+

WO1997010359A1 - Procede de concentration d'acide nucleique variant et materiel de test de concentration d'acide nucleique de mise en application du procede - Google Patents

Procede de concentration d'acide nucleique variant et materiel de test de concentration d'acide nucleique de mise en application du procede Download PDF

Info

Publication number
WO1997010359A1
WO1997010359A1 PCT/JP1996/002617 JP9602617W WO9710359A1 WO 1997010359 A1 WO1997010359 A1 WO 1997010359A1 JP 9602617 W JP9602617 W JP 9602617W WO 9710359 A1 WO9710359 A1 WO 9710359A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
labeled
sample
mutant
binding
Prior art date
Application number
PCT/JP1996/002617
Other languages
English (en)
French (fr)
Inventor
Takanori Oka
Original Assignee
Wakunaga Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakunaga Seiyaku Kabushiki Kaisha filed Critical Wakunaga Seiyaku Kabushiki Kaisha
Priority to CA002231861A priority Critical patent/CA2231861A1/en
Priority to US09/029,981 priority patent/US6017739A/en
Priority to EP96930383A priority patent/EP0852263A1/en
Publication of WO1997010359A1 publication Critical patent/WO1997010359A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays

Definitions

  • the present invention relates to a method for enriching a mutant nucleic acid, and a nucleic acid enrichment test set for performing the enrichment method.
  • the present invention provides a method for preparing a normal nucleic acid from a sample in which a nucleic acid having a specific base sequence of a specific region of a target nucleic acid in a sample and a minute amount of a mutant nucleic acid having a base sequence slightly different from the nucleic acid are mixed.
  • the present invention relates to a nucleic acid concentration method for selectively separating and removing or selectively separating and capturing a mutant nucleic acid to concentrate a mutant nucleic acid, and to a nucleic acid concentration test set for performing the concentration method.
  • the mutant gene is about one tenth of the normal gene, If cancer cells are present in about 5 to 10 times less than normal cells, it is possible to detect them, or if the amount is smaller than that, it is difficult to detect them. It has not been successful enough for treatment.
  • the present invention has been made in view of the above circumstances, and it is easy and easy to mix a normal nucleic acid in a specific region of a target nucleic acid in a sample with a mutant nucleic acid present in a trace amount.
  • a nucleic acid enrichment method capable of reliably enriching a mutant nucleic acid in a sample, detecting a small amount of the mutant nucleic acid and identifying the mutant nucleic acid, and a nucleic acid enrichment test for performing the enrichment method The purpose is to provide a set.
  • the present inventors have developed a method for selectively enriching only a mutant nucleic acid from a sample in which a normal nucleic acid of a specific region of the target nucleic acid in the sample and the mutant nucleic acid are mixed.
  • normal nucleic acids and mutant nucleic acids in the sample were amplified and used as sample nucleic acids, Amplified normal nucleic acid into which a labeled substance capable of binding with the standard nucleic acid is introduced is used as a labeled standard nucleic acid.
  • the present invention provides a PCR-PHFA method (PCTZJP94Z01106, Nuc1.Acids.R), which is a method for identifying the identity of nucleic acids proposed by the present inventors. ec. 22, 1541 (1994)) was improved and developed as a method for enriching mutant nucleic acids.
  • the PCR-PHFA method uses the property of having a completely complementary base sequence to form a double strand more preferentially due to the competitive hybridization method of the PHFA method. Then, the mutant nucleic acid is concentrated.
  • a sample in which a small amount of a normal nucleic acid and a slightly mutated nucleic acid are mixed is amplified as a sample nucleic acid, while the normal nucleic acid is amplified and the amplified product is applied to a solid support.
  • a labelable nucleic acid is introduced by introducing a bindable label, and the labeled standard nucleic acid is added and mixed in an equimolar amount or more to the above-mentioned sample nucleic acid, and the content is condensed by a very gentle temperature gradient.
  • the normal nucleic acid contained in the reaction solution after the hybridization is labeled with a labeled substance capable of binding to the solid phase carrier.
  • this reaction solution is adsorbed onto a solid support having a functional group that specifically binds to the above-mentioned label, a double-stranded nucleic acid having a label that can bind to the solid support can be selected. Specifically bound to the solid support. Then, by collecting the fraction that did not bind to the solid phase carrier, it is possible to obtain a product in which only the normal nucleic acid was removed from the original amplified product, and as a result, the mutant nucleic acid was concentrated. The Rukoto.
  • the target nucleic acid is not limited to double-stranded DNA, but may be single-stranded.
  • DNA, single-stranded or double-stranded RNA can be used in combination according to the purpose.It can detect not only DNA mutations but also intracellular mRNA (abnormality of messenger RNA, However, the present invention can be widely applied to detection of abnormalities of chromosomal DNA with respect to mRNA. Therefore, the present invention provides, as a first invention, a method for selectively enriching a mutant nucleic acid in a specific region of a target nucleic acid,
  • a step of preparing a sample nucleic acid by amplifying a specific region of a target nucleic acid and (2) providing a label capable of binding to a solid phase carrier to a nucleic acid having a base sequence complementary to a normal nucleic acid in the specific region of the target nucleic acid.
  • Hybridization product containing a labeled substance that can be bound to a solid phase carrier which is contained in the reaction solution after the competitive hybridization. And trapping the remaining labeled standard nucleic acid on a solid support to separate and remove it from the reaction solution.
  • a series of steps consisting of the following is defined as one cycle, and the cycle is repeated once or multiple times, or after the above cycle is performed once, the above steps (2) and (3) are performed.
  • Provided is a method for enriching a mutant nucleic acid, which is repeated once or multiple times.
  • a reagent for amplifying a sample nucleic acid for amplifying a specific region of the target nucleic acid to prepare a sample nucleic acid, and specifying the target nucleic acid A labeled standard nucleic acid in which a label capable of binding to a solid phase carrier is introduced into a nucleic acid having a base sequence complementary to a normal nucleic acid in a region, and a solid phase carrier having a site capable of binding to the label.
  • a test set for nucleic acid concentration characterized by this is provided.
  • the present inventors have further studied and, as a result, contrary to the above method, two kinds of labeled substances capable of binding to a solid phase carrier were added to a sample nucleic acid obtained by amplifying a normal nucleic acid and a mutant nucleic acid in a sample. Introduce a labeled sample nucleic acid, add an equal amount or more of the normal nucleic acid amplification product to this labeled sample nucleic acid as a standard nucleic acid, mix and heat denature, then compete with a very gentle temperature gradient. Perform a hybridisation and generate a hybridization with one of the above-mentioned labels from the reaction solution after the hybridisation.
  • the trapped product is trapped on the first solid phase carrier that selectively binds to the one labeled product, and the trapped product is further trapped from among the captured hybridized products.
  • the hybridization product having the two labeled substances is trapped on the second solid phase carrier that selectively binds to the other labeled substance.
  • the single-stranded nucleic acid By trapping the single-stranded nucleic acid having only the other label on a second solid support that selectively binds to the other label. It is possible to selectively extract only the mutant nucleic acid from the medium and easily and reliably enrich the mutant nucleic acid. I found what I could do.
  • a normal nucleic acid is amplified to become a standard nucleic acid, and this standard nucleic acid is added to and mixed with the above-mentioned labeled sample nucleic acid in an equimolar amount or more, and the competitive nucleic acid is formed by a very gentle temperature gradient.
  • the nucleic acid strand of the normal nucleic acid having the above-described label contained in the reaction solution after the hybridization is converted to the nucleic acid strand of the standard nucleic acid (from the normal nucleic acid). It has a nucleotide sequence completely complementary to the nucleic acid strand obtained by the amplification reaction), and forms a double strand with this. For this reason, the nucleic acid derived from the mutant nucleic acid has a higher priority than the nucleic acid strand of the above-described standard nucleic acid with the original complementary strand (a nucleic acid strand having a label that can bind to a solid phase carrier) under these conditions. Form a main chain.
  • the normal nucleic acid in the labeled sample nucleic acid forms a double strand having only one of the labeled substances due to the substitution of the complementary strand with the above-described standard nucleic acid having no labeled substance, and the normal nucleic acid in the labeled sample nucleic acid
  • the mutant nucleic acid does not undergo complementary strand displacement with the above-mentioned standard nucleic acid, and remains as the original double strand having two types of labeled substances, and the remaining standard nucleic acid has the labeled substance. Not the original double strand.
  • the first solid phase carrier that selectively binds to one of the above-mentioned labeling substances is prepared.
  • the hybridization product having one label To capture the hybridization product having one label, and then selectively select the other label from the captured hybridization product.
  • the hybridization having both of the above two labels is performed.
  • Product that is, a mutant nucleic acid in which the replacement of the standard nucleic acid and the complementary strand did not occur in the above-described competitive hybridization is selectively removed, and as a result, the mutant nucleic acid It can concentrate nucleic acids.
  • the hybridization product captured by the first solid-phase carrier is separated and recovered from the first solid-phase carrier, double-stranded hybridization is generated.
  • the product is denatured to separate and recover the single-stranded nucleic acid that is not involved in the binding to the solid phase carrier, and this is further trapped on the second solid phase carrier to obtain the above two types.
  • the single-stranded nucleic acid derived from the hybridization product having both of the above-mentioned labeled substances may be captured, and the mutant nucleic acid in the target nucleic acid can be single-stranded as described above.
  • the single-stranded nucleic acid is amplified using a primer or the like, whereby a double-stranded nucleic acid can be obtained.
  • the above series of enrichment operations or the operations after the competitive hybridization are repeated two or more times, so that the concentration in the sample can be reduced. Even if the amount of the mutant nucleic acid contained in the nucleic acid is extremely small, it is possible to selectively concentrate only the mutant nucleic acid and reliably concentrate it to a detectable concentration, and to delete or add a gene. Alternatively, even when the region of mutation such as substitution is extremely small and there is no difference in the level of gene expression, the gene can be selectively and reliably concentrated, and the target nucleic acid is double-stranded.
  • the present invention provides, as a second invention, a method for selectively enriching a variant nucleic acid in a specific region of a target nucleic acid,
  • a standard nucleic acid having a base sequence complementary to the normal nucleic acid in the specific region of the target nucleic acid is added and mixed at least equimolar to the labeled sample nucleic acid, and the competitive hybridisation is performed. The process of performing the action,
  • test set for enrichment for performing the second enrichment method a test set for enriching a mutant nucleic acid is provided.
  • a first solid support having a site capable of binding to the one label It is intended to provide a nucleic acid enrichment test set, which comprises a second solid-phase carrier having a site capable of binding to the other label.
  • the nucleic acid having a base sequence complementary to a normal nucleic acid in a specific region of the target nucleic acid in the standard nucleic acid may be used.
  • the method for enriching a mutant nucleic acid of the present invention is a method for selectively enriching a mutant nucleic acid in a specific region of a target nucleic acid.
  • the first method comprises the steps of (1) A step of amplifying a specific region to prepare a sample nucleic acid, (2) a step of competitively hybridizing the sample nucleic acid and a labeled standard nucleic acid, and ( 3 ) a step of competing. Separation / removal of competitive nucleic acid-derived competitive product and residual labeled standard nucleic acid from labeled nucleic acid using a labeled substance from the reactive reaction mixture It consists of
  • the target nucleic acid in the above step (1) is usually obtained from a sample separated from a living body.
  • the sample may be blood, tissue disease, etc. obtained from a human, or feces or urine. Excrement and the like.
  • fetal cells present in amniotic fluid or a portion of dividing egg cells in test tubes can be used as specimens.
  • these samples may be directly or, if necessary, concentrated by centrifugation or the like as sedimentation, for example, enzyme treatment, heat treatment, surfactant treatment, ultrasonic treatment, or a combination thereof.
  • a cell that has been subjected to cell destruction treatment in advance or the like can be used.
  • the cell disruption treatment is performed for the purpose of revealing DNA or RNA derived from the target tissue. It is something that is done.
  • the specific method is PCR protocol, akademic pre-sink P14, P35 (1990) (PCRPROTOCOLS, Academic Press Inc., PI4 , P355 (1990))), and the DNA or RNA in the sample can be 1 to 100 ⁇ It is desirable that the amount be about g, but amplification can be sufficiently performed even at 1 ⁇ g or less.
  • the obtained DNA is cut with an appropriate restriction enzyme to obtain a DNA fragment of a specific region having a determined end.
  • the target nucleic acid is mRNA, it is converted into cDNA (complementary DNA) by reverse transcriptase, which is cut with a restriction enzyme.
  • the DNA fragment is subjected to gene amplification using a primer having no label capable of binding to a solid phase carrier to prepare a sample nucleic acid.
  • a template can be prepared by connecting linkers having base sequences complementary to the base sequence of the primer to both ends of the DNA fragment, respectively.
  • the primer is not particularly limited, and any of the oligonucleotides commonly used for gene amplification can be used, and the two oligonucleotides can be used. Those having an aminoalkyl group introduced at the 5 'end of the compound can also be used.
  • the labeled standard nucleic acid used in the above step (2) is prepared by introducing a labeled substance capable of binding to a solid phase carrier into a primer having the same base sequence as the primer in the above step (1).
  • a template derived from a normal cell or a confirmed DNA sample can be amplified and prepared.
  • the position of the label in the primer does not significantly affect the efficiency of the extension reaction of the primer, preferably a hydroxyl group near the 5 'end.
  • the active group of the base moiety or phosphate ester moiety is selected according to the properties of the solid support or the properties of the substance that modifies the solid support. You can choose.
  • the above-mentioned label to be introduced into the primer oligonucleotide is also used for separating and removing unnecessary DNA by binding the solid phase carrier in the above step (3).
  • the combination of the labeled substance and the substance on the solid phase carrier that can bind thereto is, for example, biotin and streptavidin or avidin, hapten and antibody, and ligand.
  • a receptor include a combination of a specific nucleic acid and a DNA binding protein that binds to the specific nucleic acid.
  • oligonucleotide is labeled with biotin, and streptavidin is bound to a solid support.
  • the oligonucleotide is bound to the solid support by binding of biotin and streptavidin.
  • hapten a compound having a 2,4-dinitrophenyl group or digoxigenin can be used, and further, the above-described piotin or fluorinated hapten can be used.
  • Fluorescent substances such as Nylthio cysteine, can also be used as haptens.
  • the solid phase carrier may be a gel or a magnet bead into which a site that binds to the above-described label is introduced.In this case, the magnet bead is used for the reaction. It can be injected into a solution to bind to nucleic acids, and this can be recovered from the reaction solution using a magnet.
  • the primer When the sample is amplified with a primer that does not have a label that can bind to the solid phase carrier, and when the labeled standard nucleic acid is amplified with a primer that has a label that can bind to the solid phase carrier, the primer may be used.
  • a gene amplification reaction based on the elongation reaction of a mouse can be performed.
  • the gene amplification method includes the well-known PCR (polymerase chain reaction) & LCR (ligase chain reaction) method, 3
  • the SR Se1f one sustained Sequence Replication
  • SDA StrandDisplacementAmp1ification
  • the primer elongation reaction is carried out by four types of nucleotide triphosphates [doxyadenosine triphosphate (dATP), deoxyguanosine triphosphate]. Acid (dGTP), deoxycitidine triphosphate (dCTP) and deoxythymidine triphosphate (dTTP) (these mixtures are sometimes referred to as dNTPs)] Is carried out by incorporating the compound as a substrate into the primer.
  • dATP deoxyguanosine triphosphate
  • Acid dGTP
  • dCTP deoxycitidine triphosphate
  • dTTP deoxythymidine triphosphate
  • an amplification reaction reagent containing the above-mentioned nucleotide triphosphate and a nucleic acid elongation enzyme is usually used to amplify a nucleic acid chain.
  • Any DNA polymerase such as E. coli DNA polymerase I, Klenow fragment of E. coli DNA polymerase I, T4 DNA polymerase, etc. Can be used.
  • thermostable DNA polymerases such as Taq DNA polymerase, Tth DNA polymerase, Vent DNA polymerase, etc. can be used. It is desirable to use the enzyme, which eliminates the need to add a new enzyme for each cycle and automatically repeats the cycle.
  • the initial ring temperature can be set to 50 to 60, the target distribution by the primer can be performed.
  • the specificity of column recognition can be increased, and a gene amplification reaction can be carried out quickly and specifically (for details, see JP-A-1-314965, JP-A-1-24952). No. 300 publication).
  • oil can be added to prevent evaporation of water in the reaction solution.
  • the oil can be used with any oil that is distributable with water and has a lower specific gravity than water. Oil, mineral oil Etc. are exemplified.
  • some gene amplification devices do not require such an oil, and the primer extension reaction can be performed using such a gene amplification device. .
  • the nucleic acid By repeating the extension reaction using the nucleic acid amplification primer, the nucleic acid can be efficiently amplified to prepare the sample nucleic acid and the labeled standard nucleic acid. .
  • the specific conditions for carrying out the gene amplification reaction are described in Experimental Medicine, Yodosha, 8, No. 9 (1990), PCR technology stock pump.
  • the method can be carried out according to a known method described in a literature such as (1989) (PCR Technology, Stocktonpress (1989)).
  • the DNA amplified in this way is used as a host / vector system, ie, a plasmid vector, a phage vector, or a plasmid vector.
  • a host / vector system ie, a plasmid vector, a phage vector, or a plasmid vector.
  • the phage's chimera vector power combined with the vector of choice, and bacteria or yeast (S accharomyces cerevisia e) such as Escherichiaco 1 i, Bacillus lussubti 1 is It can also be prepared in large quantities by introducing it into any reproducible host (eg, gene cloning).
  • the labeled standard nucleic acid may be directly enzymatically cut out of a natural gene with a restriction enzyme without using gene amplification.
  • it can be prepared in large quantities by gene cloning, and in some cases, it can be prepared by chemical synthesis.
  • Chemical synthesis includes the triester method and the phosphite method.These methods can be applied to an automatic synthesizer by a liquid phase method or a solid phase synthesis method using an insoluble carrier. A larger amount of single-stranded DNA can be prepared, and thereafter, double-stranded DNA can be prepared by performing annealing.
  • the target nucleic acid in the present invention does not necessarily need to be DNA, but may be RNA.
  • the RNA is t RNA (transfer RNA), mRNA (messenger RNA), and rRNA (ribosoma 1 RNA).
  • mRNA that reads genetic information of DNA and transmits the genetic information is particularly suitable.
  • its base sequence consists only of pixon (a part that specifies genetic information) that does not contain introns. Is significant in that abnormalities that directly express genetic information can be found.
  • DNA is a basic design drawing of a gene, but it is not always possible to estimate the expression trait by 100% from this alone, and it is not possible to select one gene (one type of transcript pre-mRA).
  • multiple mRNAs ie, multiple proteins
  • the method of the present invention requires By using mRNA as the target nucleic acid, the mutant mRNA can be satisfactorily concentrated, and greatly contributes to the analysis of mRNA.
  • the mRNA can be directly amplified and used as a sample nucleic acid.
  • reverse transcriptase Reversible Transcriptase
  • RT-PCR amplify by PCR
  • one of the sample nucleic acid and the labeled standard nucleic acid can be single-stranded DNA or single-stranded RNA.
  • the above single-stranded RNA can be prepared in a test tube using a phage RNA polymerase such as SP6 or T7. It can be prepared by the transcription reaction in.
  • single-stranded DNA It can be prepared by the same chemical synthesis as described above, or can be used to prepare single-stranded DNA, such as M13 phage or other phage DNA or phage plasmid. It can be incorporated into Smid DNA and prepared by cloning.
  • RNA When RNA is used as the labeled standard nucleic acid or when DNA is amplified by a method other than the method using a primer, the same labeled substance that can be bound to the solid phase carrier should be used as described above.
  • the label can be introduced chemically or enzymatically according to a known method (Japanese Patent Laid-Open Publication No. Hei. 1-2525, Japanese Patent Laid-Open Publication No. Hei-63339). Refer to the gazette)
  • DNA or RNA having no label capable of binding to the solid support obtained from the target nucleic acid is used as the sample nucleic acid, and the label capable of binding to the solid support prepared from the sample is used.
  • the DNA or RNA having the above is used as the labeled standard nucleic acid, and the equimolar amount or more of the labeled standard nucleic acid is added to the sample nucleic acid, and the competitive hybridization is performed.
  • the labeled standard nucleic acid is ideally a double-stranded DNA having the same base sequence at both ends as the sample nucleic acid, but the base sequences at both ends are not necessarily completely equal.
  • the concentration can be satisfactorily increased if the difference in the chain length between the sample DNA and the standard DNA is within about 10 bases at each end.
  • the sample nucleic acid and the labeled standard nucleic acid is single-stranded DNA or single-stranded RNA, there is no particular limitation on the difference in the chain length between the sample nucleic acid and the labeled standard nucleic acid.
  • the combination of the sample nucleic acid and the labeled standard nucleic acid when performing competitive hybridization is DNA-based.
  • DNA hybrids, DNA-RNA hybrids, and RNA-RNA hybrids can be considered, and any combination of these can effectively concentrate mutant DNA or mutant RNA. It can do that.
  • the target nucleic acid is RNA, as described above, It can exert an excellent effect on detection of specific mRNA in cells and detection of chromosomal DNA for mRNA.
  • the timing of mixing both nucleic acids may be immediately before denaturation or after denaturation.
  • the optimum conditions differ depending on the length of the nucleic acid, the nucleotide sequence, and the degree of mutation.
  • the composition of the solution is adjusted to be optimal according to the nucleic acid chain length.
  • SSC 20 XSSC: 3 M sodium chloride, 0.3 N sodium citrate
  • SSPE 20 XSSPE: 3.6 M sodium chloride, 0.2 M sodium phosphate, 2 m MEDTA
  • DMS 0 dimethyl sulfolide
  • DMF dimethyl sulfoxide
  • the remaining labeled standard nucleic acid and the labeled standard nucleic acid are combined with the remaining labeled standard nucleic acid using a label that can bind to the solid phase carrier present in the labeled standard nucleic acid.
  • the hybridized sample nucleic acid is bound to the solid phase carrier by trapping with the solid phase carrier, and separated and removed.
  • the above operation is preferably repeated at least once, and preferably about three times, so that the remaining labeled standard nucleic acid and the sample nucleic acid hybridized with the labeled standard nucleic acid are surely obtained. It can be separated and removed by binding to a solid support.
  • the label that can be bound to the solid phase carrier possessed by the labeled standard nucleic acid is piotin
  • the solid phase carrier is a microtiter with immobilized streptavidin.
  • the competitive hybridization product is added to the gel, and the mixture is shaken at 25 ° C or room temperature for about 15 to 30 minutes. These conditions are different depending on the type of the label and the solid phase carrier.
  • the fraction that did not bind to the solid support that is, the reaction residue, did not form a double strand with the labeled standard nucleic acid compared to the original sample, that is, the labeled standard nucleic acid Those having a base sequence different from the above are contained in a high ratio.
  • the concentration may not reach the detection limit by a single concentration operation.
  • the absolute amount of the mutated nucleic acid to be enriched can be increased by repeating the entire process from the amplification operation of the target nucleic acid, but it is not necessary to repeat the entire process.
  • the enrichment rate can be increased by repeating only the operation after the above-described competitive hybridization as the enrichment operation.
  • the enrichment method according to the second invention comprises: (1 ′) a step of preparing a labeled sample nucleic acid labeled with two types of labels; (2 ′) the labeled sample nucleic acid (3 ') Competitive hybridization reaction from a non-labeled standard nucleic acid to a non-labeled standard nucleic acid. Capturing a hybridisation product having at least one of the labeling species, and (4 ') capturing two types of the hybridisation product from the captured hybridisation product.
  • a step of selectively removing mutant nucleic acids by capturing a single-stranded nucleic acid derived from a hybridization product or a hybridization product having both labeled substances It consists of: That is, in the second method, in contrast to the first method, a competitive hybridization is performed between a labeled sample nucleic acid labeled with two kinds of labels and an unlabeled standard nucleic acid. By taking a shot and separating and capturing only the mutant nucleic acid in the sample nucleic acid using the two types of labeled substances, the mutant nucleic acid is concentrated.
  • the target nucleic acid obtained from the specimen can be prepared by amplifying the nucleic acid in the same manner as in the first method.
  • the second method two types of labels are introduced into the sample nucleic acid to obtain a labeled sample nucleic acid.
  • a method for introducing the labeled substance the same method as that for preparing the labeled standard nucleic acid in the first method described above can be used, and specifically, the labeled substance is introduced.
  • a method of amplifying the target nucleic acid by PCR using a primer is preferably employed.
  • different labels are used for the two types of primers, respectively.
  • the two types of primers are prepared by introducing a product and preparing two types of primers having different labeled substances, and amplifying the target nucleic acid using these two types of primers.
  • a labeled sample nucleic acid into which a substance has been introduced is prepared.
  • the pretreatment of the target nucleic acid and the conditions for amplification by the PCR method can be performed in the same manner as in the first method.
  • the two types of labels introduced into the labeled sample nucleic acid may be any ones as long as they are different from each other, and the label introduced into the labeled sample nucleic acid in the first method described above. It is possible to use something similar to However, those having high binding specificity to the binding site are particularly preferably used, and for example, a combination of piotin and hapten is preferably used.
  • the labeled sample nucleic acid is used in the same manner as in the first enrichment method, except that the primer is not used and the primer is a vector, a phage vector, or a plasmid. It can also be prepared by amplifying with a host Z vector system selected from quinula vectors with the phage. In this case, the two kinds of labeled substances are used to amplify the target nucleic acid. After the reaction, it can be introduced chemically or enzymatically according to a known method.
  • the standard nucleic acid used in the above step (2 ′) can be obtained in the same manner as in the case of the labeled standard nucleic acid in the first method, except that no label is introduced.
  • Competitive hybridization between the labeled sample nucleic acid and the standard nucleic acid should be performed in the same manner as the competitive hybridization in the first method. I can do it.
  • the mutant nucleic acid is selectively separated and captured from the hybridization reaction solution by the steps (3 ′) and (4 ′) described above. It is a thing. That is, first, the obtained hybridization reaction solution is trapped on a first solid phase carrier that selectively binds to one of the two types of labels. To capture the hybridization product having at least one label. Hybridization products captured by this operation are those having only one of the hybridized products of the standard nucleic acid and the normal nucleic acid in the labeled sample nucleic acid, and It contains a standard nucleic acid and a mutant nucleic acid having two types of labels consisting of two strands without being hybridized as is.
  • the captured hybridized product is trapped on a second solid phase carrier that selectively binds to the other one of the two types of labels, and the other is then trapped. Capture the labeled hybridization products. High predication captured by this operation
  • the hybridization product is one of the hybridization products having one label captured by the first solid phase carrier and having the other label, that is, both labels.
  • the mutant nucleic acid having the above structure is separated and captured, and the mutant nucleic acid can be concentrated.
  • the first and second solid-phase supports can be prepared in the same manner as in the first method, and in this case, the binding site to which the label is bound is the above-mentioned label.
  • the binding site to which the label is bound is the above-mentioned label.
  • those that selectively bind to each label are used, and those similar to those described in the first method above can be used.
  • piotin and hapten, streptavidin or avidin is used to selectively bind to biotin.
  • the antibody is used as a substance that selectively binds to the hapten.
  • the method of separating and recovering the hybridization product captured on the solid phase carrier from the solid phase carrier depends on the type of the label used and the binding site of the solid phase carrier. It can be carried out according to a known method as appropriate.
  • the hybridization product captured on the first solid support is usually separated and recovered from the solid support in the form of double-stranded nucleic acid and then recovered on the second solid support.
  • a carrier for example, when enrichment is simply performed to detect a mutant nucleic acid, for example, when the two strands are separated and only the single strand that is not involved in binding to the solid phase carrier is used. It can also be separated and recovered and provided to the second solid support.
  • the mutant nucleic acid is concentrated as a single-stranded nucleic acid, but can be easily converted into a double-stranded nucleic acid by amplifying the nucleic acid using a primer or the like.
  • a magnetic bead into which a site that binds to the second label is introduced is used as the second solid support. A method of recovering the magnetic beads from the reaction solution using a magnet is preferably employed.
  • the detection of the mutant nucleic acid from the obtained concentrated solution allows the detection of the mutant nucleic acid contained in a trace amount in the sample, which was difficult by the conventional method. Can be easily and reliably detected. Further, by increasing the proportion of such a mutant nucleic acid, the isolation of the mutant nucleic acid is facilitated, and the structure and function of the mutant nucleic acid can be easily analyzed. . In other words, it is possible to develop gene therapy by physical analysis, for example, by determining the gene structure such as nucleotide sequence, and by genetic manipulation and further analysis of genetic diseases. It is a thing.
  • a known method can be used as a method for detecting a mutant nucleic acid from a concentrated solution by the concentration method of the present invention.
  • electrophoresis using a polyacrylamide gel can be used as a method for detecting a mutant nucleic acid from a concentrated solution by the concentration method of the present invention.
  • electrophoresis using a polyacrylamide gel can be used as a detection method using a probe and a detection method using a probe to which a detectable label is bound can be suitably used.
  • a non-radioactive substance or a radioactive substance may be used as a detectable label, but a non-radioactive substance is preferably used.
  • non-radioactive substance used as a label a substance that can be directly labeled as a fluorescent substance [for example, a fluorosethyne derivative (fluorescein isothiocyanate, etc.)] ), Rhodamin and its derivatives (eg, tetramethyllodamine isothiosinate)], chemiluminescent substances (eg, acridin), and substances that emit delayed fluorescence (eg, DTTA: Pharmacia).
  • a fluorescent substance for example, a fluorosethyne derivative (fluorescein isothiocyanate, etc.)]
  • Rhodamin and its derivatives eg, tetramethyllodamine isothiosinate
  • chemiluminescent substances eg, acridin
  • substances that emit delayed fluorescence eg, DTTA: Pharmacia
  • a known mutant nucleic acid in which a specific nucleic acid is artificially mutated may be required.
  • the enrichment method of the present invention can selectively enrich a mutated nucleic acid after artificially causing a mutation of the nucleic acid in a specific nucleic acid, and can efficiently prepare a mutant nucleic acid.
  • a mutagen such as sulfite is allowed to act on the specific nucleic acid to cause an artificial mutation
  • the specific nucleic acid in the mixture is used as the target nucleic acid, and the nucleic acid before mutation is labeled or unlabeled from the standard.
  • the mutated nucleic acid can be selectively concentrated and recovered, and the preparation of the mutated nucleic acid can be performed efficiently. It is.
  • the nucleic acid enrichment test set of the present invention is a test set for easily and surely enriching a mutant nucleic acid according to the mutant nucleic acid enrichment method of the present invention.
  • the set for carrying out the enrichment method has a sample nucleic acid amplification reagent for amplifying a specific region of the target nucleic acid to prepare a sample nucleic acid, and a base sequence complementary to a normal nucleic acid in the specific region of the target nucleic acid. It comprises a labeled standard nucleic acid having a nucleic acid into which a label capable of binding to a solid support is introduced, and a solid support having a site capable of binding to the label.
  • the test set amplifies the target nucleic acid in the sample subjected to pretreatment such as cell destruction or the target nucleic acid synthesized as necessary using the sample nucleic acid amplification reagent.
  • pretreatment such as cell destruction or the target nucleic acid synthesized as necessary using the sample nucleic acid amplification reagent.
  • a sample nucleic acid is prepared, and the above-mentioned labeled standard nucleic acid having a label that can be bound to a solid phase carrier is added thereto, and a competitive hybridization is performed. After that, the obtained hybridization product is trapped on a solid support to separate and remove the hybridized product from the labeled standard nucleic acid.
  • the reagent for amplifying the sample nucleic acid for preparing the sample nucleic acid may be a primer, a phage DNA, or a phage plasmid which does not have the label described in the first enrichment method.
  • RNA polymerase or the like can be used, but usually the above primer is preferably used.
  • known reagents, specifically, those described in the enrichment method of the present invention described above are used.
  • a foil for preventing the evaporation of water from the reaction solution and a solid phase carrier.
  • a washing solution or the like for washing nucleic acids or the like not bound to the solid phase carrier can be used, and the nucleic acid concentration test set of the present invention can be combined with these. .
  • the labeled standard nucleic acid DNA having a labeled substance prepared by the method described in the enrichment method of the present invention can be used.
  • a primer in which a labeled substance capable of binding to a solid phase carrier is introduced into a primer capable of amplifying a specific region of the target nucleic acid for preparing the labeled standard nucleic acid is included.
  • the test kit for concentration of the present invention can also be constituted by using the labeled standard nucleic acid amplification reagent.When the concentration is carried out, the enrichment test can be performed by using the labeled standard nucleic acid amplification reagent as described in the above-mentioned enrichment method. Instead, a labeled standard nucleic acid may be prepared each time.
  • the test set for performing the second enrichment method amplifies a specific region of the target nucleic acid, and prepares a labeled sample nucleic acid by introducing two types of labels into the amplified product.
  • a reagent for amplifying a labeled sample nucleic acid a standard nucleic acid having a base sequence complementary to a normal nucleic acid in a specific region of the target nucleic acid, a first solid phase carrier having a site capable of binding to the one labeled substance, And a second solid support having a site capable of binding to the other label.
  • the test set is prepared by subjecting the target nucleic acid in the sample subjected to pretreatment such as cell destruction or the target nucleic acid synthesized as necessary to the labeled sample nucleic acid amplification reagent.
  • the reagent for amplifying the labeled sample nucleic acid for preparing the sample nucleic acid two kinds of primers or phages each having a different label as described in the second enrichment method are used.
  • primers or phages each having a different label as described in the second enrichment method.
  • DNA plasmid DNA or RNA, RNA polymerase or the like can be used.
  • the above two primers are preferably used.
  • known reagents, specifically, the enrichment method of the present invention described above are used as the reagents, specifically, the enrichment method of the present invention described above are used.
  • the same one as described can be used, and the cell disrupting reagent for sample pretreatment described in the above-mentioned enrichment method of the present invention, an oil for preventing evaporation of water in the reaction solution, and Washing solution for washing nucleic acids that have not bound to the solid support after binding to the solid support, reagents for separating and recovering nucleic acids bound to the solid support from the solid support, etc.
  • the nucleic acid concentration test set of the present invention can also be used.
  • the standard nucleic acid unlabeled DNA having no labeled substance prepared by the method described in the enrichment method of the present invention can be used.
  • the test set for concentration of the present invention is prepared using a standard nucleic acid amplification reagent containing a primer capable of amplifying a specific region of the target nucleic acid for preparing the standard nucleic acid.
  • the standard nucleic acid may be prepared each time the concentration is performed by using the standard nucleic acid amplification reagent according to the method described in the enrichment method above.
  • a normal nucleic acid can be obtained from a sample in which a normal nucleic acid and a mutant nucleic acid having a base sequence slightly different from the normal nucleic acid coexist in a specific region of the target nucleic acid.
  • a small amount of mutant nucleic acids in a sample can be concentrated, and the detection of minute amounts of mutant nucleic acids can be performed easily and reliably. It can be performed and furthermore, it can be identified.
  • only the mutated gene can be selectively enriched, and The acid can be prepared efficiently.
  • a standard nucleic acid can be prepared from a chromosome DNA or mRNA derived from a normal human or tissue, and a sample nucleic acid can be prepared from a patient having the disease or a cancer tissue.
  • Standard nucleic acid and sample nucleic acid are amplified by direct transcription for chromosomal DNA or double-stranded DNA by reverse transcription for mRNA, followed by cleavage with any restriction enzyme and addition of a linker.
  • enrichment is performed by the method of the present invention using a primer complementary to the linker sequence, the nucleotide sequence between the normal person or tissue and the patient or cancer tissue having the disease can be increased. Different genes can be obtained selectively.
  • the mutant nucleic acid can be selectively enriched according to the above-described method for enriching a mutant nucleic acid of the present invention, and can be subjected to detection and the same operation.
  • the present invention it is possible to reliably obtain a sufficient amount of mutant nucleic acid, and to analyze the structure and function of the mutant nucleic acid using the mutant nucleic acid. It can contribute.
  • the human c-H-ras gene As a normal gene, the human c-H-ras gene, and as a mutant gene, the second codon of the human c-H-ras gene is GGC (G1y) ⁇ GTC (Va1). The one in which the mutation was caused was used.
  • Amplification of DNA by PCR is performed using the following pSK-2 (normal gene 1 ng each as template, and the following primers NH 2 — PHR — 1 and NH 2 — CHRAS — 1 as lOO ng, respectively.
  • pSK-2 normal gene 1 ng each as template
  • primers NH 2 — PHR — 1 and NH 2 — CHRAS — 1 as lOO ng respectively.
  • 1001 tris-hydrochloric acid buffer pH 8.8
  • 16.6 mM ( NH 2 ) 2 S ⁇ ,, 6.7 mm MM g Cl 2 , l O mm M 2 Menolecaptoethanol and 2 Unitit Tth DNA polymerase Performed in solution.
  • the reaction was heated at 94 ° C for 10 minutes and then repeated 30 times at 94 ° C, 30 seconds, 60 ° C, 30 seconds, 72 ° C, 60 seconds.
  • This reaction solution was subjected to agarose gel electrophoresis, and the size and amplification rate of the amplified product were confirmed.
  • the amplified product derived from the normal gene and the amplified product derived from the mutant gene were mixed at the ratios shown in Table 1, and the ratio of the mutant gene to the normal gene was 0%, 10%, and 50%.
  • the sample was prepared so as to be 100%. These samples were diluted 100 fold with distilled water to obtain test samples. And table 1
  • This reaction mixture was subjected to polyacrylamide gel electrophoresis to generate
  • the enrichment method of the present invention can selectively enrich a mutant gene from a mixture of a normal gene and a mutant gene. If it is necessary to further increase the abundance ratio of the mutant gene, the above-described series of operations up to the enrichment may be repeated a plurality of times.
  • a normal Ki-ras gene derived from a cancer cell and a second codon of this normal gene from GGT (G1y) to GAT (Asp) A method for extracting mRNA from a sample containing both the mutant K i -ras gene and the mRNA and enriching the mutant gene from the mRNA is described below.
  • MRNA was extracted from the skeletal tissue by QuicPre mRNA PurifaicatoKit (Pharmacia). Using this mRNA as a template, a reverse transcription reaction was carried out by the following operation to prepare cDNA.
  • Chromosomal DNA was extracted using 500 l of normal human blood, SepaGene (manufactured by Sanko Junyaku). Using 500 ng of this DNA as a template, 50 mM MKC 1, 1 mM of lOmM tris-monohydrochloride buffer (pH 8.3) was used. In the presence of 5 mm M g C l 2 and 200 M d ATP, d GTP, d CTP, and d TTP, the following primers—Bio—KRASF and Bio—KRASR, each with 1 Opmo 1 Then, 2 units of Taq DNA polymerase were added, and the mineral oil was overlaid. After heating this solution at 94 ° C for 5 minutes, the cycle of 94 ° C, 30 seconds, 60 ° C, 30 seconds, 72 ° C, 60 seconds is repeated 30 times. Then, a labeled standard nucleic acid was prepared.
  • the above sample nucleic acid was diluted 10-fold with distilled water, and 5/1 thereof was mixed with labeled standard nucleic acid (amplified product of a normal biotinylated gene) 10 XSSC 101 and distilled water 101 . That is, a 10-fold amount of the amplified product of a normal biotinylated gene is added to the sample nucleic acid.
  • the primers NH 2 —KRASF and NH 2 -KRASR were used in an amount of 100 ng each, and the amplification was carried out under the same conditions as above. 10 ⁇ l of this reaction solution was treated with the restriction enzyme Bst st1 (the restriction enzyme BstN1 cuts the normal gene but not the mutant gene). This reaction solution was subjected to polyacrylamide gel electrophoresis, and the generated DNA fragments were analyzed. Next, the following second concentration operation was performed using the remaining liquid.
  • the PCR amplification product after the first concentration operation was diluted 10-fold with distilled water, and its 51 and labeled standard nucleic acid (biotinylated normal gene amplification product)
  • Table 3 shows the results for the detection of mutant and normal genes in each step.
  • a method for enriching a mutant nucleic acid using a labeled sample nucleic acid prepared by using a sample nucleic acid with two types of labeled primers and an unlabeled standard nucleic acid will be described below.
  • RNA was extracted from the kidney tissue, and was subjected to reverse transcription to obtain cDNA.
  • cDNA solution a PCR reaction was performed in the following procedure.
  • Chromosomal DNA was prepared from the same normal blood Example 2, the Re this NH 2 - KRASF, NH 2 _ KRASR out using respectively 1 O pmo 1, amplified in the same conditions as the sample nucleic acids, standard nucleic acid was prepared.
  • the labeled sample nucleic acid was diluted 100-fold with distilled water, and 51 thereof was mixed with the standard nucleic acid 51, 10 SSC 10 ⁇ l, and distilled water 101. That is, 100 times the amount of a nucleic acid having an unlabeled normal sequence is added to the labeled sample nucleic acid. After heat denaturation by heating this solution at 98 ° C for 10 minutes, the solution was heated at 98 ° C to 70 ° C by a very gentle temperature gradient at a rate of 1 ° C for 10 minutes. The main chain formation reaction was performed. The reaction solution was diluted by adding 80 ⁇ l of TE buffer, and the solution was added to a streptavidin-immobilized gel.
  • the above complex was suspended in 30 zl of 0.1 M Tris-HCl buffer (pH 7.0), 150 mM NaCl, 1 mMEDTA, 98. Heating was performed for 5 minutes to inactivate the antibody molecule. The magnet beads were removed with a magnet, and the supernatant containing the DNP-labeled single-strand sample nucleic acid was collected.
  • the obtained supernatant 11 was subjected to PCR amplification using the primers Bio—KRASF and DNP—KRASR under the same conditions as in the preparation of the labeled sample nucleic acid.
  • This reaction mixture 10 ⁇ 1 was treated with the restriction enzyme BstNI (the restriction enzyme BstNI cuts the normal gene but not the mutant gene).
  • This reaction solution was subjected to polyacrylamide gel electrophoresis, and the generated DNA fragments were analyzed. Next, the following second and subsequent concentration operations were performed using the remaining liquid.
  • the PCR product after the first concentration operation was diluted 100-fold with distilled water, and 51 of them were diluted with the standard nucleic acids 51 and 10 XSSC 10 ⁇ 1 and distilled water 10 ⁇ 1 were mixed. This is subjected to thermal denaturation, annealing with a temperature gradient, and adsorption to a solid support in the same manner as in the first concentration operation. Similarly, after PCR amplification and restriction enzyme treatment, a DNA fragment generated as above was analyzed. Using the PCR amplification product after the second concentration operation, the concentration operation was performed once more, and the generated DNA fragments were analyzed in the same manner as described above.
  • Table 4 shows the results for the detection of mutant and normal genes at each step.
  • a specific region of the target nucleic acid can be obtained from a sample in which a normal gene and a mutant nucleic acid having a base sequence slightly different from the normal gene are mixed. It was confirmed that a small amount of mutant nucleic acid in the sample could be detected by selectively segregating * the DNA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

明 細 書
変異核酸の濃縮方法、 該濃縮方法を実施する ための核酸濃縮用検査 セ ッ 卜 技術分野
本発明は、 検体中の目的核酸の特定領域の特定の塩基配列を有す る核酸と、 それとはわずかに異な る塩基配列を有する微量の変異核 酸とが混在する検体中から、 正常核酸を選択的に分離 · 除去し、 又 は変異核酸を選択的に分離 * 捕獲 して、 変異核酸を濃縮する核酸の 濃縮方法、 及び該濃縮方法を実施するための核酸濃縮用検査セ ッ 卜 に関する。
背景技術
近年、 分子生物学、 遺伝学の進歩は著 し く 、 こ れ らの蓄積された 成果は生命現象の化学的、 物理学的解明に寄与する のみな らず、 人 間に対して、 特に医学や医療に対して も大きな影響を与え、 D N A から出発する D N A医学が予想を遥かに超えて臨床分野にま で急速 に広がりつつある。 また、 最近では、 ほとんどすべての疾患に D N A が関与している こ とが解明されてき てお り 、 遺伝子レベルでの診断 が必要不可欠な もの とな ってきている。
今日 、 遺伝子疾患と し て知られている も の には先天的代謝異常と して古く か ら知られていた数多 く の酵素欠損症がほとんど該当する こ とがわかってきてお り 、 これらの遺伝子診断をするためには遺伝 子上の塩基配列の変異を検出する こ とが極めて有効である。
一方、 後天的な遺伝子異常によ って引き起こ される疾患、 即ち癌 などの遺伝子診断を行う場合、 癌病片から癌細胞のみを集める こ と は非常に困難であ り 、 常に正常細胞が混入 して しま う。 従って、 正 常細胞と癌細胞が共存する状況下で、 癌細胞中の変異遺伝子のみを 特異的に検出する こ とが必要となる。 こ の場合、 現在用い られてい る検出方法では、 変異遺伝子が正常遺伝子の 1 0分の 1 程度、 即ち、 癌細胞が正常細胞の 5 〜 1 0分の 1 程度存在している場合はその検 出が可能であるか、 それ以下の微量の場合には検出は困難であ り 、 癌の早期診断、 早期治療に十分な成果を上げる には至っ ていない。 近年、 Pし R (P o l ym e r a s e C h a i n R e a c t i o n) 法等の遺伝子増幅法の開発によ り単に遺伝子量を増大させる こ とは 容易とな っ た。 しか し、 癌細胞と正常細胞、 或いは正常人と特定の 遗伝病患者の原因とな っている遺伝子の変異を同定する場合には、 単に遺伝子量を増大させるだけではな く 、 試料中に含まれる変異遺 伝子の比率を増大させる こ とが必要となる。 この場合、 一方の細胞 で特定遺伝子がかな り大きな領域で欠損又は挿入されて いた り 、 或 いは一方の細胞だけでその遺伝子が発現 してい る場合にはサブ ト ラ クシヨン法 ( I n し u r r e n t P r o t o c o l i n Mo l e c u l a r B i o l o g y , ( 1 9 9 2 ) , J o h n W i l e y & S o n s , I n c . によ り特定遺伝子を選択的に濃縮する こ とが可能である。 し力、 しな力 ら、 上記サブ ト ラ ク シ ヨ ン法では、 原因とな る遺伝子 の変異がわずかな場合、 即ち、 遺伝子の欠失、 付加或いは置換等変 異の領域が極めて小さ い場合や、 両者の遺伝子発現の レベルに差が 見られない場合には、 変異遺伝子の同定は事実上困難であ っ た。 発明の開示
本発明は、 上記事情に鑑みなされた も のであ り 、 検体中の目的核 酸の特定領域の正常核酸と微量に存在する変異核酸とが混在するよ う な状態であ っ て も、 容易かつ確実に検体中の変異核酸を濃縮する こ とができ、 微量な変異核酸の検出及び変異核酸の同定を可能とす る核酸の濃縮方法、 及び該濃縮方法を実施する ための核酸濃縮用検 査セ ッ 卜 を提供する こ とを 目的とする。
本発明者らは、 上記目的を達成するために、 検体中の目的核酸の 特定領域の正常核酸とその変異核酸とが混在している検体中から変 異核酸のみを選択的に濃縮する方法について鋭意検討を行った結果、 検体中の正常核酸及び変異核酸を増幅して試料核酸と し、 固相担体 と結合可能な標識物を導入した正常核酸増幅物を標識檩準核酸と し て、 上記試料核酸に対して等量以上の標識標準核酸を添加 · 混合し、 熱変性を行っ た後、 非常に緩やかな温度勾配でコ ンぺテ ィ テ ィ ブハ イ ブ リ ダイ ゼー シ ョ ンを行い、 ハイ プ リ ダイ ゼー シ ョ ン後の反応液 中か ら固相担体と結合可能な標識物を有するハイ プ リ ダイ ゼ一 シ ョ ン生成物を固相担体に ト ラ ッ プして分離 · 除去する こ と に よ り 、 反 応液中か ら正常核酸のみを選択的に除去し得、 容易かつ確実に変異 核酸を濃縮する こ とができ る こ とを見出 し、 本発明を完成した もの であ る。
即ち、 本発明は、 本発明者らが、 先に提案した核酸の同一性を識 別する方法である P C R - P H F A法 ( P C T Z J P 9 4 Z 0 1 1 0 6、 N u c 1 . A c i d s . R e c . 2 2 , 1 5 4 1 ( 1 9 9 4 ) ) を 変異核酸の濃縮方法と して改良 · 発展させた ものであ り 、 正常核酸 と変異核酸とがわずか 1塩基でも異なる場合には上記 P C R— P H F A 法の コ ンペテ ィ テ ィ ブハイ ブ リ ダィ ゼー シ ヨ ンに よ り 、 完全に相補 的な塩基配列を持つ もの同士がよ り優先的に二本鎖を形成する性質 を利用 して変異核酸の濃縮を行う も のであ る。
そ の原理を説明すれば、 例えば正常核酸とわずかに変異した核酸 が微量混在している検体を増幅して試料核酸と し、 一方、 正常核酸 を増幅し、 こ の増幅物に固相担体に結合可能な標識物を導入 して標 識標準核酸と し、 こ の標識標準核酸を上記試料核酸に等モル以上添 加 · 混合 して非常に緩やかな温度勾配によ り コ ンぺテ ィ テ ィ ブハイ ブ リ ダィ ゼー シ ヨ ンを行う と、 ハイ ブ リ ダィ ゼ一 シ ヨ ン後の反応液 中に含まれる正常核酸は、 固相担体と結合可能な標識物が導入され た標識標準核酸の核酸鎖 (正常核酸から増幅反応によ り得られた核 酸鎖) と完全に相補的な塩基配列を持つこ と にな り 、 これと二本鎖 を形成する。 こ のため、 変異核酸に由来する ものはこの条件では固 相担体と結合可能な標識物が導入された合成核酸鎖よ り も、 元の相 補鎖 (固相担体と結合可能な標識物を持たない) と優先的に二本鎖 を形成する。 従っ て、 こ の反応液を上記標識物と特異的に結合する 官能基を導入 した固相担体に吸着させれば、 固相担体と結合可能な 標識物が導入された二本鎖核酸が選択的に固相担体に結合する。 そ して、 こ の固相担体に結合 しなかっ た画分を回収すれば元の増幅物 から正常核酸だけが除去されたものを得る こ とができ、 結果と して、 変異核酸が濃縮される こ と となる。
この場合、 検体中に含まれる変異核酸が極微量であ って も、 上記 一連の濃縮操作或いは上記コ ン ぺテ ィ テ ィ ブハイ プ リ ダイゼー シ ョ ン以降の操作を 2 回以上繰 り返すこ とによ り 、 変異核酸のみを選択 的に濃縮して検出可能な濃度にま で確実に濃縮する こ とが可能とな る。 こ の結果、 変異核酸量が増大する だけでな く 、 試料中に含まれ る変異核酸の比率も増大するために変異核酸の検出が容易かつ確実 とな り 、 更には変異核酸の同定を可能と し、 変異の解析によ り遺伝 病の解明、 更には治療へと発展させる こ とが可能とな る。
更に、 この方法によれば、 癌細胞と正常細胞、 或いは正常人と特 定の遺伝病患者で原因と な っ ている遺伝子の変異を同定する場合に おいて、 従来のサブ ト ラ ク シ ョ ン法では濃縮する こ とが困難であ つ た、 原因となる遺伝子の変異がわずかな場合、 即ち遺伝子の欠失、 付加或いは置換等変異の領域が極めて小さ く 、 遺伝子発現の レベル に差が見られないよ う な場合で も、 その遺伝子を選択的かつ確実に 濃縮する こ とができ、 変異遺伝子の同定を容易かつ確実に行う こ と が可能となる。
ま た、 正常細胞と異常細胞が共存する検体の中から微量に含まれ る異常細胞由来の変異核酸を濃縮する際には、 目的核酸が二本鎖の D N Aの場合に限られず、 一本鎖 D N A、 一本鎖若し く は二本鎖の R N Aを目的に合わせて組み合わせて使用する こ とができ、 D N A の変異だけでなく、 細胞内の m R N A (m e s s e n g e r R N A の異常の検出、 更には、 m R N Aに対する染色体 D N Aの異常の検 出に も幅広く 適応する こ とができ る ものである。 従って、 本発明は第 1 の発明と して、 目的核酸の特定領域の変異 核酸を選択的に濃縮する方法であって、
下記工程 ( 1 ) 〜 ( 3 )
( 1 ) 目的核酸の特定領域を増幅 して試料核酸を調製する工程、 ( 2 ) 目的核酸の特定領域の正常核酸と相補な塩基配列を有する核 酸に固相担体と結合可能な標識物を導入した標識標準核酸を、 試料 核酸に対して等モ ル以上添加 · 混合し、 コ ン ペテ ィ テ ィ ブハ イ プリ ダイ ゼ一 シ ヨ ンを行う工程、
( 3 ) コ ンペテ ィ テ ィ ブハイ ブ リ ダィ ゼー シ ョ ン後の反応液中に含 まれる、 固相担体と結合可能な標識物を有するハイ ブ リ ダィ ゼ一 シ ョ ン生成物及び残存する標識標準核酸を固相担体に ト ラ ッ プして反 応液から分離 · 除去する工程、
からなる一連の工程を 1 サイ ク ルと し、 該サイ ク ルを 1 回若し く は 複数回繰り返すか、 又は上記サイ クルを 1 回行った後、 上記工程 ( 2 ) と ( 3 ) を 1 回若し く は複数回繰り返すこ とを特徴とする変異核酸 の濃縮方法を提供する。
ま た、 こ の濃縮方法を実施するための濃縮用検査セ ッ ト と して、 目的核酸の特定領域を増幅して試料核酸を調製する た めの試料核酸 増幅用試薬と、 目的核酸の特定領域の正常核酸と相補な塩基配列を 有する核酸に固相担体と結合可能な標識物を導入 した標識標準核酸 と、 上記標識物と結合可能な部位を有する固相担体とを具備してな る こ とを特徴とする核酸濃縮用検査セ ッ ト を提供する。
また、 本発明者らは、 更に検討を進めた結果、 上記の方法とは逆 に、 検体中の正常核酸及び変異核酸を増幅した試料核酸に固相担体 と結合可能な 2種類の標識物を導入して標識試料核酸と し、 この標 識試料核酸に正常核酸増幅物を標準核酸と して等量以上添加 · 混合 し、 熱変性を行っ た後、 非常に緩やかな温度勾配でコ ン ペテ ィ テ ィ ブハ イ ブ リ ダィ ゼー シ ヨ ンを行い、 ハ イ ブ リ ダ イ ゼー シ ョ ン後の反 応液中か ら上記一方の標識物を有するハイ プリ ダイ ゼー シ ョ ン生成 物を、 該一方の標識物と選択的に結合する第 1 の固相担体に ト ラ ッ プ して捕獲 し、 更に こ の捕獲 したハイ プ リ ダイ ゼー シ ョ ン生成物の 中から上記他方の標識物を有するハイ プリ ダイゼー シ ョ ン生成物を、 該他方の標識物と選択的に結合する第 2 の固相担体に ト ラ ッ プして、 上記両標識物を有するハイ プ リ ダイゼー シ ョ ン生成物を捕獲するか、 又は第 1 の固相担体に ト ラ ッ プしたハイ プ リ ダイ ゼー シ ョ ン生成物 を変性させて 1 本鎖核酸に した後、 該 1 本鎖核酸を他方の標識物と 選択的に結合する第 2 の固相担体に 卜 ラ ッ プ して、 他方の標識物の みを有する 1 本鎖核酸を捕獲する こ と に よ つ て も、 反応液中から変 異核酸のみを選択的に取 り 出 して、 容易かつ確実に変異核酸を濃縮 する こ と ができ る こ と を見い出 し た。
即ち、 正常核酸とわずかに変異 した核酸が微量混在 している検体 を増幅する と共に、 こ の増幅物に固相担体に結合可能な 2種類の標 識物を導入 して標識試料核酸と し、 一方、 正常核酸を増幅して標準 核酸と し、 こ の標準核酸を上記標識試料核酸に等モル以上添加 · 混 合 して非常に緩やかな温度勾配によ り コ ン ペテ ィ テ ィ ブハイ プ リ ダ ィ ゼ一 シ ョ ンを行う と、 ハイ プ リ ダイ ゼー シ ョ ン後の反応液中に含 まれる上記標識物を有する正常核酸の核酸鎖は、 標準核酸の核酸鎖 (正常核酸か ら増幅反応によ り得られた核酸鎖) と完全に相補的な 塩基配列を持つこ とにな り 、 これと二本鎖を形成する。 このため、 変異核酸に由来する も のは こ の条件では上記標準核酸の核酸鎖よ り も、 元の相補鎖 (固相担体と結合可能な標識物を持つ核酸鎖) と優 先的に二本鎖を形成する。 従って、 標識試料核酸中の正常核酸は、 標識物を持たない上記標準核酸と相補鎖の置換が生 じて、 いずれか 一方の標識物のみを有する二本鎖を形成し、 標識試料核酸中の変異 核酸は、 上記標準核酸との間て相補鎖の置換が生じずに、 2種類の 標識物を有する元の二本鎖のまま とな り、 更に残存する標準核酸は、 標識物を有さない元の二本鎖のま ま とな る。 そ して、 こ の反応液の 中か ら まず上記一方の標識物と選択的に結合する第 1 の固相担体を 用いて一方の標識物を有するハ イ プ リ ダイ ゼー シ ョ ン生成物を捕獲 し、 更に こ の捕獲 したハイ プ リ ダイ ゼー シ ョ ン生成物の中から上記 他方の標識物と選択的に結合する第 2 の固相担体を用いて他方の標 識物を有するハイ ブ リ ダィゼーシ ョ ン生成物を捕獲する こ と によ り 、 上記 2種類の標識物の両方を有するハイ ブリ ダイゼー シ ョ ン生成物、 即ち上記コ ンペテ ィ テ ィ ブハイ プ リ ダイ ゼ一 シ ョ ン で標準核酸と相 補鎖の置換が生 じなかっ た変異核酸が選択的に取り 出され、 結果と して、 変異核酸を濃縮する こ と ができ る も のであ る。 なお、 第 1 の 固相担体で捕獲 したハイ プ リ ダイ ゼー シ ョ ン生成物を第 1 の固相担 体か ら分離 · 回収する際、 二本鎖のハイ プ リ ダイ ゼー シ ョ ン生成物 を変性させて固相担体との結合に関与していない側の一本鎖核酸を 分離 · 回収 し、 これを更に上記第 2 の固相担体に 卜 ラ ッ プして、 上 記 2種類の標識物の両方を有するハイ プ リ ダイゼー シ ョ ン生成物由 来の一本鎖核酸を捕獲する よ う に して もよ く 、 こ の よ う に目的核酸 中の変異核酸を一本鎖核酸と して濃縮した後、 こ の一本鎖核酸をプ ライ マー等を用いて増幅する こ と に よ り 、 ニ本鎮核酸とする こ とが でき る。
この場合、 こ の第 2 の方法において も、 上記一連の濃縮操作或い は上記コ ン ペテ ィ テ ィ ブハイ プ リ ダイゼー シ ョ ン以降の操作を 2 回 以上繰り返すこ と に よ り 、 検体中に含まれる変異核酸が極微量であ つ て も、 変異核酸のみを選択的に濃縮 して検出可能な濃度にまで確 実に濃縮する こ とが可能であ り 、 また、 遺伝子の欠失、 付加或いは 置換等変異の領域が極めて小さ く 、 遺伝子発現の レベルに差が見ら れないよ う な場合でも、 その遺伝子を選択的かつ確実に濃縮する こ とができ、 更に 目的核酸が二本鎖の D N Aの場合に限られず、 一本 鎖 D N A、 一本鎖若し く は二本鎖の R N Aの場合で も使用する こ と ができ、 D N Aの変異だけでなく、 細胞内の m R N A ( m e s s e n g e r R N A ) の異常の検出、 更には、 m R N Aに対する染色体 D N Aの 異常の検出に も幅広く 適応する こ とができ る ものである。 従っ て、 本発明は、 第 2 の発明と して、 目的核酸の特定領域の変 異核酸を選択的に濃縮する方法であっ て、
下記工程 ( 1 ' ') 〜 ( 4 ' )
( 1 ' ) 目的核酸の特定領域を増幅する と共に、 該増幅物に固相担 体と結合可能な 2 種類の標識物を導入 して標識試料核酸を調製する 工程、
( 2 ' ) 目的核酸の特定領域の正常核酸と相補な塩基配列を有する 標準核酸を、 標識試料核酸に対して等モ ル以上添加 · 混合し、 コ ン ペテ ィ テ ィ ブハイ プ リ ダイ ゼー シ ョ ンを行う工程、
( 3 ' ) コ ン ペテ ィ テ ィ ブハ イ ブ リ ダィ ゼ一 シ ヨ ン後の反応液を一 方の標識物と選択的に結合する第 1 の固相担体に ト ラ ッ プさ せて、 該一方の標識物を有するハイ プ リ ダイ ゼー シ ョ ン生成物を捕獲する 工程、
( 4 ' ) 上記 ( 3 ' ) 工程で捕獲 したハ イ ブ リ ダィ ゼ一 シ ヨ ン生成 物を他方の標識物と選択的に結合する第 2 の固相担体に ト ラ ッ プさ せて 、 上記両標識物を有するハイ ブ リ ダィ ゼー シ ョ ン生成物又はこ のハイ プリ ダイゼ― シ ョ ン生成物由来の一本鎖核酸を捕獲する工程、 からな る一連の工程を 1 サイ ク ルと し、 該サイ ク ルを 1 回若 し く は 複数回繰り返すか、 又は上記サイ ク ルを 1回行った後、 上記工程 ( 2 ' ) 〜 ( 4 ' ) を 1 回若し く は複数回繰り返す こ とを特徴とする変異核 酸の濃縮方法を提供する。
ま た、 こ の第 2 の濃縮方法を実施するための濃縮用検査セ ッ 卜 と して、 変異核酸の濃縮を行う ための検査セ ッ 卜 であ っ て、
目的核酸の特定領域を増幅する と共に、 該増幅物に 2 種類の標識物 を導入 して標識試料核酸を調製するための標識試料核酸増幅用試薬 目的核酸の特定領域の正常核酸と相補な塩基配列を有する標準核酸 と、
上記一方の標識物と結合可能な部位を有する第 1 の固相担体と、 上記他方の標識物と結合可能な部位を有する第 2 の固—相担体とを具 備してな る こ とを特徴とする核酸濃縮用検査セ ッ ト を提供する。
なお、 上記第 1 及び第 2 の濃縮方法並びにこ れ ら濃縮方法を実施 するための上記検査セ ッ 卜 において、 上記標準核酸における 「目的 核酸の特定領域の正常核酸と相補な塩基配列を有する核酸」 は、 目 的核酸が二本鎖 D N Aである場合には、 該 D N Aの二本鎖の一方の 核酸鎖の正常な塩基配列と相補な塩基配列を有する一本鎖核酸、 又 は該ニ本鎖の正常な塩基配列とそれぞれ相補な一対の核酸鎖からな る二本鎖核酸のいずれであ つて もよい。
発明を実施する ための最良の形態
以下、 本発明につき詳し く 説明する。
本発明の変異核酸の濃縮方法は、 上述のよ う に、 目的核酸の特定 領域の変異核酸を選択的に濃縮する方法であ り 、 まず上記第 1 の方 法は、 ( 1 ) 目的核酸の特定領域を増幅して試料核酸を調製するェ 程、 ( 2 ) 該試料核酸と標識標準核酸とをコ ンペテ ィ テ ィ ブハイ ブ リ ダィ ゼー シ ヨ ンする工程、 及び ( 3 ) コ ンペテ ィ テ ィ ブハイ プ リ ダイ ゼー シ ョ ン反応液から標識物を利用 して正常核酸由来のコ ンペ テ ィ テ ィ ブハイ プ リ ダイゼー シ ョ ン生成物及び残存標識標準核酸を 分離 · 除去する工程とか らなる ものである。
上記工程 ( 1 ) におけ る 目的核酸は、 通常生体から分離した検体 から得られる も のであ り 、 この場合検体と しては、 ヒ 卜 よ り得られ る血液、 組織病片等、 或いは糞尿などの排泄物等が挙げられる。 更 に出生前診断を行う場合には、 羊水中に存在する胎児の細胞や試験 管中での分裂卵細胞の一部を検体とする こ と もでき る。 また、 これ らの検体は直接、 又は必要に応じて遠心分離操作等によ り沈査と し て濃縮した後、 例えば酵素処理、 熱処理、 界面活性剤処理、 超音波 処理、 或いはこ れ らの組み合わせ等によ る細胞破壊処理を予め施し た ものを使用する こ とができ る。 この場合、 前記細胞破壊処理は、 目的とする組織由来の D N A或いは R N Aを顕在化する 目的で行わ れる ものである。 なお、 具体的な方法は P C Rプロ ドコルス 、 ァカ デ ミ ッ ク プ レ ス イ ン ク P 1 4 、 P 3 5 2 ( 1 9 9 0 ) ( P C R P R O T O C O L S , A c a d e m i c P r e s s I n c . , P I 4 , P 3 5 2 ( 1 9 9 0 ) ) 等の文献に記載さ れた公知の方法 に従って行う こ とができ 、 また検体中の D N A又は R N Aは ト 一タ ル量で 1 〜 1 0 0 β g程度である こ とが望ま しいが、 1 μ g以下で も十分増幅可能である。 そ して、 得られた D N Aを適当な制限酵素 で切断し、 決ま っ た末端を持っ た特定領域の D N A断片を得る。 こ の場合、 目的核酸が m R N Aである場合には逆転写酵素によ り c D N A ( c o m p l e m e n t a r y D N A ) と し 、 こ れを制限酵素で 切断する 。
次に、 上記 D N A断片につき、 固相担体と結合可能な標識物を有 しないプラ イ マ —を用いて遺伝子増幅を行い、 試料核酸を調製する。 この場合、 上記 D N A断片の両末端にそれぞれ上記プラ イ マーの塩 基配列と相補的な塩基配列の リ ン カ ーをつないでテ ンプレー 卜 と し てお く こ とができ る。 なお、 上記プラ イ マー と しては、 特に制限さ れず、 通常遺伝子増幅に使用されるオ リ ゴ ヌ ク レ オチ ドを用いる こ と がで き 、 二 の オ リ ゴ ヌ ク レ オ チ ドの 5 ' 末端にア ミ ノ ア ルキ ル基 を導入 した ものを使用する こ と もでき る。
また、 上記工程 ( 2、) で用いる標識標準核酸は、 上記工程 ( 1 ) における プラ イ マー と同 じ塩基配列を有するプラ イ マ ー本体に固相 担体に結合可能な標識物を導入 したプラ イ マ ーを用いて正常細胞に 由来するテ ンプレー 卜 や確定された D N A標品を増幅し、 調製する こ とができ る。 この場合、 上記プライ マ ー中の標識物の位置はブラ イ マ一の伸長反応の効率に大き く 影響を与えないと こ ろであればよ く 、 好ま し く は 5 ' 末端付近の水酸基部分、 塩基部分或いは リ ン酸 ジ エ ス テ ル部分の活性基が挙げられ、 固相担体に結合可能な標識物 は固相担体の性質、 或いは固相担体を修飾する物質の特性によ り選 択する こ とができ る。 こ の場合、 プラ イ マ ーのォ リ ゴヌ ク レ オチ ドに導入する上記標識 物は、 上記工程 ( 3 ) において固相担体を結合さ せて不要な D N A を分離 ' 除去する ための も ので、 該標識物と 、 それに結合 し得る固 相担体上の物質の組み合わせは、 例えば ビォチ ン と ス ト レ ブ ト ア ビ ジ ン或いはア ビ ジ ン、 ハプテ ン と抗体、 リ ガ ン ド と レセプタ 一、 特 定の核酸と それに結合する D N A結合蛋白な どの組み合わせが挙げ られ る。 こ れ らの う ち、 一般的にはオ リ ゴ ヌ ク レ オチ ドの方に、 熱 に対 して安定性の高 く 、 分子の大き さ の小さ い も のを用い る こ と が 好ま しい。 例えば、 ピオチ ン と ス ト レ プ ト ア ビジ ンの場合に はオ リ ゴ ヌ ク レ オ チ ドに ビォチ ン標識を施 し、 固相担体に ス ト レ プ 卜 ア ビ ジ ン を結合さ せてお く こ と が好ま し く 、 オ リ ゴ ヌ ク レ オチ ドは ビォ チ ン と ス ト レ プ 卜 ア ビ ジ ンの結合に よ っ て固相担体に結合す る。 ま た、 上記ハプテ ン と して は 2 , 4 — ジニ ト ロ フ ヱ ニル基を有す る化 合物や、 ジ ゴキ シ ゲニ ン を使う こ と ができ 、 更には上述の ピオチ ン 或いは フ ヱ ニルチオィ ソ シ ァネ 一 ト な どの蛍光物質等も ハプテ ン と して使用す る こ とができ る。 こ れ ら ピオチ ン、 ハプテ ン 、 及び リ ガ ン ド等の標識物は、 いずれ も単独、 或いは必要があれば複数種の組 み合わせで公知の手段 (特開昭 5 9— 9 3 0 9 9号、 同 5 9 — 1 4 8 7 9 8 号、 同 5 9 — 2 0 4 2 0 0号各公報参照) に よ り 、 導入する こ と が でき る 。 な お、 固相担体は、 上記標識物 と結合する部位を導入 した ゥ エ ルやマ グネ ッ ト ビー ズな どを用いる こ と ができ 、 こ の場合マ グ ネ ッ ト ビー ズは、 反応液中に投入 して核酸と結合さ せ、 こ れを磁石 を用いて反応液中か ら回収す る こ とができ る。
検体を固相担体に結合可能な標識物を持たないプラ イ マ ー で増幅 する場合、 及び標識標準核酸を固相担体に結合可能な標識物を持つ プラ イ マ — で増幅する場合、 プラ イ マ —の伸長反応に基づ く 遺伝子 増幅反応を行う こ と ができ る。 こ の際の遺伝子増幅法と して は、 公 知の P C R ( P o l y m e r a s e C h a i n R e a c t i o n ) &、 L C R ( L i g a s e C h a i n R e a c t i o n ) 法、 3 S R ( S e 1 f 一 s u s t a i n e d S e q u e n c e R e p l i c a t i o n) 法、 SDA (S t r a n d D i s p l a c eme n t A m p 1 i f i c a t i o n ) 法等が用い られ (M a n a k , D N A P r o b e s 2 n d E d i t i o n p 2 5 5〜 2 9 1, S t o c k t o n P r e s s ( 1 9 9 3 ) 、 特に、 P C R法が好適であ る。
こ の場合、 プラ イ マ ーの伸長反応は、 4 種類の ヌ ク レオチ ド三 リ ン酸 [デォキ シ ア デ ノ シ ン三 リ ン酸 ( d A T P ) 、 デォキ シ グア ノ シ ン三リ ン酸 ( d G T P ) 、 デォキ シ シ チ ジ ン三 リ ン酸 ( d C T P ) 及びデォキシチ ミ ジ ン三リ ン酸 ( d T T P ) ( これらの混合物を d N T P と い う こ と も あ る ) ] を基質 と し て該プラ イ マ ー に取 り 込ま せる こ と に よ り 行われ る 。
こ の伸長反応を行う 場合、 通常核酸鎖を増幅す る ために上記ヌ ク レオチ ド三 リ ン酸、 及び核酸伸長酵素を含む増幅反応試薬が用い ら れ、 この場合核酸伸長酵素と しては E . c o l i D N Aポ リ メ ラ ー ゼ I 、 E . c o l i D N Aポ リ メ ラ ー ゼ I の ク レ ノ ウ断片、 T 4 D N Aポ リ メ ラ 一ゼな どの任意の D N A ポ リ メ ラ 一ゼを用い る こ と ができ る が、 特に T a q D N A ポ リ メ ラ ーゼ、 T t h D N Aポ リ メ ラ ーゼ、 V e n t D N Aポ リ メ ラ ーゼ等の熱安定性 D N Aポ リ メ ラ 一ゼを用いる こ と が望ま し く 、 こ れに よ り サ イ ク ル毎にあ ら たな酵素の添加の必要性がな く な り 自動的にサ イ ク ルを繰 り 返す こ とが可能と な り 、 更にァ リ 一 リ ン グ温度を 5 0 〜 6 0てに設定する こ と が可能な ためプラ イ マ 一 に よ る標的配列認識の特異性を高める こ と ができ 、 迅速かつ特異的に遺伝子増幅反応を行 う こ と ができ る (詳細について は特開平 1 — 3 1 4 9 6 5号、 同 1 一 2 5 2 3 0 0 号公報参照) 。
ま た、 こ の反応を行 う 際に、 反応溶液の水分の蒸発を防止する た めにオイ ノレを添加す る こ と ができ る。 こ の場合、 こ のオ イ ルは水と 分配可能で、 かつ水よ り も比重の軽い も のであれば何れの もの も使 用す る こ と かで き 、 具体的には シ リ コ ー ン オ イ ル、 ミ ネ ラ ノレオ イ ル 等が例示される。 ま た、 遺伝子増幅装置によ っては こ のよ う なオイ ルを必要と しないもの もあ り 、 このよ う な遺伝子増幅装置を用いて プラ イ マーの伸長反応を行う こ と もでき る。
こ の よ う に、 上記核酸増幅用プライ マ ーを用いて伸長反応を繰り 返すこ と に よ り 、 核酸を効率よ く 増幅 して試料核酸及び標識標準核 酸を調製する こ と ができ る。 なお、 この遺伝子増幅反応を行う具体 的な条件等については実験医学、 羊土社、 8, N o . 9 ( 1 9 9 0 ) 、 P C Rテ ク ノ ロ ジ ー ス ト ッ ク ト ン プ レ ス ( 1 9 8 9 ) ( P C R T e c h n o l o g y , S t o c k t o n p r e s s ( 1 9 8 9 ) ) 等の文献に記載された公知の方法に従っ て行う こ とができ る。
更に、 試料核酸について は、 こ の よ う に して増幅 した D N Aを宿 主/ベ ク タ 一系、 即ちプラ ス ミ ドベ ク タ ー 、 フ ァ ー ジベ ク タ ー、 又 はプラ ス ミ ド と フ ァ ー ジのキメ ラベク タ ー力、ら選ばれるベク タ ーに 組み み、 大腸菌 ( E s c h e r i c h i a c o 1 i ) 、 枯草菌 ( B a c i 1 l u s s u b t i 1 i s ) 等の細菌或いは酵母 ( S a c c h a r o m y c e s c e r e v i s i a e ) な どの増 殖可能な任意の宿主に導入 して大量に調製する こ と も でき る (遺伝 子ク ロ一ニ ン グ) 。
ま た、 標識標準核酸については、 遺伝子増幅を利用 しないで天然 の遺伝子から制限酵素によ り酵素的に直接切り 出 して もよ く 、 更に は、 正常核酸を増幅した ものを上記試料核酸の場合と同様に遺伝子 ク ローニ ン グによ り 、 大量に調製する こ と もでき、 場合によ っ ては 化学合成によ って調製する こ と も可能である。 化学合成と しては、 ト リ エス テ ル法、 亜 リ ン酸法等が挙げられ、 これらは液相法又は不 溶性の担体を使っ た固相合成法な どによ り 自動合成機によ り一本鎖 の D N Aを大量に調製する こ とができ、 その後ァニ ー リ ン グを行う こ とによ って二本鎖 D N Aを調製する こ とができ る。
ま た、 本発明における 目的核酸は、 必ず し も D N Aである必要は な く 、 R N Aであ っ て もよい。 この場合、 R N A と しては、 t R N A ( t r a n s f e r R N A ) 、 m R N A ( m e s s e n g e r R N A ) 、 r R N A ( r i b o s o m a 1 R N A ) が挙げ られる が、 特に D N Aの遺伝情報を読み取って遺伝情報を伝える m R N A が対象と して好適であ る。 m R N Aを目的核酸とする場合には、 そ の塩基配列はィ ン ト ロ ン を含ま ない、 ヱキ ソ ン (遺伝情報を指定す る部分) のみからな るので、 その変異の検出 ' 同定は直接遺伝情報 を発現する異常を見出すこ とができ る点において意義がある。 即ち、 D N Aは遺伝子の基本設計図であるが、 こ れのみから発現形質を 1 0 0 %推定でき る と は限らず、 1 つの遺伝子 (一種類の転写産物 p r e - m R A ) 力、 ら選択的ス プ ラ イ シ ン グ ( a 1 t e r n a t i v e s 1 i c i n g ) に よ っ て複数の m R N A ( つ ま り複数の タ ン パ ク質) が作られる こ とかあ り 、 ま た p r e — m R N A→m R N Aの 過程で一部ヌ ク レオチ ドが加えられたり減らされたりする現象 ( R N A e d i t i n g ) が起き る こ とがある。 従っ て、 制御遺伝子やプロ モーター領域の変異、 又は組織特異的な発現を解析するには、 D N A ではな く m R N Aを解析しなければな らないが、 こ の場合本発明の 漢縮方法は、 目的核酸と して m R N Aを用いる こ と に よ り 、 良好に こ の変異 m R N Aを濃縮する こ と がで き 、 m R N Aの解析に大き く 寄与する ものである。 なお、 目的核酸と し て m R N Aを用いる場合 には、 こ の m R N Aをそのま ま増幅して試料核酸とする こ と もでき る が 、 通常 は上述 し た よ う に 、 逆転写酵素 ( R e V e r s e T r a n s c r i p t a s e ) を反応させて m R N Aを c D N A と した後 P C R法によ り増幅する方法 ( R T — P C R法) によ り得ら れた D N Aを試料核酸と して用いる こ とが好ま しい。
更に、 本発明においては、 試料核酸或いは標識標準核酸の一方を 一本鎖 D N A又は一本鎖 R N A とする こ と も可能であ る。 こ こ で、 上記一本鎖 R N Aの調製方法と しては化学合成の他には S P 6 、 或 い は T 7 な どの フ ァ ー ジ の R N Aポ リ メ ラ 一 ゼを用 い る試験管内で の転写反応によ って調製する こ とができ る。 また、 一本鎖 D N Aは 上記と同様の化学合成によ り調製して も よ く 、 ま た一本鎖 D N Aを 調製する こ と が可能な M 1 3 フ ァ ー ジな どの フ ァ ー ジ D N A或いは フ ァ ー ジ プラ ス ミ ド D N Aに組み込み、 ク ロ ーニ ン グに よ り調製す る こ とができ る。
なお、 標識標準核酸と して R N Aを用いる場合及びプライ マ ーを 用いる以外の方法で D N Aの増幅を行う場合も、 固相担体に結合可 能な標識物は上記と同様の標識物とする こ とができ、 上記標識物を 公知の方法に従つて化学的或いは酵素的に導入する こ とができ る (特 開平 1 — 2 5 2 3 0 0号、 特開平 1 — 6 3 3 9 3号公報等参照) 。 次に、 上記遺伝子増幅の結果、 目的核酸から得られた固相担体に 結合可能な標識物を持たない D N A又は R N Aを試料核酸と し、 標 品から調製した固相担体に結合可能な標識物を持つ D N A又は R N A を標識標準核酸と して、 試料核酸に標識標準核酸を等モル以上加え、 コ ンペテ ィ テ ィ ブハイ プ リ ダイ ゼー シ ョ ン を行う。
この場合、 上記標識標準核酸は上記試料核酸と両末端と も等しい 塩基配列の二本鎖 D N Aである こ とが理想的であるが、 必ずし も両 末端の塩基配列が完全に等しい ものでな く て もよ く 、 その目安と し ては、 試料 D N Aと標準 D N Aの鎖長の違いは両末端でそれぞれ 1 0 塩基以内程度であれば良好に濃縮を行う こ と がで き る 。 なお、 試料 核酸或いは標識標準核酸の一方を一本鎮 D N A又は一本鎖 R N A と する場合には試料核酸と標識標準核酸との鎖長の違いに特に制限は ない。
本発明の変異核酸の濃縮方法においては、 目的核酸が D N A若し く は R N Aであるかによ り 、 試料核酸と標識標準核酸のコ ンペテ ィ ティ ブハイプリ ダイゼーシ ョ ンを行う際の組み合わせが D N A— D N A ハイ ブ リ ッ ド、 D N A — R N Aハ イ ブ リ ッ ド、 R N A — R N Aハイ ブリ ツ ドの 3種類が考え られ、 これらのいずれの組み合わせにおい て も変異 D N A又は変異 R N Aを効果的に濃縮する こ とができ る も のである。 特に、 目的核酸が R N Aの場合には、 上述のよ う に、 細 胞内の特定 m R N Aの検出及び m R N Aに対する染色体 D N Aの検 出に優れた効果を発揮する こ とができ る。
コ ンペテ ィ テ ィ ブハイ プ リ ダイゼ一 シ ョ ン の際には、 まず上記試 料核酸と標識標準核酸とを変性する必要があ るが、 こ の変性は熱に よる方法或いはア ル力 リ によ る方法が好ま しい。 ま た、 両核酸を混 合する時期は変性直前で もよい し、 変性後で も よい。 こ こ で、 本発 明においては、 試料核酸に対して標識標準核酸を等モ ル以上加える 必要があ り 、 通常は 1 0〜 5 0倍モ ル程度に過剰に加える こ とが好 ま しいか、 核酸の鎖長、 塩基配列及び変異の程度に応 じて最適条件 は異な る。
ま た、 コ ン ペテ ィ テ ィ ブハ イ ブ リ ダ ィ ゼ ー シ ヨ ン に お いて は 、 溶 液の組成、 特に塩濃度を核酸の鎖長に応じて最適にな る よ う に調整 する必要がある。 この場合ハイ ブ リ ダィ ゼー シ ヨ ン においては、 一 般に塩濃度の調整に、 S S C ( 2 0 X S S C : 3 M塩化ナ ト リ ウ ム、 0. 3 N ク ェ ン酸ナ ト リ ウ ム ) や S S P E ( 2 0 X S S P E : 3 . 6 M塩化ナ ト リ ウ ム、 0. 2 M リ ン酸ナ ト リ ウ ム、 2 m M E D T A) が使われてお り 、 本発明の濃縮方法で も こ れ ら の溶液を好適な濃度 に希釈 して使用する こ と がで き る 。 ま た 、 必要に応じて ジ メ チ ル ス ル フ ォ キ シ ド ( D M S 0 ) 、 ジ メ チ ル フ オ ル 厶 丁 ミ ド ( D M F ) な どの有機溶媒を添加する こ と も で き る 。
コ ン ペテ ィ テ ィ ブハ イ ブ リ ダ イ ゼ一 シ ョ ン は、 上記の方法で変性 した試料核酸に標識標準核酸を等モ ル以上添加 · 混合 し、 高温から 徐々 に温度を下げる こ とで達成する こ とが可能である c こ の際の温 度条件については、 ハイ プ リ ダイ ゼ― シ ョ ンを行う核酸の鎖長や塩 基配列及び、 標識標準核酸と試料核酸との間における変異の種類、 程度によ って適宜最適条件が設定されるが、 通常は 9 8〜 5 8てま での範囲で 3〜 1 0分間に 1 °Cの速度、 よ り好ま し く は 9 8〜 7 0 °Cま での範囲で 1 0分間に 1 ての速度で温度を下げる条件とする こ とが好適である。 次に、 コ ンペテ ィ テ ィ ブハイ ブ リ ダィ ゼー シ ヨ ン生成物について、 標識標準核酸に存在する固相担体に結合可能な標識物を用いて、 残 存する標識標準核酸及び標識標準核酸とハ イ プ リ ダイ ズ した試料核 酸を固相担体と ト ラ ッ プさせる こ と によ つて固相担体に結合させて、 分離 ' 除去する。 なお、 上記操作は 1 回以上、 好ま し く は 3 回程度 繰り返すこ とが好ま し く 、 これによ り残存する標識標準核酸及び標 識標準核酸とハイ プ リ ダイ ズした試料核酸を確実に固相担体に結合 さ せて、 分離 · 除去す る こ とができ る。
こ の場合、 標識標準核酸が有する固相担体に結合可能な標識物が ピオチ ン であ り 、 固相担体がス ト レ プ ト ア ビ ジ ンを固定化 し たマイ ク ロ タ イ 夕 一 ゥ エ ルの場合には、 コ ンペテ ィ テ ィ ブハイ プ リ ダイ ゼ一 シ ョ ン生成物を ゥ ヱ ルに加え、 2 5 °C或いは室温で 1 5 〜 3 0 分間 程度振盪反応させればよいが、 標識物及び固相担体の種類によ つて は こ れ ら の条件は異な る。
こ れ らの操作によ り 、 固相担体に結合 しなかっ た画分、 即ち反応 残液には、 元の検体に比べて標識標準核酸と二本鎖形成しなかった もの、 即ち標識標準核酸と異なる塩基配列を持つ も のが高い割合で 含ま れてい る こ と に な る 。 こ の際に、 元の検体中に含ま れていた変 異核酸の含量が極微量である場合には、 一度の上記濃縮操作では検 出限界にまで達 しない こ と があ り 、 この場合には、 上記一連の濃縮 操作を 2 回以上繰り返すこ と に よ り 、 変異核酸を段階的に濃縮 し、 検出可能な濃度にまで確実に濃縮するこ とが可能である。 この場合、
2回目以降の濃縮操作は、 目的核酸の増幅操作か ら全工程を繰り返 すこ と によ り濃縮する変異核酸の絶対量を増大する こ とができるが、 必ず し も全工程を繰り返す必要はな く 、 濃縮操作と しては上記コ ン ペテ ィ テ ィ ブハイ プ リ ダイ ゼー シ ョ ン以降の操作のみを繰り返すこ と に よ っ て も濃縮率を高め る こ とができ る。
次に、 第 2 の発明にかかる濃縮方法は、 ( 1 ' ) 2種類の標識物 で標識した標識試料核酸を調製する工程、 ( 2 ' ) 該標識試料核酸 と非標識の標準核酸とを コ ンペテ ィ テ ィ ブハイ プ リ ダイ ゼ一 シ ョ ン する工程、 ( 3 ' ) コ ン ペテ ィ テ ィ ブハイ ブ リ ダィ ゼー シ ヨ ン反応 液か ら上記 2種類の標識物の少な く と も一方を有するハイ プ リ ダイ ゼー シ ヨ ン生成物を捕獲する工程、 及び ( 4 ' ) 捕獲 したハイ プ リ ダイ ゼ一 シ ョ ン生成物か ら 2種類の標識物を両方有するハイ プ リ ダ ィ ゼー シ ョ ン生成物又は こ のハ イ プ リ ダイ ゼ一 シ ョ ン生成物由来の 一本鎖核酸を捕獲 して変異核酸を選択的に取り 出す工程からなる も のである。 即ち、 こ の第 2 の方法は、 上記第 1 の方法とは逆に、 2 種類の標識物で標識した標識試料核酸と非標識の標準核酸とで コ ン ペテ ィ テ ィ ブハイ プ リ ダイ ゼー シ ョ ンを行い、 上記 2 種類の標識物 を利用 して試料核酸中の変異核酸のみを分離 · 捕獲する こ とによ り、 変異核酸を濃縮する ものである。
上記 ( 1 ' ) の標識試料核酸を調製する工程は、 検体から得られ た目的核酸を上記第 1 の方法の場合と同様に して増幅する こ とによ り調製する こ と がで き 、 こ の場合こ の第 2 の方法においては、 こ の 試料核酸中に 2種類の標識物を導入 して標識試料核酸とする もので ある。 こ の標識物を導入する方法と しては、 上記第 1 の方法におけ る標識標準核酸を調製する場合と同様の方法によ る こ と ができ、 具 体的には標識物を導入 したプラ イ マ 一を用いて P C R法によ り 目的 核酸を増幅する方法が好ま し く 採用され、 この場合こ の第 2 の方法 にあ っては、 2 種類のブラ イ マーにそれぞれ異な る標識物を導入し て、 異な る標識物を有する 2 種類のプラ イ マ ーを調製し、 この 2種 類のプラ イ マ ーを用いて 目的核酸を増幅する こ と によ り 、 2種類の 標識物が導入された標識試料核酸を調製する も のであ る。 なお、 目 的核酸の前処理や P C R法によ る増幅の条件等は、 上記第 1 の方法 と同様に行う こ とができ る。
こ こ で、 上記標識試料核酸に導入される 2 種類の標識物は互いに 異な る も のであればいずれの も のでもよ く 、 上記第 1 の方法におけ る標識試料核酸に導入される標識物と同様の ものを用いる こ とがで き るが、 特に結合部位との結合特異性の高い ものが好ま し く 使用さ れ、 例えば ピオチ ン とハプテ ン と の組み合わせが好ま し く 用い られ る。
なお、 こ の標識試料核酸は、 上記第 1 の濃縮方法の場合と同様に、 プラ イ マ一を用いずに、 プラ ス ミ ドベク タ 一、 フ ァ ー ジベク タ ー、 又はブラ ス ミ ドと フ ァ 一 ジ とのキヌ ラベク タ ーから選ばれる宿主 Z ベク タ ー系によ り増幅して調製する こ と も可能であ り 、 この場合上 記 2種類の標識物は、 目的核酸の増幅を行っ た後、 公知の方法に従 つて化学的或いは酵素的に導入する こ とができ る。
ま た、 上記 ( 2 ' ) 工程で用い られる標準核酸は、 標識物を導入 しないこ と以外は、 上記第 1 の方法における標識標準核酸の場合と 同様に して得る こ とができ、 また上記標識試料核酸と標準核酸との コ ンペテ ィ テ ィ ブハイ プ リ ダイ ゼ一 シ ョ ン も上記第 1 の方法におけ る コ ンペテ ィ テ ィ ブハイ プ リ ダイ ゼー シ ョ ン と同様に行う こ とがで き る。
そ して、 この第 2 の方法では、 上記 ( 3 ' ) 及び ( 4 ' ) の工程 によ り 、 こ のハイ プ リ ダイゼー シ ョ ン反応液中から変異核酸を選択 的に分離 ' 捕獲する も のであ る。 即ち、 まず得られたハイ ブ リ ダィ ゼ一 シ ョ ン反応液を上記 2種類の標識物の う ちの一方の標識物と選 択的に結合する第 1 の固相担体に 卜 ラ ッ プして、 少な く と も一方の 標識物を有するハイ プ リ ダイ ゼー シ ョ ン生成物を捕獲する。 この操 作によ り捕獲されるハイ ブ リ ダィゼー シ ョ ン生成物は、 標準核酸と 標識試料核酸中の正常核酸とがハイ ブ リ ダィ ズした一方の標識物の みを有する もの、 及び標準核酸とハイ プ リ ダイ ズせずに元のま まの 2本鎖からなる 2種類の標識物を有する変異核酸とが含まれている。 ついで、 この捕獲したハイ プリ ダイゼ一 シ ョ ン生成物を上記 2種類 の標識物の う ちの他方の標識物と選択的に結合する第 2 の固相担体 に ト ラ ッ プ して、 他方の標識物を有するハイ プ リ ダイ ゼー シ ョ ン生 成物を捕獲する。 この操作によ り捕獲されるハイ プ リ ダイ ゼー シ ョ ン生成物は、 上記第 1 の固相担体で捕獲 した一方の標識物を有する ハイ プ リ ダイ ゼ一 シ ョ ン生成物のう ち、 更に他方の標識物を有する もの、 即ち両方の標識物を有する変異核酸が分離 · 捕獲され、 変異 核酸を濃縮する こ と がで き る ものである。
この場合、 上記第 1 及び第 2 の固相担体は、 それぞれ上記第 1 の 方法の場合と同様に調製する こ と ができ 、 この場合標識物が結合す る結合部位と しては、 上記標識試料核酸に導入した 2種類の標識物 に応じて、 各標識物と選択的に結合する も のが用い られ、 上記第 1 の方法で説明 した もの と同様の ものを使用する こ とができ る。 例え ば、 2種類の標識物と して ピオチ ン と ハプテ ン と を用いた場合には、 ビォチ ン と選択的に結合する もの と して ス 卜 レ プ ト ア ビジ ン又はァ ビジ ンが用い られ、 ハプテ ン と選択的に結合する ものと してその抗 体が用い られる。 ま た、 固相担体に捕獲 したハイ ブ リ ダィ ゼ一 シ ョ ン生成物を固相担体から分離 · 回収する方法は、 用いた標識物と固 相担体の結合部位との種類に応じて、 適宜公知の方法に従って行う こ とができ る。 こ の場合、 第 1 の固相担体で捕獲 したハイ ブ リ ダィ ゼ一 シ ョ ン生成物は、 通常は二本鎖核酸のま ま固相担体から分離回 収して第 2 の固相担体に供するが、 例えば単に変異核酸を検出する ために濃縮を行う場合な どには、 二本鎖を分離して固相担体との結 合に関与していな い側の一本鎖のみを分離回収 して、 第 2 の固相担 体に供する こ と もでき る。 この場合、 変異核酸は一本鎖核酸と して 濃縮されるが、 これをプライ マ ー等を用いて増幅する こ とによ り 、 容易に二本鎖核酸とす る こ と がで き る。 ま た、 こ の よ う に一本鎖核 酸と して濃縮する場合には、 第 2 の標識物と結合する部位を導入 し たマグネ ッ ト ビー ズを第 2 の固相担体と して用いる こ とができ、 こ のマグネ ッ 卜 ビーズを磁石を用いて反応液中から回収する方法が好 適に採用される。
なお、 この第 2 の濃縮方法において、 上述した以外の操作につい ては、 上記第 1 の濃縮方法と同様に して行う こ とができ る。 ま た、 こ の第 2 の濃縮方法において も、 一連の工程或いはコ ンペテ ィ テ ィ ブハイ プ リ ダイゼー シ ョ ン以降の工程を 2 回以上繰り返して、 濃縮 度を向上させる こ とができ る。
これ ら本発明にかかる両濃縮方法によれば、 得られた濃縮処理液 から変異核酸の検出を行う こ と に よ り 、 従来法では困難であ っ た検 体中に微量に含まれる変異核酸の検出を容易かつ確実に行う こ とが でき る。 更に、 こ の よ う な変異核酸の含まれる割合を高める こ と に よ っ てこの変異核酸の単離を容易と し、 その変異核酸の構造及び機 能を容易に解析する こ とができ る。 即ち、 物理学的な分析、 例えば ヌ ク レオチ ドの塩基配列のような遺伝子構造を決定し、 遺伝子操作、 更には遺伝病の解析によ り遺伝子治療へと発展させる こ とが可能と な る も のであ る。
こ こで、 本発明の濃縮方法によ り濃縮液から変異核酸を検出する 方法と しては、 公知の方法を用いる こ とができ、 例えば、 ポ リ アク リ ルァ ミ ドゲルを用いた電気泳動によ る検出法や検出可能な標識物 を結合させたプローブを用いる検出法な どが好適に使用 し得る。 こ の場合、 検出可能な標識物と しては、 非放射性、 放射性物質の どち らを用いて も よいが、 好ま し く は非放射性物質が用い られる。 標識 物と して用いられる非放射性物質と しては、 直接標識可能な ものと して蛍光物質 [例えばフ ルォ レ ツ セイ ン誘導体 ( フ ルォ レ ツ セイ ン イ ソ チオ シ ァ ネ ー ト等) 、 ロ ー ダ ミ ン及びそ の誘導体 (テ ト ラ メ チ ルロ ー ダ ミ ン イ ソチオ シ ァネー ト等) ] 、 化学発光物質 (例えばァ ク リ ジ ン等) や遅延蛍光を発する物質 ( D T T A : フ ア ルマ シア社 製) な どが挙げられる。
また、 特定遺伝子の機能やその遺伝子から翻訳される タ ンパク質 の機能等を解明するために特定核酸に人為的に変異を起こ させた既 知の変異核酸が必要とな る場合があるが、 本発明の濃縮方法は、 特 定核酸に人為的に核酸の変異を起こ させた後、 変異した核酸を選択 的に濃縮する こ と ができ 、 効率よ く 変異核酸を調製する こ とができ る。 即ち、 特定核酸に亜硫酸な どの変異誘起物質を作用させて人為 的に変異を起こ させた後、 これら混合物中の特定核酸を 目的核酸と する と共に、 変異前の核酸をから標識又は非標識の標準核酸を調製 して、 上記本発明の濃縮操作を繰り返すこ と に よ り 、 変異した核酸 を選択的に濃縮 · 回収する こ と ができ 、 変異核酸の調製を効率よ く 行う こ と ができ る ものであ る。
次に、 本発明の核酸の濃縮用検査セ ッ ト は、 上記本発明の変異核 酸の濃縮方法に従って、 容易かつ確実に変異核酸を濃縮するための 検査セ ッ 卜 であり、 上記第 1 の濃縮方法を実施するためのセ ッ 卜は、 目的核酸の特定領域を増幅して試料核酸を調製するための試料核酸 増幅用試薬と、 目的核酸の特定領域の正常核酸と相補な塩基配列を 有する核酸に固相担体と結合可能な標識物を導入 した標識標準核酸 と、 上記標識物と結合可能な部位を有する固相担体とを具備 してな る も のであ る。
こ の検査セ ッ 卜 は、 上記第 1 の濃縮方法に従って、 細胞破壊等の 前処理を施した検体中の目的核酸又は必要によ り合成した目的核酸 を上記試料核酸増幅用試薬を用いて増幅する こ と によ り試料核酸を 調製 し、 こ れに固相担体に結合可能な標識物を持つ上記標識標準核 酸を加え て コ ンペテ ィ テ ィ ブハイ プ リ ダイ ゼ一 シ ョ ン を行っ た後、 得られたハイ プ リ ダイ ゼ一 シ ョ ン生成物を固相担体に ト ラ ッ プして 標識標準核酸とハイ プ リ ダイ ズ した ものを分離 · 除去する も のであ る。
この場合、 試料核酸を調製する上記試料核酸増幅用試薬と しては、 上記第 1 の濃縮方法で説明 した標識物を有さないプライ マーやフ ァー ジ D N A、 フ ァ ー ジ プラ ス ミ ド D N A或いは、 R N A調製用 と して は R N Aポ リ メ ラ一ゼ等を用いる こ とができ るが、 通常は上記ブラ イ マ一が好適に用い られる。 また、 核酸の増幅やハイ ブ リ ダィ ゼー シ ョ ン等を行う際の試薬類及び上記固相担体と しては、 公知のもの、 具体的には上記本発明の濃縮方法で説明 した ものと同様の ものを使 用する こ とができ、 更に、 上記本発明の濃縮方法で説明 した検体前 処理用の細胞破壊試薬、 反応溶液の水分の蒸発を防止するためのォ ィ ル及び固相担体に結合させた後、 固相担体に結合しなかっ た核酸 等を洗浄する ための洗浄液等を用いる こ とができ、 こ れ ら と組み合 わせて本発明の核酸濃縮用検査セ ッ 卜 とする こ と もでき る。
こ こ で、 上記標識標準核酸は、 上記本発明の濃縮方法で説明 した 方法で調製した標識物を有する D N Aを用いる こ とができ る。 また、 こ の標識標準核酸に代えて、 標識標準核酸を調製するための目的核 酸の特定領域を増幅可能なプラ イ マーに固相担体に結合可能な標識 物を導入 したプライ マ ーを含む標識標準核酸増幅用試薬を用いて本 発明の濃縮用検査セ ッ 卜 を構成する こ と もでき、 濃縮を行う際にこ の標識標準核酸増幅用試薬を用いて上記濃縮方法で説明 した方法に よ り 、 その都度、 標識標準核酸を調製する よ う に して もよい。
ま た、 上記第 2 の濃縮方法を実施する ための検査セ ッ ト は、 目的 核酸の特定領域を増幅する と共に、 該増幅物に 2 種類の標識物を導 入 して標識試料核酸を調製する ための標識試料核酸増幅用試薬と、 目的核酸の特定領域の正常核酸と相補な塩基配列を有する標準核酸 と、 上記一方の標識物と結合可能な部位を有する第 1 の固相担体と、 上記他方の標識物と結合可能な部位を有する第 2 の固相担体とを具 備してな る ものであ る。
こ の検査セ ッ ト は、 上記第 2 の濃縮方法に従っ て、 細胞破壊等の 前処理を施した検体中の目的核酸又は必要によ り合成した目的核酸 を上記標識試料核酸増幅用試薬を用いて増幅する こ と に よ り 2種類 の標識物で標識された標識試料核酸を調製 し、 こ れに上記標準核酸 を加えて コ ンペテ ィ テ ィ ブハイ ブ リ ダィ ゼー シ ヨ ンを行った後、 得 られたハイ プ リ ダイゼ一 シ ョ ン生成物を第 1 及び第 2 の固相担体に 順次 ト ラ ッ プして標準核酸とハイ プ リ ダイ ズ しなかっ た 2種類の標 識物を有するハイ プ リ ダイゼー シ ョ ン生成物を分離 · 捕獲する もの であ る。 こ の場合、 試料核酸を調製する上記標識試料核酸増幅用試薬と し ては、 上記第 2 の濃縮方法で説明 したそれぞれ異な る標識物を有す る 2 種類のプラ イ マーやフ ァ ー ジ D N A、 フ ァ 一 ジプラ ス ミ ド D N A 或いは、 R N A調製用と しては R N Aポ リ メ ラ ーゼ等を用いる こ と ができ るが、 通常は上記 2 種類のプライ マーが好適に用いられる。 ま た、 核酸の増幅やハイ ブ リ ダィ ゼー シ ョ ン等を行う 際の試薬類及 び上記固相担体と しては、 公知の もの、 具体的には上記本発明の濃 縮方法で説明 した ものと同様の ものを使用する こ とができ、 更に、 上記本発明の濃縮方法で説明 した検体前処理用の細胞破壊試薬、 反 応溶液の水分の蒸発を防止するためのオイ ル及び固相担体に結合さ せた後、 固相担体に結合しなかった核酸等を洗浄するための洗净液、 固相担体に結合 した核酸を固相担体か ら分離 · 回収する ための試薬 等を用いる こ とができ、 これら と組み合わせて本発明の核酸濃縮用 検査セ ッ 卜 と す る こ と も で き る。
こ こ で、 上記標準核酸は、 上記本発明の濃縮方法で説明 した方法 で調製した標識物を有さない非標識の D N Aを用いる こ とができ る。 また、 こ の標準核酸に代えて、 標準核酸を調製する ための目的核酸 の特定領域を増幅可能なプラ イ マ ーを含む標準核酸増幅用試薬を用 いて本発明の濃縮用検査セ ッ 卜を構成する こ と も で き 、 濃縮を行う 際に この標準核酸増幅用試薬を用いて上記濃縮方法で説明 した方法 によ り 、 その都度、 標準核酸を調製する よ う に し て も よ い。
こ の よ う に、 本発明の変異核酸の濃縮方法によれば、 目的核酸の 特定領域において、 正常核酸とそれとはわずかに異な る塩基配列を 有する変異核酸とが混在する検体から、 正常核酸を選択的に分離除 去し、 或いは変異核酸を選択的に分離捕獲する こ と に よ り 、 検体中 の微量な変異核酸を濃縮する こ とができ、 微量な変異核酸の検出を 容易かつ確実に行う こ とができ る と共に、 更にはそ の同定を可能と する も のであ る 。 また、 特定遺伝子に人為的に突然変異を誘発させ た後、 変異した遣伝子だけを選択的に濃縮する こ と ができ 、 変異核 酸の調製を効率よ く 行う こ と もでき る。
ま た、 本発明によれば、 遺伝病や癌な どの原因となる遺伝子が不 明な場合に、 その候補とな る遺伝子を効率よ く 濃縮する こ とが可能 である。 こ の場合、 標準核酸を正常な人あるいは組織に由来する染 色体 D N Aあるいは m R N Aから調製 し、 試料核酸を該疾病を有す る患者又は癌組織から調製する こ とができ る。 標準核酸及び試料核 酸の増幅は、 染色体 D N Aの場合は直接、 m R N Aの場合は逆転写 によ り二本鎖 D N A と した後、 任意の制限酵素で切断して リ ンカー を付加 し、 該リ ンカー配列と相補的なプラ イ マ 一を用いて本発明の 方法によ り濃縮を行えば、 正常な人あ る いは組織と該疾病を有する 患者又は癌組織との間で塩基配列の異な る遺伝子群を選択的に得る こ と ができ る。
更に、 本発明の濃縮用検査セ ッ 卜 によれば、 上記本発明の変異核 酸の濃縮方法に したがって、 変異核酸を選択的に濃縮し、 検出や同 定操作に供する こ と ができ る。
従って、 本発明によれば十分量の変異核酸を確実に得る こ とがで き、 それを用いて変異核酸の構造や機能を解析する こ とによ り遺伝 病の解明、 遺伝子治療に大き く 貢献でき る ものである。
以下、 実施例を示 し本発明を具体的に説明するが、 本発明は下記 実施例に制限される も のではない。
〔実施例 1 〕
ヒ 卜 c - H - r a s 遺伝子についてそ の正常遺伝子と変異遺伝子 とが共存する検体から変異遺伝子を選択的に濃縮する方法について、 以下に説明する。
正常遺伝子と して、 ヒ ト c — H — r a s 遺伝子、 変異遺伝子と し てヒ 卜 c — H— r a s遺伝子の 1 2番目のコ ド ンが G G C ( G 1 y ) → G T C ( V a 1 ) の変異を起こ した ものを用いた。
遺伝子増幅
P C R法によ る D N Aの増幅は、 下記 p S K - 2 (正常遺伝子を 含むプラス ミ ド ) 或いは p K Y— 1 (変異遺伝子を含むプラス ミ ド) をそれぞれ 1 n gをテンプレー 卜 と し、 下記プライマ一 N H2— P H R — 1 、 N H2— C H R A S — 1 をそれぞれ l O O n g用いて、 各 2 0 0 / Mの d A T P , d G T P , d C T P , d T T P存在下、 1 0 0 1 の ト リ ス —塩酸緩衝液 ( p H 8. 8 ) , 1 6. 6 mM ( N H2) 2 S Ο,, 6. 7 m M M g C l 2、 l O m Mの 2 — メ ノレカ プ ト エ タ ノ ー ル及び 2 U n i t の T t h D N Aポ リ メ ラ 一ゼを含む溶液中で行っ た。 反応は 9 4 °Cで 1 0 分間加熱後、 9 4 て, 3 0 秒、 6 0 て, 3 0 秒、 7 2 °C , 6 0 秒のサイ ク ルで 3 0 回繰り返 した。 こ の反応液を ァガロ ー ス ゲ ル電気泳動にかけ、 増幅物のサ イ ズ と増幅率を確認し た。
Figure imgf000028_0001
N H2 - 5 ' A T G A C G G A A T A T A A G C T G G T G 3 ' N H2 - C H R A S - 1
N H2 - 5 ' C T G G A 丁 G G T C A G C G C A C T C T T 3 ' p S K - 2
正常 r a s遺伝子を持つプラ ス ミ ド ( T. S e k i y a , G a n n , 7 4 , 7 9 4 ( 1 9 8 3 ) , J C R B ( J a a n C a n c e r R e s e a r c h R e s o u r c e s B a n k ) ) よ り 入手可 p K Y - 1
1 2 番目の コ ド ン に変異のあ るプラ ス ミ ド ( Μ. Η . K r a u s a n d Y . Υ u a s a , N a t u r e , 3 0 3, 7 7 5 ( 1 9 8 3 ) , J し RB (J a p a n C a n c e r R e s e a r c h R e s o u r c e s B a n k ) ) よ り 入手可
被検試料の調製
次に、 正常遺伝子に由来する増幅物と変異遺伝子に由来する増幅 物を表 1 に示 した割合に混合し、 正常遺伝子に対 して変異遺伝子の 割合が 0 %、 1 0 %、 5 0 %、 1 0 0 % とな る よ う にサ ンプルを調 製した。 これらサ ン プルを蒸留水で 1 0 0 0倍に希釈して被検試料 と した。 表— 1
Figure imgf000029_0001
ビォチ ン化正常遺伝子の調製
上記 p S K — 2 (正常遺伝子を含むプ ラ ス ミ ド) をテ ン プ レー ト と し、 5 ' 末端に固相担体に結合可能な標識物と して ピオチ ンを導 入した下記プラ イ マ ー B i o — P H R — 1 、 B i o — C H R A S — 1 をそれぞれ 1 O O n g用いて、 上記と同様の条件で P C R法によ り遺伝子増幅を行い、 得られた増幅物をァガロ ー ス ゲ ル電気泳動に かけ、 増幅物のサイ ズと増幅率を確認した。 こ の得られた増幅物を ビォチ ン化正常遺伝子とする。
B i o - P H R - 1
B i o t i n - 5 ' A T G A C G G A A T A T A A G C T G G T G 3 ' B i o - C H R A S - 1
B i o t i n - 5 ' C T G G A T G G T C A G C G C A C T C T T 3 ' 濃縮操作
上記各比率の被検試料各 1 μ 1 に上記プライ マ ー N H2 _ P H R - 1 、 N H2 — C H R A S — 1 をそれぞれ 1 O O n g用いて、 上記と同 様の条件で P C R法によ り増幅した。 この増幅物を蒸留水で 1 0倍 に希釈 し、 その 5 1 を取り、 これに上記ビォチ ン化正常遺伝子に よる遺伝子増幅物 5 / 1 、 1 0 X S S C ( 1 0 X S S C : 0 . 3 M ク ェ ン酸ナ ト リ ウ ム、 p H 7 . 0 , 0 . 3 M塩化ナ ト リ ウ ム ) 1 0 1 、 蒸留水 1 0 1 を混和 した。 即ち、 被検試料に対して 1 0倍 量の ビォチ ン化正常遺伝子増幅物を加えた こ と にな る。 こ の溶液を
9 8 °Cで 1 0分間加熱し熱変性を行った後、 9 8 °Cから 7 0 °Cまで、 1 ◦ 分間に 1 ての速度の非常に緩やかな温度勾配によ りニ本鎮形成 反応 ( コ ンペテ ィ テ ィ ブハイ ブ リ ダィ ゼ一 シ ヨ ン ) を行っ た。
こ の反応液に T E緩衝液 ( 1 O m M ト リ ス塩酸緩衝液 ( p H 8 . 0 ) 、 I m M E D T A ) 8 0 〃 1 を加えて希釈し、 こ の液をス ト レ ブ ト ア ビジ ン固定化ゥ エ ルに添加 した。 室温で 1 5 分間振盪後、 反 応残液を吸引 し、 こ の反応残液を新たな ゥ エ ルに移 し、 更に室温で 1 5 分間振盪後、 反応残液を吸引 し、 こ の反応残液を新たなゥ ニ ル に移 し、 更に も う一度室温で 1 5 分間振盪 した。 こ の反応液 1 a 1 に上記プライ マ一 N H2— P H R — 1 N H2— C H R A S - 1 をそれ ぞれ 1 O O n g用いて、 上記と同様の条件で P C R法によ り増幅し た。 こ の溶液 1 Q 1 を制限酵素 H p a I I で処理 した (制限酵素 H p a I I は正常遺伝子は切断するが変異遺伝子は切断しない) 。
L
こ の反応液をポ リ ア ク リ ルア ミ ドゲル電気泳動にかけ、 生成した
D N A断片を分析し、 濃縮操作前の ものと比較した。 結果を表 2 に 示す。 表一 2
Figure imgf000030_0001
+ + : バ ン ドがは っ き り と検出できた。
+ : 不鲜明ではあるがバン ド ら しき ものが検出できた 一 : バ ン ドが検出できない。
表 2 の結果から、 変異遺伝子を 1 0 %含むものでは、 濃縮操作を 行う前の も のではほとんど見られなかっ た変異遺伝子に由来する約
6 0 b p のパ ン ドがは っ き り と観察でき た。 ま た、 5 0 %の変異遺 伝子を含むものでは、 操作前でははつ き り と観察できた正常遺伝子 に由来する約 3 0 b p のバ ン ドが濃縮操作後ではほ とんど消失し、 変異遺伝子に由来する約 6 0 b pのバン ドがはっ き り と確認できた。 このこ とか ら、 本発明の濃縮方法によ って、 正常遺伝子と変異遺伝 子の混合物から選択的に変異遣伝子が濃縮でき る こ とが確認できた。 なお、 変異遺伝子の存在比率を更に高める必要かあ る場合には、 上 記濃縮までの一連の操作を複数回繰り返せばよい。
〔実施例 2 〕
脖臓癌細胞を含む脖臓組織から、 癌細胞に由来する正常 K i - r a s 遺伝子と、 この正常遺伝子の 1 2番目の コ ド ンが G G T ( G 1 y ) から G A T ( A s p ) の変異を起こ した変異 K i - r a s 遺伝子と が混在する試料から m R N Aを抽出 し、 こ の m R N Aから変異遺伝 子を濃縮する方法について、 以下に説明する。
試料核酸の調製
腾臓組織から Q u i c k P r e mRNA P u r i f i c a t i o n K i t ( P h a r m a c i a社) に よ り m R N Aを抽出 した。 こ の m R N Aをテンプレー ト と して逆転写反応を以下の操作によ り行い、 c D N Aを調製 した。
mR N A 1 〃 mを含む 2 0 ^ 】 の 1 O mM ト リ ス—塩酸緩衝液 ( p H 8. 3 ) , 2 mM M g C l 2、 0. 0 1 %ゼラチン、 各 l mMの d A T P, d G T P , d C T P , d T T P、 2 0 u n i t p l a c e n t a l R N a s e i n h i b i t o r存在下、 5 gの o 1 i g o ( d T ) 1218 をプライマーと して l O O u n i t の m u r i n e r e v e r s e t r a n s c r i p t a s e を用いて 3 7 °Cで 3 0分間逆転写反応 を行い、 c D N Aを得た ( c D N A溶液) 。 この c D N A溶液を 9 5 てで 5 分間加熱して酵素を失活させた。
次に、 上記 c D N A溶液を用いて P C R反応を以下の手順で行つ た。
c D N A溶液 2 0 1 に、 下記ブラ イ マ一 N H2— K R A S F、 N H2 一 K R A S Rをそれぞれ 1 O p m o 1 用いて、 各 2 0 0 Mの d A T P, d G T P , d C T P , d T T Pの存在下、 8 0 1 の 1 0 m M ト リ ス ー塩酸緩衝液 ( p H 8 . 3 ) 、 5 0 m M K C 1 、 1 . 5 m M M g C 12 0. 0 1 %ゼ ラ チ ン 、 及び 2 u n i t の T a q D N A ポ リ メ ラーゼを加え、 ミ ネ ラ ルオイ ノレを重層 した。 こ の溶液を 9 4 °Cで 5分間加熱後、 9 4 °C , 3 0秒、 6 0て . 3 0秒、 7 2て, 6 0 秒のサイ ク ルを 3 0 回繰り返 し増幅 し、 試料核酸を調製 した。
H2 - K R A S F
N H2 - 5 ' A A C T T G T G G T A G T T G G A C C T 3 ' N H, - K R A S R
N H2 - 5 ' C T A T T G T T G G A T C A T A T T C G 3 ' 標識標準核酸の調製
標識標準核酸の調製は下記方法で行った。
正常人の血液 5 0 0 l 力、ら S e p a G e n e (三光純薬製) を 用いて染色体 D N Aを抽出 した。 この D N Aの う ち 、 5 0 0 n gを テ ンプレー ト と して、 Ι Ο Ο ίζ Ι の l O mM ト リ ス一塩酸緩衝液 ( p H 8. 3 ) , 5 0 m M K C 1 , 1 . 5 m M M g C l 2、 各 2 0 0 Mの d A T P , d G T P , d C T P , d T T P存在下、 下記プラ イ マ— B i o — K R A S F、 B i o — K R A S Rをそれぞれ 1 O p m o 1 用いて、 2 u n i t の T a q D N Aポ リ メ ラ 一ゼを加え、 ミ ネ ラ ルオ イ ルを重層 した。 こ の溶液を 9 4 °Cで 5 分間加熱後、 9 4 て, 3 0 秒、 6 0 °C , 3 0 秒、 7 2 °C , 6 0 秒のサイ ク ルを 3 0 回繰り 返し増幅し、 標識標準核酸を調製 した。
B i o - K R A S F
B i o t i n - 5 ' A A C T T G T G G T A G T T G G A C C T 3 ' B i o - K R A S R
B i o t i n - 5 ' C T A T T G T T G G A T C A T A T T C G 3 ' 濃縮操作
1 回目の濃縮操作
上記試料核酸を蒸留水で 1 0倍に希釈 し、 そ の 5 / 1 と、 標識標 準核酸 ( ピオ チ ン化正常遺伝子増幅物) 1 0 X S S C 1 0 1 、 蒸留水 1 0 1 を混和 した。 即ち、 試料核酸に対して 1 0倍 量の ピオチ ン化正常遺伝子増幅物を加えた こ とにな る。 こ の溶液を
9 8 °Cで 1 0分間加熱し熱変性を行った後、 9 8 °Cから 7 0 °Cまで、 1 0分間に 1 ての速度の非常に緩やかな温度勾配によ りニ本鎮形成 反応を行っ た。 こ の反応液に T E緩衝液 8 0 1 を加えて希釈 し、 こ の液をス ト レプ ト ア ビジ ン固定化ゥ ヱ ルに加えた。 室温で 1 5分 間振盪後、 反応残液を吸引 し、 こ の反応残液を新たなゥ エ ルに移 し、 更に室温で 1 5 分間振盪後、 反応残液を吸引 し、 この反応残液を新 たな ゥ エ ルに移 し、 更に も う一度室温で 1 5分間振盪した。
得られた反応液 1 μ 1 に上記プライマ ー N H2— K R A S F、 N H2 一 K R A S Rをそれぞれ 1 O O n g用いて、 上記と同様の条件で増 幅した。 こ の反応液 1 0 μ 1 を制限酵素 B s t Ν 1 で処理した (制 限酵素 B s t N 1 は正常遺伝子は切断するが変異遺伝子は切断しな い) 。 この反応液をポ リ ア ク リ ルア ミ ドゲル電気泳動にかけ、 生成 した D N A断片を分析した。 次いで、 残り の液によ り下記 2 回目の 濃縮操作を行っ た。
2 回目以降の濃縮操作
上記 1 回目の濃縮操作後の P C R増幅物を蒸留水で 1 0倍に希釈 し、 そ の 5 1 と、 標識標準核酸 ( ピオ チ ン化正常遺伝子増幅物)
5 1 、 1 0 X S S C 1 0 a 1 、 蒸留水 1 0 1 を混和した。 これ を 1 回目の濃縮操作と同様に熱変性、 温度勾配によ るアニー リ ン グ を行い、 同様に P C R増幅後、 制限酵素処理を行い、 上記と同様に 生成した D N A断片を分析した。 残り の液を用いて更に も う一度、 同様の濃縮操作を行い、 制限酵素処理後、 生成した D N A断片を上 記と同様に分析した。
各ス テ ッ プでの変異遺伝子と正常遺伝子の検出に関 しての結果を 表 3 に示す。 表一 3
Figure imgf000034_0001
+ + : パ ン ドカ は っ き り と検出でき た。
+ : 不鲜明であ るかバ ン ド ら し き も のが検出でき た。
一 : パ ン ドが検出でき な い。
表 3 の結果から、 本発明の濃縮方法によれば、 目的核酸か m R N A の場合で も、 変異遺伝子を選択的に濃縮する こ とができ、 更に濃縮 操作を繰り返すこ と に よ り 、 変異遺伝子の存在割合を確実に高め得 る こ と が確認さ れた。
〔実施例 3
試料核酸を 2種類の標識プラ イ マーを用いて調製 した標識試料核 酸と 、 非標識の標準核酸とを用いて変異核酸の濃縮を行う方法につ いて、 以下に説明す る 。
標識試料核酸の調製
実施例 2 と同様に脬臓組織から m R N Aを抽出 し、 こ れを逆転写 して c D N Aを得た。 こ の c D N A溶液を用いて P C R反応を以下 の手順で行つ た。
c D N A溶液 2 0 ζ 1 に、 下記プラ イ マ 一 B i o — K R A S F , D N P — K R A S Rをそれぞれ l O p m o 1 用いて、 各 2 0 0 / M の d A T P , d G T P , d C T P , d T T P存在下、 8 0 1 の ト リ ス —塩酸緩衝液 ( ρ Η 8 · 3 ) , 5 0 mMの K C 1 , 1 . 5 m M の M g C l 2. 0 - 0 1 %のゼラチ ン及び 2ユニ ッ ト の T a q D N A ポ リ メ ラ 一ゼを加え、 ミ ネラルオイ ルを重層 した。 この溶液を 9 4 て, 3 0秒加熱後、 9 4 °C, 3 0秒、 6 0 °C , 3 0秒、 7 2 °C , 6 0 秒のサイ クルを 3 0回繰り返して増幅し、 標識試料核酸を調製した。 B i o - K R A S F
B i o t i n - 5 ' A A C T T G T G G T A G T T G G A C C T 3 ' D N P - K R A S R
D N P - 5 ' C T A T T G T T G G A T C A T A T T C G 3 ' 標準核酸の調製
標準核酸の調製は下記の方法で行った。
実施例 2 と同様に正常の血液から染色体 D N Aを調製し、 こ れを N H2— K R A S F , N H2 _ K R A S Rをそれぞれ 1 O p m o 1 用い て、 上記試料核酸と同様の条件で増幅し、 標準核酸を調製した。
H2 - K R A S F
N H2 - 5 ' A A C T T G T G G T A G T T G G A C C T 3 ' H2 - K R A S R
N H2 - 5 ' C T A T T G T T G G A T C A T A T T C G 3 ' 濃縮操作
1 回目の濃縮操作
上記標識試料核酸を蒸留水で 1 0 0倍に希釈し、 その 5 1 と、 上記標準核酸 5 1 , 1 0 S S C 1 0 μ 1 、 蒸留水 1 0 1 を混 和した。 即ち、 標識試料核酸に对して非標識の正常な配列を有する 核酸を 1 0 0倍量加えた こ と にな る。 こ の溶液を 9 8 °Cで 1 0分間 加熱し熱変性を行っ た後、 9 8 てから 7 0 てまで、 1 0分間に 1 °C の速度の非常に緩やかな温度勾配によ り二本鎖形成反応を行っ た。 この反応液に T E緩衝液 8 0 μ 1 を加えて希釈し、 この液をス ト レ ブ ト ア ビジ ン固定化ゥ ルに加えた。 室温で 1 5分間振盪後、 反応 残液を吸引 し、 この反応残液を新たなゥ エ ルに移し、 更に室温で 1 5 分間振盪後、 反応残液を吸引 し、 更にゥ ニ ルを 3 0 0 μ 1 の Τ Ε緩 衝液で 3 回洗浄した。
次に、 こ の ウ エ ノレに 1 0 〃 1 の 0 . 0 1 N N a O Hを加え、 ゥ エ ルに吸着した核酸を変性させた。 上清を回収し、 標識試料核酸中 の ピオチ ン標識を持たない側の一本鎖核酸を回収した。 この溶液に 1 0 / 1 の 0 . 1 M ト リ ス ー塩酸緩衝液 p H 7 . 0 ) , 1 5 0 m M N a C l 、 1 m M E D T Aを加えて中和 した。
こ の溶液に家兔抗 D N P抗体、 羊抗家兔 I g G抗体修飾マ グネ ッ 卜 ビ ー ズ ( D Y N A B E A D S (商標) M _ 2 8 0 S h e e a n t i - R a b b i t I g G、 D Y N A L社) を加え、 磁石に よ り D N P標識一本鎖試料核酸 Z家兔抗 D N P抗体 Z羊抗家兔 I g G 抗体修飾マグネ ッ 卜 ビー ズ複合体を回収した。 こ れを 3 0 0 mの 0 . 1 M 卜 リ ス —塩酸緩衝液 ( p H 7 . 0 ) . 1 5 0 m M N a C l 、 1 m M E D T Aで 3 回洗った。
上記複合体を 3 0 z l の 0 . 1 M ト リ ス —塩酸緩衝液 ( p H 7 . 0 ) 、 1 5 0 m M N a C l 、 1 m M E D T Aに懸濁し、 9 8。 5分間加熱し、 抗体分子を失活させた。 磁石によ り マ グネ ッ ト ビ— ズを除き、 D N P標識一本鎮試料核酸を含む上清を回収した。
得られた上清 1 1 をプラ イ マー B i o — K R A S F , D N P — K R A S Rを用いて、 上記標識試料核酸の調製の際と同様の条件で P C R増幅した。 こ の反応液 1 0 β 1 を制限酵素 B s t N I で処理 した (制限酵素 B s t N I は正常遺伝子は切断するが変異遺伝子は 切断しない) 。 こ の反応液をポ リ ア ク リ ルア ミ ドゲル電気泳動にか け、 生成 した D N A断片を分析した。 次いで残り の液によ り 、 下記 2回目以降の濃縮操作を行っ た。
2 回目以降の漶縮操作
上記 1 回目の濃縮操作後の P C R增幅物を蒸留水で 1 0 0倍に希 釈し、 その う ちの 5 1 と、 上記標準核酸 5 1 、 1 0 X S S C 1 0 β 1 、 蒸留水 1 0 β 1 を混和した。 こ れを 1 回目の濃縮操作と同様 に熱変性、 温度勾配によるアニー リ ング、 固相担体への吸着を行い、 同様に P C R増幅後、 制限酵素処理を行い、 上記と同様に生成した D N A断片を分析した。 2 回目の濃縮操作後の P C R増幅物を用い て更に も う一度同様に濃縮操作を行い、 生成した D N A断片を上記 と同様に分析した。
各ステ ッ プでの変異遺伝子と正常遺伝子の検出に関 して結果を表 4 に示す。 表一 4
Figure imgf000037_0001
+ + : バ ン ドカ ま っ き り と検出できた。
+ : 不鲜明であるがバン ド ら しき ものが検出でき た。
— : パ ン ドが検出できない。
表 4 の結果から、 この濃縮方法によれば、 目的核酸の特定領域に 関 して、 正常遺伝子と、 正常遺伝子とはわずかに異な る塩基配列を 有する変異核酸とが混在する検体から、 変異核酸を選択的に分雜 * 捕獲 して検体中の微量な変異核酸を検出 し得る こ とが確認された。

Claims

請求の範囲
1 . 目的核酸の特定領域の変異核酸を選択的に濃縮する方法であ つ て、
下記工程 ( 1 :) 〜 ( 3 )
( 1 ) 目的核酸の特定領域を増幅して試料核酸を調製する工程、
( 2 ) 目的核酸の特定領域の正常核酸と相補な塩基配列を有する核 酸に固相担体と結合可能な標識物を導入 した標識標準核酸を、 上記 試料核酸に対して等モ ル以上添加 · 混合 し、 コ ンペテ ィ テ ィ ブハイ ブ リ ダィ ゼー シ ョ ンを行 う 工程、
( 3 ) コ ン ペテ ィ テ ィ ブハ イ プ リ ダイ ゼー シ ョ ン後の反応液中に含 まれる、 固相担体と結合可能な標識物を有するハイ プ リ ダイ ゼ一 シ ョ ン生成物及び残存する標識標準核酸を固相担体に 卜 ラ ッ プして反 応液から分離 · 除去する工程、
からなる一連の工程を 1 サイ ク ルと し、 該サイ ク ルを 1 回若し く は 複数回繰り返すか、 又は上記サイ クルを 1 回行った後、 上記工程 ( 2 ) と ( 3 ) を 1 回若し く は複数回繰り返すこ とを特徴とする変異核酸 の濃縮方法。
2. 目的核酸の特定領域をプラ イ マ ーを用いて P C R法によ り増 幅し、 試料核酸と して一本鎖若し く は二本鎖の D N Aを調製する請 求の範囲第 1 項記載の記載の変異核酸の濃縮方法。
3 . 標識標準核酸が、 正常な塩基配列と相補な塩基配列を有する 核酸標品を固相担体と結合可能な標識物を導入したプラ イ マ ーを用 いて P C R法によ り増幅して調製された一本鎖若し く は二本鎖 D N A である請求の範囲第 1 項又は第 2項記載の変異核酸の濃縮方法。
4 . 標識標準核酸が、 プラ ス ミ ドベ ク タ 一、 フ ァ ー ジベク タ 一、 又はプラ ス ミ ド と フ ァ ー ジ と のキメ ラ ベ ク 夕 一か ら選ばれる宿主ノ べク タ ー系によ り調製された一本鎖若し く はニ本鎮 D N Aに固相担 体と結合可能な標識物を導入した ものであ る請求の範囲第 1 項又は 第 2項に記載の変異核酸の濃縮方法。
5 . 上記固相担体に結合可能な標識物と して ピオチ ンを用いる と 共に、 固相担体の結合部位と してア ビジ ン或いはス ト レブ ト ァ ビジ ンを用いる請求の範囲第 1 項乃至第 4項のいずれか 1 項に記載の変 異核酸の濃縮方法。
6 . 目的核酸が m R N Aであ り 、 こ の m R N Aを逆転写酵素を用 いて c D N A と し、 これを増幅して試料核酸を調製する請求の範囲 第 1 項乃至第 5項のいずれか 1 項に記載の変異核酸の濃縮方法。
7 . 目的核酸の特定領域の変異核酸を選択的に濃縮する方法であ つ て、
下記工程 ( 1 , ) 〜 ( 4 ' )
( 1 ' ) 目的核酸の特定領域を増幅する と共に、 該増幅物に固相担 体と結合可能な 2種類の標識物を導入して標識試料核酸を調製する 工程、
( 2 ' ) 目的核酸の特定領域の正常核酸と相補な塩基配列を有する 標準核酸を、 上記標識試料核酸に対して等モ ル以上添加 ' 混合 し、 コ ンペテ ィ テ ィ ブハイ ブ リ ダィ ゼ一 シ ヨ ン を行う 工程、
( 3 ' ) コ ンペテ ィ テ ィ ブハイ ブ リ ダィ ゼ一 シ ヨ ン後の反応液を上 記 2種類の標識物の う ちの一方の標識物と選択的に結合する第 1 の 固相担体に ト ラ ッ プさせて、 該一方の標識物を有するハイ プ リ ダイ ゼ一 シ ョ ン生成物を捕獲する工程、
( 4 ' ) 上記 ( 3 ' 工程で捕獲したハイ ブ リ ダィ ゼー シ ヨ ン生成 物を上記 2種類の標識物の う ちの他方の標識物と選択的に結合する 第 2 の固相担体に ト ラ ッ プさせて、 上記両標識物を有するハイ プリ ダイゼー シ ョ ン生成物又はこ のハイ プ リ ダイ ゼー シ ョ ン生成物由来 の一本鎖核酸を捕獲する工程、
からなる一連の工程を 1 サイ ク ルと し、 該サイ ク ルを 1 回若し く は 複数回繰り返すか、 又は上記サイ クルを 1回行った後、 上記工程 ( 2 ' ) 〜 ( 4 ' ) を 1 回若し く は複数回繰り返すこ とを特徴とする変異核 酸の濃縮方法。
8 . 目的核酸の特定領域を、 第 1 の標識物を導入 したプラ イ マ — と、 第 2 の標識物を導入 したプラ イ マー とを用いて P C R法によ り 増幅する こ と に よ り 、 標識試料核酸を調製する請求の範囲第 7項記 載の変異核酸の濃縮方法。
9 . 上記第 1 及び第 2 の標識物と して ビォチ ン とハプテ ン とを用 いる と共に、 第 1 及び第 2 の固相担体の結合部位と してス ト レ プ ト ア ビジ ン又はア ビジ ン と抗体とを用いる請求の範囲第 7項又は 8項 記載の変異核酸の濃縮方法。
1 0 . 標準核酸が、 正常な塩基配列と相補な塩基配列を有する核 酸標品をプラ イ マ 一を用いて P C R法によ り増幅 して調製された一 本鎖若し く は二本鎖 D N Aである請求の範囲第 7項乃至第 9項のい ずれか 1 項に記載の変異核酸の濃縮方法。
1 1 . 標準核酸が、 プラ ス Ϊ ドベク タ 一、 フ ァ ー ジベク タ ー、 又 はプラ ス ミ ド と フ ァ ー ジ と のキ メ ラ ベ ク タ ー力、 ら選ばれ る宿主/ベ ク 夕 一系によ り調製された一本鎖若し く は二本鎖 D N Aである請求 の範囲第 7項乃至第 9項のいずれか 1 項に記載の変異核酸の濃縮方 法。
1 2 . 目的核酸が m R N A であ り 、 この m R N Aを逆転写酵素を 用いて c D N A と し、 これを増幅して試料核酸を調製する請求の範 囲第 7項乃至第 1 1 項いずれか 1 項に記載の変異核酸の漢縮方法。
1 3 . 請求の範囲第 1 項記載の方法によ り変異核酸の濃縮を行う ための検査セ ッ 卜 であ っ て、
目的核酸の特定領域を増幅して試料核酸を調製する ための試料核酸 増幅用試薬と、
目的核酸の特定領域の正常核酸と相補な塩基配列を有する核酸に固 相担体と結合可能な標識物を導入した標識標準核酸と、
上記標識物と結合可能な部位を有する固相担体とを具備してな る こ とを特徴とする核酸濃縮用検査セ ッ 卜。
1 4 . 請求の範囲第 3項記載の方法によ り変異核酸の澳縮を行う ための検査セ ッ 卜 であ っ て、
目的核酸の特定領域を増幅して試料核酸を調製するための試料核酸 増幅用試薬と、
正常な塩基配列と相補な塩基配列を有する核酸標品を増幅可能なプ ライ マーに固相担体に結合可能な標識物を導入した標識プライ マ ー を含む標識標準核酸増幅用試薬と、
上記標識物と結合可能な部位を有する固相担体とを具備してな る こ とを特徴とする核酸濃縮用検査セ ッ ト 。
1 5 . 請求の範囲第 7項記載の方法によ り変異核酸の濃縮を行う ための検査セ ッ 卜 であ っ て、
目的核酸の特定領域を増幅する と共に、 該増幅物に 2種類の標識物 を導入 して標識試料核酸を調製する ための標識試料核酸増幅用試薬 と、
目的核酸の特定領域の正常核酸と相補な塩基配列を有する標準核酸 と、
上記 2 種類の標識物の う ちの一方の標識物と結合可能な部位を有す る第 1 の固相担体と、
上記 2種類の標識物のう ちの他方の標識物と結合可能な部位を有す る第 2 の固相担体とを具備 してな る こ とを特徴とする核酸濃縮用検 査セ ッ 卜 。
1 6 . 請求の範囲第 8項記載の方法によ り変異核酸の濃縮を行う ための検査セ ッ ト であ っ て、
目的核酸の特定領域を増幅可能な 2種類のプライ マーにそれぞれ異 なる標識物を導入 した 2 種類の標識プライ マ ーを含む標識試料核酸 増幅用試薬と、
正常な塩基配列と相補な塩基配列を有する核酸標品を増幅可能な標 準核酸増幅用試薬と、
上記 2種類の標識物の う ちの一方の標識物と結合可能な部位を有す る第 1 の固相担体と、
上記 2種類の標識物の う ちの他方の標識物と結合可能な部位を有す る第 2 の固相担体とを具備してなる こ とを特徴とする核酸濃縮用検 査セ ッ ト。
PCT/JP1996/002617 1995-09-13 1996-09-13 Procede de concentration d'acide nucleique variant et materiel de test de concentration d'acide nucleique de mise en application du procede WO1997010359A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002231861A CA2231861A1 (en) 1995-09-13 1996-09-13 Method for concentrating mutant nucleic acid and nucleic acid-concentrating assay kit for said concentration method
US09/029,981 US6017739A (en) 1995-09-13 1996-09-13 Method and nucleic acid-concentratiing assay kit for concentrating mutant nucleic acid
EP96930383A EP0852263A1 (en) 1995-09-13 1996-09-13 Method for concentrating variant nucleic acid and nucleic acid concentration test kit for effecting the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/260883 1995-09-13
JP26088395 1995-09-13

Publications (1)

Publication Number Publication Date
WO1997010359A1 true WO1997010359A1 (fr) 1997-03-20

Family

ID=17354081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002617 WO1997010359A1 (fr) 1995-09-13 1996-09-13 Procede de concentration d'acide nucleique variant et materiel de test de concentration d'acide nucleique de mise en application du procede

Country Status (4)

Country Link
US (1) US6017739A (ja)
EP (1) EP0852263A1 (ja)
CA (1) CA2231861A1 (ja)
WO (1) WO1997010359A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012849A1 (fr) * 1999-08-12 2001-02-22 Wakunaga Pharmaceutical Co., Ltd. Procede de distinction d'acides nucleiques et kits pour l'analyse d'acides nucleiques
US6562568B1 (en) 1997-10-01 2003-05-13 Roche Diagnostics Gmbh Method, kit and apparatus comprising magnetic glass particles for the isolation of biomolecules
US6846968B1 (en) 1988-02-26 2005-01-25 Large Scale Biology Corporation Production of lysosomal enzymes in plants by transient expression
US6870047B2 (en) 1995-06-08 2005-03-22 Roche Diagnostics Gmbh Magnetic pigment
US7371830B2 (en) 1995-06-08 2008-05-13 Roche Diagnostics Gmbh Method for separating biological material from a fluid using magnetic particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ781100A0 (en) * 2000-05-29 2000-06-22 University Of Queensland, The A method of detection
JP2002262876A (ja) 2001-03-07 2002-09-17 Ngk Insulators Ltd 高感度な核酸のハイブリダイゼーション方法、及びその方法を用いた遺伝子解析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500007A (ja) * 1985-06-13 1988-01-07 アムジエン 核酸ハイブリダイゼ−シヨン検定を行うための方法およびキツト
EP0362042A1 (fr) * 1988-09-26 1990-04-04 Institut National De La Sante Et De La Recherche Medicale (Inserm) Procédé d'analyse d'une séquence spécifique d'ADN ou d'ARN, réactifs et nécessaires pour sa mise en oeuvre
JPH05508074A (ja) * 1990-03-23 1993-11-18 カイロン コーポレイション インビトロにおける増幅を用いたポリヌクレオチド捕捉アッセイ
WO1995002068A1 (fr) * 1993-07-09 1995-01-19 Wakunaga Seiyaku Kabushiki Kaisha Methode de discrimination des acides nucleiques et necessaire d'essai a cette fin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273882A (en) * 1985-06-13 1993-12-28 Amgen Method and kit for performing nucleic acid hybridization assays
SG50434A1 (en) * 1989-02-13 1998-07-20 Geneco Pty Ltd Detection of a nucleic acid sequence or a change therein
US5484699A (en) * 1990-09-28 1996-01-16 Abbott Laboratories Nucleotide sequences useful as type specific probes, PCR primers and LCR probes for the amplification and detection of human papilloma virus, and related kits and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500007A (ja) * 1985-06-13 1988-01-07 アムジエン 核酸ハイブリダイゼ−シヨン検定を行うための方法およびキツト
EP0362042A1 (fr) * 1988-09-26 1990-04-04 Institut National De La Sante Et De La Recherche Medicale (Inserm) Procédé d'analyse d'une séquence spécifique d'ADN ou d'ARN, réactifs et nécessaires pour sa mise en oeuvre
JPH05508074A (ja) * 1990-03-23 1993-11-18 カイロン コーポレイション インビトロにおける増幅を用いたポリヌクレオチド捕捉アッセイ
WO1995002068A1 (fr) * 1993-07-09 1995-01-19 Wakunaga Seiyaku Kabushiki Kaisha Methode de discrimination des acides nucleiques et necessaire d'essai a cette fin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846968B1 (en) 1988-02-26 2005-01-25 Large Scale Biology Corporation Production of lysosomal enzymes in plants by transient expression
US6870047B2 (en) 1995-06-08 2005-03-22 Roche Diagnostics Gmbh Magnetic pigment
US7371830B2 (en) 1995-06-08 2008-05-13 Roche Diagnostics Gmbh Method for separating biological material from a fluid using magnetic particles
US6562568B1 (en) 1997-10-01 2003-05-13 Roche Diagnostics Gmbh Method, kit and apparatus comprising magnetic glass particles for the isolation of biomolecules
WO2001012849A1 (fr) * 1999-08-12 2001-02-22 Wakunaga Pharmaceutical Co., Ltd. Procede de distinction d'acides nucleiques et kits pour l'analyse d'acides nucleiques

Also Published As

Publication number Publication date
US6017739A (en) 2000-01-25
EP0852263A1 (en) 1998-07-08
CA2231861A1 (en) 1997-03-20

Similar Documents

Publication Publication Date Title
US11725241B2 (en) Compositions and methods for identification of a duplicate sequencing read
US20190360043A1 (en) Enrichment of dna comprising target sequence of interest
JP6803327B2 (ja) 標的化されたシークエンシングからのデジタル測定値
US7244567B2 (en) Double ended sequencing
JP3514630B2 (ja) 核酸配列の増幅および検出
US9249460B2 (en) Methods for obtaining a sequence
JP2002330783A (ja) アレイ解析のための標的の濃縮と増幅
JP2012533314A (ja) 核酸の特異的解析のためのプローブ
JPH10508746A (ja) rasがん遺伝子、特にK−rasがん遺伝子の検出方法
AU2015209103B2 (en) Isothermal methods and related compositions for preparing nucleic acids
JPH02299599A (ja) 診断キット、プライマー組成物および核酸の複製または検出のためのそれらの使用
JP7096893B2 (ja) 単一分子のための一本鎖環状dna鋳型の作製
WO1997010359A1 (fr) Procede de concentration d'acide nucleique variant et materiel de test de concentration d'acide nucleique de mise en application du procede
CN118360368A (zh) 用于基于酶相互作用持续时间选择多核苷酸的方法
JP2023514388A (ja) 並列化サンプル処理とライブラリー調製
KR20230124636A (ko) 멀티플렉스 반응에서 표적 서열의 고 감응성 검출을위한 조성물 및 방법
EP4048812B1 (en) Methods for 3' overhang repair
JP2004500062A (ja) 核酸を選択的に単離するための方法
WO2025078657A1 (en) Amplification-free target enrichment workflow for direct detection of nucleic acid modifications
JP3122106B2 (ja) 標的核酸の検出方法及びプローブの製造方法
JPH10337200A (ja) 遺伝子発現の定量方法
WO2010008809A2 (en) Compositions and methods for early stage sex determination

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2231861

Country of ref document: CA

Ref country code: CA

Ref document number: 2231861

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09029981

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996930383

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996930383

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996930383

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载