+

WO1997012662A1 - Procede de traitement des gaz brules et des poussieres - Google Patents

Procede de traitement des gaz brules et des poussieres Download PDF

Info

Publication number
WO1997012662A1
WO1997012662A1 PCT/JP1996/002915 JP9602915W WO9712662A1 WO 1997012662 A1 WO1997012662 A1 WO 1997012662A1 JP 9602915 W JP9602915 W JP 9602915W WO 9712662 A1 WO9712662 A1 WO 9712662A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas
dust
soot
treating
Prior art date
Application number
PCT/JP1996/002915
Other languages
English (en)
French (fr)
Inventor
Masakazu Uekita
Hidekazu Kuromatsu
Kenji Ueshima
Takuji Nomura
Motoyoshi Iwata
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP25965395A external-priority patent/JP3867306B2/ja
Priority claimed from JP26048995A external-priority patent/JP3867307B2/ja
Priority claimed from JP7260490A external-priority patent/JPH0999215A/ja
Priority claimed from JP7259652A external-priority patent/JPH0999235A/ja
Priority claimed from JP7269929A external-priority patent/JPH09108539A/ja
Priority claimed from JP7269928A external-priority patent/JPH09108538A/ja
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to EP96932837A priority Critical patent/EP0801971A1/en
Publication of WO1997012662A1 publication Critical patent/WO1997012662A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/685Halogens or halogen compounds by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/73After-treatment of removed components

Definitions

  • the present invention treats acidic gases such as hydrogen chloride gas and sulfur oxide (SO x, hereinafter abbreviated as “SO x”) contained in exhaust gas generated during waste incineration, and exhaust gas containing harmful heavy metals. It also relates to a method for stabilizing harmful heavy metals in soot and dust that are generated from this exhaust gas and collected by a dust collector, and in particular, Pb and the like in dust that are difficult to suppress elution of lead (Pb). The present invention relates to an effective treatment method for stabilizing harmful heavy metals.
  • SO x hydrogen chloride gas and sulfur oxide
  • cement is used as a treatment agent.Cement and waste are mixed, water is added and kneaded, then cured and solidified to prevent elution of harmful heavy metals. Stabilizing methods have been used.
  • Stabilizing methods have been used.
  • soot and dust collected by electric dust collectors and bag filters contain harmful heavy metals such as Pb in high altitudes. Since leaching cannot be prevented sufficiently, landfill treatment is currently underway with insufficient stabilization of harmful heavy metals, and the problem of secondary pollution after treatment is erupting.
  • Japanese Patent Application Laid-Open No. 07-185499 that cements and reducing metals, as well as aluminum sulfate and powdered aluminum A waste treatment method using a silicide or the like as a treatment agent has been proposed.
  • Japanese Patent Publication No. 04-61710 also discloses a method of treating waste with a treating agent containing a water-soluble phosphate source.
  • Typical incinerators for general waste include incinerators, heat exchangers and water sprayers for cooling exhaust gas, and slaked lime blowing equipment (need for exhaust gas) for neutralizing acidic gases such as hydrogen chloride. Blown into the guide tube) and a dust collector, and may additionally have equipment and devices for removing harmful components such as SOX, nitrogen oxides (NO x), and dioxins.
  • the dust collected by the dust collector contains dust, reaction products of slaked lime with an acidic gas such as hydrogen chloride, unreacted residue of slaked lime, harmful low melting point metal, and the like. This soot and dust is mixed and kneaded with hazardous metal stabilizers and landfilled as final disposal waste.
  • soot and dust that cannot substantially prevent elution of harmful heavy metals such as Pb with the above-mentioned conventional technology. Even if it is present and stabilization is possible, the use of a large amount of expensive harmful metal stabilizers results in enormous processing costs, and furthermore, harmful metal stabilizers and dust collectors trap In some cases, it may not be compatible with the public interest, such as the necessity of a separate facility for kneading collected dust, and further innovation in waste treatment technology is required. These problems are particularly prominent in the soot and dust collected by the dust collector from the exhaust gas generated during the incineration of the general waste.
  • the present inventors have conducted intensive studies for the purpose of solving the above-mentioned problems in the prior art, and as a result, they have found that a dust or a large amount of a harmful metal stabilizer which cannot substantially prevent elution of harmful heavy metals such as Pb is required. And found that dust and soot had common characteristics. In other words, compared to soot that can relatively easily prevent elution of harmful heavy metals, It was found that dusts that were difficult to treat contained large amounts of alkaline compounds. Alkaline compounds contained in many soots are presumed to be caused by unreacted components of slaked lime used for the purpose of neutralizing acidic gases such as hydrogen chloride gas in the exhaust gas treatment equipment of incinerators.
  • a more reactive acid gas neutralizer is blown into the exhaust gas to remove the alkaline gas contained in the dust collected by the dust collector from the exhaust gas.
  • the present invention has been completed based on the idea that the amount of a toxic compound can be reduced and elution of harmful heavy metals such as Pb in dust can be easily prevented.
  • a highly reactive acid gas neutralizing agent is blown into exhaust gas generated at the time of waste incineration, and soot generated from the exhaust gas is required. Water is added and kneaded according to the conditions.
  • water glass As the acid gas neutralizing agent, water glass, slaked lime having a high specific surface area, or powdered calcium silicate hydrate can be used.
  • the water glass acts not only as an acid gas neutralizer but also as a harmful metal stabilizer.
  • the water glass to be used may be a general-purpose water glass, in which the alkali component is Na or K, that is, sodium silicate or potassium silicate can be used, and it is sodium gay acid in terms of industrial availability and price. Is preferred.
  • the composition of sodium gayate is generally represented by N aa 0 ⁇ n S i 0 2 .
  • water glass having a molar ratio n of about 3 is preferable.
  • the molar ratio n is 0.5 to 0.5.
  • sodium orthosilicate and sodium metasilicate in the range of 2.
  • Water glass includes powder and aqueous solutions, and any of them can be used in the present invention. In the case of an aqueous solution, it is convenient to quantitatively blow into the flue in the exhaust gas treatment process, and also has a temperature reducing effect on the exhaust gas.
  • the pH of the aqueous water glass solution varies depending on the composition and concentration, and is generally in the range of 9 to 14.6.
  • the aqueous solution of water glass When the aqueous solution of water glass is quantitatively blown into the flue gas in the exhaust gas treatment process, it is desirable that the water glass be sprayed as finely as possible in a mist. Therefore, depending on the equipment used for spraying, it is necessary to adjust the concentration of the aqueous solution of water glass.
  • Water glass solution The more diluted, the easier it is to spray, but if the concentration is too low, the growth of gay acid by the reaction with acid gas such as hydrogen chloride gas is not enough. Conversely, if the water glass aqueous solution is too high, the water glass will not be sprayed finely in the form of a mist, and the growth of gay acid generated by the reaction with acidic gases such as hydrogen chloride gas and SO x will occur rapidly. Stabilization of heavy metal components tends to have undesirable shapes.
  • a coagulant, a precipitant, a chelating agent, a reducing agent, and the like for stabilizing heavy metal components may be added as an
  • Slaked lime as a component having the ability to neutralize acidic gases such as hydrogen chloride gas, SO x, and NO x in the exhaust gas is preferably used in view of reactivity with acid gases such as hydrogen chloride gas.
  • the effect of slaked lime on acidic gases such as hydrogen chloride gas in the exhaust gas is a neutralization reaction.In this case, the use of slaked lime having a large specific surface area increases the neutralization reaction efficiency and reduces the amount of slaked lime to be blown. It has the effect of ending.
  • the specific surface area of the slaked lime in JIS JP No. is 1 4 ⁇ 1 5 m 2.
  • slaked lime having a specific surface area of about 35 to 40 m 2 g can be produced by the method disclosed in Japanese Patent Publication No. H06-19814. This method quenches the lime by vigorously and uniformly mixing the finely lumped or ground lightly calcined lime with a slaking liquid consisting of water and an organic solvent that delays the reaction.
  • a slaked liquid composed of 30 to 50 parts by volume of water and 50 to 70 parts by volume of an organic solvent with lime is performed in a mixing vessel.
  • the reaction mixture is transferred to the main reaction vessel, where it is brought to a temperature of 50 to 70 ° C by a heating device, and the final reaction is carried out in a second reaction vessel;
  • the ratio of lime to slaked liquid in the mixing vessel is selected so that a reaction temperature of 85 to 110 ° C is achieved in the second reaction vessel.
  • the adhering solvent is removed from the finished calcium hydroxide by applying a vacuum and / or purging with an inert gas.
  • slaked lime having such a high specific surface area specifically, slaked lime “Tamacalc” manufactured by Okutama Industry Co., Ltd.
  • the blowing amount of slaked lime can be reduced to about half and the emission of acid gas can be reduced to about half.
  • this slaked lime there are a method of using it in powder form, a method of dispersing it in a solvent and the like.However, considering its reactivity with acidic gas such as hydrogen chloride gas, it is used by dispersing it in water. Is preferred.
  • the amount of slaked lime used must be set appropriately depending on the concentration of acid gas in the exhaust gas, the temperature and flow rate of the exhaust gas, and the concentration of the acid gas finally discharged outdoors.
  • the calcium gayate hydrate used as the acid gas neutralizing agent preferably has a specific surface area of 20 m 2 or more. Further, considering the reaction efficiency with an acid gas such as hydrogen chloride gas, Those having a large surface area of 3 O m 2 or more are more preferable, and those having a specific surface area of about 30 to 60 m 2 are preferable from the viewpoint of industrial availability. There the use of: "Sanparu Fur HP" (typically represented by 5 C a 0 ⁇ 6 S i 0 2 ⁇ 5 H 2 0) is Te suitable for industrial specifically, Asahi Chemical Industry Co., Ltd. .
  • the particle size is preferably not more than 1000 zm for the purpose of preventing clogging in the spray tube.
  • a bulk specific gravity of 0.45 to 75 is required.
  • the powdered calcium hydrate has not only an acid gas neutralizing effect but also an effect of adsorbing and stabilizing harmful heavy metals such as Pb.
  • the amount of the powdered calcium gayate hydrate having a specific surface area of 20 m 2 or more depends on the concentration of the acid gas in the exhaust gas, the temperature and the flow rate of the exhaust gas, and the concentration of the acid gas finally discharged outdoors. Therefore, the specific surface area is larger than that of JIS special name slaked lime (specific surface area: 14.5 m 2 / g), which is generally used in the past. It has a high reaction efficiency with acid gas, and although it has less components per unit weight than JIS special lime slaked lime, it has the same level of acid gas neutralization performance. As a result, this calcium gayate hydrate It is possible to reduce the amount of unreacted residual alkaline components in the soot and dust collected from the exhaust gas treated in the above.
  • This harmful metal stabilizing agent has a function of neutralizing acidic gases such as hydrogen chloride gas, SO x and NO x in exhaust gas and a function of stabilizing heavy metal components contained in the gas. It is preferable to use it as a main component.
  • water glass used as the acidic gas neutralizer as a main component can be used. Further, to this water glass, an appropriate amount of a compound such as sodium carbonate, which reacts with calcium ions to form an insoluble or hardly soluble calcium compound, or a compound which reacts with water glass to form a gel, such as sulfuric acid, is added. This is also effective for the purpose of improving Pb elution prevention performance.
  • neutralizers in addition to the above-mentioned water glass, neutralizers, inorganic adsorbents, chelating agents, phosphates, cements, or hardly soluble or insoluble by reacting with harmful metal compounds such as Pb
  • a compound containing a compound that forms a compound as a main component can be used.
  • the neutralizing agent include general-purpose acids such as hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, carbonic acid, and boric acid, sulfates such as aluminum sulfate, amorphous aluminum hydroxide, iron chloride, and phosphoric acid.
  • Sulfate, aluminum hydroxide, iron chloride, and phosphoric acid are preferred due to their price, industrial availability, and ease of practical use.
  • Phosphoric acid which can react to form an insoluble compound, is particularly preferred.
  • These neutralizing agents can be used as an aqueous solution, as a powder, or in a water-dispersed state.
  • Examples of the inorganic adsorbent include various activated clays, synthetic gay acid, processed natural gay acid, activated carbon, and the like, and porous aluminum silicate and porous silicon dioxide are preferably used.
  • Porous silicon dioxide is known to be crystalline, amorphous, amorphous, glassy, synthetic, natural, etc., but any powdery silicon dioxide can be used here. it can.
  • Aluminum silicate is a material in which a part of the gaiden of gay acid is replaced by aluminum, and natural aluminum such as pumice, fly ash, kaolin, talc, bentonite, activated clay, gay clay, zeolite, etc. Silicon and synthetic aluminum silicates are known.
  • synthetic aluminum silicate has a large specific surface area and a high ability to adsorb lead, so that harmful heavy metals such as Pb can be efficiently stabilized.
  • These inorganic porous adsorbents such as porous silicon dioxide and aluminum silicate, have a higher specific surface area and a higher ability to adsorb harmful heavy metals such as Pb.
  • the volume of the treating agent increases as the specific surface area increases, it is not desirable that the specific surface area is too large.
  • specific surface area of the porous adsorbent used in the present invention 2 0 0 m 2 or more, and desirably 7 0 less than 0 m 2, 4 0 0 m 2 or more, 7 0 0 m less than 2 Z g Is more desirable.
  • the chelating agent examples include compounds having a chelating ligand for harmful metals, such as —OH, —CSSH, —SH, NHNH, —COOH, and —NH 2 , and salts thereof.
  • a chelating ligand for harmful metals such as —OH, —CSSH, —SH, NHNH, —COOH, and —NH 2 , and salts thereof.
  • dimethyldithiocarbamate, getylditi talented lubamate, dibutyldithiocarbamate, and tannic acid are particularly preferred in terms of Pb elution prevention performance.
  • Industrially available products include "Ash Clean C-300” manufactured by Ebara Corporation, “New Epolba 800 J” manufactured by Miyoshi Oil & Fats Co., Ltd., and "Hygion” manufactured by Nippon Soda Co., Ltd.
  • Alsite L-101 manufactured by Fujisashi Co., Ltd.
  • Organic 200 manufactured by Organo Corporation
  • Sumichelate AC-20 manufactured by Sumitomo Chemical Co., Ltd.
  • Oriental Giken manufactured by Uchiha Co., Ltd.
  • Hibai Block manufactured by Naigai Kagaku Co., Ltd.
  • These chelating agents are It can be used as a powder, as a powder, or even in an aqueous dispersion.
  • phosphate examples include orthophosphate, orthohydrogen phosphate, condensed phosphate, and condensed hydrogen phosphate, and further include sodium, potassium, magnesium, and calcium salts.
  • a water-soluble salt is preferable, and water-soluble sodium phosphate is preferable.
  • cements examples include calcined gypsum, Portland cement, early-strength cement, jet cement, blast furnace cement, alumina cement, and the like. These can be used alone or in combination of two or more.
  • Compounds that react with harmful metal compounds such as Pb to form hardly soluble or insoluble compounds include sulfides such as sodium sulfide, carbonates, oxalates, sulfates, and chromates. Can be illustrated.
  • Industrially available products include, for example, "Ashuneit R Series" manufactured by Kurita Water Industries Ltd. and the like.
  • the harmful metal stabilizer used in the present invention hardly reacts with harmful metal compounds such as water glass, neutralizers, inorganic adsorbents, chelating agents, phosphates, cements, and Pb.
  • the main component is one or more selected from compounds that produce soluble or insoluble compounds.However, in addition to unavoidable impurities, it may contain various additives such as toxic metal ion reducing agents. it can.
  • the harmful metal stabilizer described above may be blown into the exhaust gas together with the acid gas neutralizer, or may be added at the time of kneading the soot and dust. If a harmful metal stabilizing agent is blown into the exhaust gas together with the acid gas neutralizer, the acid gas such as hydrogen chloride gas in the exhaust gas is neutralized, and the harmful metal from the dust collected from the exhaust gas by a dust collector is collected. Elution can be prevented.
  • each component can be used by mixing them in advance, or each component can be sprayed separately in the exhaust gas guide pipe of an incineration facility, or when mixing dust and soot.
  • Each component can be added separately.
  • spray or add each component it is preferable to spray or add each component separately. In this case, extrude each component from a separate tank and combine immediately before spraying or kneading. It can also be sprayed or added.
  • the spray amount of the harmful metal stabilizer used in the present invention must be appropriately set depending on the properties of the soot and dust to be dissolved and the target elution amount of heavy metals. It may be up to 35 parts by weight.
  • the acid gas neutralizer and the harmful metal stabilizer may be mixed in advance with each other or may be mixed when used. In other words, both can be sprayed into the exhaust gas guide tube after they have been mixed in advance, or they can be sprayed separately.
  • the harmful metal stabilizer used and the acid gas neutralizer react with each other, inhibiting the harmful metal stabilizing effect, inhibiting the effect of neutralizing the acidic gas, or generating harmful gas It is preferable to spray separately.
  • the harmful metal stabilizer and the oxidizing gas neutralizing agent can be extruded from separate tanks and combined and sprayed immediately before spraying.
  • the proportions of the two components differ depending on the exhaust gas and soot to be treated, and cannot be limited unconditionally.However, slaked lime and gay lime, which are neutralizing agents for acidic gases such as hydrogen chloride gas and SO x and NO x in the exhaust gas It is sufficient if the harmful metal stabilizer is mixed in an amount of 100 parts by weight or more and less than 100 parts by weight with respect to 100 parts by weight of calcium acid hydrate, and generally 100 parts by weight. Parts or more and about 50 parts by weight is sufficient.
  • the injection of the acidic gas neutralizer and the harmful metal stabilizer into the exhaust gas as described above will be described.
  • the treatment agent can be blown in either a powder form or a liquid form.
  • the quenching reaction tower it is desirable to blow in the quenching reaction tower into which cooling water or slaked lime slurry is currently blown, in view of the installation purpose of the quenching reaction tower and the facility for liquid injection .
  • the front of the dust collector into which slaked lime is currently blown is provided because it also has facilities for blowing the powder.
  • a generally used processing apparatus that is, a wheel. Kneaders roughly classified into molds, ball molds, and blade molds can be used without particular limitation.
  • humidifiers used in incinerators A kneader such as a kneader or a pipe mouth mixer is preferable.
  • the dust collected by the dust collector and stored in the hopper is sent to the kneader, where it is mixed with the desired amount of water as needed. If desired, it is of course possible to form the desired shape with a molding machine.
  • the exhaust gas treatment agent contains a harmful metal stabilizer, there is no need to mix the agent for stabilizing heavy metals with dust, and a chemical hopper and a constant supply device are required. Preferred. Further, since the treating agent and the dust in the exhaust gas are mixed by blowing the treating agent into the exhaust gas, the mixing and kneading of the treating agent to the dust is sufficiently performed.
  • the soot and dust at the time of kneading the soot and dust, other agents capable of stabilizing harmful heavy metals may be further added in addition to the harmful metal stabilizer.
  • the stabilization of harmful heavy metals is not sufficient only by blowing the acidic gas neutralizer or harmful metal stabilizer into the exhaust gas, other chemicals that have the ability to stabilize harmful heavy metal components are further adopted.
  • the soot and dust collected by the dust collector and stored in the hopper is desirably quantitatively sent to the kneader, to which the agent for stabilizing the harmful heavy metal is added.
  • the ordinary kneader exemplified above can be used without particular limitation.
  • the kneaded product may be formed into a desired shape by a molding machine.
  • the drug used here include aluminum sulfate, anolemminium phosphate, and solid acid described in Japanese Patent Application Laid-Open No. 7-185499 described above. Those containing an anti-caking agent.
  • the solid acid include natural clay minerals such as acid clay, slurry earth, montmorillonite, bentonite, kaolin, clarite, and phlorizin, and preferably have a specific surface area of 150 m 2 g.
  • silica gel or alumina with sulfuric acid, phosphoric acid, or malonic acid attached thereto, or diatomaceous earth, silica gel, quartz sand, or titanium oxide as carrier examples thereof include an immobilized acid to which phosphoric acid is attached and heated, a polyanion compound, a cation exchange resin, and the like.
  • the anti-caking agent include activated clay, activated alumina, calcium stearate, and silica gel.
  • potassium, sodium, or ammonium phosphates, carbonates, sulfates, or carboxylates such as sodium hydroxide, potassium carbonate, sodium carbonate, or potassium phosphate
  • sodium pentaphosphate sodium tripolyphosphate
  • sodium hexatetraphosphate sodium tetrapolyphosphate
  • sodium hexametaphosphate ammonium sulfate, potassium oxalate, etc.
  • 1-Hydroxetane-1-1,1-diphosphonate 1-Hydroxetane-1,1—Sodium diphosphonate, potassium ethylenediaminetetraacetate, sodium ethylenediaminetetraacetate, dimethyldithiocyanate
  • dalconate, tartrate, benzoate, ligninsulfonate, polysaccharides, or those containing a salt composed of a monovalent cation and a hydroxide ion are preferred.
  • PAST Polycation Science Laboratories
  • STX powdered drugs
  • high-molecular-weight chelating agents such as "New Epolva” from Miyoshi Oil & Fats Co., Ltd. and “Hysion” from Nippon Soda Co., Ltd., “Sumichelate” from Sumitomo Chemical Co., Ltd. and “Oriental Giken Co., Ltd.”
  • Dialkyldithiolbamate-based low-molecular-weight chelating agents such as “Tol” and “UML” of Unitika Ltd., can also be used.
  • AWADA's “AshNight®” series of drugs can also be used.
  • an acid gas neutralizer having high reaction efficiency as in the present invention, the action of reducing the alkali component in the dust, and further, the action of reducing the alkali component and stabilization by the harmful metal stabilizer. It is thought that the synergistic effect of the performance can more effectively prevent the elution of harmful metals in the soot and dust collected by the dust collector from the exhaust gas.
  • Hydrogen chloride inlet concentration of the exhaust gas quenching reaction tower is about 800 ppm (O 2 : 12% dry conversion), exhaust gas quantity is 100 Nm 3 — we tZhr, soot and dust about 4 g / Nm 3 dry
  • exhaust gas quantity is 100 Nm 3 — we tZhr, soot and dust about 4 g / Nm 3 dry
  • a 30% aqueous solution of sodium orthosilicate was blown into the quenching reaction tower at 5 kg / hr as an exhaust gas treating agent.
  • Bagufu Iruta hydrogen chloride concentration at the outlet is 4 0 p pm: becomes (0 2 1 2% dry basis).
  • test method such as a metal contained in the industrial waste
  • sample and the solvent are mixed at a weight / volume ratio of 10%, and that the mixed solution is 500 ml or more.
  • Shaking machine at normal temperature (approximately 20 ° C) and normal pressure (approximately 1 atmosphere) (The shaking frequency is adjusted to about 200 times per minute in advance, and the shaking width is adjusted to 4 cm or more and 5 cm or less) Shake continuously for 6 hours. 4. Propagation
  • wastes were pulverized according to this method, and then those whose particle size was adjusted to 0.5 mm or more and 5 mm or less were collected and tested.
  • Purified water is added to the mixture so that the solid-liquid ratio becomes 1:10, and shaken at normal temperature and normal pressure (shaking frequency is about 200 times per minute, and the shaking width is 4 and adjusted to 5 cm or less), and shaken continuously for 6 hours.
  • the obtained sample solution was filtered using a glass fiber filter with a pore size of 1 micron.
  • Hydrogen gas inlet chloride concentration of the exhaust gas quenching the reaction tower is about 8 0 0 p pm (0 2 : 1 2% de Lai terms), the amount of gas 1 0 0 0 Nm 3 - we t / hr, dust about 4 g / Nm In the incinerator under the operating conditions of 3 -dry, 2.0 mm of Tamacalc, a slaked lime manufactured by Okutama Kogyo Co., Ltd. (specific surface area of about 38 m 2 / g), which is 1 time equivalent of the concentration of hydrogen chloride gas at the inlet of the bag filter, before the inlet of the bag filter. 7 KgZhr and synthetic silicon dioxide manufactured by Shionogi Co., Ltd.
  • JIS special slaked lime was blown into the flue at a rate of 796 k days for the purpose of neutralizing exhaust gas.
  • concentration of hydrogen chloride gas in the exhaust gas before the slaked lime injection port was 800 ppm on average, and the concentration of hydrogen chloride gas in the exhaust gas after the slaked lime injection port was 37 ppm on average.
  • the amount of soot and dust collected by the bag filter from the exhaust gas was 2100 k days on average.
  • the harmful metal stabilizers shown in Table 1 were added in the amounts shown in Table 1, mixed, and kneaded with appropriate addition of water. The mixture was allowed to stand at 20 ° C (room temperature) for 7 days. After that, a Pb elution test was performed. Table 1 shows the results.
  • Gay acid A 1 Fine powder 4 2 0 2 0 0.6 (Specific surface area 4.50 m7g)
  • powdered calcium gayate hydrate (“ ⁇ : Sun Parfour”, specific surface area: about 35 mV g, manufactured by Asahi Kasei Kogyo Co., Ltd.) was used for the purpose of neutralizing exhaust gas. kg / day and harmful metal stabilizers shown in Table 4 below were blown into the flue at the ratio shown in Table 4.
  • the hydrogen chloride gas concentration in the exhaust gas before the calcium gayate hydrate injection port was 810 ppm on average, and the hydrogen chloride gas concentration in the exhaust gas after the calcium gayate hydrate injection port was average. It was 28-35 ppm.
  • water was added and kneaded, and the mixture was allowed to stand at 20 ° C for 7 days, and then a Pb elution test was performed. Table 4 shows the results.
  • the specific surface area of the slaked lime is 3 5 ⁇ 4 Om 2 / g
  • Pb elution can be effectively prevented by applying a toxic metal stabilizer to soot and dust collected from exhaust gas treated with slaked lime having a large specific surface area.
  • soot collected from exhaust gas treated by the conventional method using lime, limestone, etc. even if a harmful metal stabilizer is applied, the amount of Pb eluted substantially falls below the regulated value of 0.3 ppm.
  • the treatment method of the present invention Even in cases where it is not possible, it can be seen that by using the treatment method of the present invention, the effect of the harmful metal stabilizer is remarkably exhibited, and the Pb elution amount can be reduced to the regulated value of 0.3 ppm or less. Also, it can be seen that the amount of Pb elution can be reduced to 0.3 pm or less with the addition of a smaller amount of harmful metal stabilizers in the dust treated by the treatment method of the present invention than in the dust produced by the conventional method. .
  • the effect of the harmful metal stabilizer is remarkably exhibited by the method of the present invention, and the Pb elution amount can be reduced to 0.3 ppm or less.
  • the dust collected from the exhaust gas treated by the method of the present invention can reduce Pb by adding less harmful metal stabilizer than the dust collected from the exhaust gas treated by the conventional method. It can be seen that it can be reduced to 3 ppm or less.
  • a highly reactive acid gas neutralizing agent blown into exhaust gas can efficiently capture acidic gases such as hydrogen chloride gas and SO x contained in exhaust gas generated during incineration of wastes,
  • acidic gases such as hydrogen chloride gas and SO x contained in exhaust gas generated during incineration of wastes
  • the harmful metal stabilizer is blown together with the acid gas neutralizer into the exhaust gas, the reaction formed between the harmful metal stabilizer and the acid gas can be reduced.
  • the products make it possible to stabilize harmful heavy metals. Therefore, the present invention is effective not only for the treatment of waste gas from incinerators for industrial waste and municipal waste, but also for the stabilization treatment of harmful heavy metals contained in dust such as EP ash and back ash generated from exhaust gas. Soot and dust collected from exhaust gas treated by injecting an acid gas neutralizer or a harmful substance stabilizer can be easily treated after collection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treating Waste Gases (AREA)

Description

明 糸田 排ガス及びばいじんの処理方法 技術分野
本発明は、 廃棄物焼却時に発生する排ガス中に含まれる塩化水素ガスや硫黄酸 化物 (S O x 、 以下 「S O x 」 と略記する。 ) 等の酸性ガスや、 有害重金属を含 有する排ガスを処理するとともに、 この排ガスから生成して集塵機で捕集される ばいじん中の有害重金属を安定化処理する方法に関するものであり、 特に、 鉛 ( P b ) の溶出抑制が困難なばいじん中の P b等の有害重金属を安定化処理するの に有効な処理方法に関するものである。 背景技術
現在、 有害重金属を含む廃棄物を処分する際には、 セメントが処理剤として用 いられ、 セメントと廃棄物を混合し、 水を加えて混練した後、 養生固化し、 有害 重金属の溶出を防ぎ安定化する方法が用いられている。 しかしながら、 このよう に単にセメン卜で固化する従来の廃棄物の処理方法には種々の問題があり、 用途 を限定しなければ 2次公害が発生する恐れがある。 特に、 ゴミ焼却の際、 電気集 塵機やバグフィルターで捕集されるばいじんには、 P b等の有害重金属が高澳度 に含まれているにも拘わらず、 従来技術であるセメン卜処理では充分に溶出を防 止できないため、 現在では有害重金属の安定化が不充分なまま埋立処理されてお り、 処理後の 2次公害の問題が噴出している。
このように、 今日では、 単にセメントによって固化するだけでは有害重金属を 含有する廃棄物を、 有害重金属が溶出してこない状態に安定化することが困難な ことが国内外で明らかとなってきている。 そこで、 廃棄物の陸上埋立処分時ある いは海洋投棄処分時においても有害重金属が確実に封入されて再溶出せず、 2次 公害が発生しない処理方法が望まれていた。
このような課題に対し、 本発明者らは特開平 0 7— 1 8 5 4 9 9号等において 、 セメント類と還元性の金属、 更には、 硫酸アルミニウムや粉体状アルミニウム シリゲート等を処理剤とする廃棄物処理方法を提案している。 又、 同様な技術と して特公平 0 4— 6 1 7 1 0号には、 水溶性フォスフュート源を含有する処理剤 による廃棄物処理方法も開示されている。
一般ゴミの焼却設備は、 代表的には、 焼却炉、 排ガスの冷却を目的とした熱交 換器ゃ水噴霧装置、 塩化水素等の酸性ガスの中和を目的とした消石灰吹き込み装 置 (排ガス誘導管内への吹き込み) 、 及び集塵機から構成されており、 更に S O X 、 窒素酸化物 (N O x ) 、 ダイォキシン等の有害成分除去装置、 機器が付加さ れていることもある。 前記集塵機で捕集されるばいじんには、 粉塵、 消石灰と塩 化水素等の酸性ガスとの反応生成物、 及び消石灰の未反応残分、 有害な低融点金 厲等が含有されている。 このばいじんは有害金属安定化剤と混合、 混練され最終 処分廃棄物として埋め立てられる。
し力、しな力《ら、 廃棄物焼却時に生成するばいじんの中には、 前記のような従来 技術では、 P b等の有害重金属の溶出を実質的に防止することができないばいじ んが存在し、 又、 安定化処理が可能であったとしても、 高価な有害金属安定化剤 を多量に使用する結果、 処理費用が膨大であったり、 更には、 有害金属安定化剤 と集塵機で捕集されるばいじんを混練する設備が別途必要となる等、 公益に適合 しない場合があり、 更なる廃棄物処理技術の革新が求められている。 これらの問 題は、 上記一般ゴミの焼却時に発生する排ガスから集塵機で捕集されるばいじん において特に顕著である。
本発明は、 このような廃棄物焼却時に発生する最終廃棄物であるばいじんの処 理の現状に鑑み、 ばいじん中の種々の有害重金属を確実に封入して再溶出しない ように安定化することが可能で、 かつ簡便な処理方法を提供することを目的とす るものである。 発明の開示
本発明者らは、 上記の従来技術における問題点を解決する目的で鋭意検討し た結果、 実質的に P b等の有害重金属の溶出を防止できないばいじん、 又は多量 の有害金属安定化剤を必要とするばいじんには共通の特徴があることを見出した 。 即ち、 比較的容易に有害重金属の溶出を防止できるばいじんと比較し、 これら 処理が困難なばいじんは、 アル力リ性化合物を多量に含有していることを知見し た。 多くのばいじんに含有されるアルカリ性化合物は、 焼却炉の排ガス処理装置 で塩化水素ガス等の酸性ガスの中和を目的として使用される消石灰の未反応分に 起因するものと推定される。 そこで、 従来使用されている消石灰の代わりに、 そ れより反応性の高い酸性ガス中和剤を排ガスに吹き込むことによって、 この排ガ スから集塵機で捕集されるばいじんに含有されるアル力リ性化合物量を低減せし め、 ばいじん中の P b等の有害重金属の溶出を簡単に防止しうる、 との発想に基 づき本発明を完成させたものである。
即ち、 本発明は、 廃棄物焼却設備に付属する排ガス処理装置において、 廃棄物 焼却時に発生する排ガスに、 反応性の高い酸性ガス中和剤を吹き込み、 この排ガ スから生成したばいじんを、 必要に応じて水を加え、 混練するものである。
前記酸性ガス中和剤としては、 水ガラス、 及び高比表面積の消石灰や粉体状ケ ィ酸カルシウム水和物を用いることができる。
前記水ガラスは酸性ガス中和剤としての作用だけでなく、 有害金属安定化剤と しても作用する。 使用する水ガラスは汎用の水ガラスでよく、 アルカリ成分が N aや Kであるもの、 即ち珪酸ソーダ、 珪酸カリウムが使用でき、 工業的入手の容 易さ、 価格の点ではゲイ酸ソーダであることが好ましい。 ゲイ酸ソ一ダの組成は 、 一般的に N a a 0 · n S i 0 2 で表される。 市販のものでは、 モル比 nは、 お およそ n = 0 . 5〜4 . 2の範囲であり、 この範囲のものを使用できる。 P b溶 出防止性能ではモル比 nが約 3の J I S規格 3号水ガラスが好ましく、 排ガス中 の塩化水素ガス等の酸性ガスを中和する能力の点では、 モル比 nが 0 . 5〜2の 範囲にあるオルソケィ酸ソーダゃメタケイ酸ソーダを使用することが好ましい。 水ガラスには粉末及び水溶液のものがあり、 本発明では、 いずれも使用できる。 水溶液の場合には、 排ガス処理工程で煙道中へ定量的に吹き込むには便利であり 、 又、 排ガスに対する減温効果もある。 水ガラス水溶液の p Hは、 組成、 濃度に よって異なる力く、 一般的には 9〜 1 4 . 6の範囲である。
排ガス処理工程で水ガラス水溶液を煙道中へ定量的に吹き込む場合、 水ガラス ができるだけ霧状に微細に噴霧されるのが望ましい。 そこで、 噴霧に使用する装 置にもよるが、 水ガラス水溶液の濃度を調整する必要がある。 水ガラス水溶液を 希釈するほど噴霧しやすいが、 濃度が低すぎると塩化水素ガス等の酸性ガスとの 反応によってできるゲイ酸の成長が十分でない。 反対に、 水ガラス水溶液の澳度 が高すぎると、 水ガラスが霧状に微細に噴霧されず、 塩化水素ガスや S O x 等の 酸性ガスとの反応によってできるゲイ酸の成長が急激に起こり、 重金属成分の安 定化には望ましくない形状になる傾向がある。 上記の水ガラスに加え、 重金属成 分を安定化する凝集剤、 沈澱剤、 キレー卜剤、 還元剤等を助剤として添加しても よい。
水ガラスが排ガス中の塩化水素ガス等の酸性ガスを中和する機構は明らかでは ないが、 水ガラスのアル力リ成分が塩化水素ガス等の酸性ガスと反応するためと 考えられる。 又、 水ガラスによる有害金属安定化機構も必ずしも明らかではない が、 水ガラスが塩化水素ガスや S O x 等の酸性ガスと反応して生成するゲイ酸ゲ ルが、 有害重金属を吸着し安定化するためと考えられる。 従って、 水ガラスを排 ガスに吹き込むことで、 廃棄物焼却時の排ガス中の酸性ガスを効率的に捕捉でき るとともに、 水ガラスと酸性ガスが反応してできた反応生成物によつて有害重金 属が安定化され、 こうして処理した排ガスから生成するばいじん中に含まれる有 害重金属も安定化される。
前記排ガス中の塩化水素ガス、 S O x 、 N O x 等の酸性ガスを中和する性能 を持つ成分としての消石灰は、 塩化水素ガス等の酸性ガスとの反応性の点で、 好 ましくは比表面積が 2 O m 2 Z g以上、 更に好ましくは 3 O m 2 以上の消石 灰である。 消石灰による前記排ガス中の塩化水素ガス等の酸性ガスに対する作用 は中和反応であるが、 この場合、 比表面積の大きな消石灰を用いることにより前 記中和反応効率が上昇し、 吹き込む消石灰量が少なくて済む効果がある。 J I S 特号の消石灰の比表面積は 1 4〜 1 5 m 2 である。 しかし、 例えば、 特公平 0 6 - 8 1 9 4号によって開示されている方法によって、 比表面積が 3 5〜 4 0 m 2 g程度の消石灰を作製することができる。 この方法は、 微細塊状の、 又は 粉砕された、 軽度に焼成された石灰を、 水と反応を遅延せしめる有機溶剤とから なる消和液体に強力かつ均一に混合することにより上記石灰を消和することによ つて、 乾燥水酸化カルシウムを製造する方法において、 水 3 0〜5 0容量部及び 有機溶剤 5 0〜7 0容量部よりなる消和液体と石灰との混合を混合容器内で 4 5 °C以下の温度において行い、 次いで反応混合物を主反応容器に移し、 その中で加 熱装置によって 5 0〜7 0 °Cの温度となし、 そして最終反応を第 2の反応容器内 で行い、 その際前記混合容器内における石灰対消和液体の割合を、 前記第 2の反 応容器において 8 5〜 1 1 0 °Cの反応温度が達成されるように選択するものであ り、 更に、 次いで脱ガス工程において、 仕上げられた水酸化カルシウムから付着 している溶剤を真空の適用及び/又は不活性ガスを用いるパージにより除去する というものである。 このような高比表面積の消石灰としては、 具体的には奥多摩 工業株式会社製消石灰 「タマカルク」 の使用が工業的には好適である。 比表面積 がこの程度に大きいと、 消石灰の吹き込み量は従来の約半分程度で酸性ガスの排 出量を半分程度にすることができる。 この消石灰の使用に際しては、 粉体状で使 用する方法、 溶媒に分散して使用する方法等があるが、 塩化水素ガス等の酸性ガ スとの反応性を考慮すると水に分散して使用することが好ましい。 又、 消石灰の 使用量は、 排ガス中の酸性ガス濃度、 排ガスの温度、 流量、 及び最終的に屋外へ 排出する酸性ガス濃度等によって適宜設定しなければならないが、 従来一般的に 使用される J I S特号消石灰 (比表面積 1 4 . 5 m 2 Z g ) に比し比表面積が約 2倍であることから、 塩化水素ガス等の酸性ガスとの反応効率が高く、 おおよそ J I S特号消石灰の約半分 (重量) の添加で、 最終的に排出する酸性ガス濃度を 同程度とすることができる。
次に、 酸性ガス中和剤として使用されるゲイ酸カルシウム水和物は、 比表面積 2 0 m 2 以上のものが好ましく、 更に、 塩化水素ガス等の酸性ガスとの反応 効率を考慮すると、 比表面積が 3 O m 2 以上の大きいものがより好ましく、 工業的入手の容易性から、 比表面積 3 0〜6 0 m 2 程度のものが好ましい。 具体的には旭化成工業株式会社製 「H P :サンパルファー」 (代表的には 5 C a 0 · 6 S i 0 2 · 5 H 2 0で表される) の使用が工業的には好適てある。 使用に 際しては、 溶媒に分散して使用することが考えられるが、 特に、 塩化水素ガス等 の酸性ガスとの反応性を考慮すると水に分散して使用することが好適である。 又 、 排ガス誘導管内に噴霧して使用することから、 噴霧管内での目詰まりを防止す る目的で粒度 1 0 0 0 z m以下であることが好ましい。 更には、 従来の消石灰を 噴霧する装置をそのまま使用するためには、 かさ比重が 0 . 4 5〜 7 5であ ることが好ましい。 なお、 作用機構については明らかではないが、 粉体状のゲイ 酸カルシウム水和物には、 酸性ガス中和作用のみでなく、 有害重金属、 例えば P bを吸着、 安定化せしめる効果もある。
上記比表面積 2 0 m 2 以上の粉体状のゲイ酸カルシウム水和物の使用量は 、 排ガス中の酸性ガス濃度、 排ガスの温度、 流量及び最終的に屋外へ排出する酸 性ガス濃度などによつて適宜設定しなければならないが、 従来一般的に使用され る J I S特号消石灰 (比表面積 1 4 . 5 m 2 / g ) に比し、 比表面積が大きいこ とから、 塩化水素ガス等の酸性ガスとの反応効率が高く、 J I S特号消石灰に比 ベ単位重量当たりのアル力リ成分は少ないものの、 同程度の酸性ガス中和性能を 有し、 結果として、 このゲイ酸カルシウム水和物で処理された排ガスから捕集さ れるばいじん中の未反応残分アル力リ成分量を低減することができる。
更に、 本発明では、 上記の酸性ガス中和剤に加えて、 有害金属安定化剤を用い ることで、 ばいじん中の有害重金属をより確実に安定化することができる。 本発明で使用する有害金属安定化剤について以下に説明する。 この有害金属安 定化剤は、 排ガス中の塩化水素ガス、 S O x 、 N O x 等の酸性ガスを中和する性 能と、 ガス中に含まれる重金属成分を安定化する性能とを有するものを主成分と することが好ましい。
前記有害金属安定化剤として、 前記酸性ガス中和剤として用いた水ガラスを主 成分とするものを使用することができる。 更に、 この水ガラスに、 炭酸ナトリウ ム等の、 カルシウムイオンと反応して不溶性あるいは難溶性のカルシウム化合物 を生成する化合物、 あるいは硫酸等、 水ガラスと反応してゲル化する化合物を適 量添加することも、 P b溶出防止性能を向上させる目的で有効である。
有害金属安定化剤としては、 上記の水ガラス以外に、 中和剤、 無機吸着剤、 キ レート剤、 リン酸塩、 セメント類、 又は P b等の有害金属化合物と反応し難溶性 あるいは不溶性の化合物を生成する化合物を主成分とするものを使用できる。 前記中和剤としては、 塩酸、 硫酸、 硝酸、 シユウ酸、 炭酸、 ほう酸等の汎用の 酸、 硫酸アルミニウム等の硫酸塩、 非結晶質水酸化アルミニウム、 塩化鉄、 リン 酸等が例示できるが、 価格、 工業的入手の容易性、 実使用の容易さから、 硫酸塩 、 水酸化アルミニウム、 塩化鉄、 リン酸が好ましく、 ばいじん中の P b化合物と 反応し不溶性の化合物を形成しうるリン酸が特に好ましい。 これら中和剤は、 水 溶液として使用することも、 粉末として使用することも、 更には水分散状態で使 用することもできる。
前記無機吸着剤には、 各種活性白土、 合成ゲイ酸、 天然ゲイ酸加工物、 活性炭 等が例示できるが、 多孔質アルミニウムシリゲートや多孔質二酸化ケイ素が好適 に使用される。 多孔質二酸化ケイ素は、 結晶性、 無定形、 非晶質、 ガラス状、 合 成品、 天然品等の種類が知られているが、 ここでは、 粉体状であればいずれも使 用することができる。 又、 アルミニウムシリゲートとは、 ゲイ酸のゲイ素の一部 がアルミニウムで置換されたもので、 軽石、 フライアッシュ、 カオリン、 タルク 、 ベントナイ ト、 活性白土、 ゲイソゥ土、 ゼォライ ト等の天然のアルミニウムシ リケ一トゃ、 合成のアルミニウムシリゲートが知られている。 この中でも、 合成 のアルミニウムシリケートは比表面積も大きく鉛の吸着能力が高いため、 効率的 に P b等の有害重金属を安定化することが出来る。 これらの多孔質二酸化ケイ素 やアルミニゥムシリケート等の無機多孔質吸着剤は、 比表面積が大きい方が P b 等の有害重金属の吸着能力が高い。 しかし、 比表面積が大きくなるに従って処理 剤の体積も増大してしまうため、 比表面積が大きすぎることも望ましくない。 従 つて、 本発明で使用する多孔質吸着剤の比表面積は 2 0 0 m 2 以上、 7 0 0 m 2 未満であることが望ましく、 4 0 0 m 2 以上、 7 0 0 m 2 Z g未満 であることがより望ましい。
前記キレート剤には、 — O H、 一 C S S H、 — S H、 = N H、 — C O O H、 一 N H 2 など、 有害金属に対するキレート配位子を構造中に有する化合物、 及びそ れらの塩などが例示できるが、 特に P b溶出防止性能の点でジメチルジチォカル バミン酸塩、 ジェチルジチ才力ルバミン酸塩、 ジブチルジチォカルバミン酸塩、 タンニン酸が好ましい。 工業的に入手可能なものとして、 (株) 荏原製作所製 「 アッシュクリーン C一 3 0 0」 、 ミヨシ油脂 (株) 製 「N e wェポルバ— 8 0 0 J 、 日本曹達 (株) 製 「ハイジオン」 、 不二サッシ (株) 製 「アルサイ ト L一 1 0 1」 、 オルガノ (株) 製 「オルガナイ ト 2 0 5 0」 、 住友化学工業 (株) 製 「 スミキレート A C— 2 0」 、 オリエンタル技研 (株) 製 「オリ トール」 、 内外化 学 (株) 製 「ヒバイブロック」 などが例示できる。 これらキレート剤は、 水溶液 として使用することも、 粉末として使用することも、 更には水分散状態で使用す ることもできる。
前記リン酸塩としては、 正リン酸塩、 正リン酸水素塩、 縮合リン酸塩、 及び縮 合リ ン酸水素塩等が例示でき、 更にナトリウム塩、 カリウム塩、 マグネシウム塩 、 カルシウム塩等が例示できるが、 水溶性塩であることが好ましく、 水溶性のリ ン酸ソーダが好ましい。
前記セメント類には焼き石膏、 ポルトランドセメント、 早強セメント、 ジヱッ トセメント、 高炉セメント、 アルミナセメント等が例示でき、 これらを単独で又 は 2種以上を混合して使用することもできる。
前記 P b等の有害金属化合物と反応し難溶性あるいは不溶性の化合物を生成す る化合物としては、 硫化ソ一ダ等の硫化物、 炭酸塩、 シユウ酸塩、 硫酸塩、 クロ ム酸塩等が例示できる。 工業的に入手可能なものとして、 例えば、 栗田工業 (株 ) 製 「アツシュナイ ト Rシリーズ」 等が例示できる。
上記のように、 本発明で用いられる有害金属安定化剤は、 水ガラス、 中和剤、 無機吸着剤、 キレート剤、 リン酸塩、 セメント類、 及び P b等の有害金属化合物 と反応し難溶性あるいは不溶性の化合物を生成する化合物の内から選択される 1 種以上を主たる構成成分とするものであるが、 不可避的不純物の他、 有害金属ィ オン還元剤等の各種添加剤を含むこともできる。
上記の有害金属安定化剤は、 酸性ガス中和剤とともに排ガスに吹き込んでもよ いし、 ばいじんの混練時に添加してもよい。 酸性ガス中和剤とともに有害金属安 定化剤を排ガスに吹き込めば、 排ガス中の塩化水素ガス等の酸性ガスを中和する とともに、 該排ガスから集塵機等により捕集されるばいじんからの有害金属の溶 出を防止することができる。
有害金属安定化剤の構成成分が 2種以上の場合、 各成分は事前に混合して使用 することもできるし、 焼却施設の排ガス誘導管内に各成分を別々に噴霧したり、 ばいじんの混練時に各成分を別々に添加したりすることもできる。 選択した 2種 以上の構成成分相互で反応し、 有害金属安定化効果を阻害したり、 有害ガスを発 生するような場合には、 各成分を別々に噴霧、 又は添加することが好ましい。 こ の場合、 各成分を個別のタンクより押し出し、 噴霧又は混練直前に合流させたう え、 噴霧又は添加することもできる。
本発明で用いられる有害金属安定化剤の噴霧量は、 適用するばいじんの性状、 及び目標とする重金属溶出量によって適宜設定しなければならないが、 通常、 ば いじん 1 0 0重量部に対し、 1〜3 5重量部でよい。
又、 酸性ガス中和剤と有害金属安定化剤とは、 各成分を予め混合してもよいし 、 使用に際して混合してもよい。 つまり、 両者を事前に混合した後、 排ガス誘導 管内に噴霧することもできるし、 別々に噴霧することもできる。 用いる有害金属 安定化剤と酸性ガス中和剤とが反応し、 有害金属安定化効果を阻害したり、 酸性 ガスを中和する効果を阻害したり、 有害なガスが発生したりするような場合には 、 別々に噴霧することが好ましい。 又、 このような場合、 有害金属安定化剤と酸 性ガス中和剤とを個別のタンクより押し出し、 噴霧直前に合流、 噴霧させること もできる。 両成分の使用割合は、 処理される排ガスやばいじんによって異なり、 一概に限定することはできないが、 排ガス中の塩化水素ガスや S O x 、 N O x 等 の酸性ガスの中和剤である消石灰やゲイ酸カルシウム水和物 1 0 0重量部に対し て有害金属安定化剤が 1 0重量部以上、 1 0 0重量部未満の範囲で混合されてい れば十分であり、 一般的には 1 0重量部以上、 5 0重量部程度で十分である。 上記のような酸性ガス中和剤及び有害金属安定化剤の排ガスへの吹き込みにつ いて説明する。 焼却炉の構造は色々のタイプのものがあり、 処理剤の吹き込みに ついて、 その場所を特定するのは難しいが、 ボイラーを出て集塵機に入るまでの 間で吹き込まれるのが望ましい。 本発明では、 処理剤を粉体状でも、 液体状でも 吹き込むことができる。 液体状の場合には、 現在、 冷却水や消石灰スラリーが吹 き込まれている急冷反応塔で吹き込むことが、 急冷反応塔の設置目的や液体吹き 込みのための設備を兼ね備えている点でも望ましい。 又、 処理剤が粉体状の場合 には、 現在、 消石灰が吹き込まれている集塵機の手前が、 粉体吹き込みのための 設備を兼ね備えている点で好ましい。
次に、 前記のように酸性ガス中和剤や有害金属安定化剤により処理された排ガ スから生成して集塵機で集められるばいじんの処理は、 現在、 一般に使用されて いる処理装置、 即ちホイール型、 ボール型、 ブレード型に大別される混練機なら 特に限定なく使用することができる。 特に、 焼却炉で使われている加湿機、 二軸 混練機、 パイブ口ミキサー等の混練機が好ましい。 集塵機で集められホッパーに 貯められたばいじんが混練機に送られ、 必要に応じて望ましい量の水を添加して 混練される。 望むなら、 更に成型機で望ましい形に成型しても勿論よい。 この場 合、 排ガス処理剤が有害金属安定化剤を含んでいる場合には、 重金属安定化のた めの薬剤をばいじんに混合する必要がなく、 薬剤のホッパーや定量供袷装置が必 要でなく好ましい。 又、 処理剤を排ガスに吹き込むことによって、 処理剤と排ガ ス中のばいじんとが混合されているので、 ばいじんに対して処理剤の混合混練が 充分に行われる。
更に、 本発明の処理方法では、 ばいじんの混練時に、 上記有害金属安定化剤の 他、 有害重金属を安定化しうる他の薬剤を更に添加してもよい。 つまり、 排ガス への酸性ガス中和剤や有害金属安定化剤の吹き込みのみによっては、 有害重金属 の安定化が十分でないときには、 有害重金属成分を安定化する性能を有する他の 薬剤が更に採用される。 この場合には、 集塵機で集められ、 ホッパーに貯められ たばいじんが、 望ましくは定量的に混練機に送られ、 これに前記の有害重金属の 安定化のための薬剤が加えられる。 この場合にも、 混練機としては、 上記に例示 した通常の混練機を特に限定なく使用することができる。 勿論、 混練された処理 物を成型機で望ましい形に成形してもよい。 ここで使用される薬剤としては、 先 に挙げた特開平 7 - 1 8 5 4 9 9号に記載された、 硫酸アルミニウム、 リン酸ァ ノレミニゥム、 固体酸、 更にはこれらの薬剤に活性白土等の固結防止剤を添加した もの等である。 前記固体酸としては、 酸性白土、 スラ一ズ ·アース、 モンモリ ロ ナイ ト、 ベントナイ ト、 カオリン、 クラリッ ト、 フロリジン等の天然の粘土鉱物 があり、 好ましくはその比表面積が 1 5 0 m 2 g以上、 5 0 0 m 2 / g以下のも の、 又はシリカゲルもしくはアルミナに、 硫酸、 リン酸、 もしくはマロン酸を付 着させたもの、 又はケイソゥ土、 シリカゲル、 石英砂、 もしくは酸化チタンを担 体として、 リン酸を付着加熱させた固定化酸、 ポリア二オン化合物、 陽イオン交 換樹脂等がある。 又、 前記固結防止剤としては、 活性白土、 活性アルミナ、 ステ アリン酸カルシウム、 シリカゲル等がある。 更に、 カリウム、 ナトリウム、 又は アンモニゥムの、 リン酸塩、 炭酸塩、 硫酸塩、 又はカルボン酸塩、 例えば、 水酸 化ナトリウム、 炭酸力リウム、 炭酸ナトリウム、 あるいは、 リン酸三力リウム、 三リ ン酸五ナ ト リウム (ト リポリ リ ン酸ナ ト リウム) 、 四リ ン酸六ナ ト リウム ( テトラポリ リン酸ナトリウム) 、 へキサメタリン酸ナトリウム、 硫酸アンモニゥ ム、 しゅう酸カリウム等の他、 1 ーヒ ドロキシェタン一 1 , 1—ジホスホン酸力 リウム、 1 —ヒ ドロキシェタン一 1 , 1 —ジホスホン酸ナ トリウム、 エチレンジ アミ ン四酢酸カリウム、 エチレンジァミ ン四酢酸ナトリウム、 ジメチルジチ才力 ルバオン酸ナトリウム等、 更に、 これらに加えて、 ダルコン酸塩、 酒石酸塩、 安 息香酸塩、 リグニンスルホン酸塩、 多糖類、 又は、 1価のカチオンと水酸化物ィ オンからなる塩等を添加したもの等が好ましい例として挙げられる。 更に、 粉体 系の薬剤として市販されいる P S L (ポリユーションサイエンスラボラ トリーズ 社) の 「ァスト一リート」 、 不二サッシ株式会社の 「アルサイ ト」 、 秩父小野田 株式会社の 「S T X」 等も使用できる。 又、 ミヨシ油脂株式会社の 「N e wェポ ルバ」 、 日本曹達株式会社の 「ハイジオン」 等の高分子キレート薬剤の他、 住友 化学工業株式会社の 「スミキレー ト」 、 オリエンタル技研株式会社の 「オリ トー ル」 、 ュニチカ株式会社の 「U M L」 等のジアルキルジチォ力ルバメート系の低 分子キレー ト薬剤等も使用可能である。 更に、 粟田工業株式会社の 「アッシュナ イ ト R」 シリーズの薬剤も使用できる。
本発明の処理方法がばいじん中の P b等の有害重金属を安定化する機構は必ず しも明らかではないが、 次のように推定できる。 即ち、 従来、 廃棄物焼却時の排 ガス中の酸性ガスを中和するために、 消石灰が使用されていた。 しかし、 一般的 に P b化合物はアル力リ雰囲気中で溶解し易い傾向があることから、 廃棄物焼却 時に発生するばいじんの場合、 塩化水素ガス等の酸性ガスの中和に使用される前 記消石灰の未反応残分が P bの溶出を促進する大きな要因と考えられる。 そこで 、 本発明のように、 反応効率の高い酸性ガス中和剤を使用することにより、 ばい じん中のアルカリ成分低減作用、 更には、 このアルカリ成分低減作用と前記有害 金属安定化剤による安定化性能の相乗効果によって、 排ガスから集塵機で捕集さ れるばいじん中の有害金属の溶出をより効果的に防止しうるものと考えられる。
発明を実施するための最良の形態 以下に実施例を挙げて本発明を更に具体的に説明するが、 本発明は、 これに限 定されるものではない。
(実施例 1 )
排ガス急冷反応塔の塩化水素入口濃度が約 8 0 0 p pm (O2 : 1 2 %ドライ 換算) 、 排ガス量が 1 0 0 0 Nm3 — we tZh r、 ばいじん約 4 g/Nm3 一 d r yの運転条件の焼却炉において、 前記急冷反応塔へ排ガス処理剤としてオル ソケィ酸ソーダの 3 0 %水溶液を 5 k g/h rで吹き込んだ。 この結果、 バグフ ィルター出口の塩化水素濃度が 4 0 p pm (02 : 1 2 %ドライ換算) となった 。 更に、 この排ガスからバグフィルターで捕集されたばいじん 5 0 gに対して、 水 3 0 gを添加し混練を行った後、 2 0°C (室温) で 7日間養生固化させた。 そ の後、 この混練物について、 環境庁告示 1 3号法 (日本) による溶出試験方法を 行った結果、 鉛溶出量が 0. 1 8 p pmであった。 この溶出試験結果は、 日本に おける鉛の溶出規制値である 0. 3 p pmを十分に下回っており、 更なる安定化 処理の必要はなかった。
尚、 前記環境庁告示 1 3号法 (日本) とは、 正式名称を、 「産業廃棄物に含ま れる金属等の検定方法」 といい、 この検定方法の概要は下記のとおりである c
1. 処理物の破砕を行う。
燃え殻、 汚泥、 及びばいじん以外の産業廃棄物のうち、 粒径 5 mm以下のもの にあっては、 有姿のまま採取したものとし、 それ以外のものにあっては有姿のま ま採取し、 粉砕した後、 標準ふるい 3 2番及び 4番を用いて粒径が 0. 5 mm以 上 5 mm以下になるようにしたものとする。
2. 試料液
試料と溶媒とを重量体積比 1 0 %の割合で混合し、 かつ、 その混合液が 5 0 0 m 1以上となるようにしたものとする。
3. 溶出
常温 (概ね 2 0°C) 、 常圧 (概ね 1気圧) で振とう機 (予め振とう回数を毎分 約 2 0 0回に、 振とう幅を 4 cm以上 5 cm以下に調整したもの) を用いて、 6 時間連続して振とうする。 4. 濂過
金属等の溶出の操作を行って得られた試料液を孔径 1 ミクロンのグラスフアイ バーフィルターペーパーを用いて濾過をした後の溶液。 ここに記載した実施例、 比較例の溶出試験は、 この方法に準じて、 廃棄物を粉 砕した後、 粒径が 0. 5 mm以上 5 mm以下になるようにしたものを回収して試 料とし、 これに固液比が 1 : 1 0になるように精製水を加えて、 常温、 常圧で振 とう機 (振とう回数を毎分約 2 0 0回に、 振とう幅を 4 cm以上 5 cm以下に調 整したもの) を用いて、 6時間連続して振とうし、 得られた試料液を、 孔径 1 ミ ク口ンのグラスファイバ一フィルターを用いて濾過し、 濾液中の重金属濃度を測 疋し こ。
(実施例 2 )
排ガス急冷反応塔の塩化水素ガス入口濃度が約 8 0 0 p pm (02 : 1 2 %ド ライ換算) 、 ガス量が 1 0 0 0 Nm3 — we t/h r、 ばいじん約 4 g/Nm3 — d r yの運転条件の焼却炉において、 バグフィルター入口手前で塩化水素ガス 入口濃度の 1倍等量の奥多摩工業株式会社製消石灰 「タマカルク」 (比表面積約 3 8m2 /g) を 2. 0 7 KgZh rとシオノギ株式会社製合成二酸化ケイ素を 2. 0 7 K g/h rで吹き込んだ。 この結果、 バグフィルター出口の塩化水素ガ ス濃度は 6 O p pm (02 : 1 2 %ドライ換算) に減少した。 更に、 バグフィル ターで捕集されたばいじん 5 0 gに対して、 水 3 0 gを添加し混練を行った後、 2 0°C (室温) で 7日間養生固化させた。 その後、 溶出試験を行った結果、 鉛溶 出量が 0. 1 p pmであり、 鉛の溶出量は、 十分に規制値を下回っており、 更な る安定化処理の必要はなかった。
(比較例 1 )
排ガス急冷反応塔の塩化水素ガス入口濃度が約 8 0 0 p pm (02 : 1 2 %ド ライ換算) 、 ガス量が 1 0 0 0 Nm3 -we t / r、 ばいじん約 4 g/Nm3 一 d r yの実施例 1と同一の運転条件の焼却炉において、 バグフィルター入口手 前で塩化水素ガス入口濃度の 2倍等量の J I S特号消石灰 (比表面積 1 4. 5 m 2 g) を 4. 1 4 K g/h rで吹き込んだ。 この結果、 バグフィルター出口の 塩化水素ガス濃度は 6 0 p pm (02 : 1 2 %ドライ換算) に減少した。 更に、 バグフィルターで捕集されたばいじん 5 0 gに対して、 水 3 0 gを添加し混練を 行った後、 2 0°C (室温) で 7日間養生固化させた。 その後、 溶出試験を行った 結果、 鉛溶出量は 7 5 p pmであり、 何らかの安定化薬剤による更なる処理が必 要 Cあった o
(比較例 2 )
一般ゴミ焼却場に於いて、 排ガス中和の目的で、 J I S特号消石灰を 7 9 6 k 日の割合で煙道に吹き込んだ。 このとき、 消石灰吹き込み口前の排ガス中の 塩化水素ガス濃度は平均 8 0 0 p pm、 消石灰吹き込み口後の排ガス中の塩化水 素ガス濃度は平均 3 7 p pmであった。 又、 この時の排ガスからバグフィルター で捕集されたばいじん生成量は、 平均 2 1 0 0 k 日であった。 このばいじん に対し、 表 1に示す有害金属安定化剤を表 1に示す添加量で添加、 混合し、 更に 適宜水を添加して混練したものを、 2 0°C (室温) で 7日間静置した後、 P b溶 出試験を行った。 結果を表 1に示す。
表 1
有害金属安定化剤 ばいじんから の P b溶出量 種 類 添加量 ばいじんに対する (p pm)
(k gノ日) 添加量 (%)
ポルトランドセメ ント 3 1 5 1 5 1. 3 非結晶質水酸化 A 1 3 1 5 1 5 4 5
ゲイ酸 A 1微粉末 4 2 0 2 0 0. 6 (比表面積 4 5 0 m7g)
ジチォ力ルバミン酸 1 0 5 5 1. 9 ソーダ (試薬)
J I S珪酸ソーダ 3号 9 4 5 4 5 2. 5
水溶液
リン酸水素 2 N a (試薬) 3 1 5 1 5 9. 9 (実施例 3 )
一般ゴミ焼却場に於いて、 排ガス中和の目的で、 奥多摩工業株式会社製消石灰 「タマカルク」 (比表面積 3 5〜4 01112/ ) を4 1 0 1^ 2/日と、 表 2に示す 有害金属安定化剤を表 2の割合で煙道に吹き込んだ。 このとき、 消石灰吹き込み 口前の排ガス中の塩化水素ガス濃度は平均 8 2 0 p pm、 消石灰吹き込み口後の 排ガス中の塩化水素ガス濃度は平均 1 0〜3 5 p pmであった。 このばいじんに 対し水を添加、 混練したものを 2 0°C (室温) で 7日間静置した後、 P b溶出試 験を行った。 結果を表 2に示す。
表 2
Figure imgf000017_0001
上記表 1、 表 2の結果から、 J I S特号消石灰を用いて処理した排ガスから捕 集したばいじんを有害金属安定化剤によって処理を行う従来法に比べ、 高比表面 積消石灰と有害金属安定化剤を噴霧して処理した排ガスから捕集したばいじんを 単に水で処理する本発明方法の方が、 同程度の有害金属安定化剤使用量でより有 効に Pbの溶出を防止できることがわかる。 又、 J I S特号消石灰に比し、 高比 表面積消石灰は約半分の吹き込み量で排ガス中の塩化水素ガス濃度を同程度以下 にすることができ、 ばいじん処理物 (有害金属安定化処理を施した最終廃棄物) の発生量も低減することができることから、 埋め立て処分場の延命化にも有効で ある。
(比較例 3 )
一般ゴミ焼却場に於いて、 排ガス中和の目的で J I S特号消石灰を 7 0 6 k g /日の割合で煙道に吹き込んだ。 このとき、 消石灰吹き込み口前の排ガス中の塩 化水素ガス'濃度は平均 7 9 0 p pm、 消石灰吹き込み口後の排ガス中の塩化水素 ガス濃度は平均 4 2 p pmであった。 又、 この時バグフィルターで捕集されたば いじん生成量は平均 1 9 0 0 k 日であった。 このばいじんに対し、 下記表 3 に示す有害金属安定化剤を表 3に示す添加量となるように添加、 混合し、 更に適 宜水を添加、 混練したものを 2 0°Cで 7日間静置した後、 P b溶出試験を行った 。 結果を表 3に示す。
表 3
Figure imgf000018_0001
(実施例 4 )
前記一般ゴミ焼却場に於いて、 排ガス中和の目的で粉体状のゲイ酸カルシウム 水和物 (旭化成工業株式会社製 「ΗΡ : サンパルファー」 、 比表面積約 3 5 mV g) を 7 0 0 k g/日と、 下記表 4に示す有害金属安定化剤を表 4の割合となる ように煙道に吹き込んだ。 このとき、 ゲイ酸カルシウム水和物吹き込み口前の排 ガス中の塩化水素ガス濃度は平均 8 1 0 p pm, ゲイ酸カルシウム水和物吹き込 み口後の排ガス中の塩化水素ガス濃度は平均 2 8〜3 5 p pmであった。 この時 パクフィルタ一で捕集されたばいじんに対し、 水を添加、 混練したものを 2 0 °C で 7日間静置した後、 P b溶出試験を行った。 結果を表 4に示す。
表 4
Figure imgf000019_0001
表 3及び表 4の結果から、 J I S特号消石灰を用いて処理した排ガスから捕集 されるばいじんを有害金属安定化剤によって処理を行う従来法に比べ、 比表面積 2 O m V g以上の粉体状珪酸カルシウム水和物と有害金属安定化剤を用いて処理 した排ガスから捕集したばいじんを単に水で処理する本発明の処理方法の方が、 同程度の有害金属安定化剤使用量でより有効に P bの溶出を防止できることがわ Sヽる。
(比較例 4及び実施例 5 )
一般ゴミ焼却場に於いて、 屋外排ガス中の塩化水素ガス濃度を一定にするよう 消石灰を調整しながら焼却設備及び排ガス処理装置を運転した場合のばいじんを 採取し、 各種有害金属安定化剤を用いて処理を行った。 ばいじんは、 消石灰とし て J I S特号消石灰を使用した場合 (比較例 4 ) と、 奥多摩工業株式会社製消石 灰 「タマカルク」 を使用した場合 (実施例 5 ) の 2種を採取した。 上記 2種のば いじんに対し、 各々表 5に示す添加量の有害金属安定化剤を表 5に示す添加量と なるように添加、 混合し、 更に適宜水を添加、 混練したものを、 2 0°C (室温) で 7日間静置した後、 P b溶出試験を行った。 結果を表 5に示す。
表 5
Figure imgf000020_0001
注) 消石灰の比表面積は 3 5〜4 Om2 /g 表 5の結果から、 比表面積の大きい消石灰を使用して処理した排ガスから捕集 されたばいじんに対し、 有害金属安定化剤を適用することにより、 効果的に Pb の溶出を防止できることがわかる。 即ち、 J I S待号消石灰等を用いた従来法で 処理した排ガスから捕集したばいじんでは、 有害金属安定化剤を適用しても実質 的に P b溶出量を規制値 0. 3 p pm以下にできない場合であっても、 本発明の 処理方法を使用することにより、 有害金属安定化剤の効果が顕著に発揮され、 P b溶出量を規制値の 0. 3 p pm以下にできることがわかる。 又、 従来法で生成 したばいじんよりも、 本発明の処理方法により処理したばいじんの方が、 より少 ない有害金属安定化剤の添加で P b溶出量を 0. 3 pm以下にできることがわ かる。
(比較例 5及び実施例 6)
一般ゴミ焼却場に於いて、 屋外排ガス中の塩化水素ガス濃度を一定にするよう 消石灰、 又は粉体状ゲイ酸カルシウム水和物の量を調整しながら焼却設備及び排 ガス処理装置を運転した場合の排ガスから捕集されるばいじんを採取し、 このば いじんを各種有害金属安定化剤を用いて処理を行った。 ばいじんは、 J I S特号 消石灰を使用した場合 (比較例 5) と、 粉体状ゲイ酸カルシウム水和物 (旭化成 工業株式会社製 「HP : サンパルファー」 、 比表面積約 3 5m2/g) を使用した 場合 (実施例 6) の 2種を採取した。 上記 2種のばいじんに対し、 各々表 6に示 す有害金属安定化剤を表 6に示す添加量となるように添加、 混合し、 更に適宜水 を添加、 混練したものを 2 0°Cで 7日間静置した後、 P b溶出試験を行った。 結 果を表 6に示す。
表 6
Figure imgf000022_0001
注) 旭化成工業株式会社製 「HP : サンパルファー」 (比表面積約 35m2/g) 表 6の結果から、 比表面積 2 0 m 2/ g以上の粉体状ゲイ酸カルシウム水和物を 使用して処理した排ガスから捕集したばいじんに、 有害金属安定化剤を適用する ことにより、 効果的に P bの溶出を防止できることがわかる。 詳細には、 J I S 特号消石灰等を用いた従来法で処理した排ガスから捕集したばいじんでは、 有害 金属安定化剤を適用しても実質的に P b溶出量を規制値 0 . 3 p p m以下にでき ない場合であっても、 本発明の方法により有害金属安定化剤の効果が顕著に発揮 され、 P b溶出量を 0 . 3 p p m以下にできることがわかる。 又、 従来法で処理 した排ガスから捕集されるばいじんよりも、 本発明の方法により処理した排ガス から捕集されるばいじんの方が、 より少ない有害金属安定化剤の添加で P bを 0 . 3 p p m以下にできることがわかる。 産業上の利用可能性
本発明によれば、 排ガスに吹き込んだ高反応性の酸性ガス中和剤により廃棄物 焼却時に発生する排ガスに含まれる塩化水素ガスや S O x 等の酸性ガスを効率的 に捕捉できるとともに、 ばいじん中のアルカリ成分を低減することができ、 また 、 この排ガス中に酸性ガス中和剤とともに有害金属安定化剤を吹き込んだ場合に は、 有害金属安定化剤と酸性ガスとが反応してできた反応生成物によって、 有害 重金属を安定化することが可能となる。 従って、 本発明は、 産業廃棄物や都市ゴ ミの焼却炉の排ガス処理とともに、 排ガスから生成する E P灰やバク灰等のばい じんに含まれる有害重金属の安定化処理に有効なものであり、 し力、も、 酸性ガス 中和剤や有害物質安定化剤を吹き込んで処理した排ガスから捕集したばいじんは 、 捕集後の処理が容易である。

Claims

請求の範囲
1 . 廃棄物焼却設備に付属する排ガス処理装置において、 廃棄物焼却時に発生す る排ガスに、 水ガラス、 および比表面積が 2 0 m 2 以上の消石灰もしくは 粉体状ゲイ酸カルシウム水和物からなる群から選択される少なくとも 1種の酸 性ガス中和剤を吹き込み、 この排ガスから生成したばいじんを、 必要に応じて 水を加え、 混練することで、 ばいじんからの有害金属の溶出を防止してなる排 ガス及びばいじんの処理方法。
2 . 混練時に、 有害金属安定化剤を添加する請求項 1記載の排ガス及びばいじん の処理方法。
3 . 排ガスに、 前記酸性ガス中和剤とともに、 有害金属安定化剤を吹き込んでな る請求項 1記載の排ガス及びはいじんの処理方法。
4 . 混練時に、 有害金属を安定化しうる薬剤を更に添加する請求項 3記載の排ガ ス及びばいじんの処理方法。
5 . 前記酸性ガス中和剤が水ガラスである請求項 1記載の排ガス及びばいじんの 処理方法。
6 . 前記水ガラスがゲイ酸ソーダである請求項 5記載の排ガス及びばいじんの処 理方法。
7 . 前記ゲイ酸ソーダがオルソケィ酸ソーダである請求項 6記載の排ガス及びば いじんの処理方法。
8 . 前記ゲイ酸ソーダがメタケイ酸ソ一ダである請求項 6記載の排ガス及びばい じんの処理方法。
9 . 前記ゲイ酸ソーダが液体ゲイ酸ソーダである請求項 6記載の排ガス及びばい じんの処理方法。
10. 前記酸性ガス中和剤が比表面積が 2 0 m 2 以上の消石灰である請求項 1 記載の排ガス及びばいじんの処理方法。
11. 前記消石灰の比表面積が 3 0 m 2 g以上である請求項 10記載の排ガス及び ばいじんの処理方法。
12. 前記酸性ガス中和剤が比表面積が 2 0 m 2 / g以上の粉体状ゲイ酸カルシゥ ム水和物である請求項 1記載の排ガス及びばいじんの処理方法。
13. 前記有害金属安定化剤が、 水ガラス、 中和剤、 無機吸着剤、 キレート剤、 リ ン酸塩、 セメント類、 及び鉛等の有害金属化合物と反応し難溶性あるいは不溶 性の化合物を生成する化合物の内から選択される少なくとも 1種を主成分とす る請求項 2又は請求項 3記載の排ガス及びばいじんの処理方法。
14. 前記有害金属安定化剤が、 硫酸塩、 水酸化アルミニウム、 塩化鉄、 及びリン 酸からなる群から選択される少なくとも 1種の中和剤を主成分とする請求項 13 記載の排ガス及びばいじんの処理方法。
15. 前記有害金属安定化剤が、 粉体状アルミニウムシリゲート、 及び粉体状二酸 化ゲイ素の少なくとも一方で、 かつ比表面積が 2 0 O m 2 以上の無機多孔 質吸着材を主成分とする請求項 13記載の排ガス及びばいじんの処理方法。
16. 前記有害金属安定化剤が、 ジメチルジチ才力ルバミン酸塩、 ジェチルジチォ 力ルバミ ン酸塩、 ジブチルジチォカルバミ ン酸塩、 及びタンニン酸の内から選 択される少なくとも 1種のキレート剤を主成分とする請求項 13記載の排ガス及 びばいじんの処理方法。
17. 前記有害金属安定化剤が水溶性リン酸塩を主成分とする請求項 13記載の排ガ ス及びばいじんの処理方法。
18. 前記有害金属安定化剤が、 硫化物、 炭酸塩、 シユウ酸塩、 硫酸塩、 及びクロ ム酸塩の内から選択される少なくとも 1種の鉛等の有害金属化合物と反応し難 溶性あるいは不溶性の化合物を生成する化合物を主成分とする請求項 13記載の 排ガス及びばいじんの処理方法。
19. 水ガラス、 比表面積が 2 0 m 2 以上である消石灰もしくは粉体状ゲイ酸 カルシゥム水和物からなる群から選択される少なくとも 1種の酸性ガス中和剤 と、 水ガラス、 中和剤、 無機吸着剤、 キレート剤、 リン酸塩、 セメント類、 及 び鉛等の有害金属化合物と反応し難溶性ある L、は不溶性の化合物を生成する化 合物の内から選択される少なくとも 1種を主成分とする有害金属安定化剤とか らなる排ガス及びばいじんの処理剤。
20. 前記酸性ガス中和剤が水ガラスである請求項 19記載の排ガス及びばいじんの 処理剤。
21. 前記水ガラスがゲイ酸ソ一ダである請求項 20記載の排ガス及びばいじんの処 理剤。
22. 前記ゲイ酸ソーダがオルソケィ酸ソーダである請求項 21記載の排ガス及びば いじんの処理剤。
23. 前記ゲイ酸ソーダがメタケイ酸ソ一ダである請求項 21記載の排ガス及びばい じんの処理剤。
24. 前記ゲイ酸ソーダが液体ゲイ酸ソーダである請求項 21記載の排ガス及びばい じんの処理剤。
25. 前記酸性ガス中和剤が比表面積が 2 O m 2 Z g以上の消石灰である請求項 19 記載の排ガス及びばいじんの処理剤。
26. 前記消石灰の比表面積が 3 0 m 2 Z g以上である請求項 25記載の排ガス及び ばいじんの処理剤。
27. 前記酸性ガス中和剤が比表面積が 2 0 m 2 以上の粉体状ゲイ酸カルシゥ ム水和物である請求項 19記載の排ガス及びばいじんの処理剤。
PCT/JP1996/002915 1995-10-06 1996-10-07 Procede de traitement des gaz brules et des poussieres WO1997012662A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96932837A EP0801971A1 (en) 1995-10-06 1996-10-07 Waste gas and dust treatment method

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP25965395A JP3867306B2 (ja) 1995-10-06 1995-10-06 ばいじんの処理方法
JP7/260490 1995-10-06
JP26048995A JP3867307B2 (ja) 1995-10-06 1995-10-06 ばいじんの処理方法
JP7260490A JPH0999215A (ja) 1995-10-06 1995-10-06 排ガス及びばいじんの処理方法
JP7/259652 1995-10-06
JP7/259653 1995-10-06
JP7259652A JPH0999235A (ja) 1995-10-06 1995-10-06 排ガス処理剤並びに排ガス及びばいじんの処理方法
JP7/260489 1995-10-06
JP7269929A JPH09108539A (ja) 1995-10-18 1995-10-18 排ガス及びばいじんの処理剤並びに処理方法
JP7/269928 1995-10-18
JP7/269929 1995-10-18
JP7269928A JPH09108538A (ja) 1995-10-18 1995-10-18 排ガス及びばいじんの処理方法並びに処理剤

Publications (1)

Publication Number Publication Date
WO1997012662A1 true WO1997012662A1 (fr) 1997-04-10

Family

ID=27554280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002915 WO1997012662A1 (fr) 1995-10-06 1996-10-07 Procede de traitement des gaz brules et des poussieres

Country Status (3)

Country Link
EP (1) EP0801971A1 (ja)
CA (1) CA2208142A1 (ja)
WO (1) WO1997012662A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676911B1 (en) * 1998-07-23 2004-01-13 Sumitomo Osaka Cement Co., Ltd. Exhaust gas treating agent, process for producing the same, and method of treating exhaust gas
CN109432939A (zh) * 2018-11-06 2019-03-08 泰州华昊废金属综合利用有限公司 金属表面处理废物资源化利用的废气处理系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000300938A (ja) * 1999-02-18 2000-10-31 Yasuo Fukutani 排ガスおよび焼却灰浄化剤とそれを用いた浄化方法
WO2002018069A1 (en) * 2000-09-01 2002-03-07 Tech-Wise A/S Process for the treatment of bottom ash from waste incineration plants
FR2912396B1 (fr) 2007-02-09 2011-08-26 Solvay Procede de production d'un reactif phosphocalcique, reactif obtenu et son utilisation
WO2008137647A1 (en) * 2007-05-03 2008-11-13 Cbl Industrial Services, Inc. Process for treating particulate material containing heavy metal and an additive for use in such process
US8075666B2 (en) 2007-05-03 2011-12-13 Cbl Industrial Services, Inc. Process for treating particulate material containing heavy metal and an additive for use in such process
NL2001813C2 (nl) * 2008-07-16 2010-01-19 Minplus Holland B V Werkwijze voor het verwijderen van kwik uit een gasstroom en werkwijze voor het vervaardigen van een precursor ten gebruike bij die werkwijze.
DE102010022381A1 (de) * 2010-06-01 2011-12-01 Tu Darmstadt Stoffgemisch zur Verringerung der Entstehung von Magnesiumammoniumphosphat (Struvit) in Kläranlagen
JP2013017956A (ja) * 2011-07-12 2013-01-31 Takuma Co Ltd 飛灰へのキレート剤添加率制御方法
CN115078648B (zh) * 2022-06-15 2025-01-28 深圳市航天新材科技有限公司 一种焚烧飞灰品质快速检测方法及后处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186925A (ja) * 1986-02-13 1987-08-15 Mitsubishi Heavy Ind Ltd 排ガス処理方法
JPH04300626A (ja) * 1991-03-28 1992-10-23 Babcock Hitachi Kk 排煙脱硫装置およびその運転方法
JPH05329462A (ja) * 1992-06-01 1993-12-14 Hitachi Zosen Corp Ep捕集灰のセメント固化処理方法
JPH06218224A (ja) * 1993-01-28 1994-08-09 Nippon Steel Corp 排ガス及び集塵ダストの処理方法
JPH0775718A (ja) * 1993-09-09 1995-03-20 Takuma Co Ltd 排ガス中の重金属と塩素系炭化水素化合物と酸性ガスの同時除去方法
JPH08108040A (ja) * 1994-08-17 1996-04-30 Okutama Kogyo Kk 排ガス処理剤及び排ガス処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186925A (ja) * 1986-02-13 1987-08-15 Mitsubishi Heavy Ind Ltd 排ガス処理方法
JPH04300626A (ja) * 1991-03-28 1992-10-23 Babcock Hitachi Kk 排煙脱硫装置およびその運転方法
JPH05329462A (ja) * 1992-06-01 1993-12-14 Hitachi Zosen Corp Ep捕集灰のセメント固化処理方法
JPH06218224A (ja) * 1993-01-28 1994-08-09 Nippon Steel Corp 排ガス及び集塵ダストの処理方法
JPH0775718A (ja) * 1993-09-09 1995-03-20 Takuma Co Ltd 排ガス中の重金属と塩素系炭化水素化合物と酸性ガスの同時除去方法
JPH08108040A (ja) * 1994-08-17 1996-04-30 Okutama Kogyo Kk 排ガス処理剤及び排ガス処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676911B1 (en) * 1998-07-23 2004-01-13 Sumitomo Osaka Cement Co., Ltd. Exhaust gas treating agent, process for producing the same, and method of treating exhaust gas
CN109432939A (zh) * 2018-11-06 2019-03-08 泰州华昊废金属综合利用有限公司 金属表面处理废物资源化利用的废气处理系统
CN109432939B (zh) * 2018-11-06 2024-01-16 泰州华昊废金属综合利用有限公司 金属表面处理废物资源化利用的废气处理系统

Also Published As

Publication number Publication date
CA2208142A1 (en) 1997-04-10
EP0801971A1 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
CN106413857A (zh) 使用水溶性硅酸盐源和含有钙和/或镁的材料稳定包含在含钠粉煤灰中的至少一种重金属
JP3417398B2 (ja) 排ガス処理剤及び排ガス処理方法
WO1997012662A1 (fr) Procede de traitement des gaz brules et des poussieres
CN104853856A (zh) 处理含钠粉煤灰以降低其中包含的硒的可浸出性
JP3867307B2 (ja) ばいじんの処理方法
JP3683025B2 (ja) 廃棄物処理方法
KR100613113B1 (ko) 배기 가스처리제, 그 제조방법 및 배기 가스의 처리방법
JPH09299905A (ja) 有害廃棄物処理剤および処理方法
JP2006015290A (ja) 混合、混練装置を用いない飛灰中の重金属固定化処理方法
JPH0999215A (ja) 排ガス及びばいじんの処理方法
JP2000301101A (ja) ごみ焼却飛灰の処理方法及びごみ焼却排ガスの酸性ガス除去剤
JPH09122616A (ja) 有害廃棄物処理剤および処理方法
JP2001205047A (ja) 排ガス及びばいじんの処理方法
JP3724062B2 (ja) 廃棄物処理材および廃棄物処理方法
JP5131950B2 (ja) 有害物分子の処理方法及びこの処理方法に用いられる薬剤
CN104138884B (zh) 重金属的不溶化剂和重金属的不溶化方法
JP5147146B2 (ja) ごみ焼却飛灰の処理方法
EP2133310A1 (en) Gypsum stabilisation method
JPH09248423A (ja) 排ガス処理剤並びに排ガス及び飛灰の処理方法
JPH09248542A (ja) 廃棄物処理方法
WO1997002101A1 (en) Wastes disposing material and method for disposing of wastes
JP2001149743A (ja) 排ガス処理剤及び排ガス処理方法
JP2000042360A (ja) 煙道吹込み剤およびその使用方法
JPH09108538A (ja) 排ガス及びばいじんの処理方法並びに処理剤
JP3867306B2 (ja) ばいじんの処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2208142

Country of ref document: CA

Ref country code: CA

Ref document number: 2208142

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996932837

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 849625

Date of ref document: 19970805

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996932837

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996932837

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载