+

WO1997014950A1 - Procede et dispositif de calibrage d'un materiau particulaire - Google Patents

Procede et dispositif de calibrage d'un materiau particulaire Download PDF

Info

Publication number
WO1997014950A1
WO1997014950A1 PCT/AU1996/000650 AU9600650W WO9714950A1 WO 1997014950 A1 WO1997014950 A1 WO 1997014950A1 AU 9600650 W AU9600650 W AU 9600650W WO 9714950 A1 WO9714950 A1 WO 9714950A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
sample
monolayer
particles
image
Prior art date
Application number
PCT/AU1996/000650
Other languages
English (en)
Inventor
Ian Bruce Browne
Kenneth John William Lieber
Lip-The Young
Original Assignee
Scientific Industrial Automation Pty. Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scientific Industrial Automation Pty. Limited filed Critical Scientific Industrial Automation Pty. Limited
Priority to AU72070/96A priority Critical patent/AU7207096A/en
Publication of WO1997014950A1 publication Critical patent/WO1997014950A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography

Definitions

  • This invention concerns size measurement. More particularly, it concerns non-contact sizing of particulate material such as material of the type obtained in mineral mining operations, using "blob analysis” techniques.
  • the invention is not limited in its application to the measurement of the size of lumps of rock, coal, ores and other mined materials.
  • the sizing is a slow process; (c) only a small quantity of the ore, coal or the like is sampled by this method, so that in many instances the estimated size distribution does not represent the true size distribution of the material due to poor statistics or segregation; (d) the cost of building a sizing station is high (millions of dollars) and the maintenance and operation of a sizing station is labour intensive and thus expensive; and (e) significant errors can occur due to breakage of the screens and build-up of material over the screens which can prevent smaller particles falling through that screen.
  • Blob analysis has been used in industrial vision systems that have been developed for object recognition, defect classification and image enhancing in the manufacturing, automotive and electronics industries.
  • the blob analysis is carried out on an image of a moving new monolayer of the particulate material.
  • the particulate materials are back-lit, so that the projected area of the particle is observed by the camera.
  • blob analysis techniques can provide, for each image that is produced, information about the projected areas of the particles, their minimum radii, maximum radii, orientations, perimeters, holes, centroid, and other shape information.
  • a method of particle size analysis of a sample of a particulate material comprising the steps of:
  • the present invention also provides apparatus for obtaining a size distribution of a sample of particulate material, comprising:
  • (b) means to generate an image of a selected portion of the monolayer; and (c) means to perform blob analysis of the image and to produce therefrom information about the size distribution of particles in the selected portion of the monolayer.
  • the moving substantially monolayer sample is established allowing particles to fall under the action of gravity.
  • this is achieved by running the particles off the end of a conveyor belt moving at a speed determined to give a desired separation of the particles.
  • the sample is directed onto a vibrating feeder to at least partially form a new monolayer of the particles which are subsequently allowed to fall from an end of the feeder.
  • the particles falling from the end of the vibrating feeder are directed onto a second vibrating feeder running at a higher throughput rate to increase the distance between the particles.
  • the image is preferably generated by a camera having a field of view through which the monolayer passes.
  • the camera preferably provides an output signal indicative of the image within the field of view and the blob analysis is perfo ⁇ ned on the output signal.
  • the particulate material in the field of view is back-lit.
  • the camera is either a linear array (or linescan) camera or an area array camera.
  • linescan camera continuous illumination of the particles is required; if an area array camera without an electronic shutter or external mechanical shutter is used, the illumination of the particulate material must be strobed.
  • the sample of particulate material may conveniently be a continuous sample diverted from a main conveyor, to which the sample is returned following a determination of its size distribution.
  • Figure 1 is a partly schematic, perspective sketch showing the application of this invention to the analysis of mined coal or the like; and Figure 2 is a schematic sketch similar to Figure 1 showing some modifications to the invention.
  • the arrangement shown in Figure 1 includes a camera 10 having an imaged region (field of view) 11, which is back-lit by a diffused back-light source 12.
  • the camera 10 is a type that has the image seen converted into electrical data signals, which are output through a cable 13 which is connected to a processing system 14.
  • Two kinds of camera may be used as the camera 10, namely a linear array (or linescan) camera or an area array camera.
  • a linear array (or linescan) camera or an area array camera may be used as the camera 10.
  • the hardware and software usually associated with processing systems generally supports area array cameras, some systems are able to process the output of linear array cameras.
  • the lighting configuration used depends upon the camera that has been selected. If the camera 10 is a linear array, linescan camera or shuttered camera, the light source 12 is a continuous source. If the camera 10 is an area array camera, the light source 12 is strobed. In either case, the light source is placed behind a diffuser panel, thus providing back-lighting for objects traversing the field of view 11 of the camera 10. To form a back-light surface having an even illumination, a complete optical fibre illumination system is required. If the camera 10 is a linear array camera, the optical fibre 19 which illuminates the diffuser panel can be a light pipe which provides a light slice or flat beam of light.
  • the evenness of the back-light is more important, so that a matrix of optical fibres can provide the illumination of the back-lit panel or if a shuttered camera is used a continuous light source such as a set of fluorescent tubes using high frequency ballasts can be used.
  • the processing system 14 may be any one of a number of commercially available suitably programmed systems. Suitable simple processing systems, comprising a microcomputer with add-on processing boards, are manufactured by companies such as (this list is not exhaustive) Imaging Technology, Matrox, Datacube and Data Translation. Faster processing systems are marketed by companies such as Allen-Bradley, Adept Technology, Cognax, IRI and AISI. These faster systems contain specific hardware and software to perform the blob analysis. Their response speed can be improved further by designing custom or semi-custom software and hardware to perform the necessary image processing. Such equipment with enhanced performance may be able to threshold and perform connectivity analysis (blob analysis) in a pipeline.
  • Suitable simple processing systems comprising a microcomputer with add-on processing boards, are manufactured by companies such as (this list is not exhaustive) Imaging Technology, Matrox, Datacube and Data Translation.
  • Faster processing systems are marketed by companies such as Allen-Bradley, Adept Technology, Cognax, IRI and AISI. These faster systems contain specific hardware and software to perform
  • a sample of the material to be sized is brought to the vicinity of the camera by a conveyor 15.
  • the sample may be of coal, ore, rock, the output of a crusher, or any suitable material. Normally, it will be a sample diverted from a main conveyor (not shown) that is transporting the material to a required destination (a stock pile or a loading point, for example).
  • the end ofthe conveyor 15 is positioned above the imaged region 11 of the camera 10, so that material on the conveyor 15 falls, essentially as a monolayer, through the imaged region 11.
  • the individual lumps 16 of coal, ore or rock (or the like) singulate. That is, they effectively become separated from each other. They are back-lit by the diffused light source 12 and imaged by the camera 10.
  • the camera image is processed to produce size data which is used to establish the size distribution of the sample.
  • the falling lumps 16 are caught by a suitably positioned hopper 17, about a metre below the imaged region 11, and are transported away from the analysis region by a lower conveyor 18.
  • the lower conveyor will return the sample to the main conveyor from which it was diverted.
  • FIG. 2 shows an arrangement similar to Figure 1 with some modifications. For ease of understanding, the same reference numerals have been used to identify corresponding features.
  • a main conveyor 19 is shown carrying particulate material.
  • a primary sampling device 20 is provided to divert a selected amount of the particulate material from the main conveyor 19 into a hopper 21.
  • the material is withdrawn from hopper 21 by two vibrating feeders 22 and 23.
  • These vibrating feeders are of substantially known type with an adjustable vibration rate and/or vibration amplitude and/or inclination to provide for a varying rate of throughput or speed.
  • the first feeder 22 determines the feed rate and the second feeder 23 distributes the material so that it discharges in a thin monolayer.
  • a image region or measurement window 11 is provided and has back-lighting by a light box 12.
  • the light box 12 and camera 10 are surrounded by an environmental enclosure 24 to protect the arrangement from environmental dust.
  • the environmental housing is protected from ingress of dust by either positive pressure or by suction.
  • a pneumatic wiper (not shown) is provided to clean the surface of the back light 12 and an electric wiper (not shown) is provided to clean the camera window.
  • the connection between the camera unit and the processing system 14 is by way of an optical fibre link. This allows communication over distance of up to 2kms and overcomes difficulties associated with electrical interference.
  • the particulate material is discharged to a lower conveyor 18 which returns the analysed material to the main conveyor.
  • the sequential vibrating feeders 22, 23 of the Figure 2 arrangement give an improved reliability of separation and a better distribution of the particles in the field of view of camera 10.
  • the software associated with processing system 14, is able to detect overlapping particles and reject them for the purposes of the measurement of size distribution. This is achieved by finding a centroid of each blob and then measuring the maximum and minimum radii. The ratio of the maximum and minimum radii is determined and the blob is identified as overlapping particles if the ratio is too large for the material being measured.
  • the weight percent particle distribution can be calculated using the processed image information and a variety of algorithms.
  • the camera 10 used can be a CCD (charge coupled device) camera using an electronic shutter controlled by a computer to freeze the image and transfer it to a frame buffer associated with the processing system 14.
  • a stroboscopic backlight can be used as described in relation to the Figure 1 arrangement. Where a CCD camera with an electronic shutter is used, the fluorescent backlight must have a high frequency ballast in order to provide a consistent light level image.
  • the software associated with the operation of the system can perform checks to determine whether the backlight and/or camera lens glass has dust on the relevant surfaces. There are two preset levels of degregated performance determined by the system. The lower level gives a warning signal and the second higher level an alarm signal. These signals can be used to activate the pneumatic and electric wipers (not shown) described above.
  • the following tables illustrate some laboratory trial data obtain comparing the sizing system of the present invention to screen sizing.
  • the materials used for the process were Sinter and Coke of the kind typically used in a blast furnace.
  • the illustrated arrangements can perform an accurate size analysis and present realistic size distribution data in respect of a meaningful sample of the mined material or crusher output.
  • the analysis is performed quickly.
  • the equipment required to perform the sampling and analysis is at least an order of magnitude less expensive to install than a conventional sizing station.
  • the system used for the analysis is essentially automated and has little labour associated with its running and maintenance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Procédé et dispositif qui permettent l'analyse granulométrique d'un matériau particulaire et qui font appel à l'analyse de tache d'une image d'un échantillon sensiblement monocouche, en mouvement, du matériau particulaire. On effectue l'analyse de tache afin d'obtenir des informations concernant au moins la taille du matériau particulaire dans l'image de la monocouche. De préférence, on constitue celle-ci en faisant tomber les particules sous l'effet de la pesanteur. Dans l'un des modes de réalisation, le matériau particulaire tombe dans le champ de visée (11) d'une caméra (10) qui génère des signaux de sortie donnant une image de la monocouche. On effectue l'analyse de tache, grâce à un système de traitement (14) relié à la caméra (10), afin d'analyser la taille des particules.
PCT/AU1996/000650 1995-10-16 1996-10-16 Procede et dispositif de calibrage d'un materiau particulaire WO1997014950A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU72070/96A AU7207096A (en) 1995-10-16 1996-10-16 Method and apparatus for sizing particulate material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPN5994A AUPN599495A0 (en) 1995-10-16 1995-10-16 Method and apparatus for sizing particulate material
AUPN5994 1995-10-16

Publications (1)

Publication Number Publication Date
WO1997014950A1 true WO1997014950A1 (fr) 1997-04-24

Family

ID=3790321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU1996/000650 WO1997014950A1 (fr) 1995-10-16 1996-10-16 Procede et dispositif de calibrage d'un materiau particulaire

Country Status (2)

Country Link
AU (1) AUPN599495A0 (fr)
WO (1) WO1997014950A1 (fr)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19802141C1 (de) * 1998-01-22 1999-04-22 Retsch Kurt Gmbh & Co Kg Vorrichtung zur Bestimmung der Partikelgrößenverteilung eines Partikelgemisches
DE19720426C1 (de) * 1997-05-15 1999-06-02 Baier Verena Dr Ing Vorrichtung und Verfahren für die Bestimmung der Partikelausbildung in einem durchsichtigen flüssigen Medium
WO2002044693A1 (fr) * 2000-11-28 2002-06-06 Imeco Automazioni S.R.L. Appareil d'analyse de produits moulus
EP1213051A1 (fr) * 2000-12-08 2002-06-12 Basf Aktiengesellschaft Procédé pour la surveillance et la régulation d'un procédé industriel de granulation
WO2002095959A3 (fr) * 2001-05-18 2003-07-31 Advanced Vision Particle Measu Systeme et procede de retrocommande pour processus industriels de transformation de materiaux bruts par analyse automatisee des objets ou des particules
WO2002103329A3 (fr) * 2001-06-18 2003-07-31 Abbott Lab Appareil et procede permettant de determiner la dispersabilite d'un produit se presentant sous une forme particulaire
EP1464949A3 (fr) * 2003-03-27 2004-10-13 J.M. Canty Inc. Dispositif et procédé d'inspection de matériaux granulés
WO2004106897A1 (fr) * 2003-05-28 2004-12-09 Bm Alliance Coal Operations Pty Ltd Procede et dispositif de determination de parametres de particules et de performances d'appareils de traitement dans un systeme de traitement de charbon et de minerai
US6885904B2 (en) 2001-05-18 2005-04-26 Advanced Vision Particle Measurement, Inc. Control feedback system and method for bulk material industrial processes using automated object or particle analysis
WO2006012194A1 (fr) 2004-06-24 2006-02-02 Ircon, Inc. Procede et appareil de surveillance et de detection de defauts de scellage d'emballages plastiques
WO2006054154A1 (fr) * 2004-11-17 2006-05-26 De Beers Consolidated Mines Limited Appareil et procede de tri d’objets a base de spectroscopie par reflectance
DE102005001504A1 (de) * 2005-01-04 2006-07-20 Justus Altmann Vorrichtung und Verfahren zur Bestimmung von Eigenschaften von dispersen Bestandteilen in Fluiden
RU2300753C2 (ru) * 2004-09-23 2007-06-10 Юрий Петрович Галуза Система адаптивного нейросетевого определения гранулометрического состава частиц окомкованного и/или гранулированного материала
CN102252944A (zh) * 2011-05-06 2011-11-23 清华大学 一种颗粒尺寸的测量方法
JP2014062875A (ja) * 2012-09-24 2014-04-10 Taisei Corp 粒度分布測定用の画像撮影装置
JP2016070714A (ja) * 2014-09-29 2016-05-09 前田建設工業株式会社 建設材料の粒度分布測定装置
CN106918596A (zh) * 2017-04-23 2017-07-04 湖南军芃科技股份有限公司 一种基于可见光或红外线的矿石机器视觉识别装置及其识别方法
RU2626381C1 (ru) * 2016-09-26 2017-07-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Система гранулометрического анализа жидких дисперсных сред
GB2559964A (en) * 2017-02-16 2018-08-29 Her Majesty In Right Of Canada As Represented By The Mini Of Natural Resources Methods for measuring properties of rock pieces
JP2018155612A (ja) * 2017-03-17 2018-10-04 大成建設株式会社 粒度分布測定用の画像撮影装置
WO2018181942A1 (fr) * 2017-03-30 2018-10-04 Jfeスチール株式会社 Dispositif de mesure de la distribution des tailles de particules d'une matière première, procédé de mesure de la distribution des tailles de particules et dispositif de mesure du taux de vides
CN109844498A (zh) * 2016-11-30 2019-06-04 杰富意钢铁株式会社 粉末比率测定装置以及粉末比率测定系统
CN110455691A (zh) * 2019-09-09 2019-11-15 北京林业大学 一种沙尘粒径测量系统及其使用方法
CN110918501A (zh) * 2019-11-24 2020-03-27 郑州大学 一种果实智能优选设备及检测方法
CN112340358A (zh) * 2020-11-30 2021-02-09 三峡大学 堆石料粒径级配检测视频拍摄装置及方法
SE2050883A1 (en) * 2020-07-10 2022-01-11 Optimation Advanced Measurements Ab Method and arrangement for determining an estimated bulk particle-size distribution
CN114199728A (zh) * 2020-09-18 2022-03-18 宝武炭材料科技有限公司 一种用于针状焦自动分析检测方法和检测装置
CN115165473A (zh) * 2022-06-30 2022-10-11 日照公路建设有限公司 集料检测方法及装置
CN116735461A (zh) * 2023-08-10 2023-09-12 成都云芯医联科技有限公司 一种白细胞三分类光学检测系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2012948A (en) * 1977-12-29 1979-08-01 Sumitomo Metal Ind Investigation of Particle Size Distribution
EP0204516A2 (fr) * 1985-06-04 1986-12-10 Adept Technology, Inc. Système de vision pour discerner des pièces se touchant
FR2637983A1 (fr) * 1988-10-19 1990-04-20 Rhone Poulenc Chimie Procede et installation pour l'analyse granulometrique d'un materiau constitue de particules
US5011285A (en) * 1987-12-18 1991-04-30 Norsk Hydro A.S. Method and apparatus for performing automatic particle analysis
DE4004699A1 (de) * 1990-02-15 1991-08-22 Krieg Gunther Verfahren und vorrichtung zur bestimmung der groessenverteilung von feststoffpartikeln
WO1992003364A1 (fr) * 1990-08-25 1992-03-05 Intelligent Automation Systems, Inc. Dispositif d'amenee de pieces reconfigurable programmable
WO1994006092A1 (fr) * 1992-09-07 1994-03-17 Agrovision Ab Procede et dispositif d'evaluation automatique de cereales et autres produits granulaires
JPH06213796A (ja) * 1993-01-20 1994-08-05 Nippon Steel Corp 塊状物の粒度測定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2012948A (en) * 1977-12-29 1979-08-01 Sumitomo Metal Ind Investigation of Particle Size Distribution
EP0204516A2 (fr) * 1985-06-04 1986-12-10 Adept Technology, Inc. Système de vision pour discerner des pièces se touchant
US5011285A (en) * 1987-12-18 1991-04-30 Norsk Hydro A.S. Method and apparatus for performing automatic particle analysis
FR2637983A1 (fr) * 1988-10-19 1990-04-20 Rhone Poulenc Chimie Procede et installation pour l'analyse granulometrique d'un materiau constitue de particules
DE4004699A1 (de) * 1990-02-15 1991-08-22 Krieg Gunther Verfahren und vorrichtung zur bestimmung der groessenverteilung von feststoffpartikeln
WO1992003364A1 (fr) * 1990-08-25 1992-03-05 Intelligent Automation Systems, Inc. Dispositif d'amenee de pieces reconfigurable programmable
WO1994006092A1 (fr) * 1992-09-07 1994-03-17 Agrovision Ab Procede et dispositif d'evaluation automatique de cereales et autres produits granulaires
JPH06213796A (ja) * 1993-01-20 1994-08-05 Nippon Steel Corp 塊状物の粒度測定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INSTRUMENTATION & CONTROL SYSTEMS, Volume 62, No. 12, issued December 1989 (Chilton Company), W. LABS, "Test and Inspection: A Technology Update", pages 23-28. *
PATENT ABSTRACTS OF JAPAN, P-1821, page 153; & JP,A,06 213 796 (NIPPON STEEL CORP.) 5 August 1994. *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19720426C1 (de) * 1997-05-15 1999-06-02 Baier Verena Dr Ing Vorrichtung und Verfahren für die Bestimmung der Partikelausbildung in einem durchsichtigen flüssigen Medium
GB2333594B (en) * 1998-01-22 2002-07-03 Retsch Kurt Gmbh & Co Kg Apparatus for determining the particle size distribution of a particle mixture
FR2773881A1 (fr) * 1998-01-22 1999-07-23 Retsch Kurt Gmbh & Co Kg Dispositif destine a determine la repartition granulometrique dans un melange de particules
GB2333594A (en) * 1998-01-22 1999-07-28 Retsch Kurt Gmbh & Co Kg Apparatus for determining the particle size distribution of a particle mixture
US6061130A (en) * 1998-01-22 2000-05-09 F. Kurt Retsch Gmbh & Co. Kg Apparatus for determining the particle size distribution of a mixture
DE19802141C1 (de) * 1998-01-22 1999-04-22 Retsch Kurt Gmbh & Co Kg Vorrichtung zur Bestimmung der Partikelgrößenverteilung eines Partikelgemisches
WO2002044693A1 (fr) * 2000-11-28 2002-06-06 Imeco Automazioni S.R.L. Appareil d'analyse de produits moulus
EP1213051A1 (fr) * 2000-12-08 2002-06-12 Basf Aktiengesellschaft Procédé pour la surveillance et la régulation d'un procédé industriel de granulation
WO2002095959A3 (fr) * 2001-05-18 2003-07-31 Advanced Vision Particle Measu Systeme et procede de retrocommande pour processus industriels de transformation de materiaux bruts par analyse automatisee des objets ou des particules
US6629010B2 (en) 2001-05-18 2003-09-30 Advanced Vision Particle Measurement, Inc. Control feedback system and method for bulk material industrial processes using automated object or particle analysis
US6885904B2 (en) 2001-05-18 2005-04-26 Advanced Vision Particle Measurement, Inc. Control feedback system and method for bulk material industrial processes using automated object or particle analysis
WO2002103329A3 (fr) * 2001-06-18 2003-07-31 Abbott Lab Appareil et procede permettant de determiner la dispersabilite d'un produit se presentant sous une forme particulaire
EP1464949A3 (fr) * 2003-03-27 2004-10-13 J.M. Canty Inc. Dispositif et procédé d'inspection de matériaux granulés
US7009703B2 (en) 2003-03-27 2006-03-07 J.M.Canty Inc. Granular product inspection device
AU2004243334B2 (en) * 2003-05-28 2009-08-06 Bm Alliance Coal Operations Pty Ltd Method and apparatus for determining particle parameter and processor performance in a coal and mineral processing system
US7542873B2 (en) 2003-05-28 2009-06-02 Bm Alliance Coal Operations Pty Ltd Method and apparatus for determining particle parameter and processor performance in a coal and mineral processing system
WO2004106897A1 (fr) * 2003-05-28 2004-12-09 Bm Alliance Coal Operations Pty Ltd Procede et dispositif de determination de parametres de particules et de performances d'appareils de traitement dans un systeme de traitement de charbon et de minerai
US7434986B2 (en) 2004-06-24 2008-10-14 Fluke Corporation Method and apparatus for monitoring and detecting defects in plastic package sealing
WO2006012194A1 (fr) 2004-06-24 2006-02-02 Ircon, Inc. Procede et appareil de surveillance et de detection de defauts de scellage d'emballages plastiques
RU2300753C2 (ru) * 2004-09-23 2007-06-10 Юрий Петрович Галуза Система адаптивного нейросетевого определения гранулометрического состава частиц окомкованного и/или гранулированного материала
WO2006054154A1 (fr) * 2004-11-17 2006-05-26 De Beers Consolidated Mines Limited Appareil et procede de tri d’objets a base de spectroscopie par reflectance
DE102005001504A1 (de) * 2005-01-04 2006-07-20 Justus Altmann Vorrichtung und Verfahren zur Bestimmung von Eigenschaften von dispersen Bestandteilen in Fluiden
DE102005001504B4 (de) * 2005-01-04 2006-12-28 Justus Altmann Vorrichtung zur Bestimmung von Eigenschaften von dispersen Bestandteilen in Fluiden
CN102252944A (zh) * 2011-05-06 2011-11-23 清华大学 一种颗粒尺寸的测量方法
JP2014062875A (ja) * 2012-09-24 2014-04-10 Taisei Corp 粒度分布測定用の画像撮影装置
JP2016070714A (ja) * 2014-09-29 2016-05-09 前田建設工業株式会社 建設材料の粒度分布測定装置
RU2626381C1 (ru) * 2016-09-26 2017-07-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Система гранулометрического анализа жидких дисперсных сред
CN109844498A (zh) * 2016-11-30 2019-06-04 杰富意钢铁株式会社 粉末比率测定装置以及粉末比率测定系统
US11403747B2 (en) 2016-11-30 2022-08-02 Jfe Steel Corporation Fine ratio measuring device and fine ratio measuring system
EP3505910A4 (fr) * 2016-11-30 2019-07-03 JFE Steel Corporation Dispositif de mesure de rapport de poudre et système de mesure de rapport de poudre
GB2559964A (en) * 2017-02-16 2018-08-29 Her Majesty In Right Of Canada As Represented By The Mini Of Natural Resources Methods for measuring properties of rock pieces
JP2018155612A (ja) * 2017-03-17 2018-10-04 大成建設株式会社 粒度分布測定用の画像撮影装置
US11391662B2 (en) 2017-03-30 2022-07-19 Jfe Steel Corporation Raw material particle size distribution measuring apparatus, particle size distribution measuring method, and porosity measuring apparatus
WO2018181942A1 (fr) * 2017-03-30 2018-10-04 Jfeスチール株式会社 Dispositif de mesure de la distribution des tailles de particules d'une matière première, procédé de mesure de la distribution des tailles de particules et dispositif de mesure du taux de vides
CN106918596A (zh) * 2017-04-23 2017-07-04 湖南军芃科技股份有限公司 一种基于可见光或红外线的矿石机器视觉识别装置及其识别方法
CN110455691A (zh) * 2019-09-09 2019-11-15 北京林业大学 一种沙尘粒径测量系统及其使用方法
CN110918501A (zh) * 2019-11-24 2020-03-27 郑州大学 一种果实智能优选设备及检测方法
SE2251592A1 (en) * 2020-07-10 2022-12-29 Optimation Advanced Measurements Ab Method and arrangement for determining an estimated bulk particle-size distribution
WO2022010399A1 (fr) * 2020-07-10 2022-01-13 Optimation Advanced Measurements Ab Procédé et agencement de détermination de distribution granulométrique de volume estimée
SE2050883A1 (en) * 2020-07-10 2022-01-11 Optimation Advanced Measurements Ab Method and arrangement for determining an estimated bulk particle-size distribution
SE545201C2 (en) * 2020-07-10 2023-05-16 Optimation Advanced Measurements Ab Method and arrangement for determining an estimated bulk particle-size distribution
CN114199728A (zh) * 2020-09-18 2022-03-18 宝武炭材料科技有限公司 一种用于针状焦自动分析检测方法和检测装置
CN114199728B (zh) * 2020-09-18 2023-09-01 宝武碳业科技股份有限公司 一种用于针状焦自动分析检测方法和检测装置
CN112340358A (zh) * 2020-11-30 2021-02-09 三峡大学 堆石料粒径级配检测视频拍摄装置及方法
CN115165473A (zh) * 2022-06-30 2022-10-11 日照公路建设有限公司 集料检测方法及装置
CN116735461A (zh) * 2023-08-10 2023-09-12 成都云芯医联科技有限公司 一种白细胞三分类光学检测系统
CN116735461B (zh) * 2023-08-10 2023-11-10 成都云芯医联科技有限公司 一种白细胞三分类光学检测系统

Also Published As

Publication number Publication date
AUPN599495A0 (en) 1995-11-09

Similar Documents

Publication Publication Date Title
WO1997014950A1 (fr) Procede et dispositif de calibrage d'un materiau particulaire
US6265683B1 (en) Semiconductor material classification device
US6629010B2 (en) Control feedback system and method for bulk material industrial processes using automated object or particle analysis
US4600105A (en) Method and apparatus for sorting objects of ore by monitoring reflected radiation
US7542873B2 (en) Method and apparatus for determining particle parameter and processor performance in a coal and mineral processing system
US6885904B2 (en) Control feedback system and method for bulk material industrial processes using automated object or particle analysis
US20080217217A1 (en) Device and system for use in imaging particulate matter
US7009703B2 (en) Granular product inspection device
HU181010B (en) Method and apparatus for selecting foreign body on conveyor or from similarly moved material
JPWO2013145873A1 (ja) 光学式粒状物選別機
CN104487178A (zh) 用于分离干煤的装置
US4806014A (en) Method for measuring size distribution
Manouchehri Sorting: possibilitis, limitations and future
CA2373043A1 (fr) Procede et appareil permettant de surveiller et d'analyser la surface de matieres flottantes
KR940009663A (ko) 부품검사장치 및 그 장치를 사용한 검사방법
Schapper Beneficiation at large particle size using photometric sorting techniques
Bilodeau et al. 3D free fall rock size sensor
Stirling The recovery of waste glass cullet for recycling purposes by means of electro-optical sorters
SU1036383A1 (ru) Способ фотометрической сепарации кусковых материалов
PL223801B1 (pl) Sposób separacji i separator zwłaszcza odpadów
JPH06307828A (ja) 部品検査装置及びその装置を用いた検査方法
CN119680900A (zh) 一种沙漠砂中有害物质自动筛分系统
Mäenpää et al. A computer system for photometric mineral sorting
JP2000153239A (ja) ガラスびん識別装置
AU683577B2 (en) Method of and apparatus for sorting a particulate material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载