+

WO1997008599A1 - Method for switching a control mode of a servo control system - Google Patents

Method for switching a control mode of a servo control system Download PDF

Info

Publication number
WO1997008599A1
WO1997008599A1 PCT/JP1996/002471 JP9602471W WO9708599A1 WO 1997008599 A1 WO1997008599 A1 WO 1997008599A1 JP 9602471 W JP9602471 W JP 9602471W WO 9708599 A1 WO9708599 A1 WO 9708599A1
Authority
WO
WIPO (PCT)
Prior art keywords
control mode
torque
speed
value
switching
Prior art date
Application number
PCT/JP1996/002471
Other languages
French (fr)
Japanese (ja)
Inventor
Yasusuke Iwashita
Tadashi Okita
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Priority to US08/836,427 priority Critical patent/US5986422A/en
Priority to EP96928730A priority patent/EP0790543B1/en
Priority to DE69608409T priority patent/DE69608409T2/en
Publication of WO1997008599A1 publication Critical patent/WO1997008599A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/39Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using a combination of the means covered by at least two of the preceding groups G05B19/21, G05B19/27 and G05B19/33
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42008P regulator for position loop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42011PI regulator for speed loop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42123Position loop then force, current loop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42126Bumpless, smooth transfer between two control modes

Definitions

  • the present invention relates to a servo control system for controlling a servomotor, and more particularly to a switching method for switching a control mode of a servo control system from a torque control mode to a position / velocity control mode.
  • the torque control mode is a control mode in which the motor outputs a torque as instructed by the controller and applies a force as instructed to an object driven in the servo mode. It is used when giving a certain tension to an object, pressing an object, or inserting an object whose shape is not fixed.
  • the position Z speed control mode and the torque control mode are often used in combination. For example, an object driven by the servomotor is moved to a certain position in the position control mode, the torque is controlled in the torque control mode at the moving position, and the object is moved again in the position control mode.
  • Such position Z speed control mode and torque control mode When the servomotor is controlled in combination with the control mode, the control mode is switched between the two control modes. This control mode switching always occurs when a moving part of the machine driven by the servomotor is moving, so a shock always occurs.
  • the torque command value is not changed. Shock may occur in the control target due to discontinuity.
  • Fig. 6 shows a conventional servo control system that controls a servomotor by switching control modes.
  • the servo control system controls the servomotor based on either the torque command Tcmd1 from the CNC or the position command.
  • the switch 5 is switched to the torque command side and the torque command Tcmd1 is changed to the torque command Tcmd for the servomotor. cmd.
  • the position command is processed by the position control loop 6 and the speed control loop 7 to obtain the torque command Tcmd2, and the switch 5 is switched to the position command side.
  • the torque command Tcmd2 is the torque command Tcmd for the servo mode.
  • An object of the present invention is to control a servo system using a servo controller for a motor in switching the control mode from a torque control mode to a position / z speed control mode.
  • the purpose of the present invention is to reduce the torque command discontinuity and to sufficiently reduce the shock that occurs during switching.
  • the method for switching the control mode of the servo control system according to the present invention is characterized in that, when the servo control system is operating in the torque control mode, the value of the integrator provided in the speed loop is reduced by the torque.
  • the step of rewriting the torque command in the control and the step of changing the control mode from the torque control mode to the position / velocity control mode are performed by using the rewritten value of the integrator.
  • FIG. 1 is a block diagram of a servo control system for performing control according to the control mode switching method of the present invention.
  • FIG. 2 is a block diagram of a main part of a control device for implementing the control mode switching method of the present invention.
  • FIG. 3 is a flowchart of a control mode switching process performed by the digital servo circuit of the control device shown in FIG. 2, and FIG. 4a is a control mode switching method of the present invention.
  • Figure 4b is a graph showing the change in the integrator value T cmd when the control by
  • Fig. 5a is a graph showing the change in the value of the integrator when control is performed by the conventional control mode switching method
  • Fig. 5b is a graph showing the change in the tonnole command Tcmd.
  • Fig. 6 is a block diagram of a conventional servo control system that controls the servomotor by switching the control mode.
  • the servo control system shown in FIG. 1 is based on a torque command T cmdl or a movement command M cmd from a computer control numerical controller (CNC). Control the vomotor.
  • kp of the transfer function 1 is the position gain of the position control loop
  • transfer functions 2 and 3 are integral terms of the speed control loop
  • transfer function 3 is an integrator.
  • Transfer function 4 is the proportional term of the speed control loop, where k 1 is the integral gain and k 2 is the proportional gain.
  • Switch 5 switches between a torque control mode and a position Z speed control mode.
  • a torque command T cmd1 or a movement command M cmd is sent to the servo control system at every predetermined distribution cycle.
  • the switch 5 is switched to the torque control mode and the torque command Tcmd1 is transmitted to the servomotor.
  • the servo motor is driven via a servo amplifier including an inverter (not shown) and the like as a tonnoke command Tcmd.
  • the movement command M cmd is distributed from the CNC
  • the movement command is divided into position commands for each position and speed control loop processing cycle.
  • the position feedback amount pfb is subtracted from the position command, and the position deviation is obtained.
  • the transfer function 1 the position error is multiplied by the position gain kp, and the speed command V cmd is obtained.
  • the speed deviation is obtained by subtracting the speed feedback amount Vfb, which is the actual speed of the vehicle, from the obtained speed command Vcmd.
  • the integral value obtained by multiplying the value obtained by multiplying the speed deviation by the integral gain k1 by the integrator 3 is added to the value obtained by multiplying the speed deviation by the proportional gain k2.
  • the torque command Tcmd2 in the position / speed control mode is obtained.
  • the switch 5 is switched to the position / speed control mode side, the torque command Tcmd2 is output as the torque command Tcmd for the servomotor, and an inverter (not shown).
  • Servo drive is driven via a servo amplifier including.
  • the above-described servo motor control is well known in the related art, and can be performed by a servo circuit composed of an analog circuit, and the software processing by a processor. It can also be performed by digital control.
  • the value stored in the integrator 3 is rewritten into the torque command T cmdl, and the torque control is performed in the torque control mode. Always match the integrator value with the torque command Tcmd1.
  • FIG. 2 is a block diagram of a main part of a control device for implementing the switching method of the present invention.
  • the servomotor M is a servomotor that drives a movable part of a machine tool, or a servomotor that drives a shaft of a robot.
  • the shared memory 11 is composed of nonvolatile RAM, and is used for exchanging data between the processor of the CNC 10 and the processor of the digital servo circuit 12. You can access
  • the digital servo circuit 12 comprises a CPU, ROM, RAM, etc., and performs position and speed control in the position Z speed control mode and torque control in the torque control mode. .
  • the servo amplifier 13 drives the servomotor 14 based on a command from the digital servo circuit 12.
  • the pulse coder 15 feeds back the position feedback pfb and the velocity feedback Vfb to the digital servo circuit 12.
  • the CNC 10 writes a movement command or a torque command to the shared RAM at each ITP cycle (distribution cycle).
  • Digital luster The processor of the circuit 12 reads the movement command or the torque command from the shared RAM, and executes the position / speed control loop processing or the torque control processing for each position and speed control loop processing cycle obtained by equally dividing the ITP cycle. .
  • the digital servo circuit 12 obtains the position command of the position and speed loop processing for each position and speed loop processing cycle, and obtains the position command and the position feedback pfb from the position command. Perform position loop processing to find the speed command Vcmd. Next, a speed loop process is performed from the speed command Vcmd and the speed feedback Vfb to obtain a torque command Tcmd2.
  • the digital servo circuit 12 reads the torque command Tcmd1 for each distribution cycle or each position and speed loop processing, and outputs the torque command Tcmd1 to the integrator 3 in the speed loop. Stores the torque command T cmdl.
  • control mode switching method of the present invention will be described with reference to the flowchart of the processing performed by the digital servo circuit of FIG.
  • the digital servo circuit 12 reads the velocity feedback Vfb from the encoder 15 at every position and velocity loop processing cycle (step S1). In addition, digital cameras The circuit 12 determines whether the control should be performed in the torque control mode or the position Z speed control mode based on the data from the CNC 10 via the shared RAMI 1 (Step S). 2) In the torque control mode, the processing of steps S3 and S4 is performed, and in the position / speed control mode, the processing of steps S5 and S6. Is performed.
  • step S2 If it is determined in step S2 that the torque control mode is set, the digital servo circuit 12 sets the torque command Tcmd1 as the torque command Tcmd to the servomotor. Then, torque control is performed (step S3), and the value ⁇ stored in the integrator 3 in the speed loop is rewritten to the torque command Tcmd. This rewriting process of the integrator 3 is performed for each position and speed loop processing cycle in the torque control mode. Therefore, during the torque control mode, the value ⁇ of the integrator 3 is updated for each position and speed loop processing cycle, and matches the torque command T cmdl from the CNC (step S Four ) .
  • step S2 the CPU of the digital servo circuit executes the position loop processing using the position command and the position feedback pfb. To find the speed command Vcmd. Next, the deviation between the speed command Vcmd and the speed feedback Vfb is multiplied by the integral gain kl, and the obtained value is added to the value ⁇ stored in the integrator 3 and stored ( Step S5). Therefore, when switching from torque control mode to position / velocity control mode, In this case, the value of the integrator 3 before the addition is the value stored in the torque control mode. Switching from the torque control mode to the position Z speed control mode is performed when the movable part of the machine driven by the servomotor stops. Therefore, it is not necessary to consider the effect of the output from proportional term 4 because the speed and speed deviation immediately after switching are small.
  • Step S6 the deviation between the speed command Vcmd and the position feedback Pfb is multiplied by the proportional gain k2, and this value is added to the value of the integrator 3 obtained in step S5, and The torrent command T cmd 2 in the position / speed control mode is used as the torrent command T cmd 2 to the servo motor to perform position and speed control. Step S6).
  • the digital servo circuit 12 switches the switch 5 to the torque control mode and performs control in the position / velocity control mode. In this case, switch 5 is switched to the position / speed control mode.
  • FIGS. 4a and 4b show changes in the integrator value and the torque command T cmd when servo control is performed according to the control mode switching method of the present invention.
  • changes in the integrator values in Fig. 4a and the torque command Tcmd in Fig. 4b are shown in the table. Therefore, it is possible to reduce the discontinuity of the torque command value at the time of switching the control mode, thereby reducing the shock generated at the time of switching.
  • FIG. 5A shows the conventional control mode switching method.
  • the value of the integrator in FIG. 5A is “0” during the torque control mode, and when the mode is switched to the position Z speed control mode, a predetermined torque command Tcmd is obtained through a transient response.
  • the torque command T cmd in FIG. 5b also changes and becomes discontinuous, and a shock occurs at the time of switching. It becomes.
  • the discontinuity of the torque command value to the motor is reduced.
  • the shock generated at the time of switching can be sufficiently reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)
  • Feedback Control In General (AREA)

Abstract

A method for a switching control mode of a servo control system which reduces a shock generated when switching from a torque control mode to a position/velocity control mode, the method comprising the steps of, in a torque control mode, rewriting a value in an integrator in a velocity loop for the position/velocity control mode to a value of a torque command of the torque control to thereby set a value of the integrator identical to that of the torque command, and obtaining, when switching from the torque control mode to the position/velocity control mode, a torque command value for a servo motor by using a value of the integrator of the velocity loop that is rewritten during the torque control mode, whereby continuous torque command values are given to the motor when a control mode is switched.

Description

明 細 書  Specification
サーボ制御系の制御モー ド切換え方法  Control mode switching method of servo control system
技 術 分 野  Technical field
本発明は、 サ一ボモー タを制御するサーボ制御系に関 し、 特に、 サーボ制御系の制御モー ドを ト ルク制御モー ドから位置ノ速度制御モ一 ドへ切換え る際の切換え方法 に関する。  The present invention relates to a servo control system for controlling a servomotor, and more particularly to a switching method for switching a control mode of a servo control system from a torque control mode to a position / velocity control mode.
背 景 技 術  Background technology
工作機械の送り軸やロ ボッ 卜のアーム等を駆動するサ —ボモー タ の制御を行な う場合、 位置や速度を制御する 位置 Z速度制御モー ドでサ一ボモー タを制御する場合と、 力を制御する ト ルク制御モ一 ドでサ一ボモ一 夕 を制御す る場合とがある。 ト ルク 制御モー ドは、 コ ン ト ロー ラの 指令通り の ト ルクをモー タ に出力させ、 サーボモー 夕で 駆動される対象物に指令通り の力を与える制御モー ドで あ り 、 例えば、 対象物に一定のテ ン シ ョ ンを与える動作、 対象物の押 し当て動作、 あ るいは形状の定ま らない対象 物のはめ込み動作等を行な う 場合に利用 さ れる。  When controlling a servomotor that drives a feed axis of a machine tool or a robot arm, etc., when controlling a servomotor using a position Z speed control mode that controls position and speed, and In some cases, the servo control is controlled in a torque control mode that controls the force. The torque control mode is a control mode in which the motor outputs a torque as instructed by the controller and applies a force as instructed to an object driven in the servo mode. It is used when giving a certain tension to an object, pressing an object, or inserting an object whose shape is not fixed.
位置 Z速度制御モー ドと ト ルク制御モー ドと は両者を 組み合わせて用いる場合が多い。 例えば、 サー ボモ一 夕 で駆動される対象物を一定の位置まで位置制御モー ドで 移動させ、 移動位置において トルク制御モー ドで ト ルク 制御を行ない、 再び位置制御モー ドで移動させる等であ こ の よ う な位置 Z速度制御モー ドと ト ルク制御モー ド と組み合わせてサ一ボモータを制御する場合には、 両制 御モー ド間において制御モー ドの切換えが行なわれる。 こ の制御モー ドの切換えは、 サーボモ一 夕 によ って駆動 される機械の可動部が移動 している と き に行な う と必ず シ ョ ッ クが発生するので、 通常可動部が停止 している と き に行なわれるが、 上記従来の切換え方法では、 ト ルク 制御モー ドから位置 Z速度制御モ一 ドへ制御モー ドを切 換えを行な う と き に、 ト ルク指令値の不連続によ って制 御対象に シ ョ ッ ク が発生する こ とがあ る。 The position Z speed control mode and the torque control mode are often used in combination. For example, an object driven by the servomotor is moved to a certain position in the position control mode, the torque is controlled in the torque control mode at the moving position, and the object is moved again in the position control mode. Such position Z speed control mode and torque control mode When the servomotor is controlled in combination with the control mode, the control mode is switched between the two control modes. This control mode switching always occurs when a moving part of the machine driven by the servomotor is moving, so a shock always occurs. However, in the conventional switching method described above, when the control mode is switched from the torque control mode to the position Z speed control mode, the torque command value is not changed. Shock may occur in the control target due to discontinuity.
図 6 は、 制御モー ドの切換えによ り サーボモー タ を制 御する従来のサーボ制御系を示す。 図 6 において、 サー ボ制御系は、 C N Cからの ト ルク指令 T c m d 1又は位 置指令の何れかに基づいてサー ボモー タ を制御する。 C N Cからの ト ノレク指令 T c m d 1 に基づいてサーボモ 一 夕を制御する場合には、 ス ィ ッ チ 5 を ト ルク指令側に 切換えて ト ルク指令 T c m d 1 をサーボモー 夕への トル ク指令 T c m d とする。 位置指令に基づいてサーボモー 夕を制御する場合には、 位置指令を位置制御ループ 6 と 速度制御ループ 7で処理 して ト ルク指令 T c m d 2 を求 め、 スィ ッ チ 5 を位置指令側に切換えて ト ルク 指令 T c m d 2をサ一ボモー 夕への ト ルク指令 T c m d とする。  Fig. 6 shows a conventional servo control system that controls a servomotor by switching control modes. In FIG. 6, the servo control system controls the servomotor based on either the torque command Tcmd1 from the CNC or the position command. When controlling the servomotor based on the torque command Tcmd1 from the CNC, the switch 5 is switched to the torque command side and the torque command Tcmd1 is changed to the torque command Tcmd for the servomotor. cmd. When controlling the servomotor based on the position command, the position command is processed by the position control loop 6 and the speed control loop 7 to obtain the torque command Tcmd2, and the switch 5 is switched to the position command side. The torque command Tcmd2 is the torque command Tcmd for the servo mode.
上記従来のサ一ボ制御では、 ト ルク制御モー ドか ら位 置 Z速度制御モー ドへ制御モ一 ドが切換え られる と き に、 サーボモー タ に加え られる ト ルク 指令 T c m d の値が切 換えの前後で異な るため、 ト ルク指令 T c m d の値の不 連続が発生 し、 これによ つて、 制御対象に シ ョ ッ ク が発 生する こ とがある。 In the conventional servo control described above, when the control mode is switched from the torque control mode to the position Z speed control mode, the value of the torque command T cmd applied to the servo motor is switched. The value of the torque command T cmd is not A continuation occurs, which may cause a shock to the controlled object.
従来は、 切換え時において発生する シ ョ ッ ク を許容す るか、 あるいは切換え時に ト ルク 制御モー ドにおける ト ルク指令をいつ たん 「 0 」 に した後、 位置 Z速度制御モ 一 ドでサーボ制御を行な う こ とによ って、 シ ョ ッ ク を減 少させる等の処理を行な っているが、 制御モー ド切換え 時の シ ョ ッ ク を十分に除去する こ とは出来なかっ た。  Conventionally, a shock generated at the time of switching is allowed, or the torque command in the torque control mode is set to "0" at the time of switching, and then the servo control is performed in the position Z speed control mode. In this case, processing such as reducing the shock is performed, but it is not possible to sufficiently remove the shock when switching the control mode. Was.
発 明 の 開 示  Disclosure of the invention
本発明の目的は、 サ一ボモ一夕 を用いたサ一ボ系の制 御において、 十 ルク制御モー ドか ら位置 z速度制御モー ドへの制御モー ドの切換え時にお け るモー タへの ト ルク 指令値の不連続を低減 して、 切換え時に発生する シ ョ ッ ク を十分に減少させる こ と にある。  SUMMARY OF THE INVENTION An object of the present invention is to control a servo system using a servo controller for a motor in switching the control mode from a torque control mode to a position / z speed control mode. The purpose of the present invention is to reduce the torque command discontinuity and to sufficiently reduce the shock that occurs during switching.
本発明のサーボ制御系の制御モー ド切換え方法は、 サ ーボ制御系が ト ルク 制御モー ドで作動 している と き、 速 度ル一ブ中に設け られた積分器の値を ト ルク制御におけ る トルク指令に書換えるステ ッ プと、 ト ルク制御モー ド から位置ノ速度制御モー ドへの制御モー ドの切換え時に おいて、 書換え られた積分器の値を用いてサーボモー夕 に対する ト ルク指令値を求めるステ ッ プとを備える。  The method for switching the control mode of the servo control system according to the present invention is characterized in that, when the servo control system is operating in the torque control mode, the value of the integrator provided in the speed loop is reduced by the torque. The step of rewriting the torque command in the control and the step of changing the control mode from the torque control mode to the position / velocity control mode are performed by using the rewritten value of the integrator. A step of obtaining a torque command value.
これによ つて、 制御モー ドの切換え時において連続し た トルク指令値をモー タ に与える こ とができ、 ト ルク指 令値の不連続によ る シ ョ ッ ク の発生を十分に抑える こ と ができ る。 図面の簡単な説明 As a result, a continuous torque command value can be given to the motor when the control mode is switched, and the occurrence of shock due to the discontinuity of the torque command value can be sufficiently suppressed. And can be. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の制御モー ド切換え方法によ る制御を 行な う サーボ制御系のプロ ッ ク図、  FIG. 1 is a block diagram of a servo control system for performing control according to the control mode switching method of the present invention.
図 2 は、 本発明の制御モー ドの切換え方法を実施する ための制御装置の要部ブロ ッ ク図、  FIG. 2 is a block diagram of a main part of a control device for implementing the control mode switching method of the present invention.
図 3 は、 図 2 に示 した制御装置のデジタルサ一ボ回路 が行な う制御モ一 ドの切換え処理のフ ロ ー チ ヤ一 ト、 図 4 a は、 本発明の制御モー ド切換え方法による制御 を行な っ た場合の積分器の値の変化を示すグラ フ、 図 4 b は ト ノレク指令 T c m d の変化を示すグラ フ、  FIG. 3 is a flowchart of a control mode switching process performed by the digital servo circuit of the control device shown in FIG. 2, and FIG. 4a is a control mode switching method of the present invention. Figure 4b is a graph showing the change in the integrator value T cmd when the control by
図 5 a は、 従来の制御モ — ド切換え方法によ る制御を 行な っ た場合の積分器の値の変化を示すグラ フ、 図 5 b は ト ノレク指令 T c m d の変化を示すグラ フ、  Fig. 5a is a graph showing the change in the value of the integrator when control is performed by the conventional control mode switching method, and Fig. 5b is a graph showing the change in the tonnole command Tcmd. ,
図 6 は、 制御モー ド切換えによ り サーボモ一 夕を制御 する従来のサーボ制御系のブロ ッ ク 図であ る。  Fig. 6 is a block diagram of a conventional servo control system that controls the servomotor by switching the control mode.
発明を実施するための最良の形態 図 1 に示すサーボ制御系は、 コ ン ピ ュ ー タ制御数値制 御装置 ( C N C ) か らの ト ルク指令 T c m d l 又は移動 指令 M c m d に基づいてサ一ボモ一 タ を制御する。 図 1 に於いて、 伝達関数 1 の k p は位置制御ループのポ ジ シ ヨ ンゲイ ン、 伝達関数 2及び 3 は速度制御ループの積分 項であ り 、 伝達関数 3 は積分器を表わす。 伝達関数 4 は 速度制御ループの比例項であ り 、 k 1 は積分ゲイ ン、 k 2 は比例ゲイ ンであ る。 スィ ッ チ 5 は トルク制御モー ド と位置 Z速度制御モー ドとを切換える。 C N Cからは、 所定の分配周期毎に トルク指令 T c m d 1又は移動指令 M c m dがサ一ボ制御系に送 られる。 C N Cから トルク指令 T c m d 1 が分配されて トルク制 御モー ドで制御を行な う 場合には、 ス ィ ッ チ 5を ト ルク 制御モー ド側に切換え、 トルク指令 T c m d 1 をサーボ モータ に対する トノレク指令 T c m d と し、 イ ン く'一タ (図示 しない) 等か ら成るサーボア ンプを介 してサーボ モータ を駆動する。 BEST MODE FOR CARRYING OUT THE INVENTION The servo control system shown in FIG. 1 is based on a torque command T cmdl or a movement command M cmd from a computer control numerical controller (CNC). Control the vomotor. In FIG. 1, kp of the transfer function 1 is the position gain of the position control loop, transfer functions 2 and 3 are integral terms of the speed control loop, and transfer function 3 is an integrator. Transfer function 4 is the proportional term of the speed control loop, where k 1 is the integral gain and k 2 is the proportional gain. Switch 5 switches between a torque control mode and a position Z speed control mode. From the CNC, a torque command T cmd1 or a movement command M cmd is sent to the servo control system at every predetermined distribution cycle. When the torque command Tcmd1 is distributed from the CNC and the control is performed in the torque control mode, the switch 5 is switched to the torque control mode and the torque command Tcmd1 is transmitted to the servomotor. The servo motor is driven via a servo amplifier including an inverter (not shown) and the like as a tonnoke command Tcmd.
一方、 C N Cから移動指令 M c m d が分配される と、 こ の移動指令は位置及び速度制御ループ処理周期毎の位 置指令に分割される。 位置及び速度ループ処理周期毎に、 位置指令から位置フ ィ ー ドバッ ク量 p f bが減 じ られ、 位置偏差が求め られる。 伝達関数 1 によ り 、 位置偏差に ポ ジ シ ョ ンゲイ ン k pが乗 じ られ、 速度指令 V c m dが 求め られる。 求め られた速度指令 V c m d からサ一ボモ 一 夕の実速度であ る速度フ ィ 一 ドバッ ク量 V f bを減算 して速度偏差が求め られる。 そ して、 速度偏差に積分ゲ ィ ン k 1 を乗 じて得られた値を積分器 3で積分 した積分 値と、 速度偏差に比例ゲイ ン k 2 を乗 じた値とを加算し て、 位置 速度制御モー ドに於け る ト ルク指令 T c m d 2が求め られる。 そ して、 スィ ッ チ 5 が位置/速度制御 モー ド側に切換え られ、 ト ルク指令 T c m d 2がサーボ モータ に対する ト ルク指令 T c m d と して出力 され、 ィ ンバ一 夕 (図示せず) を含むサーボア ンプを介 してサー ボ乇一 夕が駆動される。 上記のサーボモー タ の制御は、 従来よ り周知の もので あ り 、 アナ ロ グ回路で構成 したサーボ回路で行な う こ と も出来、 ま た、 プロセ ッ サによる ソ フ ト ウ ェア処理で行 な う デジタ ル制御で行な う こ と も出来る。 On the other hand, when the movement command M cmd is distributed from the CNC, the movement command is divided into position commands for each position and speed control loop processing cycle. For each position and speed loop processing cycle, the position feedback amount pfb is subtracted from the position command, and the position deviation is obtained. With the transfer function 1, the position error is multiplied by the position gain kp, and the speed command V cmd is obtained. The speed deviation is obtained by subtracting the speed feedback amount Vfb, which is the actual speed of the vehicle, from the obtained speed command Vcmd. Then, the integral value obtained by multiplying the value obtained by multiplying the speed deviation by the integral gain k1 by the integrator 3 is added to the value obtained by multiplying the speed deviation by the proportional gain k2. Then, the torque command Tcmd2 in the position / speed control mode is obtained. Then, the switch 5 is switched to the position / speed control mode side, the torque command Tcmd2 is output as the torque command Tcmd for the servomotor, and an inverter (not shown). Servo drive is driven via a servo amplifier including. The above-described servo motor control is well known in the related art, and can be performed by a servo circuit composed of an analog circuit, and the software processing by a processor. It can also be performed by digital control.
本発明の切換え方法では、 サ一ボ制御系が ト ルク制御 モー ドで作動 している と き に、 積分器 3 に蓄え られた値 を トルク指令 T c m d l に書換え、 ト ルク制御モー ド中 において常に積分器の値を ト ルク 指令 T c m d 1 と一致 さ せる。  According to the switching method of the present invention, when the servo control system is operating in the torque control mode, the value stored in the integrator 3 is rewritten into the torque command T cmdl, and the torque control is performed in the torque control mode. Always match the integrator value with the torque command Tcmd1.
図 2 は、 本発明の切換え方法を実施するための制御装 置の要部ブロ ッ ク 図であ る。 サー ボモータ Mは工作機械 の可動部を駆動するサ一ボモータ、 或いは ロ ボ ッ ト の軸 を駆動するサ一ボモータであ る。 共有メ モ リ 1 1 は不揮 発性 R A Mで構成され、 C N C 1 0のプロセ ッ サとデジ タ ルサ一ボ回路 1 2 のプロセ ッ サ との間でデ一 夕の交換 を行な う ためにア ク セス し得る。 デジ タルサーボ回路 1 2 は、 C P U、 R O M、 R A M等で構成され、 位置 Z速 度制御モー ドに於け る位置及び速度制御と、 ト ルク制御 モー ドに於ける ト ルク制御とを行な う 。 サーボア ンブ 1 3 は、 デジ タ ルサ一ボ回路 1 2か らの指令に基づいてサ —ボモー タ 1 4を駆動する。 パルス コ ーダ 1 5 は、 位置 フ ィ ー ドバッ ク p f b及び速度フ ィ ー ドバ ッ ク V f bを デジタルサ一ボ回路 1 2 にフ ィ ー ドバ ッ ク する。  FIG. 2 is a block diagram of a main part of a control device for implementing the switching method of the present invention. The servomotor M is a servomotor that drives a movable part of a machine tool, or a servomotor that drives a shaft of a robot. The shared memory 11 is composed of nonvolatile RAM, and is used for exchanging data between the processor of the CNC 10 and the processor of the digital servo circuit 12. You can access The digital servo circuit 12 comprises a CPU, ROM, RAM, etc., and performs position and speed control in the position Z speed control mode and torque control in the torque control mode. . The servo amplifier 13 drives the servomotor 14 based on a command from the digital servo circuit 12. The pulse coder 15 feeds back the position feedback pfb and the velocity feedback Vfb to the digital servo circuit 12.
C N C 1 0は、 I T P周期 (分配周期) 毎に移動指令 又は ト ルク指令を共有 R A Mに書込む。 デジタ ルサ一ボ 回路 1 2のプロセ ッ サは移動指令又は トルク指令を共有 R A Mから読み取り 、 I T P周期を等分 した位置及び速 度制御ループ処理周期毎に位置/速度制御ループ処理又 は ト ルク制御処理を実行する。 The CNC 10 writes a movement command or a torque command to the shared RAM at each ITP cycle (distribution cycle). Digital luster The processor of the circuit 12 reads the movement command or the torque command from the shared RAM, and executes the position / speed control loop processing or the torque control processing for each position and speed control loop processing cycle obtained by equally dividing the ITP cycle. .
位置 Z速度制御モー ドでは、 デジタルサーボ回路 1 2 は、 位置及び速度ループ処理周期毎に位置及び速度ルー ブ処理の位置指令を求め、 こ の位置指令と位置フ ィ ー ド バッ ク p f b とから位置ループ処理を行な って速度指令 V c m dを求める。 次に、 速度指令 V c m d と速度フ ィ ― ドバ ッ ク V f b とから速度ループ処理を行な って トル ク指令 T c m d 2を求める。  In the position Z speed control mode, the digital servo circuit 12 obtains the position command of the position and speed loop processing for each position and speed loop processing cycle, and obtains the position command and the position feedback pfb from the position command. Perform position loop processing to find the speed command Vcmd. Next, a speed loop process is performed from the speed command Vcmd and the speed feedback Vfb to obtain a torque command Tcmd2.
ト ルク制御モー ドでは、 デジタルサ一ボ回路 1 2 は、 分配周期毎又は位置及び速度ループ処理毎に ト ルク指令 T c m d 1 を読み出すと と も に、 速度ループ中の積分器 3 に こ の ト ルク指令 T c m d l を格納する。  In the torque control mode, the digital servo circuit 12 reads the torque command Tcmd1 for each distribution cycle or each position and speed loop processing, and outputs the torque command Tcmd1 to the integrator 3 in the speed loop. Stores the torque command T cmdl.
そ して、 各制御モー ドにおいて、 求め られた ト ルク指 令 T c m dを用いて電流ループ処理を行な って P WM指 令を作成し、 サ一ボア ンプ 1 3を介 してサ一ボモ一 夕 1 4を駆動する。  Then, in each control mode, a current loop process is performed using the obtained torque command Tcmd to create a PWM command, and the power command is generated via the servo amplifier 13. Driving Bomo 1/4.
次に、 図 3のデジ タルサーボ回路が行な う処理のフ ロ 一チ ヤ一 ト を参照して本発明の制御モー ド切換え方法を 説明する。  Next, the control mode switching method of the present invention will be described with reference to the flowchart of the processing performed by the digital servo circuit of FIG.
デジタルサ—ボ回路 1 2は、 位置及び速度ループ処理 周期毎に、 エン コー ダ 1 5か ら速度フ ィ ー ドバ ッ ク V f b を読取る (ステ ッ プ S 1 ) 。 さ ら に、 デジタ ルサ一ボ 回路 1 2 は、 共有 R A M I 1 を介 して C N C 1 0からの データ に基づき、 ト ルク制御モ一 ドで制御すべきか位置 Z速度制御モー ドで制御すべきかを判定 し (ス テ ッ プ S 2 ) 、 ト ルク制御モー ドであ る場合にはステ ッ プ S 3及 び S 4の処理を行ない、 位置 速度制御モー ドであ る場 合にはステ ッ プ S 5及び S 6 の処理を行な う。 The digital servo circuit 12 reads the velocity feedback Vfb from the encoder 15 at every position and velocity loop processing cycle (step S1). In addition, digital cameras The circuit 12 determines whether the control should be performed in the torque control mode or the position Z speed control mode based on the data from the CNC 10 via the shared RAMI 1 (Step S). 2) In the torque control mode, the processing of steps S3 and S4 is performed, and in the position / speed control mode, the processing of steps S5 and S6. Is performed.
ステ ッ プ S 2 において ト ルク制御モ一 ドであ る と判定 された場合には、 デジタルサーボ回路 1 2 は ト ルク指令 T c m d 1 をサ一ボモ一 夕への ト ルク指令 T c m d と し て送って、 トルク制御を行ない (ステ ッ プ S 3 ) 、 速度 ループ中の積分器 3 に蓄え られた値∑ を ト ルク 指令 T c m d に書き換え る。 こ の積分器 3 の書換え処理は、 ト ル ク制御モー ド中において各位置及び速度ループ処理周期 毎に行な う。 従って、 ト ルク制御モー ド中においては、 積分器 3の値∑ は各位置及び速度ループ処理周期毎に更 新されて、 C N Cか らの ト ルク指令 T c m d l と一致す る (ステ ッ プ S 4 ) 。  If it is determined in step S2 that the torque control mode is set, the digital servo circuit 12 sets the torque command Tcmd1 as the torque command Tcmd to the servomotor. Then, torque control is performed (step S3), and the value ∑ stored in the integrator 3 in the speed loop is rewritten to the torque command Tcmd. This rewriting process of the integrator 3 is performed for each position and speed loop processing cycle in the torque control mode. Therefore, during the torque control mode, the value の of the integrator 3 is updated for each position and speed loop processing cycle, and matches the torque command T cmdl from the CNC (step S Four ) .
ステ ッ プ S 2 に於いて位置/速度制御モー ドと判定さ れた場合には、 デジタルサーボ回路の C P Uは、 位置指 令と位置フ ィ 一 ドバッ ク p f b とを用いて位置ループ処 理を行な って速度指令 V c m dを求める。 次に、 速度指 令 V c m d と速度フ ィ ー ドバ ッ ク V f b との偏差に積分 ゲイ ン k l を乗 じ、 得られた値を積分器 3 に蓄え られた 値∑ と加算 し格納する (ステ ッ プ S 5 ) 。 従って、 トル ク制御モ一 ドか ら位置 速度制御モー ドへの切換え時に おいては、 加算前の積分器 3 の値 ∑ は ト ルク制御モ一 ド で格納されていた値とな る。 トルク制御モー ドから位置 Z速度制御モー ドへの切換えは、 サーボモータ によ って 駆動される機械の可動部の停止時に行なわれる。 従って、 切換え直後の速度及び速度偏差の値は小さ いので比例項 4 からの出力の影響を考慮する必要はない。 If the position / speed control mode is determined in step S2, the CPU of the digital servo circuit executes the position loop processing using the position command and the position feedback pfb. To find the speed command Vcmd. Next, the deviation between the speed command Vcmd and the speed feedback Vfb is multiplied by the integral gain kl, and the obtained value is added to the value ∑ stored in the integrator 3 and stored ( Step S5). Therefore, when switching from torque control mode to position / velocity control mode, In this case, the value of the integrator 3 before the addition is the value stored in the torque control mode. Switching from the torque control mode to the position Z speed control mode is performed when the movable part of the machine driven by the servomotor stops. Therefore, it is not necessary to consider the effect of the output from proportional term 4 because the speed and speed deviation immediately after switching are small.
次に、 速度指令 V c m d と位置フ ィ ー ドバッ ク P f b との偏差に比例ゲイ ン k 2 を乗 じ、 こ の値をステ ッ プ S 5 で求めた積分器 3 の値と加算し、 位置 速度制御モー ドにお け る ト ノレク指令 T c m d 2 と し、 こ の ト ルク指令 T c m d 2 をサ一ボモー タへの ト ノレク 指令 T c m d と し て位置及び速度制御を行な う (ステ ッ プ S 6 ) 。  Next, the deviation between the speed command Vcmd and the position feedback Pfb is multiplied by the proportional gain k2, and this value is added to the value of the integrator 3 obtained in step S5, and The torrent command T cmd 2 in the position / speed control mode is used as the torrent command T cmd 2 to the servo motor to perform position and speed control. Step S6).
デジタルサ一ボ回路 1 2 は、 ト ルク 制御モー ドで制御 を行な う場合にはス ィ ツ チ 5 を ト ルク制御モー ド側へ切 換え、 位置 速度制御モー ドで制御を行な う場合にはス ィ ツ チ 5 を位置 速度制御モ一 ド側へ切換える。  When performing control in the torque control mode, the digital servo circuit 12 switches the switch 5 to the torque control mode and performs control in the position / velocity control mode. In this case, switch 5 is switched to the position / speed control mode.
図 4 a 及び 4 b は、 本発明の制御モー ド切換え方法に 従ってサーボ制御を行な っ た場合の積分器の値と ト ルク 指令 T c m d の変化を示す。 切換え点を境に して ト ルク 制御モー ドから位置 Z速度制御モ一 ドに切り換つ た と き、 図 4 a の積分器の値及び図 4 b の ト ルク指令 T c m d に 変化は表れず、 制御モー ド切換え時におけ る ト ルク指令 値の不連続を低減さ せ、 こ れによ つて、 切換え時に発生 する シ ョ ッ ク を減少さ せる こ とができ る。  FIGS. 4a and 4b show changes in the integrator value and the torque command T cmd when servo control is performed according to the control mode switching method of the present invention. When switching from the torque control mode to the position Z speed control mode at the switching point, changes in the integrator values in Fig. 4a and the torque command Tcmd in Fig. 4b are shown in the table. Therefore, it is possible to reduce the discontinuity of the torque command value at the time of switching the control mode, thereby reducing the shock generated at the time of switching.
一方、 図 5 a 及び 5 b は、 従来の制御モー ド切換え方 法に従ってサーボ制御を行な っ た場合の積分器の値と ト ルク指令 T c m dの変化を示す。 図 5 aの積分器の値は、 ト ルク制御モー ド中は、 「 0」 であ り 、 位置 Z速度制御 モー ドに切り換る と過渡応答を経て所定の トルク指令 T c m d とな る。 こ の と き、 積分器の値は切換え時を境と して変化するため、 図 5 bの ト ルク指令 T c m d も変化 して不連続とな り 、 切換え時に シ ョ ッ ク が発生する こ と な る。 Figures 5a and 5b show the conventional control mode switching method. The change of the integrator value and the torque command Tcmd when the servo control is performed according to the method. The value of the integrator in FIG. 5A is “0” during the torque control mode, and when the mode is switched to the position Z speed control mode, a predetermined torque command Tcmd is obtained through a transient response. At this time, since the value of the integrator changes at the time of switching, the torque command T cmd in FIG. 5b also changes and becomes discontinuous, and a shock occurs at the time of switching. It becomes.
以上説明 したよ う に、 本発明によれば、 ト ルク制御モ 一 ドから位置/速度制御モー ドへの制御モー ドの切換え 時におけるモー 夕への ト ルク 指令値の不連続を低減 して、 切換え時に発生する シ ョ ッ ク を十分に減少させる こ とが で き る。  As described above, according to the present invention, when the control mode is switched from the torque control mode to the position / speed control mode, the discontinuity of the torque command value to the motor is reduced. In addition, the shock generated at the time of switching can be sufficiently reduced.

Claims

請 求 の 範 囲 The scope of the claims
1 . サ一ボモー タ の ト ルク を制御する トルク制御モー ド と、 サーボモー タ の位置及び速度を位置ループ及び速度 ループによ って制御する位置 速度制御モ一 ドとの何れ か作動するサ一ボ制御系の制御モー ドを切換え る方法で あ って、  1. A torque control mode for controlling the torque of the servomotor, and a position / speed control mode for controlling the position and speed of the servomotor by the position loop and the speed loop. This is a method for switching the control mode of the control system.
( a ) 前記サ一ボ制御系が トルク制御モー ドで作動 し ている と き、 前記速度ループ中に設け られた積分器の値 を トルク制御におけ る ト ルク指令に書換え るステ ッ プと、 (a) when the servo control system is operating in the torque control mode, a step of rewriting the value of the integrator provided in the speed loop to a torque command in the torque control. ,
( b ) ト ルク制御モー ドから位置/速度制御モー ドへ の制御モー ドの切換え時において、 前記ステ ッ プ ( a ) で書換え られた積分器の値を用いてサーボモー 夕 に対す る トルク指令値を求めるステ ッ プとを備え る、 サーボ制 御系の制御モー ド切換え方法。 (b) When the control mode is switched from the torque control mode to the position / speed control mode, the torque command for the servo mode is performed using the value of the integrator rewritten in step (a). A control mode switching method for a servo control system, including a step for obtaining a value.
2 . 前記ステ ッ プ ( a ) は、 位置及び速度ループ処理毎 に前記積分器の値を書換えるステ ッ プを含む、 請求の範 囲第 1 項に記載のサ一ボ制御系の制御モ一 ド切換え方法  2. The control mode of the servo control system according to claim 1, wherein the step (a) includes a step of rewriting a value of the integrator for each position and velocity loop processing. Method of switching
PCT/JP1996/002471 1995-08-31 1996-09-02 Method for switching a control mode of a servo control system WO1997008599A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/836,427 US5986422A (en) 1995-08-31 1996-09-02 Control mode changing over method for servo control system
EP96928730A EP0790543B1 (en) 1995-08-31 1996-09-02 Method for switching a control mode of a servo control system
DE69608409T DE69608409T2 (en) 1995-08-31 1996-09-02 METHOD FOR SWITCHING A CONTROL STATE IN A SERVO CONTROL SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/245107 1995-08-31
JP7245107A JPH0969013A (en) 1995-08-31 1995-08-31 Control mode switching method of servo system using servomotor

Publications (1)

Publication Number Publication Date
WO1997008599A1 true WO1997008599A1 (en) 1997-03-06

Family

ID=17128729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002471 WO1997008599A1 (en) 1995-08-31 1996-09-02 Method for switching a control mode of a servo control system

Country Status (5)

Country Link
US (1) US5986422A (en)
EP (1) EP0790543B1 (en)
JP (1) JPH0969013A (en)
DE (1) DE69608409T2 (en)
WO (1) WO1997008599A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416561A (en) * 2020-03-09 2020-07-14 埃夫特智能装备股份有限公司 An Improved Motor Three-loop Control Method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326758B1 (en) * 1999-12-15 2001-12-04 Reliance Electric Technologies, Llc Integrated diagnostics and control systems
US7308322B1 (en) 1998-09-29 2007-12-11 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US7539549B1 (en) 1999-09-28 2009-05-26 Rockwell Automation Technologies, Inc. Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
US7301296B1 (en) * 2001-07-23 2007-11-27 Rockwell Automation Technologies, Inc. Integrated control and diagnostics system
JP4552328B2 (en) * 2001-01-22 2010-09-29 株式会社安川電機 Robot control device
KR100584548B1 (en) * 2002-06-29 2006-05-30 삼성전자주식회사 Motor control system and method that can be quickly adapted to the operating environment
US7109608B2 (en) * 2002-09-11 2006-09-19 Visteon Global Technologies, Inc. Advanced smooth transition switch
US7986118B2 (en) * 2007-04-23 2011-07-26 Honda Motor Co., Ltd. Open-loop torque control on joint position-controlled robots
JP5189926B2 (en) * 2008-08-12 2013-04-24 オークマ株式会社 Motor control device
US8299743B2 (en) * 2009-01-29 2012-10-30 Jtekt Corporation Machine tool and controlling method thereof
JP5273117B2 (en) * 2010-09-30 2013-08-28 ブラザー工業株式会社 Motor control device
GB2493541A (en) 2011-08-10 2013-02-13 Markem Imaje Ltd Motor control system using position or torque as dominant control parameter
US9505133B2 (en) 2013-12-13 2016-11-29 Canon Kabushiki Kaisha Robot apparatus, robot controlling method, program and recording medium
JP2017028810A (en) * 2015-07-18 2017-02-02 多摩川精機株式会社 Motor safe stop structure, motor control system, motor control method and humanoid robot
CN106656712A (en) * 2016-12-30 2017-05-10 深圳市优必选科技有限公司 Exception handling methods for buses, controllers for robots
JP6851837B2 (en) * 2017-01-20 2021-03-31 キヤノン株式会社 Manufacturing methods for control devices, robot systems, control methods, programs, recording media and articles
NL2020618B1 (en) 2018-01-12 2019-07-18 Illumina Inc Real time controller switching
JP7394669B2 (en) * 2020-03-16 2023-12-08 山洋電気株式会社 motor control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841210A (en) * 1971-09-27 1973-06-16
JPH04137017A (en) * 1990-09-27 1992-05-12 Yokogawa Electric Corp Control mechanism for dd motor
JPH04203603A (en) * 1990-11-30 1992-07-24 Daikin Ind Ltd Control device for fluid actuator
JPH05252773A (en) * 1992-03-04 1993-09-28 Yokogawa Electric Corp Motor controller

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946297A (en) * 1974-03-05 1976-03-23 Johnson Service Company Insertion integrating controller
US4458189A (en) * 1982-08-06 1984-07-03 Mts Systems Corporation Control mode switching circuit
JPS6224991A (en) * 1985-07-26 1987-02-02 松下電器産業株式会社 Industrial robot
US4672844A (en) * 1986-03-26 1987-06-16 Schenck Pegasus Testing apparatus with improved follower mechanism
US4884597A (en) * 1987-05-08 1989-12-05 Tsudakoma Corp. Pile warp yarn tension control
US5144211A (en) * 1989-01-31 1992-09-01 Staubli International Ag Multiaxis robot controller having workpoint torque control
JP2709969B2 (en) * 1989-12-12 1998-02-04 ファナック株式会社 Servo motor control method
WO1992015148A1 (en) * 1991-02-22 1992-09-03 U.S. Windpower, Inc. Four quadrant motor controller
JPH04302522A (en) * 1991-03-29 1992-10-26 Hitachi Ltd Arithmetic circuit and adaptive filter and echo canceller using the same
JP3253387B2 (en) * 1992-12-25 2002-02-04 東洋機械金属株式会社 Feedback control method for injection molding machine and injection molding machine
DE4409823C1 (en) * 1994-02-08 1995-01-19 Procontrol Ag Servo-drive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841210A (en) * 1971-09-27 1973-06-16
JPH04137017A (en) * 1990-09-27 1992-05-12 Yokogawa Electric Corp Control mechanism for dd motor
JPH04203603A (en) * 1990-11-30 1992-07-24 Daikin Ind Ltd Control device for fluid actuator
JPH05252773A (en) * 1992-03-04 1993-09-28 Yokogawa Electric Corp Motor controller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0790543A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416561A (en) * 2020-03-09 2020-07-14 埃夫特智能装备股份有限公司 An Improved Motor Three-loop Control Method

Also Published As

Publication number Publication date
JPH0969013A (en) 1997-03-11
EP0790543A1 (en) 1997-08-20
US5986422A (en) 1999-11-16
DE69608409D1 (en) 2000-06-21
DE69608409T2 (en) 2000-09-14
EP0790543A4 (en) 1998-12-16
EP0790543B1 (en) 2000-05-17

Similar Documents

Publication Publication Date Title
WO1997008599A1 (en) Method for switching a control mode of a servo control system
US5107193A (en) Feedforward control apparatus for a servomotor
JP2709969B2 (en) Servo motor control method
JP3537416B2 (en) Servo control device
WO1998040801A1 (en) Position controller
EP0357778B1 (en) Method of speed control for servomotor
JP2000322105A (en) Servo controller and method for stabilizing and adjusting servo controller
WO1988005566A1 (en) Speed controller in a servo system
US20030173928A1 (en) Servo control method
JP3749222B2 (en) Numerical controller
JPH11231914A (en) Numerical controller
JP2003216243A (en) Robot controller
JP3556779B2 (en) Servo motor overshoot prevention method
EP0214309A1 (en) System for controlling a servo motor
JP2826391B2 (en) Backlash acceleration control method
KR970002259B1 (en) Servo motor control method
US6122998A (en) Force control method for a bar feeder of a lathe
WO1988008561A1 (en) Robot controller
JPH10149210A (en) Method for preparing command for positioning control system
JP3308656B2 (en) Servo motor control method
JPS6378206A (en) Following delay removal method using digital servo system in full close feedback nc system
JPH0916265A (en) Acceleration and deceleration control system for servomotor
JP3301190B2 (en) Spindle operation switching method
JP2570733B2 (en) Servo motor control device
JPH05324086A (en) Servo motor control system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08836427

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996928730

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996928730

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996928730

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载