+

WO1997013985A1 - Magnetic bearing device - Google Patents

Magnetic bearing device Download PDF

Info

Publication number
WO1997013985A1
WO1997013985A1 PCT/JP1996/002812 JP9602812W WO9713985A1 WO 1997013985 A1 WO1997013985 A1 WO 1997013985A1 JP 9602812 W JP9602812 W JP 9602812W WO 9713985 A1 WO9713985 A1 WO 9713985A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotary shaft
bearing
shaft
rotation
radial
Prior art date
Application number
PCT/JP1996/002812
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Maejima
Original Assignee
Seiko Seiki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Seiki Kabushiki Kaisha filed Critical Seiko Seiki Kabushiki Kaisha
Publication of WO1997013985A1 publication Critical patent/WO1997013985A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Definitions

  • the present invention relates to a magnetic bearing device applied to a turbo molecular pump or a spindle of a machine tool.
  • a magnetic bearing device incorporated and used in a turbo molecular pump for example, a three-axis control type as shown in FIG. 8 is known.
  • This magnetic bearing device has a cylindrical mounting frame 1 which is open at both ends, and a high frequency motor 3 for driving a rotating shaft 2 is disposed at the center of the mounting frame 1.
  • the rotary shaft 2 is configured to magnetically support the radial direction by the radial bearing 4 and to axially support the axial direction by the thrust bearing 5.
  • the radial bearing 4 is an inner periphery of the mounting frame 1. It is formed of a radial electromagnet 4 1 attached to the surface and a rotor core 4 2 attached to the rotary shaft 2 corresponding to the radial electromagnet 4 1.
  • the thrust bearing 5 is attached to the inner peripheral surface of the mounting frame 1.
  • the permanent magnet 54 is formed to face the magnet 53.
  • the upper inner circumferential surface of the mounting frame 1 and the inner circumferential surface of the axial electromagnet 51 are protected by a rolling bearing or the like to protect the radial bearing 4 or the thrust bearing 5 from abnormal rotation of the rotary shaft 2 or the like.
  • Bearings 6, 7 are provided.
  • the rotating shaft 2 is composed of a large diameter portion 21, a medium diameter portion 22 inserted into the protective bearing 7, and a small diameter portion 23 for attaching a magnetic disc 52 and the like. These are a large diameter portion 21, The diameter is formed to be smaller in the order of the medium diameter portion 22 and the small diameter portion 23. Small diameter portion 2 3 of rotating shaft 2 The swinging of the rotating shaft is received by the rotating shaft runout suppressing bearing, and the swinging of the rotating shaft is suppressed.
  • FIG. 1 is a cross-sectional view of a magnetic bearing device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a control system of the same magnetic bearing device.
  • FIG. 3 is a view for explaining the operation of the same magnetic bearing device.
  • FIG. 4 is a view showing another example of the frusto-conical portion of the same magnetic bearing device.
  • FIG. 5 is a cross-sectional view of a magnetic bearing device according to a second embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration of a control system of the same magnetic bearing device.
  • FIG. 7 is a view for explaining the operation of the same magnetic bearing device.
  • FIG. 8 is a schematic cross-sectional view showing the configuration of a conventional magnetic bearing device, and hatching is omitted as appropriate in order to make the drawing easy to see.
  • FIG. 1 shows the configuration of the thrust bearing 5 and the protective bearing 7 which are main parts in the magnetic bearing device of the first embodiment of the present invention.
  • the magnetic bearing device of the first embodiment has substantially the same configuration as the magnetic bearing device described in FIG. 8 except for the thrust bearing 5 and the protective bearing 7 parts, so the same reference numerals are given to the same parts. The explanation is omitted appropriately.
  • a frusto-conical portion 2 4 having a tapered surface which linearly changes in the axial direction between the large diameter portion 2 1 and the medium diameter portion 2 2 of the rotating shaft 2.
  • the tapered surface of the second truncated conical portion 2 is formed so as to be in contact with the inner side edge of the inner ring 71 of the protective bearing 7.
  • the contact surface (crop surface) of the frusto-conical portion 24 has a curvature, as shown in Fig. 4 (A), as in the frusto-conical portion 24 A or in Fig. 4 (B). It may be a contact surface that has a curved surface in the axial direction.
  • the contact between the frusto-conical portion 24 and the inner ring 7 1 of the protective bearing 7 may be in any configuration as long as it contacts at three or more points. The aim is to reach the numbers. Disclosure of the invention
  • the rotating shaft and the radial direction of the rotating shaft are magnetically supported.
  • a three-axis control type magnetic bearing device comprising: a radial bearing, a thrust bearing for magnetically supporting the axial direction of the rotating shaft, and a protective bearing for protecting the radial bearing and the thrust bearing;
  • a control means is provided to form a contact between the rotary shaft and the protective bearing, and to control the rotary shaft to temporarily contact the protective bearing when the rotary shaft starts to rotate. Achieve the goal.
  • an inclined surface is formed on at least one of the rotary shaft and the protective bearing;
  • a rotary shaft a radial bearing that magnetically supports the radial direction of the rotary shaft, a thrust bearing that magnetically supports the axial direction of the rotary shaft, the radial bearing, and the thrust bearing.
  • a three-axis control type magnetic bearing device provided with a protective bearing for protecting the bearing, and a rotational shaft runout suppressing bearing for suppressing the runout of the rotary shaft, and when the rotation of the rotary shaft rises, The object is achieved by providing a control means for controlling the rotational shaft runout suppressing bearing to temporarily support the rotational shaft.
  • control means controls the rotational shaft and the protective bearing to be in temporary contact with each other at the time of the rise of the rotation of the rotational shaft, so that the swing of the rotational shaft is received by the protective bearing. Rotation of the rotating shaft is suppressed. Further, in the present invention, when the rotation of the rotation shaft rises, the rotation shaft and the protective bearing are temporarily brought into contact with each other, and the rotation of the rotation shaft is received by the protection bearing, so that the rotation of the rotation shaft is suppressed.
  • control means controls the rotational shaft runout suppressing bearing to temporarily support the rotational shaft at the time of start of rotation of the rotational shaft.
  • the inner weight of the inner ring 71 does not cover the inner edge of the inner ring 71. Therefore, in the control circuit 12, the determined radial and axial positions of the rotary shaft 2 become the target positions, and the weight of the rotary shaft 2 is from the inner surface side edge of the inner ring 71. Control each exciting current of radial electromagnet 41 and axial electromagnet 51 so as not to be in the state.
  • the rotary shaft 2 magnetically floated to the predetermined position is gradually accelerated from the stationary state and shifts to the rated rotation speed.
  • the rotation of rotation shaft 2 is started up, as described above, in the axial direction of rotation shaft 2, the tapered surface of its truncated conical portion 2 is in contact with the edge surface side edge of inner ring 7 1 of protective bearing 7. It is controlled to become. Therefore, even when the number of revolutions of the rotary shaft 2 reaches near the primary resonance point (the resonance point of the rigid mode) at the rise of the rotation of the rotary shaft 2, the swinging of the rotary shaft 2 is Since the tapered surface is received by the protective bearing 7, the rotary shaft 2 does not swing much.
  • the target position in the axial direction of the rotation shaft 2 is changed to the position of steady rotation. As shown in Fig. 3 (B), it rises from the state shown in Fig. 3 (A) and does not contact the protective bearing 7.
  • the conical portion 24 has a tapered surface, so the elevation is performed quickly and smoothly.
  • the rotational shaft 2 is controlled by the control circuit 12 so that the position in the axial direction becomes the position of steady rotation.
  • the tapered surface of the frusto-conical portion 24 of the rotary shaft 2 is brought into contact with the inner end of the protective bearing 7 when the rotation of the rotary shaft 2 rises. Therefore, at the rise of the rotation of the rotary shaft 2, it is avoided that the protective bearing 7 and the rotary shaft 2 rotate together even after the resonance point, and the steady rotation speed can be reached.
  • the rotary shaft 2 is provided with a truncated cone portion 24 and the tapered surface of the truncated cone portion 24 is in contact with the end face of the inner ring 71 of the protective bearing 7 in a self-existent manner. I did. However, in the present invention, the rotary shaft 2 and the protective bearing 7 can be in contact with each other.
  • FIG. 2 shows the configuration of the control system of the magnetic bearing device of FIG. The control system of this magnetic bearing device controls the magnetic levitation position of the rotary shaft 2 to the target position of the radial bearing 4 and thrust bearing 5 and suppresses the swinging of the rotary shaft 2 when the rotation of the rotary shaft 2 rises.
  • a control circuit 12 is provided in order to control the axial position of the rotary shaft 2.
  • the radial direction sensor 10, the axial direction sensor 11 and the rotational speed sensor 16 for detecting the rotational speed of the rotary shaft 2 are connected to the input side of the control circuit 12, and the radius on the output side of the control circuit 12.
  • Directional electromagnet 4 1 and axial electromagnet 5 1 are connected.
  • the control circuit 12 determines the position of the rotary shaft 2 based on the detection displacements of both the radial sensor 10 and the axial sensor 11 and compares the calculated position of the rotary shaft 2 with the target position.
  • the excitation currents of the radial electromagnets 4 1 and the axial electromagnets 5 1 are controlled so that the rotation axis 2 is at the target position.
  • control circuit 12 temporarily sets the tapered surface of frusto-conical portion 24 of rotation shaft 2 to the inner surface side edge of inner ring 71 of protection bearing 7 when rotation of rotation shaft 2 rises. Control to control the rotation of the rotary shaft 2 by making contact.
  • the rotating shaft 2 of the magnetic bearing device is magnetically levitated by the radial electromagnets 4 1 and the axial electromagnets 5 1.
  • the control circuit 12 receives the radial displacement of the rotary shaft 2 detected by the radial sensor 10 and the axial displacement of the rotary shaft 2 detected by the axial sensor 11.
  • the control circuit 12 determines the radial and axial positions of the rotary shaft 2 based on the detected displacement, compares the calculated position of the rotary shaft 2 with the target position, and achieves the target position in the radial direction. Control each exciting current of electromagnet 4 1 and axial electromagnet 5 1.
  • FIG. 6 shows the structure of the control system of the magnetic bearing device of FIG.
  • a control circuit 14 for controlling the axial position of the rotational shaft runout prevention bearing 13 is provided. That is, the radial direction sensor 10, the axial direction sensor 11 and the rotational speed sensor 16 for detecting the rotational speed of the rotary shaft 2 are connected to the input side of the control circuit 14.
  • the radial electromagnet 4 1 is connected to the output side.
  • a solenoid 15 is connected to reciprocate the axial electromagnet 51 and the rotary shaft runout suppressing bearing 13 as described above.
  • control circuit 14 obtains the position of the rotary shaft 2 based on the detected displacements of the radial sensor 10 and the axial sensor 1 1, and compares the calculated position of the rotary shaft 2 with the target position, The excitation currents of the radial electromagnet 41 and the axial electromagnet 51 are controlled so that the rotation shaft 2 is at the target position. Furthermore, in addition to the control described above, the control circuit 14 is configured such that the rotation shaft 2 is temporarily supported by the rotation shaft runout suppression bearing 13 when the rotation of the rotation shaft 2 rises. The position of the anti-rotation bearing 1 3 is controlled.
  • the rotating shaft 2 of the magnetic bearing device is magnetically levitated by the radial electromagnets 4 1 and the axial electromagnets 5 1.
  • the control circuit 14 receives the radial displacement of the rotary shaft 2 detected by the radial sensor 10 and the axial displacement of the rotary shaft 2 detected by the axial sensor 11.
  • the control circuit 14 determines the radial and axial positions of the rotary shaft 2 based on the detected displacement, compares the calculated position of the rotary shaft 2 with the target position, and achieves the target position in the radial direction. Control each exciting current of electromagnet 4 1 and axial electromagnet 5 1. Since the control circuit 14 excites the solenoid 15 prior to the start of the rotation of the rotary shaft 2, the rotary shaft runout suppressing bearing 13 is in the position shown in FIG. 7 (A).
  • the rotating shaft 2 thus magnetically levitated to the target position is moved to the high frequency motor 3.
  • the configuration is the same regardless of its form, for example, the rotary shaft 2 is configured as in FIG. 8 so that the lower end edge of the large diameter portion 21 of the rotary shaft 2 can contact the inner ring 71 of the protective bearing 7
  • the inner surface side of the inner ring 71 may be formed in a funnel shape.
  • the rotary shaft 2 and the protective bearing 7 may be in surface contact with each other when the rotary shaft 2 rotates.
  • the inner surface side of the inner ring 71 of the protective bearing 7 is formed into a funnel shape so that the truncated cone portion 24 of the rotation shaft 2 is in surface contact.
  • the magnetic bearing device of the second embodiment has substantially the same structure as the magnetic bearing device described in FIG. 1 except for the thrust bearing 5 and the protective bearing 7, so the same reference numerals are given to the same parts. And the description is omitted as appropriate.
  • FIG. 5 shows the configuration of the thrust bearing 5 and the protective bearing 7 in the magnetic bearing device of the second embodiment.
  • the permanent magnet 53 attached to the lower end of the rotary shaft 2 is faced downward by a frusto-conical portion 5 31 having a tapered surface that linearly changes in the axial direction.
  • the conical portion 5 31 is configured to be supported by the rotary shaft runout suppressing bearing 13 for suppressing the runout of the rotary shaft 2 when the rotation of the rotary shaft 2 rises. Be done.
  • the contact surface (taper surface) of the frusto-conical portion 51 1 may not only change linearly in the axial direction, but also may change in a curve in the axial direction, that is, a contact surface having a curvature.
  • the rotational shaft runout suppressing bearing 13 is formed of a rolling bearing or the like, and the inner surface side of the inner ring 1 31 is formed in a funnel shape so that the truncated conical portion 5 31 of the permanent magnet 5 3 can be inserted and received. Be done. Further, the rotary shaft runout suppressing bearing 1 3 is configured to be able to reciprocate between the position shown in FIG. 5 and a predetermined position lower than the position by using a solenoid (not shown) or the like. Be done.
  • the conical portion 5 31 is formed on the permanent magnet 5 3 side, and the rotation shaft runout suppressing bearing 13 corresponding to this is formed into a funnel shape as described later. This is to allow the smooth operation of the shaft runout suppressing bearing 13 when it ascends and descends.
  • a rotary shaft, a radial bearing that magnetically supports the radial direction of the rotary shaft, a thrust bearing that magnetically supports the axial direction of the rotary shaft, the radial bearing and the thrust bearing are protected in a three-axis control type magnetic bearing device provided with
  • a magnetic bearing device comprising: a control unit configured to control the rotating shaft and the protective bearing to be in temporary contact with each other at the time of start of rotation of the rotating shaft.
  • the magnetic bearing device characterized in that: 3. A rotary shaft, a radial bearing that magnetically supports the radial direction of the rotary shaft, a thrust bearing that magnetically supports the axial direction of the rotary shaft, the radial bearing and the thrust bearing are protected In a three-axis control type magnetic bearing device provided with
  • a rotation shaft runout suppression bearing for suppressing the runout of the rotation shaft is provided, and the rotation shaft runout suppression bearing is controlled so as to temporarily support the rotation shaft when the rotation of the rotation shaft rises.
  • a magnetic bearing device characterized by comprising:
  • the motor When energization is performed, the motor is gradually accelerated from the stationary state and shifts to the rated speed.
  • the rotation of the rotary shaft 2 is started up, as described above, the frusto-conical portion 5 31 of the permanent magnet 5 3 integral with the rotary shaft 2 is temporarily inserted into the rotary shaft runout suppression bearing 13. Be supported. Therefore, when the rotation speed of the rotation shaft 2 reaches the vicinity of the primary resonance point (the resonance point of the rigid mode) at the rising of the rotation of the rotation shaft 2, the rotation of the rotation shaft 2 is Since the taper surface of 5 3 1 is received by the rotary shaft runout suppressing bearing 13, large swinging of the rotary shaft 2 is suppressed.
  • the control circuit 14 releases the excitation of the solenoid 15 so that the rotational shaft runout suppression bearing 1 3 is lowered from the position shown in Fig. 7 (A) to the specified position as shown in Fig. 7 (B) and is in non-contact with the frusto-conical portion 5 3 1 of the permanent magnet 53, maintaining that state Do. Thereafter, the rotary shaft 2 is controlled by the control circuit 14 so as to be at the target position.
  • the frusto-conical portion 5 31 of the permanent magnet 5 3 integral with the rotary shaft 2 is temporarily used in the rotary shaft runout suppressing bearing 13. Was made to be bearing. Therefore, at the rising of the rotation of the rotary shaft 2, the protective bearing 7 and the rotary shaft 2 are prevented from moving together even after the resonance point, so that the steady rotation speed can be reached.
  • the runout of the rotary shaft is suppressed at the time of rising of the rotation of the rotary shaft, so even if the protective bearing and the rotary shaft pass the resonance point, It can be avoided to rotate and can reach a steady speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

A magnetic bearing device comprising a protective bearing that makes contact with a rotating shaft in the beginning to prevent vibrations so that the shaft speed may increase stably and reach a steady state. A frusto-conical portion (24) (tapered linearly or otherwise) is formed between a larger-diameter portion (21) and an intermediate-diameter portion (22) of the shaft (2). The surface of the frusto-conical portion (24) can freely make contact with an inner edge of the inner race (71) of the protective bearing (7). When the shaft (2) begins rotating, therefore, the surface of the frusto-conical portion (24) of the shaft (2) is brought into contact with the inner edge of the protective bearing (7). Accordingly, the shaft (2), the vibrations of the shaft (2) is absorbed by the protective bearing (7) via the surface of the frusto-conical portion (24), so that the vibrations of the rotary shaft (2) can be minimized.

Description

明 細 書 磁気軸受装置 技術分野  Magnetic bearing device Technical field
本発明は、 ターボ分子ポンプや工作機械の主軸などに応用される磁気軸 受装置に関する。 背景技術  The present invention relates to a magnetic bearing device applied to a turbo molecular pump or a spindle of a machine tool. Background art
従来、 ターボ分子ポンプに組み込まれて使用される磁気軸受装置として は、 例えば図 8に示すような 3軸制御型のものが知られている。  Conventionally, as a magnetic bearing device incorporated and used in a turbo molecular pump, for example, a three-axis control type as shown in FIG. 8 is known.
この磁気軸受装置は、 両端が開口する円筒型の取付枠 1を有し、 この取 付枠 1内の中央に回転軸 2を駆動する高周波モータ 3を配置させている。 回転軸 2は、 半径方向をラジアル軸受 4で磁気的に支持させるとともに、 その軸方向をスラス ト軸受 5で磁気的に支持させるように構成されている ラジアル軸受 4は、 取付枠 1の内周面に取り付けられた半径方向電磁石 4 1 と、 半径方向電磁石 4 1に対応して回転軸 2に取り付けられた回転子 鉄心 4 2とから形成される。 スラス ト軸受 5は、 取付枠 1の内周面に取り 付けた.軸方向電磁石 5 1 と、 回転軸 2の下端部に一体に取り付けたァーマ チヤディスク 5 2および永久磁石 5 3と、 この永久磁石 5 3に対向する永 久磁石 5 4とから形成される。 取付枠 1の上側の内周面と軸方向電磁石 5 1の内周面には、 回転軸 2の異常回転などからラジアル軸受 4またはスラ ス ト軸受 5を保護するために、 ころがり軸受などの保護軸受 6 、 7が設け られている。  This magnetic bearing device has a cylindrical mounting frame 1 which is open at both ends, and a high frequency motor 3 for driving a rotating shaft 2 is disposed at the center of the mounting frame 1. The rotary shaft 2 is configured to magnetically support the radial direction by the radial bearing 4 and to axially support the axial direction by the thrust bearing 5. The radial bearing 4 is an inner periphery of the mounting frame 1. It is formed of a radial electromagnet 4 1 attached to the surface and a rotor core 4 2 attached to the rotary shaft 2 corresponding to the radial electromagnet 4 1. The thrust bearing 5 is attached to the inner peripheral surface of the mounting frame 1. The axial electromagnet 51, the armature disc 52 and the permanent magnet 53 integrally attached to the lower end of the rotary shaft 2, and the permanent magnet The permanent magnet 54 is formed to face the magnet 53. The upper inner circumferential surface of the mounting frame 1 and the inner circumferential surface of the axial electromagnet 51 are protected by a rolling bearing or the like to protect the radial bearing 4 or the thrust bearing 5 from abnormal rotation of the rotary shaft 2 or the like. Bearings 6, 7 are provided.
回転軸 2は、 大径部 2 1 と、 保護軸受 7に挿通される中径部 2 2と、 ァ 一マチヤディスク 5 2などを取り付ける小径部 2 3からなり、 これらは大 径部 2 1、 中径部 2 2、 小径部 2 3の順でその径が小さくなるように形成 されている。 回転軸 2の小径部 2 3にスぺーサ 8、 ァ一マチヤディスク 5 回転軸の振れ回りが回転軸振れ回り抑制用軸受で受けられて、 回転軸の振 れ回りが抑制される。 図面の簡単な説明 The rotating shaft 2 is composed of a large diameter portion 21, a medium diameter portion 22 inserted into the protective bearing 7, and a small diameter portion 23 for attaching a magnetic disc 52 and the like. These are a large diameter portion 21, The diameter is formed to be smaller in the order of the medium diameter portion 22 and the small diameter portion 23. Small diameter portion 2 3 of rotating shaft 2 The swinging of the rotating shaft is received by the rotating shaft runout suppressing bearing, and the swinging of the rotating shaft is suppressed. Brief description of the drawings
図 1は、 本発明の第 1実施例である磁気軸受装置の断面図である。  FIG. 1 is a cross-sectional view of a magnetic bearing device according to a first embodiment of the present invention.
図 2は、 同磁気軸受装置の制御系の構成を示すプロック図である。  FIG. 2 is a block diagram showing a configuration of a control system of the same magnetic bearing device.
図 3は、 同磁気軸受装置の動作を説明する図である。  FIG. 3 is a view for explaining the operation of the same magnetic bearing device.
図 4は、 同磁気軸受装置の円錐台形部の他の例を示す図である。  FIG. 4 is a view showing another example of the frusto-conical portion of the same magnetic bearing device.
図 5は、 本発明の第 2実施例である磁気軸受装置の断面図である。  FIG. 5 is a cross-sectional view of a magnetic bearing device according to a second embodiment of the present invention.
図 6は、 同磁気軸受装置の制御系の構成を示すブロック図である。  FIG. 6 is a block diagram showing a configuration of a control system of the same magnetic bearing device.
図 7は、 同磁気軸受装置の動作を説明する図である。  FIG. 7 is a view for explaining the operation of the same magnetic bearing device.
図 8は、 従来の磁気軸受装置の構成を示す概略断面図であり、 図面を見 易くするために必要に応じて適宜ハッチングは省略している。 発明を実施するための最良の形態  FIG. 8 is a schematic cross-sectional view showing the configuration of a conventional magnetic bearing device, and hatching is omitted as appropriate in order to make the drawing easy to see. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図 1ないし図 7を参照して詳細に説明する。 図 1は、 本発明の第 1実施例の磁気軸受装置において、 要部であるスラ スト軸受 5および保護軸受 7の部分の構成を表したものである。 なお、 第 1実施例の磁気軸受装置は、 スラス ト軸受 5および保護軸受 7の部分を除 き図 8で説明した磁気軸受装置とほぼ同様の構成であるので、 同一部分に は同一符号を付してその説明を適宜省略する。  Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 7. FIG. 1 shows the configuration of the thrust bearing 5 and the protective bearing 7 which are main parts in the magnetic bearing device of the first embodiment of the present invention. The magnetic bearing device of the first embodiment has substantially the same configuration as the magnetic bearing device described in FIG. 8 except for the thrust bearing 5 and the protective bearing 7 parts, so the same reference numerals are given to the same parts. The explanation is omitted appropriately.
この磁気軸受装置では、 図 1に示すように、 回転軸 2の大径部 2 1 と中 径部 2 2 との間に、 軸方向に直線的に変化するテーパ面を有する円錐台形 部 2 4を形成させるとともに、 二の円錐台形部 2 のテ一パ面が保護軸受 7の内輪 7 1の内面側端縁に接触自在に形成させる。 円錐台形部 2 4の接 触面 (テ一パ面) は、 図 4 ( A ) に示す円錐台形部 2 4 Aまたは図 4 ( B ) に示す円錐台形部 2 4 Bのように、 曲率を持つ接触面、 すなわち軸方向 に曲線的に変化する接触面でも良い。 また、 円錐台形部 2 4と保護軸受 7 の内輪 7 1 との接触は、 3点以上で接触する構成であれば良い。 数に到達させることを目的とする。 発明の開示 In this magnetic bearing device, as shown in FIG. 1, a frusto-conical portion 2 4 having a tapered surface which linearly changes in the axial direction between the large diameter portion 2 1 and the medium diameter portion 2 2 of the rotating shaft 2. And the tapered surface of the second truncated conical portion 2 is formed so as to be in contact with the inner side edge of the inner ring 71 of the protective bearing 7. The contact surface (crop surface) of the frusto-conical portion 24 has a curvature, as shown in Fig. 4 (A), as in the frusto-conical portion 24 A or in Fig. 4 (B). It may be a contact surface that has a curved surface in the axial direction. Also, the contact between the frusto-conical portion 24 and the inner ring 7 1 of the protective bearing 7 may be in any configuration as long as it contacts at three or more points. The aim is to reach the numbers. Disclosure of the invention
本発明では、 回転軸と、 この回転軸の半径方向を磁気的に支持す  In the present invention, the rotating shaft and the radial direction of the rotating shaft are magnetically supported.
るラジアル軸受と、 前記回転軸の軸方向を磁気的に支持するスラス ト軸受と、 前記ラジアル軸受および前記スラス ト軸受を保護する保護軸受 とを備えた 3軸制御型の磁気軸受装置に、 前記回転軸と前記保護軸受とを 接触自在に形成し、 前記回転軸の回転の立上り時に、 前記回転軸と前記保 護軸受とが一時的に接触するように制御する制御手段を具備させて前記目 的を達成する。  A three-axis control type magnetic bearing device comprising: a radial bearing, a thrust bearing for magnetically supporting the axial direction of the rotating shaft, and a protective bearing for protecting the radial bearing and the thrust bearing; A control means is provided to form a contact between the rotary shaft and the protective bearing, and to control the rotary shaft to temporarily contact the protective bearing when the rotary shaft starts to rotate. Achieve the goal.
また、 本発明では、 前記記載の磁気軸受装置において、 前記回転軸と前 記保護軸受との接触部において、 前記回転軸と前記保護軸受との少なく と も一方に傾斜面を形成させ、 前記回転軸と前記保護軸受とを接触させるよ うにしたことで前記目的を達成する。  Further, in the magnetic bearing device according to the present invention, in the contact portion between the rotary shaft and the protective bearing, an inclined surface is formed on at least one of the rotary shaft and the protective bearing; The above object is achieved by bringing the shaft and the protective bearing into contact with each other.
さらに、 本発明では、 回転軸と、 この回転軸の半径方向を磁気的に支持 するラジアル軸受と、 前記回転軸の軸方向を磁気的に支持するスラス ト軸 受と、 前記ラジアル軸受および前記スラス ト軸受を保護する保護軸受とを 備えた 3軸制御型の磁気軸受装置に、 前記回転軸の振れ回りを抑制する回 転軸振れ回り抑制用軸受を備え、 前記回転軸の回転の立上り時に、 前記回 転軸振れ回り抑制用軸受が前記回転軸を一時的に軸受けするように制御す る制御手段を備えたことで前記目的を達成する。  Furthermore, in the present invention, a rotary shaft, a radial bearing that magnetically supports the radial direction of the rotary shaft, a thrust bearing that magnetically supports the axial direction of the rotary shaft, the radial bearing, and the thrust bearing. A three-axis control type magnetic bearing device provided with a protective bearing for protecting the bearing, and a rotational shaft runout suppressing bearing for suppressing the runout of the rotary shaft, and when the rotation of the rotary shaft rises, The object is achieved by providing a control means for controlling the rotational shaft runout suppressing bearing to temporarily support the rotational shaft.
このことによって、 本発明では、 制御手段が、 回転軸の回転の立上り時 に、 回転軸と保護軸受とが一時的に接触するように制御するので、 回転軸 の振れ回りが保護軸受で受けられて、 回転軸の振れ回りが抑制される。 また、 本発明では、 回転軸の回転の立上り時に、 回転軸と保護軸受とが 一時的に接触され、 回転軸の振れ回りが保護軸受で受けられるので、 回転 軸の振れ回りが抑制される。  By this, in the present invention, the control means controls the rotational shaft and the protective bearing to be in temporary contact with each other at the time of the rise of the rotation of the rotational shaft, so that the swing of the rotational shaft is received by the protective bearing. Rotation of the rotating shaft is suppressed. Further, in the present invention, when the rotation of the rotation shaft rises, the rotation shaft and the protective bearing are temporarily brought into contact with each other, and the rotation of the rotation shaft is received by the protection bearing, so that the rotation of the rotation shaft is suppressed.
さらに、 本発明では、 制御手段が、 回転軸の回転の立上り時に、 回転軸 振れ回り抑制用軸受が回転軸を一時的に軸受けするように制御するので、 の自重がその内輪 7 1の内面側端縁にかからない状態とする。 そのため、 制御回路 1 2は、 その求めた回転軸 2の半径方向と軸方向の位置がその目 標位置になり、 しかも回転軸 2の自重がその内輪 7 1の内面側端縁にかか らない状態になるように、 半径方向電磁石 4 1および軸方向電磁石 5 1の 各励磁電流を制御する。 Furthermore, in the present invention, the control means controls the rotational shaft runout suppressing bearing to temporarily support the rotational shaft at the time of start of rotation of the rotational shaft. The inner weight of the inner ring 71 does not cover the inner edge of the inner ring 71. Therefore, in the control circuit 12, the determined radial and axial positions of the rotary shaft 2 become the target positions, and the weight of the rotary shaft 2 is from the inner surface side edge of the inner ring 71. Control each exciting current of radial electromagnet 41 and axial electromagnet 51 so as not to be in the state.
このようにして所定位置に磁気浮上した回転軸 2は、 高周波モータ 3へ の通電が行われると、 静止状態から徐々に加速されて定格回転数に移行し ていく。 ところが、 この回転軸 2の回転の立上げ時には、 上述のように回 転軸 2の軸方向はその円錐台形部 2 のテーパ面が保護軸受 7の内輪 7 1 の內面側端縁と接触状態になるように制御されている。 そのため、 回転軸 2の回転の立上り時において、 回転軸 2の回転数が 1次共振点 (剛性モー ドの共振点) 付近に達しても、 回転軸 2の振れ回りを円錐台形部 2 4のテ ーパ面が保護軸受 7で受けているので、 回転軸 2は大きく振れ回ることは ない。  Thus, when the high frequency motor 3 is energized, the rotary shaft 2 magnetically floated to the predetermined position is gradually accelerated from the stationary state and shifts to the rated rotation speed. However, when the rotation of rotation shaft 2 is started up, as described above, in the axial direction of rotation shaft 2, the tapered surface of its truncated conical portion 2 is in contact with the edge surface side edge of inner ring 7 1 of protective bearing 7. It is controlled to become. Therefore, even when the number of revolutions of the rotary shaft 2 reaches near the primary resonance point (the resonance point of the rigid mode) at the rise of the rotation of the rotary shaft 2, the swinging of the rotary shaft 2 is Since the tapered surface is received by the protective bearing 7, the rotary shaft 2 does not swing much.
その後、 回転数センサ 1 6が検出する回転軸 2の回転数が 1次共振点を 通過すると、 回転軸 2の軸方向の目標位置が定常回転の位置に変更される ので、 回転軸 2は、 図 3 ( A) の状態から上昇して図 3 ( B ) に示すよう に保護軸受 7と非接触状態になる。 回転軸 2の上昇時には、 円錐台形部 2 4がテーパ面を有するので、 その上昇は迅速かつ円滑に行われる。 以後、 回転軸 2は、 その軸方向の位置が定常回転の位置になるように、 制御回路 1 2により制御される。  After that, when the rotation speed of the rotation shaft 2 detected by the rotation speed sensor 16 passes the primary resonance point, the target position in the axial direction of the rotation shaft 2 is changed to the position of steady rotation. As shown in Fig. 3 (B), it rises from the state shown in Fig. 3 (A) and does not contact the protective bearing 7. When the rotary shaft 2 is elevated, the conical portion 24 has a tapered surface, so the elevation is performed quickly and smoothly. Thereafter, the rotational shaft 2 is controlled by the control circuit 12 so that the position in the axial direction becomes the position of steady rotation.
以上述べた第 1実施例によれば、 回転軸 2の回転の立上り時に、 回転軸 2の円錐台形部 2 4のテーパ面を保護軸受 7の内面側端緣に接触させるよ うにした。 従って、 回転軸 2の回転の立上り時には、 保護軸受 7と回転軸 2が共振点を過ぎても連れ回ることが避けられ、 もって定常回転数に到達 させることができる。  According to the first embodiment described above, the tapered surface of the frusto-conical portion 24 of the rotary shaft 2 is brought into contact with the inner end of the protective bearing 7 when the rotation of the rotary shaft 2 rises. Therefore, at the rise of the rotation of the rotary shaft 2, it is avoided that the protective bearing 7 and the rotary shaft 2 rotate together even after the resonance point, and the steady rotation speed can be reached.
なお、 上記の第 1実施例では、 回転軸 2に円錐台形部 2 4を設け、 この 円錐台形部 2 4のテ一パ面が保護軸受 7の内輪 7 1の内面側端緣に接触自 在と した。 しかし、 本発明は、 回転軸 2と保護軸受 7とが接触自在とする 図 2は、 図 1の磁気軸受装置の制御系の構成を表したものである。 この磁気軸受装置の制御系は、 回転軸 2の磁気浮上位置をラジアル軸受 4およびスラス ト軸受 5の目標位置に制御するとともに、 回転軸 2の回転 の立上り時に回転軸 2の振れ回りを抑制するために、 回転軸 2の軸方向の 位置を制御する制御回路 1 2を備えている。 In the first embodiment described above, the rotary shaft 2 is provided with a truncated cone portion 24 and the tapered surface of the truncated cone portion 24 is in contact with the end face of the inner ring 71 of the protective bearing 7 in a self-existent manner. I did. However, in the present invention, the rotary shaft 2 and the protective bearing 7 can be in contact with each other. FIG. 2 shows the configuration of the control system of the magnetic bearing device of FIG. The control system of this magnetic bearing device controls the magnetic levitation position of the rotary shaft 2 to the target position of the radial bearing 4 and thrust bearing 5 and suppresses the swinging of the rotary shaft 2 when the rotation of the rotary shaft 2 rises. In order to control the axial position of the rotary shaft 2, a control circuit 12 is provided.
すなわち、 制御回路 1 2の入力側に半径方向センサ 1 0、 軸方向センサ 1 1、 および回転軸 2の回転数を検出する回転数センサ 1 6が接続され、 制御回路 1 2の出力側に半径方向電磁石 4 1および軸方向電磁石 5 1が接 続されている。 そして、 制御回路 1 2は、 半径方向センサ 1 0と軸方向セ ンサ 1 1の両検出変位に基づいて回転軸 2の位置を求め、 その求めた回転 軸 2の位置を目標位置と比較し、 回転軸 2が目標位置になるように、 半径 方向電磁石 4 1および軸方向電磁石 5 1の各励磁電流を制御するようにな つている。 さらに制御回路 1 2は、 上記の制御に加えて、 回転軸 2の回転 の立上り時に、 回転軸 2の円錐台形部 2 4のテーパ面を保護軸受 7の内輪 7 1の内面側端縁に一時的に接触させ、 回転軸 2の振れ回りを抑制するた めの制御をするようになっている。  That is, the radial direction sensor 10, the axial direction sensor 11 and the rotational speed sensor 16 for detecting the rotational speed of the rotary shaft 2 are connected to the input side of the control circuit 12, and the radius on the output side of the control circuit 12. Directional electromagnet 4 1 and axial electromagnet 5 1 are connected. Then, the control circuit 12 determines the position of the rotary shaft 2 based on the detection displacements of both the radial sensor 10 and the axial sensor 11 and compares the calculated position of the rotary shaft 2 with the target position. The excitation currents of the radial electromagnets 4 1 and the axial electromagnets 5 1 are controlled so that the rotation axis 2 is at the target position. Furthermore, in addition to the above control, control circuit 12 temporarily sets the tapered surface of frusto-conical portion 24 of rotation shaft 2 to the inner surface side edge of inner ring 71 of protection bearing 7 when rotation of rotation shaft 2 rises. Control to control the rotation of the rotary shaft 2 by making contact.
次に、 このように構成される第 1実施例の動作について説明する。  Next, the operation of the first embodiment configured as described above will be described.
いま、 電源が投入されると、 磁気軸受装置の回転軸 2は、 半径方向電磁 石 4 1 と軸方向電磁石 5 1 とによって磁気浮上される。 制御回路 1 2には 、 半径方向センサ 1 0が検出する回転軸 2の半径方向の変位と、 軸方向セ ンサ 1 1が検出する回転軸 2の軸方向の変位とが入力される。 制御回路 1 2は、 その検出変位に基づいて回転軸 2の半径方向と軸方向の位置を求め 、 その求めた回転軸 2の位置を目標位置と比較し、 目標位置になるように 、 半径方向電磁石 4 1および軸方向電磁石 5 1の各励磁電流を制御する。 ところで、 回転軸 2の回転の立上り時 (開始時) には、 回転軸 2の半径 方向の目標位置はラジアル軸受 4の中心位置とする。 回転軸 2の軸方向の 目標位置は、 図 3 ( A ) に示すように円錐台形部 2 4のテ一パ面が保護軸 受 7の内輪 7 1の内面側端縁と接触状態になる位置とし、 しかも回転軸 2 図 6は、 図 5の磁気軸受装置の制御系の構 を表したものである。 この磁気軸受装置の制御系では、 回転軸 2の磁気浮上位置をラジアル軸 受 4およびスラス ト軸受 5の目標位置に制御するとともに、 回転軸 2の回 転の立上り時に回転軸 2の振れ回りを抑制するために、 回転軸振れ回り抑 制用軸受 1 3の軸方向の位置を制御する制御回路 1 4を備えている。 すなわち、 制御回路 1 4の入力側に半径方向センサ 1 0、 軸方向センサ 1 1、 および回転軸 2の回転数を検出する回転数センサ 1 6が接続され、 その出力側に半径方向電磁石 4 1、 軸方向電磁石 5 1、 および回転軸振れ 回り抑制用軸受 1 3を上述のように往復動させるためのソレノィ ド 1 5が 接続されている。 そして、 制御回路 1 4は、 半径方向センサ 1 0と軸方向 センサ 1 1の両検出変位に基づいて回転軸 2の位置を求め、 その求めた回 転軸 2の位置を目標位置と比較し、 回転軸 2が目標位置になるように、 半 径方向電磁石 4 1および軸方向電磁石 5 1の各励磁電流を制御するように なっている。 さらに制御回路 1 4は、 上記の制御に加えて、 回転軸 2の回 転の立上り時に、 回転軸 2が回転軸振れ回り抑制用軸受 1 3に一時的に軸 受けされるように、 回転軸振れ回り抑制用軸受 1 3の位置を制御をするよ うになつている。 Now, when the power is turned on, the rotating shaft 2 of the magnetic bearing device is magnetically levitated by the radial electromagnets 4 1 and the axial electromagnets 5 1. The control circuit 12 receives the radial displacement of the rotary shaft 2 detected by the radial sensor 10 and the axial displacement of the rotary shaft 2 detected by the axial sensor 11. The control circuit 12 determines the radial and axial positions of the rotary shaft 2 based on the detected displacement, compares the calculated position of the rotary shaft 2 with the target position, and achieves the target position in the radial direction. Control each exciting current of electromagnet 4 1 and axial electromagnet 5 1. By the way, when the rotation of the rotation shaft 2 rises (when it starts), the target position of the rotation shaft 2 in the radial direction is the center position of the radial bearing 4. The target position in the axial direction of the rotary shaft 2 is the position where the tapered surface of the truncated cone 24 comes into contact with the inner edge of the inner ring 7 1 of the protective bearing 7 as shown in FIG. 3 (A). And the axis of rotation 2 FIG. 6 shows the structure of the control system of the magnetic bearing device of FIG. In the control system of this magnetic bearing device, the magnetic levitation position of the rotary shaft 2 is controlled to the target position of the radial bearing 4 and thrust bearing 5, and the swing of the rotary shaft 2 is In order to suppress this, a control circuit 14 for controlling the axial position of the rotational shaft runout prevention bearing 13 is provided. That is, the radial direction sensor 10, the axial direction sensor 11 and the rotational speed sensor 16 for detecting the rotational speed of the rotary shaft 2 are connected to the input side of the control circuit 14. The radial electromagnet 4 1 is connected to the output side. A solenoid 15 is connected to reciprocate the axial electromagnet 51 and the rotary shaft runout suppressing bearing 13 as described above. Then, the control circuit 14 obtains the position of the rotary shaft 2 based on the detected displacements of the radial sensor 10 and the axial sensor 1 1, and compares the calculated position of the rotary shaft 2 with the target position, The excitation currents of the radial electromagnet 41 and the axial electromagnet 51 are controlled so that the rotation shaft 2 is at the target position. Furthermore, in addition to the control described above, the control circuit 14 is configured such that the rotation shaft 2 is temporarily supported by the rotation shaft runout suppression bearing 13 when the rotation of the rotation shaft 2 rises. The position of the anti-rotation bearing 1 3 is controlled.
次に、 このよ うに構成される第 2実施例の動作について説明する。  Next, the operation of the second embodiment configured as described above will be described.
いま、 電源が投入されると、 磁気軸受装置の回転軸 2は、 半径方向電磁 石 4 1 と軸方向電磁石 5 1 とによって磁気浮上される。 制御回路 1 4には 、 半径方向センサ 1 0が検出する回転軸 2の半径方向の変位と、 軸方向セ ンサ 1 1が検出する回転軸 2の軸方向の変位とが入力される。 制御回路 1 4は、 その検出変位に基づいて回転軸 2の半径方向と軸方向の位置を求め 、 その求めた回転軸 2の位置を目標位置と比較し、 目標位置になるように 、 半径方向電磁石 4 1および軸方向電磁石 5 1 の各励磁電流を制御する。 この回転軸 2の回転の開始に先立って、 制御回路 1 4がソレノイ ド 1 5を 励磁するので、 回転軸振れ回り抑制用軸受 1 3は図 7 ( A ) に示す位置に ある。  Now, when the power is turned on, the rotating shaft 2 of the magnetic bearing device is magnetically levitated by the radial electromagnets 4 1 and the axial electromagnets 5 1. The control circuit 14 receives the radial displacement of the rotary shaft 2 detected by the radial sensor 10 and the axial displacement of the rotary shaft 2 detected by the axial sensor 11. The control circuit 14 determines the radial and axial positions of the rotary shaft 2 based on the detected displacement, compares the calculated position of the rotary shaft 2 with the target position, and achieves the target position in the radial direction. Control each exciting current of electromagnet 4 1 and axial electromagnet 5 1. Since the control circuit 14 excites the solenoid 15 prior to the start of the rotation of the rotary shaft 2, the rotary shaft runout suppressing bearing 13 is in the position shown in FIG. 7 (A).
このようにして目標位置に磁気浮上した回転軸 2は、 高周波モータ 3へ 構成であればその形態は問わず、 例えば回転軸 2は図 8と同様に構成し、 この回転軸 2の大径部 2 1の下端緣が保護軸受 7の内輪 7 1に接触自在に なるように、 その内輪 7 1の内面側を漏斗状に形成するようにしてもよい 。 また、 回転軸 2と保護軸受 7とは、 回転軸 2の回転の立上がり時に、 面 接触するようにしてもよい。 この場合には、 回転軸 2の円錐台形部 2 4が 面接触するように、 保護軸受 7の内輪 7 1の内面側を漏斗状に形成させる 次に、 本発明の第 2実施例の磁気軸受装置について説明する。 なお、 こ の第 2実施例の磁気軸受装置は、 スラス ト軸受 5および保護軸受 7の部分 を除き図 1で説明した磁気軸受装置とほぼ同様の構成であるので、 同一部 分には同一符号を付してその説明を適宜省略する。 The rotating shaft 2 thus magnetically levitated to the target position is moved to the high frequency motor 3. The configuration is the same regardless of its form, for example, the rotary shaft 2 is configured as in FIG. 8 so that the lower end edge of the large diameter portion 21 of the rotary shaft 2 can contact the inner ring 71 of the protective bearing 7 Alternatively, the inner surface side of the inner ring 71 may be formed in a funnel shape. Further, the rotary shaft 2 and the protective bearing 7 may be in surface contact with each other when the rotary shaft 2 rotates. In this case, the inner surface side of the inner ring 71 of the protective bearing 7 is formed into a funnel shape so that the truncated cone portion 24 of the rotation shaft 2 is in surface contact. Next, the magnetic bearing of the second embodiment of the present invention The apparatus will be described. The magnetic bearing device of the second embodiment has substantially the same structure as the magnetic bearing device described in FIG. 1 except for the thrust bearing 5 and the protective bearing 7, so the same reference numerals are given to the same parts. And the description is omitted as appropriate.
図 5は、 第 2実施例の磁気軸受装置において、 スラス ト軸受 5および保 護軸受 7の部分の構成を表したものである。  FIG. 5 shows the configuration of the thrust bearing 5 and the protective bearing 7 in the magnetic bearing device of the second embodiment.
この磁気軸受装置では、 図 5に示すように、 回転軸 2の下端部に取付け た永久磁石 5 3に、 軸方向に直線的に変化するテーパ面を有する円錐台形 部 5 3 1を下方に向けて突設させるとともに、 この円錐台形部 5 3 1が回 転軸 2の回転の立上り時に、 回転軸 2の振れ回りを抑制する回転軸振れ回 り抑制用軸受 1 3に軸受けされるように構成される。 円錐台形部 5 3 1の 接触面 (テーパ面) は、 軸方向に直線的に変化するのみならず、 軸方向に 曲線的に変化するもの, すなわち曲率を持つ接触面でも良い。  In this magnetic bearing device, as shown in FIG. 5, the permanent magnet 53 attached to the lower end of the rotary shaft 2 is faced downward by a frusto-conical portion 5 31 having a tapered surface that linearly changes in the axial direction. The conical portion 5 31 is configured to be supported by the rotary shaft runout suppressing bearing 13 for suppressing the runout of the rotary shaft 2 when the rotation of the rotary shaft 2 rises. Be done. The contact surface (taper surface) of the frusto-conical portion 51 1 may not only change linearly in the axial direction, but also may change in a curve in the axial direction, that is, a contact surface having a curvature.
回転軸振れ回り抑制用軸受 1 3は、 ころがり軸受などからなり、 その内 輪 1 3 1の内面側が、 永久磁石 5 3の円錐台形部 5 3 1が挿通して軸受け できるように漏斗状に形成される。 また、 回転軸振れ回り抑制用軸受 1 3 は、 ソレノイ ド (図示せず) などの利用により、 図 5で示す位置とその位 置よりも下方の所定位置との間を往復動できるように構成される。  The rotational shaft runout suppressing bearing 13 is formed of a rolling bearing or the like, and the inner surface side of the inner ring 1 31 is formed in a funnel shape so that the truncated conical portion 5 31 of the permanent magnet 5 3 can be inserted and received. Be done. Further, the rotary shaft runout suppressing bearing 1 3 is configured to be able to reciprocate between the position shown in FIG. 5 and a predetermined position lower than the position by using a solenoid (not shown) or the like. Be done.
なお、 上記のように、 永久磁石 5 3側に円錐台形部 5 3 1を形成させ、 これに対応して回転軸振れ回り抑制用軸受 1 3を漏斗状にするのは、 後述 のように回転軸振れ回り抑制用軸受 1 3が上昇、 下降する際に、 その動作 が円滑に行えるようにするためである。 請 求 の 範 囲 In addition, as described above, the conical portion 5 31 is formed on the permanent magnet 5 3 side, and the rotation shaft runout suppressing bearing 13 corresponding to this is formed into a funnel shape as described later. This is to allow the smooth operation of the shaft runout suppressing bearing 13 when it ascends and descends. The scope of the claims
1 . 回転軸と、 この回転軸の半径方向を磁気的に支持するラジアル軸受 と、 前記回転軸の軸方向を磁気的に支持するスラス ト軸受と、 前記ラジア ル軸受および前記スラス ト軸受を保護する保護軸受とを備えた 3軸制御型 の磁気軸受装置において、 1. A rotary shaft, a radial bearing that magnetically supports the radial direction of the rotary shaft, a thrust bearing that magnetically supports the axial direction of the rotary shaft, the radial bearing and the thrust bearing are protected In a three-axis control type magnetic bearing device provided with
前記回転軸と前記保護軸受とを接触自在に形成し、  Forming the contact between the rotary shaft and the protective bearing,
前記回転軸の回転の立上り時に、 前記回転軸と前記保護軸受とが一時的 に接触するように制御する制御手段を備えたことを特徴とする磁気軸受装  A magnetic bearing device comprising: a control unit configured to control the rotating shaft and the protective bearing to be in temporary contact with each other at the time of start of rotation of the rotating shaft.
2 . 前記回転軸と前記保護軸受との接触部において、 前記回転軸と前記 保護軸受との少なく とも一方に傾斜面を形成させ、 前記回転軸と前記保護 軸受とを接触させるようにしたことを特徴とする請求項 1記載の磁気軸受 装置。 3 . 回転軸と、 この回転軸の半径方向を磁気的に支 持するラジアル軸受と、 前記回転軸の軸方向を磁気的に支持するスラス ト 軸受と、 前記ラジアル軸受および前記スラス ト軸受を保護する保護軸受と を備えた 3軸制御型の磁気軸受装置において、 2. At the contact portion between the rotary shaft and the protective bearing, an inclined surface is formed on at least one of the rotary shaft and the protective bearing, and the rotary shaft and the protective bearing are brought into contact with each other. The magnetic bearing device according to claim 1, characterized in that: 3. A rotary shaft, a radial bearing that magnetically supports the radial direction of the rotary shaft, a thrust bearing that magnetically supports the axial direction of the rotary shaft, the radial bearing and the thrust bearing are protected In a three-axis control type magnetic bearing device provided with
前記回転軸の振れ回りを抑制する回転軸振れ回り抑制用軸受を備え、 前 記回転軸の回転の立上り時に、 前記回転軸振れ回り抑制用軸受が前記回転 軸を一時的に軸受けするように制御する制御手段を備えたことを特徴とす る磁気軸受装置。 A rotation shaft runout suppression bearing for suppressing the runout of the rotation shaft is provided, and the rotation shaft runout suppression bearing is controlled so as to temporarily support the rotation shaft when the rotation of the rotation shaft rises. A magnetic bearing device characterized by comprising:
の通電が行われると、 静止状態から徐々に加速されて定格回転数に移行し ていく。 ところが、 この回転軸 2の回転の立上げ時には、 上述のように回 転軸 2と一体の永久磁石 5 3の円錐台形部 5 3 1が回転軸振れ回り抑制用 軸受 1 3に一時的に挿通して軸受けされる。 そのため、 回転軸 2の回転の 立上り時において、 回転軸 2の回転数が 1次共振点 (剛性モードの共振点 ) 付近に達しても、 回転軸 2の振れ回りを磁石 5 3の円錐台形部 5 3 1の テ一パ面が回転軸振れ回り抑制用軸受 1 3で受けているので、 回転軸 2の 大きな振れ回りが抑制される。 When energization is performed, the motor is gradually accelerated from the stationary state and shifts to the rated speed. However, when the rotation of the rotary shaft 2 is started up, as described above, the frusto-conical portion 5 31 of the permanent magnet 5 3 integral with the rotary shaft 2 is temporarily inserted into the rotary shaft runout suppression bearing 13. Be supported. Therefore, when the rotation speed of the rotation shaft 2 reaches the vicinity of the primary resonance point (the resonance point of the rigid mode) at the rising of the rotation of the rotation shaft 2, the rotation of the rotation shaft 2 is Since the taper surface of 5 3 1 is received by the rotary shaft runout suppressing bearing 13, large swinging of the rotary shaft 2 is suppressed.
その後、 回転数センサ 1 6が検出する回転軸 2の回転数が 1次共振点を 通過した時点で、 制御回路 1 4がソレノィ ド 1 5の励磁を解くので、 回転 軸振れ回り抑制用軸受 1 3は、 図 7 ( A ) に示す位置から図 7 ( B ) に示 すように所定位置まで下降して永久磁石 5 3の円錐台形部 5 3 1 と非接触 の状態となり、 その状態を維持する。 以後は、 回転軸 2は目標位置になる ように、 制御回路 1 4により制御される。  After that, when the rotational speed of the rotary shaft 2 detected by the rotational speed sensor 16 passes the primary resonance point, the control circuit 14 releases the excitation of the solenoid 15 so that the rotational shaft runout suppression bearing 1 3 is lowered from the position shown in Fig. 7 (A) to the specified position as shown in Fig. 7 (B) and is in non-contact with the frusto-conical portion 5 3 1 of the permanent magnet 53, maintaining that state Do. Thereafter, the rotary shaft 2 is controlled by the control circuit 14 so as to be at the target position.
以上述べた第 2実施例によれば、 回転軸 2の回転の立上り時に、 回転軸 2と一体の永久磁石 5 3の円錐台形部 5 3 1が回転軸振れ回り抑制用軸受 1 3に一時的に軸受されるようにした。 従って、 回転軸 2の回転の立上り 時には、 保護軸受 7と回転軸 2が共振点を過ぎても連れ回ることが避けら れ、 もって定常回転数に到達させることができる。 産業上の利用可能性  According to the second embodiment described above, at the rising of the rotation of the rotary shaft 2, the frusto-conical portion 5 31 of the permanent magnet 5 3 integral with the rotary shaft 2 is temporarily used in the rotary shaft runout suppressing bearing 13. Was made to be bearing. Therefore, at the rising of the rotation of the rotary shaft 2, the protective bearing 7 and the rotary shaft 2 are prevented from moving together even after the resonance point, so that the steady rotation speed can be reached. Industrial applicability
以上説明したように本発明の磁気軸受装置によれば、 回転軸の回転の立 上り時に、 回転軸の振れ回りを抑制するようにしたので、 保護軸受と回転 軸が共振点を過ぎても連れ回ることが避けられ、 もって定常回転数に到達 させることができる。  As described above, according to the magnetic bearing device of the present invention, the runout of the rotary shaft is suppressed at the time of rising of the rotation of the rotary shaft, so even if the protective bearing and the rotary shaft pass the resonance point, It can be avoided to rotate and can reach a steady speed.
PCT/JP1996/002812 1995-10-11 1996-09-27 Magnetic bearing device WO1997013985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/263162 1995-10-11
JP7263162A JPH09105412A (en) 1995-10-11 1995-10-11 Magnetic bearing device

Publications (1)

Publication Number Publication Date
WO1997013985A1 true WO1997013985A1 (en) 1997-04-17

Family

ID=17385648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002812 WO1997013985A1 (en) 1995-10-11 1996-09-27 Magnetic bearing device

Country Status (2)

Country Link
JP (1) JPH09105412A (en)
WO (1) WO1997013985A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997154A (en) * 2013-02-20 2014-08-20 苏尔寿泵业系统有限公司 A machine provided with safety bearing
EP2707611B1 (en) * 2011-05-12 2017-06-28 Schaeffler Technologies AG & Co. KG Bearing arrangement with a back-up bearing, in particular for mounting the rapidly rotating shaft of a compressor
CN109707734A (en) * 2019-01-02 2019-05-03 江苏理工学院 An electromagnetic adsorption type bearing protection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706523B2 (en) * 2006-03-20 2011-06-22 株式会社ジェイテクト Compressor for fuel cell
DE102007009080A1 (en) * 2007-02-24 2008-08-28 Oerlikon Leybold Vacuum Gmbh Fast-rotating vacuum pump
CN104454989B (en) * 2013-09-13 2017-03-29 珠海格力节能环保制冷技术研究中心有限公司 Magnetic suspension bearing and centrifugal compressor
CN111503150B (en) * 2020-04-01 2021-10-19 江苏理工学院 Electromagnetic protection bearing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663116A (en) * 1979-10-26 1981-05-29 Seiko Instr & Electronics Ltd Magnetic bearing device
JPS63190930A (en) * 1987-02-03 1988-08-08 Koyo Seiko Co Ltd Magnetic bearing device
JPS63126616U (en) * 1987-02-12 1988-08-18
JPS6447559U (en) * 1987-09-16 1989-03-23

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663116A (en) * 1979-10-26 1981-05-29 Seiko Instr & Electronics Ltd Magnetic bearing device
JPS63190930A (en) * 1987-02-03 1988-08-08 Koyo Seiko Co Ltd Magnetic bearing device
JPS63126616U (en) * 1987-02-12 1988-08-18
JPS6447559U (en) * 1987-09-16 1989-03-23

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2707611B1 (en) * 2011-05-12 2017-06-28 Schaeffler Technologies AG & Co. KG Bearing arrangement with a back-up bearing, in particular for mounting the rapidly rotating shaft of a compressor
CN103997154A (en) * 2013-02-20 2014-08-20 苏尔寿泵业系统有限公司 A machine provided with safety bearing
EP2770222A1 (en) * 2013-02-20 2014-08-27 Sulzer Pump Solutions AB A machine provided with safety bearing
CN109707734A (en) * 2019-01-02 2019-05-03 江苏理工学院 An electromagnetic adsorption type bearing protection device

Also Published As

Publication number Publication date
JPH09105412A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
EP2012019B1 (en) Bearing apparatus and centrifugal compressor provided with same
US4312628A (en) Turbomolecular vacuum pump having virtually zero power magnetic bearing assembly with single axis servo control
EP1655820A3 (en) Integrated magnetic levitation and rotation system
KR100644852B1 (en) Magnetic Bearing Protection Device and Turbo Molecular Pump
JPH11313471A (en) Brushless dc motor, magnetic bearing device and turbomolecular pump
EP1965082A2 (en) Turbo-molecular pump and touchdown bearing device
JP2001508155A (en) Backup bearing for acceleration grounding
WO1997013985A1 (en) Magnetic bearing device
EP0787918B1 (en) Magnetic bearing apparatus with radial position correcting electromagnet
JP3820479B2 (en) Flywheel equipment
GB2134326A (en) Motor for a pump
JP2620855B2 (en) Magnetic bearing device
EP0793329A1 (en) Concentric-double-shaft simultaneously rotating apparatus
JP2000257586A (en) Turbo molecular pump
US6362549B1 (en) Magnetic bearing device
JP3042545B2 (en) Magnetic bearing device
JP4427828B2 (en) Magnetic bearing
JP2933287B2 (en) Magnetic bearing device for rotating machinery
JPH07301236A (en) Shaft support device for rotating shaft
JPH0645115U (en) Thrust magnetic bearing for turbo machinery
JP2549819Y2 (en) pump
JP2001041236A (en) Magnetic bearing device
JP2000230550A (en) Magnetic bearing device
JP3663475B2 (en) Bearing device
JP2000060056A (en) Motor and rotary element device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载