WO1997016847A1 - Sample retaining method, sample rotating method, sample surface fluid treatment method and apparatuses for these methods - Google Patents
Sample retaining method, sample rotating method, sample surface fluid treatment method and apparatuses for these methods Download PDFInfo
- Publication number
- WO1997016847A1 WO1997016847A1 PCT/JP1996/003178 JP9603178W WO9716847A1 WO 1997016847 A1 WO1997016847 A1 WO 1997016847A1 JP 9603178 W JP9603178 W JP 9603178W WO 9716847 A1 WO9716847 A1 WO 9716847A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- fluid
- guide
- holding
- sample holding
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 225
- 238000000034 method Methods 0.000 title claims description 55
- 238000006073 displacement reaction Methods 0.000 claims abstract description 12
- 230000000717 retained effect Effects 0.000 claims abstract 5
- 238000012545 processing Methods 0.000 claims description 107
- 239000007788 liquid Substances 0.000 claims description 65
- 239000007789 gas Substances 0.000 claims description 49
- 230000000694 effects Effects 0.000 claims description 35
- 238000004140 cleaning Methods 0.000 claims description 32
- 239000007924 injection Substances 0.000 claims description 22
- 238000002347 injection Methods 0.000 claims description 22
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000001035 drying Methods 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 9
- 238000003672 processing method Methods 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- JOHWNGGYGAVMGU-UHFFFAOYSA-N trifluorochlorine Chemical compound FCl(F)F JOHWNGGYGAVMGU-UHFFFAOYSA-N 0.000 claims description 3
- 239000013598 vector Substances 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims 3
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 230000007246 mechanism Effects 0.000 abstract description 12
- 235000012431 wafers Nutrition 0.000 description 50
- 239000011261 inert gas Substances 0.000 description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000011863 silicon-based powder Substances 0.000 description 8
- 239000007921 spray Substances 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000007667 floating Methods 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- 239000004696 Poly ether ether ketone Substances 0.000 description 5
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 5
- 230000005499 meniscus Effects 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920002530 polyetherether ketone Polymers 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- 230000003749 cleanliness Effects 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- -1 as shown in Fig. 1 Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 102000020897 Formins Human genes 0.000 description 1
- 108091022623 Formins Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920013745 polyesteretherketone Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6838—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
Definitions
- the present invention relates to a method for holding a plate-like sample in a fine contact state necessary for a manufacturing process of a thin film device, a rotating method, a fluid processing method, and an apparatus therefor, and particularly to a semiconductor manufacturing process requiring high cleanliness.
- the present invention relates to a method for holding a disk sample, a method for rotating a disk sample, a method for treating a fluid, and a device therefor.
- the structure of thin film devices such as semiconductors, liquid crystal displays, and magnetic disks has been miniaturized, and a high degree of cleanliness in the manufacturing process is desired in order to improve the performance of these devices and the production yield.
- the size of the foreign substance to be removed is 0. 3 ⁇ ⁇ above
- contamination of the metal ions is 1 0 9 atom ZCM 2 or less
- the thickness of the oxide film formed by exposure to air It is required to be 1 nm or less.
- samples a single-wafer processing method for processing substrate samples (hereinafter referred to as “samples”) one by one is being put into practical use.
- samples substrate samples
- the conventional single-wafer processing method and apparatus have the following problems.
- a sample is fixed by a substrate rotating means, and a surface is treated by jetting a fluid onto the sample surface while mechanically rotating the sample.
- FIG. 2 shows a case where the fluid is a liquid.
- the mainstream wafer is 8 inches
- the liquid flow rate toward the wafer at a wafer rotation speed of 100 rpm requires about 71 / min.
- the insufficient flow rate is supplemented by the gas in the cleaning environment (generally air).
- the wafer is exposed to air, and the cleaning time is wasted.
- Japanese Patent Publication No. Hei 4-69420, Japanese Patent Laid-Open No. 61-229750, Japanese Patent Laid-Open No. 60-7444 As described in Japanese Patent Publication No. 38 (hereinafter referred to as a second conventional example), there is a method of processing a sample using the Bernoulli effect of a fluid.
- Fig. 4 shows the principle of holding a plate-like sample by the Bernoulli effect.
- F acts on the holding surface of the holder 4 on the sample 1 due to the ejection force. Since it spreads radially in the circumferential direction while being sandwiched between the injection hole 5 and the sample 1 and the holder 4, a pressure change occurs, and a negative pressure: P acts on the sample 1. Therefore, the sample 1 is held in a non-contact state with the holder 4 at a position where F and P are balanced.
- the fluid 2 that causes the Bernoulli effect is used as a fluid for treating the surface of the sample 1.
- Sample 1 can be held in the direction perpendicular to the holding surface, but not in the direction tangential to the holding surface (in the direction parallel to the holding surface). If a stopper, a protrusion, a side wall, etc. are provided to prevent this, the following problems will occur.
- the processing method using the Bernoulli effect does not solve the problem of the displacement of the sample in the tangential direction and has not been realized.
- cleaning processing
- one mechanism such as cleaning I (processing), cleaning 2 (processing), and cleaning 3 (processing)
- a large spray force is required when the cleaning liquid is switched.
- it has not been realized because of fluctuations.
- the gas flow velocity is less than about half of the sound velocity (173 m / sec)
- the gas can be handled as an incompressible fluid. Is well known in the field of hydrodynamics.
- An object of the present invention is to solve the above-mentioned problems of the prior art, and a first object is to provide a method for holding a tangentially stable sample using the Bernoulli effect.
- the second object is a method for stably rotating a sample held using the Bernoulli effect, and the third object is a sample holding method according to the present invention and a plate-like sample surface using the sample rotating method.
- a fourth object of the present invention is to provide an apparatus for treating a surface of a plate-like sample using a sample holding method and a sample rotating method according to the present invention. Disclosure of the invention
- the present invention solves the above objects by the following technical means.
- the first object is to provide a sample guide for holding the sample, which is mechanically separated from the sample holding surface, in the direction in which the sample is to be held, and to allow a fluid to flow between the sample and the sample holding surface. This is achieved by a sample holding method characterized in that the sample is held in contact with the sample guide by utilizing the Bernoulli effect caused by the sample, and the sample position shift in the tangential direction as well as the normal direction of the sample holding surface is suppressed.
- the second object is attained by a sample rotating method characterized by rotating the sample together with rotation of the sample guide in the sample holding method for achieving the first object.
- the third object is to select a fluid to flow to generate the Bernoulli effect according to the treatment to be performed on the sample to be held, support the sample with a sample guide, and treat the sample surface.
- the fourth object is to provide a sample holding means on which the sample holding surface is formed, and a fluid for flowing between the sample holding surface and the sample to generate a Bernoulli effect and for processing the sample surface.
- a fluid supply means for supplying the fluid a fluid supply means for supplying the fluid for floating the fluid guide, and a fluid supply means for supplying the fluid for floating the fluid guide.
- FIG. 1 is an explanatory diagram for explaining the flow of a fluid when a plate-like sample is rotated
- Fig. 2 is a diagram for explaining the flow rate required to form the fluid flow when the wafer is rotated.
- FIG. 3 is an explanatory view for explaining a flow of a fluid when a plate-shaped sample is rotated while being sealed with a side wall
- FIG. 4 is a view for explaining a Bernoulli holding.
- FIG. 5 is an explanatory diagram for explaining the principle
- FIG. 5 is an explanatory diagram for explaining the relationship between forces acting on a sample when a Bernoulli holder is used as the upper and lower holders.
- Fig. 7 shows the relationship between each force acting on the sample and the distance between the upper and lower holders.
- FIG. 7 shows the results when the sample is contacted and held when the Bernoulli holder is used as the lower holder.
- FIG. 8 is an explanatory view for explaining the relationship between the forces acting on the upper and lower holders.
- Fig. 9 is an explanatory view for explaining the relationship between the forces acting when the sample is held in contact with the sample, and Fig. 9 shows the relationship between each force acting on the sample and the distance between the upper and lower holders.
- FIG. 10 is a cross-sectional view for explaining the structure of three embodiments of a sample guide for contacting and holding a sample
- FIG. 11 is a view for explaining the principle of rotating the sample.
- FIG. 12 is an exploded view of the components of FIG. 12.
- FIG. 12 is a cross-sectional view for explaining the principle of rotating the sample.
- FIG. 13 is an upper holder, a sample guide, and a sample guide according to the present invention.
- FIG. 14 is an exploded view of components of one embodiment, such as a plate and a lower holder
- FIG. 14 is a cross-sectional view showing a main part configuration of an upper holder according to the present invention
- FIG. 17 is a plan view showing a main part configuration of the sample guide according to the present invention.
- FIG. 19 is a cross-sectional view illustrating a configuration of a main part of the lower holder according to the present invention.
- FIG. FIG. 2 is an explanatory diagram showing a main configuration of an example enabling fluid treatment according to the present invention.
- FIG. 21 is a diagram showing a removal rate of silicon powder
- FIG. 23 is a diagram showing the ion removal rate.
- FIG. 23 is a development view of components of one embodiment, such as an upper holder, a sample guide, a sample guide ⁇ , a turntable, and a lower holder according to the present invention.
- FIG. 24 is a cross-sectional view showing a configuration of a main part of the lower holder according to the present invention.
- FIG. FIG. 2 is an explanatory diagram showing a main configuration of an example enabling fluid treatment according to the present invention.
- FIG. 21 is a diagram showing a removal rate of silicon powder
- FIG. 23 is a diagram showing the ion removal rate.
- FIG. 23 is
- FIG. 26 is a plan view showing an example of the arrangement of the rotating table
- FIG. 26 is a cross-sectional view after assembling a rotating table lid, a sample guide, a sample guide plate, and a rotating table.
- FIG. 28 is a cross-sectional view showing a configuration of a main part of the sample guide according to the present invention.
- FIG. 28 is a plan view showing an example of an arrangement of fluid injection holes that levitate and rotate the sample guide according to the present invention;
- FIG. 29 is an explanatory view showing a meniscus when the upper and lower holders are used,
- FIG. 30 is a diagram showing a suppressing force when the upper and lower holders are used, and
- FIG. FIG. 3 is an explanatory diagram showing a main configuration of an embodiment that enables fluid processing according to the present invention.
- the Bernoulli effect suction force: P ;, P 2 becomes zero. That is, if the distance between the holders is within about 5 mm, the sample 1 is held in the normal direction of the holding surface.
- Fig. 7 shows a cross-sectional view of the case with only the lower holder, showing the direction and type of the force applied to sample 1.
- a sample guide 8 with a height of about 5 mm or less from the holding surface is fixed on the upper surface of the lower holder 4, and when fluid is ejected from the injection hole 5, the force 1: F: and P : act on the sample 1, Fixed to sample guide 8 with force: G.
- Equation 2 The equilibrium of all forces is given by Equation 2 below.
- FIG. 8 is a cross-sectional view when the upper and lower holders are used, and shows the direction and type of force applied to the sample 1.
- Upper surface of lower holder 4 When upper holder 6 is brought within approximately 5 mm and fluid is ejected from injection hole 7, force 1: F 2 and P 2 act on sample 1. The balance of all forces is given by Equation 3 below.
- FIGS. 10 (a) to 10 (c) are cross-sectional views showing three examples of the sample guide 8 used in the present invention.
- Fig. 10 (a) shows the structure of the sample guide 8 that simply supports the sample 1 from below, and the force that suppresses the displacement of the sample 1 in the tangential direction with respect to the holding surface.
- the fixing force is the frictional force proportional to G between the materials constituting sample 1 and sample guide 8.
- FIG. 10 (b) shows an L-shaped sample guide 8, which physically suppresses the displacement in addition to the frictional force.
- FIG. 10 (c) shows the sample guide 8 tapered so that the distance from the holding surface decreases toward the center of the sample 1.
- the fixing force is G s i ⁇ c 0 s 6, and this force suppresses displacement in the tangential direction.
- the tapered sample guide 8 facilitates the positioning of the sample 1 with respect to the holder 4 and is more useful. It is not necessary to provide these sample guides 8 on the entire circumference of the holder, and a plurality of these sample guides may be arranged on the circumference so that the fluid can flow out of the holder.
- the Bernoulli effect acting on a sample is reduced.
- the sample is held in the normal direction of the holding surface, and is also held in the tangential direction of the holding surface by a simple sample guide. Therefore, even if the ejection force fluctuates due to the vibration, pulsation, pressure change, etc. of the pump that ejects the fluid, the sample is not displaced, and as a result, the sample can be stably held.
- the surface of the sample is treated while the sample is sandwiched between the upper and lower holders at a small interval, preventing contamination from outside the holder and eliminating the need for re-contamination. To achieve.
- FIG. 11 is a development view of the components
- FIG. 12 is a cross-sectional view thereof.
- sample guide plate 9 in which a sample guide 8 is fixed on a lower holder 4, a sample 1, and an upper holder 6.
- the sample guide plate 9 is mechanically separated from the upper and lower holders 4 and 6, and is independent.
- the sample 1 is fixed to the sample guide plate 9 through the sample guide 8 by the Bernoulli effect generated by the fluid ejected from the fluid injection hole 5-1.
- the sample guide plate 9 floats above the lower holder 4, and becomes completely unrelated to the lower holder 4 mechanically. Therefore, if the injection hole 5-2 injects the fluid in the desired rotation direction of the sample 1 with an inclination to the holding surface, the sample guide plate 9 is lifted up from the lower holder 4 by the action of the injection force. And rotate.
- FIG. 13 is a development view of components such as the upper holder 6, the sample 1, the sample guide 8, the sample guide plate 9, and the lower holder 4 used in the present embodiment.
- FIG. 14 shows a detailed sectional view of the upper holder 6.
- the upper holder 6 includes an upper spray plate 10 for spraying a fluid, a 0-ring 11 for separating a fluid flow path, and an upper supply plate 12.
- the upper spray plate 10 is made of polytetrafluoroethylene (hereinafter, referred to as PTFE) having a diameter of 170 mm and a thickness of 20 mm, and the surface facing the sample 1 has a surface as shown in FIG.
- PTFE polytetrafluoroethylene
- a hole of approximately the same size is given to the rotation center of the sample 1 and the hole is drilled at a position where the sum of the vectors of the injection force is almost zero.
- the arrow in FIG. 15 indicates that the hole is drilled obliquely at an angle of 45 with the holding surface in the direction of the arrow (the same applies hereinafter).
- the Bernoulli effect that occurs between the sample 1 and the upper holder 6 is caused by ejecting a fluid from five orifices 7-1 having a diameter of 1 mm.
- the injection hole 7-2 with a diameter of 1 mm is used mainly for drying sample 1 to scatter water droplets attached to the contact point between sample 1 and sample guide 8.
- Ring 1 1 is made of tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (hereinafter referred to as PFA) and has a wire diameter of 5.7 mm. Diameter: 49.6 mm and 19.6 mm.
- PFA tetrafluoroethylene perfluoroalkyl vinyl ether copolymer
- the upper supply plate 12 is made of PTFE having a diameter of 170 mm and a thickness of 10 mm, and has a supply hole 13 of 1 mm in diameter for supplying fluid.
- the upper spray plate 10 and the upper supply plate 12 are fixed to each other with a 5-mm diameter bolt made of polyester ether ketone (hereinafter referred to as PEEK) with the 0-ring 11 interposed therebetween.
- PEEK polyester ether ketone
- FIG. 16 is a cross-sectional view of the sample guide plate 9 to which the sample guide 8 is fixed
- FIG. 17 is a plan view thereof.
- the sample guide 8 is L-shaped with a total height of 4 mm and a sample holding height of 3 mm, and is made of PEEK.
- Sample guide No. 9 is made of PTFE having an outer diameter of 144 mm, an inner diameter of 125 mm and a semicircular cross section of 20 mm in diameter.
- FIG. 18 shows a detailed sectional view of the lower holder 4.
- the lower holder 4 is composed of a lower ejection plate 14 for supplying a fluid, a 0-ring 11 for separating a fluid flow path, and a lower ejection plate 15.
- the lower spray plate 14 is made of PTFE having a diameter of 170 mm and a thickness of 30 mm, and the surface facing the sample 1 has a half of a diameter of 20.2 mm for accommodating the sample guide plate 9.
- a circular groove is dug.
- the surface of the surface, as shown in Fig. 19, is a fluid injection hole 5 for generating the Bernoulli effect, a floating hole 17 for floating the sample guide plate 9, and a rotating and holding sample guide plate 9.
- a rotating hole 18 that is formed at an angle of 45 ° with respect to the surface and a brake on the rotating sample guide plate 9 at an angle of 45 ° with respect to the holding surface.
- Braking holes 19 are formed as holes having a diameter of 1 mm. These piercing angles are effective in the range of 80 to 180 force ⁇ 45. Is desirable.
- Ring 11 is made of PFA and has a wire diameter of 5.7 mm and an inner diameter of 49.6 mm, 69.6 mm, 89.6 mm, and 109.6 mm.
- the lower supply plate 15 is made of PEEK with a diameter: I 70 mm and a thickness: 10 mm.
- the supply holes 16-1, 16-2, 16-3, 16-4 for supplying fluid are provided. Diameter: 1 mm perforated.
- FIG. 20 conceptually illustrates a fluid treatment method and a fluid treatment apparatus for treating sample 1 by injecting various fluids using the upper holder 6, the sample guide plate 9, and the lower holder 4. This is shown in FIG.
- the solenoid valves all start from a closed state.
- the solenoid valves 21 to 6 are closed, the solenoid valves 21 to 9 are opened, and the treatment liquid in the treatment liquid tank II 23 is injected at 3 ⁇ / m ⁇ ⁇ , and the sample 1 The processing on the back of is started.
- the treatment liquid of 23 is injected at a flow rate of 21 / in, and the treatment of the surface of sample 1 is started.
- the wafer is a Shin-Etsu Chemical 6 inch wafer with a diameter: 150 mm, a thickness: 0.55 mm, a weight: 21.4 g, and a resistivity: 6.01 to 12.0 ⁇ cm.
- the number of adhered silicon powder before and after the above treatment was measured using a laser surface inspection device manufactured by Hitachi Electronics Engineering, and the removal rate (%) was determined.
- the wafer was immersed in an aqueous solution obtained by diluting a desired standard solution for atomic absorption analysis for 30 minutes to prepare a wafer contaminated with various metal ions.
- a desired standard solution for atomic absorption analysis for 30 minutes to prepare a wafer contaminated with various metal ions.
- the number of adhering metal ions before and after the above treatment was measured using a total reflection X-ray fluorescence analyzer made by Technos: TREX610, and the removal rate (%) was determined.
- the experimental results obtained under the above conditions are shown in Fig. 22.
- the processing was at a high speed equal to or higher than that of the conventional rotary surface treatment equipment.
- a stepped polysilicon wafer was used.
- the drying spot generated when the wafer is dried is called a watermark.
- the main cause is that oxygen in the air dissolves in water droplets adhering to the wafer, oxidizes and dissolves the silicon of the wafer, and the dissolved matter remains as a dry residue.
- This water mark has a diameter of about 1 to several 10 ⁇ m, and is observed at a magnification of 10,000 to 80,000 using an electron microscope S-7100 manufactured by Hitachi, Ltd. The number of occurrences was measured.
- FIG. 23 shows the upper and lower holders 4 and 6 used in the present embodiment, the sample 1, the turntable lid 2, the sample guide 8, the sample guide plate 9, the turntable 25 and other components.
- the structure of the upper holder 6 is the same as in FIGS. 14 and 15 except that the diameter thereof is set to 154 mm.
- FIG. 24 shows a detailed sectional view of the lower holder 4.
- the lower holder 4 includes a lower jet plate 14 for jetting a fluid, a 0-ring 1 i for separating a fluid flow path, and a lower feed plate 15.
- the lower spray plate has a diameter of 154 mm and has almost the same diameter as the 6-inch wafer used as sample 1, and a thickness of 301: 111? Ding?
- An injection hole 5-1 with a diameter of 1.2 mm is drilled at a position where it is almost zero.
- a storage groove 26 for storing the sample guide 8 shown in FIG. 26 described later which has a width of 2 mm, a length of 5 mm, and a depth of 15 mm, is cut.
- An injection hole 5-2 with a diameter of 1 mm that scatters water droplets adhering to the contact point between the sample 1 and the sample guide 8 is drilled near the storage groove 26.
- FIG. 26 is a cross-sectional view after assembling the turntable lid 24, the sample guide 8, the sample guide plate 9, and the turntable 25.
- the turntable lid 24 and the turntable 25 are connected by a port, and the sample guide plate 9 is stored in the gap therebetween.
- the sample guide plate 9 floats from the turntable 25.
- the rotation hole 18 has a hole with a diameter of 1 mm, which is oblique to the direction in which the sample guide plate 9 is rotated.
- the braking hole 19 is formed with a hole having a diameter of 1 mm, which is oblique in the opposite direction to the rotating hole 18 in order to brake the rotation of the rotating sample guide plate 9.
- the injection angles of the rotating hole 18 and the braking hole 19 are effective in the opposite directions of 10 to 80 °, but preferably 45 °.
- the rotating shaft hole 27 is perforated with a hole having a diameter of 1 mm, and holds the rotating sample guide plate 9 in a non-contact manner with the rotating shaft of the rotating base 25 by jetting a fluid.
- the turntable lid 24 is made of PE EK having a thickness of 3 mm.
- the sample guide plate 9 is made of PEEK with a thickness of 2 Omm.
- FIG. 27 shows an example of the positions of the injection holes for ejecting the fluid of the turntable 25 and the ejection direction.
- FIG. 1 The operation of storing the sample guide 8 in the storage groove 26 of the lower holder 4 and exposing it from the storage groove 26 is shown in FIG. That is, the sample guide 8 is stored in the storage groove 26 by the vertical movement of the turntable 25 or the lower holder 4.
- the sample guide 8 is made to appear and the sample 1 is contacted and processed.
- FIG. 30 shows an example of the result of measuring the suppression force.
- the measurement was performed in the state shown in Fig. 29.
- the sample used was a 5-inch wafer with a diameter of 125 mm, and the upper and lower holders were made of PTFE with a diameter of 110 to 135 mm, and the distance between the upper and lower holders was measured. : 1.76 mm, liquid: water, the above-mentioned restraining force was obtained by connecting the wafer and the electronic balance with a thread.
- a large restraining force works with the holder size within the sample dimensions of -8 mm and +4 mm.
- the fluid is a liquid
- the holder size is within the range of 18 mm and 14 mm with respect to the sample size, the sample can be held and processed without contact.
- the sample guide prevents the tangential displacement with respect to the sample holding surface by the sample guide.
- the treatment with the liquid in the stored state of the sample guide 8 can be performed. It is possible to perform the treatment with gas in the appearance state of, and to realize the highest possible clean treatment.
- the turntable 25 of the sample guide plate 9 is moved upward, the sample guide 8 is made to appear, and the sample 1 is placed on the sample guide 8.
- the turntable 25 is moved downward, and the distance between the sample 1 and the holding surface of the lower holder 4 is set to about 3 mm.
- the solenoid valves 30 — 3 and 30 — 4 are opened, and an inert gas is injected at a flow rate of 30 I in to cause the Bernoulli effect between the upper holder 6 and the sample 1.
- Open the solenoid valves 3 2-1, 3 2-2, 3 2-3 inject the air in the high-pressure air tank 31 at a flow rate of 61 / min, and move the sample guide plate 9 from the turntable 25. While floating, rotate the sample guide plate 9 at about 100 rpm.
- the solenoid valves 30-1 are closed and the solenoid valves 30-6 are opened, the processing liquid in the processing liquid tank I22 is injected at a flow rate of 21 / in, and processing on the back side of the sample 1 is started. You.
- the electromagnetic valves 30-3 are closed, the electromagnetic valves 29-1 and 29-2 are opened, and the inert gas is passed through the processing gas tank 28 using the inert gas as the carrier gas to process the desired component gas. Create body and treat sample 1 surface. After the treatment for a predetermined time, the solenoid valves 29-1 and 29-2 are closed, and the solenoid valves 30-3 are opened to inject the inert gas to completely remove the treated gas. After that, it shifts to the injection of the processing solution in the following processing solution tank # 23.
- the solenoid valves 30 to 5 are closed and the solenoid valves 30 to 7 are opened, and the treatment liquid in the treatment liquid tank ⁇ 23 is injected at a flow rate of 21 / min. Is started.
- solenoid valves 30-7 are closed, solenoid valves 30-1 are opened, and an inert gas is injected at a flow rate of 301 / min to start drying the back surface of sample 1. Is done.
- solenoid valves 30-8 With solenoid valves 30-8 closed, solenoid valves 30-3 and 30-9 opened, an inert gas is injected at a flow rate of 301 Zin, and the surface of sample 1 starts drying. .
- FIG. 31 parts such as a fixing and moving mechanism for the holder, a fluid temperature controller, and a fluid flow controller, which are not related to the essence of the present invention, are omitted.
- the fluid ejected by the lower holder 4 is heated to a desired temperature by the temperature control 33, and the processing temperature of the sample 1 can be adjusted by transmitting the temperature of the fluid from the back surface of the sample.
- the first processing fluid is liquid
- the second processing fluid is liquid
- the third processing fluid is gas
- Example 1> [IV] The same as in the evaluation of the silicon powder removal rate.
- Example 4> An experiment was performed using the same fluid treatment method and apparatus as in Example 4>.
- the first processing fluid is a gas
- the second processing fluid is a liquid
- the third processing fluid is a gas.
- Wafers are the same as in Example 1> heat-treated at 950 in oxygen containing 1% water vapor for 54 minutes to form a 180 nm thermal oxide film on the wafer surface was used.
- Nitrogen gas is flowed into liquid hydrofluoric anhydride to create a gas containing 2% hydrofluoric acid gas and water vapor. Temperature: room temperature.
- Processing liquid tank Processing was performed for 120 seconds with the processing fluid in ⁇ .
- the thickness of the thermal oxide film was measured with an ellipsometer, and the processing speed (etching speed) was determined from the values before and after the processing. After the treatment, hydrofluoric acid adhering to the wafer surface was measured by the concentrated ion electrode method.
- Example 4> An experiment was conducted using the same fluid treatment method and apparatus as in Example 4>. Note that the first processing fluid is a gas, The second processing fluid is a liquid, and the third processing fluid is a gas.
- Example 2 Wafer Wafer Same as in Example 1), using a gas containing 3% disilane and phosphine, and a 150-nm doped poly-silicon layer on the wafer surface by aging CVD at 50 ° C. A film was formed.
- Processing was performed for 120 seconds with the processing fluid in the processing liquid tank II.
- the thickness of the doped polysilicon film was measured with an ellipsometer, and the processing rate (etching rate) was determined from the values before and after the processing. After the treatment, hydrofluoric acid adhering to the wafer surface was measured by the concentrated ion electrode method.
- the doped polysilicon film was etched at a rate of 250 nm / min by the processing gas. Furthermore, in the etching by the process gases from adhering fluorine atom about 5 X 1 0 13 atoms Ji m 2 on the wafer surface, the processing of the processing liquid tank 11, from about 1 0 1 1 It was found that it can be reduced to atoms / cm 2 .
- One mechanism enables continuous gas-liquid-gas processing.
- chlorine trifluoride is a very corrosive compound. ⁇ The apparatus of the present invention was not corroded at all.
- the rotating table of the sample guide may be arranged on the left and right of the holder, or may be arranged on the upper holder by reversing the upper and lower holders shown in FIG. Unless corrosive fluids are used, or if a high degree of cleanliness is not required, the rotation of the sample guide may be driven by a drive motor rather than by spraying the fluid.
- a sample guide for holding the sample is provided in the direction in which the sample is to be held and is mechanically separated from the sample holding surface, and a fluid is caused to flow between the sample and the sample holding surface.
- a method and apparatus for holding a sample wherein the sample is held in contact with the sample guide using the Bernoulli effect, and the displacement of the sample in the tangential direction is suppressed together with the normal direction of the sample holding surface. Can be provided.
- sample rotating method and apparatus wherein the sample guide is mechanically separated from the sample holding surface, and the sample is rotated together with the rotation of the sample guide.
- a fluid treatment method and apparatus characterized by the following can be provided.
- the present invention is extremely effective when used particularly in a semiconductor manufacturing process requiring cleanliness.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Jigs For Machine Tools (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
In order to attain a fluid treatment apparatus of small dimensions and a high cleaness by retaining a sample stably by simple retainer guides in a Bernoulli's retainer and rotating the sample by a fluid jet, the retainer guides are formed so as to be mechanically separated from a sample retaining surface, and the sample is retained in a contacting state by ejecting a fluid thereto, the sample guides being rotated in a non-contacting state by a jet of the fluid. A plurality of fluid supply sources are connected to the retainer, and not less than one kind of fluid is supplied to the sample. Since the sample guides (8) prevent the tangential displacement of the sample (1), a continuous treatment using various kinds of fluids can be conducted in a non-air-contacting state by one mechanism. Since these sample guides (8) are rotated by a jet of a fluid, a driving motor and certain kinds of parts of the mechanism are not required, and a great reduction of the dimensions of the apparatus can be attained.
Description
明 細 書 試料保持方法、 試料回転方法及び試料表面の流体処理方法並びにそれら の装置 技術分野 Description Sample holding method, sample rotating method, sample surface fluid treatment method, and their devices
この発明は、 薄膜デバイスの製造工程に必要な板状試料の微接触状態 での保持方法、 回転方法及び流体処理方法並びにそれらの装置に係り、 特に、 高い清浄性が要求される半導体製造工程に好適な、 円板試料の保 持方法、 回転方法及び流体処理方法並びにそれらの装置に関する。 背景技術 The present invention relates to a method for holding a plate-like sample in a fine contact state necessary for a manufacturing process of a thin film device, a rotating method, a fluid processing method, and an apparatus therefor, and particularly to a semiconductor manufacturing process requiring high cleanliness. The present invention relates to a method for holding a disk sample, a method for rotating a disk sample, a method for treating a fluid, and a device therefor. Background art
近年、 半導体, 液晶ディスプレイ, 磁気ディスクなどの薄膜デバイス は構造の微細化が進み、 これらのデバイスの性能及び製造の歩留ま り向 上のため、 製造工程の高度な清浄性が望まれている。 半導体の例で言え ば、 除去すべき異物の大きさは 0 . 3 μ ιη以上、 金属イオンの汚染量は 1 0 9原子 Zcm 2以下、 空気に触れることによって形成される酸化膜の厚 さは 1 n m以下とすることが要求されている。 In recent years, the structure of thin film devices such as semiconductors, liquid crystal displays, and magnetic disks has been miniaturized, and a high degree of cleanliness in the manufacturing process is desired in order to improve the performance of these devices and the production yield. . In terms of semiconductor example, the size of the foreign substance to be removed is 0. 3 μ ιη above, contamination of the metal ions is 1 0 9 atom ZCM 2 or less, the thickness of the oxide film formed by exposure to air It is required to be 1 nm or less.
さらに、 設備投資肥大化の抑制のために、 多品種混合生産が不可避と なり、 複数の製造工程に対応できる装置が必要とされる。 このため各ェ 程を繋ぐ洗浄、 エッチング装置のより多機能化、 高性能化、 小形化が必 須となる。 In addition, mixed production of various types is inevitable in order to suppress the expansion of capital investment, and equipment that can handle multiple manufacturing processes is required. For this reason, cleaning and etching equipment that connects each process must be more versatile, have higher performance, and be smaller.
これらの要求に対する一具体策として、 基板試料 (以下、 試料と云う) を 1枚づっ処理する枚葉処理方法が実用化されつつある。 しかし、 従来 の枚葉処理方法と装置では以下の問題点があった。 As a specific measure to meet these requirements, a single-wafer processing method for processing substrate samples (hereinafter referred to as “samples”) one by one is being put into practical use. However, the conventional single-wafer processing method and apparatus have the following problems.
従来例としては、 例えば特開平 4一 2 8 7 9 2 2号公報 (以下、 第 1
の従来例と云う) の回転式表面処理装置が挙げられる。 この第 1の従来 例は、 試料を基板回転手段で固定すると共に、 機械的に回転させながら 試料表面に流体を噴射して表面処理するものである。 As a conventional example, for example, Japanese Unexamined Patent Publication No. Hei. Of the prior art). In the first conventional example, a sample is fixed by a substrate rotating means, and a surface is treated by jetting a fluid onto the sample surface while mechanically rotating the sample.
流体中で板状試料 1 を回転すると、 第 1図に示すように、 角運動量に 基づく遠心作用によって流体 2が板状試料の内側から外側に向かって流 れ、 その結果、 流体 2は板状試料 1 に向かう。 その流れの流量は次の数 55; 1で表される ( Journal Electroanalytical Chemistry, vol. 6 9 , p. 1〜 1 0 5 ( 1 9 7 6 ) ) 。 When plate-like sample 1 is rotated in a fluid, as shown in Fig. 1, fluid 2 flows from inside to outside of plate-like sample due to centrifugal action based on angular momentum. Go to sample 1. The flow rate of the stream is represented by the following number 55; 1 (Journal Electroanalytical Chemistry, vol. 69, p. 1 to 105 (1976)).
Q = 0 . 8 9 S ( ω v ) 1 2 Q = 0 .89 S (ω v) 1 2
- (数式 1 ) ここで、 Q : 円板試料を回転したとき、 円板試料に向かう片面の流量 -(Equation 1) where, Q: flow rate of one side toward the disk sample when rotating the disk sample
S : 円板試料の片面の面積 S: Area of one side of disk sample
ω : 円板試料の回転速度 ω: Rotation speed of disk sample
: 流体の動粘性係数 である。 : The kinematic viscosity coefficient of the fluid.
円板試料として、 シリコンウェハ (以下、 ウェハと云う) を用いた場 合、 その流量は第 2図のようである。 第 2図は流体が液体の場合を示す。 現在、 主流のウェハは 8インチであるので、 ウェハ回転数 1 0 0 0 r ρ mのときウェハに向かう液体流量は約 7 1 /m i nを要す。 第 1の従来 例において、 噴射する洗浄液量がこの値より小さいと、 ウェハ全面を洗 浄液で覆うことが出来ず、 不足の流量分は洗浄環境の気体 (一般に空気) が補い、 洗浄中に、 ウェハが空気に触れると共に、 洗浄時間を無駄に長 くする。 さもなくば、 多量の洗浄液を必要とし、 ウェハの処理単価を著 しく増加せしめる。 特に、 ウェハ裏面 (下面) は液体の重力によって、 第 1図の下面の流れを形成できず、 洗浄は洗浄液の噴射点に止まり、 実 質的に洗浄不能である。 When a silicon wafer (hereinafter, referred to as a wafer) is used as a disk sample, the flow rate is as shown in Fig. 2. FIG. 2 shows a case where the fluid is a liquid. At present, since the mainstream wafer is 8 inches, the liquid flow rate toward the wafer at a wafer rotation speed of 100 rpm requires about 71 / min. In the first conventional example, if the amount of the cleaning liquid to be sprayed is smaller than this value, the entire surface of the wafer cannot be covered with the cleaning liquid, and the insufficient flow rate is supplemented by the gas in the cleaning environment (generally air). In addition, the wafer is exposed to air, and the cleaning time is wasted. Otherwise, a large amount of cleaning liquid is required, and the processing cost of the wafer is significantly increased. In particular, the back surface (lower surface) of the wafer cannot form the flow on the lower surface in Fig. 1 due to the gravity of the liquid, and the cleaning stops at the injection point of the cleaning liquid, so that cleaning is practically impossible.
ウェハを出た洗浄液は遠心力により、 周囲に飛散する。 この飛散を防
止するため、 側壁を設けて密閉すると、 第 3図に示す流れを生じ (板谷 松樹: 「水力学」 、 P . 1 1 9 ( 1 9 7 9 ) 、 朝倉書店) 、 流体 2はゥ ェハ表面に戻る。 よって、 ウェハ 1は再汚染する。 前記側壁 3には汚染 物を含んだ洗浄液が付着する。 よって、 前記再汚染の現象から、 第 1洗 浄 (処理) 、 第 2洗浄 (処理) 、 第 3洗浄 (処理) など、 1つの機構で 連続的に洗浄 (処理) することを不可能にする。 すなわち、 処理の数だ け機構を設ける必要が生じ、 装置は大形化し、 高価となる。 The cleaning solution that has left the wafer scatters around due to centrifugal force. Prevent this scattering When the side walls are provided and sealed to stop, the flow shown in Fig. 3 is generated (Matsuki Itaya: "Hydraulics", p. 119 (1977), Asakura Shoten) Return to the surface. Therefore, wafer 1 is re-contaminated. A cleaning solution containing contaminants adheres to the side wall 3. Therefore, due to the re-contamination phenomenon, it is impossible to continuously perform cleaning (processing) by one mechanism such as first cleaning (processing), second cleaning (processing), and third cleaning (processing). . In other words, it is necessary to provide a mechanism for the number of processes, and the device becomes large and expensive.
—方、 ウェハの回転を駆動モータで実行すると、 動力伝達の歯車、 ベ ル卜などを必要とし、 かつ安定回転のための強固な回転軸が必要となる。 これらの機構系における摩耗粉塵が前記流れにのって、 ウェハを汚染す る。 さらに、 洗浄液に腐食性があると、 これら機構部品を腐食し、 腐食 生成物がウェハを汚染する。 この防止のためには精密な密閉構造を必要 とし、 装置は複雑化し、 高価となる。 On the other hand, if the rotation of the wafer is performed by a drive motor, a gear and belt for power transmission are required, and a strong rotating shaft for stable rotation is required. The abrasion dust in these mechanisms follows the flow and contaminates the wafer. In addition, if the cleaning solution is corrosive, it will corrode these mechanical components and the corrosion products will contaminate the wafer. To prevent this, a precise sealing structure is required, and the equipment becomes complicated and expensive.
第 1の従来例の問題を解決する方法としては、 特公平 4 - 6 9 4 2 0 号公報、 特開昭 6 1 - 2 2 9 7 5 0号公報、 特開昭 6 0— 7 4 4 3 8号 公報 (以下、 第 2の従来例と云う) に記載のように、 流体のベルヌーィ 効果を利用した試料の処理方法がある。 As a method for solving the problem of the first conventional example, Japanese Patent Publication No. Hei 4-69420, Japanese Patent Laid-Open No. 61-229750, Japanese Patent Laid-Open No. 60-7444 As described in Japanese Patent Publication No. 38 (hereinafter referred to as a second conventional example), there is a method of processing a sample using the Bernoulli effect of a fluid.
第 4図にベルヌ一ィ効果による板状試料の保持原理を示す。 保持具 4 の中心付近に穿孔した流体の噴射孔 5から流体 2を噴射すると、 その噴 射力によって試料 1 には保持具 4の保持面に対して斥力 : Fが働き、 一 方、 流体は噴射孔 5から試料 1 と保持具 4に挟まれた状態で円周方向へ 放射状に広がるので圧力変化を生じ、 試料 1には負圧 : Pが働く。 よつ て、 試料 1は Fと Pが均衡する位置で保持具 4と非接触で保持される。 第 2の従来例は、 ベルヌーィ効果を生じせしめる流体 2を試料 1の表面 を処理する流体として利用するものである。 Fig. 4 shows the principle of holding a plate-like sample by the Bernoulli effect. When the fluid 2 is ejected from the ejection hole 5 of the fluid drilled near the center of the holder 4, a repulsive force: F acts on the holding surface of the holder 4 on the sample 1 due to the ejection force. Since it spreads radially in the circumferential direction while being sandwiched between the injection hole 5 and the sample 1 and the holder 4, a pressure change occurs, and a negative pressure: P acts on the sample 1. Therefore, the sample 1 is held in a non-contact state with the holder 4 at a position where F and P are balanced. In the second conventional example, the fluid 2 that causes the Bernoulli effect is used as a fluid for treating the surface of the sample 1.
ベルヌ一ィ効果は、 前記したように、 保持具 4の保持面の法線方向
(保持面と垂直方向) に対して試料 1 を保持できるが、 保持面の接線方 向 (保持面と平行方向) に対しては試料 1 を保持できない。 これを防止 するために、 ストッパー、 突出体、 側壁などを設けると以下の問題点を 生じる。 The Bernoulli effect is, as described above, the normal direction of the holding surface of the holder 4. Sample 1 can be held in the direction perpendicular to the holding surface, but not in the direction tangential to the holding surface (in the direction parallel to the holding surface). If a stopper, a protrusion, a side wall, etc. are provided to prevent this, the following problems will occur.
一般に板状試料を流体で処理する場合には、 その処理の表面均一性を 図る目的で、 試料を回転する必要がある。 ウェハにはオリエンテーショ ン ' フラッ トと呼ばれる切欠きが有り、 真円ではない。 このような試料 を回転中、 流体を送るポンプの振動、 脈動、 圧力変化などに起因する流 体の噴射力の変動により、 試料が僅かに位置ずれを起こしても、 試料に かかる遠心力の均衡が大きく破れ、 加速度的に急激な位置ずれを招く。 例えば、 8インチ · ウェハを 1 0 0 0 r p mで回転中、 ウェハの回転中 心が僅か 0 . 5 ππη位置ずれしても、 遠心力の不均衡は重量 : 5 1 . 7グ ラムのウェハを約 3グラムの力で押すことに相当する程大きく発生する。 よって、 ウェハは前記ストッパー、 突出体、 側壁に何度も強く激突し、 あるいは摩擦し、 その破片、 摩滅粉がウェハを汚染する。 Generally, when a plate-like sample is treated with a fluid, it is necessary to rotate the sample in order to achieve a uniform surface of the treatment. The wafer has a notch called orientation 'flat, which is not a perfect circle. While rotating such a sample, the centrifugal force applied to the sample is balanced even if the sample is slightly displaced due to fluctuations in the jetting force of the fluid caused by vibration, pulsation, pressure change, etc. of the pump that sends the fluid. Is severely torn, causing a sudden displacement in acceleration. For example, when rotating an 8-inch wafer at 1000 rpm, even if the center of rotation of the wafer is shifted by only 0.5 ππη, the imbalance in centrifugal force will cause the weight: 51.7 g wafer It occurs as much as pushing with about 3 grams of force. Therefore, the wafer repeatedly strikes or rubs against the stoppers, protrusions, and side walls, and the debris and abrasion powder contaminate the wafer.
ベルヌ一ィ効果を利用した処理方法では、 上記の接線方向への試料の 位置ずれ問題が解決されず、 実現されるに至っていない。 特に、 第 I洗 浄 (処理) 、 第 2洗浄 (処理) 、 第 3洗浄 (処理) など、 1つの機構で 連続的に洗浄 (処理) する場合には、 洗浄液の切り替え時に、 大きな噴 射力変動が生じるので実現されるに至っていないのが現状である。 。 なお、 気体の流速が音速の約半分 ( 1 7 3 m / s e c ) 以下の領域で は、 気体も非圧縮性流体として取り扱えるので、 上記した従来技術にお いて、 流体が気体でも、 液体でも同様に論じられることは流体力学の分 野で周知である。 The processing method using the Bernoulli effect does not solve the problem of the displacement of the sample in the tangential direction and has not been realized. In particular, when cleaning (processing) is performed continuously by one mechanism, such as cleaning I (processing), cleaning 2 (processing), and cleaning 3 (processing), a large spray force is required when the cleaning liquid is switched. At present, it has not been realized because of fluctuations. . In the region where the gas flow velocity is less than about half of the sound velocity (173 m / sec), the gas can be handled as an incompressible fluid. Is well known in the field of hydrodynamics.
本発明の目的は、 上記従来技術の問題点を解決することにあり、 第 1 の目的は、 ベルヌーィ効果を利用した接線方向の安定した試料保持方法
を、 第 2の目的は、 ベルヌーィ効果を利用して保持された試料の安定し た回転方法を、 第 3の目的は、 本発明による試料保持方法、 試料回転方 法を用いた板状試料表面の流体処理方法を、 第 4の目的は、 本発明によ る試料保持方法、 試料回転方法を用いた板状試料表面の流体処理装置を それぞれ提供することにある。 発明の開示 An object of the present invention is to solve the above-mentioned problems of the prior art, and a first object is to provide a method for holding a tangentially stable sample using the Bernoulli effect. The second object is a method for stably rotating a sample held using the Bernoulli effect, and the third object is a sample holding method according to the present invention and a plate-like sample surface using the sample rotating method. A fourth object of the present invention is to provide an apparatus for treating a surface of a plate-like sample using a sample holding method and a sample rotating method according to the present invention. Disclosure of the invention
本発明は、 上記各目的を以下の技術手段によって解決するものである。 上記第 1の目的は、 試料を保持すべき方向で、 試料保持面とは機械的 に分離した上記試料を保持する試料ガイ ドを設け、 上記試料と試料保持 面との間に流体を流すことによって生じるベルヌーィ効果を利用して上 記試料ガイ ドに試料を接触保持し、 試料保持面の法線方向とともに、 接 線方向の試料位置ずれを抑制することを特徴とする試料保持方法により 達成される。 The present invention solves the above objects by the following technical means. The first object is to provide a sample guide for holding the sample, which is mechanically separated from the sample holding surface, in the direction in which the sample is to be held, and to allow a fluid to flow between the sample and the sample holding surface. This is achieved by a sample holding method characterized in that the sample is held in contact with the sample guide by utilizing the Bernoulli effect caused by the sample, and the sample position shift in the tangential direction as well as the normal direction of the sample holding surface is suppressed. You.
上記第 2の目的は、 上記第 1の目的を達成する試料保持方法における 上記試料ガイ ドの回転とともに、 上記試料を回転することを特徴とする 試料回転方法により達成される。 The second object is attained by a sample rotating method characterized by rotating the sample together with rotation of the sample guide in the sample holding method for achieving the first object.
上記第 3の目的は、 保持すべき試料に対して行うべき処理に応じて、 ベルヌーィ効果を生じさせるために流す流体を選択し、 上記試料を試料 ガイ ドにて支持するとともに、 試料表面の処理を実行することを特徴と する流体処理方法により達成される。 The third object is to select a fluid to flow to generate the Bernoulli effect according to the treatment to be performed on the sample to be held, support the sample with a sample guide, and treat the sample surface. This is achieved by a fluid processing method characterized by performing the following.
上記第 4の目的は、 上記試料保持面が形成されている試料保持手段と、 上記試料保持面と上記試料との間に流してベルヌーィ効果を生じさせる とともに上記試料表面の処理を行う流体を供給する流体供給手段と、 上 記試料ガイ ドを支持する試料ガイ ド支持手段と、 上記試料ガイ ドを浮上 させる流体を供給する流体供給手段と、 上記試料ガイ ドを回転させる流
体を供給する流体供給手段とを有することを特徴とする流体処理装置に より達成される。 The fourth object is to provide a sample holding means on which the sample holding surface is formed, and a fluid for flowing between the sample holding surface and the sample to generate a Bernoulli effect and for processing the sample surface. A fluid supply means for supplying the fluid, a fluid supply means for supplying the fluid for floating the fluid guide, and a fluid supply means for supplying the fluid for floating the fluid guide. And a fluid supply device for supplying a body.
本発明によれば、 従来技術の課題であった試料の安定した保持と、 再 汚染の無い、 高清浄な処理を実現できる。 ADVANTAGE OF THE INVENTION According to this invention, the stable holding | maintenance of the sample which was the subject of a prior art, and the highly clean processing which does not have recontamination can be implement | achieved.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 板状試料を回転したときの流体の流れを説明するための説 明図であり、 第 2図は、 ウェハを回転したときの流体の流れ形成するの に必要な流量を説明するための説明図であり、 第 3図は、 側壁で密閉さ れた中で板状試料を回転したときの流体の流れを説明するための説明図 であり、 第 4図は、 ベルヌーィ保持の原理を説明するための説明図であ り、 第 5図は、 上下保持具にべルヌーィ保持具を用いた場合に試料に作 用する力の関係を説明するための説明図であり、 第 6図は、 試料に作用 する各力と上下保持具間の間隔との関係を示す図であり、 第 7図は、 下 保持具にベルヌ一ィ保持具を用いた場合に試料を接触保持したときに作 用する力の関係を説明するための説明図であり、 第 8図は、 上下保持具 にベルヌ一ィ保持具を用いた場合に試料を接触保持したときに作用する 力の関係を説明するための説明図であり、 第 9図は、 試料に作用する各 力と上下保持具間の間隔との関係を示す図であり、 第 1 0図は、 試料を 接触保持する試料ガイ ドの 3つの実施例の構造を説明するための断面図 であり、 第 1 1図は、 試料を回転する原理を説明するための構成部品の 展開図であり、 第 1 2図は、 試料を回転する原理を説明するための断面 図であり、 第 1 3図は、 本発明による上保持具、 試料ガイ ド、 試料ガイ ド板、 下保持具など、 一実施例の構成部品の展開図であり、 第 1 4図は、 本発明による上保持具の要部構成を示す断面図であり、 第 1 5図は、 本 発明による上保持具の流体噴射孔の配置の 1例を示す平面図であり、 第
1 6図は、 本発明による試料ガイ ドの要部構成を示す断面図であり、 第 1 7図は、 本発明による試料ガイ ドの要部構成を示す平面図であり、 第 1 8図は、 本発明による下保持具の要部構成を示す断面図であり、 第 1 9図は、 本発明による下保持具の流体噴射孔の配置の 1例を示す平面図 であり、 第 2 0図は、 本発明による流体処理を可能とする一実 ¾例の要 部構成を示す説明図であり、 第 2 1 図は、 シリコン粉の除去率を示す図 であり、 第 2 2図は、 金属イオン除去率を示す図であり、 第 2 3図は、 本発明による上保持具、 試料ガイ ド、 試料ガイ ド扳、 回転台、 下保持具 など、 一実施例の構成部品の展開図であり、 第 2 4図は、 本発明による 下保持具の要部構成を示す断面図であり、 第 2 5図は、 本発明による下 保持具の流体噴射孔の配置の 1例を示す平面図であり、 第 2 6図は、 回 転台蓋、 試料ガイ ド、 試料ガイ ド板及び回転台を組み立てた後の断面図 であり、 第 2 7図は、 本発明による試料ガイ ドの要部構成を示す断面図 であり、 第 2 8図は、 本発明による試料ガイ ドを浮上、 回転する流体噴 射孔の配置の 1例を示す平面図であり、 第 2 9図は、 上下保持具を用い た場合のメニスカスを示す説明図であり、 第 3 0図は、 上下保持具を用 いた場合の抑制力を示す図であり、 第 3 1図は、 本発明による流体処理 を可能とする一実施例の要部構成を示す説明図である。 発明を実施するための最良の形態 Fig. 1 is an explanatory diagram for explaining the flow of a fluid when a plate-like sample is rotated, and Fig. 2 is a diagram for explaining the flow rate required to form the fluid flow when the wafer is rotated. FIG. 3 is an explanatory view for explaining a flow of a fluid when a plate-shaped sample is rotated while being sealed with a side wall, and FIG. 4 is a view for explaining a Bernoulli holding. FIG. 5 is an explanatory diagram for explaining the principle, and FIG. 5 is an explanatory diagram for explaining the relationship between forces acting on a sample when a Bernoulli holder is used as the upper and lower holders. Fig. 7 shows the relationship between each force acting on the sample and the distance between the upper and lower holders. Fig. 7 shows the results when the sample is contacted and held when the Bernoulli holder is used as the lower holder. FIG. 8 is an explanatory view for explaining the relationship between the forces acting on the upper and lower holders. Fig. 9 is an explanatory view for explaining the relationship between the forces acting when the sample is held in contact with the sample, and Fig. 9 shows the relationship between each force acting on the sample and the distance between the upper and lower holders. FIG. 10 is a cross-sectional view for explaining the structure of three embodiments of a sample guide for contacting and holding a sample, and FIG. 11 is a view for explaining the principle of rotating the sample. FIG. 12 is an exploded view of the components of FIG. 12. FIG. 12 is a cross-sectional view for explaining the principle of rotating the sample. FIG. 13 is an upper holder, a sample guide, and a sample guide according to the present invention. FIG. 14 is an exploded view of components of one embodiment, such as a plate and a lower holder, FIG. 14 is a cross-sectional view showing a main part configuration of an upper holder according to the present invention, and FIG. FIG. 8 is a plan view showing an example of the arrangement of the fluid ejection holes of the upper holder according to FIG. 16 is a cross-sectional view showing a main part configuration of the sample guide according to the present invention. FIG. 17 is a plan view showing a main part configuration of the sample guide according to the present invention. FIG. 19 is a cross-sectional view illustrating a configuration of a main part of the lower holder according to the present invention. FIG. FIG. 2 is an explanatory diagram showing a main configuration of an example enabling fluid treatment according to the present invention. FIG. 21 is a diagram showing a removal rate of silicon powder, and FIG. FIG. 23 is a diagram showing the ion removal rate. FIG. 23 is a development view of components of one embodiment, such as an upper holder, a sample guide, a sample guide 扳, a turntable, and a lower holder according to the present invention. FIG. 24 is a cross-sectional view showing a configuration of a main part of the lower holder according to the present invention. FIG. FIG. 26 is a plan view showing an example of the arrangement of the rotating table, FIG. 26 is a cross-sectional view after assembling a rotating table lid, a sample guide, a sample guide plate, and a rotating table. FIG. 28 is a cross-sectional view showing a configuration of a main part of the sample guide according to the present invention. FIG. 28 is a plan view showing an example of an arrangement of fluid injection holes that levitate and rotate the sample guide according to the present invention; FIG. 29 is an explanatory view showing a meniscus when the upper and lower holders are used, FIG. 30 is a diagram showing a suppressing force when the upper and lower holders are used, and FIG. FIG. 3 is an explanatory diagram showing a main configuration of an embodiment that enables fluid processing according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の詳細な実施例を説明する前に、 個々の要素技術の原理につい て説明する。 Before describing the detailed embodiments of the present invention, the principle of each element technology will be described.
まず、 上下のベルヌーィ効果で保持された試料の保持面に対して法線 方向の試料位置ずれ抑制力について、 第 5図及び第 6図を用いて説明す る。 試料 1は、 第 5図中、 F i、 P , , F 2、 P 2の 4つの力に加えて、 試料
1の重量、 試料 1上の流体重量との和 : W、 の 5つの力が均衡する位置 で、 保持具 4、 6と非接触 (浮遊状態) で保持される。 それぞれ個別に 力を測定する手段が無いので、 周知の流体力学の関係式を用いて試料の 保持高さ : h i、 h 2を計算し、 その 1例として第 6図を得た First, a description will be given, with reference to FIGS. 5 and 6, of a force for suppressing a sample position shift in a direction normal to a holding surface of a sample held by the upper and lower Bernoulli effects. Sample 1 in FIG. 5, F i, P,, in addition to the four forces F 2, P 2, sample The weight of 1 and the sum of the weight of the fluid on the sample 1: W, is held at a position where the five forces are balanced, without contact with holders 4 and 6 (floating state). Since each no means for measuring the individual force, holding the height of the sample using well known fluid dynamics relationship: hi, it calculates the h 2, to give the Figure 6 as an example
なおこの計算では 5インチ ' ウェハを用いた: すなわち、 試料直径 : 1 2 5 mm, 試料重量 : 1 5. 6 g、 試料厚さ : 0. 5 5 m m、 流体噴 射孔の直径 : 1 mm、 流体噴射孔の位置 : 中心、 流体 : 水、 噴射流量 : 5 1 Zm i nの条件で計算した。 In this calculation, a 5-inch wafer was used: sample diameter: 125 mm, sample weight: 15.6 g, sample thickness: 0.55 mm, diameter of fluid injection hole: 1 mm , Fluid injection hole position: Center, Fluid: Water, Injection flow rate: Calculated under the condition of 51 Zmin.
ウェハの厚さを除いた保持具間の距離が約 5 mmを越えると、 ベルヌ —ィ効果である吸引力 : P ;、 P2がゼロになる。 即ち、 保持具間の距離 が約 5 mm以内であれば、 試料 1は保持面の法線方向に保持される。 次に、 本発明による保持具と試料ガイ ドによる試料の保持面の接線方 向への位置ずれ抑制について、 第 7図及び第 8図を用いて、 1例を説明 する。 If the distance between the holders excluding the thickness of the wafer exceeds about 5 mm, the Bernoulli effect suction force: P ;, P 2 becomes zero. That is, if the distance between the holders is within about 5 mm, the sample 1 is held in the normal direction of the holding surface. Next, an example will be described with reference to FIGS. 7 and 8 of how the holder and the sample guide according to the present invention suppress the displacement of the sample holding surface in the tangential direction.
第 7図は下保持具のみの場合の断面図を示し、 試料 1 に加わる力の方 向と種類を示す。 下保持具 4の上面に保持面より高さ : 約 5 mm以内の 試料ガイ ド 8が固定され、 噴射孔 5より流体を噴射すると、 試料 1 には、 力 : F:、 P :が働き、 試料ガイ ド 8に力 : Gで固定される。 全ての力の 均衡は、 次の数式 2で示される。 Fig. 7 shows a cross-sectional view of the case with only the lower holder, showing the direction and type of the force applied to sample 1. A sample guide 8 with a height of about 5 mm or less from the holding surface is fixed on the upper surface of the lower holder 4, and when fluid is ejected from the injection hole 5, the force 1: F: and P : act on the sample 1, Fixed to sample guide 8 with force: G. The equilibrium of all forces is given by Equation 2 below.
I P J ^ I G I + I F . I (数式 2 ) 第 8図は上下保持具を用いた場合の断面図を示し、 試料 1 に加わる力 の方向と種類を示す。 下保持具 4の上面 : 約 5 mm以内に上保持具 6を もたらし、 噴射孔 7 より流体を噴射すると、 試料 1 には力 : F 2、 P 2が 働く。 全ての力の均衡は次の数式 3で示される。 IPJ ^ IGI + IF.I (Equation 2) FIG. 8 is a cross-sectional view when the upper and lower holders are used, and shows the direction and type of force applied to the sample 1. Upper surface of lower holder 4: When upper holder 6 is brought within approximately 5 mm and fluid is ejected from injection hole 7, force 1: F 2 and P 2 act on sample 1. The balance of all forces is given by Equation 3 below.
I W I + I P ^ + I F^ ^ I G I + I P^ + I F . I I W I + I P ^ + I F ^ ^ I G I + I P ^ + I F. I
… (数式 3 )
第 6図と同様の条件で試料 1の試料ガイ ド 8への固定力 : Gを計算に よつて求めた。 その結果を第 9図に示す。 噴射孔 5の流量 : 5 1 /m i n、 噴射孔 7の流量 : 3 1 ノ m i n以外は、 第 6図の計算条件を用いた, 下保持具 4の保持面と試料 1間の距離 : 2 mmと し、 上保持具 3の保持 面と試料 1間の距離を増大すると、 試料 1 を下保持具 6へ押しつける力 が増大する。 例えば、 試料の厚さを除いた上下保持具間の間隔が 4 mm のとき、 F ; = l . 7 、 P 2 = 0 . 2、 P; = - 0 . 2 , W = - 1 , F 2 = — 4. 5 Nであるので、 Gとして 3 . 8 Nを得る。 よって、 3 8 0 gの 大きい力で試料が試料ガイ ド 8に押しつけられることになる。 … (Equation 3) Under the same conditions as in Fig. 6, the fixing force of sample 1 to sample guide 8: G was obtained by calculation. Fig. 9 shows the results. Flow rate of injection hole 5: 5 1 / min, Flow rate of injection hole 7: 31 1 min Except for min, using the calculation conditions in Fig. 6, distance between holding surface of lower holder 4 and sample 1: 2 mm When the distance between the holding surface of the upper holder 3 and the sample 1 is increased, the force for pressing the sample 1 against the lower holder 6 increases. For example, when the distance between the upper and lower holders excluding the thickness of the sample is 4 mm, F ; = l .7, P 2 = 0.2, P; = -0.2, W =-1, F 2 = — 4.5 N, so we get 3.8 N as G. Therefore, the sample is pressed against the sample guide 8 with a large force of 380 g.
第 1 0図 ( a ) 〜 ( c ) は本発明に用いる試料ガイ ド 8の 3例を断面 図として示したものである。 FIGS. 10 (a) to 10 (c) are cross-sectional views showing three examples of the sample guide 8 used in the present invention.
第 1 0図 ( a ) は単に試料 1 を下から支える試料ガイ ド 8の構造で、 試料 1の保持面との接線方向への位置ずれを抑制する力 (試料 1の試料 ガイ ド 8への固定力) は試料 1 と試料ガイ ド 8を構成する材料間の Gに 比例した摩擦力となる。 Fig. 10 (a) shows the structure of the sample guide 8 that simply supports the sample 1 from below, and the force that suppresses the displacement of the sample 1 in the tangential direction with respect to the holding surface. The fixing force is the frictional force proportional to G between the materials constituting sample 1 and sample guide 8.
第 1 0図 ( b ) は試料ガイ ド 8を L字状としたもので、 前記摩擦力に 加えて、 物理的に位置ずれを抑制する。 FIG. 10 (b) shows an L-shaped sample guide 8, which physically suppresses the displacement in addition to the frictional force.
第 1 0図 ( c ) は試料 1 の中心に向かって、 保持面からの距離が小さ くなるように、 試料ガイ ド 8にテーパを付けたものである。 この場合、 保持面に対するテーパ角度を Θとすれば、 前記固定力は G s i η Θ c 0 s 6となり、 この力によって接線方向への位置ずれを抑制する。 なお、 試料ガイ ド 8にテーパが付けられたものは、 試料 1の保持具 4に対する 位置合わせが容易となり、 より有用である。 これらの試料ガイ ド 8は保 持具の全円周に設ける必要はなく、 流体の保持具からの流出が可能とな るよう、 円周上に複数個配置すればよい。 FIG. 10 (c) shows the sample guide 8 tapered so that the distance from the holding surface decreases toward the center of the sample 1. In this case, assuming that the taper angle with respect to the holding surface is Θ, the fixing force is G s i η c 0 s 6, and this force suppresses displacement in the tangential direction. The tapered sample guide 8 facilitates the positioning of the sample 1 with respect to the holder 4 and is more useful. It is not necessary to provide these sample guides 8 on the entire circumference of the holder, and a plurality of these sample guides may be arranged on the circumference so that the fluid can flow out of the holder.
上記したように、 本発明によれば、 試料に作用するべルヌーィ効果に
より、 試料は保持面の法線方向に保持されると共に、 簡単な試料ガイ ド によって、 保持面の接線方向にも保持される。 よって、 流体を噴射する ポンプの振動、 脈動、 圧力変化などによる噴射力の変動が生じても、 試 料の位置ずれが無くなり、 その結果、 試料の安定した保持を可能とする。 さらに、 試料が上下の保持具で、 小さな間隔で挟まれる状態で、 その表 面が処理されることになり、 保持具の外部からの汚染が防がれ、 再汚染 の無い、 高清浄な処理を実現する。 As described above, according to the present invention, the Bernoulli effect acting on a sample is reduced. Thus, the sample is held in the normal direction of the holding surface, and is also held in the tangential direction of the holding surface by a simple sample guide. Therefore, even if the ejection force fluctuates due to the vibration, pulsation, pressure change, etc. of the pump that ejects the fluid, the sample is not displaced, and as a result, the sample can be stably held. In addition, the surface of the sample is treated while the sample is sandwiched between the upper and lower holders at a small interval, preventing contamination from outside the holder and eliminating the need for re-contamination. To achieve.
次に、 本発明による試料回転方法の 1例を第 1 1図及び第 1 2図を用 いて説明する。 第 1 1図は構成部品の展開図、 第 1 2図はその断面図を 示す。 Next, an example of the sample rotating method according to the present invention will be described with reference to FIGS. 11 and 12. FIG. FIG. 11 is a development view of the components, and FIG. 12 is a cross-sectional view thereof.
下保持具 4の上に試料ガイ ド 8を固定した試料ガイ ド板 9、 試料 1 、 上保持具 6からなる。 試料ガイ ド板 9は上下保持具 4、 6から機械的に 分離され、 独立している。 流体の噴射孔 5— 1 より噴射する流体で生じ るべルヌーィ効果によって、 前記したように試料 1は試料ガイ ド 8を通 じて試料ガイ ド板 9に固定される。 流体の噴射孔 5 — 2より流体を噴射 することによって、 試料ガイ ド板 9は下保持具 4よリ浮上し、 下保持具 4とは機械的に全く無関係な状態となる。 よって、 試料 1の所望の回転 方向に、 噴射孔 5— 2が保持面に対して傾斜をもって流体を噴射すれば、 その噴射力の作用によって、 試料ガイ ド板 9は下保持具 4よリ浮上する とともに、 回転する。 It consists of a sample guide plate 9 in which a sample guide 8 is fixed on a lower holder 4, a sample 1, and an upper holder 6. The sample guide plate 9 is mechanically separated from the upper and lower holders 4 and 6, and is independent. As described above, the sample 1 is fixed to the sample guide plate 9 through the sample guide 8 by the Bernoulli effect generated by the fluid ejected from the fluid injection hole 5-1. By ejecting the fluid from the fluid ejection holes 5-2, the sample guide plate 9 floats above the lower holder 4, and becomes completely unrelated to the lower holder 4 mechanically. Therefore, if the injection hole 5-2 injects the fluid in the desired rotation direction of the sample 1 with an inclination to the holding surface, the sample guide plate 9 is lifted up from the lower holder 4 by the action of the injection force. And rotate.
以上のような本発明の流体処理方法を用いれば、 従来技術の課題であ つた第 1洗浄 (処理) 、 第 2洗浄 (処理) 、 第 3洗浄 (処理) など、 流 体を選択することによって、 1つの機構で連続的に洗浄 (処理) するこ とを可能とし、 この連続処理により、 空気に触れない洗浄 (処理) を実 現することができる。 By using the fluid treatment method of the present invention as described above, it is possible to select a fluid such as a first cleaning (processing), a second cleaning (processing), and a third cleaning (processing), which are problems of the related art. In addition, it is possible to perform cleaning (processing) continuously by one mechanism, and by this continuous processing, it is possible to realize cleaning (processing) that does not come into contact with air.
また、 本発明の流体処理装置によれば、 従来技術の課題であったゥェ
ハの回転ための駆動モータ、 動力伝達の歯車、 ベルトなどを不要と し、In addition, according to the fluid treatment apparatus of the present invention, the problem of the prior art has been considered. Eliminates the need for drive motors, power transmission gears, belts, etc.
1つの機構で連続的に洗浄 (処理) することを可能とし、 さらに、 空気 に触れない洗浄 (処理) を可能とする。 よって、 大幅に高清浄、 小形の 装置を実現することができる。 It enables continuous cleaning (processing) with one mechanism, and also enables cleaning (processing) without contacting air. Therefore, it is possible to realize a significantly high-purity and small-sized device.
以下、 本発明を詳細に説述するために、 添付の図面に従って適用した 実施例について説明する。 Hereinafter, in order to explain the present invention in detail, embodiments applied according to the attached drawings will be described.
〈実施例 1 〉 <Example 1>
本実施例では、 後述するように、 保持具が試料ガイ ド板回転台を兼ね た、 試料ガイ ドの回転方法を用いた 1例について述べる。 In the present embodiment, as will be described later, an example in which a holder is used as a sample guide plate rotating table and a method of rotating the sample guide is described.
第 1 3図は本実施例で用いた上保持具 6、 試料 1 、 試料ガイ ド 8、 試 料ガイ ド板 9、 下保持具 4など、 構成部品の展開図である。 FIG. 13 is a development view of components such as the upper holder 6, the sample 1, the sample guide 8, the sample guide plate 9, and the lower holder 4 used in the present embodiment.
第 1 4図は上保持具 6の詳細な断面図を示す。 上保持具 6は流体を噴 射する上噴射板 1 0、 流体の流路を分離する 0 —リ ング 1 1 、 上供給板 1 2からなる。 FIG. 14 shows a detailed sectional view of the upper holder 6. The upper holder 6 includes an upper spray plate 10 for spraying a fluid, a 0-ring 11 for separating a fluid flow path, and an upper supply plate 12.
上噴射板 1 0は直径 : 1 7 0 m m、 厚さ : 2 0 m mのポリテトラフル ォロエチレン (以下、 P T F Eと云う) 製であり、 試料 1 に対向する表 面には第 1 5図に示すように、 試料 1の回転中心に対しほぼ同じ大きさ のモーメン卜を与え、 かつ噴射力のべク トルの和がほぼ 0となるような 位置で穿孔されている。 なお、 第 1 5図中の矢印は、 矢印の方向で保持 面と 4 5 の角度で斜めに穿孔されていることを示す (以下、 同様) 。 試料 1 と上保持具 6との間で生じるベルヌーィ効果は、 5個の直径 : 1 m mの噴射孔 7— 1から流体を噴射することによって生じる。 直径 : 1 m mの噴射孔 7— 2は、 試料 1 と試料ガイ ド 8の接点に付着した水滴を 飛散させるために、 主として試料 1 を乾燥するときに使用する。 The upper spray plate 10 is made of polytetrafluoroethylene (hereinafter, referred to as PTFE) having a diameter of 170 mm and a thickness of 20 mm, and the surface facing the sample 1 has a surface as shown in FIG. In addition, a hole of approximately the same size is given to the rotation center of the sample 1 and the hole is drilled at a position where the sum of the vectors of the injection force is almost zero. The arrow in FIG. 15 indicates that the hole is drilled obliquely at an angle of 45 with the holding surface in the direction of the arrow (the same applies hereinafter). The Bernoulli effect that occurs between the sample 1 and the upper holder 6 is caused by ejecting a fluid from five orifices 7-1 having a diameter of 1 mm. The injection hole 7-2 with a diameter of 1 mm is used mainly for drying sample 1 to scatter water droplets attached to the contact point between sample 1 and sample guide 8.
0 —リング 1 1はテトラフルォロエチレンパーフルォロアルキルビニ ルエーテル共重合 (以下、 P F Aと云う) 製の線径: 5 . 7 m mで、 内
径 : 4 9. 6 mm、 1 9. 6 mmの 2種類からなる。 0 — Ring 1 1 is made of tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (hereinafter referred to as PFA) and has a wire diameter of 5.7 mm. Diameter: 49.6 mm and 19.6 mm.
上供給板 1 2は直径 : 1 7 0 mm、 厚さ : 1 0 mmの P T F E製で、 流体を供給する直径 : 1 mmの供給孔 1 3が穿孔されている。 The upper supply plate 12 is made of PTFE having a diameter of 170 mm and a thickness of 10 mm, and has a supply hole 13 of 1 mm in diameter for supplying fluid.
これら上噴射板 1 0と上供給板 1 2は 0—リ ング 1 1 を挟んでポリェ —テルエーテルケトン (以下、 P E E Kと云う ) 製の直径 5 mmのボル トで固定されている。 The upper spray plate 10 and the upper supply plate 12 are fixed to each other with a 5-mm diameter bolt made of polyester ether ketone (hereinafter referred to as PEEK) with the 0-ring 11 interposed therebetween.
第 1 6図は試料ガイ ド 8を固定した試料ガイ ド板 9の断面図、 第 1 7 図はその平面図を示す。 FIG. 16 is a cross-sectional view of the sample guide plate 9 to which the sample guide 8 is fixed, and FIG. 17 is a plan view thereof.
試料ガイ ド 8は全高 : 4 mm、 試料保持高さ : 3 mmの L字形で、 P E E K製である。 試料ガイ ド扳 9は外径 : 1 4 5 mm、 内径 : 1 2 5 m mで、 断面が直径 : 2 0 mmの半円形状をした P T F E製である。 The sample guide 8 is L-shaped with a total height of 4 mm and a sample holding height of 3 mm, and is made of PEEK. Sample guide No. 9 is made of PTFE having an outer diameter of 144 mm, an inner diameter of 125 mm and a semicircular cross section of 20 mm in diameter.
第 1 8図は下保持具 4の詳細な断面図を示す。 下保持具 4は流体を供 給する下噴射板 1 4、 流体の流路を分離する 0—リ ング 1 1 、 下噴射板 1 5からなる。 FIG. 18 shows a detailed sectional view of the lower holder 4. The lower holder 4 is composed of a lower ejection plate 14 for supplying a fluid, a 0-ring 11 for separating a fluid flow path, and a lower ejection plate 15.
下噴射板 1 4は直径 : 1 7 0 mm、 厚さ : 3 0 mmの P T F E製で、 試料 1 に対向する表面には前記試料ガイ ド板 9を収容する直径 : 2 0. 2 mmの半円形状の溝が掘られている。 さらに、 その表面には第 1 9図 に示すように、 ベルヌーィ効果を生じる流体の噴射孔 5と、 試料ガイ ド 板 9を浮上させる浮上孔 1 7と、 試料ガイ ド板 9を回転する、 保持面に 対して 4 5° の回転方向に斜めに開けられた回転孔 1 8と、 回転してい る試料ガイ ド板 9を制動する、 保持面に対して一 4 5° の回転逆方向に 斜めに開けられた制動孔 1 9とが、 それぞれ直径 : 1 mmの孔として穿 孔されている。 これら穿孔角度は 8 0〜一 8 0 の範囲で有効である力 ± 4 5。 が望ましい。 The lower spray plate 14 is made of PTFE having a diameter of 170 mm and a thickness of 30 mm, and the surface facing the sample 1 has a half of a diameter of 20.2 mm for accommodating the sample guide plate 9. A circular groove is dug. Further, as shown in Fig. 19, the surface of the surface, as shown in Fig. 19, is a fluid injection hole 5 for generating the Bernoulli effect, a floating hole 17 for floating the sample guide plate 9, and a rotating and holding sample guide plate 9. A rotating hole 18 that is formed at an angle of 45 ° with respect to the surface and a brake on the rotating sample guide plate 9 at an angle of 45 ° with respect to the holding surface. Braking holes 19 are formed as holes having a diameter of 1 mm. These piercing angles are effective in the range of 80 to 180 force ± 45. Is desirable.
0—リング 1 1は P F A製で線径: 5. 7 mmで、 内径 : 4 9. 6 m m、 6 9. 6 mm、 8 9. 6 mm、 1 0 9. 6 mmの 4種類からなる。
下供給板 1 5は直径 : I 7 0 m m、 厚さ : 1 0 mmの P E E K製で流 体を供給する供給孔 1 6 — 1 、 1 6 - 2 , 1 6 - 3 , 1 6 — 4が直径 : 1 mmで穿孔されている。 0—Ring 11 is made of PFA and has a wire diameter of 5.7 mm and an inner diameter of 49.6 mm, 69.6 mm, 89.6 mm, and 109.6 mm. The lower supply plate 15 is made of PEEK with a diameter: I 70 mm and a thickness: 10 mm. The supply holes 16-1, 16-2, 16-3, 16-4 for supplying fluid are provided. Diameter: 1 mm perforated.
第 2 0図は、 上記の上保持具 6、 試料ガイ ド板 9、 下保持具 4を用い て、 各種の流体を噴射して試料 1 を処理する流体処理方法と流体処理装 置を概念的に示したものである。 FIG. 20 conceptually illustrates a fluid treatment method and a fluid treatment apparatus for treating sample 1 by injecting various fluids using the upper holder 6, the sample guide plate 9, and the lower holder 4. This is shown in FIG.
以下に流体処理方法について説明する。 なお、 電磁弁は全て閉の状態 から開始する。 Hereinafter, the fluid processing method will be described. The solenoid valves all start from a closed state.
下保持具 4上に、 試料 1 をセッ トした試料ガイ ド板 9を置き、 不活性 ガスボンベ 2 0の電磁弁 2 1 — 1 、 2 1 — 2 、 2 1 — 3 を開とし、 不活 性ガスを 6 0 1 /m i nの流量で噴射し、 試料ガイ ド板 9を下保持具 4 より浮上させると共に、 ベルヌーィ効果により試料 1 を下保持具 4に保 持する。 Place the sample guide plate 9 on which the sample 1 is set on the lower holder 4 and open the solenoid valves 21-1, 21-2, 21-3 of the inert gas cylinder 20 to inactivate The gas is injected at a flow rate of 61 / min, the sample guide plate 9 is lifted from the lower holder 4, and the sample 1 is held on the lower holder 4 by Bernoulli effect.
上保持具 6 を試料 1の上方 1 mmの距離にもたらし、 電磁弁 2 1 — 4、 2 1 — 5を開として、 3 0 1 /m i nの流量で不活性ガスを噴射し、 試 料 1 を上保持具 6の間でベルヌ一ィ効果を生じさせる。 Bring the upper holder 6 to a distance of 1 mm above the sample 1, open the solenoid valves 2 1 — 4 and 2 1 — 5 and inject inert gas at a flow rate of 30 1 / min. A Bernoulli effect occurs between the upper holders 6.
電磁弁 2 1 — 1 を閉とし、 電磁弁 2 1 — 6 、 2 1 — 7を開として処理 液槽 I 2 2の処理液が 3 1 /m i nの流量で噴射され、 試料ガイ ド板 9 の回転、 試料 1の裏面の処理が開始される。 Close the solenoid valves 2 1-1 and open the solenoid valves 2 1-6 and 2 1-7 to spray the processing liquid in the processing liquid tank I 22 at a flow rate of 31 / min. Rotation, processing of the back side of sample 1 starts.
電磁弁 2 1 — 4を閉とし、 電磁弁 2 1 — 8を開として、 処理液槽 I 2 2の処理液が 2 1 /m i nの流量で噴射され、 試料 1の表面の処理が開 始される。 With the solenoid valves 2 1 to 4 closed and the solenoid valves 2 1 to 8 opened, the processing liquid in the processing liquid tank I 22 is sprayed at a flow rate of 2 1 / min, and the processing of the surface of sample 1 is started. You.
所定の時間、 処理後、 電磁弁 2 1 — 6を閉と し、 電磁弁 2 1 — 9を開 として、 処理液槽 I I 2 3の処理液が 3 \ /m \ ηで噴射され、 試料 1の 裏面の処理が開始される。 After the treatment for a predetermined time, the solenoid valves 21 to 6 are closed, the solenoid valves 21 to 9 are opened, and the treatment liquid in the treatment liquid tank II 23 is injected at 3 \ / m \ η, and the sample 1 The processing on the back of is started.
電磁弁 2 1 — 8を閉とし、 電磁弁 2 1 — 1 0を開として、 処理液槽 I I
2 3の処理液が 2 1 / i nの流量で噴射され、 試料 1 の表面の処理が 開始される。 Close the solenoid valves 2 1-8 and open the solenoid valves 2 1-10 to set the processing liquid tank II The treatment liquid of 23 is injected at a flow rate of 21 / in, and the treatment of the surface of sample 1 is started.
所定の時間、 処理後、 電磁弁 2 1 — 9を閉と し、 電磁弁 2 1 — 1 を開 として、 不活性ガスを 6 0 1 Zm i nの流量で噴射し、 試料 1の裏面を 乾燥する。 After the treatment for a predetermined time, close the solenoid valves 21 to 9 and open the solenoid valves 21 to 1 to inject an inert gas at a flow rate of 61 Zin and dry the back surface of the sample 1. .
電磁弁 2 1 - 1 0を閉と し、 電磁弁 2 1 — 4 、 2 1 一 1 1 を開と して、 不活性ガスを 6 0 I m 1 nの流量で噴射し、 試料 1 の表面を乾燥する。 所定の時間、 乾燥後、 電磁弁 2 1 — 7 を閉と し、 電磁弁 2 1 — 1 2を 開として、 試料ガイ ド板 9の回転を制動する。 Close the solenoid valves 2 1-10, open the solenoid valves 2 1-4, 2 1 1 1 1 1 and inject inert gas at a flow rate of 60 Im 1 n. Is dried. After drying for a predetermined period of time, close the solenoid valves 2 1 to 7 and open the solenoid valves 21 to 12 to brake the rotation of the sample guide plate 9.
試料ガイ ド板 9の回転が停止すると、 全ての電磁弁が閉とされ、 上保 持具 6が上方に退避して、 処理された試料 1が取り出される。 When the rotation of the sample guide plate 9 stops, all the solenoid valves are closed, the upper holder 6 is retracted upward, and the processed sample 1 is taken out.
なお、 第 2 0図では、 本発明の本質に係らない保持具の固定、 移動機 構部、 流体の温度制御部、 流体の流量制御部などの部分は省略した。 以下に実験結果について具体的に説明する。 In FIG. 20, parts such as the fixing of the holder, the moving mechanism, the fluid temperature controller, and the fluid flow controller, which are not related to the essence of the present invention, are omitted. Hereinafter, the experimental results will be specifically described.
〔 I 〕 試料 [I] Sample
ウェハは直径 : 1 5 0 mm、 厚さ : 0 . 5 5 mm、 重量 : 2 1 . 4 g、 抵抗率 : 6 . 0 1 〜 1 2 . 0 Ω c mの信越化学製の 6インチウェハであ る。 このウェハを粒径 :約 0 . 2 μ πιのシリ コン粉を添加した 5 0 %フ ッ化水素酸: 水 = 1 : 9 9のフッ酸水溶液に 1 5分間、 浸漬させて、 ゥ ェハ表面に約 9 0 0 0個のシリ コン粉を付着させた。 このシリ コン粉の 除去率から洗浄性能を求めた。 The wafer is a Shin-Etsu Chemical 6 inch wafer with a diameter: 150 mm, a thickness: 0.55 mm, a weight: 21.4 g, and a resistivity: 6.01 to 12.0 Ωcm. You. This wafer was immersed in a 50% hydrofluoric acid: water = 1: 99 aqueous hydrofluoric acid solution to which a silicon powder having a particle size of about 0.2 μπι was added for 15 minutes to obtain a wafer. About 900 pieces of silicon powder were adhered to the surface. The cleaning performance was determined from the silicon powder removal rate.
cm 流体 cm fluid
( 1 ) 処理液槽 I (1) Treatment liquid tank I
2 8 %アンモニア水 : 3 0 %過酸化水素水: 水 = 1 : 2 : 7の 水溶液。 28 8% aqueous ammonia: 30% aqueous hydrogen peroxide: water = 1: 2: 7 aqueous solution.
温度 : 8 0 °C
( 2 ) 処理液槽! 1 Temperature: 80 ° C (2) Processing liquid tank! 1
超純水。 温度 : 室温 Ultra pure water. Temperature: room temperature
( 3 ) 不活性ガスボンべ (3) Inert gas cylinder
1 2 0気圧の窒素ガス。 温度 : 室温。 Nitrogen gas at 120 atm. Temperature: room temperature.
( I I I ) 流体処理時間 (I I I) Fluid treatment time
( 1 ) 処理液槽 I の流体では第 2 1図に示す所定の時間行った。 (1) For the fluid in the treatment liquid tank I, the treatment was performed for a predetermined time shown in FIG.
( 2 ) 処理液槽! 1の流体では 1 2 0秒間行つた。 (2) Processing liquid tank! One fluid lasted 120 seconds.
( 3 ) 不活性ガスボンベの流体では 1 8 0秒間行った。 (3) Inert gas cylinder fluid was used for 180 seconds.
〔 I V〕 シリ コン粉の除去率の評価 [IV] Evaluation of silicon powder removal rate
上記処理前後のシリコン粉の付着数を日立電子エンジニアリング製の レーザ表面検査装置を用いて計測し、 除去率 (%) を求めた。 The number of adhered silicon powder before and after the above treatment was measured using a laser surface inspection device manufactured by Hitachi Electronics Engineering, and the removal rate (%) was determined.
以上の緒条件で得られた実験結果は第 2 1図のようで、 従来の回転式 表面処理装置に比較して約 3倍の高速で処理できた。 The experimental results obtained under the above conditions are shown in Fig. 21. Processing was approximately three times faster than with a conventional rotary surface treatment device.
く実施例 2〉 Example 2>
実施例 1と同じ流体処理方法と装置を用いて実験を行った。 An experiment was performed using the same fluid treatment method and apparatus as in Example 1.
〔 I 〕 試料 [I] Sample
実施例 1 と同じウェハを用い、 このウェハを 2 8 %アンモニア水: 3 0 %過酸化水素水:水 = 1 : 2 : 7の水溶液中、 8 0 °Cにて、 1 0分間 処理した。 次いで、 5 0 %フッ化水素酸 : 水 = 1 : 9 9のフッ酸水溶液 に 2分間、 浸漬させて、 ウェハ表面の自然酸化膜を除去した。 水洗後、 所望の原子吸光分析用の標準液を希釈した水溶液に 3 0分間、 浸潰して 各種の金属イオンで汚染したウェハを作成した。 これによつて、 約 1 0 1 '〜 1 0 1 2原子/ c m 2の金属イオンがウェハに付着する。 Using the same wafer as in Example 1, this wafer was treated in a 28% aqueous ammonia: 30% aqueous hydrogen peroxide: water = 1: 2: 7 aqueous solution at 80 ° C. for 10 minutes. Next, the wafer was immersed in a hydrofluoric acid aqueous solution of 50% hydrofluoric acid: water = 1: 99 for 2 minutes to remove a natural oxide film on the wafer surface. After washing with water, the wafer was immersed in an aqueous solution obtained by diluting a desired standard solution for atomic absorption analysis for 30 minutes to prepare a wafer contaminated with various metal ions. As a result, about 10 1 ′ to 10 12 atoms / cm 2 of metal ions adhere to the wafer.
[ Π ] 流体 [Π] Fluid
( 1 ) 処理液槽 I (1) Treatment liquid tank I
3 6 %塩酸水 : 2 0 %過酸化水素水 :水 = 1 : 1 : 5の水溶液。
温度 : 8 0。C 36% hydrochloric acid aqueous solution: 20% aqueous hydrogen peroxide solution: water = 1: 1: 5 aqueous solution. Temperature: 80. C
( 2 ) 処理液槽 Π (2) Treatment liquid tank Π
超純水。 温度 : 室温。 Ultra pure water. Temperature: room temperature.
( 3 ) 不活性ガスボンべ (3) Inert gas cylinder
1 2 0気圧の窒素ガス。 温度 : 室温。 Nitrogen gas at 120 atm. Temperature: room temperature.
[ II I] 流体処理時間 [II I] Fluid treatment time
( 1 ) 処理液槽 I の流体では 9 0秒間行った (1) Performed for 90 seconds with the fluid in treatment liquid tank I
( 2 ) 処理液槽 IIの流体では 1 2 0秒間行った 3 (2) In the fluid treatment tank II was carried out 1 2 0 sec 3
( 3 ) 不活性ガスボンベの流体では 1 8 0秒間行った。 (3) Inert gas cylinder fluid was used for 180 seconds.
〔IV〕 金属イオンの除去率の評価 [IV] Evaluation of metal ion removal rate
上記処理前後の金属イオンの付着数をテクノス製の全反射蛍光 X線分 析装置 : T R E X 6 1 0を用いて計測し、 除去率 (% ) を求めた。 以上の緒条件で得られた実験結果は第 2 2図のようで、 従来の回転式 表面処理装置に比較して同等以上の高速で処理できた。 The number of adhering metal ions before and after the above treatment was measured using a total reflection X-ray fluorescence analyzer made by Technos: TREX610, and the removal rate (%) was determined. The experimental results obtained under the above conditions are shown in Fig. 22. The processing was at a high speed equal to or higher than that of the conventional rotary surface treatment equipment.
く実施例 3〉 Example 3>
実施例 1 と同じ流体処理方法と装置を用いて実験を行った。 An experiment was performed using the same fluid treatment method and apparatus as in Example 1.
〔 I 〕 試料 [I] Sample
段差付きポリシリ コンゥェハを用いた。 A stepped polysilicon wafer was used.
[ ΙΠ 流体 [ΙΠ Fluid
( 1 ) 処理液槽 I (1) Treatment liquid tank I
5 0 %フッ化水素酸 :水 = 1 ·· 9 9の水溶液。 50% hydrofluoric acid: water = 1 · 99 aqueous solution.
ίέι度 ¾½. ίέι degree ¾½.
( 2 ) 処理液槽 II (2) Treatment liquid tank II
超純水。 温度 : 室温。 Ultra pure water. Temperature: room temperature.
( 3 ) 不活性ガスボンべ (3) Inert gas cylinder
1 2 0気圧のアルゴンガス。 温度 : 室温。
[ I I I ] 流体処理時間 Argon gas at 120 atm. Temperature: room temperature. [III] Fluid treatment time
( 1 ) 処理液槽 I の流体では 9 0秒間行つた。 (1) For the fluid in the processing liquid tank I, the operation was performed for 90 seconds.
( 2 ) 処理液槽 Hの流体では 1 2 0秒間行った。 (2) The treatment liquid tank H was used for 120 seconds.
( 3 ) 不活性ガスボンベの流体では 2 4 0秒間行つた。 (3) Inert gas cylinder fluid was used for 240 seconds.
〔I V〕 ゥォ一タマークの評価 [IV] Evaluation of watermarks
ウェハを乾燥するときに発生する乾燥しみをウォータマークと云う。 主たる発生原因は、 ウェハに付着した水滴に空気中の酸素が溶解してゥ ェハのシリコンを酸化、 溶解し、 溶解物が乾燥残渣と して残ることによ つて生じる。 The drying spot generated when the wafer is dried is called a watermark. The main cause is that oxygen in the air dissolves in water droplets adhering to the wafer, oxidizes and dissolves the silicon of the wafer, and the dissolved matter remains as a dry residue.
このウォータマ一クは、 直径 : 約 1 〜数 1 0 μ mの大きさであり、 日 立製作所製の電子顕微鏡 S — 7 1 0 0を用いて、 1 〜 8万倍の倍率で観 察し、 発生数を計測した。 This water mark has a diameter of about 1 to several 10 μm, and is observed at a magnification of 10,000 to 80,000 using an electron microscope S-7100 manufactured by Hitachi, Ltd. The number of occurrences was measured.
以上の緒条件で得られた実験結果は次のようである。 本実施例 : 4個 / c m 回転式表面処理方式 : 4 7個 Z c m ' -、 バッチ式 I P A蒸気乾 燥 : 8個 Z c m 2 であった。 すなわち、 従来の回転式表面処理装置に比 較して格段に発生数が少ない結果が得られた。 さらに、 現在主流の量産 技術である I P A (イソプロピルアルコール) の蒸気乾燥に比較しても 良好な結果が得られた。 本発明によれば、 ウェハが上下保持具に微小間 隔で挟まれ、 、 処理中にウェハが空気に触れることがないので、 ウォー タマークの発生防止に好適であることが証明される。 The experimental results obtained under the above conditions are as follows. Example: 4 pieces / cm Rotary surface treatment method: 47 pieces Z cm ′-, batch type IPA vapor drying: 8 pieces Z cm 2 . In other words, the number of occurrences was significantly smaller than that of the conventional rotary surface treatment equipment. Furthermore, good results were obtained compared to the current mainstream mass production technology, steam drying of IPA (isopropyl alcohol). ADVANTAGE OF THE INVENTION According to this invention, since a wafer is pinched | interposed by a fine space | interval with an up-and-down holder, a wafer does not contact air during processing, It proves that it is suitable for prevention of generation | occurrence | production of a watermark.
く実施例 4 > Example 4>
本実施例では、 保持具が試料ガイ ド板回転台を兼ねない、 試料ガイ ド 板が保持具と完全分離された流体処理方法と装置について、 その 1例を 述べる。 In the present embodiment, one example of a fluid processing method and apparatus in which the sample guide plate is completely separated from the sample holder while the sample holder is not used as the sample guide plate turntable will be described.
第 2 3図は本実施例で用いた上、 下保持具 4、 6、 試料 1 、 回転台蓋 2 、 試料ガイ ド 8、 試料ガイ ド板 9、 回転台 2 5など構成部品の展関
図である。 FIG. 23 shows the upper and lower holders 4 and 6 used in the present embodiment, the sample 1, the turntable lid 2, the sample guide 8, the sample guide plate 9, the turntable 25 and other components. FIG.
上保持具 6は、 その直径を 1 5 4 mmとする以外、 その構造は第 1 4 図及び第 1 5図と同様である。 The structure of the upper holder 6 is the same as in FIGS. 14 and 15 except that the diameter thereof is set to 154 mm.
第 2 4図は下保持具 4の詳細な断面図を示す。 下保持具 4は流体を噴 射する下噴射板 1 4、 流体の流路を分離する 0—リング 1 i 、 下供給板 1 5からなる。 下噴射板は直径: 1 5 4 mmで試料 1 として用いる 6ィ ンチウェハとほぼ同じ直径を有し、 厚さ : 3 0 1: 111の?丁? £製でぁる£ 試料 1 に対向する表面には第 2 5図で示すように、 試料の回転中心に対 しほぼ同じ大きさのモーメン トを与え、 かつ噴射力のべク トルの和がほ ぼ 0となるような位置で、 直径: 1. 2 mmの噴射孔 5— 1が穿孔され ている。 さらに、 後述する第 2 6図の試料ガイ ド 8を格納する幅 : 2 m m、 長さ : 5 mm、 深さ : 1 5 mmの格納溝 2 6が切られている。 試料 1 と試料ガイ ド 8の接点に付着する水滴を飛散する直径: 1 mmの噴射 孔 5— 2が格納溝 2 6に近接して穿孔されている。 FIG. 24 shows a detailed sectional view of the lower holder 4. The lower holder 4 includes a lower jet plate 14 for jetting a fluid, a 0-ring 1 i for separating a fluid flow path, and a lower feed plate 15. The lower spray plate has a diameter of 154 mm and has almost the same diameter as the 6-inch wafer used as sample 1, and a thickness of 301: 111? Ding? As the £ made in Aru £ opposing surfaces to the sample 1 shown in the second 5 Figure, against the center of rotation of the sample gives a substantially moment of the same size, and the sum of the base-vector of jet force An injection hole 5-1 with a diameter of 1.2 mm is drilled at a position where it is almost zero. Further, a storage groove 26 for storing the sample guide 8 shown in FIG. 26 described later, which has a width of 2 mm, a length of 5 mm, and a depth of 15 mm, is cut. An injection hole 5-2 with a diameter of 1 mm that scatters water droplets adhering to the contact point between the sample 1 and the sample guide 8 is drilled near the storage groove 26.
第 2 6図は回転台蓋 24、 試料ガイ ド 8、 試料ガイ ド板 9、 回転台 2 5を組立てた後の断面図である。 回転台蓋 24と回転台 2 5とはポルト で接続され、 その隙間に試料ガイ ド板 9が収納される。 浮上孔 1 7より 流体を噴射すると試料ガイ ド板 9が回転台 2 5より浮上する。 回転孔 1 8は試料ガイ ド板 9を回転する方向に斜めに、 直径 : 1 mmの孔が穿孔 されている。 制動孔 1 9は回転している試料ガイ ド板 9の回転を制動す るために、 回転孔 1 8とは逆の方向で斜めに、 直径 : 1 mmの孔が穿孔 されている。 回転孔 1 8、 制動孔 1 9の噴射角度は互いに逆方向に 1 0 〜 8 0 ° で有効であるが、 望ま しくは、 4 5° がよい。 回転軸孔 2 7は 直径 : 1 mmの孔で穿孔され、 流体の噴射によって、 回転中の試料ガイ ド板 9を回転台 2 5の回転軸と非接触に保持する。 回転台蓋 24は厚さ : 3 mmの P E EK製である。 試料ガイ ド板の回転台 2 5は厚さ : 1 6
mmの P E E K製である。 試料ガイ ド板 9は厚さ : 2 O mmの P E E K 製である。 FIG. 26 is a cross-sectional view after assembling the turntable lid 24, the sample guide 8, the sample guide plate 9, and the turntable 25. The turntable lid 24 and the turntable 25 are connected by a port, and the sample guide plate 9 is stored in the gap therebetween. When fluid is ejected from the floating holes 17, the sample guide plate 9 floats from the turntable 25. The rotation hole 18 has a hole with a diameter of 1 mm, which is oblique to the direction in which the sample guide plate 9 is rotated. The braking hole 19 is formed with a hole having a diameter of 1 mm, which is oblique in the opposite direction to the rotating hole 18 in order to brake the rotation of the rotating sample guide plate 9. The injection angles of the rotating hole 18 and the braking hole 19 are effective in the opposite directions of 10 to 80 °, but preferably 45 °. The rotating shaft hole 27 is perforated with a hole having a diameter of 1 mm, and holds the rotating sample guide plate 9 in a non-contact manner with the rotating shaft of the rotating base 25 by jetting a fluid. The turntable lid 24 is made of PE EK having a thickness of 3 mm. Sample guide plate turntable 25 thickness: 16 mm PEEK. The sample guide plate 9 is made of PEEK with a thickness of 2 Omm.
このように試料 1 を保持し、 回転する試料ガイ ド板 9は上保持具 6、 下保持具 4とは機械的に完全に独立している。 回転台 2 5の流体を噴射 する噴射孔の穿孔位置と、 噴射方向の 1例を第 2 7図に示した。 Thus, the sample guide plate 9 that holds and rotates the sample 1 is completely independent of the upper holder 6 and the lower holder 4 mechanically. FIG. 27 shows an example of the positions of the injection holes for ejecting the fluid of the turntable 25 and the ejection direction.
試料ガイ ド 8を下保持具 4の格納溝 2 6に格納し、 格納溝 2 6から出 現させる動作を第 2 8図に示した。 すなわち、 回転台 2 5もしくは下保 持具 4の上下動作によって、 試料ガイ ド 8が格納溝 2 6に格納される。 これによつて、 後述するように、 流体が液体のとき、 試料 1 は非接触状 態で処理され、 流体が気体のとき、 試料ガイ ド 8を出現させて試料 1 を 接触保持して処理されることを可能とする。 The operation of storing the sample guide 8 in the storage groove 26 of the lower holder 4 and exposing it from the storage groove 26 is shown in FIG. That is, the sample guide 8 is stored in the storage groove 26 by the vertical movement of the turntable 25 or the lower holder 4. Thus, as described later, when the fluid is a liquid, the sample 1 is processed in a non-contact state, and when the fluid is a gas, the sample guide 8 is made to appear and the sample 1 is contacted and processed. To be able to
第 2 9図に示すように、 流体が液体のとき、 上保持具 6、 下保持具 4 とこれらに挟まれた試料 1 との間には、 液体の大きな表面張力によつて、 メニスカスが形成される。 試料 1が試料 I ' のように位置ずれしてメニ スカスの形状を変形しても、 この新メニスカスは表面積を最小に維持す ベく、 元のメニスカスに戻る作用がある。 よって、 試料 1 の保持面と接 線方向の位置ずれが抑制される。 As shown in Fig. 29, when the fluid is a liquid, a meniscus is formed between the upper holder 6, the lower holder 4 and the sample 1 sandwiched between them by the large surface tension of the liquid. Is done. Even if Sample 1 is displaced as in Sample I 'and deforms the shape of the meniscus, the new meniscus has the effect of keeping the surface area to a minimum and returning to the original meniscus. Therefore, the displacement of the sample 1 from the holding surface in the tangential direction is suppressed.
第 3 0図は、 その抑制力を測定した結果の 1例を示す。 測定は第 2 9 図の状態で、 試料として直径: 1 2 5 mmの 5ィンチウェハ、 上下保持 具として直径 : 1 1 0〜 1 3 5mmの PT F E製のものを用い、 上下保 持具間距離 : 1 . 7 6 mm、 液体 : 水の条件で、 ウェハと電子天秤を糸 で繋いで、 上記抑制力を求めた。 その結果、 試料寸法の— 8 mm、 + 4 mmの範囲内の保持具寸法で大きな抑制力が働く ことが判った。 即ち、 流体が液体の場合、 試料寸法に対し保持具寸法が一 8 mm、 十 4 mmの 範囲内であれば、 試料を非接触で保持するとともに、 処理できる。 FIG. 30 shows an example of the result of measuring the suppression force. The measurement was performed in the state shown in Fig. 29. The sample used was a 5-inch wafer with a diameter of 125 mm, and the upper and lower holders were made of PTFE with a diameter of 110 to 135 mm, and the distance between the upper and lower holders was measured. : 1.76 mm, liquid: water, the above-mentioned restraining force was obtained by connecting the wafer and the electronic balance with a thread. As a result, it was found that a large restraining force works with the holder size within the sample dimensions of -8 mm and +4 mm. In other words, when the fluid is a liquid, if the holder size is within the range of 18 mm and 14 mm with respect to the sample size, the sample can be held and processed without contact.
流体が気体の場合は表面張力が実質的に 0であるので、 上記液体の場
合のように、 上記抑制力が発生しない。 よって、 流体が気体の場合は前 記試料ガイ ドによって試料の保持面に対して接線方向の位置ずれを防ぐ これによつて、 試料ガイ ド 8の格納状態で液体による処理を、 試料ガイ ド 8の出現状態で気体による処理を行う ことが可能となり、 可及的な高 清浄処理を実現する。 When the fluid is a gas, the surface tension is substantially 0, As in the case, the suppression force does not occur. Therefore, when the fluid is gas, the sample guide prevents the tangential displacement with respect to the sample holding surface by the sample guide. As a result, the treatment with the liquid in the stored state of the sample guide 8 can be performed. It is possible to perform the treatment with gas in the appearance state of, and to realize the highest possible clean treatment.
以下に流体処理方法とその装置について第 3 1 図を用いて説明する。 なお、 電磁弁は全て閉の状態で開始する。 Hereinafter, the fluid treatment method and its apparatus will be described with reference to FIG. Note that all solenoid valves start in a closed state.
先ず、 試料ガイ ド板 9の回転台 2 5を上方にもたらし、 試料ガイ ド 8 を出現させて試料 1 を試料ガイ ド 8に置く。 次いで、 回転台 2 5を下方 にもたらし、 試料 1 と下保持具 4の保持面間の距離を約 3 m mとする。 電磁弁 3 0 — 1 、 3 0 — 2を開とし、 不活性ガスを 3 0 1 Z m i nの 流量で噴射し、 試料 1 を試料ガイ ド 8に保持する。 First, the turntable 25 of the sample guide plate 9 is moved upward, the sample guide 8 is made to appear, and the sample 1 is placed on the sample guide 8. Next, the turntable 25 is moved downward, and the distance between the sample 1 and the holding surface of the lower holder 4 is set to about 3 mm. Open solenoid valves 30-1 and 30-2, inject inert gas at a flow rate of 301 Z min, and hold sample 1 in sample guide 8.
上保持具 6の保持面が試料 1 と約 1 m mの距離となるように上方よリ もたらす。 Bring it upward so that the holding surface of the upper holder 6 is at a distance of about 1 mm from the sample 1.
電磁弁 3 0 — 3 、 3 0 — 4を開とし、 不活性ガスを 3 0 I i nの 流量で噴射し、 試料 1 を上保持具 6の間でベルヌーィ効果を生じさせる。 電磁弁 3 2 — 1 、 3 2 - 2 , 3 2 — 3 を開とし、 高圧空気タンク 3 1 の空気を 6 0 1 / m i nの流量で噴射し、 試料ガイ ド板 9を回転台 2 5 より浮上させると共に、 試料ガイ ド板 9を約 1 0 0 r p mで回転させる。 電磁弁 3 0 — 1 を閉とし、 電磁弁 3 0 — 6を開として、 処理液槽 I 2 2の処理液が 2 1 / i nの流量で噴射され、 試料 1の裏面の処理が開 始される。 The solenoid valves 30 — 3 and 30 — 4 are opened, and an inert gas is injected at a flow rate of 30 I in to cause the Bernoulli effect between the upper holder 6 and the sample 1. Open the solenoid valves 3 2-1, 3 2-2, 3 2-3, inject the air in the high-pressure air tank 31 at a flow rate of 61 / min, and move the sample guide plate 9 from the turntable 25. While floating, rotate the sample guide plate 9 at about 100 rpm. When the solenoid valves 30-1 are closed and the solenoid valves 30-6 are opened, the processing liquid in the processing liquid tank I22 is injected at a flow rate of 21 / in, and processing on the back side of the sample 1 is started. You.
電磁弁 3 0 — 3を閉とし、 電磁弁 3 0 — 6を開と して、 処理液槽 I 2 2の処理液が 2 1 / m i nの流量で噴射され、 試料 1 の表面の処理が開 始される。 直ちに、 試料ガイ ド 8は格納溝 2 6に格納され、 試料 1 は非 接触の状態で約 9 0 r p mで回転しつつ、 処理される。
なお、 上記の第 1 回目の処理と して、 気体処理を行う場合、 試料 1の 表面、 裏面共に、 不活性ガスが噴射された後、 処理液槽 I 2 2の処理液 の噴射の代わりに、 処理気体槽 2 8の気体の噴射を行う。 すなわち、 電 磁弁 3 0 — 3 を閉と し、 電磁弁 2 9 — 1 、 2 9 — 2を開とし、 不活性ガ スをキャリアガスとして処理気体槽 2 8を通して、 所望の成分の処理気 体を作成し、 試料 1の表面を処理る。 所定時間、 処理後、 電磁弁 2 9 — 1 、 2 9 — 2を閉と し、 電磁弁 3 0— 3を開として、 不活性ガスを噴射 して処理気体を完全に追い出す。 その後、 以下の処理液槽 Π 2 3の処理 液の噴射に移る。 Close the solenoid valves 30-3 and open the solenoid valves 30-6 to spray the processing liquid in the processing liquid tank I 22 at a flow rate of 2 1 / min, and open the processing of the surface of sample 1. Begun. Immediately, the sample guide 8 is stored in the storage groove 26, and the sample 1 is processed while rotating at about 90 rpm in a non-contact state. In the case of performing the gas treatment as the first treatment above, after the inert gas is ejected on both the front and back surfaces of the sample 1, instead of ejecting the treatment liquid in the treatment liquid tank I22, The gas in the processing gas tank 28 is injected. That is, the electromagnetic valves 30-3 are closed, the electromagnetic valves 29-1 and 29-2 are opened, and the inert gas is passed through the processing gas tank 28 using the inert gas as the carrier gas to process the desired component gas. Create body and treat sample 1 surface. After the treatment for a predetermined time, the solenoid valves 29-1 and 29-2 are closed, and the solenoid valves 30-3 are opened to inject the inert gas to completely remove the treated gas. After that, it shifts to the injection of the processing solution in the following processing solution tank # 23.
所定の時間、 処理後、 電磁弁 3 0 — 5を閉とし、 電磁弁 3 0 — 7 を開 として、 処理液槽 Π 2 3の処理液が 2 1 /m i nの流量で噴射され、 試 料 1の裏面の処理が開始される。 After the treatment for a predetermined time, the solenoid valves 30 to 5 are closed and the solenoid valves 30 to 7 are opened, and the treatment liquid in the treatment liquid tank Π 23 is injected at a flow rate of 21 / min. Is started.
電磁弁 3 0 — 6を閉とし、 電磁弁 3 0 — 8を開として、 処理液槽 II 2 3の処理液が 2 1 /m i nの流量で噴射され、 試料 1の表面の処理が開 始される。 When the solenoid valves 30-6 are closed and the solenoid valves 30-8 are opened, the processing liquid in the processing liquid tank II 23 is sprayed at a flow rate of 21 / min, and processing of the surface of sample 1 is started. You.
所定の時間、 処理後、 電磁弁 3 0— 7 を閉とし、 電磁弁 3 0 — 1 を開 として、 不活性ガスを 3 0 1 /m i nの流量で噴射し、 試料 1の裏面を 乾燥が開始される。 After processing for a predetermined time, solenoid valves 30-7 are closed, solenoid valves 30-1 are opened, and an inert gas is injected at a flow rate of 301 / min to start drying the back surface of sample 1. Is done.
電磁弁 3 0 — 8を閉とし、 電磁弁 3 0 — 3、 3 0 — 9を開として、 不 活性ガスを 3 0 1 Zm i nの流量で噴射し、 試料 1の表面を乾燥が開始 される。 With solenoid valves 30-8 closed, solenoid valves 30-3 and 30-9 opened, an inert gas is injected at a flow rate of 301 Zin, and the surface of sample 1 starts drying. .
所定の時間、 乾燥後、 電磁弁 ( 3 0— 1 ) 、 ( 3 0 - 3 ) を閉とし、 乾燥を終了する。 After drying for a predetermined time, close the solenoid valves (30-1) and (30-3) to finish drying.
電磁弁 3 2 — 2を閉とし、 電磁弁 3 2 — 4を開として、 試料ガイ ド板 9の回転を制動する。 Close the solenoid valves 3 2-2 and open the solenoid valves 32-4 to brake the rotation of the sample guide plate 9.
試料ガイ ド板 9の回転が停止したら、 全ての電磁弁を閉とする。
上保持具 6 を上方に退避させ、 試料 1 を取り出す。 When the rotation of the sample guide plate 9 stops, close all the solenoid valves. Withdraw upper holder 6 upward, and take out sample 1.
なお、 第 3 1図では、 本発明の本質に係らない、 保持具の固定、 移動 機構部、 流体の温度制御部、 流体の流量制御部などの部分は省略した。 ただし、 下保持具 4で噴射される流体は温度制御 3 3によって所望の温 度に加熱され、 試料裏面より、 この流体の温度を伝えることによって、 試料 1 の処理温度を調節することもできる。 In FIG. 31, parts such as a fixing and moving mechanism for the holder, a fluid temperature controller, and a fluid flow controller, which are not related to the essence of the present invention, are omitted. However, the fluid ejected by the lower holder 4 is heated to a desired temperature by the temperature control 33, and the processing temperature of the sample 1 can be adjusted by transmitting the temperature of the fluid from the back surface of the sample.
以下に実験結果について具体的に説明する。 なお、 本実施例では第 1 回目の処理流体は液体、 第 2回目の処理流体は液体、 第 3回目の処理流 体は気体である。 Hereinafter, the experimental results will be specifically described. In this embodiment, the first processing fluid is liquid, the second processing fluid is liquid, and the third processing fluid is gas.
〔 〗 〕 試料 [〗] Sample
く実施例 1〉 の 〔 I 〕 試料と同様である。 This is the same as the [I] sample in Example 1>.
[ i n 流体 [i n fluid
〈実施例 I > の 〔I I〕 流体と同様である。 <II> of <Example I> Same as the fluid.
〔I I I〕 流体処理時間 [I I I] Fluid treatment time
く実施例 1〉 の 〔π ι〕 流体処理時間と同様である。 This is the same as the [πι] fluid treatment time in Example 1>.
〔 I V〕 シリコン粉の除去率の評価 [IV] Evaluation of silicon powder removal rate
く実施例 1 > の 〔I V〕 シリコン粉の除去率の評価と同様である。 Example 1> [IV] The same as in the evaluation of the silicon powder removal rate.
以上の緒条件で得られた実験結果は 〈実施例 1 > とほぼ同様であった。 The experimental results obtained under the above conditions were almost the same as those of <Example 1>.
く実施例 5 > Example 5>
く実施例 4〉 と同様の流体処理方法と装置を用いて実験を行った。 な お、 本実施例では第 1回目の処理流体は気体、 第 2回目の処理流体は液 体、 第 3回目の処理流体は気体である。 An experiment was performed using the same fluid treatment method and apparatus as in Example 4>. In this embodiment, the first processing fluid is a gas, the second processing fluid is a liquid, and the third processing fluid is a gas.
〔 I 〕 試料 [I] Sample
ウェハは く実施例 1 > と同様で、 1 %の水蒸気を含む酸素中、 9 5 0 で、 5 4分間、 加熱処理して、 ウェハ表面に 1 8 0 n mの熱酸化膜を形 成したものを用いた。
〔II〕 流体 Wafers are the same as in Example 1> heat-treated at 950 in oxygen containing 1% water vapor for 54 minutes to form a 180 nm thermal oxide film on the wafer surface Was used. [II] Fluid
( 1 ) 処理液槽 H (1) Treatment liquid tank H
超純水。 温度 : 室温。 Ultra pure water. Temperature: room temperature.
( 2 ) 不活性ガスボンべ (2) Inert gas cylinder
1 2 0気圧の窒素ガス。 温度 : 室温。 Nitrogen gas at 120 atm. Temperature: room temperature.
( 3 ) 処理気体槽 (3) Processing gas tank
液状無水フッ酸に窒素ガスを流し、 2 %のフッ酸ガスと水蒸気 を含むガスを作成する。 温度 : 室温。 Nitrogen gas is flowed into liquid hydrofluoric anhydride to create a gas containing 2% hydrofluoric acid gas and water vapor. Temperature: room temperature.
〔III〕 流体処理時間 [III] Fluid treatment time
( 1 ) 処理液槽 Πの処理流体では 1 2 0秒間行った。 (1) Processing liquid tank Processing was performed for 120 seconds with the processing fluid in Π.
( ) 不活性ガスボンベの処理流体では 1 8 0秒間行った。 () The treatment was performed for 180 seconds with an inert gas cylinder treatment fluid.
( 3 ) 処理気体槽の処理流体では 1 1 1 Zm i nの流量で、 3 5秒間 行った。 (3) The processing was performed for 35 seconds at a flow rate of 1 1 1 Zmin with the processing fluid in the processing gas tank.
〔IV〕 熱酸化膜の評価 [IV] Evaluation of thermal oxide film
熱酸化膜の厚さをエリプソメータで計測し、 処理前後の値から処理速 度 (エッチング速度) を求めた。 さらに、 処理後、 ウェハ表面に付着し たフッ酸を濃縮イオン電極法で測定した。 The thickness of the thermal oxide film was measured with an ellipsometer, and the processing speed (etching speed) was determined from the values before and after the processing. After the treatment, hydrofluoric acid adhering to the wafer surface was measured by the concentrated ion electrode method.
以上の緒条件の基、 熱酸化膜は上記処理気体によって、 S S O nmZ m i nの速度でエッチングされることが判った。 さらに、 上記処理気体 によるエッチングではウェハ表面に約 7 X 1 013原子/ c m 2のフッ素 原子が付着するが、 処理液槽 IIの処理によって、 約 1 011原子 Zc in2 まで低減できることが判った。 1つの機構で、 気体→液体→気体の連続 処理を可能とした。 Under the above conditions, it was found that the thermal oxide film was etched at the speed of SSO nmZ min by the above processing gas. Furthermore, in the etching using the above processing gas, about 7 × 10 13 atoms / cm 2 of fluorine atoms adhere to the wafer surface, but it can be seen that the processing liquid tank II treatment can reduce the number to about 10 11 atoms Zc in 2. Was. One mechanism enables continuous processing of gas → liquid → gas.
く実施例 6〉 Example 6>
く実施例 4 > と同様の流体処理方法と装置を用いて実験を行った。 な お、 本実施例では く実施例 5〉 と同様に第 1回目の処理流体は気体、 第
2回目の処理流体は液 ί本、 第 3回目の処理流体は気体である。 An experiment was conducted using the same fluid treatment method and apparatus as in Example 4>. Note that the first processing fluid is a gas, The second processing fluid is a liquid, and the third processing fluid is a gas.
〔 I 〗 試料 [I〗 sample
ウェハはく実施例 1〉 と同様で、 3 %のジシラン、 ホスフ ィ ン含む気 体を用いて、 5 1 0 °Cの熟 C V Dにより、 ウェハ表面に 1 5 0 n mのド —プドポリシリコン膜を形成した。 Wafer Wafer Same as in Example 1), using a gas containing 3% disilane and phosphine, and a 150-nm doped poly-silicon layer on the wafer surface by aging CVD at 50 ° C. A film was formed.
[II] 流体 [II] Fluid
( 1 ) 処理液槽 π (1) Treatment liquid tank π
超純水。 温度 : 室温。 Ultra pure water. Temperature: room temperature.
( 2 ) 不活性ガスボンべ (2) Inert gas cylinder
1 2 0気圧の窒素ガス。 温度 : 室温。 Nitrogen gas at 120 atm. Temperature: room temperature.
( 3 ) 処理気体槽 (3) Processing gas tank
液状の三フッ化塩素に窒素ガスを流し、 0. 2 %の三フッ化塩 素を含む窒素ガスを作成する。 温度 : 室温。 Flow nitrogen gas through the liquid chlorine trifluoride to produce nitrogen gas containing 0.2% chlorine trifluoride. Temperature: room temperature.
〔Π1〕 流体処理時間 [Π1] Fluid treatment time
( 1 ) 処理液槽 IIの処理流体では 1 2 0秒間行った。 (1) Processing was performed for 120 seconds with the processing fluid in the processing liquid tank II.
( 2 ) 不活性ガスボンベの処理流体では 1 8 0秒間行った。 (2) The processing was performed for 180 seconds with the processing fluid of the inert gas cylinder.
( 3 ) 処理気体槽の処理流体では 1 3 1 /m i nの流量で、 4 5秒間 行った。 (3) The processing was performed for 45 seconds at a flow rate of 131 / min with the processing fluid in the processing gas tank.
UV〕 ドープドポシシリコンの評価 UV] Evaluation of doped polysilicon
ドープドポロシリ コン膜の厚さをエリプソメータで計測し、 処理前後 の値から処理速度 (エッチング速度) を求めた。 さらに、 処理後、 ゥェ ハ表面に付着したフッ酸を濃縮イオン電極法で測定した。 The thickness of the doped polysilicon film was measured with an ellipsometer, and the processing rate (etching rate) was determined from the values before and after the processing. After the treatment, hydrofluoric acid adhering to the wafer surface was measured by the concentrated ion electrode method.
以上の緒条件の基、 ド一プドボリシリコン膜は上記処理気体によって、 2 5 0 n m/m i nの速度でエッチングされることが判った。 さらに、 上記処理気体によるエッチングではウェハ表面に約 5 X 1 013原子 じ m2 のフッ素原子が付着するが、 処理液槽 11の処理によって、 約 1 01 1
原子/ c m 2 まで低減できることが判った。 1つの機構で、 気体—液体 —気体の連続処理を可能と した。 また、 三フッ化塩素は極めて腐食性の 化合物である力〈、 本発明の装置は何ら腐食されることがなかった。 Under the above conditions, it was found that the doped polysilicon film was etched at a rate of 250 nm / min by the processing gas. Furthermore, in the etching by the process gases from adhering fluorine atom about 5 X 1 0 13 atoms Ji m 2 on the wafer surface, the processing of the processing liquid tank 11, from about 1 0 1 1 It was found that it can be reduced to atoms / cm 2 . One mechanism enables continuous gas-liquid-gas processing. In addition, chlorine trifluoride is a very corrosive compound. <The apparatus of the present invention was not corroded at all.
以上詳述したが、 本発明は上記実施例に限定されるものではない。 試 料ガイ ドの回転台は保持具の左右に配置してもよいし、 第 3 1図に示し た上下保持具を逆にして上保持具に配置してもよい。 腐食性の流体を用 いることがなければ、 あるいは高度の清浄性を必要としないならば試料 ガイ ドの回転は流体の噴射によらず、 駆動モータによってもよい。 産業上の利用可能性 Although described in detail above, the present invention is not limited to the above embodiment. The rotating table of the sample guide may be arranged on the left and right of the holder, or may be arranged on the upper holder by reversing the upper and lower holders shown in FIG. Unless corrosive fluids are used, or if a high degree of cleanliness is not required, the rotation of the sample guide may be driven by a drive motor rather than by spraying the fluid. Industrial applicability
以上詳述したように、 本発明によれば、 上記第 1 〜第 4の目的を達成 できる。 即ち、 当該試料を保持すべき方向で、 試料保持面とは機械的に 分離した当該試料を保持する試料ガイ ドを設け、 当該試料と当該試料保 持面との間に流体を流すことによって生じるベルヌーィ効果を利用して 当該試料ガイ ドに当該試料を接触保持し、 該試料保持面の法線方向と共 に、 接線方向の試料位置ずれを抑制することを特徴とする試料保持方法 及び装置を提供することができる。 As described in detail above, according to the present invention, the above first to fourth objects can be achieved. That is, a sample guide for holding the sample is provided in the direction in which the sample is to be held and is mechanically separated from the sample holding surface, and a fluid is caused to flow between the sample and the sample holding surface. A method and apparatus for holding a sample, wherein the sample is held in contact with the sample guide using the Bernoulli effect, and the displacement of the sample in the tangential direction is suppressed together with the normal direction of the sample holding surface. Can be provided.
また、 当該試料ガイ ドが当該試料保持面と機械的に分離され、 当該試 料ガイ ドの回転と共に、 当該試料を回転することを特徴とする試料回転 方法及び装置を提供することができる。 Further, it is possible to provide a sample rotating method and apparatus, wherein the sample guide is mechanically separated from the sample holding surface, and the sample is rotated together with the rotation of the sample guide.
さらに、 保持すべき試料に対して行うべき処理に応じて、 ベルヌーィ 効果を生じさせるために流す流体を選択し、 前記試料を前記試料ガイ ド に支持すると共に、 当該試料表面の処理を実行することを特徴とする流 体処理方法及び装置を提供することができる。 Further, according to the processing to be performed on the sample to be held, a fluid to be flowed to generate the Bernoulli effect is selected, the sample is supported by the sample guide, and the processing of the sample surface is performed. A fluid treatment method and apparatus characterized by the following can be provided.
さらに、 本発明によれば、 空気に触れることなく高清浄で枚葉方式の、 流体による物理的及び科学的処理が可能であり、 さらに、 小形化が可能
な流体処理装置を提供することができる。 Further, according to the present invention, it is possible to perform high-purity, single-wafer physical and scientific treatment with a fluid without contact with air, and to further reduce the size. It is possible to provide a simple fluid processing apparatus.
このように、 本発明は、 特に清浄性が要求される半導体製造工程に利 用して極めて有効なものである。
As described above, the present invention is extremely effective when used particularly in a semiconductor manufacturing process requiring cleanliness.
Claims
1 . 保持すべき試料と該試料に対向する試料保持面との間に流体を流 すことで生じるベルヌーィ効果を利用して上記試料を保持する試料保 持方法において、 試料保持面に対する試料の位置ずれを抑制すべき方 向に上記試料保持面と機械的に分離してなる試料ガイ ドを設け、 上記 試料と上記試料保持面との間で生じるベルヌーィ効果を利用して、 上 記試料を上記試料ガイ ドに接触保持することを特徴とする試料保持方 法。 1. In the sample holding method for holding a sample by using the Bernoulli effect generated by flowing a fluid between a sample to be held and a sample holding surface facing the sample, the position of the sample with respect to the sample holding surface. A sample guide that is mechanically separated from the sample holding surface is provided in the direction in which the displacement is to be suppressed, and the above-mentioned sample is subjected to the Bernoulli effect generated between the sample and the sample holding surface. A sample holding method characterized in that the sample is held in contact with a sample guide.
2 . 上記試料ガイ ドによる上記試料の保持が、 上記試料保持面から略 2 . 5匪以内の距離で上記試料を保持することを特徴とする請求の範 囲第 1項記載の試料保持方法。 2. The sample holding method according to claim 1, wherein the holding of the sample by the sample guide holds the sample within a distance of about 2.5 or less from the sample holding surface.
3 . 上記試料が略円板状で直径が D m mである場合に、 上記試料保持 面を (D— 8 ) m n!〜 ( D + 4 ) m mの範囲内の直径を有する略円板 形状とすることを特徴とする請求の範囲第 1項記載の試料保持方法。 . 保持すべき試料と該試料に対向する試料保持面との間に流体を流 すことで生じるベルヌーィ効果を利用して上記試料保持面と機械的に 分離して成る試料ガイ ドに接触保持された試料を回転する試料回転方 法において、 試料ガイ ドを回転駆動するとともに、 上記試料を回転駆 動することを特徴とする試料回転方法。 3. If the sample is approximately disk-shaped and the diameter is D mm, the sample holding surface should be (D-8) mn! 2. The sample holding method according to claim 1, wherein the sample holding shape is a substantially disk shape having a diameter in a range of from (D + 4) mm to (D + 4) mm. The sample is held in contact with a sample guide that is mechanically separated from the sample holding surface using the Bernoulli effect generated by flowing a fluid between the sample to be held and the sample holding surface facing the sample. A method of rotating a sample, comprising rotating a sample guide and rotating the sample.
. 上記試料ガイ ドの表面に流体を噴射することによって、 上記試料 ガイ ドをその回転軸並びに回転面と非接触に支持して回転駆動するこ とを特徴とする請求の範囲第 4項記載の試料回転方法。 5. The method according to claim 4, wherein a fluid is jetted onto a surface of the sample guide, whereby the sample guide is rotationally driven while being supported in a non-contact manner with a rotating shaft and a rotating surface thereof. Sample rotation method.
. 保持すべき試料と該試料に対向する試料保持面との間に流体を流 すことで生じるベルヌーィ効果を利用して、 上記試料保持面と機械的 に分離して成る試料ガイ ドに接触保持された上記試料の表面を処理す
る流体処理方法において、 保持すべき試料に対して行うべき処理に応 じてベルヌーィ効果を生じさせるために流す流体を選択し、 上記試料 を上記試料ガイ ドに支持するとともに、 上記試料の表面の処理を実行 することを特徴とする流体処理方法。 Utilizes the Bernoulli effect generated by flowing a fluid between the sample to be held and the sample holding surface facing the sample, and contacts and holds the sample guide that is mechanically separated from the sample holding surface. Treated surface of the sample In the fluid treatment method, a fluid to be flowed to generate the Bernoulli effect is selected according to the treatment to be performed on the sample to be held, the sample is supported by the sample guide, and the surface of the sample is A fluid processing method comprising performing processing.
7 . 上記試料が略円板状で直径が D m mである場合に、 上記試料保持 面を ( D— 8 ) m m〜 ( D + 4 ) m mの範囲内の直径を有する略円板 形状とすることを特徴とする請求の範囲第 6項記載の流体処理方法。 8 . 保持すべき試料と該試料に対向する試料保持面との間に流体を流 すことで生じるベルヌーィ効果を利用して、 上記試料を保持する試料 保持装置において、 試料保持面に対する試料の位置ずれを抑制すべき 方向に上記試料保持面と機械的に分離してなる試料ガイ ドを設け、 上 記試料と上記試料保持面との間で生じるベルヌーィ効果を利用して上 記試料を上記試料ガイ ドに接触保持することを特徴とする試料保持装 置。 7. When the sample is substantially disk-shaped and has a diameter of D mm, the sample holding surface is formed in a substantially disk shape having a diameter in the range of (D-8) mm to (D + 4) mm. 7. The fluid treatment method according to claim 6, wherein: 8. In the sample holding device for holding the sample, utilizing the Bernoulli effect caused by flowing a fluid between the sample to be held and the sample holding surface facing the sample, the position of the sample with respect to the sample holding surface. A sample guide that is mechanically separated from the sample holding surface is provided in the direction in which the displacement is to be suppressed, and the sample is separated from the sample using the Bernoulli effect generated between the sample and the sample holding surface. A sample holding device that is held in contact with a guide.
9 . 上記試料ガイ ドが、 試料の中心方向に試料保持面との距離が小さ くなるテ一パ形状であることを特徴とする請求の範囲第 8項記載の試 料保持装置。 9. The sample holding apparatus according to claim 8, wherein the sample guide has a tapered shape in which a distance from the sample holding surface in the center direction of the sample is reduced.
1 0 . 上記試料が略円板状で直径が D m mである場合に、 上記試料保 持面を (D— 8 ) m n!〜 ( D + 4 ) m mの範囲内の直径を有する略円 板形状とすることを特徴とする請求の範囲第 8項記載の試料保持装置。 10. If the sample is approximately disk-shaped and the diameter is D mm, the sample holding surface should be (D-8) mn! 9. The sample holding device according to claim 8, wherein the sample holding device has a substantially disc shape having a diameter in a range of (D + 4) mm.
1 1 . 保持すべき試料と該試料に対向する試料保持面との間に流体を 流すことで生じるベルヌーィ効果を利用して、 上記試料を保持する試 料保持装置において、 上記試料保持面に流 ί本を供給する流体供給手段 であって、 その試料保持面には流体供給孔が複数個設けられ、 各流体 供給孔から噴射される流体のそれぞれの噴射力が、 上記試料の回転中 心に対しほぼ同じ大きさのモーメントを与え、 かつ上記噴射力のべク
トルの和がほぼ 0となるように上記複数個の流体供給孔が構成されて いる流体供給手段と、 上記試料保持面に対する試料の位置ずれを抑制 すべき方向に上記試料保持面と機械的に分離してなる試料ガイ ドとを 設け、 上記試料と上記試料保持面との間で生じるベルヌーィ効果を利 用して上記試料を上記試料ガイ ドに接触保持することを特徴とする試 料保持装置。 11. Using a Bernoulli effect generated by flowing a fluid between a sample to be held and a sample holding surface facing the sample, a sample holding device for holding the sample is used to flow the sample to the sample holding surface. a fluid supply means for supplying the fluid, wherein a plurality of fluid supply holes are provided in the sample holding surface, and the respective ejection forces of the fluid ejected from the respective fluid supply holes are applied to the center of rotation of the sample. About the same magnitude of moment, and the above injection force vector A fluid supply means having the plurality of fluid supply holes configured so that the sum of the torques is substantially zero; and A sample guide that is separated from the sample guide, and uses the Bernoulli effect generated between the sample and the sample holding surface to hold the sample in contact with the sample guide. .
1 2 . 上記流体が液体である場合は上記試料ガイ ドは格納されて上記 試料は非接触保持され、 上記流体が気体である場合は上記試料ガイ ド は出現され上記試料は接触保持されることを特徴とする請求の範囲第 1 1項記載の試料保持装置。 1 2. If the fluid is a liquid, the sample guide is stored and the sample is held in a non-contact state. If the fluid is a gas, the sample guide appears and the sample is held in contact. The sample holding device according to claim 11, wherein:
1 3 . 上記試料保持面には、 上記流体供給孔に加えて、 上記試料の表 面の法線方向と略一致した方向に沿って、 上記流体供給手段から供給 される流体を、 上記試料の表面へ噴射する流体供給孔がさらに形成さ れていることを特徴とする請求の範囲第 1 1項記載の試料保持装置。 1 13. In addition to the fluid supply holes, the fluid supplied from the fluid supply means along the direction substantially coincident with the normal direction of the surface of the sample is applied to the sample holding surface. 12. The sample holding device according to claim 11, further comprising a fluid supply hole for jetting to a surface. 1
4 . 上記試料保持面には、 保持されている試料の表面の法線方向を 回転軸方向として当該試料が回転するための回転力を与える方向に沿 つて、 上記流体供給手段から供給される流体を、 上記試料の表面へ噴 射する流体供給孔が形成されていることを特徴とする請求の範囲第 1 1項記載の試料保持装置。 4. The fluid supplied from the fluid supply means is provided on the sample holding surface along a direction in which a rotation force is applied to rotate the sample with the normal direction of the surface of the held sample as a rotation axis direction. 11. The sample holding device according to claim 11, wherein a fluid supply hole for ejecting the fluid to the surface of the sample is formed.
1 5 . 上記試料保持面は、 ベルヌーィ効果を生じさせる平坦な主面部 と上記試料との間に形成される気一液界面が位置する当該主面部を囲 む外周部とから構成され、 上記外周部の外周端における上記試料の表 面からの距離は上記主面部における上記試料の表面からの距離よりも 大きいことを特徴とする請求の範囲第 8項記載の試料保持装置。 15. The sample holding surface is composed of a flat main surface that causes the Bernoulli effect and an outer peripheral portion surrounding the main surface where an air-liquid interface formed between the sample is located. 9. The sample holding device according to claim 8, wherein a distance from a surface of the sample at an outer peripheral end of the portion is greater than a distance from a surface of the sample at the main surface portion.
1 6 . 上記外周部は、 その外側方向へ向かって、 上記試料の表面との 距離が大きくなるようなテーパ構造を有していることを特徴とする請
求の範囲第 1 5項記載の試料保持装置。 16. The outer peripheral portion has a tapered structure in which the distance from the surface of the sample increases toward the outer side. 16. The sample holding device according to claim 15, wherein
7 . 上記試料保持面を一対設け、 当該一対の試料保持面を、 所定の 間隔をあけ互いに対向する位置に配置すると共に、 その間隙に前記試 料ガイ ドを配置し上記試料を保持することを特徴とする請求の範囲第 8項記載の試料保持装置。 7. A pair of the sample holding surfaces is provided, and the pair of sample holding surfaces are arranged at positions opposing each other with a predetermined interval, and the sample guide is arranged in the gap to hold the sample. 9. The sample holding device according to claim 8, wherein:
8 . 前記一対の試料保持面の間隔は、 略 2 . 5 m m以内の距離とな るように設定したことを特徴とする請求の範囲第 1 7項記載の試料保 持装置。 8. The sample holding device according to claim 17, wherein a distance between the pair of sample holding surfaces is set to be a distance of approximately 2.5 mm or less.
9 . 保持すべき試料と該試料に対向する試料保持面との間に流体を 流すことで生じるベルヌーィ効果を利用して上記試料保持面と機械的 に分離して成る試料ガイ ドに上記試料を接触保持された状態でその試 料の表面を処理する流体処理装置において、 上記試料保持面が形成さ れている試料保持手段と、 上記試料保持面と試料との間に流体を流し てべルヌーィ効果を生じさせるとともに上記試料表面の処理を行う流 体を供給する流体供給手段と、 上記試料ガイ ドを支持する試料ガイ ド 支持手段と、 上記試料ガイ ドを浮上させる流体を供給する流体供給手 段と、 上記試料ガイ ドを回転させる流体を供給する流体供給手段とを 備えたことを特徴とする流体処理装置。 9. Using the Bernoulli effect generated by flowing a fluid between the sample to be held and the sample holding surface facing the sample, the sample is placed in a sample guide that is mechanically separated from the sample holding surface. In a fluid treatment apparatus for treating the surface of a sample while being held in contact with the sample, a sample holding means having the sample holding surface formed thereon, and a fluid flowing between the sample holding surface and the sample, and a Bernoulli fluid A fluid supply unit that supplies a fluid that produces an effect and performs the treatment of the sample surface; a sample guide support unit that supports the sample guide; and a fluid supply unit that supplies a fluid that floats the sample guide. A fluid processing apparatus, comprising: a step; and a fluid supply means for supplying a fluid for rotating the sample guide.
0 . 上記試料が略円板状で直径が D m mである場合に、 上記試料保 持面を (D— 8 ) m m〜 ( D十 4 ) m mの範囲内の直径を有する略円 板形状とすることを特徴とする請求の範囲第 1 9項記載の流体処理装 置。0. When the sample is substantially disk-shaped and has a diameter of D mm, the sample holding surface is formed into a substantially disk shape having a diameter in the range of (D-8) mm to (D14) mm. The fluid treatment device according to claim 19, wherein the fluid treatment device is configured to:
1 . 上記試料保持面の法線方向には、 上記流体供給手段から供給さ れる流体を、 上記試料の表面へ噴射する流体供給孔が形成されている ことを特徴とする請求の範囲第 1 9項記載の流体処理装置。 1. A fluid supply hole for ejecting a fluid supplied from the fluid supply means to a surface of the sample is formed in a normal direction of the sample holding surface. 13. The fluid treatment device according to claim 10.
2 . 上記試料保持面には、 保持されている試料の表面の法線方向を
回転軸方向として、 上記試料が回転するための回転力を与える方向に 沿って、 上記流体供給手段から供給される流体を、 上記試料の表面へ 噴射する流体供給孔が形成されていることを特徴とする請求の範囲第 1 9項記載の流体処理装置。 2. The normal direction of the surface of the held sample should be A fluid supply hole for ejecting a fluid supplied from the fluid supply means to the surface of the sample is formed along a direction of applying a rotational force for rotating the sample as a rotation axis direction. The fluid processing apparatus according to claim 19, wherein:
2 3 . 上記試料支持手段には、 上記流体供給手段から供給される流体 を、 上記試料ガイ ドを浮上させる方向に沿って、 上記試料ガイ ドの表 面へ噴射する流体供給孔が形成されていることを特徴とする請求の範 囲第 1 9項記載の流体処理装置。 23. The sample support means is provided with a fluid supply hole for ejecting a fluid supplied from the fluid supply means to a surface of the sample guide along a direction in which the sample guide floats. The fluid treatment device according to claim 19, wherein the fluid treatment device is provided.
2 4 . 上記試料ガイ ド支持手段には、 保持されている試料の表面の法 線方向を回転軸方向として、 上記試料が回転するための回転力を与え る方向の沿って、 上記流体供給手段から供給される流体を、 上記試料 ガイ ドの表面へ噴射する流体供給孔が形成されいることを特徴とする 請求の範囲第 1 9項記載の流体処理装置。 24. The sample guide supporting means is provided with the fluid supply means along a direction in which a rotational force is applied for rotating the sample with the normal direction of the surface of the held sample as a rotation axis direction. 10. The fluid processing apparatus according to claim 19, wherein a fluid supply hole for injecting a fluid supplied from the sample guide to a surface of the sample guide is formed.
2 5 . 上記流体供給手段には、 保持すべき試料の液体処理工程に用い る液体を供給する液体供給手段、 保持すべき試料の気体処理工程に用 いる気体を供給する気体供給手段、 試料を保持する試料ガイ ドを浮上 させ、 回転させ、 制動させる流体を供給する流体供給手段のうち、 少 なく とも一手段が含まれることを特徴とする請求の範囲第 1 9項記載 の流体処理装置。 25. The fluid supply means includes a liquid supply means for supplying a liquid used in a liquid processing step of the sample to be retained, a gas supply means for supplying a gas used in a gas processing step of the sample to be retained, and a sample. 20. The fluid processing apparatus according to claim 19, wherein at least one of fluid supply means for supplying a fluid for causing the held sample guide to float, rotate, and brake is included.
2 6 . 上記流体供給手段は、 互いに異なる流体をそれぞれ供給する複 数の供給手段と、 上記試料に対して行うべき処理に応じて上記複数の 供給手段のうちの一つを選択し選択した一つの供給手段からの流体を 供給する選択手段とを有することを特徴とする請求の範囲第 1 9項記 載の流体処理装置。 26. The fluid supply means includes a plurality of supply means for supplying fluids different from each other, and one of the plurality of supply means selected and selected according to a process to be performed on the sample. 20. The fluid processing apparatus according to claim 19, further comprising a selection unit that supplies a fluid from the two supply units.
2 7 . 上記試料を保持する試料ガイ ドを浮上させ、 回転させ、 制動さ せる流体の流体供給手段は、 複数の供給手段から構成され、 上記試料
ガイ ドに対して行うべき動作に応じて、 上記複数の供給手段のうち少 なく とも一つを選択し、 上記選択した供給手段からの流体を供給する 選択手段を備えたことを特徴とする請求の範囲第 1 9項記載の流体処 理装置。 27. The fluid supply means for raising, rotating, and braking the sample guide holding the sample includes a plurality of supply means. Selecting at least one of the plurality of supply means according to an operation to be performed on the guide and supplying a fluid from the selected supply means; 10. The fluid treatment apparatus according to item 19, wherein:
2 8 . 上記複数の供給手段には、 保持すべき試料の液体処理工程に用 いる液体を供給する液体供給手段と、 保持すべき試料の気体処理工程 に用いる気体を供給する気体供給手段が含まれ、 上記液体処理工程に は少なくとも洗浄水による洗浄工程を、 前記気体処理工程には少なく とも乾燥用気体による乾燥工程もしくはエッチング用気体によるエツ チング工程を行うようになしたことを特徴とする請求の範囲第 2 5項 記載の流体処理装置。 28. The plurality of supply means include a liquid supply means for supplying a liquid used in a liquid processing step of a sample to be retained, and a gas supply means for supplying gas used in a gas processing step of a sample to be retained. The liquid processing step may include at least a cleaning step using cleaning water, and the gas processing step may include at least a drying step using a drying gas or an etching step using an etching gas. Item 27. The fluid treatment apparatus according to Item 25.
9 . 上記複数の供給手段には、 上記試料を保持する試料ガイ ドを浮 上させる気体供給手段と、 上記試料を保持する試料ガイ ドを回転させ る気体供給手段と、 上記試料を保持する試料ガイ ドの回転を制動させ る気体供給手段とが少なく とも含まれることを特徴とする請求の範囲 第 2 5項記載の流体処理装置。 9. The plurality of supply units include a gas supply unit that floats a sample guide that holds the sample, a gas supply unit that rotates a sample guide that holds the sample, and a sample that holds the sample. 26. The fluid treatment apparatus according to claim 25, further comprising at least gas supply means for braking the guide.
0 . 上記液体供給手段は、 純水及び洗浄水の少なくとも一方を供給 するものであり、 上記気体供給手段は、 窒素、 フッ酸、 三フッ化塩素 ガスのいずれか一つを供給するものであることを特徴とする請求の範 囲第 2 8項記載の流体処理装置。 0. The liquid supply means supplies at least one of pure water and cleaning water, and the gas supply means supplies any one of nitrogen, hydrofluoric acid, and chlorine trifluoride gas. 29. The fluid treatment device according to claim 28, wherein the fluid treatment device is characterized in that:
1 . 上記試料保持手段を一対設けると共に、 該一対の試料保持手段 のそれぞれに形成されている試料保持面を所定の間隔をあけて上記試 料と上記試料ガイ ドを挟んで互いに対向する位置に配置し、 上記一対 の試料保持手段を支持手段にて支持するように構成したことを特徴と する請求の範囲第 1 9項記載の流体処理装置。 1. A pair of the sample holding means is provided, and the sample holding surfaces formed on each of the pair of sample holding means are arranged at predetermined intervals at positions facing each other with the sample and the sample guide interposed therebetween. 20. The fluid processing apparatus according to claim 19, wherein the fluid processing apparatus is arranged so that the pair of sample holding means are supported by a support means.
2 . 上記一対の試料保持手段のそれぞれへ流体を供給する流体供給
手段を一対設けるとともに、 上記各試料保持手段に形成されている試 料保持面にそれぞれ対向する上記試料の各保持面に対して行う処理に 応じて上記各流体供給手段からそれぞれの試料保持手段へ供給する流 体を選択する選択手段を備えたことを特徴とする請求の範囲第 1 9項 記載の流体処理装置。 2. Fluid supply for supplying fluid to each of the pair of sample holding means A pair of means are provided, and each of the fluid supply means is connected to each of the sample holding means in accordance with the processing performed on each of the sample holding faces opposed to the sample holding face formed on each of the sample holding means. The fluid processing apparatus according to claim 19, further comprising a selection unit that selects a fluid to be supplied.
3 . 試料の表面を流体により処理する流体処理方法において、 上記 試料に対して行うべき処理に応じて選択された流体を、 上記試料と上 記試料に対向する位置に配置された試料保持面との間に流し、 ベルヌ —ィ効果を生じせしめることで、 前記試料を保持するとともに、 上記 試料表面の処理を実行することを特徴とする流体処理方法。
3. In a fluid treatment method for treating a surface of a sample with a fluid, a fluid selected according to a process to be performed on the sample is transferred to a sample holding surface disposed at a position facing the sample and the sample. A fluid treatment method, comprising: holding the sample by performing a Bernoulli effect between the first and second surfaces, and performing the treatment of the sample surface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7/283071 | 1995-10-31 | ||
JP28307195A JP3440655B2 (en) | 1995-10-31 | 1995-10-31 | Sample holding method, sample rotating method, sample surface fluid processing method, and their devices |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997016847A1 true WO1997016847A1 (en) | 1997-05-09 |
Family
ID=17660836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1996/003178 WO1997016847A1 (en) | 1995-10-31 | 1996-10-30 | Sample retaining method, sample rotating method, sample surface fluid treatment method and apparatuses for these methods |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3440655B2 (en) |
WO (1) | WO1997016847A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999046806A1 (en) * | 1998-03-11 | 1999-09-16 | Trusi Technologies, Llc | Article holders and holding methods |
DE19901291A1 (en) * | 1999-01-15 | 2000-08-31 | Sez Semiconduct Equip Zubehoer | Device for the etching treatment of a disc-shaped object |
US6168697B1 (en) | 1998-03-10 | 2001-01-02 | Trusi Technologies Llc | Holders suitable to hold articles during processing and article processing methods |
US6449428B2 (en) * | 1998-12-11 | 2002-09-10 | Mattson Technology Corp. | Gas driven rotating susceptor for rapid thermal processing (RTP) system |
SG93257A1 (en) * | 1999-09-09 | 2002-12-17 | Mimasu Semiconductor Ind Co | Wafer rotary holding apparatus and wafer surface treatment apparatus with waste liquid recovery mechanism |
US6638004B2 (en) | 2001-07-13 | 2003-10-28 | Tru-Si Technologies, Inc. | Article holders and article positioning methods |
US20130219693A1 (en) * | 2012-02-23 | 2013-08-29 | Beijing Sevenstar Electronics Co.,Ltd. | Device for holding disk-shaped articles and method thereof |
US10410907B2 (en) * | 2014-09-30 | 2019-09-10 | Kaneka Corporation | Sample-holding device, method for manufacturing solar cell, and method for manufacturing solar cell module |
TWI732695B (en) * | 2019-12-25 | 2021-07-01 | 日商Sumco股份有限公司 | Method of delivering semiconductor wafer to polishing device and method of manufacturing semiconductor wafer |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6374836B1 (en) * | 1997-10-22 | 2002-04-23 | Hitachi, Ltd. | Apparatus for treating plate type part with fluid |
NL1011017C2 (en) * | 1999-01-13 | 2000-07-31 | Asm Int | Device for positioning a wafer. |
JP2000260739A (en) * | 1999-03-11 | 2000-09-22 | Kokusai Electric Co Ltd | Substrate processing apparatus and substrate processing method |
JP4391655B2 (en) | 2000-02-22 | 2009-12-24 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Air tweezers |
JP3846697B2 (en) * | 2001-08-14 | 2006-11-15 | 大日本スクリーン製造株式会社 | Substrate processing equipment |
JP4043019B2 (en) * | 2002-04-26 | 2008-02-06 | 大日本スクリーン製造株式会社 | Substrate processing equipment |
JP4177068B2 (en) * | 2002-10-08 | 2008-11-05 | 葵精機株式会社 | Substrate processing apparatus and manufacturing method thereof |
US20050151282A1 (en) * | 2004-01-13 | 2005-07-14 | Harper Bruce M. | Workpiece handler and alignment assembly |
JP4544634B2 (en) * | 2006-06-02 | 2010-09-15 | 大日本スクリーン製造株式会社 | Substrate support device |
US7907289B2 (en) | 2007-09-13 | 2011-03-15 | Horiba, Ltd. | Substrate measuring stage |
JP5208666B2 (en) * | 2008-10-10 | 2013-06-12 | 大日本スクリーン製造株式会社 | Substrate processing equipment |
JP5553592B2 (en) * | 2009-12-15 | 2014-07-16 | 日本空圧システム株式会社 | Retainer |
JP5671405B2 (en) * | 2011-04-26 | 2015-02-18 | パナソニックIpマネジメント株式会社 | Substrate etching method |
JP2013030654A (en) * | 2011-07-29 | 2013-02-07 | Kimihiro Eguchi | Substrate holding mechanism, semiconductor substrate separation processing apparatus, and separation method of semiconductor substrate |
JP5006464B1 (en) * | 2011-10-25 | 2012-08-22 | ミクロ技研株式会社 | Substrate processing apparatus and substrate processing method |
JP5657039B2 (en) * | 2013-01-28 | 2015-01-21 | 株式会社日立ハイテクノロジーズ | Sample loading device |
JP6716460B2 (en) | 2014-09-30 | 2020-07-01 | 株式会社カネカ | Sample transfer system and solar cell manufacturing method |
KR101860839B1 (en) * | 2017-12-27 | 2018-05-28 | 주식회사 다이나테크 | Apparatus and method for substrate washing |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04212421A (en) * | 1990-06-15 | 1992-08-04 | Matoritsukusu:Kk | Surface treatment method and equipment of semiconductor wafer |
JPH04253332A (en) * | 1991-01-28 | 1992-09-09 | Toshiba Corp | Semiconductor wafer treating device |
-
1995
- 1995-10-31 JP JP28307195A patent/JP3440655B2/en not_active Expired - Fee Related
-
1996
- 1996-10-30 WO PCT/JP1996/003178 patent/WO1997016847A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04212421A (en) * | 1990-06-15 | 1992-08-04 | Matoritsukusu:Kk | Surface treatment method and equipment of semiconductor wafer |
JPH04253332A (en) * | 1991-01-28 | 1992-09-09 | Toshiba Corp | Semiconductor wafer treating device |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6168697B1 (en) | 1998-03-10 | 2001-01-02 | Trusi Technologies Llc | Holders suitable to hold articles during processing and article processing methods |
WO1999046806A1 (en) * | 1998-03-11 | 1999-09-16 | Trusi Technologies, Llc | Article holders and holding methods |
US6095582A (en) * | 1998-03-11 | 2000-08-01 | Trusi Technologies, Llc | Article holders and holding methods |
US6449428B2 (en) * | 1998-12-11 | 2002-09-10 | Mattson Technology Corp. | Gas driven rotating susceptor for rapid thermal processing (RTP) system |
DE19901291A1 (en) * | 1999-01-15 | 2000-08-31 | Sez Semiconduct Equip Zubehoer | Device for the etching treatment of a disc-shaped object |
DE19901291C2 (en) * | 1999-01-15 | 2002-04-18 | Sez Semiconduct Equip Zubehoer | Device for the etching treatment of a disc-shaped object |
SG93257A1 (en) * | 1999-09-09 | 2002-12-17 | Mimasu Semiconductor Ind Co | Wafer rotary holding apparatus and wafer surface treatment apparatus with waste liquid recovery mechanism |
US6638004B2 (en) | 2001-07-13 | 2003-10-28 | Tru-Si Technologies, Inc. | Article holders and article positioning methods |
US20130219693A1 (en) * | 2012-02-23 | 2013-08-29 | Beijing Sevenstar Electronics Co.,Ltd. | Device for holding disk-shaped articles and method thereof |
US9038262B2 (en) * | 2012-02-23 | 2015-05-26 | Beijing Sevenstar Electronics Co., Ltd. | Device for holding disk-shaped articles and method thereof |
US10410907B2 (en) * | 2014-09-30 | 2019-09-10 | Kaneka Corporation | Sample-holding device, method for manufacturing solar cell, and method for manufacturing solar cell module |
TWI732695B (en) * | 2019-12-25 | 2021-07-01 | 日商Sumco股份有限公司 | Method of delivering semiconductor wafer to polishing device and method of manufacturing semiconductor wafer |
Also Published As
Publication number | Publication date |
---|---|
JP3440655B2 (en) | 2003-08-25 |
JPH09129587A (en) | 1997-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1997016847A1 (en) | Sample retaining method, sample rotating method, sample surface fluid treatment method and apparatuses for these methods | |
US5979475A (en) | Specimen holding method and fluid treatment method of specimen surface and systems therefor | |
US6158446A (en) | Ultra-low particle semiconductor cleaner | |
US5932027A (en) | Cleaning and drying photoresist coated wafers | |
EP1612847B1 (en) | Cleaning apparatus | |
CN100517587C (en) | Apparatus and methods for utilizing menisci in substrate processing | |
US6874516B2 (en) | Substrate cleaning apparatus | |
US6004399A (en) | Ultra-low particle semiconductor cleaner for removal of particle contamination and residues from surface oxide formation on semiconductor wafers | |
KR101379570B1 (en) | Method and apparatus for isolated bevel edge clean | |
US20020157686A1 (en) | Process and apparatus for treating a workpiece such as a semiconductor wafer | |
EP1583136A1 (en) | Controls of ambient environment during wafer drying using proximity head | |
US20030010356A1 (en) | Single wafer megasonic cleaner method, system, and apparatus | |
JPH08264626A (en) | Sample holding method, sample surface fluid treatment method, and apparatus therefor | |
KR20040075323A (en) | Apparatus and method for single- or double- substrate processing | |
US9275849B2 (en) | Single-chamber apparatus for precision cleaning and drying of flat objects | |
US5958146A (en) | Ultra-low particle semiconductor cleaner using heated fluids | |
US20120298158A1 (en) | Microelectronic substrate cleaning systems with polyelectrolyte and associated methods | |
US6045621A (en) | Method for cleaning objects using a fluid charge | |
EP1408534B1 (en) | A method and a device for producing an adhesive surface of a substrate | |
US20050034745A1 (en) | Processing a workpiece with ozone and a halogenated additive | |
JP3329718B2 (en) | Plate-like material processing apparatus and processing equipment provided with the same | |
US20040009740A1 (en) | Method and composition for chemical polishing | |
WO2000024687A1 (en) | Method and apparatus for cleaning objects using dilute ammonium bearing solutions | |
KR20080031465A (en) | Minimum Support Method for Sloped Edges of Wafers | |
JP2002329694A (en) | Equipment and method of processing substrate, and rotating member for holding substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |