+

WO1997008370A1 - Fils de cellulose a filaments multiples et tissus en etant faits - Google Patents

Fils de cellulose a filaments multiples et tissus en etant faits Download PDF

Info

Publication number
WO1997008370A1
WO1997008370A1 PCT/JP1996/002383 JP9602383W WO9708370A1 WO 1997008370 A1 WO1997008370 A1 WO 1997008370A1 JP 9602383 W JP9602383 W JP 9602383W WO 9708370 A1 WO9708370 A1 WO 9708370A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
fabric
elongation
strength
cellulose
Prior art date
Application number
PCT/JP1996/002383
Other languages
English (en)
French (fr)
Inventor
Masanori Nakagawa
Akikazu Itani
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Akzo Nobel Faser Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha, Akzo Nobel Faser Ag filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to KR1019980701197A priority Critical patent/KR100252686B1/ko
Priority to US09/029,663 priority patent/US6013367A/en
Priority to JP51011597A priority patent/JP3205962B2/ja
Priority to AT96927904T priority patent/ATE214437T1/de
Priority to AU67551/96A priority patent/AU703116B2/en
Priority to DE69619839T priority patent/DE69619839D1/de
Priority to EP96927904A priority patent/EP0854215B1/en
Publication of WO1997008370A1 publication Critical patent/WO1997008370A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/20Treatment influencing the crease behaviour, the wrinkle resistance, the crease recovery or the ironing ease
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2965Cellulosic

Definitions

  • the present invention relates to a novel cellulose multifilament yarn and a fabric comprising the multifilament yarn. More specifically, the present invention relates to a cellulose multifilament yarn having unique physical properties and a fabric comprising the same.
  • regenerated cellulosic fiber fabrics have the problem that raw breaks occur, and the screen generated in a wet state such as scouring tends to remain as a mark even after dry finishing, and the quality of the product is extremely low. Atsuta.
  • the fabric is scoured and dyed in the form of a rope in a bath containing a softening agent or a smoothing agent, or the fabric is scoured and dyed in an expanded state. Something like that has been done.
  • the fabric in order to prevent the fabric as a product from being shirred during washing, the fabric is subjected to resin processing after the dyeing process, but such processing makes the texture of the fabric rough or reduces the strength. There are some problems such as letting go.
  • JP-A-6-3 067 733 discloses that lycelized fiber, which is an example of lyocell fiber, is massaged in a liquid containing a swelling agent for the fiber. A method for producing fibrillated fibers from the fibers is disclosed.
  • the swelling agent examples include an alkaline aqueous solution such as an aqueous sodium hydroxide solution.
  • the rubbing treatment refers to rubbing the cloth in a rope-like form with a processing machine such as a normal pressure washer, a continuous relaxation machine, a liquid jet dyeing machine, an air jet dyeing machine, and a spine dyeing machine. In the case of Is inevitable.
  • JP- A- to 7-1 5 7 9 6 8 using a liquid flow dyeing machine, also c to be performed ⁇ treated with sodium hydroxide 6 0 g Z aqueous solution is disclosed, mouth This is for expressing the thread by rubbing the cloth in a one-pipe form.
  • W095 / 24524 discloses a mercerizing process for a fabric made of lyocell fiber.
  • the fabric is subjected to a tension treatment in a high concentration (10 to 30% by weight) aqueous solution of sodium hydroxide.
  • This is intended to improve the appearance of the lyocell fiber, and in particular, to improve the condition of the fabric surface that is covered with frost by thread.
  • the lyocell fiber fabric is treated in this manner, the strength is reduced, and swelling occurs after the dyeing step and during washing.
  • the screen generated during the dyeing process of the fabric and the washing of the product means the screen generated in the wet state and in the process of shifting from the wet state to the dry state.
  • Viscos rayon is more frequent than copper-ammonium rayon.
  • the viscose rayon requires less tension than the copper ammonia rayon. That is, the viscose rayon is easier to remove in the wet state because of the tendency to form a shiny surface.
  • Conventional regenerated cellulosic fibers represented by these viscose rayon and cuprammonium rayon have low strength and high elongation.
  • the conventional lyocell fiber has a poor balance between strength and elongation in the dry state, so that the screen cannot be eliminated.
  • the present inventors have conducted intensive studies to elucidate the mechanism of shear generation in the dyeing process of a lyocell fiber fabric, and as a result, have adjusted the balance between the strength and elongation of the fiber during drying. As a result, it has been found that the screen generated in the wet state of the lyocell fiber multifilament yarn disappears after drying, and the present invention has been completed. Was.
  • the inventor has found that filament yarn is unlikely to cause shearing, and has completed the present invention.
  • the present invention provides a lyocell fiber multifilament yarn having a breaking strength when dried of 2.8 to 4.0 g / d (2.5 to 3.6 g / dtex) and a breaking elongation of 13 to 20%. And the strength and elongation curve of the yarn has a strength of 0.2 to 1.0 g / d (0.18 to 0.90 gZd te X) at an elongation of 5%, and an elongation of 10%.
  • An object of the present invention is to provide a lyocell fiber multifilament yarn which does not substantially cause shrinkage at the time of a fabric dyeing process and washing of a product, and a cloth comprising the multifilament yarn.
  • Fig. 1 shows an example of the strength and elongation curve of the cellulose multifilament and filament yarn of the present invention.
  • FIG. 2 is a view showing a step of subjecting a fabric to an alkali treatment with a immersion retention type scouring machine.
  • FIG. 3 is a side view showing a step of subjecting the yarn to full force treatment.
  • FIG. 4 is a front view showing a state in which the yarn passes through the processing tank when the yarn is completely processed.
  • the cellulose multifilament yarn of the present invention comprises lyocell fiber.
  • the lyocell fiber is an organic solvent obtained by dissolving a cell orifice in a mixed solvent of water and an organic solvent that dissolves cellulose to form a cellulose solution, and spinning the solution as a spinning solution by wet spinning or dry spinning.
  • the cellulose multifilament yarn of the present invention has a breaking strength upon drying of 2.8 to 4. 0 g / d (2.5-3.6 gZd tex), elongation at break 13-20%.
  • the rupture strength during drying 2.8-3.5 g / d (2.5-3.2 g / dte ⁇ ) the elongation at break is preferably 13 to 16.5%.
  • the strength and elongation curve of the yarn measured by the method described later passes through a specific region.
  • the specific region is defined as (i) 0.2 to 1.O gZd CO.18 to 0.90 gZd te X at an elongation of 5%, preferably 0.3 to 0.8 g / d (0. 27-0.72 g / dte X) strength range and (ii) 0.4-2.5 g / d (0.36-2.3 gZd tex) at 10% elongation, more preferably It refers to a region with an intensity of 1.0 to 2.5 g / d (0.90 to 2.3 g / dte X).
  • FIG. 1 shows an example of the strength and elongation curve of the cellulose multifilament yarn (Example 2 described later) of the present invention.
  • the initial elongation of the strength-elongation curve is gradual, the rise of the curve until breakage is relatively steep thereafter, and the strength and elongation of the yarn are increased so that both breaking strength and elongation at break are high.
  • the curve passes through the area.
  • the fabric made of the cellulose multifilament yarn of the present invention undergoes plastic deformation when subjected to deformation such as bending stress during washing or dyeing (during scouring and dyeing). It has the property of being less likely to wrinkle and, as a result, less likely to cause wrinkles, and is more likely to eliminate the resulting wrinkles.
  • a cellulose multifilament yarn having a specific high elongation as described above is a novel cell spun yarn having both high strength of lyocell fiber and excellent seam improving properties.
  • the preferred total denier of the cellulose multifilament yarn is 20 to
  • a lyocell fiber multifilament yarn is composed of an organic solvent, cellulose dissolved in the organic solvent and cellulose. Spinning a solution containing a non-solvent such as water and water into air or another non-precipitating medium, spinning the spinneret, and feeding the extruded fiber-forming solution at a speed higher than the feed speed, and at a speed of at least three times It is obtained by stretching the yarn at a draw ratio and then treating the yarn with a non-solvent.
  • a non-solvent such as water and water into air or another non-precipitating medium
  • the organic solvent at this time may be a known solvent, for example, the following amine oxides disclosed in JP-B-60-288848, or other solvents. Is also good.
  • Aminoxides include, for example, trimethylamine N-oxide, triethylamine N-oxide, tripropylamine N-oxide, monomethylethylamine N-oxide, dimethylmonoethylamine N-oxide, monomethyldipropylamine N Tertiary amines such as N-oxide; N-oxide; N-dimethyl-1, N-dimethyl; N-dipropylcyclohexylamine N-oxide; pyridine N-oxide; N-methylmorpholine N-oxide and other cyclic monomers (N-methylamine-N-oxide) and the like. Of these, N-methylmorpholine N-oxide is preferred.
  • the above-mentioned lyocell fiber multifilament yarn has a breaking strength when dried of 3.0 to 5.0 g / d (2.7 to 4.5 gZdtex), and a breaking elongation of 5 to 10%.
  • a fabric comprising the lyocell fiber cellulose multifilament yarn and the multifilament yarn is treated with a swelling agent or a solvent for the yarn.
  • the swelling agent or solvent include alkaline agents such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium gayate, N, N-dimethylformamide, N, N-dimethyl sulfoxide, N— Organic solvents such as methylmorpholine N-oxide.
  • an alkaline agent such as sodium hydroxide, potassium heptaoxide, sodium carbonate, potassium carbonate, sodium silicate and the like is preferable.
  • the preferred production method of the present invention will be described with respect to an example in which an alcoholic agent is used as a swelling agent. However, the same conditions apply to other swelling agents or solvents unless particularly hindered.
  • the above-mentioned alkaline agent is used as an aqueous solution having a concentration of 50 gZ £ to 150 g ⁇ . At a concentration of less than 50 g /, the effect of improving the seal is not sufficient, and at a concentration of more than 150 g ⁇ , a favorable effect of the seal is observed, but the strength that can withstand as a product is not maintained.
  • the treatment temperature with the alkali agent is preferably 5 ° C to 60 ° C. If the temperature is lower than 5 ° C, the strength decreases greatly. If the temperature exceeds 60 ° C, yellowing occurs, which is not preferable. Al
  • Al The treatment time with the potash is preferably 20 seconds to 2 minutes. If it exceeds 2 minutes, the strength decreases significantly.
  • the tension applied to the yarn and the fabric and the form of the yarn and the fabric when treated with a swelling agent or a solvent are important.
  • a method for treating a fabric and a yarn with an alkaline aqueous solution will be described.
  • the treatment and neutralization of the fabric with an alkaline aqueous solution must be performed in a spread state.
  • the spread state refers to a state in which the cloth is spread. A state where a shear occurs like a rope is not considered a spread state. Rope treatment using a liquid jet dyeing machine or an air jet dyeing machine is not preferable because it generates shear and induces dye stain during dyeing.
  • either continuous or batch processing can be performed.For example, in the case of continuous processing, a spread-type continuous scouring machine can be used, and in the case of batch processing, hanging A kneading method or the like can be adopted.
  • the fabric should not be over-tensioned.
  • the tension applied to the cloth is preferably a force required to pull the cloth by 0 to 1% in each of the warp direction and the weft direction. If the fabric is treated under tension, the elongation at break decreases, and the effect of improving the shrinkage cannot be obtained. Therefore, it is preferable to use a processing machine or a system that applies as little tension as possible to the fabric in the warp and weft directions for the treatment of the fabric.
  • a processing machine or a system that applies as little tension as possible to the fabric in the warp and weft directions for the treatment of the fabric.
  • a processing machine or a system that applies as little tension as possible to the fabric in the warp and weft directions for the treatment of the fabric.
  • a processing machine or a system that applies as little tension as possible to the fabric in the warp and weft directions for the treatment of the fabric.
  • a processing machine or a system that applies as little tension as possible to the fabric in the warp
  • the roller 3 in the cloth introduction section hooks the cloth 1.
  • the fabric 1 is spread and subjected to alkali treatment without applying excessive tension, and then the fabric 1 is similarly treated in the hot water washing tank 6, the neutralization tank 7 and the water washing tank 8, respectively.
  • the type of the fabric is not particularly limited, and may be a woven fabric, a knitted fabric, or a nonwoven fabric.
  • the process of treating and neutralizing the yarn with an aqueous alkali solution may be performed at any stage after spinning and scouring. Examples of such processing include continuous processing after spinning, scouring, skeining, and cheese processing. However, in the case of a continuous process, do not apply excessive tension to the yarn.
  • the yarn is treated in an alkali aqueous solution treatment tank, then neutralized in a neutralization treatment tank, passed through a hot water washing tank, and then dried.
  • a method may be used in which the yarns are continuously transferred to a net conveyor and the above-described treatment solutions are sprayed on the yarns in a shower form.
  • the lyocell multifilament yarn 9 passes through the Nippler 10 and enters the alkali treatment tank 4, and then passes through the hot water washing tank 6, the neutralization tank 7 and the water washing tank 8, After passing through the nip roller 11, it enters the dryer 12, where it is dried and then passes through the nip roller 13. At this time, the yarn speed is adjusted by the nip rollers 11 and 13 to control the tension applied to the yarn.
  • Fig. 3 shows the yarn treatment process from the side.
  • the yarn 9 passes through the guide rolls 14 and the treatment solution 5 Since the yarn 9 is immersed in the yarn, the yarn 9 is hardly tensioned during the processing.
  • the tension cannot be limited because it differs depending on the yarn speed and yarn thickness, but generally it is 0.05 to 0.5 gZ d (0.045 to 0.45 gZ dte X). If the tension is less than 0.05 gZd, the thread will not run stably. If the tension exceeds 0.5 gZd, the elongation decreases, and the effect of improving the seam cannot be obtained. If the tension exceeds 1 gZd, thread breakage occurs, which is not preferable.
  • skein treatment the use of a jet dyeing machine is preferred.
  • a cheese dyeing machine it is preferable to perform processing by winding at a winding density of 0.35 to 0.40 g / cm 3 .
  • the effect of the present invention can be maintained even if the yarn or fabric of the present invention is subjected to ordinary dyeing processing, for example, spreading dyeing, rope dyeing and resin processing, and softening processing.
  • ordinary dyeing processing for example, spreading dyeing, rope dyeing and resin processing, and softening processing.
  • the present invention will be described in more detail with reference to Examples.
  • the evaluation of the physical properties of each yarn or fabric was performed by the following methods.
  • the specimen was immersed in water at 20 ° C for 5 minutes, dehydrated with filter paper, and creased at random on the test piece. A load of 1 kg / cm 2 was applied for 2 minutes. After that, the test specimen is spread and air-dried.
  • the sample was dried for 30 minutes, and further dried for 5 minutes with cold air.
  • the test piece was hung in the longitudinal direction for 2 hours or more, and then the appearance was evaluated.
  • the appearance of the test specimen was compared with the three-dimensional repli- cation force used in (3) to judge it from 1 to 5 grade. Larger grades indicate less shear. Pass is 2.5 or higher.
  • the multifilament test yarn 1 shown in Table 1 obtained by the above manufacturing method was continuously treated with alkali under the conditions shown in Table 3, followed by washing with hot water (80 ° C) and neutralization.
  • the multifilament test yarn 2 shown in Table 1 obtained by the above manufacturing method was continuously treated with alkali under the conditions of Example 2 shown in Table 3, and subsequently, Examples 1 to 3 and Comparative Example 1 They were washed with water, neutralized, washed with water, dried and rolled up in the same manner as in ⁇ 3.
  • the tension of the treated yarn was adjusted to be 0.1 g / d at the outlet of the dryer.
  • a plain woven fabric having a warp density of 123 / inch (48 Zcm) X a weft density of 85 inch (33 cm) was used as a sample by using this treated yarn as warp and weft, and Comparative Example 4 was subjected to scouring and drying.
  • the multifilament test yarn 1 shown in Table 1 obtained by the above production method was continuously treated with alkali under the conditions of Example 2 shown in Table 3, and subsequently, Examples 1 to 3 and Comparative Example 1 were performed. They were washed with water, neutralized, washed with water, dried and rolled up in the same manner as in ⁇ 3.
  • the tension of the treated yarn was 0.05, 0.5, 0.7, and 1.1 g / d at the outlet of the dryer, respectively (corresponding to Examples 4 to 5 and Comparative Examples 5 to 6, respectively). )).
  • a plain woven fabric with a warp density of 12 3 inches (48 / cm) and a weft density of 85 no inches (33 Zcm) was used as a sample. By law After scouring and drying, Examples 4 to 5 and Comparative Examples 5 to 6 were used.
  • Warp and weft using the multifilament test yarn 2 shown in Table 1 obtained by the above manufacturing method 2 for warp and weft 1 2 3 noinches (4 8 Zcm) X weft density 8 5 inches (3 3 Zcm) was used as a sample.
  • the sample was immersed under the conditions of Example 2 described in Table 3 and used with a Hinekken continuous scouring machine of the residence type, and the sample was subjected to an air force treatment in a spread state, followed by Examples 6 to 8 and Comparative Examples 7 to As in Comparative Example 10, a product subjected to hot water washing, neutralization, scouring and drying was used as Comparative Example 10.
  • the samples were alkali-treated in the form of a rope using a liquid jet dyeing machine under the conditions described in Table 3, followed by Examples 6 to 8 and Comparative Examples. As in Comparative Examples 11 to 13, those subjected to hot water washing, neutralization, scouring, and drying were used as Comparative Examples 11 to 13. Comparative Example 1 4
  • the plain woven fabrics obtained in Examples 1 to 8 and Comparative Examples 1 to 14 were dyed with a single-dip dyeing machine under the dyeing conditions described in Table 1, and a softening agent (Nika, manufactured by Nichika Chemical Co., Ltd.) Dip dip into a 10 g / £ aqueous solution of MS-1F, methylol amide softener), and dry-finish at 1300 ° C for 2 minutes with a pin tenter dryer.
  • Examples 9 to 16 and Comparative Examples 15 to 28 were provided.
  • the cellulose multifilament yarns of the present invention and the fabrics comprising the multifilament yarns have a reduced strength and a dyeing process due to the proper balance between the strength and elongation of the yarns. Generation of blemishes during the process and during the washing of the product can be suppressed.
  • the cellulose multifilament yarn of the present invention and the fabric comprising the multifilament yarn suppress the decrease in strength, and do not cause substantial shear during the dyeing process and during washing of the product, and are extremely useful industrially. Things.
  • Example 11 Example 3 3 5 3 2.8 16.0 0.3] .7
  • Example 17 Example 3 3 5 2.5 1.16.0 0.05 0.5

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Woven Fabrics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Materials For Medical Uses (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Description

明 細 書 セルロースマルチフィラメント糸及びそれからなる布帛 技術分野
本発明は新規なセルロースマルチフィラメント糸及びそのマルチフィラメント 糸からなる布帛に関するものである。 より詳しくは、 本発明は特異な物性を有す るセルロースマルチフィラメント糸及びそれからなる布帛に関するものである。 背景技術
従来、 再生セルロース系繊維布帛は生折れが生じたり、 精練等の湿潤状態にお いて発生したシヮが乾燥仕上げの後もシヮ跡として残りやすく、 製品としての品 質が著しく低いという問題があつた。
製品としての布帛にシヮが発生しないようにするためには、 柔軟剤や平滑剤等 を含む浴中、 布帛をロープ状で精練及び染色したり、 拡布状態で布帛に精練及び 染色処理を施すというような工夫がなされている。
また、 洗濯中に製品としての布帛にシヮが発生しないようにするために、 染色 工程の後に布帛に樹脂加工を施すが、 このような加工は布帛の風合いを粗硬にし たり、 強度を低下させたりするなど 、くつかの問題がある。
しかしながら、 近年、 開発されつつある、 有機溶媒を用いて紡糸するセルロー ス繊維 (リヨセノレ繊維) からなる布帛は、 常法の拡布状態での精練を施してもシ ワカ発生し、 特にロープ状での精練に至っては著しいシヮが発生する。 布帛を精 練後、 緊張下で乾燥しても布帛のシヮは全く改善されず、 従来のリヨセル繊維は 実用的に大きな問題を有している。 また、 J P— A— 6— 3 0 6 7 3 3には、 リ ョセル繊維が一例として示されている易フィプリル化繊維を該繊維の膨潤剤を含 む液中で揉布処理することにより、 該繊維よりフイブリル化繊維を製造する方法 が開示されている。 膨潤剤としては、 水酸化ナトリウム水溶液などのアルカリ水 溶液が挙げられる。 揉布処理とは、 常圧ワッシャー、 連続リラックス機、 液流染 色機、 気流染色機、 ゥインス染色機などの処理機により、 布帛をロープ状の形態 で揉むというものであり、 このような処理においては、 繊維の強度低下及びシヮ の発生は避けられない。 J P— A— 7— 1 5 7 9 6 8には、 液流染色機を用いて、 水酸化ナトリウム 6 0 g Z 水溶液中にて揉布処理を行うことが開示されている c これも、 口一プ状形態で布帛を揉布処理することによりスレを発現させるための ものである。
W0 9 5 / 2 4 5 2 4には、 リヨセル繊維からなる布帛のマーセラィズ加工が 開示されている。 この加工方法では、 水酸化ナトリウムの高濃度 (1 0〜3 0重 量%) 水溶液中での布帛の緊張下処理が行われる。 これは、 リヨセル繊維の外観 の改善、 特にスレにより霜で覆われたような布帛表面の状態の改善を目的とした ものである。 しかし、 この方法でリヨセル繊維布帛を処理すると、 強度が低下し たり、 染色工程後及び洗濯時にシヮが発生する。
布帛の染色加工工程及び製品の洗濯時に発生するシヮとは、 湿潤状態において、 及び湿潤状態から乾燥状態に移行する過程において布帛に発生したシヮをいう。
シヮの発生は、 銅アンモニア法レーヨンよりもビスコース法レーヨンの方力く頻 度が高い。 し力、し、 湿潤状態で生じたシヮを乾燥工程で解消させるために拡布状 態で張力をかける場合は、 ビスコース法レーヨンの方が銅アンモニア法レーヨン より張力が小さくて済む。 すなわち、 ビスコース法レーヨンの方が、 湿潤状態で シヮが付き易い力 除去し易い。 これらビスコース法レーヨン及び銅アンモニア 法レーヨンに代表される従来の再生セルロース系繊維は低強度、 高伸度である。 これに対して、 従来のリョセル繊維はこの乾燥状態での強度と伸度とのバラン スが悪いため、 シヮが解消しない。 従来のリヨセノレ繊維からなる布帛のシヮを取 るためには、 乾燥状態での強度と伸度とのバランスを、 例えばビスコース法レー ョンのような強度と伸度とのバランスを有するように変化させることが考えられ るが、 リヨセル繊維の持つ強度の高さを活かすためには、 強度の低下を極力抑え て高強度かつ高伸度に変化させるのが最も望ましい。
発明の開示
本発明者らは、 リョセル繊維からなる布帛の染色加工工程におけるシヮ発生の メ力二ズムを解明すべく鋭意研究を行った結果、 繊維の乾燥時の強度と伸度との バランスを調整することにより、 リョセル繊維マルチフィラメント糸からなる布 帛に湿潤状態で発生したシヮが乾燥後解消することを見い出し、 本発明を完成し た。
本発明者らは、 また、 乾燥時の強伸度バランスについて詳細に研究した結果、 乾燥時の破断強度が 2. 8〜4. 0 g/d (2. 5〜3. 6 g/d t e x: 1 d = 1. 1 1 d t ex) 、 破断伸度が 13〜20%であり、 かつ繊維の強伸度曲線 が特定の伸度で特定の強度の領域を通るように変性せしめたリョセル繊維マルチ フィラメント糸が、 シヮを発生しにくいことを見出し、 本発明を完成するに至つ た。
本発明は、 リョセル繊維マルチフイラメント糸であって、 乾燥時の破断強度が 2. 8〜4. 0 g/d (2. 5〜3. 6 g/d t e x) 、 破断伸度が 13〜 20 %であり、 かつ該糸の強伸度曲線が、 伸度 5%において 0. 2〜1. 0 g/d (0. 18〜0. 90 gZd t e X) の強度の領域を、 伸度 10%において 0. 4〜2. 5 g/d (0. 36〜2. 3 g/d t e x) の強度の領域を通るセル口 ースマルチフィラメント糸及びそれからなる布帛である。
本発明の目的は、 布帛の染色加工工程及び製品の洗濯時に実質的なシヮを発生 させないリョセル繊維マルチフィラメント糸及びそのマルチフィラメント糸から なる布帛を提供するものである。
図面の簡単な説明
F i g. 1は本発明のセルロースマルチフ,ィラメント糸の強伸度曲線の一例で める。
F i g. 2は布帛を浸漬滞留式精練機でアルカリ処理する工程を示す図である。 F i g. 3は糸をアル力リ処理する工程を示す側面図である。
F i g. 4は糸をアル力リ処理する際に糸が処理槽を通過する様子を正面から 表す図である。
発明を実施するための最良の形態
本発明のセルロースマルチフィラメント糸は、 リヨセル繊維からなる。
リョセル繊維とは、 セルロースを溶解する有機溶媒と水との混合溶媒にセル口 —スを溶解させてセルロース溶液となし、 この溶液を紡糸液として湿式紡糸又は 乾式紡糸することによって得られる有機溶媒紡糸されたセルロース繊維である。 本発明のセルロースマルチフィラメント糸は、 乾燥時の破断強度 2. 8〜4. 0 g/d (2. 5〜3. 6 gZd t e x)、 破断伸度 1 3〜20%である。 リヨ セル繊維の持つ強度の高さを活かし、 布帛に優れたシヮ回復性を付与するために は、 乾燥時の破断強度 2. 8〜3. 5 g/d (2. 5〜3. 2 g/d t e χ) , 破断伸度が 1 3〜1 6· 5%であること力好ましい。
また、 本発明のセルロースマルチフィラメント糸は、 後述する方法で測定した 該糸の強伸度曲線が特定の領域を通る。
特定の領域とは、 (i) 伸度 5%における 0. 2〜1. O gZd CO. 1 8〜 0. 90 gZd t e X) 、 好ましくは 0. 3〜0. 8 g/d (0. 27〜0. 7 2 g/d t e X) の強度の領域及び (i i) 伸度 1 0%における 0. 4〜2. 5 g/d (0. 36〜2. 3 gZd t e x) 、 より好ましくは 1. 0〜2. 5 g/ d (0. 90〜2. 3 g/d t e X) の強度の領域のことをいう。 本発明のセル ロースマルチフィラメント糸 (後述する実施例 2) の強伸度曲線の一例を図 1に 示す。
好ましくは、 強伸度曲線の初期の立ち上がりが緩やかであり、 以後破断に至る までの曲線の立ち上がりが比較的急となり、 破断強度と破断伸度がともに高くな るように、 糸の強伸度曲線が上記領域を通る。 強伸度曲線が上記領域を通ること により本発明のセルロースマルチフィラメント糸からなる布帛は、 洗濯や染色加 ェ時 (精練及び染色時) に曲げ応力などによる変形を受けたとき、 塑性変形を受 けにくくなり、 その結果、 シワカ生じにくく、 また、 生じたシヮが解消しやすい と言う性質を有する。
上記のような特定の強伸度ノくランスを有するセルロースマルチフィラメント糸 は、 リョセル繊維の強度の高さと優れたシヮ改善性とを併せ持った新規なセル口 ース糸である。
セルロースマルチフィラメント糸の好ましいトータルデニールは 20〜
300 d (22〜333 d t e x) 、 単糸デニールは 0. 5〜1 0 d (0. 56 〜 1 1 d t e X) でめる。
次に、 本発明の製造方法について詳述する。
まず、 リョセル繊維マルチフィラメント糸は、 例えば J P— B— 60— 288 48に記載されているように、 有機溶媒、 該有機溶媒に溶解されたセルロース及 び水などの非溶媒を含む溶液を空気又は他の非沈殿性媒体中に紡糸し、 紡糸口金 力、ら出た繊維形成溶液を送り出し速度より速 、速度で弓 Iつ張って 3倍以上の延伸 倍率で糸を延伸した後に該糸を非溶媒で処理することにより得られる。
この際の有機溶媒は公知の溶媒であってもよく、 例えば、 J P— B—6 0— 2 8 8 4 8に開示されている下記アミンォキシド類であってもよく、 また他の溶媒 であってもよい。 アミンォキシド類としては、 例えばトリメチルァミン N—ォキ シド、 トリェチルァミン N—ォキシド、 トリプロピルアミン N—ォキシド、 モノ メチルジェチルアミン N—ォキシド、 ジメチルモノェチルアミン N—ォキシド、 モノメチルジプロピルアミン N—ォキシド等の第三級アミン N—ォキシド; N— ジメチル一、 N—ジェチル一、 N—ジプロビルシクロへキシルァミン N—ォキシ ド; ピリジン N—ォキシド; N—メチルモルホリン N—ォキシド等の環状モノ (N—メチルァミン一 N—ォキシド) などが挙げられる。 これらのうち、 N—メ チルモルホリン N—ォキシドが好ましい。
上述のリョセル繊維マルチフィラメント糸の乾燥時の破断強度は 3 . 0〜5 . 0 g / d ( 2 . 7〜4 . 5 gZd t e X ) 、 破断伸度は 5〜 1 0 %である。
このリヨセル繊維セルロースマルチフィラメント糸及びこのマルチフィラメン ト糸からなる布帛を、 該糸の膨潤剤又は溶剤を用いて処理する。 膨潤剤又は溶剤 としては、 水酸化ナトリウム、 水酸化力リウム、 炭酸ナトリウム、 炭酸力リウム、 ゲイ酸ナトリウム等のアルカリ剤、 N, N—ジメチルホルムアミ ド、 N, N—ジ メチルスルホキシド、 N—メチルモルホリン N—ォキシド等の有機溶剤である。 特に、 水酸化ナトリウム、 7酸化力リウム、 炭酸ナトリウム、 炭酸力リウム、 ケ ィ酸ナトリウム等のアル力リ剤が好ましい。
本発明の好ましい製造方法を、 膨潤剤としてアル力リ剤を用いた例について述 ベるが、 他の膨潤剤又は溶剤についても、 特に支障がない限り同様の条件が適用 される。 上述のアルカリ剤を濃度 5 0 gZ £〜l 5 0 gノ^の水溶液として用い る。 5 0 g/ 未満の濃度ではシヮ改善効果が十分ではなく、 1 5 0 g ^を超 える濃度ではシヮ改善に良好な効果が認められるが、 製品として耐え得る強度が 保持されない。 アルカリ剤での処理温度は 5 °C〜 6 0 °Cが好ましい。 5 °Cより低 温では強度低下が大きく、 6 0 °Cを超えると黄変が発生し、 好ましくない。 アル カリ剤での処理時間は 2 0秒〜 2分が好ましい。 2分を超えると強度低下が大き い。
本発明の製造方法において、 特に膨潤剤又は溶剤で処理する際の糸ゃ布帛にか かる張力及び糸や布帛の形態が重要である。 以下、 アルカリ水溶液で布帛及び糸 を処理する方法を説明する。
( 1 ) アルカリ水溶液で布帛を処理する方法
布帛のアルカリ水溶液による処理及び中和は拡布状態で行わなければならない 拡布状態とは、 布帛を拡げた状態をいう。 ロープ状のようにシヮが発生するよう な状態は拡布状態とはいえない。 液流染色機や気流染色機などを用いたロープ状 での処理は、 シヮを発生させ、 かつ染色時に染めシヮを誘発するので好ましくな い。 布帛が拡布状態であれば、 連続式又はバッチ式のいずれの処理も可能である 例えば、 連続式処理の場合には拡布状の連続精練機を用いることができ、 バッチ 式処理の場合には吊り練り方式等を採用することができる。
処理中、 布帛には過度の張力を掛けないようにする。 布帛にかかる張力は、 布 帛を経方向及び緯方向に各々 0〜 1 %引っ張るのに要する力であること力好まし い。 布帛を緊張下で処理すると破断伸度が低下し、 シヮ改善効果が得られないの で好ましくない。 したがって、 布帛の処理には、 布帛の経方向及び緯方向に緊張 をできるだけ掛けない処理機や方式を用いること力好ましく、 例えば、 浸漬滞留 式のヒネッケンタイプの精練機ゃネットコンべャ式の精練機等の連続精練機の使 用や吊り練り方式の採用が好ましい。 処理時間が比較的短時間でありかつ処理時 の布帛張力を過度に掛けることなく処理できる点において、 拡布状での布帛の処 理が可能な連続精練機の使用がより好ましい。
例えば F i g . 2に示すように、 布帛 1がガイドロール 2を通って浸漬滞留式 精練機のアル力リ処理槽 4に入る際に、 布帛導入部のローラー 3が布帛 1を引つ 掛けて処理液 5中に導入するため、 布帛 1は拡布状となり、 過度の張力がかかる ことなくアルカリ処理され、 次いで同様に布帛 1は湯洗槽 6、 中和槽 7及び水洗 槽 8でそれぞれ処理される。
また、 布帛の種類は特に限定されず、 織物、 編物、 不織布であってもよい。
( 2 ) アルカリ水溶液で糸を処理する方法 糸のアルカリ水溶液による処理及び中和の工程は紡糸、 精練以後であれば、 ど の段階で実施しても差し支えない。 そのような処理として、 例えば、 紡糸、 精練 以降の連続的な処理、 かせ処理、 チーズ処理等が挙げられる。 ただし、 連続工程 の場合、 糸に張力を過度に掛けないようにする。
例えば、 紡糸、 精練以降の連続的な処理としては、 糸をアルカリ水溶液の処理 槽中で処理し、 次いで中和処理槽中で中和し、 湯洗槽を通過させた後、 乾燥する 方法を用いてもよく、 あるいは糸をネットコンベアに連続的に振り込んで前述の 各処理液をシャワー状に糸に散布する方法でもよい。
例えば F i g. 3に示すように、 リヨセルマルチフィラメント糸 9はニップロ —ラー 1 0を通過し、 アルカリ処理槽 4に入り、 次いで湯洗槽 6、 中和槽 7及び 水洗槽 8を通り、 ニップローラ一 1 1を経て乾燥機 1 2に入り、 ここで乾燥され た後、 ニップローラ一 1 3を通る。 このとき、 ニップローラ一 1 1と 1 3により 糸速を調整して、 糸にかかる張力を制御する。 F i g. 3は糸処理の工程を側面 から描いた図であるが、 処理槽 4を正面から描いた F i g. 4から分かるように、 糸 9はガイドロール 1 4を経て処理液 5に浸漬されるため、 糸 9には処理中はほ とんど張力がかからない。
処理中、 糸には過度の張力を掛けないようにする。 張力は糸速や糸の太さによ り異なるので限定できないが、 一般的には、 乾燥機出口で 0 . 0 5〜0 . 5 gZ d ( 0 . 0 4 5〜0 . 4 5 gZ d t e X ) の張力とすることが好ましい。 0 . 0 5 gZ d未満の張力では、 糸力安定して走行しない。 張力が 0 . 5 gZdを超え ると伸度が低下し、 シヮ改善効果が得られず、 さらに 1 gZdを超えると糸切れ が発生するなどして好ましくない。
かせ処理の場合は、 噴射式染色機の使用が好ましい。 また、 チーズ染色機の場 合は、 巻き密度 0 . 3 5〜0 . 4 0 g/cm3 でワインディングを行って処理を行 うのが好ましい。
アル力リ水溶液による処理の後の中和は、 酸洗により糸及び布帛から完全にァ ルカリが除去されるまで行う。
なお、 本発明の糸、 布帛に通常の染色加工、 例えば拡布染色、 ロープ染色ゃ樹 脂加工、 柔軟加工等を施しても本発明の効果は維持される。 以下、 実施例に従って本発明をさらに詳細に説明する。 なお、 各糸又は布帛の 物性評価は以下の方法で行った。
(1) 糸の強伸度: J I S— L— 1 0 1 3に従い測定した。
(2) 織物から解体した糸の強伸度: J I S— L一 1 0 1 3に従い、 織物から解 体した緯糸の乾燥時の強伸度を測定した。
(3) 湿潤状態で生じたシヮの回復性の評価: 3 Ocmx 3 Ocmの布帛の試験片を
2 0°Cの水に 5分間浸漬し、 濾紙で脱水後試験片にランダムに折り目をつけ、 1 kg/cm2 の荷重を 2分間かけた。 その後、 試験片を拡げて風乾し、 試験片の外観
(シヮの状態) を AATCC Test Method 1 2 4 - 1 9 8 4に規定されている 6段階の立体的レプリカを用いて、 1〜 5級の等級で判定した。 級数が大きいほ どシヮが少ないことを示す。 合格は 2. 5級以上とする。
(4) 染色工程中で発生したシヮの回復性の評価:ロータリー染色機を用いて布 帛の試験片に常法の染色加工を施し、 染上がり後の織物の外観を評価した。 さら に、 染上がり後の織物を常法の柔軟仕上加工に、 拡布状で張力をかけずに付した 時の外観を評価した。 試験片の染色加工後及び仕上加工後の 2つの外観を (3) で用いた立体的レプリカと比較することにより 1〜5級の等級で判定した。 級数 が大きいほどシヮが少ないことを示す。 合格は染色後で 3級以上、 仕上げ加工後 で 4級以上とする。
(5) 製品洗濯後のシヮ評価 (W&W性) : AATCC Test method 1 24に 従い布帛の試験片の洗濯を行った。 洗濯後の試験片は、 タンブラ一にて 6 0°Cで
3 0分間乾燥し、 さらに冷風で 5分間乾燥し、 試験片を経方向に 2時間以上吊る して、 その後外観を評価した。 その試験片の外観を (3) で用いた立体的レプリ 力と比較することにより 1〜5級の等級で判定した。 等級が大きいほどシヮが少 ないことを示す。 合格は 2. 5級以上とする。
〔マルチフィラメント試験糸 1及び 2の製造方法〕
J P-B- 6 0 - 2 8 8 48に記載されている製造方法に従い、 パルプと N— メチルモルホリン N—ォキシド水溶液とを混合槽に入れて減圧下で混合し、 セル ロース濃度 1 0. 0 %のセルロース溶液を製造する。 このセルロース溶液を用い て、 1 24 °Cの吐出温度で、 表 1の条件でエアギャップ紡糸を行った。 紡糸され た糸は水洗で精練を行い、 乾燥、 卷き取りを経て、 表 1に示す物性値をもつ 7 5 dZ 5 0フィラメント (8 3 d t e xZ5 0 f) のマルチフィラメント試験糸 1、 2を得た。
実施例 1〜 3及び比較例 1〜 3
上記製造方法で得られた表 1記載のマルチフイラメント試験糸 1を、 表 3に記 載した条件で連続的にアルカリ処理し、 続いて湯洗 (8 0°C) 、 中和
(CH3 COOH, pH4) 、 水洗、 乾燥 (1 2 0 °C) を施し、 捲き取った。 な お、 処理糸の張力は乾燥機出口で 0. 1 g/dになるように糸の引っ張り速度を 調整した。 続いて、 この処理糸を経糸及び緯糸に用いた経密度 1 23本/インチ (4 8本 Zcn X緯密度 8 5本 Zインチ (3 3本 cm) の平織物を試料として用 い、 Na2 C03 1 gZ^及び界面活性剤 (ノニオン系) l m l/£を含む浴中、 8 0°Cで精練し、 湯洗 (8 0°C) 、 脱水、 乾燥 (1 2 0°C) を行ったものを実施 例 1〜 3及び比較例 1〜 3とした。
比較例 4
上記製造方法で得られた表 1記載のマルチフィラメント試験糸 2を、 表 3に記 載した実施例 2の条件で、 連続的にアルカリ処理し、 続いて実施例 1〜3及び比 較例 1〜3と同様に湯洗、 中和、 水洗、 乾燥を施し、 捲き取った。 なお、 処理糸 の張力は乾燥機出口で 0. 1 g/dになるように調整した。 続いて、 この処理糸 を経糸及び緯糸に用いた経密度 1 2 3本/インチ (4 8本 Zcm) X緯密度 8 5本 インチ (3 3本 cm) の平織物を試料として用い、 常法により精練、 乾燥を行 つたものを比較例 4とした。
実施例 4〜 5及び比較例 5〜 6
上記製造方法で得られた表 1記載のマルチフイラメント試験糸 1を、 表 3に記 載した実施例 2の条件で、 連続的にアルカリ処理し、 続いて実施例 1〜3及び比 較例 1〜3と同様に湯洗、 中和、 水洗、 乾燥を施し、 捲き取った。 なお、 処理糸 の張力は乾燥機出口でそれぞれ 0. 0 5、 0. 5、 0. 7及び 1. 1 g/d (そ れぞれ実施例 4〜 5及び比較例 5〜6に対応する。 ) になるように各々調整した。 続いて、 各処理糸を経糸及び緯糸に用いた経密度 1 2 3本 Zインチ (4 8本/ cm) X緯密度 8 5本ノインチ (3 3本 Zcm) の平織物を試料として用い、 常法により 精練、 乾燥を行ったものを実施例 4〜 5及び比較例 5〜 6とした。
実施例 6〜 8及び比較例 7〜 9
上記製造方法で得られた表 1記載のマルチフイラメント試験糸 1を経糸及び緯 糸に用いた経密度 1 2 3本/インチ (4 8本/ cm) x緯密度 8 5本 Zインチ (3 3本 Zcm) の平織物を試料として用いた。 表 3に記載した条件で浸漬滞留式のヒ ネッケン式連続精練機を用いて、 試料を拡布状にてアルカリ処理し、 続いて湯洗 ( 8 0 °C) 、 中和 (Cj H 3 C O O H, p H 4 ) 、 精練 (N a 2 C 0 3 1 /! TB び界面活性剤 (ノニオン系) l m l Z ^を含む浴中、 8 0 °C) 、 乾燥 (1 2 0 °C) を施したものを実施例 6〜 8及び比較例 7〜 9とした。
比較例 1 0
上記製造方法で得られた表 1記載のマルチフイラメント試験糸 2を経糸及び緯 糸に用いた経密度 1 2 3本ノインチ (4 8本 Zcm) X緯密度 8 5本 インチ (3 3本 Zcm) の平織物を試料として用いた。 表 3に記載した実施例 2の条件で浸漬 滞留式のヒネッケン式連続精練機を用 L、て、 試料を拡布状にてアル力リ処理し、 続いて実施例 6〜8及び比較例 7〜9と同様に湯洗、 中和、 精練、 乾燥を施した ものを比較例 1 0とした。
比較例 1 卜 1 3
上記製造方法で得られた表 1記載のマルチフイラメント試験糸 1を経糸及び緯 糸に用いた経密度 1 2 3本ノインチ (4 8本 Zcm) x緯密度 8 5本 インチ (3 3本 Zcm) の平織物を試料として用いた。 表 3に記載した条件で液流染色機を用 いて、 試料をロープ状にてアルカリ処理し、 続いて実施例 6〜 8及び比較例?〜 9と同様に湯洗、 中和、 精練、 乾燥を施したものを比較例 1 1〜1 3とした。 比較例 1 4
上記製造方法で得られた表 1記載のマルチフイラメント試験糸 1を経糸及び緯 糸に用いた経密度 1 2 3本/インチ (4 8本 Zcm) X緯密度 8 5本 Zインチ (3 3本 Zcm) の平織物を試料として用いた。 表 3に記載したアルカリ条件にて該平 織物を経方向に 5 %、 緯方向に 5 %引っ張ることにより、 緊張下で拡布状にて処 理し、 続いて、 マングルで絞液し、 オープンソ一パータイプの連続精練機を用い て緊張下で湯洗、 中和、 精練、 乾燥を施したもの (他の条件は実施例 6〜8及び 比較例 7〜9と同じである。 ) を比較例 1 1とする。
実施例 9〜 1 6及び比較例 1 5〜 2 8
実施例 1〜 8及び比較例 1〜 1 4で得られた平織物を口一タリ一染色機で表 1 に記載した染色条件で染色を行い、 更に柔軟加工剤 (日華化学社製、 ニツカ M S— 1 F , メチロールアマイド系柔軟剤) の 1 0 g / £水溶液中にディップ二 ップし、 続いてピンテンター型乾燥機で 1 3 0 °C X 2分の乾燥仕上げ加工を行つ たものを実施例 9〜 1 6及び比較例 1 5〜 2 8とした。
得られた織物の物性測定の結果を、 実施例 1〜 8及び比較例 1〜 1 4について は表 3に、 実施例 9〜 1 6及び比較例 1 5〜 2 8については表 4に示す。
表 3及び表 4からも明らかなように本発明のセルロースマルチフィラメント糸 及びそのマルチフィラメント糸からなる布帛は糸の強伸度のバランスが適度にと れていることにより、 強度の低下並びに染色加工工程中及び製品の洗濯中のシヮ の発生を抑制することができる。
産業上の利用可能性
本発明のセルロースマルチフィラメント糸及びそのマルチフィラメント糸から なる布帛は強度の低下を抑制するとともに、 染色加工工程中及び製品の洗濯中に 実質的なシヮの発生がなく、 工業的に極めて有用なものである。
表 1
Figure imgf000014_0001
表 2
染色加工条件 染料 Sumif ix Navy Blue CS 1¾0!F
(ビニルスルホ ン系反応染料) 硫酸ナ トリウム 50g/i 炭酸ナトリウム 15g/ 温度 60eC 浴比 15 : 1
(浴 ftの重 S:布 Bの重量) 時間 &0分 表 3
Figure imgf000015_0001
表 4 染 feX程で
アル力 したシヮの回復性 布 S S品 の 物性
リ 処 s
条件 仕 ±¾Πェ W&W性破断強度破断伸度伸度 5%伸度 10% 洗 S後 後 CR) 後(ft) WU {%) の状) E
Q 1 3 5 Q . ί 13.8 0.5 2.1
n
1 u ft
実 2 3 5 3 3., 1 14.8 0.3 1.8
例 11 例 3 3 5 3 2.8 16.0 0.3 ].7
12 A 3 5 3 3, 2 H.5 0.5 2.1
13 5 3 5 3 3' 0 14.2 0.3 1.8
1丄 4 5 3 5 ύ ϋ ·■¾ 14.0 0.4 η
15 7 3 0 3 3.2 14.8 0.3 ].7
16 S 3 5 3 2.9 】5.8 0.2 0.7
15 1 1 9 1 4.1 9.1 1.3 3.6
比 16 比 2 2 3 1.5 3.8 11.0 0.6 2.8
例 17 例 3 3 5 2.5 1. 16.0 0.05 0.5 ίΙ傷大
18 4 3 5 2. δ 1.2 16.9 0.1 0.5 孭 16大
1 5 2 2.5 2 2.1 】0.8 0.1 0.7
20 Ό 1- 5 1.5 1.2 9.0 0.1 0.7 ¾ ffi大
2 I 7 1 2 1 4.0 9- 5 1.3 3.5
22 8 2 3 1.5 3.6 11.4 0.8 2.5
a 9 3 η
2. D 1.6 16.2 0.05 0.7 損 IS大 tf r
L 4 】0 3 3 2.5 1. 1 16.3 0.2 0.5 揖谌大
25 11 】 1.5 1 2.2 】 D.8 1.1 1.8 損傷大
26 12 1 2 1 1.3 17.8 0.】5 0.3 損傷大
27 13 1 2 1 0.8 15.6 0.05 0.2 損傜大
28 J4 1.5 2 1.5 2.2 S.3 1.1 ¾谌大

Claims

請 求 の 範 囲
1. リヨセル繊維マルチフィラメント糸であって、 乾燥時の破断強度が 2. 8 〜4. 0 g/d (2. 5〜3. 6 g/d t e x) 、 破断伸度が 1 3〜2 0%であ り、 かつ該糸の強伸度曲線が、 伸度 5%において 0. 2〜1. 0 g/d (0. 1 8〜0. 9 0 gZd t e X) の強度の領域を、 伸度 1 0 %において 0. 4〜2. 5 g/d (0. 36〜2. 3 gZd t e X) の強度の領域を通るセルロースマル チフイラメント糸。
2. 請求項 1記載のセルロースマルチフィラメント糸からなる布帛。
3. 乾燥時の破断強度が 3. 0〜5. 0 g/d (2. 7〜4. 5
g/d t e x) 、 破断伸度が 5〜1 0%であるリヨセル繊維マルチフィラメント 糸を、 5 0〜 1 5 0 1の濃度の該繊維の膨潤剤又は溶剤中に低張力下で浸漬 することからなるセルロースマルチフィラメント糸の製造方法。
4. 乾燥時の破断強度が 3. 0〜5. 0 g/d (2. 7〜4. 5
g/d t e x) 、 破断伸度が 5〜1 0 %であるリヨセル繊維マルチフィラメント 糸からなる布帛を、 5 0〜1 5 0 gZlの濃度の該繊維の膨潤剤又は溶剤中に拡 布状でかつ低張力下で浸漬することからなるセルロースマルチフィラメント糸か らなる布帛の製造方法。
5. 膨潤剤が、 水酸化ナトリウム、 水酸化力リウム、 炭酸ナトリウム、 炭酸力 リウム及びゲイ酸ナトリウムからなる群より選ばれる請求項 3記載のセルロース マルチフィラメント糸の製造方法。
6. 膨潤剤が、 水酸化ナトリウム、 水酸化力リウム、 炭酸ナトリウム、 炭酸力 リウム及びゲイ酸ナトリウムからなる群より選ばれる請求項 4記載の布帛の製造 方法。
7. 請求項 3の方法により製造され得るセルロースマルチフィラメント糸。
8. 請求項 4の方法により製造され得る布帛。
PCT/JP1996/002383 1995-08-29 1996-08-27 Fils de cellulose a filaments multiples et tissus en etant faits WO1997008370A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1019980701197A KR100252686B1 (ko) 1995-08-29 1996-08-27 셀룰로오스 다층 필라멘트사 및 이로부터 제조된 포백
US09/029,663 US6013367A (en) 1995-08-29 1996-08-27 Cellulose multifilament yarn and woven fabrics produced therefrom
JP51011597A JP3205962B2 (ja) 1995-08-29 1996-08-27 セルロースマルチフィラメント糸及びそれからなる布帛
AT96927904T ATE214437T1 (de) 1995-08-29 1996-08-27 Multifilamentgarne aus zellulose und daraus hergestellte webwaren
AU67551/96A AU703116B2 (en) 1995-08-29 1996-08-27 Cellulose multifilament yarn and fabric made thereof
DE69619839T DE69619839D1 (de) 1995-08-29 1996-08-27 Multifilamentgarne aus zellulose und daraus hergestellte webwaren
EP96927904A EP0854215B1 (en) 1995-08-29 1996-08-27 Cellulose multifilament yarns and woven fabrics produced therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22049995 1995-08-29
JP7/220499 1995-08-29

Publications (1)

Publication Number Publication Date
WO1997008370A1 true WO1997008370A1 (fr) 1997-03-06

Family

ID=16752007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002383 WO1997008370A1 (fr) 1995-08-29 1996-08-27 Fils de cellulose a filaments multiples et tissus en etant faits

Country Status (10)

Country Link
US (1) US6013367A (ja)
EP (1) EP0854215B1 (ja)
JP (1) JP3205962B2 (ja)
KR (1) KR100252686B1 (ja)
CN (1) CN1195380A (ja)
AT (1) ATE214437T1 (ja)
AU (1) AU703116B2 (ja)
DE (1) DE69619839D1 (ja)
TW (1) TW389799B (ja)
WO (1) WO1997008370A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058103A1 (de) * 1997-06-17 1998-12-23 Lenzing Aktiengesellschaft Verfahren zur herstellung cellulosischer fasern
WO1998058102A1 (de) * 1997-06-17 1998-12-23 Lenzing Aktiengesellschaft Cellulosische mikrofaser
US6652598B1 (en) 1998-01-08 2003-11-25 Asahi Kasei Kabushiki Kaisha Process for the treatment of weft knitted fabrics
JP2020536186A (ja) * 2017-10-06 2020-12-10 レンチング アクチエンゲゼルシャフト 難燃性リヨセルフィラメント

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1001692C2 (nl) * 1995-11-20 1997-05-21 Akzo Nobel Nv Werkwijze voor de bereiding van geregenereerde cellulose filamenten.
GB9707694D0 (en) * 1997-04-16 1997-06-04 Courtaulds Fibres Holdings Ltd Sewing thread,articles sewn therewith,and dyeing of such articles
KR100385400B1 (ko) * 2001-04-11 2003-05-23 주식회사 효성 승용차용 래디얼 타이어
GB0211916D0 (en) * 2002-05-23 2002-07-03 Tencel Ltd Process for making a garment having recoverable stretch properties
CA2438445C (en) * 2002-12-26 2006-11-28 Hyosung Corporation Lyocell multi-filament for tire cord and method of producing the same
US7696110B2 (en) * 2003-10-14 2010-04-13 Asahi Kasei Fibers Corporation Sheet material for seat
CN100372978C (zh) * 2004-05-11 2008-03-05 上海第十七棉纺织总厂 天丝-绢丝复合丝及其制备方法
KR100863238B1 (ko) 2004-07-02 2008-10-15 주식회사 코오롱 타이어 코드의 제조방법 및 이로부터 제조되는 타이어 코드
FR2920995B1 (fr) * 2007-09-13 2010-02-26 Sperian Fall Prot France Element textile a absorption d'energie
KR101074678B1 (ko) * 2011-03-03 2011-10-18 배상모 휴대단말기에 구비된 카메라를 이용한 물체의 실제 크기 측정 방법
EP3467163A1 (en) * 2017-10-06 2019-04-10 Lenzing Aktiengesellschaft Lyocell filament lining fabric
EP3467172A1 (en) 2017-10-06 2019-04-10 Lenzing Aktiengesellschaft Silk-like woven garment containing or consisting of lyocell filaments
EP3963125B1 (en) * 2019-04-30 2024-10-16 Aditya Birla Science and Technology Company Pvt. Ltd. A process and apparatus for manufacturing lyocell filament yarn
US11377758B2 (en) 2020-11-23 2022-07-05 Stephen C. Baer Cleaving thin wafers from crystals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308219A (ja) * 1991-01-09 1992-10-30 Lenzing Ag セルロース物品の製造方法
JPH07189019A (ja) * 1993-12-22 1995-07-25 Kohjin Co Ltd 再生セルロース成形品の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246221A (en) * 1979-03-02 1981-01-20 Akzona Incorporated Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent
US4416696A (en) * 1982-09-16 1983-11-22 Allis-Chalmers Corporation Method for heat treating cement clinker raw materials
JPS6028848A (ja) * 1983-07-26 1985-02-14 Soichi Yamaguchi ナトム工法における粉じん防止用噴霧装置
JPH06306733A (ja) * 1993-04-22 1994-11-01 Asahi Kasei Textiles Ltd 特殊編織物
JPH07157968A (ja) * 1993-12-02 1995-06-20 Asahi Kasei Textiles Ltd セルロース系繊維特殊布帛の製法
GB9404510D0 (en) * 1994-03-09 1994-04-20 Courtaulds Fibres Holdings Ltd Fibre treatment
GB9407496D0 (en) * 1994-04-15 1994-06-08 Courtaulds Fibres Holdings Ltd Fibre treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308219A (ja) * 1991-01-09 1992-10-30 Lenzing Ag セルロース物品の製造方法
JPH07189019A (ja) * 1993-12-22 1995-07-25 Kohjin Co Ltd 再生セルロース成形品の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058103A1 (de) * 1997-06-17 1998-12-23 Lenzing Aktiengesellschaft Verfahren zur herstellung cellulosischer fasern
WO1998058102A1 (de) * 1997-06-17 1998-12-23 Lenzing Aktiengesellschaft Cellulosische mikrofaser
US6652598B1 (en) 1998-01-08 2003-11-25 Asahi Kasei Kabushiki Kaisha Process for the treatment of weft knitted fabrics
JP2020536186A (ja) * 2017-10-06 2020-12-10 レンチング アクチエンゲゼルシャフト 難燃性リヨセルフィラメント

Also Published As

Publication number Publication date
JP3205962B2 (ja) 2001-09-04
AU703116B2 (en) 1999-03-18
US6013367A (en) 2000-01-11
EP0854215A1 (en) 1998-07-22
EP0854215A4 (en) 1999-09-29
KR100252686B1 (ko) 2001-04-02
AU6755196A (en) 1997-03-19
ATE214437T1 (de) 2002-03-15
TW389799B (en) 2000-05-11
EP0854215B1 (en) 2002-03-13
KR19990037718A (ko) 1999-05-25
CN1195380A (zh) 1998-10-07
DE69619839D1 (de) 2002-04-18

Similar Documents

Publication Publication Date Title
WO1997008370A1 (fr) Fils de cellulose a filaments multiples et tissus en etant faits
US12188157B2 (en) Process for wet spinning of cellulose fibers from an alkaline spin bath
JPH06505060A (ja) 細長素材の製造方法
KR101135377B1 (ko) 염색 및 정련된 라이오셀 직물의 제조방법
JP3527251B2 (ja) 溶剤紡糸セルロース繊維布帛の処理方法
US20240352626A1 (en) Improvements relating to the cold-alkali process for the production of regenerated cellulosic fibers
JPH08291461A (ja) セルロース繊維及びそれからなる布帛のアルカリ処理方法
JP3304934B2 (ja) 麻糸の加工方法、およびその加工麻糸による麻編地
US4095944A (en) Treatment of textile materials
EP0888475A1 (en) Method of reducing the tendency of a lyocell fabric to primary fibrillation
JPH1088450A (ja) 伸縮性編物
JP2929363B2 (ja) セルロース系繊維製品の加工法
JP3166778B2 (ja) 再生セルロース系繊維布帛の染色方法
WO2024218257A1 (en) Ozone treatment of cellulosic man-made fibres fabrics
JP2001234464A (ja) セルロース系繊維の改質方法
JP3391613B2 (ja) クレープ織物及びその製法
JPS609981A (ja) ポリアミド繊維タフタの染色方法
JP3195075B2 (ja) シルケット加工方法
JP2003253542A (ja) 交織物およびその製造方法
JPH08291470A (ja) セルロース繊維またはそれからなる布帛のスレ防止方法
JPH07279043A (ja) セルロース系繊維含有繊維製品及びその製造方法
JPH05339887A (ja) 抜食布の製造方法
JPH09111645A (ja) セルロース繊維布帛のスレ改善方法
JPH04343756A (ja) 楊柳調皺織物の製造方法
JPH09111648A (ja) 凹凸感のある布帛の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96196674.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980701197

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09029663

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996927904

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1996927904

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1019980701197

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980701197

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996927904

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载