WO1997003922A1 - Procede pour produire du silicium tres pur - Google Patents
Procede pour produire du silicium tres pur Download PDFInfo
- Publication number
- WO1997003922A1 WO1997003922A1 PCT/JP1995/001407 JP9501407W WO9703922A1 WO 1997003922 A1 WO1997003922 A1 WO 1997003922A1 JP 9501407 W JP9501407 W JP 9501407W WO 9703922 A1 WO9703922 A1 WO 9703922A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gay
- molten
- gay element
- purity
- silicon
- Prior art date
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 36
- 239000010703 silicon Substances 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title abstract description 35
- 238000001816 cooling Methods 0.000 claims abstract description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000002893 slag Substances 0.000 claims abstract description 23
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052796 boron Inorganic materials 0.000 claims abstract description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 14
- 239000011574 phosphorus Substances 0.000 claims abstract description 14
- 239000011261 inert gas Substances 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 238000009489 vacuum treatment Methods 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 238000000926 separation method Methods 0.000 claims abstract description 5
- 239000011575 calcium Substances 0.000 claims description 45
- 229910052791 calcium Inorganic materials 0.000 claims description 45
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 44
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 238000002425 crystallisation Methods 0.000 claims description 4
- 230000008025 crystallization Effects 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- -1 steam Chemical compound 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 229910052918 calcium silicate Inorganic materials 0.000 abstract description 3
- 239000000378 calcium silicate Substances 0.000 abstract description 3
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract description 3
- 238000005345 coagulation Methods 0.000 abstract 1
- 230000015271 coagulation Effects 0.000 abstract 1
- 238000007598 dipping method Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 239000012535 impurity Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229910052742 iron Inorganic materials 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000012809 cooling fluid Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- 230000037213 diet Effects 0.000 description 4
- 235000005911 diet Nutrition 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010502 deborylation reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003238 silicate melt Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000001175 calcium sulphate Substances 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009854 hydrometallurgy Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/037—Purification
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method for producing high-purity gay element, and more particularly, to a method for inexpensively producing gay element for a solar cell.
- silicon has a high quality of metal obtained by reducing gay stone with carbon in an electric arc furnace and a metal silicate obtained by refining the metal gay by a monosilane method or a silane trichloride method.
- a monosilane method or a silane trichloride method There is pure silicon, the latter being used in semiconductors.
- Gayness used in semiconductors is a high-purity product that is also called 11 1 nine, but it is extremely expensive.
- J. Diet 1 reviewed in Silicon Processing for Photovoltaics II. Elsevier Sci. Publ. BV, 285 (1987) a review of many previous studies on the purification of gay nitrogen, and described Proc. 8th EC Photovoltaic. Solar Energy Conf .. Florence (1988), .599. It proposes one path for metallurgical processes that can be manufactured in the United States.
- the route proposed by J. Diet 1 is as follows: (1) Metallic gallium produced by carbon reduction in an electric furnace is mixed and contacted with a calcium geate bath using an electric arc furnace, and boron in the gallium is replaced with gay acid.
- Japanese Patent Application Laid-Open No. 63-45111 discloses that a hollow rotary cooling body is immersed in a molten metal gay element in an inert gas atmosphere, and a high-purity gay element is placed on the outer peripheral surface of the rotary cooling body. An efficient method for purifying metal silicon is disclosed.
- an object of the present invention is to provide a method capable of inexpensively producing a high-purity solar cell-grade silicon, and to provide an inexpensive gay element for a solar cell.
- the cooling body immersion method described in Japanese Patent Application Laid-Open No. 63-45111 can efficiently remove impurity elements having a small segregation coefficient due to directional solidification. If it can be incorporated into the steps (1) to (3) of the elemental production method, the entire process will be significantly more efficient, and a more inexpensive production of solar cell grade gay element can be expected. In other words, if the molten gayen obtained in 2 can be coagulated and refined by immersion in a cooling body instead of crushing the gay lumps and leaching with a mixed acid in (3), it would be more efficient than previously thought. A gay element purification method can be established.
- the present inventors maintained the molten gayen after boron removal at the melting point of crude gayness to the melting point of calcium gayate by the treatments 1) and 2), and solidified the calcium slag separated at the bottom.
- the hollow rotary cooling body made of graphite was immersed in molten gay silicon.
- the gay lumps that have crystallized and adhered to the surface of the cooling body are pulled up and removed, and the calcium concentration in the gay element is reduced to iron, aluminum, etc. Analysis with all concentrations showed that, like iron and aluminum, the calcium concentration was significantly reduced compared to that in molten gayness. That is, the present inventors have found that the solar cell class gay method is significantly more efficient and inexpensive than the method of J. Diet 1 and the method described in Japanese Patent Application Laid-Open No. 63-45112. Element can be manufactured. That is, the first production method of the high-purity gay element of the present invention,
- step (b) The mixture obtained in step (a) is allowed to stand still in an inert gas atmosphere, and separated into a lower calcium silicate slag layer and an upper molten silicon layer.
- step (c) In an inert gas atmosphere, the cooling body is immersed in the molten silicon obtained in step (b), and highly purified silicon is crystallized and attached to the outer surface of the cooling body. A body in which the body is pulled up from the molten gay element, and the crystallized high-purity gay element mass is removed from the cooling body;
- step (d) After the high-purity gay obtained in the step (c) is melted again, a vacuum treatment is performed on the molten gay to remove the phosphorus in the high-purity gay by evaporation.
- the cooling body when performing the step (c), the cooling body may be immersed in the molten gay element layer on the calcium gayate slag layer, or the molten gay element layer may be transferred to another tank. The cooling body may be immersed in this.
- step (b) The mixture obtained in step (a) is allowed to stand still in an inert gas atmosphere, and separated into a lower calcium silicate slag layer and an upper molten silicon layer.
- step (c) a step of transferring the molten gay element obtained in the step (b) to a vacuum processing tank, and subjecting the molten gay element to a vacuum treatment to evaporate and remove the phosphorus in the molten gay element;
- the cooling body In an atmosphere of an inert gas, the cooling body is immersed in the molten silicon obtained in the step (c), and highly purified silicon is crystallized and attached to the outer surface of the cooling body.
- the cooling element is pulled out of the molten gay element, and the crystallized high-purity gay element mass is removed from the cooling element.
- the melting point of pure gay element is 140. C, and the melting point of pure calcium gamate is 154 ° C.
- a hollow body made of a material that does not react with molten gay element and has good thermal conductivity is preferable. That is, it is a hollow body made of ceramics such as gay silicon nitride or graphite.
- the cooling fluid By sending the cooling fluid into the hollow body, it is possible to crystallize gayon on the outer peripheral surface of the cooling body.
- the peripheral speed at which the cooling body is rotated is preferably at least 500 cm / min, more preferably at least 100 cni / inin, and the cooling body was rotated at such a peripheral speed.
- the crystal grains of GaAs adhering to the outer peripheral surface of the cooling body grow and coarsen, so that the amount of the impurity element concentrated at the grain boundary decreases and the impurity element concentration in the grain decreases.
- the principle of gay metal refining in hydrometallurgy is to elute and remove impurity elements concentrated at the grain boundaries of the ⁇ -shaped solidified lumps using an acid solution. Since it is larger than the method of the present invention, the final impurity removal rate is considered to be inferior to the method of the present invention.
- the high-purity gay element crystallized on the outer peripheral surface of the cooling body is removed by mechanically removing or re-melting.
- the derining process of the present invention is a well-known derining process, and at least one gas selected from oxygen, water vapor, carbon monoxide, and carbon dioxide gas is used instead of vacuum processing of molten ge- lin.
- the reaction may remove the phosphorus.
- the method for producing high-purity gay element of the present invention it is extremely efficient in a shorter time, and moreover, has a higher purity than the hydrometallurgical purification method which has been considered the best method in the past. Can be manufactured.
- the method of the present invention is useful as an inexpensive method for producing a solar cell grade gay element.
- FIG. 1 is a flow sheet showing an outline of the method of the present invention.
- FIG. 2 is a longitudinal sectional view showing the structure of the cooling body.
- FIG. 3 is a flow sheet showing an outline of the method of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
- FIG. 1 is a flowchart showing the outline of the first method of the present invention.
- the aluminum content and the boron content in the molten gay liquid layer were 40 ppm and 1 PPm, respectively.
- the aluminum content and the boron content decreased respectively, and the calcium content decreased from 150 ppm to 420 ppm. Although increased, the content of other metallic impurity elements remained almost unchanged.
- a cylindrical hollow cylindrical cooling body made of graphite (2) is immersed in the slag layer above the slag layer and rotated at a peripheral speed of 200 cffi / min for 10 minutes. Then, the crystal was deposited on the outer surface of the cooling body by crystallization (step (C)).
- the hollow rotary cooling body (2) used here has a tapered portion immersed in the molten gay element.
- a cooling fluid supply pipe (3) is disposed in the hollow rotary cooling body (2), and the cooling fluid (2) is immersed in the cooling fluid supply pipe (3) at a level higher than the molten silicon liquid level when immersed.
- a number of cooling fluid outlets (4) are formed in the peripheral wall of the lower part.
- This gay element mass was remelted and vacuum-treated to obtain high-purity gay element (step (d)).
- the phosphorus content of this high-purity gay element was less than 1 ppm.
- the peripheral speed of rotation of the hollow rotary cooling body (2) was set to O cm / min (Example 2), 300 cm / min (Example 3), 100 cm / min (Example 4), 30 cm / min.
- a high-purity gay element was obtained in the same manner as in Example 1 except that the value was set to 0 cm / min (Example 5).
- Table 1 shows the impurity content of the obtained high-purity gay element.
- Example 5 3000 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 99.9999 raw crude metal Gay element 600 4500 185 18 45 150 equilibrium segregation coefficient 2 x 10- 3 8 10 "6 4 1 O" 4 0 . 8 0. 35 500
- FIG. 3 is a flow sheet schematically showing the second method of the present invention.
- the manganese melt was transferred to a vacuum processing tank (5) and subjected to a vacuum processing for 10 hours (step (c)).
- the boron content in the gay metal was less than 1 ppm
- the phosphorus content was 2 ppm
- the aluminum content was reduced to 30 ppm
- the calcium content was increased to 500 ppm, but other metals
- the impurity content remained almost unchanged.
- the vacuum treatment tank (5) was placed under an inert gas atmosphere, and the same hollow rotary cooling body (2) used in Example 1 was immersed in the silicon melt layer, and the peripheral speed was 500,000. Rotation was performed at cmXmin for 10 minutes to crystallize and attach gay silicon to the outer surface of the cooled body (step (d)).
- Example? ⁇ Ten The peripheral speed of the rotation of the hollow rotary cooling body (2) was set to 0 cmZmin (Example 7), 300 cm / min (Example 8), 1500 cmain (Example 9), 300 cm.
- a high-purity gay element was obtained in the same manner as in Example 6, except that / min (Example 10) was used.
- Table 2 shows the impurity content of the obtained high-purity gay silicon.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
L'invention concerne un procédé pour produire un silicium très pur convenant à la réalisation de piles solaires à un faible coût. Ce procédé consiste à: (a) mélanger à l'état fondu une préparation de silicium brut avec du silicate de calcium à une température d'au moins 1544 °C, pour provoquer la migration du bore présent dans le silicium, vers les scories, (b) laisser le mélange liquide obtenu à l'étape (a) reposer sous une atmosphère de gaz inerte, afin de provoquer la séparation du mélange en une couche inférieure de scories et une couche supérieure de silicium fondu, et ensuite ajuster la température à 1410 - 1544 °C, afin de provoquer la coagulation des scories, tout en laissant le silicium à l'état fondu, (c) immerger un corps refroidisseur (2) dans le silicium fondu pour provoquer le dépôt de silicium très pur sur sa surface, retirer le corps refroidisseur (2) du silicium fondu et détacher la masse de silicium très pur S déposée du corps (2), (d) refondre le silicium très pur obtenu à l'étape (c) et soumettre le silicium fondu à un traitement sous vide pour évaporer le phosphore présent.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6000679A JPH07206420A (ja) | 1994-01-10 | 1994-01-10 | 高純度ケイ素の製造方法 |
PCT/JP1995/001407 WO1997003922A1 (fr) | 1994-01-10 | 1995-07-14 | Procede pour produire du silicium tres pur |
BR9510622A BR9510622A (pt) | 1995-07-14 | 1995-07-14 | Processo para a produção de silício de alta pureza |
NO980139A NO980139L (no) | 1995-07-14 | 1998-01-13 | Fremgangsmåte for fremstilling av silisium med höy renhet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6000679A JPH07206420A (ja) | 1994-01-10 | 1994-01-10 | 高純度ケイ素の製造方法 |
PCT/JP1995/001407 WO1997003922A1 (fr) | 1994-01-10 | 1995-07-14 | Procede pour produire du silicium tres pur |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997003922A1 true WO1997003922A1 (fr) | 1997-02-06 |
Family
ID=26333699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/001407 WO1997003922A1 (fr) | 1994-01-10 | 1995-07-14 | Procede pour produire du silicium tres pur |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1997003922A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003097528A1 (fr) * | 2002-05-22 | 2003-11-27 | Elkem Asa | Scorie a base de silicate de calcium destinee au traitement de silicium fondu |
KR100512845B1 (ko) * | 2002-11-21 | 2005-09-07 | 울산화학주식회사 | 디플르오로메탄의 제조 방법 |
WO2006006436A1 (fr) * | 2004-07-14 | 2006-01-19 | Sharp Kabushiki Kaisha | Procédé pour la purification d'un métal |
US7455822B2 (en) | 2002-07-23 | 2008-11-25 | Nippon Steel Corporation | Method for production of silicon |
US7727502B2 (en) | 2007-09-13 | 2010-06-01 | Silicum Becancour Inc. | Process for the production of medium and high purity silicon from metallurgical grade silicon |
GB2477782A (en) * | 2010-02-12 | 2011-08-17 | Metallkraft As | Method of refining silicon to form solar grade material |
RU2588627C1 (ru) * | 2015-03-30 | 2016-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | Способ рафинирования металлургического кремния |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62502319A (ja) * | 1985-03-13 | 1987-09-10 | エス・ア−ル・アイ・インタ−ナシヨナル | 固体材料の精製方法 |
JPS6345112A (ja) * | 1986-08-07 | 1988-02-26 | Showa Alum Corp | ケイ素の精製方法 |
-
1995
- 1995-07-14 WO PCT/JP1995/001407 patent/WO1997003922A1/fr active Search and Examination
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62502319A (ja) * | 1985-03-13 | 1987-09-10 | エス・ア−ル・アイ・インタ−ナシヨナル | 固体材料の精製方法 |
JPS6345112A (ja) * | 1986-08-07 | 1988-02-26 | Showa Alum Corp | ケイ素の精製方法 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7918916B2 (en) | 2002-05-22 | 2011-04-05 | Elkem Asa | Calcium-silicate based slag for treatment of molten steel |
CN1307094C (zh) * | 2002-05-22 | 2007-03-28 | 埃尔凯姆公司 | 用于熔融硅处理的以硅酸钙为基的熔渣 |
US7854784B2 (en) | 2002-05-22 | 2010-12-21 | Elkem Asa | Calcium-silicate based slag for treatment of molten silicon |
US7879130B2 (en) | 2002-05-22 | 2011-02-01 | Elkem Asa | Calcium-silicate based slag for treatment of molten silicon |
WO2003097528A1 (fr) * | 2002-05-22 | 2003-11-27 | Elkem Asa | Scorie a base de silicate de calcium destinee au traitement de silicium fondu |
US7455822B2 (en) | 2002-07-23 | 2008-11-25 | Nippon Steel Corporation | Method for production of silicon |
KR100512845B1 (ko) * | 2002-11-21 | 2005-09-07 | 울산화학주식회사 | 디플르오로메탄의 제조 방법 |
WO2006006436A1 (fr) * | 2004-07-14 | 2006-01-19 | Sharp Kabushiki Kaisha | Procédé pour la purification d'un métal |
US7811356B2 (en) | 2004-07-14 | 2010-10-12 | Sharp Kabushiki Kaisha | Method of purifying metal |
US7727502B2 (en) | 2007-09-13 | 2010-06-01 | Silicum Becancour Inc. | Process for the production of medium and high purity silicon from metallurgical grade silicon |
GB2477782A (en) * | 2010-02-12 | 2011-08-17 | Metallkraft As | Method of refining silicon to form solar grade material |
GB2477782B (en) * | 2010-02-12 | 2012-08-29 | Metallkraft As | A method for refining silicon |
RU2588627C1 (ru) * | 2015-03-30 | 2016-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | Способ рафинирования металлургического кремния |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3325900B2 (ja) | 多結晶シリコンの製造方法及び装置、並びに太陽電池用シリコン基板の製造方法 | |
US7682585B2 (en) | Silicon refining process | |
EP2467330B1 (fr) | Procédé de purification de silicium utilisant un traitement en cascade | |
CN101585536B (zh) | 一种提纯太阳能级多晶硅的装置与方法 | |
CN101868422B (zh) | 用于从冶金级硅制备中等和高纯度硅的方法 | |
CN101218176A (zh) | 硅的再利用方法及利用该方法制造的硅和硅锭 | |
CN1873062A (zh) | 一种太阳能电池用高纯多晶硅的制备方法和装置 | |
WO1998016466A1 (fr) | Procede et appareil de preparation de silicium polycristallin et procede de preparation d'un substrat en silicium pour cellule solaire | |
CN102464319A (zh) | 硅的冶金化学提纯方法 | |
US7811356B2 (en) | Method of purifying metal | |
JPH07206420A (ja) | 高純度ケイ素の製造方法 | |
He et al. | A review of the process on the purification of metallurgical grade silicon by solvent refining | |
CA1130985A (fr) | Methode d'epuration du silicone | |
CN102464320A (zh) | 硅的冶金化学精制方法 | |
CN101712474B (zh) | 采用析释提纯技术的太阳能级高纯硅的制备方法 | |
WO1997003922A1 (fr) | Procede pour produire du silicium tres pur | |
CN1083396C (zh) | 高纯度硅的制造方法 | |
CN101870472B (zh) | 一种采用稀土氧化物去除工业硅中硼磷杂质的方法 | |
CN1299983C (zh) | 光电级硅的制造方法 | |
WO2011113338A1 (fr) | Procédé de purification du silicium | |
US20110120365A1 (en) | Process for removal of contaminants from a melt of non-ferrous metals and apparatus for growing high purity silicon crystals | |
JP2000327488A (ja) | 太陽電池用シリコン基板の製造方法 | |
CN101928983A (zh) | 触媒法生产多晶硅和多晶硅薄膜的方法 | |
JP2000351616A5 (fr) | ||
JP2000351616A (ja) | 高純度シリコンの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 95197920.5 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CN NO US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |