WO1997016557A1 - TREATMENT OF TUMOURS BY ADOPTIVE TRANSFER OF CD44v-SPECIFIC CYTOTOXIC T-LYMPHOCYTES - Google Patents
TREATMENT OF TUMOURS BY ADOPTIVE TRANSFER OF CD44v-SPECIFIC CYTOTOXIC T-LYMPHOCYTES Download PDFInfo
- Publication number
- WO1997016557A1 WO1997016557A1 PCT/EP1996/004688 EP9604688W WO9716557A1 WO 1997016557 A1 WO1997016557 A1 WO 1997016557A1 EP 9604688 W EP9604688 W EP 9604688W WO 9716557 A1 WO9716557 A1 WO 9716557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fusion protein
- nucleic acid
- cell
- lymphocyte
- acid molecule
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2884—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD44
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/10—Cellular immunotherapy characterised by the cell type used
- A61K40/11—T-cells, e.g. tumour infiltrating lymphocytes [TIL] or regulatory T [Treg] cells; Lymphokine-activated killer [LAK] cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/40—Cellular immunotherapy characterised by antigens that are targeted or presented by cells of the immune system
- A61K40/41—Vertebrate antigens
- A61K40/42—Cancer antigens
- A61K40/4202—Receptors, cell surface antigens or cell surface determinants
- A61K40/4223—CD44 not IgG
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the cancer treated
- A61K2239/54—Pancreas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- the invention relates to the therapy of tumors by adoptive transfer of cytotoxic T-lymphocytes which destroy tumor cells which express one or more variant epitopes of the CD44 gene on their cell surface.
- TCR T cell receptor
- lymphocytes Before you can reprogram a tumor patient's lymphocytes, a host of questions need to be answered. For example, which epitope should lymphocytes be targeted at? Another question is, which antibody affinity (of the miniantibody in the TCR fusion) is needed or is sufficient to cause the destruction of tumor cells? Because resting lymphocytes, in addition to the If the desired affinity for a tumor antigen requires sufficient signal transmission to the nucleus to achieve expansion and, more importantly, its differentiation into CTLs, it must also be clarified whether the genetically produced fusion proteins can signal at all or can provide signals of sufficient strength to sufficiently activate primary 5 peripheral lymphocytes.
- the tumor antigen CD44 represents a family of surface molecules with extreme variability, which is generated by alternative splicing (11-15). Metastatic tumors from animals and humans often express certain CD44 isoforms. In particular, epitopes encoded by exon v6 appear to be correlated with tumor progression and poor prognosis (11, 16-19). In the rat, the 1.1ASML antibody, which is specific for a v6-encoded epitope, interferes with the metastatic spread of pancreatic cancer (20).
- the present invention relates to a fusion protein containing a first
- the first portion preferably contains a variable domain of an antibody which is specific for variant CD44 (CD44v).
- the domain can be provided in the form of a single chain antibody molecule (scFv) in which the variable region of the light chain (VL) and the variable region of the heavy chain (VH) of the antibody are linked to one another via a flexible linking region.
- scFv single chain antibody molecule
- the CD44v-specific portion of the fusion protein can also advantageously be traced back to a human or humanized antibody molecule.
- Preferred forms are those in which the antibody portion of the fusion protein has a specific affinity for an amino acid sequence encoded by the variable exon v5 and / or v6.
- a specific affinity for an epitope in the amino acid sequence KWFENEWQGKNPPT (rat) or QWFGNRWHEGYRQT (human) is very particularly preferred.
- An advantageous way of carrying out the invention is to construct a
- 35 fusion protein the antibody portion of which contains an amino acid sequence as shown in Figure IB.
- a fusion protein the first portion of which is derived from the antibody VFF-18, which is secreted by a hybridoma cell line which was sold on June 7, 1994 under the file number DSM ACC2174 to the DSM-Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg lb, D-38124 Braunschweig, Germany.
- This antibody is specific for an epitope within the amino acid sequence QWFGNRWHEGYRQT.
- a preferred embodiment of the present invention is a fusion protein, in which the first portion, which has a specific affinity for an amino acid sequence encoded by a variant exon of the CD44 gene, with the ⁇ subunit of the T cell receptor or a Part or fragment of this subunit is linked.
- the part or the fragment of the ⁇ subunit can advantageously contain the cytoplasmic domain and / or the transmembrane domain of the ⁇ subunit.
- the fusion protein instead of the extracellular domain of the ⁇ subunit, can then have the first portion which has a specific affinity for an amino acid sequence which is encoded by one or more variable exon (s) of the CD44 gene , contain.
- the first and the second part can be linked to one another via a hinge region, e.g. the hinge region of CD8 ⁇ .
- the present invention also relates to a fusion protein, as described above, for pharmaceutical use.
- nucleic acid molecule which codes for a fusion protein as described above.
- a nucleic acid molecule can advantageously be an expression vector which contains the coding information for such a fusion protein.
- the sequence coding for the fusion protein is arranged in such an expression vector in such a way that it is functionally related to one or more regulatory sequences, so that with the aid of this expression vector the fusion protein can be found in a suitable host cell, e.g. a eukaryotic culture cell, or else, particularly preferably, can be expressed in a lymphocyte.
- the invention further relates to a host cell which contains a nucleic acid molecule or an expression vector as described in the preceding paragraph.
- Another object of the invention is a method for producing a fusion protein as described above, which is characterized in that a host cell into which a corresponding vector has been introduced is cultivated and the fusion protein formed is isolated.
- Another object of the present invention is a T lymphocyte which expresses a fusion protein as described above.
- the fusion protein is inserted into the cell membrane of this T lymphocyte and the portion with the specific CD44v affinity is exposed to the outside.
- Another object of the invention is such a T lymphocyte for pharmaceutical use.
- the use for the treatment of cancer or for the treatment and / or prophylaxis of metastatic diseases is particularly preferred. Such use is particularly advantageous when the disease is squamous cell, breast, colon, stomach or pancreatic carcinoma.
- IL-2 interleukin-2
- the invention further relates to a method for producing such a T lymphocyte, which is characterized in that a nucleic acid molecule or an expression vector is introduced into a T lymphocyte as described.
- nucleic acid molecule or expression vector for producing such a modified T lymphocyte is also the subject of the invention.
- Another object of the invention is a nucleic acid molecule or expression vector, as described above, for pharmaceutical use.
- the use for the treatment of cancer or for the treatment and / or prophylaxis of metastatic diseases is preferred.
- Such a use is particularly advantageous if the disease is a squamous cell, breast, colon, stomach, cervical or pancreatic carcinoma or a malignant lymphoma.
- such treatment can be combined with the administration of interleukin-2 (IL-2).
- IL-2 interleukin-2
- WO 95/00851 describes the production of v5- and v6-specific antibodies and of antibodies which are specific for a transition epitope which is coded jointly by exons v7 and v8.
- the first portion of the fusion protein is preferably a humanized antibody molecule or derived from a humanized antibody molecule.
- the second portion of the fusion protein preferably contains an amino acid sequence of a subunit of the human T cell receptor complex or of a human immunoglobulin receptor or a part of this subunit.
- this can be the sequence or a partial sequence of the ⁇ subunit of the human T cell receptor (51).
- Fusion proteins with v5-specific affinity in the sense of the present invention or nucleic acids which code therefor are advantageous because exon v5 is expressed in a number of cancers at a very early stage.
- V6-specific fusion proteins or nucleic acids which code therefor can be used, for example, for the treatment of squamous cell, colon, stomach, pancreatic or breast carcinomas. Treatment of squamous cell carcinoma of the head and neck area with cytotoxic T lymphocytes which express a v6-specific fusion protein on their cell surface is very particularly preferred. Fusion proteins with specificity for the transitional epitope v7 / v8 or nucleic acids that code for them are particularly advantageous for the treatment of cervical carcinomas.
- the present invention can be carried out, for example, by constructing an expression vector which allows the expression of a fusion protein in human T-lymphocytes, the first portion of this fusion protein being a single-chain antibody construct which is derived from the CD44v6-specific antibody VFF-18 is derived, and the second part of the fusion protein contains the cytoplasmic domain and the transmembrane domain of the ⁇ subunit of the human TCR, the two parts being linked via a hinge region.
- Such an expression vector can then be introduced into lymphocytes which have been obtained from the blood or tumor tissue of a tumor patient, and the lymphocytes which have been modified in this way are injected or infused back into the patient.
- lymphocytes reprogrammed according to the invention can be in the range from IO 6 to IO 12 lymphocytes per injection or infusion. Intravenous administration is preferred. Therapeutic applications can be done once or repeatedly, for example daily application on several Consecutive days.
- the therapy according to the invention can advantageously be connected to a surgical intervention, for example the removal of a solid tumor, in order to combat tumor cells remaining in the body (minimal residual disease). In this case, the lymphocytes can be obtained from the tumor tissue removed.
- IO 3 to IO 6 U / kg IL-2 can be injected once or several times parenterally, preferably intravenously or intraperitoneally, or intravenously infused to support the therapy according to the invention.
- the fusion protein showed the correct antigen specificity on the surface of the T cells.
- the reprogrammed CTL line shows a changed target cell specificity. While maintaining cytotoxic activity against the P815 mastocytoma against which it was generated, it now also destroys tumor cells expressing v6 epitope in vitro. The affinity and possibly the signal transmission via the ⁇ chain is sufficient for the destruction event in vitro.
- New specificities can be generated by exchanging scFv in the retroviral constructs.
- Fig. 1 Structure and specificity of the scFv (l.lASML): a: ⁇ construct.
- A Amino- 35 acid sequences containing the epitope of the monoclonal antibody (mAb) I.IASML. The epitope is contained in amino acids 318-331 of the CD44v4-v7 isoform of the rat (clone pMeta-1; sequence data see ref. 11). The approximate extent of the epitope was determined by competition analysis with synthetic peptides.
- B Nucleotide and deduced amino acid sequence of the scFv (l.lASML) gene.
- the sequence shows the cDNA fragment (bp 1-357) encoding the VH domain, the synthetic linker (bp 358-402) and the cDNA fragment (bp 403-735) encoding the V ⁇ domain.
- the CDRs in the deduced amino acid sequence of I. IASML VH and V ⁇ domains and the synthetic linker peptide are underlined. Sequence positions bp 736-746 are contributed by the plasmid pWW152.
- C Schematic representation of the scFv (l. LASML): ⁇ : ⁇ expression plasmid pL [scFv (l. LASML): ⁇ : ⁇ ].
- the plasmid contains the gene for the chimeric scFv (I.LASML): ⁇ : ⁇ surface receptor, which is inserted into the retroviral vector pLXSN.
- the leader sequence of the heavy immunoglobulin chain (SP), the PCR-amplified cDNA fragment VH of mAb I. IASML, a sequence which encodes the 15 amino acid linker (LINKER), the PCR-amplified cDNA fragment VK from I.IASML, a sequence which codes for the hinge region of the CD8 ⁇ chain similar to immunoglobulin (HINGE), and the cDNA for the transmembrane and cytoplasmic domain of the ⁇ chain of the T cell antigen receptor ( ⁇ ) are indicated as boxes .
- the expression of the fusion gene is transcriptionally regulated by the Moloney Murine Leukemia Virus 5'-LTR promoter.
- the neo r gene that mediates G418 resistance is encoded by the same plasmid.
- the arrows indicate the transcription start points.
- ⁇ + / gag refers to sequences of the Moloney Murine Sarcoma virus and MoMuLV genome that are required for packaging.
- Fig. 2 Expression of scFv (l.lASML): ⁇ : ⁇ in cytotoxic T lymphocytes.
- scFv ⁇ in cytotoxic T lymphocytes.
- Cell lysate NP-40 lysis buffer: 1% NP-40, 150 mM NaCl, 50 mM Tris-HCl, pH 8.0, 1 mM PMSF, 10 mM iodoacetamide, 80 ⁇ g / ml aprotinin, 50 ⁇ g / ml leupeptin, 4 ⁇ g / ml pepstatin
- NP-40 lysis buffer 1% NP-40, 150 mM NaCl, 50 mM Tris-HCl, pH 8.0, 1 mM PMSF, 10 mM iodoacetamide, 80 ⁇ g / ml aprotinin, 50 ⁇ g / ml leupeptin, 4 ⁇ g / ml pepstatin
- Protein aliquots (cI96: lane 1; CAYZ.007: lane 2) were separated in a 10% SDS-PAGE under reducing conditions and subjected to a standard immunoblot analysis. An incubation with mAb H146-968 (anti- ⁇ ) was followed by an incubation with horseradish-peroxidase-conjugated second reagent (P260, DAKO, Hamburg, Germany), which reacted with HI 46-968.
- B Cell surface localization of scFv (l. LASML): ⁇ : ⁇ in infected cytotoxic T cells.
- Biotinylated proteins were visualized with horseradish-peroxidase-conjugated streptavidin.
- C Specific binding of scFv (l. LASML): ⁇ : ⁇ to rat CD44 splice variants that carry v6 epitope. 5 x IO 7 CAYZ.007 cells were lysed in NP-40 lysis buffer. Nuclear-free supernatants were pre-clarified with glutathione agarose and then incubated with GST # CD44v4-v7 (lane 2).
- GST # CD44v4-v7 is a bacterially expressed fusion protein consisting of the S.
- Fig. 3 Targeted of cells by scFv (l ⁇ ASML): a: ⁇ expressing CTLs.
- A CAYZ.007 and parent cI96 cells were examined for their cytolytic activity against different target cells in a 6-hour LDH release test.
- BSp73 AS 14 is a transfected rat pancreatic carcinoma cell line which expresses the CD44v4-v7 isoform of the rat in large quantities;
- NIH3T3 # CD44v4-v7 are infected murine fibroblasts that express rat CD44v4-v7.
- the specific LDH release (in percent) is plotted against the E / T ratio (effector / target cell ratio).
- Fig. 4 Adoptive immunotherapy of BSp73AS14 tumor-bearing mice.
- the tumor size was added to the determined times.
- the average tumor volume is plotted against time (in days). Treatment was stopped after 7 days of injection. Values are mean values ⁇ SD. The differences in tumor volume that were observed were statistically significant (Student's t test, p ⁇ 0.025).
- Fig. 5 Enhanced anti-tumor activity of CAYZ.007 in the presence of IL-2.
- BSp73 variant ASpSVMetal-14 (BSp73AS14) and the hybridoma cell line (11) producing the mAb I. IASML (gamma 1 / kappa) were cultivated in RPMI 1640 medium (Life Technologies, Gaithersburg, MD, USA), which was fetal Calf serum was supplemented (Life Technologies, Gaithersburg, MD, USA).
- Clone 96 (cI96) is a C57BL / 6 (H-2 b ) -derived permanent cytotoxic T cell line with H-2 K d -restricted specificity for P815 (H-2 d ) mastocytoma cells (26, 27).
- CI96 and its infectants e.g.
- CAYZ.007 were found in DMEM (Life Technologies, Gaithersburg, MD, USA) containing 10% fetal calf serum, 2 mM L-glutamine, 100 mM Hepes, 50 mM 2-ME and 100 U / ml of mouse rIL-2 was cultivated.
- X63Ag8-653 transfectants that secreted IL-2 (28), the retroviral packaging cell lines ⁇ E and PA317 (29, 30), their transfectants and infectants and the murine fibroblast cell line NIH3T3 and their infectants were in DMEM with 10% fetal calf serum L-glutamine, 100 mM Hepes and 50 mM 2-ME cultured.
- BALB / c nu / nu (H-2 D ) mice were from Charles River, Sulzfeld, Germany, related, kept in filter-top cages, and used for experiments at the age of 8-10 weeks.
- Hl 46-968 is a hamster IgG which is directed against the C-terminal peptide (amino acids 151-164; numbering according to reference 31) of the mouse ⁇ chain (32).
- Human rIL-2 (1.8 x 10 7 U / mg) was obtained from Chiron GmbH, Ratingen, Germany.
- Example 1 Construction of the expression plasmid scFv (l.lASML): a: ⁇ .
- the present invention involves the reprogramming of cytotoxic lymphocytes.
- cytotoxic lymphocytes In order to convey tumor cell specificity to a CTL line, a single-chain mini antibody was fused to the TCR-Kette chain and a corresponding construct was expressed in the CTL line.
- the fusion protein retained the antigen-binding specificity of the antibody.
- the system which has been used here as an example contains the monoclonal antibody I.IASML, which recognizes an epitope which is encoded by the variant exon v6 of the rat CD44 gene (the sequence which contains the epitope is) shown in Fig. IA), and a highly metastatic rat pancreatic adenocarcinoma that expresses this epitope (11).
- cDNA fragments which encode the VH and V ⁇ domains of I. IASML were isolated by reverse transcription of hybrid mRNA, followed by cDNA amplification using the polymerase chain reaction (33).
- the amplified cDNA sequences were inserted into the plasmid pWW152 (34), the I.IASML VH and V ⁇ cDNAs being arranged in such a way that they are in an open reading frame, but by a sequence which is suitable for an artificial one Linke ⁇ eptide encoded by 15 amino acids (GGGGS) 3 , separated from each other.
- Five independent clones of VH and V ⁇ cDNAs were sequenced. All VH and all V ⁇ sequences showed identical antibody domains of the variable regions (37; Fig. IB).
- the 5'-VH-left-V ⁇ -3 'design used here to assemble the antigen-determining structure of a single-chain peptide has previously been used successfully in bacterial expression (34, 38-40) . It was shown that a bacterially expressed scFv (1.1 ASML) is indeed able to recognize the v6 epitope.
- the 3 'end of the scFv (l. LASML) gene encoding the minimal antigen recognition site was fused to a truncated mouse ⁇ chain cDNA (31). It was shown that the ⁇ chain protein of the T cell antigen-receptor complex could transmit the signal, when antigen binding was mediated by the scFv fragment.
- Coding sequences located at the outer 5 'end of the fusion gene specify a signal peptide of the heavy immunoglobulin chains, which ensures efficient transport of the recombinant receptor to the cell surface.
- the fusion protein is integrated into the plasma membrane through the transmembrane region of the ⁇ chain.
- Moritz and co-workers (41, 42) have determined the need for a spacer between the scFv domain and the ⁇ chain in order to ensure the accessibility of the scFv fragment when it is expressed on the T cell surface.
- the cDNA for the hinge region of the CD8 ⁇ chain (35) was inserted between the scFv domain and the ⁇ chain cDNA.
- scFv (l. LASML): ⁇ : ⁇ is transcriptionally regulated by the Moloney Murine Leukemia Virus (MoMuLV) -5'-LTR promoter.
- MoMuLV Moloney Murine Leukemia Virus
- Fig. IC A schematic representation of the plasmid pL [scFv (l. IASML): ⁇ : ⁇ ] is shown in Fig. IC.
- RNA was derived from l. lASML hybrid cells produced. Then the first strand cDNA synthesis of the variable domain of the heavy chain (VH) and the variable domain of the light kappa chain (VK) was carried out, the oligonucleotides 5'-AGATCCAGGGGCCAGTGGATAGA-3 '(CHFOR), specifically for the Ig-gamma-1 constant region of the mouse, and 5'-GGATACAGTTGCG-GCCGCATCAGC-3 '(CKFOR), specifically for the kappa-constant region of the mouse.
- VH variable domain of the heavy chain
- VK variable domain of the light kappa chain
- CDNAs of the variable domain were amplified by PCR, the primers 5'-ATTATAAGCTTCAGGT G / CA / CAA / G CTGCAG G / C AGTC A / T GG-3 '(VHBACK) and 5 , -TGAGGAGACGGTGACCGTGGTCCCTTGGCCCCAG-3 , (VHl - FOR; 33) for VH and 5'-GACATTCAGCTGACCCAG T / A CT C / GC / AA / C / T-3 1 (VK BACK) and 5'-GTTAGATCTCCA G / AC / T TT G / T GT G / CCG / C-3 '(VKFOR) were used for VK.
- the primers contain appropriate restriction sites at their ends to allow cloning of the PCR products into the modified pBluescript KS + vector pWWl52 (Stratagene Cloning Systems, La Jolla, CA, USA; modifications described in reference 34), which allows a 15th - Amino acid linker encoded (GGGGS) 3 .
- the cDNA encoding the CD44v6-specific scFv (1.1.
- ASML was placed 3 'in a sequence coding for a leader peptide of a heavy chain of an immunoglobulin and then ligated to the cDNA which corresponds to the CD8 ⁇ hinge region (amino acids 105-163; numbering according to reference 35), followed by the ⁇ chain cDNA (starting with the nucleotides coding for amino acid 28; numbering according to reference 31).
- the complete construct, designated scFv (IIASML): ⁇ : ⁇ was subcloned into the retroviral vector pLXSN (36), which contains a selectable marker for G418 resistance.
- Example 2 Expression of scFv (l.lASML): a: ⁇ .
- the plasmid was introduced into the amphotropic packaging line PA317 (30). Infected clones were selected in the presence of G418 and the expression of the chimeric Kette chain was identified by Western blot analysis.
- the retroviral supernatant of a clone that produced a high titer was used to infect the murine cytotoxic T lymphocyte line cI96 (26, 27). Stable infectants (designated CAYZ.001 to 103) were selected in the presence of G418.
- Immunoblot analyzes of lysates prepared from representative clones using the anti- ⁇ mAb Hl 46-968 showed bands with apparent molecular weights of 50-70 kD (example shown in FIG. 2A, lane 2), which in lysates, that were produced from the parent cell line cI96 cannot be detected (lane 1).
- the size of the 50 kD band corresponds to the unmodified chimeric surface receptor.
- the identity of the slower migrating gangs has not been investigated. They could represent N-glycosylated products (41).
- An N-glycosylation consensus motif (NST) is in the CD8 ⁇ hinge region.
- the endogenous ⁇ chain is detected as a band of 16 kD apparent molecular weight in lysates from both infected and parent CTLs (Fig. 2A, lanes 1 and 2). Comparable results were obtained with various infected cell lines. Clone CAYZ.007 was used for further studies. The correct membrane insertion of scFv (l. LASML): ⁇ : ⁇ in the clone CAYZ.007 CTLs was confirmed by surface biotinylation followed by immunoprecipitation (Fig. 2B). Bands of 50 kD and 70 kD apparent molecular weight are only observed after biotinylation of infected cells (lane 1), but not of parent cells (lane 3).
- the detailed procedure was as follows.
- the vector construct pL [scFv (l. L-ASML): ⁇ : ⁇ ] SN was converted into the corresponding retrovirus by standard calcium phosphate transfection of the helper virus-free ectopic packaging cell line ⁇ E (29).
- Transfectants were selected for stable integration of proviral DNA in the presence of the neomycin analog G418 sulfate (G418, Geniticin, Life Technologies, Gaithersburg, MD, USA) at a concentration of 1 mg / ml.
- Retroviral supernatants from pools of stably transfected producers were supplemented with Polybren TM (1,5-dimethyl-1,5-diazaundecamethylene polymethobromide or hexadimethrin bromide, Sigma, Deisenhofen, Germany) at a final concentration of 8 ⁇ g / ml and used, to infect the helper virus free packaging cell line PA317 (30).
- Infected clones were selected in medium containing G418 (1 mg / ml).
- Retroviral titers of cell culture supernatants from these packaging cell lines (in the order of 10 5 CFU / ml) were determined by infection of NIH3T3 cells and counting of the G418-resistant clones.
- Example 3 Specificity scFv (l.lASML): a: ⁇ .
- scFv l. LASML
- ⁇ ⁇ for the rat CD44 epitope encoded by exon v6 was determined by incubating cell lysates with bacterially expressed glutathione (S) transferase (GST) fusion protein, which v6 epitope contains (GST # CD44-v4-v7), followed by precipitation of the immune complexes with glutathione-agarose.
- S glutathione
- GST glutathione transferase
- GST # -CD44v4-v7 is produced by inserting exon v4-v7 sequences from rat CD44 (nucleotide positions 753-1246; numbering according to reference 11) into the singular Smal site of the bacterial expression vector pGEX2T (Pharmacia Biotech, Uppsala, Sweden) .
- Western blot analysis of GST # CD44v4-v7 precipitates under reducing conditions using the ⁇ chain specific mAb Hl 46-968 showed bands of 50-70 kD apparent molecular weight (Fig. 2C, lane 2), which were in size correspond to the chimeric receptor and its post-translational modification product. These bands do not occur in immunoprecipitations carried out with GST (lane 1) or glutathione agarose alone (lane 3).
- the affinity for bacterially expressed v6 epitope could also be demonstrated with an ELISA.
- Example 4 Lytic activity of infected CTLs.
- rat pancreatic carcinoma cells (BSp73AS14) were mixed with CTLs and the cell lysis was determined in a standard LDH release test (Fig.3A).
- NTH3T3 # CD44v4-v7 cells express the v6 epitope on their cell surface and are effectively destroyed by CAYZ.007 infectants (Fig. 3A). No cell lysis was detected when the parent NIH3T3 fibroblasts were used as target cells for CAYZ.007 CTLs, or when NTH3T3 # CD44v4-v7 cells were incubated with the parent cI96 CTLs.
- the cytotoxicity test was carried out in detail as follows. The cytotoxicity of CTLs against various target cells was measured using a non-radioactive cytotoxicity test (CytoTox96 TM, Promega, Madison, WI, USA) in accordance with the manufacturer's instructions. The test is based on the colorimetric quantification of stable cytosolic lactate dehydrogenase enzyme (LDH), which is released into the culture medium after T cell lysis. Different amounts of effector lymphocytes were added to IO 4 target cells in 0.1 ml phenol red-free medium in 96-well microtiter plates with a U-bottom and incubated for 6 hours in a water-saturated atmosphere at 5% CO2.
- LDH lactate dehydrogenase enzyme
- Example 5 Efficient inhibition of tumor growth by CTLs expressing chimeric scFv: a: ⁇ protein in vivo.
- the reprogrammed CTLs not only destroy target tumor cells in vitro, but also act in vivo. Interference with tumor growth in vivo was examined by subcutaneously injecting rat BSp73AS14 tumor cells into athymic nude BALB / c mice and growing the tumors to a size of 20-50 mm 3 were. Then either PBS, parenteral cI96 CTLs or genetically modified CTLs (over a period of 7 days with 3 x IO 7 cells per animal and day) were injected intravenously daily. In the control animals that received PBS injections, the tumor volume doubled every 2.5 days (Fig. 4). Iv injections from parental cI96 CTLs did not affect tumor growth (Fig. 4).
- Interleukin-2 is the most important growth factor for cytotoxic T-lymphocytes. CI96 and its infectants survive and proliferate in cell culture only in the presence of IL-2. We therefore investigated whether systemic administration of IL-2 would increase the anti-tumor effect of CAYZ.007. Nude mice carrying 20-50 mm 3 BSP73AS14 tumors received daily iv injections of 3 x IO 7 CAYZ.007 in combination with ip injections of 10 4 U human rIL-2. (CAYZ.007 poliferate in cell culture in the presence of human rIL-2). Control animals received either iv injections of PBS or only ip injections of IO 4 U human rlL-2.
- scFv l. LASML
- ⁇ ⁇ expressing CTLs in the presence of IL-2. While the average tumor volume in the two control groups increased more than 25-fold in one week, the tumors in the animals treated with CAYZ.007 hardly increased twice in the same time. Systemic administration of BL-2 itself has no growth suppressive effect on BSP73AS14 tumors.
- glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: 13-24.
- Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals 0 at least 12 altematively spliced exons. Proc. Natl. Acad Be. USA 89: 12160-12164.
- B3 (Fv) -PE38KDEL a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc. Natl. Acad. Be. U.S.A. 88: 8616-8620.
- MOLECULE TYPE Other nucleic acid
- DESCRIPTION: / desc "PCR Primer”
- CAG AAG CCA GGC CAG TCT CCG AAG CTC CTG ATC TAC AAA GTT TCC AAC 576 Gin Lys Pro Gly Gin Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
Tumortherapie durch adoptiven Transfer CD44v-spezifischer zytotoxischer T-LymphozytenTumor therapy through adoptive transfer of CD44v-specific cytotoxic T lymphocytes
Die Erfindung betrifft die Therapie von Tumoren durch adoptiven Transfer zytotoxi¬ scher T-Lymphozyten, die Tumorzellen zerstören, die ein oder mehrere Variante Epitope des CD44-Gens auf ihrer Zelloberfläche exprimieren.The invention relates to the therapy of tumors by adoptive transfer of cytotoxic T-lymphocytes which destroy tumor cells which express one or more variant epitopes of the CD44 gene on their cell surface.
Die Bekämpfung multipler (metastatischer) solider Tumoren stellt gegenwärtig ein kritisches Problem in der Krebstherapie dar. Viele Laboratorien und Kliniken richten ihre Versuche darauf, die Immunabwehr gegen die Tumoren wiederzubeleben. Solche Versuche gründen auf der Annahme, daß Reaktivität gegen Tumorantigene existiert, aber ineffektiv geworden ist. Expansion und Reinjektion von tumorinfiltrierenden Lymphozyten, Verabrei¬ chung fehlender Komponenten wie Zytokine oder kostimulatorische Oberflächenmoleküle, oder Verbesserung der Tumorantigenpräsentation sind experimentelle Ansätze, von denen angenommen wird, daß sie zur Tumorzerstörung fuhren (1-6).Combating multiple (metastatic) solid tumors is currently a critical problem in cancer therapy. Many laboratories and clinics are attempting to revive the immune defense against the tumors. Such attempts are based on the assumption that reactivity to tumor antigens exists but has become ineffective. Expansion and reinjection of tumor infiltrating lymphocytes, administration of missing components such as cytokines or costimulatory surface molecules, or improvement in tumor antigen presentation are experimental approaches which are believed to lead to tumor destruction (1-6).
In einem alternativen Ansatz, anti-Tumor-Immunreaktionen zu mobilisieren, werden Lymphozyten dazu gebracht, unabhängig von ihrer TCR-Spezifität (TCR = T-Zell-Rezep- tor) Tumorzellen zu zerstören. Als eine Möglichkeit, dies zu erreichen, wurden bispezifische Antikörper erzeugt, die eine Affinität sowohl für Lymphozytenoberfachenmoleküle als auch Tumorantigen haben, und von denen angenommen wird, daß sie Lymphozyten in Kontakt mit Tumorzellen bringen (7,8). Weil jedoch Antikörper nur schlecht in solide Tumoren ein¬ dringen können (9), wäre es als eine weitere Möglichkeit wünschenswert, die Tumorspezifi- tat auf Lymphozyten zu übertragen, die Zellen, die natürlicherweise in Gewebe eindringen und antigenspezifische Zytolyse ausüben können. Fusionen von Strukturen, die Spezifitat determinieren, z.B. ein Antiköφerminigen, mit Komponenten des TCR-Komplexes sind deshalb vorgeschlagen worden (10). Die zentrale Rolle der ζ-Untereinheit des TCR-Kom¬ plexes für die Signalübertragung wurde kürzlich erkannt, wobei chimäre Rezeptoren ver- wendet wurden, die aus der zytoplasmatischen Domäne der ζ-Kette und der extrazellulären und transmembranen Domäne von anderen Proteinen bestanden (21-25).In an alternative approach to mobilizing anti-tumor immune responses, lymphocytes are made to destroy tumor cells regardless of their TCR specificity (TCR = T cell receptor). As one way to accomplish this, bispecific antibodies have been generated that have affinity for both lymphocyte leader molecules and tumor antigen and are believed to bring lymphocytes into contact with tumor cells (7,8). However, because antibodies can only penetrate solid tumors poorly (9), it would be desirable as a further possibility to transfer the tumor specificity to lymphocytes, the cells that naturally penetrate into tissue and can carry out antigen-specific cytolysis. Mergers of structures that determine specificity, e.g. an antibody-minimigen, with components of the TCR complex have therefore been proposed (10). The central role of the ζ subunit of the TCR complex for signal transmission has recently been recognized, using chimeric receptors consisting of the cytoplasmic domain of the ζ chain and the extracellular and transmembrane domain of other proteins (21- 25).
Bevor man in der Lage ist, Lymphozyten eines Tumorpatienten zu reprogrammieren, muß eine Fülle von Fragen geklärt werden. Zum Beispiel, auf welches Epitop sollen die Lymphozyten gerichtet werden? Eine weitere Frage ist, welche Antikörperaffinität (des Miniantikörpers in der TCR-Fusion) wird gebraucht oder ist ausreichend, um die Zerstö¬ rung von Tumorzellen zu bewirken? Weil ruhende Lymphozyten, zusätzlich zu der ge- wünschten Affinität für ein Tumorantigen, eine ausreichende Signalübertragung in den Kern benötigen, um eine Expansion zu erreichen sowie, noch wichtiger, ihre Differenzierung in CTLs, muß ferner geklärt werden, ob die genetisch erzeugten Fusionsproteine überhaupt signalisieren oder Signale von genügender Stärke zur Verfügung stellen können, um primäre 5 periphere Lymphozyten ausreichend zu aktivieren.Before you can reprogram a tumor patient's lymphocytes, a host of questions need to be answered. For example, which epitope should lymphocytes be targeted at? Another question is, which antibody affinity (of the miniantibody in the TCR fusion) is needed or is sufficient to cause the destruction of tumor cells? Because resting lymphocytes, in addition to the If the desired affinity for a tumor antigen requires sufficient signal transmission to the nucleus to achieve expansion and, more importantly, its differentiation into CTLs, it must also be clarified whether the genetically produced fusion proteins can signal at all or can provide signals of sufficient strength to sufficiently activate primary 5 peripheral lymphocytes.
Das Tumorantigen CD44 stellt eine Familie von Oberflächenmolekülen mit extremer Variabilität dar, die durch alternatives Spleißen erzeugt wird (11-15). Metastatische Tumo¬ ren aus Tier und Mensch exprimieren oft bestimmte CD44-Isoformen. Insbesondere schei- w nen Epitope, die durch das Exon v6 kodiert werden, mit Tumorprogression und schlechter Prognose korreliert zu sein (11, 16-19). In der Ratte interferiert der Antikörper 1.1ASML, der für ein v6-kodiertes Epitop spezifisch ist, mit der metastatischen Ausbreitung von Pan- kreaskarzinomen (20).The tumor antigen CD44 represents a family of surface molecules with extreme variability, which is generated by alternative splicing (11-15). Metastatic tumors from animals and humans often express certain CD44 isoforms. In particular, epitopes encoded by exon v6 appear to be correlated with tumor progression and poor prognosis (11, 16-19). In the rat, the 1.1ASML antibody, which is specific for a v6-encoded epitope, interferes with the metastatic spread of pancreatic cancer (20).
is Die Aufgabe, deren Lösung der Gegenstand der vorliegenden Erfindung ist, war dieis The task, the solution of which is the subject of the present invention was
Bereitstellung verbesserter Verfahren zur adoptiven Immuntherapie von Tumoren sowie von Mitteln für solche Verfahren.Providing improved methods for adoptive immunotherapy of tumors and means for such methods.
Gegenstand der vorliegenden Erfindung ist ein Fusionsprotein, enthaltend einen erstenThe present invention relates to a fusion protein containing a first
20 Anteil, der eine spezifische Affinität für eine Aminosäuresequenz hat, die durch ein variantes Exon des CD44-Gens kodiert wird, und einen zweiten Anteil, der die Aminosauresequenz einer Untereinheit des T-Zell-Rezeptorkomplexes oder eines Immunglobulinrezeptors oder eines Teils dieser Untereinheit enthält. Bevorzugt enthält der erste Anteil eine variable Domäne eines Antikörpers, der für variantes CD44 (CD44v) spezifisch ist. Eine solche20 portions that have a specific affinity for an amino acid sequence encoded by a variant exon of the CD44 gene, and a second portion that contains the amino acid sequence of a subunit of the T cell receptor complex or an immunoglobulin receptor or a part of this subunit. The first portion preferably contains a variable domain of an antibody which is specific for variant CD44 (CD44v). Such
25 Domäne kann in Form eines einkettigen Antikörpermoleküls (scFv) bereitgestellt werden, in dem die variable Region der leichten Kette (VL) und die variable Region der schweren Kette (VH) des Antikörpers über eine flexible Verknüpfungsregion miteinander verknüpft sind. Der CD44v-spezifische Anteil des Fusionsproteins kann auch vorteilhaft auf ein huma¬ nes oder humanisiertes Antikörpermolekül zurückgehen. Insbesondere sind Ausführungs-The domain can be provided in the form of a single chain antibody molecule (scFv) in which the variable region of the light chain (VL) and the variable region of the heavy chain (VH) of the antibody are linked to one another via a flexible linking region. The CD44v-specific portion of the fusion protein can also advantageously be traced back to a human or humanized antibody molecule. In particular,
30 formen bevorzugt, bei denen der Antikörperanteil des Fusionsproteins eine spezifische Affinität für eine Aminosäuresequenz hat, die vom variablen Exon v5 und/oder v6 kodiert wird. Ganz besonders bevorzugt ist dabei eine spezifische Affinität für ein Epitop in der Aminosäuresequenz KWFENEWQGKNPPT (Ratte) oder QWFGNRWHEGYRQT (Mensch). Ein vorteilhafter Weg der Ausführung der Erfindung ist die Konstruktion einesPreferred forms are those in which the antibody portion of the fusion protein has a specific affinity for an amino acid sequence encoded by the variable exon v5 and / or v6. A specific affinity for an epitope in the amino acid sequence KWFENEWQGKNPPT (rat) or QWFGNRWHEGYRQT (human) is very particularly preferred. An advantageous way of carrying out the invention is to construct a
35 Fusionsproteins, dessen Antikörperanteil eine Aminosäuresequenz gemäß Abbildung IB enthält. Besonders bevorzugt ist ferner ein Fusionsprotein, dessen erster Anteil von dem Antikörper VFF-18 abgeleitet ist, der von einer Hybridomazellinie sezerniert wird, die am 07.06.1994 unter dem Aktenzeichen DSM ACC2174 bei der DSM-Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg lb, D-38124 Braunschweig, Deutschland, hinterlegt wurde. Dieser Antikörper ist für ein Epitop innerhalb der Aminosau¬ resequenz QWFGNRWHEGYRQT spezifisch.35 fusion protein, the antibody portion of which contains an amino acid sequence as shown in Figure IB. Also particularly preferred is a fusion protein, the first portion of which is derived from the antibody VFF-18, which is secreted by a hybridoma cell line which was sold on June 7, 1994 under the file number DSM ACC2174 to the DSM-Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg lb, D-38124 Braunschweig, Germany. This antibody is specific for an epitope within the amino acid sequence QWFGNRWHEGYRQT.
Eine bevorzugte Ausführungsform der vorliegenden Erfindung ist ein Fusionsprotein, bei dem der erste Anteil, der eine spezifische Affinität für eine Aminosäuresequenz hat, die durch ein variantes Exon des CD44-Gens kodiert wird, mit der ζ-Untereinheit des T-Zell- Rezeptors oder einem Teil bzw. Fragment dieser Untereinheit verknüpft ist. Vorteilhaft kann der Teil bzw. das Fragment der ζ-Untereinheit die zytoplasmatische Domäne und/oder die Transmembrandomäne der ζ-Untereinheit enthalten. Statt der extrazellulären Domäne der ζ-Untereinheit kann das Fusionsprotein in einer solchen Ausführungsform dann den er¬ sten Anteil, der eine spezifische Affinität für eine Aminosäuresequenz hat, die durch ein oder mehrere variable(s) Exon(s) des CD44-Gens kodiert wird, enthalten. In einer weiteren Ausführungsform können der erste und der zweite Anteil über eine Scharnierregion (hinge) miteinander verknüpft sein, z.B. die Scharnierregion von CD8α. Ebenfalls Gegenstand der vorliegenden Erfindung ist ein Fusionsprotein, wie es zuvor beschrieben wurde, zur phar¬ mazeutischen Verwendung.A preferred embodiment of the present invention is a fusion protein, in which the first portion, which has a specific affinity for an amino acid sequence encoded by a variant exon of the CD44 gene, with the ζ subunit of the T cell receptor or a Part or fragment of this subunit is linked. The part or the fragment of the ζ subunit can advantageously contain the cytoplasmic domain and / or the transmembrane domain of the ζ subunit. In such an embodiment, instead of the extracellular domain of the ζ subunit, the fusion protein can then have the first portion which has a specific affinity for an amino acid sequence which is encoded by one or more variable exon (s) of the CD44 gene , contain. In a further embodiment, the first and the second part can be linked to one another via a hinge region, e.g. the hinge region of CD8α. The present invention also relates to a fusion protein, as described above, for pharmaceutical use.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Nukleinsäuremolekul, das für ein Fusionsprotein, wie es oben beschrieben wurde, kodiert. Vorteilhaft kann ein solches Nukleinsäuremolekul ein Expressionsvektor sein, der die kodierende Information für ein solches Fusionsprotein enthält. Typischerweise ist in einem solchen Expressionsvektor die für das Fusionsprotein kodierende Sequenz so angeordnet, daß sie in fünktionellem Zusam¬ menhang mit einer oder mehreren regulatorischen Sequenzen steht, sodaß mit Hilfe dieses Expressionsvektors das Fusionsprotein in einer geeigneten Wirtszelle, z.B. einer eukaryoti- schen Kulturzelle, oder aber auch, besonders bevorzugt, in einem Lymphozyten exprimiert werden kann.Another object of the present invention is a nucleic acid molecule which codes for a fusion protein as described above. Such a nucleic acid molecule can advantageously be an expression vector which contains the coding information for such a fusion protein. Typically, the sequence coding for the fusion protein is arranged in such an expression vector in such a way that it is functionally related to one or more regulatory sequences, so that with the aid of this expression vector the fusion protein can be found in a suitable host cell, e.g. a eukaryotic culture cell, or else, particularly preferably, can be expressed in a lymphocyte.
Entsprechend ist ein weiterer Gegenstand der Erfindung eine Wirtszelle, die ein Nu- kleinsäuremolekül oder einen Expressionsvektor, wie sie im vorhergehenden Absatz be¬ schrieben wurden, enthält.Accordingly, the invention further relates to a host cell which contains a nucleic acid molecule or an expression vector as described in the preceding paragraph.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Fu¬ sionsproteins, wie es oben beschrieben wurde, das dadurch gekennzeichnet ist, daß eine Wirtszelle, in die ein entsprechender Vektor eingebracht wurde, kultiviert und das gebildete Fusionsprotein isoliert wird. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein T-Lymphozyt, der ein Fusionsprotein, wie es oben beschrieben wird, exprimiert. Vorzugsweise wird dabei das Fusionsprotein in die Zellmembran dieses T-Lymphozyten inseriert und dabei der Anteil mit der spezifischen CD44v-Affinität nach außen exponiert. Ein weiterer Gegenstand der Erfin- dung ist ein solcher T-Lymphozyt zur pharmazeutischen Verwendung. Besonders bevorzugt ist dabei die Verwendung zur Behandlung von Krebs- bzw. zur Behandlung und/oder Pro¬ phylaxe metastatischer Erkrankungen. Besonders vorteilhaft ist eine solche Verwendung, wenn es sich bei der Erkrankung um ein Plattenepithel-, Mamma-, Kolon-, Magen- oder Pankreaskarzinom handelt. Insbesondere kann eine solche Behandlung mit der Verabrei- chung von Interleukin-2 (IL-2) kombiniert werden.Another object of the invention is a method for producing a fusion protein as described above, which is characterized in that a host cell into which a corresponding vector has been introduced is cultivated and the fusion protein formed is isolated. Another object of the present invention is a T lymphocyte which expresses a fusion protein as described above. Preferably, the fusion protein is inserted into the cell membrane of this T lymphocyte and the portion with the specific CD44v affinity is exposed to the outside. Another object of the invention is such a T lymphocyte for pharmaceutical use. The use for the treatment of cancer or for the treatment and / or prophylaxis of metastatic diseases is particularly preferred. Such use is particularly advantageous when the disease is squamous cell, breast, colon, stomach or pancreatic carcinoma. In particular, such treatment can be combined with the administration of interleukin-2 (IL-2).
Ferner ist ein Verfahren zur Herstellung eines solchen T-Lymphozyten Gegenstand der Erfindung, das dadurch gekennzeichnet ist, daß ein Nukleinsäuremolekul oder ein Ex¬ pressionsvektor wie beschrieben in einen T-Lymphozyten eingeführt wird.The invention further relates to a method for producing such a T lymphocyte, which is characterized in that a nucleic acid molecule or an expression vector is introduced into a T lymphocyte as described.
Entsprechend ist auch die Verwendung eines solchen Nukleinsäuremoleküls bzw. Ex¬ pressionsvektors zur Herstellung eines derart veränderten T-Lymphozyten Gegenstand der Erfindung.Accordingly, the use of such a nucleic acid molecule or expression vector for producing such a modified T lymphocyte is also the subject of the invention.
Ein weiterer Gegenstand der Erfindung ist ein Nukleinsäuremolekul oder Expres¬ sionsvektor, wie er zuvor beschrieben wurde, zur pharmazeutischen Verwendung. Bevor¬ zugt ist dabei die Verwendung zur Behandlung von Krebs- bzw. zur Behandlung und/oder Prophylaxe metastatischer Erkrankungen. Besonders vorteilhaft ist eine solche Verwen¬ dung, wenn es sich bei der Erkrankung um ein Plattenepithel-, Mamma-, Kolon-, Magen-, Zervix- oder Pankreaskarzinom oder um ein malignes Lymphom handelt. Insbesondere kann eine solche Behandlung mit der Verabreichung von Interleukin-2 (IL-2) kombiniert werden.Another object of the invention is a nucleic acid molecule or expression vector, as described above, for pharmaceutical use. The use for the treatment of cancer or for the treatment and / or prophylaxis of metastatic diseases is preferred. Such a use is particularly advantageous if the disease is a squamous cell, breast, colon, stomach, cervical or pancreatic carcinoma or a malignant lymphoma. In particular, such treatment can be combined with the administration of interleukin-2 (IL-2).
Die vorliegende Erfindung kann wie in den Beispielen beschrieben oder, in Kenntnis der technischen Lehre dieser Beschreibung, mit Hilfe an sich bekannter Methoden ausge- führt werden. Die Herstellung von Antikörpermolekülen, die für Variante Epitope von CD44 spezifisch sind, ist im Stand der Technik beschrieben. Neben den bereits genannten Litera¬ turstellen sei hier noch auf die WO 91/17248, WO 95/00851, WO 95/04547 und PCT/EP9502126 verwiesen, auf die hiermit vollinhaltlich Bezug genommen wird. Insbeson¬ dere die WO 95/00851 beschreibt die Herstellung v5- und v6-spezifischer Antikörper sowie von Antikörpern, die für ein Übergangsepitop spezifisch sind, das von den Exons v7 und v8 gemeinsam kodiert wird. Verfahren zur Klonierung der variablen Regionen solcher Anti¬ körper und zur Herstellung abgeleiteter Antikörpermoleküle, z.B. chimärer, humanisierter oder einkettiger Antikörpermoleküle, sind ebenfalls im Stand der Technik bekannt. Hier seien zusätzlich zu den bereits genannten Referenzen die EP 0239400, EP 0519596, EP 0368684, EP 0438310, WO 92/07075 und die WO 92/22653 genannt. Für die Anwendung der erfindungsgemäßen Lehre in der Therapie und Prophylaxe menschlicher Krebserkran¬ kungen ist der erste Anteil des Fusionsproteins bevorzugt ein humanisiertes Antikörper- molekül oder von einem humanisierten Antikörpermolekül abgeleitet.The present invention can be carried out as described in the examples or, with knowledge of the technical teaching of this description, using methods known per se. The production of antibody molecules which are specific for variant epitopes of CD44 is described in the prior art. In addition to the literature points already mentioned, reference is also made here to WO 91/17248, WO 95/00851, WO 95/04547 and PCT / EP9502126, to which reference is hereby made in full. In particular, WO 95/00851 describes the production of v5- and v6-specific antibodies and of antibodies which are specific for a transition epitope which is coded jointly by exons v7 and v8. Methods for cloning the variable regions of such antibodies and for producing derived antibody molecules, for example chimeric, humanized or single-chain antibody molecules, are also known in the prior art. Here In addition to the references already mentioned, EP 0239400, EP 0519596, EP 0368684, EP 0438310, WO 92/07075 and WO 92/22653 may be mentioned. For the application of the teaching according to the invention in the therapy and prophylaxis of human cancer diseases, the first portion of the fusion protein is preferably a humanized antibody molecule or derived from a humanized antibody molecule.
Der zweite Anteil des Fusionsproteins enthält bei der Anwendung der erfindungsge¬ mäßen Lehre in der Therapie und Prophylaxe menschlicher Erkrankungen bevorzugt eine Aminosäuresequenz einer Untereinheit des humanen T-Zell-Rezeptorkomplexes oder eines humanen Immunglobulinrezeptors oder eines Teils dieser Untereinheit. Insbesondere kann dies die Sequenz oder eine Teilsequenz der ζ-Untereinheit des humanen T-Zell-Rezeptors sein (51).When the teaching according to the invention is used in the therapy and prophylaxis of human diseases, the second portion of the fusion protein preferably contains an amino acid sequence of a subunit of the human T cell receptor complex or of a human immunoglobulin receptor or a part of this subunit. In particular, this can be the sequence or a partial sequence of the ζ subunit of the human T cell receptor (51).
Fusionsproteine mit v5-spezifischer Affinität im Sinne der vorliegenden Erfindung bzw. Nukleinsäuren, die dafür kodieren, sind deshalb vorteilhaft, weil das Exon v5 in einer Reihe von Krebserkrankungen bereits in einem sehr frühen Stadium exprimiert wird. V6- spezifische Fusionsproteine bzw. Nukleinsäuren, die dafür kodieren, können beispielsweise zur Behandlung von Plattenepithel-, Kolon-, Magen-, Pankreas- oder Mammakarzinomen eingesetzt werden. Ganz besonders bevorzugt ist die Behandlung von Plattenepithelkarzi- nomen des Kopf- und Halsbereiches mit zytotoxischen T-Lymphozyten, die ein v6-spezifi- sches Fusionsprotein auf ihrer Zelloberfläche exprimieren. Fusionsproteine mit Spezifitat für das Übergangsepitop v7/v8 bzw. Nukleinsäuren, die dafür kodieren, sind insbesondere zur Behandlung von Zervixkarzinomen von Vorteil.Fusion proteins with v5-specific affinity in the sense of the present invention or nucleic acids which code therefor are advantageous because exon v5 is expressed in a number of cancers at a very early stage. V6-specific fusion proteins or nucleic acids which code therefor can be used, for example, for the treatment of squamous cell, colon, stomach, pancreatic or breast carcinomas. Treatment of squamous cell carcinoma of the head and neck area with cytotoxic T lymphocytes which express a v6-specific fusion protein on their cell surface is very particularly preferred. Fusion proteins with specificity for the transitional epitope v7 / v8 or nucleic acids that code for them are particularly advantageous for the treatment of cervical carcinomas.
Die vorliegende Erfindung kann beispielsweise ausgeführt werden, indem ein Expres¬ sionsvektor konstruiert wird, der die Expression eines Fusionsproteins in humanen T-Lym¬ phozyten erlaubt, wobei der erste Anteil dieses Fusionsproteins ein einkettiges Antikörper- konstrukt ist, das sich vom CD44v6-spezifischen Antikörper VFF-18 ableitet, und der zwei¬ te Teil des Fusionsproteins die zytoplasmatische Domäne und die Transmembrandomäne der ζ-Untereinheit des humanen TCR enthält, wobei die beiden Anteile über eine Scharnier¬ region verknüpft sind. Ein solcher Expressionsvektor kann dann in Lymphozyten einge¬ bracht werden, die aus dem Blut oder Tumorgewebe eines Tumorpatienten gewonnen wur¬ den, und die so veränderten Lymphozyten zurück in den Patienten injiziert oder infundiert werden. Verfahren zur Gewinnung und Expansion solcher Lymphozyten sind im Stand der Technik bekannt (52, 53, 2, 48). Therapeutische Dosen der erfindungsgemäß reprogram¬ mierten Lymphozyten können im Bereich von IO6 bis IO12 Lymphozyten pro Injektion oder Infusion liegen. Intravenöse Verabreichung ist bevorzugt. Therapeutische Applikationen können einmalig oder wiederholt erfolgen, beispielsweise tägliche Appükation an mehreren aufeinanderfolgend enTagen. Die erfindungsgemäße Therapie kann vorteilhaft an einen chir¬ urgischen Eingriff, etwa die Entfernung eines soliden Tumors, angeschlossen werden, um im Köφer verbleibende Tumorzellen (minimal residual disease) zu bekämpfen. Die Lympho¬ zyten können in diesem Fall aus dem entnommenen Tumorgewebe gewonnen werden. Be- 5 sonders vorteilhaft können zur Unterstützung der erfindungsgemäßen Therapie IO3 bis IO6 U/kg IL-2, bevorzugt IO4 bis IO5 U/kg, einmalig oder mehrmals parenteral, bevorzugt in¬ travenös oder intraperitoneal injiziert oder intravenös infundiert werden.The present invention can be carried out, for example, by constructing an expression vector which allows the expression of a fusion protein in human T-lymphocytes, the first portion of this fusion protein being a single-chain antibody construct which is derived from the CD44v6-specific antibody VFF-18 is derived, and the second part of the fusion protein contains the cytoplasmic domain and the transmembrane domain of the ζ subunit of the human TCR, the two parts being linked via a hinge region. Such an expression vector can then be introduced into lymphocytes which have been obtained from the blood or tumor tissue of a tumor patient, and the lymphocytes which have been modified in this way are injected or infused back into the patient. Methods for obtaining and expanding such lymphocytes are known in the prior art (52, 53, 2, 48). Therapeutic doses of the lymphocytes reprogrammed according to the invention can be in the range from IO 6 to IO 12 lymphocytes per injection or infusion. Intravenous administration is preferred. Therapeutic applications can be done once or repeatedly, for example daily application on several Consecutive days. The therapy according to the invention can advantageously be connected to a surgical intervention, for example the removal of a solid tumor, in order to combat tumor cells remaining in the body (minimal residual disease). In this case, the lymphocytes can be obtained from the tumor tissue removed. Particularly advantageously, IO 3 to IO 6 U / kg IL-2, preferably IO 4 to IO 5 U / kg, can be injected once or several times parenterally, preferably intravenously or intraperitoneally, or intravenously infused to support the therapy according to the invention.
Der in den Beispielen beschriebene retrovirale Transfer des scFv:α:ζ-Fusionskon- w struktes führte zur Oberflächenexpression des Proteins. Auf der Oberfläche der T-Zellen zeigte das Fusionsprotein die korrekte Antigenspezifität. Die reprogrammierte CTL-Linie zeigt eine veränderte Zielzellspezifität. Während sie zytotoxische Aktivität gegenüber dem P815-Mastozytom, gegen welches sie erzeugt wurde, beibehält, zerstört sie nun zusätzlich v6-Epitop exprimierende Tumorzellen in vitro. Die Affinität und möglicherweise die Sig- n nalübertragung über die ζ-Kette reicht für das Zerstörungsereignis in vitro aus. Dies ist in Übereinstimmung mit vergleichbaren Versuchen, bei denen andere Antigene und entweder die ζ-Kette oder die homologe γ-Kette des hochaffinen FcεRI als Fusionspartner für die scFv Fragmente verwendet wurde (10, 41, 42, 47-49). In der Maus führen die reprogram¬ mierten CTLs zu einer signifikanten Verzögerung des Tumorwachstums von Xenotrans- 20 plantaten.The retroviral transfer of the scFv: α: ζ fusion construct described in the examples led to the surface expression of the protein. The fusion protein showed the correct antigen specificity on the surface of the T cells. The reprogrammed CTL line shows a changed target cell specificity. While maintaining cytotoxic activity against the P815 mastocytoma against which it was generated, it now also destroys tumor cells expressing v6 epitope in vitro. The affinity and possibly the signal transmission via the ζ chain is sufficient for the destruction event in vitro. This is in agreement with comparable experiments in which other antigens and either the ζ chain or the homologous γ chain of the high-affinity FcεRI were used as fusion partners for the scFv fragments (10, 41, 42, 47-49). In the mouse, the reprogrammed CTLs lead to a significant delay in the tumor growth of xenotransplants.
In Kenntnis der nachstehenden Beispiele ist es möglich, antigenselektive CTLs mit anderen Spezifitäten zu erzeugen, insbesondere für CD44-Epitope, die von humanen Zer- vixkarzinomen oder von Mamma- oder kolorektalen Karzinomen gebildet werden (16-18,Knowing the examples below, it is possible to generate antigen-selective CTLs with other specificities, especially for CD44 epitopes that are formed by human cervical carcinomas or by breast or colorectal carcinomas (16-18,
25 44, 50). Neue Spezifitäten können durch scFv-Austausch in den retroviralen Konstrukten erzeugt werden.25 44, 50). New specificities can be generated by exchanging scFv in the retroviral constructs.
3030
Beschreibung der AbbildungenDescription of the pictures
Abb. 1: Struktur und Spezifitat des scFv(l.lASML):a:ζ-Konstruktes. (A) Amino- 35 Säuresequenzen, die das Epitop des monoklonalen Antikörpers (mAk) I.IASML enthalten. Das Epitop ist in den Aminosäuren 318-331 der CD44v4-v7-Isoform der Ratte enthalten (Klon pMeta-1; Sequenzdaten siehe Ref. 11). Die ungefähre Ausdehnung des Epitops wur¬ de durch Kompetitionsanalyse mit synthetischen Peptiden bestimmt. (B) Nukleotid- und abgeleitete Aminosäuresequenz des scFv(l.lASML)-Gens. Die Sequenz zeigt das cDNA- Fragment (bp 1 - 357), das die VH-Domäne kodiert, den synthetischen Linker (bp 358 - 402), und das cDNA-Fragment (bp 403 - 735), das die Vκ-Domäne kodiert. Die CDRs in der abgeleiteten Aminosäuresequenz der I . IASML VH und Vκ-Domänen und des syntheti- sehen Linkerpeptides sind unterstrichen. Die Sequenzpositionen bp 736-746 werden durch das Plasmid pWW152 beigetragen. (C) Schematische Darstellung des scFv(l. lASML):α:ζ- Expressionsplasmides pL[scFv(l. lASML):α:ζ]. Das Plasmid enthält das Gen für den chimären scFv(l.lASML):α:ζ-Oberflächenrezeptor, der in den retroviralen Vektor pLXSN inseriert ist. Die Leadersequenz der schweren Immunglobulinkette (SP), das PCR-amplifi- zierte cDNA-Fragment VH des mAk I. IASML, eine Sequenz, die den 15 Aminosäure-Lin¬ ker kodiert (LINKER), das PCR-amplifizierte cDNA-Fragment VK von I.IASML, eine Se¬ quenz, die für die immunglobulinähnliche Scharnierregion der CD8α-Kette kodiert (HINGE), und die cDNA für die Transmembran- und zytoplasmatische Domäne der ζ-Kette des T-Zell-Antigenrezeptors (ζ) sind als Kästen angezeigt. Die Expression des Fusionsgens wird durch den Moloney-Murine-Leukemia-Virus-5'-LTR-Promotor transkriptionell reguliert. Das neor-Gen, das die G418-Resistenz vermittelt, wird von dem gleichen Plasmid kodiert. Die Pfeile zeigen die Transkriptionsstartpunkte an. ψ+/gag bezieht sich auf Sequenzen des Moloney-Murine-Sarcoma- Virus- und des MoMuLV-Genoms, die für die Verpackung erforderlich sind.Fig. 1: Structure and specificity of the scFv (l.lASML): a: ζ construct. (A) Amino- 35 acid sequences containing the epitope of the monoclonal antibody (mAb) I.IASML. The epitope is contained in amino acids 318-331 of the CD44v4-v7 isoform of the rat (clone pMeta-1; sequence data see ref. 11). The approximate extent of the epitope was determined by competition analysis with synthetic peptides. (B) Nucleotide and deduced amino acid sequence of the scFv (l.lASML) gene. The sequence shows the cDNA fragment (bp 1-357) encoding the VH domain, the synthetic linker (bp 358-402) and the cDNA fragment (bp 403-735) encoding the Vκ domain. The CDRs in the deduced amino acid sequence of I. IASML VH and Vκ domains and the synthetic linker peptide are underlined. Sequence positions bp 736-746 are contributed by the plasmid pWW152. (C) Schematic representation of the scFv (l. LASML): α: ζ expression plasmid pL [scFv (l. LASML): α: ζ]. The plasmid contains the gene for the chimeric scFv (I.LASML): α: ζ surface receptor, which is inserted into the retroviral vector pLXSN. The leader sequence of the heavy immunoglobulin chain (SP), the PCR-amplified cDNA fragment VH of mAb I. IASML, a sequence which encodes the 15 amino acid linker (LINKER), the PCR-amplified cDNA fragment VK from I.IASML, a sequence which codes for the hinge region of the CD8α chain similar to immunoglobulin (HINGE), and the cDNA for the transmembrane and cytoplasmic domain of the ζ chain of the T cell antigen receptor (ζ) are indicated as boxes . The expression of the fusion gene is transcriptionally regulated by the Moloney Murine Leukemia Virus 5'-LTR promoter. The neo r gene that mediates G418 resistance is encoded by the same plasmid. The arrows indicate the transcription start points. ψ + / gag refers to sequences of the Moloney Murine Sarcoma virus and MoMuLV genome that are required for packaging.
Abb. 2: Expression von scFv(l.lASML):ά:ζin zytotoxischen T-Lymphozyten. (A)Fig. 2: Expression of scFv (l.lASML): ά: ζ in cytotoxic T lymphocytes. (A)
Expression von scFv(l.lASML):α:ζ in zytotoxischen T-Lymphozyten. Zellysate (NP-40- Lysepuffer: 1% NP-40, 150 mM NaCl, 50 mM Tris-HCl, pH 8.0, 1 mM PMSF, 10 mM Iodacetamid, 80 μg/ml Aprotinin, 50 μg/ml Leupeptin, 4 μg/ml Pepstatin) wurden aus El- tern-cI96 oder CAYZ.007 hergestellt. Protein-Aliquots (cI96: Spur 1; CAYZ.007: Spur 2) wurden in einer 10%-SDS-PAGE unter reduzierenden Bedingungen aufgetrennt und einer Standard-Immunoblotanalyse unterworfen. Einer Inkubation mit mAk H146-968 (anti-ζ) folgte eine Inkubation mit Meerrettich-Peroxidase-konjugiertem Zweitreagenz (P260, DA- KO, Hamburg, Deutschland), das mit Hl 46-968 reagierte. (B) Zelloberflächenlokalisation von scFv(l. lASML):α:ζ in infizierten zytotoxischen T-Zellen. 2 x IO7 lebensfähige CTLs (CAYZ.007: Spuren 1 und 2; cI96: Spur 3) wurden mit Sulfo-NHS-Biotin (Pierce, Rock¬ ford, IL, USA) markiert, in 1 ml NP-40-Lysepuffer lysiert und der Immunpräzipitation mit dem anti-ζ mAk H146-968 (Spuren 1 und 3) oder einem Kontroll-mAk (Spur 2) unterwor- fen. Immunkomplexe wurden durch Behandlung mit Protein-G-Agarose präzipitiert, in einer 10% SDS-PAGE unter reduzierenden Bedingungen aufgetrennt und auf eine PVDF- (Polyvinyliden-Difluorid)-Membran (Millipore Bedford, MA, USA) transferiert. Biotinylier- te Proteine wurden mit Meerrettich-Peroxidase-konjugiertem Streptavidin visualisiert. (C) Spezifische Bindung von scFv(l. lASML):α:ζ an Ratten-CD44-Spleißvarianten, die v6-Epi- top tragen. 5 x IO7 CAYZ.007-Zellen wurden in NP-40-Lysepuffer lysiert. Zellkernfreie Überstände wurden mit Glutathion-Agarose vorgeklärt und anschließend mit GST#CD44v4-v7 inkubiert (Spur 2). GST#CD44v4-v7 ist ein bakteriell exprimiertes Fu- sionsprotein, das aus der Glutathion S-Transferase aus S. japonicum und Sequenzen, die durch die Varianten Exons v4-v7 von Ratten-CD44 spezifiziert werden, besteht. Immun¬ komplexe wurden durch Behandlung mit Glutathion-Agarose präzipitiert und unter redu¬ zierenden Bedingungen in einer 10% SDS-PAGE aufgetrennt. In einer Standard-Immuno- blotanalyse wurden die ζ-Proteine durch Reaktion mit anti-ζ mAk Hl 46-968 nachgewiesen (siehe Abb. 2A). Inkubationen mit GST (anstatt GST#CD44v4-v7; Spur 3) oder mit Glutathion-Agarose allein (Spur 1) dienten als Kontrollen. Positionen und Molekularge¬ wichte von Standardproteinen sind angezeigt. Pfeile zeigen die endogene ζ-Kette oder die ζ -Chimäre an.Expression of scFv (l.lASML): α: ζ in cytotoxic T lymphocytes. Cell lysate (NP-40 lysis buffer: 1% NP-40, 150 mM NaCl, 50 mM Tris-HCl, pH 8.0, 1 mM PMSF, 10 mM iodoacetamide, 80 μg / ml aprotinin, 50 μg / ml leupeptin, 4 μg / ml pepstatin) were prepared from parent cI96 or CAYZ.007. Protein aliquots (cI96: lane 1; CAYZ.007: lane 2) were separated in a 10% SDS-PAGE under reducing conditions and subjected to a standard immunoblot analysis. An incubation with mAb H146-968 (anti-ζ) was followed by an incubation with horseradish-peroxidase-conjugated second reagent (P260, DAKO, Hamburg, Germany), which reacted with HI 46-968. (B) Cell surface localization of scFv (l. LASML): α: ζ in infected cytotoxic T cells. 2 x IO 7 viable CTLs (CAYZ.007: lanes 1 and 2; cI96: lane 3) were labeled with sulfo-NHS-biotin (Pierce, Rockford, IL, USA), lysed in 1 ml NP-40 lysis buffer and subjected to immunoprecipitation with the anti-ζ mAb H146-968 (lanes 1 and 3) or a control mAb (lane 2). Immune complexes were precipitated by treatment with protein G agarose, separated in a 10% SDS-PAGE under reducing conditions and transferred to a PVDF (polyvinylidene difluoride) membrane (Millipore Bedford, MA, USA). Biotinylated proteins were visualized with horseradish-peroxidase-conjugated streptavidin. (C) Specific binding of scFv (l. LASML): α: ζ to rat CD44 splice variants that carry v6 epitope. 5 x IO 7 CAYZ.007 cells were lysed in NP-40 lysis buffer. Nuclear-free supernatants were pre-clarified with glutathione agarose and then incubated with GST # CD44v4-v7 (lane 2). GST # CD44v4-v7 is a bacterially expressed fusion protein consisting of the S. japonicum glutathione S-transferase and sequences specified by the rat CD44 variant exons v4-v7. Immune complexes were precipitated by treatment with glutathione agarose and separated under reducing conditions in a 10% SDS-PAGE. In a standard immunoblot analysis, the ζ proteins were detected by reaction with anti-ζ mAb Hl 46-968 (see Fig. 2A). Incubations with GST (instead of GST # CD44v4-v7; lane 3) or with glutathione agarose alone (lane 1) served as controls. Positions and molecular weights of standard proteins are indicated. Arrows indicate the endogenous ζ chain or the ζ chimera.
Abb. 3: Gezielte von Zellen durch scFv(lΛASML):a:ζ exprimie- rende CTLs. (A) CAYZ.007 und Eltern-cI96-Zellen wurden auf ihre zytolytische Aktivität gegenüber verschiedenen Zielzellen in einem 6-stündigen LDH-Freisetzungstest untersucht. BSp73 AS 14 ist eine transfizierte Rattenpankreaskarzinomzellinie, die die CD44v4-v7-Iso- form der Ratte in großer Menge exprimiert; NIH3T3#CD44v4-v7 sind infizierte murine Fi- broblasten, die Ratten-CD44v4-v7 exprimieren. Die spezifische LDH-Freisetzung (in Pro¬ zenten) ist gegen das E/T- Verhältnis (Effektor/Zielzell-Verhältnis) aufgetragen. (B) Kom¬ petitive Suppression der BSp73AS14-Lyse durch mAk I. IASML. BSp73AS14-Zellen wur¬ den mit CAYZ.007-CTLs bei einem konstanten Effektor/Zielzellen- Verhältnis von 4 : 1 in der Gegenwart von steigenden Mengen des mAk I. IASML inkubiert. Ein Zytotoxizitäts- test, der in der Gegenwart eines isotypgleichen Antiköφers irrelevanter Spezifitat (anti- Gallium-Chelat; siehe Ref. 12) durchgeführt wurde, diente als Kontrolle. Die prozentspezi¬ fische LDH-Freisetzung ist gegen die Konzentration des Kompetitors aufgetragen.Fig. 3: Targeted of cells by scFv (lΛASML): a: ζ expressing CTLs. (A) CAYZ.007 and parent cI96 cells were examined for their cytolytic activity against different target cells in a 6-hour LDH release test. BSp73 AS 14 is a transfected rat pancreatic carcinoma cell line which expresses the CD44v4-v7 isoform of the rat in large quantities; NIH3T3 # CD44v4-v7 are infected murine fibroblasts that express rat CD44v4-v7. The specific LDH release (in percent) is plotted against the E / T ratio (effector / target cell ratio). (B) Competitive suppression of BSp73AS14 lysis by mAb I. IASML. BSp73AS14 cells were incubated with CAYZ.007-CTLs at a constant effector / target cell ratio of 4: 1 in the presence of increasing amounts of mAb I. IASML. A cytotoxicity test, which was carried out in the presence of an isotype-like antibody of irrelevant specificity (anti-gallium chelate; see ref. 12), served as a control. The percent specific LDH release is plotted against the concentration of the competitor.
Abb. 4: Adoptive Immuntherapie von BSp73AS14-tumortragenden Mäusen.Fig. 4: Adoptive immunotherapy of BSp73AS14 tumor-bearing mice.
Athymische BALB/c-Nacktmäuse, die palpierbare s.c. BSp73AS14-Xenotransplantate (pankreatisches Karzinom der Ratte) in einer Größe von 20-50 mm3 trugen, erhielten tägli¬ che intravenöse Injektionen von entweder 3 x IO7 cI96 (graue Säulen; mittleres Tumorvo- lumen bei Start der Behandlung: 30 mm3, n=7), 3 x IO7 CAYZ.007 (schwarze Säulen; mittleres Tumorvolumen bei Start der Behandlung: 34 mm3, n=10), oder PBS (PBS = phosphate buffered saline = isotonischer Kochsalzpuffer) (weiße Säulen; mittleres Tumor¬ volumen bei Start der Behandlung: 28 mm3, n=7). Die Tumorgröße wurde zu den angege- benen Zeiten bestimmt. Das durchschnittliche Tumorvolumen ist gegen die Zeit (in Tagen) aufgetragen. Die Behandlung wurde nach 7 Tagen Injektion beendet. Werte sind Mittel¬ werte ± SD. Die Unterschiede im Tumorvolumen, die beobachtet wurden, waren statistisch signifikant (Student's t Test, p < 0.025).Athletic BALB / c nude mice who carried palpable sc BSp73AS14 xenografts (pancreatic carcinoma of the rat) with a size of 20-50 mm 3 received daily intravenous injections of either 3 x IO 7 cI96 (gray columns; medium tumor volume lumens at the start of the treatment: 30 mm 3 , n = 7), 3 x IO 7 CAYZ.007 (black columns; average tumor volume at the start of the treatment: 34 mm 3 , n = 10), or PBS (PBS = phosphate buffered saline = isotonic saline buffer) (white columns; mean tumor volume at the start of the treatment: 28 mm 3 , n = 7). The tumor size was added to the determined times. The average tumor volume is plotted against time (in days). Treatment was stopped after 7 days of injection. Values are mean values ± SD. The differences in tumor volume that were observed were statistically significant (Student's t test, p <0.025).
Abb. 5: Verstärkte Antitumor-Aktivität von CAYZ.007 in der Gegenwart von IL-2.Fig. 5: Enhanced anti-tumor activity of CAYZ.007 in the presence of IL-2.
Athymische BALB/c-Nacktmäuse, die palpierbare s.c. BSp73AS14-Xenotransplantate (pankreatisches Karzinom der Ratte) in einer Größe von 20-50 mm3 trugen, erhielten ent- weder tägliche i.v. Injektionen von PBS (weiße Säulen; mittleres Tumorvolumen zum Be¬ ginn der Behandlung: 32 mm3, n=9), tägliche i.p. Injektionen von IO4 U humanem rEL-2 (graue Säulen; mittleres Tumorvolumen beim Beginn der Behandlung: 34 mm3, n=5) oder tägliche i.v. Injektionen von 3 x IO7 CAYZ.007 in Kombination mit i.p. Injektionen von IO4 U humanem rIL-2 (schwarze Säulen; mittleres Tumorvolumen beim Start der Behandlung: 29 mm3, n=6). Die Tumorgröße wurde zu den angegebenen Zeiten bestimmt. Das durch¬ schnittliche Tumorvolumen ist gegen die Zeit (in Tagen) aufgetragen. Werte sind Mittel¬ werte ± SD. Die Behandlung wurde nach 7 Tagen der Injektion beendet.Athletic BALB / c nude mice carrying palpable sc BSp73AS14 xenografts (pancreatic carcinoma of the rat) with a size of 20-50 mm 3 were either given daily iv injections of PBS (white columns; mean tumor volume at the beginning of the Treatment: 32 mm 3 , n = 9), daily ip injections of IO 4 U human rEL-2 (gray columns; mean tumor volume at the start of treatment: 34 mm 3 , n = 5) or daily iv injections of 3 x IO 7 CAYZ.007 in combination with ip injections of IO 4 U human rIL-2 (black columns; mean tumor volume at the start of treatment: 29 mm 3 , n = 6). The tumor size was determined at the times indicated. The average tumor volume is plotted against time (in days). Values are mean values ± SD. Treatment was stopped after 7 days of injection.
BeispieleExamples
Zellinien und TiereCell lines and animals
Die BSp73 -Variante ASpSVMetal-14 (BSp73AS14) und die den mAk I. IASML (gamma 1 /kappa) produzierende Hybridomazellinie (11) wurde in RPMI 1640 Medium (Life Technologies, Gaithersburg, MD, USA) kultiviert, das mit 10% fötalem Kälberserum supplementiert war (Life Technologies, Gaithersburg, MD, USA). Klon 96 (cI96) ist eine C57BL/6 (H-2b)-abgeleitete permanente zytotoxische T-Zellinie mit H-2 Kd-restringierter Spezifitat für P815 (H-2d) Mastozytomzellen (26, 27). CI96 und seine Infektanten (z.B. CAYZ.007) wurden in DMEM (Life Technologies, Gaithersburg, MD, USA), das mit 10% fötalem Kälberserum, 2 mM L-Glutamin, 100 mM Hepes, 50 mM 2-ME und 100 U/ml Mäuse-rIL-2 versetzt war, kultiviert. X63Ag8-653 -Transfektanten, die IL-2 sezernierten (28), die retroviralen Veφackungszellinien ΩE und PA317 (29, 30), deren Transfektanten und Infektanten und die murine Fibroblastenzellinie NIH3T3 und deren Infektanten wurden in DMEM mit 10% fötalem Kälberserum, 2 mM L-Glutamin, 100 mM Hepes und 50 mM 2-ME kultiviert. BALB/c nu/nu (H-2D)-Mäuse wurden von Charles River, Sulzfeld, Deutschland, bezogen, in Filter-top Käfigen gehalten, und für Experimente bei einem Alter von 8-10 Wochen verwendet.The BSp73 variant ASpSVMetal-14 (BSp73AS14) and the hybridoma cell line (11) producing the mAb I. IASML (gamma 1 / kappa) were cultivated in RPMI 1640 medium (Life Technologies, Gaithersburg, MD, USA), which was fetal Calf serum was supplemented (Life Technologies, Gaithersburg, MD, USA). Clone 96 (cI96) is a C57BL / 6 (H-2 b ) -derived permanent cytotoxic T cell line with H-2 K d -restricted specificity for P815 (H-2 d ) mastocytoma cells (26, 27). CI96 and its infectants (e.g. CAYZ.007) were found in DMEM (Life Technologies, Gaithersburg, MD, USA) containing 10% fetal calf serum, 2 mM L-glutamine, 100 mM Hepes, 50 mM 2-ME and 100 U / ml of mouse rIL-2 was cultivated. X63Ag8-653 transfectants that secreted IL-2 (28), the retroviral packaging cell lines ΩE and PA317 (29, 30), their transfectants and infectants and the murine fibroblast cell line NIH3T3 and their infectants were in DMEM with 10% fetal calf serum L-glutamine, 100 mM Hepes and 50 mM 2-ME cultured. BALB / c nu / nu (H-2 D ) mice were from Charles River, Sulzfeld, Germany, related, kept in filter-top cages, and used for experiments at the age of 8-10 weeks.
Antikörper und Interleukin 2Antibodies and interleukin 2
Hl 46-968 ist ein Hamster-IgG, das gegen das C-terminale Peptid (Aminosäuren 151- 164; Numerierung gemäß Referenz 31) der Maus ζ-Kette gerichtet ist (32). Humanes rIL-2 (l,8xl07 U/mg) wurde von Chiron GmbH, Ratingen, Deutschland bezogen.Hl 46-968 is a hamster IgG which is directed against the C-terminal peptide (amino acids 151-164; numbering according to reference 31) of the mouse ζ chain (32). Human rIL-2 (1.8 x 10 7 U / mg) was obtained from Chiron GmbH, Ratingen, Germany.
Beispiel 1: Konstruktion des Expressionsplasmides scFv(l.lASML):a:ζ.Example 1: Construction of the expression plasmid scFv (l.lASML): a: ζ.
Die vorliegende Erfindung, mit der metastasierende Tumoren zerstört werden können, beeinhaltet die Reprogrammierung von zytotoxischen Lymphozyten. Um einer CTL-Linie Tumorzellspezifität zu vermitteln, wurde ein einkettiger Miniantiköφer an die TCR-ζ-Kette fusioniert und ein entsprechendes Konstrukt in der CTL-Linie exprimiert. Das Fusionsprote¬ in behielt dabei die antigenbindende Spezifitat des Antiköφers. Das System, das hier exem- plarisch verwendet wurde, enthält den monoklonalen Antiköφer I.IASML, der ein Epitop erkennt, das von dem Varianten Exon v6 des CD44-Gens der Ratte kodiert wird (Die Se¬ quenz, die das Epitop enthält, ist in Abb. IA gezeigt), und ein hochmetastatisches Ratten- pankreas-Adenokarzinom, das dieses Epitop exprimiert (11). cDNA-Fragmente, die die VH- und Vκ-Domänen von I. IASML kodieren, wurden durch reverse Transkription von Hybri- doma-mRNA, gefolgt von cDNA-Amplifizierung unter Verwendung der Polymerase-Ket¬ tenreaktion (33) isoliert. Die amplifizierten cDNA-Sequenzen wurden in das Plasmid pWW152 (34) inseriert, wobei die I.IASML VH- und Vκ-cDNAs so angeordnet sind, daß sie sich in einem offenen Leserahmen befinden, aber durch eine Sequenz, die für ein künstli¬ ches Linkeφeptid von 15 Aminosäuren kodiert (GGGGS)3, voneinander getrennt sind. Fünf unabhängige Klone jeweils von VH- und Vκ-cDNAs wurden sequenziert. Alle VH- und alle Vκ-Sequenzen zeigten identische Antiköφerdomänen der variablen Regionen (37; Abb. IB). Das 5'-VH-linker-Vκ-3'-Design, das hier verwendet wurde, um die Antigen-determinie- rende Struktur eines einkettigen Peptides zusammenzusetzen, wurde früher schon erfolg¬ reich in bakterieller Expression angewendet (34, 38-40). Es zeigte sich, daß ein bakteriell exprimierter scFv(l .1 ASML) in der Tat in der Lage ist, das v6-Epitop zu erkennen. Das 3'- Ende des scFv(l. lASML)-Gens, das die minimale Antigenerkennungsstelle kodiert, wurde an eine trunkierte Maus-ζ-Ketten-cDNA fusioniert (31). Es zeigte sich, daß das ζ-Ketten- Protein des T-Zell-Antigen-Rezeptorkomplexes die Signalübertragung übermitteln konnte, wenn Antigenbindung durch das scFv-Fragment vermittelt wurde. Kodierende Sequenzen, die am äußeren 5'-Ende des Fusionsgens lokalisiert sind, spezifizieren ein Signalpeptid der schweren Immunglobulinketten, wodurch ein effizienter Transport des rekombinanten Re¬ zeptors an die Zelloberfläche gewährleistet wird. Das Fusionsprotein wird in die Plasma- membran durch die Transmembranregion der ζ-Kette integriert. Moritz und Mitarbeiter (41, 42) haben das Erfordernis eines Spacers zwischen der scFv-Domäne und der ζ-Kette festgestellt, um die Zugänglichkeit des scFv-Fragments zu gewährleisten, wenn es auf der T-Zelloberfläche exprimiert wird. Entsprechend wurde die cDNA für die Scharnierregion der CD8α-Kette (35) zwischen die scFv-Domäne und die ζ-Ketten-cDNA inseriert. Das komplette chimäre Gen wurde in das retrovirale Expressionsplasmid pLXSN (36) inseriert. Die Expression von scFv(l. lASML):α:ζ wird durch den Moloney Murine Leukemia Virus (MoMuLV)-5'-LTR-Promotor transkriptionell reguliert. Eine schematische Darstellung des Plasmids pL[scFv(l .lASML):α:ζ] ist in Abb. IC gezeigt.The present invention, with which metastatic tumors can be destroyed, involves the reprogramming of cytotoxic lymphocytes. In order to convey tumor cell specificity to a CTL line, a single-chain mini antibody was fused to the TCR-Kette chain and a corresponding construct was expressed in the CTL line. The fusion protein retained the antigen-binding specificity of the antibody. The system which has been used here as an example contains the monoclonal antibody I.IASML, which recognizes an epitope which is encoded by the variant exon v6 of the rat CD44 gene (the sequence which contains the epitope is) shown in Fig. IA), and a highly metastatic rat pancreatic adenocarcinoma that expresses this epitope (11). cDNA fragments which encode the VH and Vκ domains of I. IASML were isolated by reverse transcription of hybrid mRNA, followed by cDNA amplification using the polymerase chain reaction (33). The amplified cDNA sequences were inserted into the plasmid pWW152 (34), the I.IASML VH and Vκ cDNAs being arranged in such a way that they are in an open reading frame, but by a sequence which is suitable for an artificial one Linkeφeptide encoded by 15 amino acids (GGGGS) 3 , separated from each other. Five independent clones of VH and Vκ cDNAs were sequenced. All VH and all Vκ sequences showed identical antibody domains of the variable regions (37; Fig. IB). The 5'-VH-left-Vκ-3 'design used here to assemble the antigen-determining structure of a single-chain peptide has previously been used successfully in bacterial expression (34, 38-40) . It was shown that a bacterially expressed scFv (1.1 ASML) is indeed able to recognize the v6 epitope. The 3 'end of the scFv (l. LASML) gene encoding the minimal antigen recognition site was fused to a truncated mouse ζ chain cDNA (31). It was shown that the ζ chain protein of the T cell antigen-receptor complex could transmit the signal, when antigen binding was mediated by the scFv fragment. Coding sequences located at the outer 5 'end of the fusion gene specify a signal peptide of the heavy immunoglobulin chains, which ensures efficient transport of the recombinant receptor to the cell surface. The fusion protein is integrated into the plasma membrane through the transmembrane region of the ζ chain. Moritz and co-workers (41, 42) have determined the need for a spacer between the scFv domain and the ζ chain in order to ensure the accessibility of the scFv fragment when it is expressed on the T cell surface. Correspondingly, the cDNA for the hinge region of the CD8α chain (35) was inserted between the scFv domain and the ζ chain cDNA. The complete chimeric gene was inserted into the retroviral expression plasmid pLXSN (36). The expression of scFv (l. LASML): α: ζ is transcriptionally regulated by the Moloney Murine Leukemia Virus (MoMuLV) -5'-LTR promoter. A schematic representation of the plasmid pL [scFv (l. IASML): α: ζ] is shown in Fig. IC.
Im einzelnen wurde wie folgt vorgegangen. Gesamt-RNA wurde aus l. lASML-Hy- bridomazellen hergestellt. Dann wurde die Erststrang-cDNA- Synthese der variablen Domä¬ ne der schweren Kette (VH) und der variable Domäne der leichten kappa-Kette (VK) ausge¬ führt, wobei die Oligonukleotide 5'-AGATCCAGGGGCCAGTGGATAGA-3' (CHFOR), spezifisch für die Ig-gamma-1 -konstante Region der Maus, und 5'-GGATACAGTTGCG- GCCGCATCAGC-3' (CKFOR), spezifisch für die kappa-konstante Region der Maus, einge¬ setzt wurden. CDNAs der variablen Domäne wurden mit PCR amplifiziert, wobei die Pri¬ mer 5'-ATTATAAGCTTCAGGT G/C A/C A A/G CTGCAG G/C AGTC A/T GG-3' (VHBACK) sowie 5,-TGAGGAGACGGTGACCGTGGTCCCTTGGCCCCAG-3, (VHl- FOR; 33) für VH und 5'-GACATTCAGCTGACCCAG T/A CT C/G C/A A/C/T-31 (VK BACK) sowie 5'-GTTAGATCTCCA G/A C/T TT G/T GT G/C C G/C-3' (VKFOR) für VK benutzt wurden. Die Primer enthalten passende Restriktionsschnittstellen an ihren Enden, um eine Klonierung der PCR-Produkte in den modifizierten pBluescript KS+- Vektor pWWl52 (Stratagene Cloning Systems, La Jolla, CA, USA; Modifikationen beschrieben in der Referenz 34) zu gestatten, der einen 15-Aminosäure-Linker kodiert (GGGGS)3. Die cDNA, die den CD44v6-spezifischen scFv( 1.1. ASML) kodiert, wurde 3' einer für ein Lea- der-Peptid einer schwere Kette eines Immunglobulins kodierenden Sequenz plaziert und anschließend an die cDNA ligiert, die für die CD8α-Scharnierregion (Aminosäuren 105- 163; Numerierung gemäß Referenz 35) kodiert, gefolgt von der ζ-Ketten-cDNA (beginnend mit den Nukleotiden, die für Aminosäure 28 kodieren; Numerierung entsprechend Referenz 31). Das komplette Konstrukt, bezeichnet mit scFv(l.l.ASML):α:ζ, wurde in den retrovira¬ len Vektor pLXSN (36) subkloniert, der einen selektierbaren Marker für G418-Resistenz enthält. Beispiel 2: Expression von scFv(l.lASML):a:ζ.The detailed procedure was as follows. Total RNA was derived from l. lASML hybrid cells produced. Then the first strand cDNA synthesis of the variable domain of the heavy chain (VH) and the variable domain of the light kappa chain (VK) was carried out, the oligonucleotides 5'-AGATCCAGGGGCCAGTGGATAGA-3 '(CHFOR), specifically for the Ig-gamma-1 constant region of the mouse, and 5'-GGATACAGTTGCG-GCCGCATCAGC-3 '(CKFOR), specifically for the kappa-constant region of the mouse. CDNAs of the variable domain were amplified by PCR, the primers 5'-ATTATAAGCTTCAGGT G / CA / CAA / G CTGCAG G / C AGTC A / T GG-3 '(VHBACK) and 5 , -TGAGGAGACGGTGACCGTGGTCCCTTGGCCCCAG-3 , (VHl - FOR; 33) for VH and 5'-GACATTCAGCTGACCCAG T / A CT C / GC / AA / C / T-3 1 (VK BACK) and 5'-GTTAGATCTCCA G / AC / T TT G / T GT G / CCG / C-3 '(VKFOR) were used for VK. The primers contain appropriate restriction sites at their ends to allow cloning of the PCR products into the modified pBluescript KS + vector pWWl52 (Stratagene Cloning Systems, La Jolla, CA, USA; modifications described in reference 34), which allows a 15th - Amino acid linker encoded (GGGGS) 3 . The cDNA encoding the CD44v6-specific scFv (1.1. ASML) was placed 3 'in a sequence coding for a leader peptide of a heavy chain of an immunoglobulin and then ligated to the cDNA which corresponds to the CD8α hinge region (amino acids 105-163; numbering according to reference 35), followed by the ζ chain cDNA (starting with the nucleotides coding for amino acid 28; numbering according to reference 31). The complete construct, designated scFv (IIASML): α: ζ, was subcloned into the retroviral vector pLXSN (36), which contains a selectable marker for G418 resistance. Example 2: Expression of scFv (l.lASML): a: ζ.
Um retrovirale Partikel aus dem retroviralen Expressionsvektor pL[scFv(l .1 ASML):α :ζ] zu produzieren, wurde das Plasmid in die amphotrope Veφackungslinie PA317 (30) eingeführt. Infizierte Klone wurden in der Gegenwart von G418 selektioniert und die Ex¬ pression der chimären ζ-Kette durch Western-Blot-Analyse identifiziert. Der retrovirale Überstand eines Klones, der einen hohen Titer produzierte, wurde benutzt, um die murine zytotoxische T-Lymphozytenlinie cI96 (26, 27) zu infizieren. Stabile Infektanten (bezeichnet mit CAYZ.001 bis 103) wurden in der Gegenwart von G418 selektiert. Immu- noblotanalysen von aus repräsentativen Klonen hergestellten Lysaten, bei denen der anti-ζ mAk Hl 46-968 benutzt wurde, ergaben Banden mit scheinbaren Molekulargewichten von 50-70 kD (Beispiel gezeigt in Abb. 2A, Spur 2), die in Lysaten, die aus der Elternzellinie cI96 hergestellt wurden, nicht detektierbar sind (Spur 1). Die 50-kD-Bande korrespondiert in der Größe mit dem unmodifizierten chimären Oberflächenrezeptor. Die Identität der lang- samer wandernden Banden wurde nicht untersucht. Sie könnten N-glykosylierte Produkte repräsentieren (41). Ein N-Glykosylierungs-Konsensus-Motiv (NST) befindet sich in der CD8α Scharnierregion. Die endogene ζ-Kette wird als eine Bande von 16 kD scheinbarem Molekulargewicht in Lysaten sowohl von infizierten als auch von Eltern-CTLs detektiert (Abb. 2A, Spur 1 und 2). Vergleichbare Resultate wurden mit verschiedenen infizierten Zel- linien erhalten. Klon CAYZ.007 wurde für weitere Studien verwendet. Die korrekte Mem- braninsertion von scFv(l. lASML):α:ζ im Klon CAYZ.007 CTLs wurde durch Oberflä- chenbiotinylierung, gefolgt von Immunpräzipitation, bestätigt (Abb. 2B). Banden von 50 kD und 70 kD scheinbarem Molekulargewicht werden nur nach Biotinylierung von infizierten Zellen (Spur 1), nicht aber von Elternzellen (Spur 3) beobachtet.In order to produce retroviral particles from the retroviral expression vector pL [scFv (l .1 ASML): α: ζ], the plasmid was introduced into the amphotropic packaging line PA317 (30). Infected clones were selected in the presence of G418 and the expression of the chimeric Kette chain was identified by Western blot analysis. The retroviral supernatant of a clone that produced a high titer was used to infect the murine cytotoxic T lymphocyte line cI96 (26, 27). Stable infectants (designated CAYZ.001 to 103) were selected in the presence of G418. Immunoblot analyzes of lysates prepared from representative clones using the anti-ζ mAb Hl 46-968 showed bands with apparent molecular weights of 50-70 kD (example shown in FIG. 2A, lane 2), which in lysates, that were produced from the parent cell line cI96 cannot be detected (lane 1). The size of the 50 kD band corresponds to the unmodified chimeric surface receptor. The identity of the slower migrating gangs has not been investigated. They could represent N-glycosylated products (41). An N-glycosylation consensus motif (NST) is in the CD8α hinge region. The endogenous ζ chain is detected as a band of 16 kD apparent molecular weight in lysates from both infected and parent CTLs (Fig. 2A, lanes 1 and 2). Comparable results were obtained with various infected cell lines. Clone CAYZ.007 was used for further studies. The correct membrane insertion of scFv (l. LASML): α: ζ in the clone CAYZ.007 CTLs was confirmed by surface biotinylation followed by immunoprecipitation (Fig. 2B). Bands of 50 kD and 70 kD apparent molecular weight are only observed after biotinylation of infected cells (lane 1), but not of parent cells (lane 3).
Im einzelnen wurde wie folgt vorgegangen. Das Vektorkonstrukt pL[scFv(l. l- ASML):α:ζ]SN wurde durch Standard-Kalziumphosphat-Transfektion der helfervirusfreien ektopischen Veφackungszellinie ΩE (29) in den korrespondierenden Retrovirus konver¬ tiert. Transfektanten wurden auf stabile Integration proviraler DNA in der Gegenwart des Neomycinanalogs G418-Sulfat (G418, Geniticin, Life Technologies, Gaithersburg, MD, USA) in einer Konzentration von 1 mg/ml selektiert. Retrovirale Überstände von Pools stabil transfizierter Produzenten wurden mit Polybren™ ( 1,5 -Dimethyl- 1,5 -diazaundecame- thylen-polymethobromid bzw. Hexadimethrinbromid, Sigma, Deisenhofen, Deutschland) bei einer Endkonzentration von 8 μg/ml supplementiert und dazu verwendet, die helfervirus- freie Veφackungszellinie PA317 (30) zu infizieren. Infizierte Klone wurden in G418-halti- gem Medium (1 mg/ml) selektiert. Retrovirale Titer von Zellkulturüberständen dieser Ver- packungszellinien (in der Größenordnung von 105 CFU/ml) wurden durch Infektion von NIH3T3-Zellen und Auszählen der G418-resistenten Klone bestimmt. Überstände dieser Produzentenlinien wurden dazu benutzt, die murine CTL-Zellinie cI96 (26, 27) in der Gegenwart von Polybren (8 μg/ml) zu infizieren. Infizierte CTL-Klone (CAYZ.#) wurden durch Wachstum in Kulturmedium, das 1 mg/ml G418 enthielt, selektiert.The detailed procedure was as follows. The vector construct pL [scFv (l. L-ASML): α: ζ] SN was converted into the corresponding retrovirus by standard calcium phosphate transfection of the helper virus-free ectopic packaging cell line ΩE (29). Transfectants were selected for stable integration of proviral DNA in the presence of the neomycin analog G418 sulfate (G418, Geniticin, Life Technologies, Gaithersburg, MD, USA) at a concentration of 1 mg / ml. Retroviral supernatants from pools of stably transfected producers were supplemented with Polybren ™ (1,5-dimethyl-1,5-diazaundecamethylene polymethobromide or hexadimethrin bromide, Sigma, Deisenhofen, Germany) at a final concentration of 8 μg / ml and used, to infect the helper virus free packaging cell line PA317 (30). Infected clones were selected in medium containing G418 (1 mg / ml). Retroviral titers of cell culture supernatants from these packaging cell lines (in the order of 10 5 CFU / ml) were determined by infection of NIH3T3 cells and counting of the G418-resistant clones. Supernatants of this Producer lines were used to infect the murine CTL cell line cI96 (26, 27) in the presence of polybrene (8 μg / ml). Infected CTL clones (CAYZ. #) Were selected by growth in culture medium containing 1 mg / ml G418.
Beispiel 3: Spezifitat scFv(l.lASML):a:ζ.Example 3: Specificity scFv (l.lASML): a: ζ.
Die Affinität von scFv (l. lASML):α:ζ für das CD44 Epitop der Ratte, das von Exon v6 kodiert wird, wurde durch Inkubation von Zellysaten mit bakteriell exprimiertem Glutathion-(S)-Tranferase (GST)-Fusionsprotein, das das v6-Epitop enthält (GST#CD44- v4-v7), gefolgt von Präzipitation der Immunkomplexe mit Glutathion-Agarose, bestimmt. GST#-CD44v4-v7 wird durch Insertion von Exon v4-v7- Sequenzen von Ratten-CD44 (Nukleotidpositionen 753-1246; Numerierung gemäß Referenz 11) in die singuläre Smal- Stelle des bakteriellen Expressionvektors pGEX2T (Pharmacia Biotech, Uppsala, Sweden) produziert. Western blot Analyse von GST#CD44v4-v7-Präzipitaten unter reduzierenden Bedingungen, wobei der ζ-Ketten spezifische mAk Hl 46-968 benutzt wurde, ergab Banden von 50-70 kD scheinbarem Molekulargewicht (Abb. 2C, Spur 2), die in Größe dem chimä¬ ren Rezeptor und seinem posttranslationalen Modifikationsprodukt entsprechen. Diese Ban- den treten in Immunpräzipitationen, die mit GST (Spur 1) oder Glutathion- Agarose allein (Spur 3) durchgeführt wurden, nicht auf. Die Affinität für bakteriell exprimiertes v6-Epitop konnte auch mit einem ELISA demonstriert werden.The affinity of scFv (l. LASML): α: ζ for the rat CD44 epitope encoded by exon v6 was determined by incubating cell lysates with bacterially expressed glutathione (S) transferase (GST) fusion protein, which v6 epitope contains (GST # CD44-v4-v7), followed by precipitation of the immune complexes with glutathione-agarose. GST # -CD44v4-v7 is produced by inserting exon v4-v7 sequences from rat CD44 (nucleotide positions 753-1246; numbering according to reference 11) into the singular Smal site of the bacterial expression vector pGEX2T (Pharmacia Biotech, Uppsala, Sweden) . Western blot analysis of GST # CD44v4-v7 precipitates under reducing conditions using the ζ chain specific mAb Hl 46-968 showed bands of 50-70 kD apparent molecular weight (Fig. 2C, lane 2), which were in size correspond to the chimeric receptor and its post-translational modification product. These bands do not occur in immunoprecipitations carried out with GST (lane 1) or glutathione agarose alone (lane 3). The affinity for bacterially expressed v6 epitope could also be demonstrated with an ELISA.
Beispiel 4: Lytische Aktivität von infizierten CTLs.Example 4: Lytic activity of infected CTLs.
Um die Spezifiität der infizierten CTLs zu untersuchen, Tumorzellen zu erkennen und zu zerstören, die das v6-Epitop auf ihrer Oberfläche exprimieren, wurden pankreatische Karzinomzellen der Ratte (BSp73AS14) mit CTLs gemischt und die Zellyse in einem Stan- dard-LDH-Freisetzungstest bestimmt (Abb. 3A). CTLs, die das chimäre scFv:α:ζ-Protein exprimierten, lysierten effizient BSp73AS14-Zielzellen. Bei einem angemessenen E/T Ver¬ hältnis wurden bis zu 100% der BSP73AS14-Zellen eliminiert. Eltern-cI96-CTLs zeigten keine zytolytische Aktivität gegenüber BSP73AS14-Zellen. Diese Spezifitat der Lyse durch retroviral infizierte CTLs wurde auch mit NTH3T3-Fibroblasten, die mit Ratten-CD44v4-v7 durch retroviralen Gentransfer transfiziert worden waren, beobachtet. NTH3T3#CD44v4-v7 Zellen exprimieren das v6-Epitop auf ihrer Zelloberfläche und werden von CAYZ.007-In- fektanten effektiv zerstört (Abb. 3A). Keine Zellyse wurde detektiert, wenn die Eltern- NIH3T3-Fibroblasten als Zielzellen für CAYZ.007-CTLs verwendet wurden, oder wenn NTH3T3#CD44v4-v7-Zellen mit den Eltern-cI96-CTLs inkubiert wurden. Um die Spezifitat der Zielzellyse durch die infizierten CTLs weiter zu bestätigen, wurden Zytotoxizitätstests in Gegenwart von variierenden Mengen spezifischer Kompetitoren durchgeführt. Bei einem konstanten E/T- Verhältnis von 4 zu 1 nahm die spezifische LDH-Freisetzung von BSP73AS14-Zellen mit der Zugabe von steigenden Mengen des mAk I . IASML (Abb. 3B) oder bakteriell exprimiertem löslichem Antigen (GST#CD44v4-v7) ab. Die Zugabe entwe¬ der eines Kontrollantiköφers von gleichem Isotyp, aber irrelevanter Spezifitat (mAk 3-9; siehe Ref. 12), oder bakteriell exprimiertem GST allein beeinflußt die LDH Freisetzung nicht.In order to investigate the specificity of the infected CTLs, to recognize and destroy tumor cells which express the v6 epitope on their surface, rat pancreatic carcinoma cells (BSp73AS14) were mixed with CTLs and the cell lysis was determined in a standard LDH release test (Fig.3A). CTLs expressing the chimeric scFv: α: ζ protein efficiently lysed BSp73AS14 target cells. With an appropriate E / T ratio, up to 100% of the BSP73AS14 cells were eliminated. Parent cI96 CTLs showed no cytolytic activity against BSP73AS14 cells. This specificity of lysis by retrovirally infected CTLs was also observed with NTH3T3 fibroblasts transfected with rat CD44v4-v7 by retroviral gene transfer. NTH3T3 # CD44v4-v7 cells express the v6 epitope on their cell surface and are effectively destroyed by CAYZ.007 infectants (Fig. 3A). No cell lysis was detected when the parent NIH3T3 fibroblasts were used as target cells for CAYZ.007 CTLs, or when NTH3T3 # CD44v4-v7 cells were incubated with the parent cI96 CTLs. In order to further confirm the specificity of the target cell lysis by the infected CTLs, cytotoxicity tests were carried out in the presence of varying amounts of specific competitors. At a constant E / T ratio of 4 to 1, the specific LDH release of BSP73AS14 cells increased with the addition of increasing amounts of mAb I. IASML (Fig. 3B) or bacterially expressed soluble antigen (GST # CD44v4-v7). The addition of either a control antibody of the same isotype, but irrelevant specificity (mAb 3-9; see ref. 12), or bacterially expressed GST alone does not influence the LDH release.
Der Zytotoxizitätstest wurde im einzelnen wie folgt durchgeführt. Die Zytotoxizität von CTLs gegen verschiedene Zielzellen wurde mit einem nichtradioaktiven Zytotoxizitäts¬ test (CytoTox96™, Promega, Madison, WI, USA) gemäß der Herstellervorschrift gemes- sen. Der Test basiert auf der kolorimetrischen Quantifizierung von stabilem zytosolischen Laktat-Dehydrogenase-Enzym (LDH), das nach T-Zellyse in das Kulturmedium freigesetzt wird. Verschiedene Mengen von Effektorlymphozyten wurden zu IO4 Zielzellen in 0.1 ml Phenolrot-freiem Medium in 96-Loch-Mikrotiteφlatten mit U-Boden zugegeben und 6 Stunden in einer wassergesättigten Atmosphäre bei 5% CO2 inkubiert. Der LDH-Gehalt wurde in 50-μl-Aliquots von zellfreiem Kulturüberstand (EXP) bestimmt. Spontane LDH- Freisetzung von Zielzellen (TSR) und maximale LDH-Freisetzung von Zielzellen (TMR) nach Lyse mit 0.8 % Triton X- 100 (100 % LDH-Freisetzung) wurden bestimmt. Die spon¬ tane LDH-Freisetzung von jeder Effektor-CTL-Konzentration, die in dem Test verwendet wurde, wurde ebenfalls gemessen (ECSR). Die Absoφtionswerte entsprechen 3fach-Be- Stimmungen und wurden um die LDH-Aktivität, die durch das Serum im Kulturmedium beigetragen wird, korrigiert. Die korrigierten Werte wurden dazu benutzt, die spezifische Lyse zu berechnen, wobei die folgende Gleichung verwendet wurde: % spezifische Lyse = (EXP-ECSR-TSR) x (TMR-TSR)"1. TSR betrug 20% von TMR oder weniger.The cytotoxicity test was carried out in detail as follows. The cytotoxicity of CTLs against various target cells was measured using a non-radioactive cytotoxicity test (CytoTox96 ™, Promega, Madison, WI, USA) in accordance with the manufacturer's instructions. The test is based on the colorimetric quantification of stable cytosolic lactate dehydrogenase enzyme (LDH), which is released into the culture medium after T cell lysis. Different amounts of effector lymphocytes were added to IO 4 target cells in 0.1 ml phenol red-free medium in 96-well microtiter plates with a U-bottom and incubated for 6 hours in a water-saturated atmosphere at 5% CO2. The LDH content was determined in 50 μl aliquots of cell-free culture supernatant (EXP). Spontaneous LDH release of target cells (TSR) and maximum LDH release of target cells (TMR) after lysis with 0.8% Triton X-100 (100% LDH release) were determined. The spontaneous LDH release of each effector CTL concentration used in the test was also measured (ECSR). The absorption values correspond to triple determinations and were corrected for the LDH activity which is contributed by the serum in the culture medium. The corrected values were used to calculate the specific lysis using the following equation:% specific lysis = (EXP-ECSR-TSR) x (TMR-TSR) "1. TSR was 20% of TMR or less.
Beispiel 5: Effiziente Inhibition des Tumorwachstums durch CTLs, die chimäres scFv:a :ζ-Protein exprimieren, in vivo.Example 5: Efficient inhibition of tumor growth by CTLs expressing chimeric scFv: a: ζ protein in vivo.
Die reprogrammierten CTLs zerstören Zieltumorzellen nicht nur in vitro, sondern wirken auch in vivo. Die Interferenz mit dem Tumorwachstum in vivo wurde untersucht, indem Ratten-BSp73AS14-Tumorzeüen athymischen nackten BALB/c-Mäusen subkutan injiziert wurden, und die Tumoren bis zu einer Größe von 20-50 mm3 wachsen gelassen wurden. Dann wurde täglich entweder PBS, parenterale cI96 CTLs oder genetisch verän¬ derte CTLs (über einen Zeitraum von 7 Tagen bei 3 x IO7 Zellen pro Tier und Tag) intra¬ venös injiziert. In den Kontrolltieren, die PBS-Injektionen erhielten, verdoppelte sich das Tumorvolumen alle 2.5 Tage (Abb. 4). I.v.-Injektionen von parentalen cI96 CTLs beein- flußte das Tumorwachstum nicht (Abb. 4). Die tägliche i.v.-Injektion von CTLs, die das scFv:α:ζ-Fusionsprotein exprimierten, verzögerte signifikant das Tumorwachstum (Abb. 4). Am Tag 13 wurde das Experiment abgebrochen. Die durchschnittliche Größe der Tumoren am Tag 13 in CAYZ.007-behandelten Tieren betrug nur 50 % derjenigen in allen Kontroll¬ gruppen. Keines der Tiere entwickelte Lymphknoten oder Lungenmetastasen zu diesem frühen Zeitpunkt der Beobachtung. Alle Behandlungen wurden von den Tieren gut toleriert, und Gewichtsverlust oder andere Zeichen systemischer Toxizität wurden nicht beobachtet. Die Unterschiede in der Tumorgröße an allen Tagen waren statistisch signifikant (Student's T Test, p < 0.025).The reprogrammed CTLs not only destroy target tumor cells in vitro, but also act in vivo. Interference with tumor growth in vivo was examined by subcutaneously injecting rat BSp73AS14 tumor cells into athymic nude BALB / c mice and growing the tumors to a size of 20-50 mm 3 were. Then either PBS, parenteral cI96 CTLs or genetically modified CTLs (over a period of 7 days with 3 x IO 7 cells per animal and day) were injected intravenously daily. In the control animals that received PBS injections, the tumor volume doubled every 2.5 days (Fig. 4). Iv injections from parental cI96 CTLs did not affect tumor growth (Fig. 4). Daily IV injection of CTLs expressing the scFv: α: ζ fusion protein significantly delayed tumor growth (Fig. 4). The experiment was stopped on day 13. The average size of the tumors on day 13 in CAYZ.007-treated animals was only 50% of those in all control groups. None of the animals developed lymph nodes or lung metastases at this early point in the observation. All treatments were well tolerated by the animals and no weight loss or other signs of systemic toxicity were observed. The differences in tumor size on all days were statistically significant (Student's T test, p <0.025).
Interleukin-2 (IL-2) ist der wichtigste Wachstumsfaktor für zytotoxische T-Lympho¬ zyten. CI96 und seine Infektanten überleben und proliferieren in Zellkultur nur in der Anwe¬ senheit von IL-2. Wir untersuchten deshalb, ob die systemische Verabreichung von IL-2 den Antitumoreffekt von CAYZ.007 verstärken würde. Nacktmäuse, die BSP73AS14-Tumoren mit einer Größe von 20-50 mm3 trugen, erhielten tägliche i.v.-Injektionen von 3 x IO7 CAYZ.007 in Kombination mit i.p.-Injektionen von 104 U menschlichem rIL-2. (CAYZ.007 poliferieren in Zellkultur in der Anwesenheit von humanem rIL-2). Kontrolltiere erhielten entweder i.v.-Injektionen von PBS oder lediglich i.p.-Injektionen von IO4 U humanem rlL- 2. Die Tiere wurden wieder für 7 Tage behandelt und das Tumorwachstum wurde durch Greifzirkelmessungen verfolgt. Die Daten, die in Abb. 5 gezeigt werden, zeigen deutlich die verstärkte Suppression des Tumorwachstums durch scFv(l. lASML):α:ζ exprimierende CTLs in der Anwesenheit von IL-2. Während das durchschnittliche Tumorvolumen in bei¬ den Kontrollgruppen in einer Woche um mehr als das 25fache zunahm, nahmen die Tumo¬ ren in den CAYZ.007-behandelten Tieren in der gleichen Zeit kaum um das doppelte zu. Die systemische Verabreichung von BL-2 selbst hat keinen wachstumssuppressiven Effekt aufBSP73AS14-Tumoren.Interleukin-2 (IL-2) is the most important growth factor for cytotoxic T-lymphocytes. CI96 and its infectants survive and proliferate in cell culture only in the presence of IL-2. We therefore investigated whether systemic administration of IL-2 would increase the anti-tumor effect of CAYZ.007. Nude mice carrying 20-50 mm 3 BSP73AS14 tumors received daily iv injections of 3 x IO 7 CAYZ.007 in combination with ip injections of 10 4 U human rIL-2. (CAYZ.007 poliferate in cell culture in the presence of human rIL-2). Control animals received either iv injections of PBS or only ip injections of IO 4 U human rlL-2. The animals were treated again for 7 days and tumor growth was monitored by caliper measurements. The data shown in Fig. 5 clearly show the increased suppression of tumor growth by scFv (l. LASML): α: ζ expressing CTLs in the presence of IL-2. While the average tumor volume in the two control groups increased more than 25-fold in one week, the tumors in the animals treated with CAYZ.007 hardly increased twice in the same time. Systemic administration of BL-2 itself has no growth suppressive effect on BSP73AS14 tumors.
Bei den Tierexperimenten wurde im einzelnen wie folgt vorgegangen. Das Wachstum von Tumoren in athymischen BALB/c-nu/nu-Mäusen wurde durch s.c. Inokulation von Tumorzellen (5 x 105 Zellen) in die mitteldorsale Region induziert. Tiere, die Tumoren in einer Größe von 20-50 mm3 trugen, wurden verschiedenen Behandlungen, wie in den Ab¬ bildungslegenden 4 und 5 beschrieben, unterworfen. Die Tumorlast wurde täglich durch Greifzirkelmessungen bestimmt. Das Tumorvolumen wurde berechnet, wobei die folgende Gleichung verwendet wurde: Tumorvolumen = 4/3 x π x r . Um unnötiges Leid zu ver- meiden, wurden die Tiere getötet, wenn die Tumoren 1.5 cm3 Größe erreicht hatten. Alle Tiere wurden auf Metastasen in Lymphknoten und Lungen untersucht.The procedure for the animal experiments was as follows. The growth of tumors in athymic BALB / c-nu / nu mice was induced by sc inoculation of tumor cells (5 x 10 5 cells) in the middle dorsal region. Animals which carried tumors in the size of 20-50 mm 3 were subjected to various treatments, as described in the figure legends 4 and 5. The tumor load was determined daily using calipers. The tumor volume was calculated using the following equation: Tumor volume = 4/3 x π xr. To avoid unnecessary suffering avoided, the animals were killed when the tumors had reached 1.5 cm 3 in size. All animals were examined for metastases in lymph nodes and lungs.
Statistische Signifikanz der Unterschiede in der Tumorgröße zwischen CAYZ.007- behandelten Tieren und Kontrollgruppen wurde gemessen, wobei der Student's t Test nach logarithmischer Transformation der Rohdaten verwendet wurde.Statistical significance of the differences in tumor size between CAYZ.007-treated animals and control groups was measured, using the Student's t test after logarithmic transformation of the raw data.
Literaturliterature
1. Rosenberg, S.A., P. Spiess, and R. Lafreniere. 1986. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233: 1318- 1320.1. Rosenberg, S.A., P. Spiess, and R. Lafreniere. 1986. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233: 1318-1320.
2. Hwu, P., J. Yannelli, M. Kriegler, W F. Anderson, C. Perez, Y. Chiang, S. Schwarz, R. Cowherd, C. Delgado, J. Mule, and S.A. Rosenberg, 1993. Functional and molecu¬ lar charactrization of tumor-infiltrating lymphocytes transduced with tumor necrosis factor-α cDNA for the gene therapy of cancer in humans, J. Immunol. 150: 4104-2. Hwu, P., J. Yannelli, M. Kriegler, W F. Anderson, C. Perez, Y. Chiang, S. Schwarz, R. Cowherd, C. Delgado, J. Mule, and S.A. Rosenberg, 1993. Functional and molecular characterization of tumor-infiltrating lymphocytes transduced with tumor necrosis factor-α cDNA for the gene therapy of cancer in humans, J. Immunol. 150: 4104-
41 15.41 15.
3. Dranoff, G., E. Jaffee, A. Lazenby, P. Golumbek, H. Levitsky, K. Brose, V. Jackson, H. Hamada, D. Pardoll, and R C. Mulligan. 1993. Vaccination with irradited tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sei. USA 90:3539-3543.3. Dranoff, G., E. Jaffee, A. Lazenby, P. Golumbek, H. Levitsky, K. Brose, V. Jackson, H. Hamada, D. Pardoll, and R C. Mulligan. 1993. Vaccination with irradited tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Be. USA 90: 3539-3543.
4. Townsend, S.E., and J.P. Allison. 1993. Tumor rejeetion after direct costimulation of CD8+T cells by B7-transfected melanoma cells. Science 259:368-370.4. Townsend, S.E., and J.P. Allison. 1993. Tumor rejeetion after direct costimulation of CD8 + T cells by B7-transfected melanoma cells. Science 259: 368-370.
5. Chen, L., S. Ashe, W.A. Brady, I. Hellstrom, K E. Hellstrom, J A. Ledbetter, P. McGowan, and P.S. Linsley. 1992. Costimulation of antitumor immunity by the B7 counterreeeptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71:1093- 1 102. 6. Porgador, A., R. Bannerji, Y. Watanabe, M. Feldman, E. Gilboa, and L. Eisenbach. 1993. Antimetastatic vaccination of tumor-bearing mice with two types of IFN-γ gene-inserted tumor cells. J. Immunol. 150: 1458-1470.5. Chen, L., S. Ashe, WA Brady, I. Hellstrom, K E. Hellstrom, J A. Ledbetter, P. McGowan, and PS Linsley. 1992. Costimulation of antitumor immunity by the B7 counterreeeptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71: 1093-1 102. 6. Porgador, A., R. Bannerji, Y. Watanabe, M. Feldman, E. Gilboa, and L. Eisenbach. 1993. Antimetastatic vaccination of tumor-bearing mice with two types of IFN-γ gene-inserted tumor cells. J. Immunol. 150: 1458-1470.
s 7. Fanger, M.W., D.M. Segal, and J.-L. Romet-Lemonne. 1991. Bispecific antibodies and targeted cellular cytotoxicity. Immunol. Today 12:51-54.s 7. Fanger, M.W., D.M. Segal, and J.-L. Romet lemon. 1991. Bispecific antibodies and targeted cellular cytotoxicity. Immunol. Today 12: 51-54.
8. Wolf, H., U. Freimann, and G. Jung, 1994. Target cell induced T cell activation with bispecific antibodies: a new concept for tumor immunotheφy. Recent Results Cancer o Res. 135:185-195.8. Wolf, H., U. Freimann, and G. Jung, 1994. Target cell induced T cell activation with bispecific antibodies: a new concept for tumor immunotheφy. Recent Results Cancer o Res. 135: 185-195.
9. Jain, R K. 1990. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 50:814s-819s.9. Jain, RK 1990. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 50: 814s-819s.
5 10. Eshhar, Z., T. Waks, G. Gross, and D.G. Schindler. 1993. Specific activation and tar- geting of cytotoxic lymphocytes through chimeric single chains consisting of antibo- dy-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell recep- tors. Proc. Natl. Acad. Sei. USA 90:720-724.5 10. Eshhar, Z., T. Waks, G. Gross, and D.G. Schindler. 1993. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receivers. Proc. Natl. Acad. Be. USA 90: 720-724.
0 1 1. Günthert, U., M. Hofmann, W. Rudy, S. Reber, M. Zöller, I. Haußmann, S. Matzku, A. Wenzel, H. Ponta, and P. Herrlich. 1991. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: 13-24.0 1 1. Günthert, U., M. Hofmann, W. Rudy, S. Reber, M. Zöller, I. Haußmann, S. Matzku, A. Wenzel, H. Ponta, and P. Herrlich. 1991. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: 13-24.
12. Arch, R., K. Wirth, M. Hofmann, H. Ponta, S. Matzku, P. Herrlich, and M. Zöller. 5 1992. Participation in normal immune responses of a splice variant of CD44 that en- codes a metastasis-inducing domain. Science 257:682-685.12. Arch, R., K. Wirth, M. Hofmann, H. Ponta, S. Matzku, P. Herrlich, and M. Zöller. 5 1992. Participation in normal immune responses of a splice variant of CD44 that encodes a metastasis-inducing domain. Science 257: 682-685.
13. Screaton, G R., M V. Bell, D.G. Jackson, F B. Cornelis, U. Gerth, and J I. Bell. 1992. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals 0 at least 12 altematively spliced exons. Proc. Natl. Acad Sei. USA 89: 12160-12164.13. Screaton, G R., M V. Bell, D.G. Jackson, F B. Cornelis, U. Gerth, and J I. Bell. 1992. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals 0 at least 12 altematively spliced exons. Proc. Natl. Acad Be. USA 89: 12160-12164.
14. Screaton, G.R., M V. Bell, J.I.Bell, and D.G. Jackson. 1993. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variant exons bet- 5 ween mouse, human, and rat. J. Biol. Chem. 268: 12235-12238.14. Screaton, G.R., M V. Bell, J.I.Bell, and D.G. Jackson. 1993. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variant exons bet- 5 ween mouse, human, and rat. J. Biol. Chem. 268: 12235-12238.
15. Tölg, C, M. Hofmann, P. Herrlich, and H. Ponta. 1993. Splicing choiee from ten va¬ riant exons establishes CD44 variability. Nucleic Acids Res. 21 :1225-1229. 16. Wielenga, V.J.M., K.-H. Heider, G.J.A. Offerhaus, G R. Adolf, F.M. van den Berg, H. Ponta, P. Herrlich, and S T. Pals. 1993. Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res. 53:4754-4756.15. Tölg, C, M. Hofmann, P. Herrlich, and H. Ponta. 1993. Splicing choiee from ten variant exons establishes CD44 variability. Nucleic Acids Res. 21: 1225-1229. 16. Wielenga, VJM, K.-H. Heider, GJA Offerhaus, G R. Adolf, FM van den Berg, H. Ponta, P. Herrlich, and S T. Pals. 1993. Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res. 53: 4754-4756.
17. Kaufmann, M., K.-H. Heider, H.-P. Sinn, G. von Minckwitz, H. Ponta, and P. Herr¬ lich. 1995. CD44 variant exon epitopes in primary breast cancer and length of survi- Lancet 345:615-619.17. Kaufmann, M., K.-H. Heider, H.-P. Sinn, G. von Minckwitz, H. Ponta, and P. Herr¬lich. 1995. CD44 variant exon epitopes in primary breast cancer and length of survi-Lancet 345: 615-619.
18. Mulder, J.-W.R., P.M. Kruyt, M. Sewnath, J. Oosting, CA. Seldenrijk, W F. Weide- ma, G.J.A. Offerhaus, and S T. Pals. 1994. Colorectal cancer prognosis and expres¬ sion of exon-v6-containing CD44 proteins. Lancet 344:1470-1472.18. Mulder, J.-W.R., P.M. Kruyt, M. Sewnath, J. Oosting, CA. Seldenrijk, W F. Weidema, G.J.A. Offerhaus, and S T. Pals. 1994. Colorectal cancer prognosis and expression of exon-v6-containing CD44 proteins. Lancet 344: 1470-1472.
19. Stauder, R., W. Eisterer, J. Thaler, and U. Günthert. 1995. CD44 variant isoforms in non-Hodgkin's lymphoma: a new independent prognostic factor. Blood 85:2885- 2899.19. Stauder, R., W. Eisterer, J. Thaler, and U. Günthert. 1995. CD44 variant isoforms in non-Hodgkin's lymphoma: a new independent prognostic factor. Blood 85: 2885-2899.
20. Seiter, S., R. -Arch, D. Komitowski, M. Hofinann, H. Ponta, P. Herrlich, S. Matzku, and M. Zöller. 1993. Prevention of tumor metastasis formation by anti-variant CD44. J. Exp. Med 177:443-455.20. Seiter, S., R. -Arch, D. Komitowski, M. Hofinann, H. Ponta, P. Herrlich, S. Matzku, and M. Zöller. 1993. Prevention of tumor metastasis formation by anti-variant CD44. J. Exp. Med 177: 443-455.
21. Irving, B.A., and A. Weiss. 1991. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64:891-901.21. Irving, B.A., and A. Weiss. 1991. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64: 891-901.
22. Letoumeur, F., and R.D. Kalusner. 1991. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor ζ family proteins. Proc. Natl. Acad Sei. USA 88:8905-8909.22. Letoumeur, F., and R.D. Kalusner. 1991. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor ζ family proteins. Proc. Natl. Acad Be. USA 88: 8905-8909.
23. Romeao, C, M. Amiot, and B. Seed. 1992. Sequence requirements for induetion of cytolysis by the T cell antigen/Fc receptor ζ chain. Cell 68:889-897.23. Romeao, C, M. Amiot, and B. Seed. 1992. Sequence requirements for induction of cytolysis by the T cell antigen / Fc receptor ζ chain. Cell 68: 889-897.
24. Romeo, C, and B. Seed. 1991. Cellular immunity to HIV by CD4 füsed to T cell or Fc receptor polypeptides. Cell 64: 1037-1046.24. Romeo, C, and B. Seed. 1991. Cellular immunity to HIV by CD4 supplemented to T cell or Fc receptor polypeptides. Cell 64: 1037-1046.
25. Vignaux, F., E. Vivier, B. Malissen, V. Depreaetere, S. Nagata, and P. Golstein. 1995. TCR/CD3 coupling to Fas-based cytotoxicity J. Exp. Med. 181 :781-786. 26. Marcucci, F., M. Waller, H. Kirchner, and P. Krammer. 1981. Production of immune interferon by murine T-cell clones from long-term cultures. Nature 291 : 79-81.25. Vignaux, F., E. Vivier, B. Malissen, V. Depreaetere, S. Nagata, and P. Golstein. 1995. TCR / CD3 coupling to Fas-based cytotoxicity J. Exp. Med. 181: 781-786. 26. Marcucci, F., M. Waller, H. Kirchner, and P. Krammer. 1981. Production of immune interferon by murine T-cell clones from long-term cultures. Nature 291: 79-81.
27. Eichmann, K., A. Ehrfeld, I. Falk, H. Goebel, J. Kupsch, A. Reimann, A. Zgaga- 5 Griesz, K.M. Saizawa, P. Yachelini, and K. Tomonari. 1991. Affinity enhancement and transmembrane signaling are associated with distinct epitopes on the CD8 αß he- terodimer. J. Immunol. 147:2075-2081.27. Eichmann, K., A. Ehrfeld, I. Falk, H. Goebel, J. Kupsch, A. Reimann, A. Zgaga- 5 Griesz, K.M. Saizawa, P. Yachelini, and K. Tomonari. 1991. Affinity enhancement and transmembrane signaling are associated with distinct epitopes on the CD8 αß heterodimer. J. Immunol. 147: 2075-2081.
28. Karasuyama, H., and F. Melchers. 1988. Establishment of mouse cell lines which con- w stitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur. J. Immunol. 18:97-104.28. Karasuyama, H., and F. Melchers. 1988. Establishment of mouse cell lines which con- stitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur. J. Immunol. 18: 97-104.
29. Morgenstern, J.P., and H. Land. 1990. Advanced mammalian gene transfer: high titer retroviral vectors with multiple drug selection markers and a complementary helper-29. Morgenstern, J.P., and H. Land. 1990. Advanced mammalian gene transfer: high titer retroviral vectors with multiple drug selection markers and a complementary helper-
15 free packaging cell line. Nucleic Acids Res. 18:3587-3596.15 free packaging cell line. Nucleic Acids Res. 18: 3587-3596.
30. Miller, A.D., and C. Buttimore. 1986. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6:2895-2902.30. Miller, A.D., and C. Buttimore. 1986. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6: 2895-2902.
20 31. Weissman, A.Am., M. Baniyash. D. Hou, L.E. Samelson, W.H. Burgess, and R D. Klausner, 1988. Molecular cloning of the zeta chain of the T cell antigen receptor. Science 239: 1018-1021.20 31. Weissman, A.Am., M. Baniyash. D. Hou, L.E. Samelson, W.H. Burgess, and R. D. Klausner, 1988. Molecular cloning of the zeta chain of the T cell antigen receptor. Science 239: 1018-1021.
32. Rozdzial, M M., RT. Kubo, S.L. Tunrer, and Th.H. Finkel. 1994. Developmental 25 regulation of the TCR ζ-chain. Differential expression and tyrosine phosphorylation of the TCR ζ-chain in resting immature and mature T lymphocytes. J. Immunol. 153:1563-1580.32. Rozdzial, M M., RT. Kubo, S.L. Tunrer, and Th.H. Finkel. 1994. Developmental 25 regulation of the TCR ζ chain. Differential expression and tyrosine phosphorylation of the TCR ζ-chain in resting immature and mature T lymphocytes. J. Immunol. 153: 1563-1580.
33. Orlandi, R., D.H. Güssow, P T. Jones, and G. Winter. 1989. Cloning immnoglobulin 30 variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad.33. Orlandi, R., D.H. Gussow, P. T. Jones, and G. Winter. 1989. Cloning immnoglobulin 30 variable domains for expression by the polymerase chain reaction. Proc. Natl. Acad.
Sei. USA 86:3833-3837.Be. USA 86: 3833-3837.
34. Weis, W., R. Beerli, P. Hellmann, M. Schmidt, B.M. Marte, E S. Komilova, A. Heke- le, J. Mendelsohn, B. Groner, and N.E. Hynes. 1995. EGF receptor and pl85erB"2-34. Weis, W., R. Beerli, P. Hellmann, M. Schmidt, BM Marte, E S. Komilova, A. Hekele, J. Mendelsohn, B. Groner, and NE Hynes. 1995. EGF receptor and pl85 erB " 2 -
35 specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins. Int. J. Cancer 60: 137-144. 35. Zamoyska, R., A.C. Vollmer, K.C. Sizer, C.W. Liaw, and J R. Parnes. 1985. Two Lyt-2 polypeptides arise from a Single gene by alternative splicing pattems of mRNA. Cell 43:153-163.35 specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins. Int. J. Cancer 60: 137-144. 35. Zamoyska, R., AC Vollmer, KC Sizer, CW Liaw, and J R. Parnes. 1985. Two Lyt-2 polypeptides arise from a single gene by alternative splicing pattems of mRNA. Cell 43: 153-163.
5 36. Miller, A.D., and G.J. Rosman. 1989. Improved retroviral vectors for gene transfer and expression. Biotechniques 7:980-990.5 36. Miller, A.D., and G.J. Rosman. 1989. Improved retroviral vectors for gene transfer and expression. Biotechniques 7: 980-990.
37. Kabat, E.A., T.T. Wu, H.M. Perry, K.S. Gottesman, and C. Foeller. 1991. Sequences of proteins of immunological interest. Fifth Edition. U.S. Dept. Health Human Servi- w ces, Washington, DC. 2597pp.37. Kabat, E.A., T.T. Wu, H.M. Perry, K.S. Gottesman, and C. Foeller. 1991. Sequences of proteins of immunological interest. Fifth Edition. U.S. Dept. Health Human Services, Washington, DC. 2597pp.
38. Huston, J.S., D. Levinson, M. Mudgett-Hunter, M.-S. Tai, J. Novotny, M.N. Margo- lies, R.J. Ridge, R E. Bruccoleri, E. Haber, R. Crea, and H. Opperman. 1988. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin is single-chain Fv analogue produced in Escherichia coli. U.S.A. 85:5879-5883.38. Huston, J.S., D. Levinson, M. Mudgett-Hunter, M.-S. Tai, J. Novotny, M.N. Margo-lies, R.J. Ridge, R. E. Bruccoleri, E. Haber, R. Crea, and H. Opperman. 1988. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin is single-chain Fv analogue produced in Escherichia coli. U.S.A. 85: 5879-5883.
39. Brinkmann, U., L.H. Pai, DJ. FitzGerald, M. Willingham, and I. Pastan. 1991. B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc. Natl. Acad. Sei. U.S.A. 88:8616-8620.39. Brinkmann, U., L.H. Pai, DJ. FitzGerald, M. Willingham, and I. Pastan. 1991. B3 (Fv) -PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc. Natl. Acad. Be. U.S.A. 88: 8616-8620.
2020th
40. Weis, W., I.-M. Harwerth, M. Mueller, B. Groner, and N.E. Hynes. 1992. Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Res. 52:6310-6317.40. Weis, W., I.-M. Harwerth, M. Mueller, B. Groner, and N.E. Hynes. 1992. Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Res. 52: 6310-6317.
25 41. Moritz, D., W. Weis, J. Mattem, and B. Groner. 1994. Cytotoxic T lymphocytes with grafted recognition speeificity for ERBB2-expressing tumor cells. Proc. Natl. Acad. Sei. USA 91 :4318-4322.25 41. Moritz, D., W. Weis, J. Mattem, and B. Groner. 1994. Cytotoxic T lymphocytes with grafted recognition speeificity for ERBB2-expressing tumor cells. Proc. Natl. Acad. Be. USA 91: 4318-4322.
42. Moritz, D., and B. Groner. 1995. A spacer region between the single-chain antobody 30 - and the CD3 ζ-chain domain of chimeric T cell receptor components is required for efficient ligand binding and singnaling activity. Gene Therapy 2: In press.42. Moritz, D., and B. Groner. 1995. A spacer region between the single-chain antobody 30 - and the CD3 ζ-chain domain of chimeric T cell receptor components is required for efficient ligand binding and singnaling activity. Gene Therapy 2: In press.
43. Bernstein, L.R., and L.A. Liotta. 1994. Molecular mediators of interactions with ex- tracellular matrix components in metastasis and angiogenesis. Curr. Opin. Oncol.43. Bernstein, L.R., and L.A. Liotta. 1994. Molecular mediators of interactions with extracellular matrix components in metastasis and angiogenesis. Curr. Opin. Oncol.
35 6: 106-1 13.35 6: 106-1 13.
44. Heider, K.-H., M. Hofmann, E. Horst, F. van den Berg, H. Ponta, P. Herrlich, and S T. Pals. 1993. A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J. Cell. Biol. 120:227- 233.44. Heider, K.-H., M. Hofmann, E. Horst, F. van den Berg, H. Ponta, P. Herrlich, and S T. Pals. 1993. A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J. Cell. Biol. 120: 227-233.
45. Fox, S B., K.C. Gatter, D.G. Jackson, G R. Screaton, M V. Bell, J.I. Bell, A.L. Har- ris, D. Simmons, and J. Fawcrett. 1993. CD44 and cancer screening. Lancet 342:548-45. Fox, S B., K.C. Gatter, D.G. Jackson, G R. Screaton, M V. Bell, J.I. Bell, A.L. Harris, D. Simmons, and J. Fawcrett. 1993. CD44 and cancer screening. Lancet 342: 548-
549.549.
46. Mackay, C.R., H.-J. Teφe, R. Stauder, W.L. Marston, H. Stark, and U. Günthert. 1994. Expression and modulation of CD44 variant isoforms in humans J. Cell Biol. 124:71-82.46. Mackay, C.R., H.-J. Teφe, R. Stauder, W.L. Marston, H. Stark, and U. Günthert. 1994. Expression and modulation of CD44 variant isoforms in humans J. Cell Biol. 124: 71-82.
47. Brocker, T., A. Peter, A. Traunecker, and K. Kaijalainen. 1993. New simplified mo¬ lecular design for fünctional T cell receptor. Eur. J. Immunol. 23:1435-1439.47.Brocker, T., A. Peter, A. Traunecker, and K. Kaijalainen. 1993. New simplified molecular design for functional T cell receptor. Eur. J. Immunol. 23: 1435-1439.
48. Hwu, P., G E. Shafer, J. Treisman, D.G. Schindler, G. Gross, R. Cowherd, S.A. Ro¬ senberg, and Z. Eshhar. 1993. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor γ chain. J. Exp. Med. 178:361-366.48. Hwu, P., G E. Shafer, J. Treisman, D.G. Schindler, G. Gross, R. Cowherd, S.A. Rosenberg, and Z. Eshhar. 1993. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor γ chain. J. Exp. Med. 178: 361-366.
49. Brocker, T., and K. Kaijalainen. 1995. Signals through the T cell receptor-ζ chain alone are insufficient to prime resting T lymphocytes. J. Exp. Med 181: 1653-1659.49. Brocker, T., and K. Kaijalainen. 1995. Signals through the T cell receptor-ζ chain alone are insufficient to prime resting T lymphocytes. J. Exp. Med 181: 1653-1659.
50. Dali, P., K.-H. Heider, A. Hekele, G. von Minckwitz, M. Kaufmann, H. Ponta, and P. Herrlich. 1994. Surface protein expression and messenger RNA-splicing analysis of CD44 in uterine cervical cancer and normal cervical epithelium. Cancer Res. 54:3337-50. Dali, P., K.-H. Heider, A. Hekele, G. von Minckwitz, M. Kaufmann, H. Ponta, and P. Herrlich. 1994. Surface protein expression and messenger RNA-splicing analysis of CD44 in uterine cervical cancer and normal cervical epithelium. Cancer Res. 54: 3337-
3341.3341.
51. Weissman, A. M., D. Hou, D, G. Orloff, W. S. Modi, H. Seuanez, S. J. OΗrien, R. D. Klausner. 1988. Molecular cloning and chromosomal localization of the human T- cell receptor ζ chain: Distinction from the molecular CD3 complex. Proc. Natl. Acad.51. Weissman, A.M., D. Hou, D, G. Orloff, W.S. Modi, H. Seuanez, S.J. OΗrien, R.D. Klausner. 1988. Molecular cloning and chromosomal localization of the human T-cell receptor ζ chain: Distinction from the molecular CD3 complex. Proc. Natl. Acad.
Sei. USA 85:9709-9713.Be. USA 85: 9709-9713.
52. Topalian SL, Muul LM, Solomon D, Rosenberg SA. 1987. Expansion of human tu¬ mor infiltrating lymphocytes for use in immunotherapy trials. J. Immunol. Methods 102: 127-141.52. Topalian SL, Muul LM, Solomon D, Rosenberg SA. 1987. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J. Immunol. Methods 102: 127-141.
53. Yanelli JR. 1991. The preparation of effector cells for use in the adoptive cellular im¬ munotherapy of human cancer. J. Immunol. Methods 139: 1-16. SEQUENZPROTOKOLL53. Yanelli JR. 1991. The preparation of effector cells for use in the adoptive cellular immunotherapy of human cancer. J. Immunol. Methods 139: 1-16. SEQUENCE LOG
(1) ALLGEMEINE ANGABEN:(1. GENERAL INFORMATION:
(i) ANMELDER:(i) APPLICANT:
(A) NAME: Boehringer Ingelheim International GmbH(A) NAME: Boehringer Ingelheim International GmbH
(B) STRASSE: Postfach 200(B) ROAD: PO Box 200
(C) ORT: Ingelheim am Rhein(C) LOCATION: Ingelheim am Rhein
(E) LAND: Germany(E) COUNTRY: Germany
(F) POSTLEITZAHL: 55216(F) POSTAL NUMBER: 55216
(G) TELEFON: +49- (0) -6132-77-2770 (H) TELEFAX: +49- (0) -6132-77-4377(G) TELEPHONE: + 49- (0) -6132-77-2770 (H) TELEFAX: + 49- (0) -6132-77-4377
(A) NAME: Forschungszentrum Karlsruhe GmbH(A) NAME: Forschungszentrum Karlsruhe GmbH
(B) STRASSE: x(B) ROAD: x
(C) ORT: Karlsruhe(C) LOCATION: Karlsruhe
(E) LAND: Deutschland(E) COUNTRY: Germany
(F) POSTLEITZAHL: 76021(F) POSTAL NUMBER: 76021
(ii) BEZEICHNUNG DER ERFINDUNG: Tumortherapie durch adoptiven Transfer CD44v-spezifischer zytotoxischer T-Lymphozyten(ii) DESCRIPTION OF THE INVENTION: Tumor therapy by adoptive transfer of CD44v-specific cytotoxic T lymphocytes
(iii) ANZAHL DER SEQUENZEN: 10(iii) NUMBER OF SEQUENCES: 10
(iv) COMPUTER-LESBARE FASSUNG:(iv) COMPUTER READABLE VERSION:
(A) DATENTRÄGER: Floppy disk(A) DISK: Floppy disk
(B) COMPUTER: IBM PC compatible(B) COMPUTER: IBM PC compatible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS(C) OPERATING SYSTEM: PC-DOS / MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPA)(D) SOFTWARE: Patentin Release # 1.0, Version # 1.30 (EPA)
(2) ANGABEN ZU SEQ ID NO: 1:(2) INFORMATION ON SEQ ID NO: 1:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 14 Aminosäuren(A) LENGTH: 14 amino acids
(B) ART: Aminosäure(B) TYPE: amino acid
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Peptid(ii) MOLECULE TYPE: Peptide
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
Lys Trp Phe Glu Asn Glu Trp Gin Gly Lys Asn Pro Pro Thr 1 5 10Lys Trp Phe Glu Asn Glu Trp Gin Gly Lys Asn Pro Pro Thr 1 5 10
(2) ANGABEN ZU SEQ ID NO: 2:(2) INFORMATION ON SEQ ID NO: 2:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 14 Aminosäuren (B) ART: Aminosäure(A) LENGTH: 14 amino acids (B) TYPE: amino acid
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Peptid(ii) MOLECULE TYPE: Peptide
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
Gin Trp Phe Gly Asn Arg Trp His Glu Gly Tyr Arg Gin Thr 1 5 10Gin Trp Phe Gly Asn Arg Trp His Glu Gly Tyr Arg Gin Thr 1 5 10
(2) ANGABEN ZU SEQ ID NO: 3:(2) INFORMATION ON SEQ ID NO: 3:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 23 Basenpaare(A) LENGTH: 23 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "PCR Primer"(ii) TYPE OF MOLECULE: Other nucleic acid (A) DESCRIPTION: / desc = "PCR Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
AGATCCAGGG GCCAGTGGAT AGA 23AGATCCAGGG GCCAGTGGAT AGA 23
(2) ANGABEN ZU SEQ ID NO: 4:(2) INFORMATION ON SEQ ID NO: 4:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE': 24 Basenpaare(A) LENGTH ' : 24 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "PCR Primer"(ii) TYPE OF MOLECULE: Other nucleic acid (A) DESCRIPTION: / desc = "PCR Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
GGATACAGTT GCGGCCGCAT CAGC 24GGATACAGTT GCGGCCGCAT CAGC 24
(2) ANGABEN ZU SEQ ID NO: 5:(2) INFORMATION ON SEQ ID NO: 5:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 34 Basenpaare(A) LENGTH: 34 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear ;ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "PCR Primer"(D) TOPOLOGY: linear ; ii) TYPE OF MOLECULE: Other nucleic acid (A) DESCRIPTION: / desc = "PCR Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5: ATTATAAGCT TCAGGTGAAA CTGCAGGAGT CAGG 34(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: ATTATAAGCT TCAGGTGAAA CTGCAGGAGT CAGG 34
(2) ANGABEN ZU SEQ ID NO: 6:(2) INFORMATION ON SEQ ID NO: 6:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 34 Basenpaare(A) LENGTH: 34 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "PCR Primer"(ii) TYPE OF MOLECULE: Other nucleic acid (A) DESCRIPTION: / desc = "PCR Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
TGAGGAGACG GTGACCGTGG TCCCTTGGCC CCAG 34TGAGGAGACG GTGACCGTGG TCCCTTGGCC CCAG 34
(2) ANGABEN ZU SEQ ID NO: 7:(2) INFORMATION ON SEQ ID NO: 7:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 24 Basenpaare(A) LENGTH: 24 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "PCR Primer"(ii) TYPE OF MOLECULE: Other nucleic acid (A) DESCRIPTION: / desc = "PCR Primer"
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:
GACATTCAGC TGACCCAGTC TCCA 24GACATTCAGC TGACCCAGTC TCCA 24
(2) ANGABEN ZU SEQ ID NO: 8:(2) INFORMATION ON SEQ ID NO: 8:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 22 Basenpaare(A) LENGTH: 22 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: Einzelstrang(C) STRAND FORM: Single strand
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "PCR Primer" (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8: GTTAGATCTC CAGCTTGGTG CG 22(ii) MOLECULE TYPE: Other nucleic acid (A) DESCRIPTION: / desc = "PCR Primer" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8: GTTAGATCTC CAGCTTGGTG CG 22
(2) ANGABEN ZU SEQ ID NO: 9:(2) INFORMATION ON SEQ ID NO: 9:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 746 Basenpaare(A) LENGTH: 746 base pairs
(B) ART: Nucleotid(B) TYPE: nucleotide
(C) STRANGFORM: beides(C) STRAND FORM: both
(D) TOPOLOGIE: linear(D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: cDNA(ii) MOLECULE TYPE: cDNA
(ix) MERKMAL:(ix) FEATURE:
(A) NAME/SCHLÜSSEL: CDS(A) NAME / KEY: CDS
(B) LAGE: 1..744(B) LOCATION: 1..744
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:
GAG GTA CAA CTG CAG GAG TCA GGA CCT GGC CTC GTG AAA CCT TCT CAG 48 Glu Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gin 1 5 10 15GAG GTA CAA CTG CAG GAG TCA GGA CCT GGC CTC GTG AAA CCT TCT CAG 48 Glu Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gin 1 5 10 15
TCT CTG TCT CTC ACC TGC TCT GTC ACT GGC TAC TCC ATC ACC AGT GGT 96 Ser Leu Ser Leu Thr Cys Ser Val Thr Gly Tyr Ser Ile Thr Ser Gly 20 25 30TCT CTG TCT CTC ACC TGC TCT GTC ACT GGC TAC TCC ATC ACC AGT GGT 96 Ser Leu Ser Leu Thr Cys Ser Val Thr Gly Tyr Ser Ile Thr Ser Gly 20 25 30
TAT TAC TGG AAC TGG ATC CGG CAA TTT CCA GGA AAC AAA CTG GAA TGG 144 Tyr Tyr Trp Asn Trp Ile Arg Gin Phe Pro Gly Asn Lys Leu Glu Trp 35 40 45TAT TAC TGG AAC TGG ATC CGG CAA TTT CCA GGA AAC AAA CTG GAA TGG 144 Tyr Tyr Trp Asn Trp Ile Arg Gin Phe Pro Gly Asn Lys Leu Glu Trp 35 40 45
ATG GGC TAC ATG AGA AAC GAC GGT AAT AAT AAC TAC AAC CCA TCT CTC 192 Met Gly Tyr Met Arg Asn Asp Gly Asn Asn Asn Tyr Asn Pro Ser Leu 50 55 60ATG GGC TAC ATG AGA AAC GAC GGT AAT AAT AAC TAC AAC CCA TCT CTC 192 Met Gly Tyr Met Arg Asn Asp Gly Asn Asn Asn Tyr Asn Pro Ser Leu 50 55 60
AAA AAT CGA CTC TCC ATC AGT CGT GAC ACA TCA AAG AAC CAG TTT TTC 240 Lys Asn Arg Leu Ser Ile Ser Arg Asp Thr Ser Lys Asn Gin Phe Phe 65 70 75 80AAA AAT CGA CTC TCC ATC AGT CGT GAC ACA TCA AAG AAC CAG TTT TTC 240 Lys Asn Arg Leu Ser Ile Ser Arg Asp Thr Ser Lys Asn Gin Phe Phe 65 70 75 80
CTG AAC TTG AAT TCT GTG ACT ACT GAG GAC ACA TCT ACA TAT TAC TGT 288 Leu Asn Leu Asn Ser Val Thr Thr Glu Asp Thr Ser Thr Tyr Tyr CysCTG AAC TTG AAT TCT GTG ACT ACT GAG GAC ACA TCT ACA TAT TAC TGT 288 Leu Asn Leu Asn Ser Val Thr Thr Glu Asp Thr Ser Thr Tyr Tyr Cys
85 90 9585 90 95
GCA AGT CAC GGC TAC GGT AGT AGC GGG TTT GTT TAC TGG GGC CAA GGG 336 Ala Ser His Gly Tyr Gly Ser Ser Gly Phe Val Tyr Trp Gly Gin Gly 100 105 110GCA AGT CAC GGC TAC GGT AGT AGC GGG TTT GTT TAC TGG GGC CAA GGG 336 Ala Ser His Gly Tyr Gly Ser Ser Gly Phe Val Tyr Trp Gly Gin Gly 100 105 110
ACC ACG GTC ACC GTT TCC TCT GGC GGT GGC GGT TCT GGT GGC GGT GGC 384 Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125 TCC GGC GGT GGC GGT TCT GAC ATC CAG CTG ACC CAG TCT GCA CTC TCC 432 Ser Gly Gly Gly Gly Ser Asp Ile Gin Leu Thr Gin Ser Ala Leu SerACC ACG GTC ACC GTT TCC TCT GGC GGT GGC GGT TCT GGT GGC GGT GGC 384 Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125 TCC GGC GGT GGC GGT TCT GAC ATC CAG CTG ACC CAG TCT GCA CTC TCC 432 Ser Gly Gly Gly Gly Ser Asp Ile Gin Leu Thr Gin Ser Ala Leu Ser
130 135 140130 135 140
CTG CCT GTC AGT CTT GGA GAT CAA GCC TCC ATC TCT TGC AGA TCT AGT 480 Leu Pro Val Ser Leu Gly Asp Gin Ala Ser Ile Ser Cys Arg Ser Ser 145 150 155 160CTG CCT GTC AGT CTT GGA GAT CAA GCC TCC ATC TCT TGC AGA TCT AGT 480 Leu Pro Val Ser Leu Gly Asp Gin Ala Ser Ile Ser Cys Arg Ser Ser 145 150 155 160
CAG AGC CTT GTA CAC ATT AAT GGA AAC ACC TAT TTA CAT TGG TAC CTG 528 Gin Ser Leu Val His Ile Asn Gly Asn Thr Tyr Leu His Trp Tyr LeuCAG AGC CTT GTA CAC ATT AAT GGA AAC ACC TAT TTA CAT TGG TAC CTG 528 Gin Ser Leu Val His Ile Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu
165 170 175165 170 175
CAG AAG CCA GGC CAG TCT CCG AAG CTC CTG ATC TAC AAA GTT TCC AAC 576 Gin Lys Pro Gly Gin Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser AsnCAG AAG CCA GGC CAG TCT CCG AAG CTC CTG ATC TAC AAA GTT TCC AAC 576 Gin Lys Pro Gly Gin Ser Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn
180 185 190180 185 190
CGA TTT TCT GGG GTC CCA GAC AGG TTC AGT GGC AGT GGA TCA GGG ACA 624 Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr 195 200 205CGA TTT TCT GGG GTC CCA GAC AGG TTC AGT GGC AGT GGA TCA GGG ACA 624 Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr 195 200 205
GAT TTC ACA CTC AAG ATC AGC AGA GTG GAG GCT GAG GAT CTG GGA GTT 672 Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val 210 215 220GAT TTC ACA CTC AAG ATC AGC AGA GTG GAG GCT GAG GAT CTG GGA GTT 672 Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val 210 215 220
TAT TTC TGC TCT CAA AGT ACA CAT GAT CCT CCG ACG TTC GGT GGA GGC 720 Tyr Phe Cys Ser Gin Ser Thr His Asp Pro Pro Thr Phe Gly Gly Gly 225 230 235 240TAT TTC TGC TCT CAA AGT ACA CAT GAT CCT CCG ACG TTC GGT GGA GGC 720 Tyr Phe Cys Ser Gin Ser Thr His Asp Pro Pro Thr Phe Gly Gly Gly 225 230 235 240
ACC AAG CTG GAG ATC AAA GCT CTA GA 746ACC AAG CTG GAG ATC AAA GCT CTA GA 746
Thr Lys Leu Glu Ile Lys Ala Leu 245Thr Lys Leu Glu Ile Lys Ala Leu 245
(2) ANGABEN ZU SEQ ID NO: 10:(2) INFORMATION ON SEQ ID NO: 10:
(i) SEQUENZKENNZEICHEN:(i) SEQUENCE LABEL:
(A) LÄNGE: 248 Aminosäuren(A) LENGTH: 248 amino acids
(B) ART: Aminosäure (D) TOPOLOGIE: linear(B) TYPE: amino acid (D) TOPOLOGY: linear
(ii) ART DES MOLEKÜLS: Protein(ii) MOLECULE TYPE: Protein
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
Glu Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gin 1 5 10 15Glu Val Gin Leu Gin Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gin 1 5 10 15
Ser Leu Ser Leu Thr Cys Ser Val Thr Gly Tyr Ser Ile Thr Ser Gly 20 25 30Ser Leu Ser Leu Thr Cys Ser Val Thr Gly Tyr Ser Ile Thr Ser Gly 20 25 30
Tyr Tyr Trp Asn Trp Ile Arg Gin Phe Pro Gly Asn Lys Leu Glu Trp 35 40 45 Met Gly Tyr Met Arg Asn Asp Gly Asn Asn Asn Tyr Asn Pro Ser Leu 50 55 60Tyr Tyr Trp Asn Trp Ile Arg Gin Phe Pro Gly Asn Lys Leu Glu Trp 35 40 45 Met Gly Tyr Met Arg Asn Asp Gly Asn Asn Asn Tyr Asn Pro Ser Leu 50 55 60
Lys Asn Arg Leu Ser Ile Ser Arg Asp Thr Ser Lys Asn Gin Phe Phe 65 70 75 80Lys Asn Arg Leu Ser Ile Ser Arg Asp Thr Ser Lys Asn Gin Phe Phe 65 70 75 80
Leu Asn Leu Asn Ser Val Thr Thr Glu Asp Thr Ser Thr Tyr Tyr CysLeu Asn Leu Asn Ser Val Thr Thr Glu Asp Thr Ser Thr Tyr Tyr Cys
85 90 9585 90 95
Ala Ser His Gly Tyr Gly Ser Ser Gly Phe Val Tyr Trp Gly Gin Gly 100 105 110Ala Ser His Gly Tyr Gly Ser Ser Gly Phe Val Tyr Trp Gly Gin Gly 100 105 110
Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 115 120 125
Ser Gly Gly Gly Gly Ser Asp Ile Gin Leu Thr Gin Ser Ala Leu Ser 130 135 140Ser Gly Gly Gly Gly Ser Asp Ile Gin Leu Thr Gin Ser Ala Leu Ser 130 135 140
Leu Pro Val Ser Leu Gly Asp Gin Ala Ser Ile Ser Cys Arg Ser Ser 145 150 155 160Leu Pro Val Ser Leu Gly Asp Gin Ala Ser Ile Ser Cys Arg Ser Ser 145 150 155 160
Gin Ser Leu Val His Ile Asn Gly Asn Thr Tyr Leu His Trp Tyr LeuGin Ser Leu Val His Ile Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu
165 170 175165 170 175
Gin Lys Pro Gly Gin Ser Pro Lys Leu Leu Met Tyr Lys Val Ser Asn 180 185 190Gin Lys Pro Gly Gin Ser Pro Lys Leu Leu Met Tyr Lys Val Ser Asn 180 185 190
Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr 195 200 205Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr 195 200 205
Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val 210 215 220Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val 210 215 220
His Phe Cys Ser Gin Ser Thr His Asp Pro Pro Thr Phe Gly Gly Gly 225 230 235 240His Phe Cys Ser Gin Ser Thr His Asp Pro Pro Thr Phe Gly Gly Gly 225 230 235 240
Thr Lys Leu Glu Ile Lys Ala LeuThr Lys Leu Glu Ile Lys Ala Leu
245 245
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU74946/96A AU7494696A (en) | 1995-10-31 | 1996-10-29 | Treatment of tumours by adoptive transfer of cd44v-specific cytotoxic t-lymphocytes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19540515.3 | 1995-10-31 | ||
DE19540515A DE19540515C1 (en) | 1995-10-31 | 1995-10-31 | Tumor therapy through adoptive transfer of CD44v-specific cytotoxic T lymphocytes |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997016557A1 true WO1997016557A1 (en) | 1997-05-09 |
Family
ID=7776245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1996/004688 WO1997016557A1 (en) | 1995-10-31 | 1996-10-29 | TREATMENT OF TUMOURS BY ADOPTIVE TRANSFER OF CD44v-SPECIFIC CYTOTOXIC T-LYMPHOCYTES |
Country Status (5)
Country | Link |
---|---|
AU (1) | AU7494696A (en) |
CO (1) | CO4520255A1 (en) |
DE (1) | DE19540515C1 (en) |
WO (1) | WO1997016557A1 (en) |
ZA (1) | ZA969077B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007020405A2 (en) * | 2005-08-12 | 2007-02-22 | Cartela R & D Ab | Integrin i-domain binding peptides |
WO2014079931A1 (en) * | 2012-11-21 | 2014-05-30 | Karlsruher Institut für Technologie | Cd44v6-derived peptides for treating breast cancers |
WO2014079943A1 (en) * | 2012-11-21 | 2014-05-30 | Karlsruher Institut für Technologie | Cd44v6-derived peptides for treating metastasizing cancers |
WO2014079940A1 (en) * | 2012-11-21 | 2014-05-30 | Karlsruher Institut für Technologie | Cd44v6-derived peptides for treating pancreatic cancer |
US10703796B2 (en) | 2014-12-05 | 2020-07-07 | Amcure Gmbh | CD44v6-derived cyclic peptides for treating cancers and angiogenesis related diseases |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7994298B2 (en) | 2004-09-24 | 2011-08-09 | Trustees Of Dartmouth College | Chimeric NK receptor and methods for treating cancer |
WO2011059836A2 (en) | 2009-10-29 | 2011-05-19 | Trustees Of Dartmouth College | T cell receptor-deficient t cell compositions |
US9273283B2 (en) | 2009-10-29 | 2016-03-01 | The Trustees Of Dartmouth College | Method of producing T cell receptor-deficient T cells expressing a chimeric receptor |
US9833476B2 (en) | 2011-08-31 | 2017-12-05 | The Trustees Of Dartmouth College | NKP30 receptor targeted therapeutics |
US9790278B2 (en) | 2012-05-07 | 2017-10-17 | The Trustees Of Dartmouth College | Anti-B7-H6 antibody, fusion proteins, and methods of using the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991017248A1 (en) * | 1990-05-07 | 1991-11-14 | Kernforschungszentrum Karlsruhe Gmbh | Variant cd44 surface proteins, dna sequences coding them, antibodies against these proteins and their use in diagnosis and therapy |
WO1992010591A1 (en) * | 1990-12-14 | 1992-06-25 | Cell Genesys, Inc. | Chimeric chains for receptor-associated signal transduction pathways |
EP0538754A2 (en) * | 1991-10-23 | 1993-04-28 | Forschungszentrum Karlsruhe GmbH | Use of antibody-containing preparations for immunosuppression |
WO1994012631A1 (en) * | 1992-11-20 | 1994-06-09 | Isis Innovation Limited | Peptide corresponding to cd44 exon 6, antibodies specific for said peptide and use of these antibodies for diagnosis of tumors |
WO1995000658A1 (en) * | 1993-06-18 | 1995-01-05 | Sirpa Jalkanen | COMPOSITIONS AND DIAGNOSTIC METHODS USING MONOCLONAL ANTIBODIES AGAINST CD44v6 |
WO1995000851A1 (en) * | 1993-06-22 | 1995-01-05 | Boehringer Ingelheim International Gmbh | Method for the diagnosis and analysis of tumours |
DE4326573A1 (en) * | 1993-08-07 | 1995-02-23 | Boehringer Ingelheim Int | Polypeptides encoded by exon v5 of the CD44 gene as targets for immunotherapy and immunoscintigraphy of tumors |
-
1995
- 1995-10-31 DE DE19540515A patent/DE19540515C1/en not_active Expired - Fee Related
-
1996
- 1996-10-29 AU AU74946/96A patent/AU7494696A/en not_active Abandoned
- 1996-10-29 WO PCT/EP1996/004688 patent/WO1997016557A1/en active Application Filing
- 1996-10-29 CO CO96057197A patent/CO4520255A1/en unknown
- 1996-10-29 ZA ZA9609077A patent/ZA969077B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991017248A1 (en) * | 1990-05-07 | 1991-11-14 | Kernforschungszentrum Karlsruhe Gmbh | Variant cd44 surface proteins, dna sequences coding them, antibodies against these proteins and their use in diagnosis and therapy |
WO1992010591A1 (en) * | 1990-12-14 | 1992-06-25 | Cell Genesys, Inc. | Chimeric chains for receptor-associated signal transduction pathways |
EP0538754A2 (en) * | 1991-10-23 | 1993-04-28 | Forschungszentrum Karlsruhe GmbH | Use of antibody-containing preparations for immunosuppression |
WO1994012631A1 (en) * | 1992-11-20 | 1994-06-09 | Isis Innovation Limited | Peptide corresponding to cd44 exon 6, antibodies specific for said peptide and use of these antibodies for diagnosis of tumors |
WO1995000658A1 (en) * | 1993-06-18 | 1995-01-05 | Sirpa Jalkanen | COMPOSITIONS AND DIAGNOSTIC METHODS USING MONOCLONAL ANTIBODIES AGAINST CD44v6 |
WO1995000851A1 (en) * | 1993-06-22 | 1995-01-05 | Boehringer Ingelheim International Gmbh | Method for the diagnosis and analysis of tumours |
DE4326573A1 (en) * | 1993-08-07 | 1995-02-23 | Boehringer Ingelheim Int | Polypeptides encoded by exon v5 of the CD44 gene as targets for immunotherapy and immunoscintigraphy of tumors |
Non-Patent Citations (2)
Title |
---|
A. HEKELE ET AL.: "Growth retardation of tumors by adoptive transfer of cytotoxic T lymphocytes reprogrammed by CD44v6-specific scFv:zeta-chimera.", INTERNATIONAL JOURNAL OF CANCER, vol. 68, no. 2, 9 October 1996 (1996-10-09), GENF, SCHWEIZ, pages 232 - 238, XP000644477 * |
D. MORITZ ET AL.: "Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB2-expressing tumor cells.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 91, no. 10, 10 May 1994 (1994-05-10), WASHINGTON, DC, VSA, pages 4318 - 4322, XP002025146 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007020405A2 (en) * | 2005-08-12 | 2007-02-22 | Cartela R & D Ab | Integrin i-domain binding peptides |
WO2007020405A3 (en) * | 2005-08-12 | 2007-05-03 | Cartela Ab | Integrin i-domain binding peptides |
WO2014079931A1 (en) * | 2012-11-21 | 2014-05-30 | Karlsruher Institut für Technologie | Cd44v6-derived peptides for treating breast cancers |
WO2014079943A1 (en) * | 2012-11-21 | 2014-05-30 | Karlsruher Institut für Technologie | Cd44v6-derived peptides for treating metastasizing cancers |
WO2014079940A1 (en) * | 2012-11-21 | 2014-05-30 | Karlsruher Institut für Technologie | Cd44v6-derived peptides for treating pancreatic cancer |
JP2016501857A (en) * | 2012-11-21 | 2016-01-21 | アムキュア ゲーエムベーハー | CD44V6-derived peptide for treating pancreatic cancer |
JP2016501858A (en) * | 2012-11-21 | 2016-01-21 | アムキュア ゲーエムベーハー | CD44V6-derived peptides for treating metastatic cancer |
US9586994B2 (en) | 2012-11-21 | 2017-03-07 | Amcure Gmbh | CD44V6-derived peptides for treating breast cancer |
US9586993B2 (en) | 2012-11-21 | 2017-03-07 | Amcure Gmbh | CD44v6-derived peptides for treating pancreatic cancer |
US9593146B2 (en) | 2012-11-21 | 2017-03-14 | Amcure Gmbh | CD44v6-derived peptides for treating metastasizing cancer |
US10703796B2 (en) | 2014-12-05 | 2020-07-07 | Amcure Gmbh | CD44v6-derived cyclic peptides for treating cancers and angiogenesis related diseases |
Also Published As
Publication number | Publication date |
---|---|
CO4520255A1 (en) | 1997-10-15 |
ZA969077B (en) | 1998-06-24 |
DE19540515C1 (en) | 1997-02-06 |
AU7494696A (en) | 1997-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1444268B1 (en) | Bispecific anti-cd28 antibody molecule | |
DE69528894T2 (en) | BIFUNCTIONAL PROTEIN, PRODUCTION AND USE | |
EP3586852B1 (en) | Modified cell expansion and uses thereof | |
Itoh et al. | The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis | |
DE69333038T2 (en) | CHIMERIC RECEPTOR GENES AND, ACCORDING TO THAT, TRANSFORMED CELLS | |
US6270998B1 (en) | DNA coding for human cell surface antigen | |
DE69519521T2 (en) | COMPOSITION CONTAINING AN ANTIQUE-EXPRESSING RECOMBINANT VIRUS AND AN IMMUNE-STIMULATING MOLECULE-EXPRESSING RECOMBINANT VIRUS | |
Hombach et al. | A CD16/CD30 bispecific monoclonal antibody induces lysis of hodgkin's cells by unstimulated natural killer cells In AND In vivo | |
Hekele et al. | Growth retardation of tumors by adoptive transfer of cytotoxic T lymphocytes reprogrammed by CD44V6‐specific SCFV: ζ‐chimera | |
US20150140023A1 (en) | Use of monoclonal antibodies specific to the o-acetylated form of gd2 ganglioside for the treatment of certain cancers | |
DE102006041455B4 (en) | A method of producing a cell line stabilized functionalized single-chain human antigen-recognizing TCR (scTCR) expressing cell line, stabilized TAA-specific scTCR, uses thereof, and pharmaceutical compositions containing them | |
US20230265207A1 (en) | T cell-antigen coupler with y182t mutation and methods of uses thereof | |
RU2770002C2 (en) | Chimeric antigen receptor | |
CN110511912A (en) | The function point analysis of immunocyte | |
WO2013001065A1 (en) | Antibodies against prostate-specific stem cell antigen and use thereof | |
DE19540515C1 (en) | Tumor therapy through adoptive transfer of CD44v-specific cytotoxic T lymphocytes | |
KR20180081010A (en) | Natural killer cell expressing anti-cotinine chimeric antigen receptor specifically binding to cotinine | |
DE10109854A1 (en) | Polypeptides of an hdm2 protein-specific murine alpha / beta T cell receptor, these coding nucleic acids and their use | |
DE10259713A1 (en) | Process for the stabilization of expression and improvement of the specific effector function of single chain antigen-recognizing genetic constructs (scARC) and corresponding mutated MDM2 protein specific scT cell receptors | |
US20230365686A1 (en) | Humanized antibody specific for cd22 and chimeric antigen receptor using the same | |
WO2002070556A9 (en) | POLYPEPTIDE OF A P53 PROTEIN-SPECIFIC MURINE Α/β T-CELL RECEPTOR, NUCLEIC ACIDS CODING THEREFOR AND USE THEREOF | |
CN114286691B (en) | CS 1-antibodies and anti-CS 1-CAR-T cells | |
JP2023527462A (en) | Antibodies specific for CD22 and uses thereof | |
KR20230072536A (en) | Humanized antibody specific for CD22 and chimeric antigen receptor using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BG BR BY CA CN CZ EE HU IL JP KR KZ LT LV MX NO NZ PL RO RU SG SI SK TR UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 97517058 Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |