of said enzyme (i.e., the shorter the enzyme retains its activity). Similarly, the greater levels of organic solvent to which said enzymes are exposed, the shorter the half-life of said enzyme.
- catalytic activity or simply “activity” means an increase in the k c ⁇ _. or a decrease in the KM for a given substrate, reflected in an increase in the k ⁇ M ratio.
- the above screening procedures may be conducted on a wide variety of substrates and under a wide variety of reaction conditions in order to establish the activity and/or stability of the amino acid sequences in different environments.
- the reaction conditions can be varied from simple aqueous solutions to those containing varying amounts of organic solvents or other medium components.
- the amount of organic solvent or other medium components may be varied to any level.
- the temperature of the reaction can be varied in order to isolate variants with improved reaction rates and/or stabilities at different temperatures.
- the pH of the reaction environment can be varied in order to optimize reaction rates and/or stabilities at different pH values.
- the reaction conditions may be varied widely in order to explore the limits of enzyme activity.
- the substrate can be varied in order to optimize the amino acid sequences for individual substrates or for specific combina ⁇ tions of substrates.
- the method of the present invention was used to identify and isolate modified para-nitrobenzyl esterases which have improved ester hydrolysis activity toward several para-nitrobenzyl ester substrates in reaction solutions containing varying amounts of dimethylformamide ranging from 1 to 30 percent by volume.
- the naturally occurring para-nitrobenzyl esterase has an amino acid sequence which includes numbered position ranging from 1 to 489.
- the amino acid sequence for this enzyme is set forth in SEQ. ID. NO. 2 and FIG. 4.
- the nucleotide sequence which expresses the enzyme is set forth in SEQ. ID. NO. 1 and FIG. 3.
- substitution of amino acids at one or more of the positions numbered 60, 94, 96, 144, 267, 271, 322, 334, 358, and 370 resulted in the production of an enzyme which exhibited increased activity toward various p-nitrobenzyl ester substrates in purely aqueous solutions and solutions containing a polar organic solvent, i.e. dimethylformamide.
- Any number of different amino acids may be substituted at the various identified positions with a large number of different combinations being possible where substitutions at one or more positions is accomplished.
- the preferred amino acid substitutions are set forth below in Table 1. TABLE 1
- Preferred modified esterases which contain one or more of the substitutions set forth in Table 1 are set forth in FIG. 4 and SEQ. ID. NOS. 4, 6, 8, 10, 12, 14, 16, 18, 20 and 22.
- the nucleotide sequences which expressed the preferred enzymes is set forth in FIG.3 and SEQ. ID. NOS. 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23, respectively.
- the procedure for isolating and identifying these preferred enzymes is set forth in the examples below.
- the naturally occuring pNB esterase gene was subjected to four rounds of sequential random mutagenesis and screening to increase pNB esterase' s catalytic ability toward the pNB-protected antibiotic loracarbef. Additionally, genes from positive variants isolated from the final (fourth) round were re-combined by site-specific restriction and ligation in order to combine the beneficial effects of independent mutations.
- the natural enzyme By increasing the specificity towards a pNB-containing substrate and by increasing the catalytic ability in mixtures of water and non-aqueous (organic) solvent, the natural enzyme has been evolved into a number of improved enzymes which provide industrially useful tools for the deprotection of pNB esters in the amounts of organic solvents required to solubilize sufficient quantities of non-polar substrates.
- the above exemplary random mutagenesis and screening in accordance with the present invention are set forth in the following examples.
- the reaction conditions will be limited to those which include purely aqueous or mixtures of aqueous and organic media, such as dimethylformamide (DMF). It will be under- stood by those of ordinary skill in the art that the method of the present invention has applications to screening enzyme activity and/or stability under a wide variety of reaction conditions and is not limited only to screening for enhanced enzyme activity in organic solvents.
- Loracarbef is a cephalosporin-derived antibiotic marketed in modified form under the trade name LORABID.
- the production of loracarbef is different from many traditional antibiotics in that it is synthesized chemically with no microbial fermentation steps. This ensures that the antibiotic is free from any microbially-produced toxins generated during fermentation. While the functional antibiotic requires a free carboxylic acid moiety, the free carboxylic acid creates problems synthetically. Synthesis of loracarbef has therefore been designed to protect the carboxylic acid through an ester linkage with pNB alcohol.
- the pNB esterase enzyme is expected to catalyze the deprotection, that is hydrolyze the pNB ester, toward the end of the chemical synthesis.
- Colorimetric assays are most often optimal in this regard.
- the reaction in FIG. la is problematic for rapid screening of activity because the absorbance spectra of the reactant and the two products are very similar.
- the reactant and products do not absorb in the visible region, making the rapid assaying of activity difficult.
- Para-nitrophenyl acetate is a general esterase substrate.
- the enzyme-catalyzed hydrolysis reaction is shown in FIG. lb.
- Use of the pNPA substrate solves the absorbance problem, as the nitrophenol product is yellow while the other reaction components are colorless.
- the ability of the alcohol oxygen to form resonance structures which participate in conjugation with the phenyl ring gives rise to the yellow color.
- Lowering the pH below 6.5 severely shifts the resonance structure away from the conjugation and eliminates the yellow color associated with nitrophenol solutions.
- the ability to form resonance structures also makes nitrophenol an excellent leaving group, as demonstrated by pNPA's gradual hydrolysis in buffer alone. This spontaneous hydrolysis accelerates with increasing pH, and at pH values above 8.5 occurs almost immediately.
- the pNPA substrate is also membrane permeable. This substrate is hydrolyzed rapidly by whole E. coli cells expressing pNB esterase intracellularly. The same cells, but without the expression plasmid, do not catalyze the conversion. This substrate is sterically and chemically different from the LCN-pNB substrate, however, and as such is not the most preferred choice for directing the evolution of the esterase toward activity on LCN-pNB. It does however, allow for optimization of enzyme expression in new bacterial hosts, where the increase in amount of enzyme produced translates into increased activity during screening.
- a preferred alternate or supplemental substrate which includes the p-nitrophenyl chromophore from the pNPA substrate and as much of the loracarbef nucleus as possible.
- This substrate is the LCN-pNP substrate whose structure and reaction are shown in FIG. lc.
- This substrate is membrane permeable, obviating the need for cell lysis during screening.
- the use of LCN-pNP during screening may result in an enzyme with high hydrolytic activity toward LCN-pNP, but not toward LCN- pNB. The validity of this screening approach was therefore verified by comparing the activities of nearly 70 pNB esterase variants on these two substrates.
- a second parameter in directed evolution experiments is the choice of reaction conditions used during screening.
- the screen consisted of resuspending individual colonies of bacteria in a small volume of buffer and measuring the turbidity of the bacterial suspension using a spectrophotometer in order to estimate the cell concentration in the buffered solution.
- a small volume of this bacterial suspension was added to a buffered solution containing a pNP substrate, and the release of product is measured by following the formation of yellow color.
- the rate of product appearance was normalized to the cell concentration by the turbidity measurement. This is indicative of enzyme activity per bacterium; those colonies which generated higher activity to turbidity ratios were retested.
- the variant pNB esterases contained within the best clones were then purified and tested on the screening substrate (i.e. LCN-pNP) to determine the extent of improvement and on the desired pNB ester to further determine and confirm that the improvement applies to the substrate of ultimate interest.
- the method of the present invention for directing the evolution of pNB esterase involves making a large library of pNB esterase genes, each with a small number of random, or nearly random, alterations in the 1500 base pair DNA sequence which codes for the pNB esterase. This collection of DNA sequences is then placed into E. coli, which translates the DNA sequences into the different amino acid sequences. Because the DNA sequence has been altered slightly, the amino acid sequence of the enzyme may be altered. The LCN-pNP and/or pNPA substrates are then used to screen out those E. coli that are producing an enzyme which appears to outperform the original. The best performer is then used to repeat this sequence of events, in multiple generations, until the desired performance goal is achieved. DNA sequence analysis of the improved enzymes provides identifica- tion of the amino acid substitutions responsible for the observed activity enhancements.
- substitution frequency The number of random alterations introduced in the 1500 base pair sequence (substitution frequency) is a third important design parameter in directed evolution methods. If the frequency of alterations is too high, most of the enzymes produced will be inactive. If the frequency of alterations is too low, most of the DNA base substitutions produced will be an exact copy of the original DNA sequence, and the resulting enzymes will not be any different than the original. Because approxi ⁇ mately one-third of the altered DNA sequences lead to the same amino acid sequence in a protein, the preferred number of DNA alterations per gene is greater than one. At one alteration or less per sequence, much of the DNA produced will produce exact copies of the original protein sequence, and a substantial portion of the screening effort will be spent searching through copies of the original enzyme.
- alterations per sequence on average more than two amino acid alterations per enzyme are being produced.
- the enzyme's activity is a function of all the alterations contained within; the activity becomes a competition between the rare alterations which are beneficial and the less rare alterations which are deleterious (7).
- the preferred number of alterations is therefore greater than one and not too much larger than three.
- substitution frequency is calculated as the number of substitutions made in a given sequence divided by the number of possible sites for substitution and is usually expressed as a percentage (or fractional substitution).
- substitution frequency required to generate one to three substitutions per gene depends on the sequence length of the DNA coding for the enzyme (or the length of the DNA sequence targeted for random mutagenesis, if smaller).
- Polymerase chain reaction (PCR) conditions which generate substitution rates from 0.25 to 20 substitutions per
- the purification of enzymes was accomplished by using a modification of the scheme which includes a pH precipitation, an ammonium sulfate fractionation and three chromatographic steps (6 and 4).
- the usual three chromatographic steps were reduced to two by replacing a dye affinity column and an ion exchange column with a single (IDA - Cu 2+ ) metal affinity column (IMAC).
- IMAC metal affinity column
- the wild type pNB esterase open reading frame contains 12 histidines, which are the amino acid residues generally responsible for retention on a metal affinity column (13). Although the surface accessibility of these histidines is unknown, the elution of pNB esterase at
- cholinesterases are important in neurotransmission, carboxyl- and thioesterases are digestive enzymes, lipases and cholesterol esterases work on degrading lipid components.
- Carbamate hydrolase was discovered in the same way pNB esterase was discovered: screening for an enzyme with activity on a desired substrate, phenmedipham, an herbicide carbamate (15).
- Carbamates are structurally similar to esters, containing a nitrogen linkage not present in esters (R-N-COO-R' vs. R-C-COO-R'), and are known to inhibit esterases. This degradative activity was discovered in an ⁇ rthrobacter oxidans strain from soil samples of phenmedipham- treated fields. Starting from enzymes such as these, the method of the present invention can be used to prepare and isolate groups of modified esterases or carbamate hydrolases which have improved activity over other naturally occurring enzymes, such as those listed in Table 2.
- esterases in this group of homologous enzymes are noted for the feature of substrate inhibition at high substrate concentration (26).
- substrate inhibition has been a well-noted feature of acetylcholinesterase analysis. While the mechanism of inhibition is not clear, people have chosen to model the inhibition using the premise that the substrate can bind at two locations within the enzyme, and do so with different binding constants (27). Butyrylcholinesterase does not share this inhibition, and this fact is often used to distinguish the two cholinesterases. Studies have determined some of the residues responsible for this behavior by altering acetylcholinesterase residues to the appropriate butyrylcholin- esterase residues and examining the inhibitory behavior (28). The fact that the inhibition characteristics can be altered by substitution shows that enzyme variants of the above types of enzymes, which are not inhibited by substrate, can be produced by the method of the present invention involving random mutagenesis and screening in high concentrations of substrate for enhanced activity.
- the pNB esterase gene is flanked by the restriction site Xba 1 51 base pairs prior to the start of the open reading frame and by the restriction site Bam HI 313 base pairs after the stop codon of the open reading frame (4).
- Small, single- stranded DNA primers were synthesized to complement regions 25 base pairs upstream of the Xba I site (forward primer) and 143 base pairs downstream of the Bam HI site (reverse primer). The locations of these primers were chosen because the DNA between the two primers is the region that will be altered and amplified during the mutagenic polymerase chain reaction (error-prone PCR).
- the error- prone PCR conditions used were based on the requirements that the substitution frequency be between one and three substitutions per thousand bases (1.5 to 4.5 substitutions per gene) (10). Changes in any part of the open reading frame resulting in enhanced activity are useful. Therefore the whole open reading frame was given the opportunity to be altered by the mutagenesis. Additionally, once the DNA is amplified and mutagenized, it must be inserted into a circular DNA plasmid. By cutting the amplified DNA with the restriction enzymes Xba I and Bam
- the ends of this insert are properly prepared to ligate to the plasmid.
- the primers are located far enough outside of the restriction sites that the small pieces of DNA liberated when the insert is cut by Xba I and Bam HI were visible by standard gel electrophoresis techniques. This ensures that the cutting step has occurred properly, should the ligation perform poorly.
- the three colonies with the highest activity to cell density (turbidity) ratio were grown, along with the wild type pNB esterase, in 1 liter cultures, and the pNB esterase variants were partially purified using the precipitation, ammonium sulfate fractionation, and a single DE-52 ion exchange column (6). These partially purified enzymes were then assayed along with wild type control for their hydrolytic activity toward the pNPA and LCN-pNB substrates. All the variants showed higher total activity than wild type pNB esterase on the pNPA substrate, while only one, 1-1H9 (SEQ. ID. NO.
- the second generation of the directed evolution process began with error- prone PCR on the gene isolated from variant 1-1H9. 2800 colonies were screened in 96 well plates, this time using the hybrid LCN-pNP substrate and 15% DMF. From these, 65 colonies were rescreened as potential positive variants, and again the best three were grown in 1 liter cultures along with the wild type and the 1-1H9 parent.
- the modified pNB esterases (2-13F3 - SEQ. ID. NO. 16; 2-19E10 - SEQ. ID. NO. 6; and 2-23E1 - SEQ. ID. NO. 18; 1-1H9 - SEQ. ID. NO. 4) and wild type - SEQ. ID. NO.
- Screening of the third round of mutagenesis involved examination of 1500 colonies using the LCN-pNP substrate and 20% DMF. Forty were rescreened as potential positive variants. The three best (3-7D5, 3-9E10, and 3-10C4 - SEQ. ID. NO. 8) were then grown in 500 mL cultures, and the enzymes were purified. Of these three showing best activity on LCN-pNP, only 3-10C4 showed increased acti ⁇ vity on LCN-pNB as demonstrated in FIG. 6. 3-10C4 shows a 40% improvement in activity over 2-19E10 in 2.5% DMF and a 50% improvement in 15% DMF.
- the fourth round of mutagenesis and screening examined 7400 colonies using LCN-pNP substrate and 20% DMF. Of these, 250 were rescreened as potential positives. Sixty-four of those either most active in 5% DMF, most active in 20% DMF, or the best ratio of activities in 20% to 5% DMF were further screened along with wild type, 1-1H9, 2-19E10, and 3-10C4 on LCN-pNB. The screening results on both LCN-pNP and LCN-pNB were normalized to the activity of the parent 3- 10C4 and are shown in FIG. 7a. Of the sixty-four colonies chosen, five show activity increases of 50% or more over 3-10C4, and sixteen show increases of greater than 20% over 3-10C4.
- the best five variants were determined based on the ability to hydrolyze the substrate LCN-pNB only.
- the remaining four variants all demonstrated approximately 60-65% improvement over 3-10C4; these variants were labeled 4-38B9 (SEQ. ID. NO. 10), 4-43E7 (SEQ. ID. NO. 12),
- FIG. 7a A measure of how well the activity of these enzymes on the screening pNP substrate relates to activity on the pNB substrate was established (FIG. 7a).
- the overall trend demonstrates a good correlation between activities on the screening pNP and actual pNB substrates, although the distribution is skewed slightly toward the screening substrate, as demonstrated by the trend of data points to lie below the forty-five degree line. If increases in activity on one substrate correlated exactly with increases in activity on the other, then all the points would lie exactly on the 45-degree line. The strength of this correlation is an important measure of the validity of the screening strategy in accordance with the present invention.
- This graph shows that the screening strategy premise that the structurally similar LCN- pNP can successfully replace LCN-pNB, the hydrolysis of which is difficult to measure. Contrast this with the pNPA substrate, whose structure does not mimic the desired loracarbef substrate. Modified pNB esterase activities on pNPA do not correlate as well with activity on the loracarbef substrate
- a small, biased library of fifth generation variants was generated by recombining the genes from the fourth generation variants by restriction and re-ligation.
- the genes from the five variants from the fourth generation were individually restricted by Xho I, a restriction enzyme which cuts in the center of this gene.
- the DNA fragments were mixed with the DNA fragments from 4-54B9, the variant which appeared to outperform all others from the fourth generation, in pairwise fashion (e.g. one tube contained the fragments from 4-38B9 and 4-54B9, another tube contained fragments from 4-43E7 and 4- 54B9, etc.).
- FIGS. 8a, b and c show the specific reaction rates on pNPA as a function of pNPA substrate concentration for this series of evolved variants from the four generations of mutagenesis and screening.
- FIGS. 9a, b and c show the results of similar kinetic analyses performed using the LCN-pNP substrate with which three out of the four rounds of screening were carried out. In these plots the results of directed evolution are clearly seen.
- the two variants least active on this substrate are the wild type enzyme and 1-1H9. This is not surprising given that neither of these enzymes had been screened on this substrate.
- 3-10C4 is the parent of the remaining variants, all of which show enhanced activity.
- 4-38B9 shows the least amount of improve ⁇ ment, with a 20% increase in activity in 1 % DMF. This increase in activity is enhanced in DMF to 50% in 30% DMF.
- 4-43E7 shows a constant two-fold increase in activity across all DMF ranges, and 4-54B9 is the most active of all the variants with a constant four-fold increase in activity over its parent. It is approximately 16 times more active than wild type pNB esterase. By comparing the scales of the axes, 4-54B9 retains the same activity in 30% DMF as the wild-type enzyme in 1 % DMF.
- FIGS. 10a and b show the kinetic data obtained on the target LCN-pNB substrate.
- the fourth generation variants are more active than the third generation variant, which is more active than the second generation variant, etc.
- the first exception is that 1-1H9 no longer lags wild type in specific activity on this substrate.
- the second is that many of the variants, and especially those in the fourth generation, exhibit slightly lower increases in activity over wild type.
- 4-54B9 is now approximately 14 times more active than wild type on LCN-pNB, versus 16 times wild type on LCN- pNP.
- DMF has a bigger negative effect on the LCN-pNB hydrolysis reaction than it does the hydrolysis of LCN-pNP.
- 15% DMF reduces the maximal activity by a factor of two in the two best variants in 1 %
- DMF DMF
- 15% DMF affects the LCN-pNB hydrolysis by reducing the maximal activity by a factor of three over the 1 % DMF activity.
- the pH optimum for activity of wild-type pNB esterase is 8.3 (6), while the screening for evolved pNB esterases was carried out at pH 7.0.
- the enzymes' abilities to hydrolyze the LCN-pNP screening substrate was measured as a function of pH.
- the activities normalized to the maximum activity for enzyme variants from each of the four generations are shown in FIG. 13. While the pH optima of the enzyme variants have not changed significantly, the pH-activity profiles of those from later generations have broadened slightly. In other words, reaction rates at lower pH values increase slightly more during directed evolution than does the maximum rate ⁇ pH 8.25, which probably once again reflects the choice of pH 7.0 for screening.
- FIG. 3 presents the aligned DNA sequences of all the variants sequenced during this study.
- the variants are listed in order by generation, and the sequences start with DNA base one (A of the first codon ATG).
- the DNA bases conserved between all members of this pNB esterase family are boxed. Where a mutation has occurred, the column of DNA bases is not boxed, and a dash is indicated in the consensus sequence at the bottom of each set of rows.
- Table 4 summarizes the positions of the DNA base changes in the enzyme variants with respect to the wild type pNB esterase gene sequence for all the variants sequenced during this study.
- Bold type indicates the substitutions not present in the previous generation parent enzyme.
- Horizontal lines indicate the beginning and end of the open reading frame, which starts at base position 1 and ends at position 1470. All together the sequences contain 31 substitutions, of which 29 are unambiguously unique.
- the two substitutions which may not be unique are those where identical substitutions were found in two different variants of the same generation, those being the A to G substitutions at position 1075 in two variants from generation 2, and the A to G substitution at position 181 in two variants of generation 4.
- FIG. 4 presents the amino acid sequence alignment of the pNB esterase family as translated from the DNA sequence alignment in FIG. 3.
- the variants are listed in order by generation. The sequences start with amino acid one, and the DNA bases conserved between all members of this pNB esterase family are boxed. Where a mutation has occurred, the column of amino acid residues is not boxed, and a dash is indicated in the consensus sequence at the bottom of each set of rows.
- FIG. 2 is an "evolution tree" summarizing the amino acid substitutions and positions resulting from the amino acid sequence information in FIG. 4 and Table 4. All three clones sequenced from the second generation contain the substitutions observed in the 1-1H9 sequence, as well as a few new additional substitutions.
- 5-1 A 12 was created as a combination of 4-38B9 and 4-54B9 by cutting and religating these two genes near the 1000 DNA base position. 5-1 A 12 is therefore expected to contain the isoleucine 60 to valine substitution from 4-38B9 and the leucine 334 to serine substitution from 4-54B9. The location versus frequency of substitution was examined and the locations of substitutions resulting in amino acid changes appears distinctly non -random. Fully half of the translated substitutions DNA mutations lie within a 144 base pair stretch of DNA (less than 10% of the open reading frame). This is due to the fact that a non-random selection of enzymes were chosen for sequencing (only those exhibiting improved activity). This region of the amino acid sequence plays an important role in substrate recognition and enzyme activity. Random Mutagenesis
- the frequency of substitutions as a function of position within the gene sequence was determined. It was found that the locations of DNA substitutions in the sequenced genes are well distributed throughout the target sequence. Thus the error-prone PCR technique generates variations at random locations. The types of substitutions generated, however, are not random. Of the 29 unique substitutions, 25 were substitutions changing an A or T, 4 were substitutions of C, and none were substitutions of G. These bases were changed almost half of the time to G, with A to G changes making up the majority (9/10) of these substitutions.
- Substitution bias in the resulting protein sequences also arises from the fact that the DNA sequence is translated to the amino acid sequence through the triplet coding ribosomes. Twenty amino acids are encoded by sixty-one triplet DNA codons, the distribution of these codons is far from even. For example, tryptophan is coded for by only one of the 64 triplet codons (TGG), while Leu is encoded by six. Single base changes within a codon are the only type of base changes we can expect to see, as the probability of making two random substitutions within one codon is small. On average, only five to six new amino acids are available to replace each amino acid in the original sequence by single base substitution. Thus, the translation process introduces non-randomness in the amino acid sequence.
- the plasmid pNB106R was provided by Eli Lilly & Co (Indianapolis,
- This plasmid contains the pNB esterase gene under the control of an altered 1 promoter, p 106 (U.S. Patent Application Serial No. 07,739,280) (4).
- the plasmid also contains a temperature sensitive 1 CI repressor which inactivates the pLl 6 promoter below 35 °C.
- the plasmid contains an E. coli origin of replication, a plasmid copy control gene, and a tetracycline resistance gene.
- Plasmid and fragment DNA when required were cut with Bam HI and Xba I (Boerhinger Mannheim, Germany) in restriction buffer B at 37 °C for one hour.
- the resulting linear DNA was then run on a 1 % agarose gel and separated into bands according to size.
- the appropriately sized band was excised from the gel and extracted using either the GeneClean (BiolOl, Vista CA) or Qiagen (Chatsworth, CA) method. In both cases purified DNA was eluted in Tris-EDTA buffer.
- pNB esterase gene (1470 base pairs (bp)) in pNB106R is flanked by an
- PCR primers (3'- GAGCACATCAGATCTATTAAC-5' and 3'-GGAGTGGCTCACAGTCGGT-GG- 5') were synthesized to complement regions 25 bp upstream of the Xba I site and 143 bp downstream of the Bam HI site to allow andom mutagenesis over a 2000 bp region including the entire pNB esterase open reading frame.
- Competent TGI cells were prepared according to the CaC12 method (31). TGI cells were grown overnight at 37 °C in a 3 mL culture of LB broth. The cells were diluted 1:200 in fresh LB and allowed to grow to an OD 600 of 0.35 to 0.40. They were placed on ice for 1 hour and spun at maximum speed in a 4°C Beckman tabletop centrifuge. The cell pellet was resuspended in 0.5 volumes of 0.1 M CaCl 2 and allowed to sit on ice for 30 minutes to 1 hour and recentrifuged as before. The cell pellets were resuspended in sterile 0.02 volumes of 0.1 M CaCl 2 , 10% v/v glycerol and frozen at -70°C until use.
- Ligation reactions were performed using T4 DNA ligase (Boerhinger- Mannheim, Germany).
- Vector DNA the entire pNB106R plasmid excluding the pNB esterase gene between Xba I and Bam HI
- insert DNA the pNB esterase gene between Xba I and Bam HI
- 10X ligation buffer water and enzyme were combined and incubated at 4°C overnight (12-16 hours).
- the solution was incubated with previously prepared competent cells on ice for 1 hour.
- the cells were then heat shocked at 42 °C for 1 minute, supplied with an equal volume of LB media, and incubated at 30°C for 45 minutes. This solution was then plated onto LB plates containing tetracycline to 20 mg/mL (LB Tet plates).
- Transformants arising from ligations of pNBE vector and randomly mutagenized inserts were allowed to grow for 36 to 48 hours before shifting to 42 °C to induce expression of the pNB esterase gene. After an eight hour induction period, each colony was picked with a sterile toothpick and resuspended in a unique well of a 96 well plate containing 200 mL of 0.1 M Tris-HCl, pH 7.0. The turbidity of each well was measured as the absorbance at 620 nm adjusted by a cell- free reference well by a 96 well plate reader.
- the cells were harvested by similar centrifugation and resuspended in a centrifuge tube in 25 mL of Buffer A (Lysis Buffer), consisting of 10 mM potassium phosphate, 1 mM b-mercaptoethanol, and
- a French Press was used to lyse the harvested cells. The lysis was accomplished by placing the chilled sample into a steel housing, which was compressed to 20,000 atmospheres. A small needle valve was then opened and the cells were released to ambient conditions, causing the cells to rupture. This process was repeated three times to insure complete lysis.
- the steel housing was kept chilled prior to use at 4 °C and the samples were stored before and after on ice.
- the cell debris was pelleted by centrifugation at 12,000g in a JA- 20 rotor for 15 minutes at 4 C C (6).
- the cell lysate supernatant was adjusted to pH 5.0 with HCl, and the newly formed precipitate was removed by centrifugation at 12,000g in a Beckman JA-20 rotor for 30 minutes at 4°C.
- the supernatant volume was measured and ammonium sulfate was dissolved to 45% saturation at 0°C.
- the ammonium sulfate saturation amount used for calculations was 41.22 g/100 mL solution at 0°C.
- the solution was chilled to 0°C on ice for 5 minutes and centrifuged in a JA-20 rotor at 12,000g for 30 min. at 4°C. The supernatant was transferred to a new centrifuge tube, where ammonium sulfate was added to bring the final amount to 85% saturation at 0°C. Centrifugation was performed as before, and the supernatant discarded.
- the pellet was redissolved in Buffer B (10 mM Tris- HCl, 50 mM NaCl, 1 mM b-mercaptoethanol, and 0.5 M EDTA, pH 8.5), placed in an Amicon ® spin filtration unit (Centricon - 10) and buffer exchanged three times with Buffer B to remove the ammonium sulfate.
- T e resulting protein sample was applied to a DEAE-sepharose column (2.5 cm ID x 10 cm high) pre-equilibrated in Buffer B. The column was rinsed with buffer B until the baseline was restored. The column was then rinsed with buffer C (10 mM Tris ⁇ HCl, 50 mM NaCl, pH 7.0) until the pH reached 7.0.
- SDS-Page gels were used to determine purity of protein solutions. Separating gels were made of 10% acrylamide and allowed to gel under butanol.
- Protein samples were assayed using the Bio-Rad Protein Assay Reagent.
- the reagent was diluted 1:4 in water and filtered to remove any particulates.
- 20 mL of protein sample was combined with 980 mL of dilute reagent in a 2 L spectropho- tometer cuvette and allowed to incubate for 10-30 minutes.
- the samples' absorb ⁇ ance was then measured at 595 nm and compared to that of a sample of known enzyme concentration.
- pNPA p-nitrobenzyl loracarbef nucleus
- LCN-pNP p-nitrobenzyl loracarbef nucleus
- pH 7.0 p-nitrobenzyl loracarbef nucleus
- assays on pNB containing substrates were performed by adding a reaction mix containing 1.0 mM substrate in 1 to 20% DMF and 0.1 M phosphate buffer, pH 7.0 to a small volume of enzyme solution, incubating at room tempera- ture for 20 to 60 minutes, and then stopping the reaction with an equal volume of acetonitrile.
- the samples were then injected into an HPLC containing a C18 chromatography column and reaction products were separated using a gradient between 95% 1 mM triethylamine pH 2.5/ 5% methanol and 100% methanol.
- the resulting peaks were monitored at 270 nm and recorded on an IBM PC data acquisi ⁇ tion system. These peaks were then numerically integrated and used for compari- son between enzyme samples.
- Val lie Val Val Thr Leu Asn Tyr Arg Leu Gly Pro Phe Gly Phe Leu 130 135 140
- Met Ser lie Ala Ala Leu Leu Ala Met Pro Ala Ala Lys Gly Leu Phe 195 200 205
- Gin Lys Ala lie Met Glu Ser Gly Ala Ser Arg Thr Met Thr Lys Glu 210 215 220
- Glu Lys Ser lie Ala Glu Gly Ala Ala Ser Gly lie Pro Leu Leu lie 290 295 300
- MOLECULE TYPE DNA
- HYPOTHETICAL NO
- ANTI-SENSE NO
- TTAGAGCTTC CTTTTGTCTT TGGAAATCTG GACGGGTTGG AACGAATGGC AAAAGCGGAG 1260 ATTACGGATG AGGTGAAACA GCTTTCTCAC ACGATACAAT CCGCGTGGAT CACGTTCGCT 1320
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97905618A EP0876490A1 (en) | 1996-01-23 | 1997-01-16 | Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media |
JP52703797A JP2001517926A (en) | 1996-01-23 | 1997-01-16 | Para-nitrobenzyl esterase with enhanced activity in aqueous and non-aqueous media |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/589,893 US5741691A (en) | 1996-01-23 | 1996-01-23 | Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media |
US08/589,893 | 1996-01-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1997027304A1 true WO1997027304A1 (en) | 1997-07-31 |
WO1997027304A9 WO1997027304A9 (en) | 1997-10-09 |
Family
ID=24359985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/001175 WO1997027304A1 (en) | 1996-01-23 | 1997-01-16 | Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media |
Country Status (4)
Country | Link |
---|---|
US (2) | US5741691A (en) |
EP (1) | EP0876490A1 (en) |
JP (1) | JP2001517926A (en) |
WO (1) | WO1997027304A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001072999A1 (en) * | 2000-03-27 | 2001-10-04 | California Institute Of Technology | Expression of functional eukaryotic proteins |
CN102834515A (en) * | 2010-08-31 | 2012-12-19 | 株式会社Api | new hydrolase protein |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5945325A (en) * | 1998-04-20 | 1999-08-31 | California Institute Of Technology | Thermally stable para-nitrobenzyl esterases |
US20030207345A1 (en) * | 1998-05-21 | 2003-11-06 | California Institute Of Technology | Oxygenase enzymes and screening method |
US6902918B1 (en) | 1998-05-21 | 2005-06-07 | California Institute Of Technology | Oxygenase enzymes and screening method |
US20030153042A1 (en) * | 1998-07-28 | 2003-08-14 | California Institute Of Technology | Expression of functional eukaryotic proteins |
US7024312B1 (en) | 1999-01-19 | 2006-04-04 | Maxygen, Inc. | Methods for making character strings, polynucleotides and polypeptides having desired characteristics |
US7430477B2 (en) | 1999-10-12 | 2008-09-30 | Maxygen, Inc. | Methods of populating data structures for use in evolutionary simulations |
US7115403B1 (en) | 2000-05-16 | 2006-10-03 | The California Institute Of Technology | Directed evolution of galactose oxidase enzymes |
US20030032059A1 (en) * | 2000-05-23 | 2003-02-13 | Zhen-Gang Wang | Gene recombination and hybrid protein development |
WO2002083868A2 (en) * | 2001-04-16 | 2002-10-24 | California Institute Of Technology | Peroxide-driven cytochrome p450 oxygenase variants |
US7226768B2 (en) * | 2001-07-20 | 2007-06-05 | The California Institute Of Technology | Cytochrome P450 oxygenases |
EP1485404A4 (en) * | 2002-02-27 | 2005-03-30 | California Inst Of Techn | NEW GLUCOSE-6-OXIDASES |
JP4851687B2 (en) * | 2002-03-09 | 2012-01-11 | マキシジェン, インコーポレイテッド | Crossover optimization for directed evolution |
US8603949B2 (en) * | 2003-06-17 | 2013-12-10 | California Institute Of Technology | Libraries of optimized cytochrome P450 enzymes and the optimized P450 enzymes |
WO2005017105A2 (en) | 2003-06-17 | 2005-02-24 | California University Of Technology | Regio- and enantioselective alkane hydroxylation with modified cytochrome p450 |
WO2005017116A2 (en) * | 2003-08-11 | 2005-02-24 | California Institute Of Technology | Thermostable peroxide-driven cytochrome p450 oxygenase variants and methods of use |
US8715988B2 (en) | 2005-03-28 | 2014-05-06 | California Institute Of Technology | Alkane oxidation by modified hydroxylases |
US11214817B2 (en) | 2005-03-28 | 2022-01-04 | California Institute Of Technology | Alkane oxidation by modified hydroxylases |
DE102005037659A1 (en) * | 2005-08-05 | 2007-02-22 | Henkel Kgaa | Use of esterases for splitting plastics |
US8252559B2 (en) * | 2006-08-04 | 2012-08-28 | The California Institute Of Technology | Methods and systems for selective fluorination of organic molecules |
EP2069513A4 (en) * | 2006-08-04 | 2012-03-21 | California Inst Of Techn | METHODS AND SYSTEMS FOR SELECTIVE FLUORATION OF ORGANIC MOLECULES |
WO2008121435A2 (en) * | 2007-02-02 | 2008-10-09 | The California Institute Of Technology | Methods for generating novel stabilized proteins |
US20080268517A1 (en) * | 2007-02-08 | 2008-10-30 | The California Institute Of Technology | Stable, functional chimeric cytochrome p450 holoenzymes |
US8802401B2 (en) * | 2007-06-18 | 2014-08-12 | The California Institute Of Technology | Methods and compositions for preparation of selectively protected carbohydrates |
CN103889997B (en) * | 2011-01-18 | 2017-08-25 | 通用原子公司 | Hydrolase zymolyte and its application |
US9322007B2 (en) | 2011-07-22 | 2016-04-26 | The California Institute Of Technology | Stable fungal Cel6 enzyme variants |
WO2014113521A1 (en) * | 2013-01-18 | 2014-07-24 | Codexis, Inc. | Engineered biocatalysts useful for carbapenem synthesis |
EP2873736A1 (en) | 2013-11-18 | 2015-05-20 | Sandoz AG | Chemoenzymatic synthesis of the cephalosporine intermediate 7-amino-3-alkenylcephem-4-carboxylic acid |
JP6399315B2 (en) * | 2016-03-18 | 2018-10-03 | 株式会社カロテノイド生産技術研究所 | Terpene synthase gene, acetoacetate hydrolase gene, and method for producing terpene |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5468632A (en) * | 1991-12-20 | 1995-11-21 | Eli Lilly And Company | Recombinant DNA compounds and expression vectors encoding para-nitrobenzyl esterase activity from bacillus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5316935A (en) * | 1992-04-06 | 1994-05-31 | California Institute Of Technology | Subtilisin variants suitable for hydrolysis and synthesis in organic media |
-
1996
- 1996-01-23 US US08/589,893 patent/US5741691A/en not_active Expired - Fee Related
-
1997
- 1997-01-16 WO PCT/US1997/001175 patent/WO1997027304A1/en not_active Application Discontinuation
- 1997-01-16 EP EP97905618A patent/EP0876490A1/en not_active Withdrawn
- 1997-01-16 JP JP52703797A patent/JP2001517926A/en active Pending
-
1998
- 1998-02-09 US US09/020,991 patent/US5906930A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5468632A (en) * | 1991-12-20 | 1995-11-21 | Eli Lilly And Company | Recombinant DNA compounds and expression vectors encoding para-nitrobenzyl esterase activity from bacillus |
Non-Patent Citations (1)
Title |
---|
GENE, December 1994, Vol. 151, ZOCK, J. et al., "The Bacillus Subtilis pnb A Gene Encoding p-Nitrobenzyl Esterase: Cloning, Sequence and High-Level Expression in Escherichia Coli", pages 37-43. * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001072999A1 (en) * | 2000-03-27 | 2001-10-04 | California Institute Of Technology | Expression of functional eukaryotic proteins |
CN102834515A (en) * | 2010-08-31 | 2012-12-19 | 株式会社Api | new hydrolase protein |
US9029107B2 (en) | 2010-08-31 | 2015-05-12 | Api Corporation | Hydrolase protein |
US9334509B2 (en) | 2010-08-31 | 2016-05-10 | Api Corporation | Hydrolase protein |
CN102834515B (en) * | 2010-08-31 | 2016-08-03 | 株式会社Api | New hydrolase protein |
Also Published As
Publication number | Publication date |
---|---|
EP0876490A1 (en) | 1998-11-11 |
US5906930A (en) | 1999-05-25 |
JP2001517926A (en) | 2001-10-09 |
US5741691A (en) | 1998-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5741691A (en) | Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media | |
WO1997027304A9 (en) | Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media | |
US5945325A (en) | Thermally stable para-nitrobenzyl esterases | |
Moore et al. | Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents | |
Chen et al. | Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media | |
US7049115B2 (en) | Genes encoding denitrification enzymes | |
RU2103364C1 (en) | Dna sequence, protein, method of protein producing | |
Garinot-Schneider et al. | Identification of putative active-site residues in the DNase domain of colicin E9 by random mutagenesis | |
WO1997048794A1 (en) | Amidase | |
CA2269640C (en) | Enzymatic cofactor cycling using soluble pyridine nucleotide transhydrogenase | |
KR100543051B1 (en) | Gene coding for the polypeptide having a degrading activity of the sulfated-fucose-containing polysaccharide | |
US5371006A (en) | Isolated DNA encoding the NotI restriction endonuclease and related methods for producing the same | |
JP3486942B2 (en) | Thermostable esterase | |
JPH08196281A (en) | Dna coding water-formation type nadh oxidase | |
KR20000060418A (en) | Method for Preparing Enzyme Variants Including High Throughput Screening | |
EP0551750B1 (en) | Recombinant DNA compounds and expression vectors encoding para-nitrobenzyl esterase activity from bacillus | |
EP0712933B1 (en) | Isolated DNA encoding the FseI restriction endonuclease and related methods for producing the same | |
Zhou et al. | Improving the specific synthetic activity of a penicillin G acylase using DNA family shuffling | |
CN112662643A (en) | Organophosphorus anhydrase, coding gene thereof and application of organophosphorus anhydrase in degradation of organophosphorus pesticides | |
KOO et al. | Identification of active-site residues in Bradyrhizobium japonicum malonamidase E2 | |
KR20060022339A (en) | Novel Lipase from Soil Metagenome and Method for Selective Segmentation of Racemicethyl 2-Bromopropionate | |
CA2290074A1 (en) | Method for the stabilization of proteins and the thermostabilized alcohol dehydrogenases produced thereby | |
CN116254245A (en) | Application of protein OPAA114644 as organic phosphoric acid anhydrase | |
Farzaneh et al. | Characterization and amino acid sequence of the OXY-2 group beta-lactamase of pI 5.7 isolated from aztreonam-resistant Klebsiella oxytoca strain HB60. | |
KR20000064999A (en) | New genes and gene groups and new β-glucosidase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
COP | Corrected version of pamphlet |
Free format text: PAGES 1/33-33/33,DRAWINGS,REPLACED BY NEW PAGES BEARING THE SAME NUMBER;DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1997905618 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1997 527037 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1997905618 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997905618 Country of ref document: EP |