WO1997002456A1 - Cross flow fan and outdoor unit for an air-conditioner - Google Patents
Cross flow fan and outdoor unit for an air-conditioner Download PDFInfo
- Publication number
- WO1997002456A1 WO1997002456A1 PCT/JP1996/001813 JP9601813W WO9702456A1 WO 1997002456 A1 WO1997002456 A1 WO 1997002456A1 JP 9601813 W JP9601813 W JP 9601813W WO 9702456 A1 WO9702456 A1 WO 9702456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fan
- wings
- cross
- flow fan
- outdoor unit
- Prior art date
Links
- 238000007664 blowing Methods 0.000 claims description 43
- 235000012830 plain croissants Nutrition 0.000 claims 3
- 239000011295 pitch Substances 0.000 abstract description 26
- 230000001788 irregular Effects 0.000 abstract description 2
- 238000004088 simulation Methods 0.000 description 17
- 238000005192 partition Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 7
- 239000003507 refrigerant Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 4
- 230000001143 conditioned effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 101000728490 Homo sapiens Tether containing UBX domain for GLUT4 Proteins 0.000 description 1
- 102100029773 Tether containing UBX domain for GLUT4 Human genes 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/281—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
- F04D29/282—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
- F04D29/283—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0035—Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/02—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
- F04D17/04—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0018—Indoor units, e.g. fan coil units characterised by fans
- F24F1/0025—Cross-flow or tangential fans
Definitions
- the present invention relates to a cross-flow fan and an outdoor unit of an air conditioner provided with the cross-flow fan, and particularly to a blade shape of a cross-floor fan and a countermeasure against a wind direction of blown air of the outdoor unit.
- a cross flow fan is configured such that a plurality of partition plates are arranged in parallel with a predetermined interval in a direction of a rotation axis, and a plurality of blades are arranged in a circumferential direction between each partition plate.
- One fan body is formed between the partition plate and the partition plate, and a so-called series is formed.
- one main body is formed by 10 series.
- NZ sound the rotation noise generated at the frequency of the product of the number of rotations (N) and the number of blades (Z) due to the flow through vortex or interference with the tongue during rotation
- the pitch of the wings is made random to make the pitch unequal.
- the phases of the blades of each fan body are shifted to provide a so-called skew.
- the blades of each fan body are inclined, and as disclosed in Japanese Unexamined Patent Application Publication No. Hei.
- Some fan bodies have wings formed in different shapes. —Solutions—
- the NZ sound is reduced by dispersing the interference sound so that it does not concentrate on a specific frequency, but the conventional reduction method disperses the interference sound. Therefore, the energy of the NZ sound has not been sufficiently reduced, and as a result, there has been a problem that the reducing power of the NZ sound is insufficient.
- an outdoor unit of an air conditioner has been housed in a casing with a compressor and the like, and the air conditioner has been used. In the air passage in a single unit, a heat exchanger and a fan are housed and there is a vertical type.
- a cross flow fan (a) As the fan in the outdoor unit, a cross flow fan (a) is used as shown in FIG.
- the conventional cross-flow fan (d) has various powers as described above.
- a straight blade is used.
- the cross flow fan (d) is a fan body (f, f,%) In which a plurality of vertically extending wings (e, e,...) Are arranged in the circumferential direction.
- Each blade (e, e, ⁇ ) is formed as a straight blade parallel to the axis of rotation.
- the cross flow fan (d) is installed vertically in the vertical direction, and is arranged parallel to the outlet (h) of the casing (g). Since the airflow direction AF from the cross flow fan (d) is immediately before the air outlet (h), a grill (i) is provided at the air outlet (h) to provide air Blowing direction
- the AF force is set diagonally upward. In other words, the air blowing direction AF is set diagonally upward to prevent a short circuit where the blown air goes around the suction port, prevent direct contact with the blown air force, and furthermore, the wall close to the blowout port (h).
- the present invention has been made in view of such a point, and an object of the present invention is to reduce NZ noise by reducing the energy of interference sound in a cross flow fan and to reduce noise. Another object of the present invention is to reduce the pressure loss caused by the grill of the outdoor unit, to reduce noise, and to achieve a sufficient upward flow.
- the NZ sound is reduced by twisting the wings so that various types of interference sounds cancel each other.
- the cross flow fan is formed by twisted blades so that the direction of air blowing from the cross flow fan itself is obliquely upward.
- the means taken by the invention described in claim 1 is as follows. First, a fan body (30, 30, 30,%) In which a plurality of blades (40, 40,%) Extending in the direction of the rotational axis are arranged in the circumferential direction. 7) Is assumed to be a cross-flow fan in which a plurality of are arranged in the direction of the rotation axis.
- the wings (40, 40,%) are formed into a twisted shape that is twisted about the rotation axis 0 as going from one side end face to the other side end face of the wings (40, 40,). Have been.
- the means of the invention described in claim 2 is the invention according to claim 1, wherein the wings (40, 40,...) Each have an airfoil (4 S) having a transverse cross section orthogonal to the rotation axis 0. It is formed in a torsional shape that is twisted so as to have the same shape with respect to the rotation axis 0 even at the cross-sectional position of FIG.
- the means implemented by the invention described in claim 3 is that the wings (40, 40,...) Of each fan body (30, 30,.
- the means according to the fourth aspect of the present invention is arranged on the blades of the adjacent fan bodies (30, 30).
- the means taken by the invention according to claim 5 is that the wings (40, 40,%) Of the adjacent fan bodies (30, 30) are provided.
- the means of the invention according to claim 6 is a fan body (40, 40, %) in which the torsional directions of the wings (40, 40, ...) are formed in the same direction.
- the means taken by the invention according to claim 7 are two kinds of wings (40, 40,%) in which the torsional directions are formed in opposite directions. It is composed of fan bodies (30, 30,).
- the means of the invention described in claim 8 is that the wings (40, 40,%) Of each fan body (30, 30,%)
- the twisted shape is formed to have a twist angle of 60 ° or more in a state of being extended from one side end to the other side end of the fan.
- the wings (40, 40,%) of the body (30, 30,%) were formed in a twisted shape with a twist angle of 360 °, extending from one end of the body to the other end. Things.
- the means of the invention described in claim 10 is that the wings (40, 40,%) of each fan body (30, 30,%) It is formed in a torsion shape in which the torsion angle extends from 120 ° to 360 ° while extending from one side end to the other side end.
- the means is that the wings (40, 40,%) of each fan body (30, 30,%) extend from one end to the other end of the entire length of the body and have a twist angle of 150 ° or more.
- the means formed by the invention according to claim 12 is a wing (40, 40,%) Of each fan body (30, 30,).
- the means taken by the invention according to claim 13 is the invention according to claim 1 or 2, wherein the pitch of the blades (40, 40,%) of each fan body (30, 30,%) Those arranged in It is.
- means taken by the invention described in claim 14 is that the wings (40, 40,%) Of each fan body (30, 30,%)
- the torsion angle is formed in a torsion shape corresponding to one pitch of the wing (40, 40,%) In a state where the torsion angle is extended from one side end to the other side end of the entire length of the main body.
- the means of the invention described in 5 is that the wings (40, 40,%) Of each fan body (30, 30,%) Are located at one end of the fan body (30, 30,).
- the twist angle from the tip to the other end is formed in a twist shape corresponding to one pitch of the wing (40, 40,).
- the invention according to claim 16 is characterized in that, first, a suction port (71) and an air outlet (72) of outdoor air, a casing (70) formed with a force, and a suction port inside the casing (70). mouth
- the cross mouth fan (20) includes a plurality of blades extending in the rotation axis direction.
- .. Are arranged in the circumferential direction, and a plurality of fan bodies (30, 30,%) Are arranged in the rotation axis direction. Furthermore, the wings (40, 40,%) Of each of the above-mentioned fan bodies (30, 30,%) Blow air just before the rotation axis 0 of the cross flow fan (20). The wings (40, 40, %) are formed in a twisted shape that is twisted about the rotation axis 0 from one side end face to the other side end face so that the outgoing direction is inclined obliquely upward. .
- the blades (40, 40,%) Of the cross flow fan (20) are arranged so that the rotation axis is 0.
- An airfoil with an orthogonal cross section (4S) is formed in a twisted shape so that it has the same shape with respect to the rotation axis ⁇ at any cross-sectional position.
- the means taken by the invention described in claim 18 is that the fan body (30, 30, %) of each fan body (30, 30, %) of the cross flow fan (20) is provided.
- 40,...) Are arranged at unequal pitch
- the means taken by the invention of claim 19 is that each of the fan bodies (30, 30,...
- the blades (40, 40,%) Of the adjacent fan bodies (30, 30) are formed so as to be continuous, and the means adopted by the invention according to claim 20 is a cross flow fan (20). ) Are formed so that the wings (40, 40,...) of the adjacent fan bodies (30, 30) are in a discontinuous state.
- the means adopted by the invention described in 1 is that the fan bodies (30, 30, ...) of the cross-floor fan (20) have the same twist direction of the wings (40, 40, ). And it is formed in the direction.
- the means taken by the invention described in claim 22 is that the blade (40) in each fan body (30, 30, ...) of the cross flow fan (20) is provided.
- the cross flow fan (20) is as follows: the wings (40, 40,%) of each fan body (30, 30,%) of the cross flow fan (20) are extended from one end to the other end of the overall length of the main body.
- the twisted angle is set to be 180 °, and the means of the invention according to claim 24 is characterized in that each of the fan bodies (30, 30,%) Of the cross flow fan (20) is provided.
- the wings (40, 40,%) at) have a twisted shape with a twist angle of 360 ° when extended from one end of the main body to the other end. It was formed.
- the means invented in claim 25 is characterized in that the wing (40) in each fan body (30, 30, ...) of the cross flow fan (20) is provided. , 40,...) are formed in a torsion shape that extends from one end to the other end of the overall length of the body and has a twist angle of 120 ° or more and 360 ° or less.
- the invention according to claim 26 The measures taken by the team were that the wings (40, 40,%) of each fan body (30, 30,%) of the cross flow fan (20) were extended from one end to the other end of the overall length of the body. 28.
- the wings (40, 40,%) of the body (30, 30,%) extend from one end to the other end of the total length of the body, and have a twist angle of 60 ° or more and 150 ° or less. It is formed in a twisted shape.
- the measures taken by the invention according to claim 28 are the invention according to claim 16 or 17, wherein the blade (40, 40) of each fan body (30, 30, ...) of the cross flow fan (20) is provided. , 40, ...) are arranged at equal pitch.
- the means adopted by the invention according to claim 29 is that the blades (40, 40,%) Of each fan body (30, 30,%) Of the cross flow fan (20) are provided.
- Means taken by the invention described in paragraph 0 is that the wings (40, 40,%) of each fan body (30, 30,%) of the cross flow fan (20) are one of the fan bodies (30, 30,).
- the twist angle from the side end to the other end is formed in a twist shape corresponding to one pitch of the blade (40, 40,).
- the means of the present invention as claimed in claim 31 is the invention according to claim 16 or 17, wherein the upper wall (77) and the lower wall (77) of the outlet (72) in the casing (70) are provided. 77) is formed in a shape along the air blowing direction obliquely above.
- each fan body (30, 30, ⁇ ⁇ ⁇ ) as a unit, the force that causes air to flow through each fan body (30, 30, ⁇ ' ⁇ ).
- the wings (40, 40 , ⁇ ⁇ ⁇ ⁇ ⁇ NZ sound power is generated at the same time.
- the wing (40, 40, ⁇ ) force is formed in a twisted shape, the interference noises cancel each other out, the NZ sound is reduced, and the sound pressure level of the noise is reduced.
- the outer wings (40, 40,...) are arc-shaped at the outer edge (41) and the inner edge (42), and are therefore smaller than the conventional linear wings (b, b,).
- the outer diameters of the fan bodies (30, 30,%) Become equal without a drum-like shape over both ends.
- the peripheral speed at the center of the fan body (30, 30,%) Is higher than in the past, and the performance is improved.
- the cross flow fan (20) when the cross flow fan (20) is driven to rotate, the outdoor air is sucked into the casing (70) from the suction port (71) and is cooled by the heat exchanger (61). After the heat exchange with the air, it flows through the air passage (7A), and then the outdoor air is blown out of the casing (70) from the outlet (72) through the cross-floor fan (20). .
- the blowing direction of the cross flow fan (20) is obliquely upward.
- the wings (40, 40,...) Of the cross flow fan (20) are twisted about the rotation axis 0, the air blown from the cross flow fan (20) itself is rotated by the rotation axis. It blows out obliquely upward with respect to zero. Therefore, the cross flow fan (20) is installed vertically upright in parallel with the outlet (72). 9
- the upper wall (77) and the lower wall (77) of the outlet (72) in the casing (70) are formed in a shape along the obliquely upward air blowing direction. Therefore, the blown air deflected by the cross flow fan (20) flows smoothly without colliding with the upper wall (77).
- the phase of the interference sound SW is shifted at each wing (40, 40,.
- the interference sounds SW cancel each other, and the NZ sound can be reduced, and the sound pressure level of the noise can be reduced.
- the blades (40, 40,%) Of each fan body (30, 30,%) Rotate at any cross-sectional position of the airfoil (4S) force. Since it is formed to have the same shape with respect to the axis 0, the inflow angle and outflow angle of air can be the same at any cross-sectional position, so that the optimum inflow angle and outflow angle can be maintained, and the performance can be maintained. Can reliably be prevented from decreasing.
- the chord Since the length can be increased, the air volume per rotation can be increased, and the performance can be improved.
- the outer wing (41) and inner rim (42) of the above wings (40, 40,...) Have an arc shape. Therefore, the outer diameter of the fan body (30, 30, ") can be made equal on both sides. As a result, the peripheral speed of the central part of the fan body (30, 30,. Speed, and the performance can be improved.
- the wings (40, 40,%) By setting the deflection angle to 0, the sound pressure level of the noise due to the simulation can be reduced over almost the entire range.
- the torsion angle 0 of the wings (40, 40,...) In a range of 120 ° to 360 °, the broadband noise and the simulation can be reduced.
- the sound pressure level superimposed on the NZ sound becomes almost flat, and the sound pressure level of noise can be further reduced.
- the torsion angle 0 of the wings (40, 40,...) In a range of 150 ° to 270 °, it is possible to reduce broadband noise by simulation.
- the sound pressure level superimposed on the NZ sound becomes almost the lowest value, and the sound pressure level of the noise can be reliably reduced.
- the twist angle of the blades (40, 40,...) In the range of 60 ° to 150 °, The sound pressure level of the noise based on the simulation in which the broadband noise, the NZ sound, and the blowing sound are superimposed is almost the lowest value, and the sound pressure level of the overall noise can be reliably reduced.
- the distance between the tongue (15) and the cross flow fan (20) can be set small. As a result, it is possible to increase the air volume per the same rotation speed.
- the overall shape can be reduced in thickness, and it can be used in a stable area.
- the blades (40, 40,%) are constituted by two types of fan bodies (30, 30,%) Having different torsion directions, Swirl flow can be suppressed.
- the wings (40, 40,...) are arranged at an equal pitch, so that it is possible to improve the performance and at the same time cancel out the interference sound. NZ sound can be reduced. W 97/02456
- the cross flow fan (20) is configured so that the air blowing direction force from the cross mouth opening fan (20) is obliquely upward. Since the air blowing direction is deflected by the cross flow fan (20), the amount of deflection due to the grill can be reduced. As a result, the pressure loss of the air blown out by the grill can be reduced, so that the efficiency of the fan can be improved.
- the turbulence of the air flow on the surface of the grill can be reduced, the source of noise can be suppressed, and noise can be reduced.
- the air blowing direction can be reliably obliquely upward, while the cross-flow fan (20) is Since it can be installed straight up and down, the installation space can be reduced, the size can be reduced, and the assembly work can be simplified.
- the cross flow fan (20) is twisted. Because of the wings (40, 40, ...), the deflection angle in the air blowing direction can be increased by increasing the torsion angle, so that the grill can be omitted and the structure can be simplified. Can be planned.
- the interference sound has a sinusoidal wave with the pitch of the blades (40, 40, %) as a period.
- the phases of the interference sounds are shifted at each wing (40, 40, ...), the interference sounds cancel each other, NZ noise can be reduced, and the sound pressure level of noise can be reduced.
- the wings (40, 40,%) Of each fan body (30, 30,%) are not twisted (the twist angle is zero).
- ⁇ Has a twisted shape, so that the chord length can be increased, so that the air volume per rotation can be increased, and the performance can be improved.
- the outer wing and inner rim of the wing (40, 40, ...) have arc shapes, so the outer diameter at the center of the inclined wing (40, 40, ...) is smaller,
- the outer diameter of the fan body (30, 30,%) Can be made equal on both sides. As a result, the peripheral speed at the center of the fan body (30, 30,%) Can be increased, and performance can be improved.
- the blown air is surely made to be the upper stream.
- the sound pressure level of the simulation noise can be reduced substantially throughout this range.
- the helix angle 0 of the wings (40, 40,...) In the range of 120 ° to 360 °, the blown air can be reliably discharged.
- the sound pressure level superimposed on the broadband noise and NZ sound by simulation The noise level becomes almost flat, and the sound pressure level of noise can be further reduced.
- the blown air can be reliably discharged. Simultaneously with the upper stream, the sound pressure level obtained by superimposing the broadband noise and the NZ sound by simulation becomes almost the lowest value, and the sound pressure level of the noise can be reliably reduced.
- the blown air can be reliably raised.
- the sound pressure level of the simulation obtained by superimposing the broadband noise, the NZ sound, and the blowing sound in consideration of the swirling flow is almost the lowest, and the sound of the overall noise is assured.
- the pressure level can be reduced.
- the distance between the tongue (15) and the cross flow fan (20) can be set small. As a result, it is possible to increase the air volume per the same rotation speed.
- the overall shape can be reduced in thickness, and it can be used in a stable area.
- the upper wall (27) and the lower wall (27) of the outlet (22) in the casing (20) are formed in a shape obliquely above the air blowing direction. Therefore, the blown air deflected by the cross flow fan (20) does not collide with the upper wall (27) and flows smoothly, so that pressure loss and noise can be reduced.
- FIG. 1 is a cross-sectional view of the air conditioner.
- FIG. 2 is a front view of the cross flow fan.
- FIG. 3 is a partially omitted cross-sectional view taken along line I-I of FIG.
- FIG. 4 is a front view of the fan body.
- Figure 5 is a perspective view of the wing.
- FIG. 6 is a front view of the cross flow fan showing the torsional angles of the blades.
- FIG. 7 is a developed view of the cascade and a waveform diagram of the interference sound.
- FIG. 8 is a waveform diagram showing superposition of interference sounds.
- Fig. 9 is a characteristic diagram of the sound pressure level of noise with respect to the torsion angle of the blade.
- FIG. 10 is a front view of a cross flap one fan provided with a vertical flap.
- FIG. 11 is a schematic front view of the fan body showing the inclination of the air.
- FIG. 12 is an explanatory diagram showing the air flow between the vertical flaps.
- FIG. 13 is an explanatory diagram showing the chord length.
- FIG. 14 is a characteristic diagram of the static pressure coefficient with respect to the flow coefficient.
- FIG. 15 is a front view showing the crossed-mouth single fan according to the second embodiment.
- FIG. 16 is a partially omitted cross-sectional view showing the cross opening fan of the third embodiment.
- FIG. 17 is a perspective view of a wing showing a riblet.
- FIG. 18 is a schematic configuration diagram illustrating an outdoor unit of the air-conditioning apparatus according to Embodiment 4.
- FIG. 19 is a horizontal sectional view of the outdoor unit.
- FIG. 20 is a longitudinal sectional view showing a main part of the outdoor unit.
- FIG. 21 is a characteristic diagram of the air blowing angle with respect to the torsion angle of the blade.
- FIG. 22 is a characteristic diagram of noise with respect to the torsion angle of the blade.
- FIG. 23 is a cross-sectional view showing a part of the grill.
- FIG. 24 is a cross-sectional view showing a part of Daryl when the present invention is applied.
- FIG. 25 is a vertical cross-sectional view illustrating a main part of the outdoor unit in the fifth embodiment.
- FIG. 26 is a vertical cross-sectional view illustrating a main part of the outdoor unit in the sixth embodiment.
- FIG. 27 is a side view showing a conventional inclined wing.
- FIG. 28 is a front view of a fan main body provided with the blades of FIG.
- FIG. 29 is a longitudinal sectional view showing a main part of a conventional outdoor unit.
- the wall-mounted air conditioner (10) is housed inside a casing (11) with a substantially inverted V-shaped heat exchanger (12) and a cross-floor fan. (20) It is configured to store power.
- the casing (11) has a suction port (13) formed from the upper front surface to the upper surface, and a blowout port (14) formed at the lower front portion.
- a tongue (15) for partitioning the inside of the casing (11) into a low-pressure side and a high-pressure side is formed in the interior of the casing (11) in proximity to the cross flow fan (20). Then, when the cross-floor fan (20) is rotated, the indoor air is sucked into the casing (11) from the suction port (13), and exchanges heat with the refrigerant in the heat exchanger (12) to generate hot or cold air. The conditioned air passes through the cross flow fan (20) and is blown into the room from the outlet (14).
- the cross-floor fan (20) is configured by arranging a plurality of fan bodies (30, 30,%) Constituting a so-called ream in the direction of the rotation axis. Each of the fan bodies (30, 30,...) is composed of a plurality of blades (40, 40,%) constituting a cascade arranged in the circumferential direction between partition plates (31, 31) on both sides. I have.
- the fan bodies (30, 30,%) are connected, for example, in series to form a main body (21), and the rotating bodies are attached to partition plates (31, 31) located on both sides of the main body (21). (22) A force is applied, and although not shown, a motor force is connected to the rotating shaft (22).
- the fan body (30, 30, %) is formed in a circular cascade of 35 blades (40, 40, ...) arranged in the circumferential direction.
- the pitch P of the wings (40, 40, ...) is from 9.4 ° to 11.1. Is appropriately set in the range of.
- the wings (40, 40,%) are formed into airfoil wings having a predetermined curvature from the outer edge (41) to the inner edge (42). 41) and the inner edge (42) are formed in a predetermined circular arc shape.
- the wings (40, 40, '%) of each of the fan bodies (30, 30, ...) are, as shown in FIG.
- the airfoil is formed in a torsion shape that is twisted about the rotation axis 0 as going from one side end face to the other side end face, and has a cross section orthogonal to the rotation axis 0.
- (4S) is formed to have the same shape with respect to the rotation axis 0 at any cross-sectional position.
- the wings (40, 40,...) are twisted in a spiral around the rotation axis 0, and are equal at any cross-sectional position of the air inflow angle, outflow angle, and force. Is twisted.
- the wings (40, 40, %) of (30, 30) are formed so as to be forcefully continuous, and the torsional directions of the wings (40, 40, ...) are formed in the same direction. For example, It is formed clockwise.
- the torsion angle of the wings (40, 40,%) Is 360 ° when the torsion angle is 60 ° or more in the state where the wing extends from one end to the other end in the entire length of the main body (21).
- the wing shape is formed so as to be less than or equal to or less than or equal to 50 ° and less than or equal to 360 °.
- the wings (40, 40, %) of each fan body (30, 30, %) are connected from the left end of the main body (21) to the right end, this continuous line
- the wings (40, 40, ...) are twisted.
- Fig. 7 (a) shows a part of the cascade of the fan body (30, 30, ...) expanded, and each wing (40, 40, ...) force tongue is shown.
- a sinusoidal interference sound SW pressure wave
- Fig. 7 (b) Interference sound of sinusoidal waveform SW force ⁇ will be generated simultaneously with a predetermined shift. Therefore, as shown in FIG. 8, since the interference sound SW is superimposed, the added value becomes zero, and the NZ sound is reduced.
- Fig. 9 shows that the torsional angle (rotation angle) force of the wings (40, 40, ⁇ ) is 0 °, that is, it is 360 ° in the total length of the main body (21) from the untwisted one. It shows the sound pressure level (SPL) of noise when set as follows.
- the noise of the cross flow fan (20) is generated by superimposing the broadband noise generated by the wind speed and the NZ sound generated at the frequency of the product of the rotation speed and the number of blades. Furthermore, in the first embodiment, since the wings (40, 40,%) Have a twisted shape, the blowing sound due to the swirling flow is superimposed.
- the NZ sound which is the above-mentioned interference sound, decreases as the torsion angle 0 increases as shown by the thin line A from the simulation, and becomes unitary when the torsion angle is set to 360 ° as described above.
- broadband noise will be described.
- this broadband noise increases as the wind speed increases.
- the air volume is the same at any torsion angle 0, and the relationship between the torsion angle 0 and the air volume is such that as the force, which will be described later, the torsion angle 6> increases, the air volume increases. descend.
- the wind speed passing through the cross fan and the fan (20) increases as the torsion angle 0 increases, and the rotation speed increases. Therefore, the broadband noise is reduced by the wings (40, 40, ). ') Torsion angle 0 is 0. Up to 360 ° When changed, it rises as shown by the broken line B in FIG.
- the blowing sound is generated by the vertical flap (16) provided in front of the cross flow fan (20) as shown in Fig. 10, and the wings (40, 40, ...) have a zero force twist angle. Due to the twist, the airflow AF blown from the cross flow fan (20) becomes oblique. For this reason, a separation phenomenon occurs in the vertical flap (16), and the passage between the vertical flaps (16) is narrowed, so that the blowing speed force is increased and the blowing sound is raised.
- the sound pressure level ⁇ SPL of the blowing sound increases at the cube ratio of the blowing speed as shown in the following equation.
- the inclination angle / 3 of the wings (40, 40,%) becomes one fan body (30) when the wings (40, 40,%) are twisted by 360 ° in 10 stations.
- the torsion angle 0 of the wings (40, 40,%) is 36 °, so the height H shown in Fig. 11 is
- the inclination angle jS is (23/360).
- the torsion angle S is changed from 0 ° to 360 °
- the sound pressure level ⁇ SPL of the blowing sound is derived from the speed ratio corresponding to the ratio (Wo / W) of the width Wo of the air flow to the interval W of the vertical flap (16) based on the above equation (2). From the above, when the broadband noise (broken line B) and the NZ sound (fine line A) are superimposed, the result is as shown by the solid line C in FIG.
- the torsion angle S of the wing (40, 40, 7) is lower for the NZ sound than for the maximum broadband noise 60. It is preferable to set it in the range from 360 ° to 360 °.
- the torsion angle 0 of the wings (40, 40,...) Is from 120 ° to 3 ° where the solid line C on which the broadband noise (dashed line B) and the NZ sound (fine line A) are superimposed becomes almost flat. It is preferable to set the angle in the range of 60 °.
- the torsion angle of the wing (40, 40,...) Is from 150 ° to 270 ° where the solid line C in which the broadband noise (dashed line B) and the NZ sound (fine line A) are superimposed has a substantially minimum value. It is more preferable to set it in the range of °.
- the solid line D obtained by superimposing the broadband noise (broken line B), the NZ sound (fine line A), and the blowing sound is obtained. It is more preferable to set the angle in the range from 60 ° to 150 ° which is almost the lowest value.
- the wings (40, 40,%) are formed in a torsional shape, so as shown in Fig. 9, interference noise SW forces cancel each other, reducing NZ noise and reducing the sound pressure level of noise Will be done.
- Fig. 9 interference noise SW forces cancel each other, reducing NZ noise and reducing the sound pressure level of noise Will be done.
- the outer wing (41) and the inner rim (42) of the wings (40, 40, ...) are arc-shaped, so that the conventional wings (40, 40, ...) have the shape shown in Figs.
- the outer diameter of the fan body (30, 30,%) Is equal at both ends, compared with the outer diameter Dc being smaller at the center of the wing (b, b,).
- the peripheral speed at the center of the fan body (30, 30, %) is higher than in the past, and the performance is improved.
- the wings (40, 40,%) Of the cross flow fan (20) are formed in a twisted shape, so that the interference sound SW is generated by the wings (40, 40,.
- the force that is generated as a sine wave with the pitch as the cycle The interference sound SWs are out of phase at each wing (40, 40,%), so the interference sound SWs cancel each other out, as shown in Figs. 9 and 13.
- the NZ sound can be reduced, and the sound pressure level of the noise can be reduced.
- the air volume per rotation can be increased, and the performance can be improved.
- the outer diameter of the fan body (30, 30,%) can be made equal on both sides, compared to the outer diameter Dc becoming smaller at the center of the fan body.
- the peripheral speed at the center of the fan body (30, 30,%) Can be made higher than before, and the performance can be improved.
- the torsion angle 0 of the wings (40, 40, %) in the range of 60 ° to 360 ° where the NZ sound is lower than the maximum broadband noise, almost all over this range Thus, the sound pressure level of the noise caused by the stain can be reduced.
- the solid line C force obtained by the simulation in which the above broadband noise (broken line B) and the NZ sound (fine line A) are superimposed shows that the wings (40, 40) fall from 120 ° to 360 °, which is almost flat. , 7), the sound pressure level of noise can be further reduced.
- the solid line C force obtained by the simulation in which the above broadband noise (broken line B) and the NZ sound (fine line A) are superimposed is almost the minimum value of 150.
- the solid line D force obtained by superimposing the broadband noise (broken line B), the NZ sound (fine line A), and the blowing sound in consideration of the swirling flow has a substantially minimum value from 60 ° to 150 °.
- the blades (40, 40,%) Of each of the fan bodies (30, 30,%) Have the same shape with respect to the rotation axis 0 at any cross-sectional position of the airfoil (4S). Since the air inlet and outlet angles can be made the same at any cross-sectional position, the optimum inlet and outlet angles can be maintained and the performance can be reliably prevented from deteriorating. it can.
- the distance between the tongue (15) and the cross flow fan (20) can be set small. As a result, it is possible to increase the air volume per the same rotation speed.
- the surging area can be reduced, the overall shape can be made thinner. That is, the curve X in FIG. 14 shows a conventional example in which the distance between the tongue (15) and the cross flow fan (20) is 7 mm, and the curve Y is FIG. 14 shows the first embodiment in which the distance between (15) and the cross flow fan (20) is 3 ran. C From this FIG. 14, the surging of the first embodiment is compared with the conventional surging area S 1. The area S2 can be reduced, and the overall shape can be made thinner. Further, the curve M in FIG. 16 shows the resistance characteristics of the machine, and the intersection of each variation curve X and variation curve Y becomes a use point, and can be used in a more stable area than before.
- the torsion angle 0 of the wings (40, 40,...) Is set to a range up to 360 °, but is set to 50 ° or more, that is, 360. In other words, it is only necessary that the interference sound SW is canceled by each other and the NZ sound is reduced.
- FIG. 15 shows the arrangement of the fan bodies (30, 30,%) So that the blades (40, 40,. If the fan bodies (30, 30,%) Are defined as 1 to 10, the second embodiment will be described with reference to FIG. 15 (b). They are arranged in the order of 1, 6, 2, 7, 3, 8, 4, 9, 5 and 10. Other configurations, operations, and effects are the same as those in the first embodiment.
- each wing (40, 40,...) Has a rivet (50,
- This rivet (50, 50,...) 7) Is formed only on the pressure surface, which is the front of the wing, and extends from the inner edge (42) to the outer edge (41) of each wing (40, 40,).
- the direction of the riblets (50, 50, ...) is formed so as to cross the wings (40, 40, %) at right angles. That is, the rivets (50, 50,%) Are formed along the skeleton line of the wing (40, 40,%), And the interval between the winglets (50, 50,. ) Is narrowest at the inner edge (42) and becomes larger toward the outer edge (41). As a result, the air flow follows the riblets (50, 50,%), the pressure loss between the blades (40, 40) is reduced, and the fan efficiency is improved.
- These riblets (50, 50, 3) are formed at a depth corresponding to the viscous bottom layer of the boundary layer. That is, the flow of fluid in the viscous bottom layer of the boundary layer becomes a motion of a vertical vortex, and the vertical vortex often moves as a pair.
- the riblets (50, 50,%) act to block lateral flow, so that a double burst, which occurs when approaching longitudinal vortex counterforce rotating in opposite directions, prematurely occurs, As the strength of the downwash decreases, its duration also decreases. As a result, the turbulent frictional resistance on the surface of the rivets (50, 50,...) is reduced.
- the outdoor unit (60) of the air conditioner according to Embodiment 4 is a vertical outdoor unit, and has an air passage (7A) at the upper stage of the casing (70). ) Is formed in the lower part of the equipment storage space (7B).
- the upper stage of the casing (70) has a substantially L-shaped suction port (71) extending vertically from one side surface to an adjacent side surface, and has an upper surface formed at the corner of the other side surface.
- a downwardly extending outlet (72) is formed with force, and the air passage (7A) is formed in the casing (70) from the inlet (71) to the outlet (72).
- a heat exchanger (61) having a substantially L-shape in a plan view and extending in the vertical direction is disposed in proximity to the suction port (71), and is disposed close to the outlet (72). While the crossflow fan (20) is arranged in force, a tongue (23) for partitioning the inside of the casing (70) into a low pressure side and a high pressure side is provided inside the casing (70). It is formed close to ,
- a plurality of grills (74, 74,%) are arranged in the outlet (72) in parallel at predetermined intervals in the vertical direction.
- the grilles (74, 74,%) Are inclined upward from the inside to the outside so that the AF force is upward in the air blowing direction.
- the above-mentioned grills (74, 74, 7) are configured so that the blown air force ⁇ upstream.
- a compressor (62) is installed in the storage space (7B), while the compressor (62) Is connected to an accumulator (63) and connected to a refrigerant circuit (not shown), and the refrigerant circuit is connected to the heat exchanger (61).
- the storage space (7B) stores electrical components (64) for controlling the compressor (62) and the like.
- the cross-flow fan (20) has the same configuration as the cross-flow fan (20) of the first embodiment shown in FIGS. 2 to 5 described above, and includes a fan body (30, 30, 30, ⁇ ) Force ⁇ Composed of multiple units in the direction of the rotation axis and arranged vertically. Each of these fan bodies (30, 30, ') is arranged in the direction of the wings (50, 50, ...) constituting a cascade between the partition plates (31, 31) on both sides. It is configured.
- the fan body (30, 30,%) Is connected to, for example, six stations to form a main body (21), and a partition plate (31, 31) located on both sides of the main body (21) is provided with a rotating shaft. (22) A force is attached, and a motor (23) is connected to the upper end of the rotating shaft (22).
- the fan bodies (30, 30,%) Are formed in a circular cascade arranged in a plurality of blades (40, 40,).
- the blades (40, 40,%) Of the fan body (30, 30,%) In the above cross flow fan (20) have the air blowing direction with respect to the direction immediately before the rotation axis.
- the wings (40, 40, %) are formed into twisted wings that are twisted about the axis of rotation from one side end face to the other side end face so as to incline diagonally upward.
- the fan bodies (30, 30,%) Have a circular cascade in which 35 blades (40, 40,%) Are arranged in the circumferential direction, as in the first embodiment.
- the wings (40, 40, %) are arranged at unequal pitches with different pitch P forces.
- the pitch P of the above wings (40, 40, %) is 9.4. It is set as appropriate within the range of 11.1 ° to 11.1 °.
- the wings (40, 40,...) are formed into airfoil wings having a predetermined curvature from the outer edge (51) to the inner edge (52), as shown in FIG. Rim (51) and inner rim (52) is formed in a round shape of a predetermined arc.
- the wings (40, 40,%) Of each fan body (30, 30,%) are, as shown in FIG. 3 described above, from one side end face of the wings (40, 40,).
- the airfoil (4S) with a cross section orthogonal to the rotation axis 0 is formed in a torsion shape that is twisted about the rotation axis 0 as it goes to the other side end surface.
- the wings (40, 40, ...) are twisted in a spiral around the rotation axis 0, and the air inflow angle and outflow angle It is twisted so that the angle is the same at any cross-sectional position.
- the torsion angle of the wings (40, 40,%) Is, for example, 50 ° or more when the torsion angle is extended from one end to the other end in the entire length of the main body (21).
- the wing shape force is formed so as to be 360 ° or less. For example, if the wings (40, 40,%) Of each fan body (30, 30,%) Are connected from the left end of the body (21) to the right end, the wings (40, 40, ⁇ ) is twisted.
- the cross flow fan (20) since the air passing through the cross flow fan (20) blows obliquely upward with respect to the rotation axis 0, the cross flow fan (20) is installed in parallel with the air outlet (72). It is installed straight up and down. Therefore, the twist angle of the wings (40, 40, ...) and the air blowing angle, that is, the upper blowing angle with respect to the horizontal direction, are as shown in Fig. 21.
- the twist angle of the wings (40, 40,...) Is zero, it becomes a conventional straight wing parallel to the rotation axis 0, and blows air in the horizontal direction.
- the torsion angle of the wings (40, 40,...) Increases with the zero force, the upper blowing angle increases along the characteristic curve E.
- the relationship between the torsion angle 0 of the wings (40, 40,%) And noise is as shown in FIG. Figure 22 shows the noise level when the torsional angle S is 180 ° with the wings (40, 40,%) extended from one end to the other end of the main body (21). The value is set to zero (see Figure 22F). Further, as shown in FIGS. 23 and 24, the grille (74, 74,%) Has an inclination angle y of 25 ° with respect to the horizontal direction.
- the noise increases as the torsion angle 0 becomes larger than 180 °.
- the noise increases as the torsion angle 0 becomes smaller than 180 °. That is, this twist angle 0 is 180. If the twisting angle S is smaller than 180 °, the fan performance itself will decrease and the noise will increase. If the twist angle S is smaller than 180 °, the surface of the grill (74, 74,%) will be peeled off, etc. 74, 74,...) becomes resistance and noise increases.
- the torsion angle 0 of the blade (40, 40,...) of the cross flow fan (20) is , 40,...) are extended from one side end to the other side of the entire length of the main body (21), and it is desirable to set 180 °.
- the cross-flow fan (20) raises the air blowing angle so that air guidance is not required much more than before, so that the grills (74, 74,...)
- the length Ls can be reduced to about half the length Ls compared to the general case of Fig. 23. c
- air separation on the grill (74, 74,...) surface is reduced, and noise is reduced. It will be reduced. Operation of one outdoor unit
- the blow-off air passing through the cross flow fan (20) is blown in the direction AF because the wings (40, 40,%) Of the cross-fout opening—fan (20) are formed as twisted wings. Sloping upward. Furthermore, since the air blowing direction AF is deflected by the grilles (74, 74,...), The blown air is blown more obliquely upward and out of the casing (70).
- the crossflow fans (20) of the twisted blades (40, 40,...) are provided, so that the air blowing direction AF is set obliquely upward. Therefore, the amount of deflection due to the grilles (74, 74,%) Can be reduced. As a result, the pressure loss of the blown air by the grills (74, 74,%) Can be reduced, so that the fan efficiency can be improved.
- cross flow fan (20) can be installed vertically up and down, the installation space can be reduced, and the size can be reduced. Work and the like can be simplified.
- the interference sound is generated as a sine wave having a period of the pitch of the blades (40, 40, ).
- the phases of the interfering sounds are shifted from each wing (40, 40,...), the interfering sounds cancel each other out, the NZ sound can be reduced, and the sound pressure level of the noise can be reduced.
- the blades (40, 40,%) Of the fan bodies (30, 30,%) are formed so that the airfoil (4S) has the same shape with respect to the rotation axis 0 at any cross-sectional position.
- the inflow angle and outflow angle of the air can be the same at any cross-sectional position, so that the optimal inflow angle and outflow angle can be maintained, and a decrease in performance can be reliably prevented.
- each fan body (30, 30,%) have a twisted shape compared to the case where the wings (40, 40,%) are not twisted (the twist angle is zero).
- the chord length can be increased, and the air volume per rotation can be increased, so that the performance can be improved.
- the outer diameter at the center becomes smaller, while the outer diameter of the fan body (30, 30, 7) can be made equal on both sides.
- the peripheral speed at the center of the fan body (30, 30,%) Can be made higher than before, and the performance can be improved.
- the torsion angle 0 of the wings (40, 40,%) of the fan body (30, 30,%) can be set to 180 °, it is possible to ensure that the blown air can be made to be the upper stream.
- the sound pressure level of the simulated noise see Figure 9) can be minimized over almost the entire range.
- twist angle 0 of the wings (40, 40,...) is set to 180 °
- twist angle S of the wings (40, 40,...) is set to a range of 60 ° or more.
- the twist angle of the blades (40, 40, ...) is set to 0 in the range of 120 ° to 360 °, it can be ensured that the blown air can be made into the upper stream.
- the sound pressure level (see Fig. 9) obtained by superimposing the broadband noise and the NZ sound according to the simulation becomes almost flat, and the sound pressure level of the noise can be further reduced.
- the torsion angle of the blades (40, 40, ...) is set to 0 in the range of 150 ° to 150 °, the blown air can be surely turned into the upward flow and the swirl flow must be considered.
- the sound pressure level of the noise (see Fig. 9) obtained by superimposing the broadband noise, the NZ sound, and the blowing sound is almost the lowest, and the sound pressure level of the overall noise can be reliably reduced.
- the distance between the tongue (75) and the cross flow fan (20) can be set small. As a result, it is possible to increase the air volume per the same rotation speed.
- the overall shape can be reduced in thickness, and it can be used in a stable area.
- the fifth embodiment includes the cross flow fan (20) according to the fourth embodiment, while replacing the grilles (74, 74,...) With a mesh-shaped protection net (78).
- the airflow direction AF can be changed upward by the cross flow fan (20) itself, so that the grills (74, 74,...) are omitted.
- the torsion blades (40, 40,...) are used, the deflection angle of the air blowing direction AF can be increased by increasing the torsion angle. Therefore, the grills (74, 74,...) are omitted.
- a protection network (78) is provided. As a result, the structure can be simplified. The other configuration and operation and effect are the same as those of the fourth embodiment.
- the cross flow fan (20) of the fourth embodiment is provided, while the diffuser portions (77, 77) are formed in the casing (70). .
- the diffuser portions (77, 77), which are the upper wall and the lower wall of the outlet (72) in the casing (70), are formed in a shape that is inclined upward and outward toward the front. That is, it is formed in a shape that follows the air blowing direction AF.
- the torsional direction of the wings (30, 30,%) Is set in the clockwise direction.
- the torsional direction of the wings (30, 30,. May be set.
- the twist direction of the wings (30, 30,%) Is set to the same direction.
- the wings (30, 30, %) May be composed of two types of fan bodies (30, 30,%) with different torsional forces.
- the torsion direction of the wings (30, 30,%) is set to the clockwise direction
- the torsion direction of the wings (30, 30,%) is set to the counterclockwise direction.
- the fan bodies (30, 30, %) may be arranged alternately. As a result, the swirling flow can be suppressed.
- the wings (30, 30,%) of the fan body (30, 30,%) may be arranged at the same pitch, and the torsion angle of the wings (40, 40,%) ,%) Extend from one end of the main body (21) to the other end to form a twisted shape corresponding to one pitch of the wings (40, 40,).
- the torsion angle of the wing (40, 40,%) is from the one end of the fan body (30, 30,%) to the other end, corresponding to one pitch of the wing (40, 40,). Form into shape.
- the interference sound SW can be offset, and the NZ sound can be reduced.
- the pitch of the wings (40, 40, ...) is the same, so that performance can be improved.
- the wings (40, 40, ...) in each embodiment have a force formed such that the airfoil (4S) has the same shape with respect to the rotation axis 0 at any cross-sectional position.
- the blades (40, 40,%) Of each fan body (30, 30,%) May be formed so that the blade shape (4S) at each cross-sectional position is different.
- the inflow angle and the outflow angle may be formed in different twist shapes. That is, the shape is twisted by a predetermined angle between the partition plates (31, 31) on both sides, and the inflow angle and the outflow angle are different between the both ends of the wing (40, 40, ). In short, the interference powers should cancel each other out.
- the air conditioner (10) has been described.
- the crossflow fan (20) according to the invention described in claims 1 to 15 can be applied to various types of blowers.
- the structure of the outdoor unit (60) such as the heat exchanger (61) is not limited to the embodiment. [Possibility of ⁇ H ⁇ for ij]
- the crossflow fan of the present invention is useful for an air conditioner or the like where noise reduction is desired, and is particularly suitable for equipment where reduction of NZ sound is desired.
- the outdoor unit of the air conditioner of the present invention is useful when the blown air needs to be directed upward.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
A plurality of fan bodies (30, 30, ...) each having a plurality of vanes (40, 40,...) that extend in the direction of the rotating shaft and are disposed at irregular pitches in a circumferential direction are disposed in a direction of a rotating shaft. The vanes (40, 40,...) are formed such that the cross-sectional configuration (4S) thereof that is perpendicular to a rotating axis O is formed into a twisted shape about the rotating axis O twisting from one end faces of the vanes (40, 40,...) toward the other end faces thereof so that the cross-sectional configurations are identical relative to the rotating axis O at any cross-sectional point. In addition, the vanes (40, 40,...) of adjacent fan bodies (30, 30, ...) are continuous and especially the vanes (40, 40,...) are formed into a twisted shape such that the twist angle becomes 60° or greater in a state in which they are caused to extend from one end to the other end of the full length of the main body.
Description
明 糸田 » クロスフ口一ファン及び空気調和装置の室外機 [技術分野 ] Akira Itoda »Cross-floor fan and air conditioner outdoor unit [Technical field]
本発明は、 クロスフローファン及び該クロスフローファンを備えた空気調和装置 の室外機に関し、 特に、 クロスフ口一ファンの翼形状及び、 室外機の吹出空気の風向 対策に係るものである。 The present invention relates to a cross-flow fan and an outdoor unit of an air conditioner provided with the cross-flow fan, and particularly to a blade shape of a cross-floor fan and a countermeasure against a wind direction of blown air of the outdoor unit.
[背景技術 ] [Background Art]
一般に、 クロスフローファンは、 回転軸心方向に複数枚の仕切板が所定間隔を存 して平行に配置されると共に、 各仕切板の間に複数枚の翼力周方向に配列されて構成 されている。 そして、 上記仕切板と仕切板との間で 1つのファン体を構成し、 いわゆ る連を構成し、 例えば、 1 0連で 1つの本体を構成している。 In general, a cross flow fan is configured such that a plurality of partition plates are arranged in parallel with a predetermined interval in a direction of a rotation axis, and a plurality of blades are arranged in a circumferential direction between each partition plate. . One fan body is formed between the partition plate and the partition plate, and a so-called series is formed. For example, one main body is formed by 10 series.
—方、 上記クロスフローファンにおいては、 回転時に貫流渦又は舌部との干渉に よって、 回転数 (N) と翼枚数 (Z) との積の周波数で発生する回転騒音 (以下、 N Z音という。 ) が大きいという問題があった。 On the other hand, in the above cross flow fan, the rotation noise generated at the frequency of the product of the number of rotations (N) and the number of blades (Z) due to the flow through vortex or interference with the tongue during rotation (hereinafter referred to as NZ sound) ) Was large.
この N Z音を低減するために、 従来、 例えば、 実開平 3— 7 3 6 9 7号公報に開 示されているように、 翼のピッチをランダムにして不等ピッチにするもの、 また、 特 開平 6— 1 7 3 8 8 6号公報に開示されているように、 各ファン体の翼の位相をずら し、 いわゆるスキューを付けるようにしたもの、 また、 特開平 5—1 0 5 9 7号公報 に開示されているように、 各ファン体の翼を傾斜させたもの、 また、 特開平 3— 1 9 4 1 9 6号公報に開示されているように、 各ファン体の翼に段を形成して各ファン体 の翼を異なる形状に形成したものがある。
—解決課題— Conventionally, in order to reduce this NZ sound, for example, as disclosed in Japanese Utility Model Laid-Open Publication No. 3-73697, the pitch of the wings is made random to make the pitch unequal. As disclosed in Japanese Unexamined Patent Application Publication No. Hei 6-1773886, the phases of the blades of each fan body are shifted to provide a so-called skew. As disclosed in Japanese Unexamined Patent Publication (Kokai) No. H10-193, the blades of each fan body are inclined, and as disclosed in Japanese Unexamined Patent Application Publication No. Hei. Some fan bodies have wings formed in different shapes. —Solutions—
上述したクロスフローファンにおいて、 不等ピッチにしたものや、 スキューを付 けたものは、 翼が直線であるため、 各ファン体における干渉音が同一位相で発生する ので、 N Z音を十分に低減することができないという問題があつた。 In the cross-flow fans described above, those with unequal pitch or skew have straight wings, so that the interference sound in each fan body is generated in the same phase, so the NZ sound is sufficiently reduced. There was a problem that I could not do it.
また、 翼を傾斜したものでは、 外径力小さくなるという問題があった。 つまり、 図 2 7及び図 2 8に示すように、 ファン体 (a ) の翼 (b, b, ··') は、 仕切板 (c ) から隣り合うファン体 (a ) の仕切板 (c ) に向って傾斜し、 そして、 翼 (b, b, ···) の内側縁及び外側縁は直線状であるので、 ファン体 (a ) は全体にほぼ鼓状にな る。 この結果、 上記ファン体 (a ) は翼 (b, b, '·') の中央における外径 Dcが両端 の外径 Dsより小さくなる。 In addition, when the wing was inclined, there was a problem that the outer diameter force was reduced. That is, as shown in FIGS. 27 and 28, the wings (b, b,... ′) Of the fan body (a) are separated from the partition plate (c) of the adjacent fan body (a). ) And the inner and outer edges of the wings (b, b,...) Are straight, so that the fan body (a) generally becomes almost drum-shaped. As a result, in the fan body (a), the outer diameter Dc at the center of the wing (b, b, '·') is smaller than the outer diameter Ds at both ends.
したがって、 翼 (b , b, ···) の中央では、 周速度が両端より遅くなることから 性能が低下するという問題があった。 特に、 翼 (b, b, ···) の傾斜角度を大きくす ると、 外径が顕著に小さくなり、 更に、 製造方法によっては翼断面の変形等が生じ、 性能が低下するという問題があつた。 Therefore, at the center of the wings (b, b,...), There was a problem that the peripheral speed was lower than at both ends, resulting in lower performance. In particular, when the inclination angle of the wings (b, b,...) Is increased, the outer diameter becomes significantly smaller, and furthermore, depending on the manufacturing method, the wing cross-section is deformed and the performance is degraded. Atsuta.
また、 翼に段を形成するものにおいても、 外径が小さくなる部分が形成されるこ とになって、 性能が低下するという問題があつた。 Also, in the case of forming a step on the wing, there is a problem that the performance is reduced due to the formation of a portion having a smaller outer diameter.
以上のように、 何れのクロスフローファンにおいても、干渉音が特定の周波数に 集中しないように分散させて N Z音の低減を図るようにしているものの、 従来の低減 方法は、 干渉音を分散させているに過ぎないため、 N Z音のエネルギとしては十分に 低減されておらず、 この結果、 N Z音の低減力不十分であるという問題があった。 また一方、 従来より、 空気調和装置の室外機には、 特開平 1—2 1 2 8 3 2号公 報に開示されているように、 ケーシング内に圧縮機等力く収納されると共に、 ケ一シン グ内の空気通路に、 熱交換器及びファンカ収納されて縦置型に構成されているものが あ O o
上記室外機におけるファンは、 図 2 9に示すように、 クロスフローファン (a ) が用いられている。 この従来のクロスフローファン (d) は、 上述の如く各種のもの がある力 一般的に直線翼のものが用いられている。 つまり、 上記クロスフローファ ン (d) は、 上下方向に延びる複数枚の翼 (e , e, ···) を周方向に配列して成るフ アン体 (f, f, ···) 力上下方向に複数個配置されて構成され、 各翼 (e, e, ···) は、 回転軸心と平行な直線翼に形成されている。 As described above, in any cross-flow fan, the NZ sound is reduced by dispersing the interference sound so that it does not concentrate on a specific frequency, but the conventional reduction method disperses the interference sound. Therefore, the energy of the NZ sound has not been sufficiently reduced, and as a result, there has been a problem that the reducing power of the NZ sound is insufficient. On the other hand, conventionally, as disclosed in Japanese Patent Laid-Open Publication No. 1-212832, an outdoor unit of an air conditioner has been housed in a casing with a compressor and the like, and the air conditioner has been used. In the air passage in a single unit, a heat exchanger and a fan are housed and there is a vertical type. As the fan in the outdoor unit, a cross flow fan (a) is used as shown in FIG. The conventional cross-flow fan (d) has various powers as described above. Generally, a straight blade is used. In other words, the cross flow fan (d) is a fan body (f, f,...) In which a plurality of vertically extending wings (e, e,...) Are arranged in the circumferential direction. Each blade (e, e, ···) is formed as a straight blade parallel to the axis of rotation.
上記クロスフローファン (d) は、 上下方向に真直に設置され、 ケ一シング (g) の吹出口 (h) に対して平行に配置されている。 そして、 該クロスフローファン (d) からの空気吹出方向 AFは、 吹出口 (h) に対して真直前方になるので、 この吹出口 (h) には、 グリル (i ) を設けて、 空気吹出方向 AF力斜め上方になるようにしてい る。 つまり、 空気吹出方向 AFを斜め上方にし、 吹出空気が吸込口に回り込むショート サーキットを防止すると共に、 吹出空気力人に直接に当らないようにし、 更に、 吹出 口 (h) に近接している壁等の障害物の影響を受けないようにしている。 上述した空気調和装置の室外機においては、 グリル (O によって空気吹出方向 AFを偏向しているので、 吹出空気がグリル (i ) に直接当ることになり、 圧力損失が 大きいという問題があった。 The cross flow fan (d) is installed vertically in the vertical direction, and is arranged parallel to the outlet (h) of the casing (g). Since the airflow direction AF from the cross flow fan (d) is immediately before the air outlet (h), a grill (i) is provided at the air outlet (h) to provide air Blowing direction The AF force is set diagonally upward. In other words, the air blowing direction AF is set diagonally upward to prevent a short circuit where the blown air goes around the suction port, prevent direct contact with the blown air force, and furthermore, the wall close to the blowout port (h). So that it is not affected by obstacles such as In the outdoor unit of the air conditioner described above, since the air blowing direction AF is deflected by the grill (O), the blown air directly hits the grill (i), and there is a problem that the pressure loss is large.
また、 上記グリル (i ) の表面で空気流れが乱れることになり、 騒音の発生源と なり、静音化を図ることができないという問題があった。 その上、 上記グリル (i ) のみによって空気を偏向させるので、 十分な上吹き流にならず、 ショートサーキット 等を完全に防止することができないという問題があつた。 本発明は、斯かる点に鑑みてなされたもので、 クロスフローファンにおける干渉 音のエネルギを低減して N Z音を抑制し、 低騒音化を図ることを目的とするものであ る。
また、 他の発明は、 室外機のグリルによる圧力損失を低減すると共に、 静音化を 可能にし、 且つ十分な上吹き流になるようにすることを目的とするものである。 In addition, the air flow is disturbed on the surface of the grill (i), which is a source of noise, and there is a problem that noise cannot be reduced. In addition, since the air is deflected only by the grille (i), there is a problem that the air does not flow up sufficiently and a short circuit or the like cannot be completely prevented. The present invention has been made in view of such a point, and an object of the present invention is to reduce NZ noise by reducing the energy of interference sound in a cross flow fan and to reduce noise. Another object of the present invention is to reduce the pressure loss caused by the grill of the outdoor unit, to reduce noise, and to achieve a sufficient upward flow.
[発明の開示 ] [Disclosure of the Invention]
一発明の概要— Summary of the Invention—
本発明は、 翼を捩れ形状にすることによって、 多種類の干渉音が互いに相殺する ようにして N Z音を低減したものである。 In the present invention, the NZ sound is reduced by twisting the wings so that various types of interference sounds cancel each other.
また、 他の発明は、 クロスフローファンを捩じれ翼で形成することによって、 ク ロスフローファン自体からの空気吹出方向が斜め上方になるように構成したものであ 。 Further, in another invention, the cross flow fan is formed by twisted blades so that the direction of air blowing from the cross flow fan itself is obliquely upward.
—発明の特定事項— —Specific matters of the invention—
具体的に、 請求項 1記載の発明が講じた手段は、 先ず、 回転軸心方向に延びる複 ■の翼 (40, 40, …) を周方向に配列して成るファン体 (30, 30, …) が回転軸心 方向に複数個配置されているクロスフローファンを前提としている。 そして、 上記翼 (40, 40, …) は、 該翼 (40, 40, …) の一方の側端面から他方の側端面にいくに従 つて回転軸心 0を中心に捩れた捩れ形状に形成されている。 Specifically, the means taken by the invention described in claim 1 is as follows. First, a fan body (30, 30, 30,...) In which a plurality of blades (40, 40,...) Extending in the direction of the rotational axis are arranged in the circumferential direction. …) Is assumed to be a cross-flow fan in which a plurality of are arranged in the direction of the rotation axis. The wings (40, 40,…) are formed into a twisted shape that is twisted about the rotation axis 0 as going from one side end face to the other side end face of the wings (40, 40,…). Have been.
また、 請求項 2記載の発明力講じた手段は、 上記請求項 1記載の発明において、 翼 (40, 40, …) は、 回転軸心 0と直交する横断面の翼形 (4S) が何れの断面位置に おいても回転軸心 0に対して同一形状となるように捩れた捩れ形状に形成されたもの である。 また、 上記請求項 1又は 2記載の発明において、 請求項 3記載の発明が講じた手 段は、 各ファン体 (30, 30, …) の翼 (40, 40, …) 力不等ピッチで配列されたもの で、 また、 請求項 4記載の発明力講じた手段は、 隣り合うファン体 (30, 30) の翼
(40, 40, …) が連続するように形成されたもので、 また、 請求項 5記載の発明が講 じた手段は、 隣り合うファン体 (30, 30) の翼 (40, 40, …) が不連続状態になるよ うに形成されたもので、 また、 請求項 6記載の発明力講じた手段は、 翼 (40, 40, …) の捩れ方向が同一方向に形成されたファン体 (30, 30, …) で構成されたもので、 ま た、 請求項 7記載の発明が講じた手段は、 翼 (40, 40, …) の捩れ方向が逆方向に形 成された 2種類のファン体 (30, 30, …) で構成されたものである。 また、 上記請求項 1又は 2記載の発明において、 請求項 8記載の発明カ馕じた手 段は、 各ファン体 (30, 30, …) の翼 (40, 40, …) は、 本体全長の 1側端から他側 端まで延長された状態で捩れ角が 6 0 ° 以上になる捩れ形状に形成されたもので、 ま た、 請求項 9記載の発明力く講じた手段は、 各ファン体 (30, 30, …) の翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 3 6 0° になる 捩れ形状に形成されたものである。 The means of the invention described in claim 2 is the invention according to claim 1, wherein the wings (40, 40,...) Each have an airfoil (4 S) having a transverse cross section orthogonal to the rotation axis 0. It is formed in a torsional shape that is twisted so as to have the same shape with respect to the rotation axis 0 even at the cross-sectional position of FIG. In the invention described in claim 1 or 2, the means implemented by the invention described in claim 3 is that the wings (40, 40,...) Of each fan body (30, 30,. The means according to the fourth aspect of the present invention is arranged on the blades of the adjacent fan bodies (30, 30). (40, 40,...) Are formed so as to be continuous, and the means taken by the invention according to claim 5 is that the wings (40, 40,...) Of the adjacent fan bodies (30, 30) are provided. ) Are formed so as to be in a discontinuous state, and the means of the invention according to claim 6 is a fan body (40, 40, ...) in which the torsional directions of the wings (40, 40, ...) are formed in the same direction. , 30), and the means taken by the invention according to claim 7 are two kinds of wings (40, 40,…) in which the torsional directions are formed in opposite directions. It is composed of fan bodies (30, 30,…). In the invention described in claim 1 or 2, the means of the invention described in claim 8 is that the wings (40, 40,...) Of each fan body (30, 30,...) The twisted shape is formed to have a twist angle of 60 ° or more in a state of being extended from one side end to the other side end of the fan. The wings (40, 40,…) of the body (30, 30,…) were formed in a twisted shape with a twist angle of 360 °, extending from one end of the body to the other end. Things.
また、 上記請求項 1又は 2記載の発明において、 請求項 1 0記載の発明力講じた 手段は、 各ファン体 (30, 30, …) の翼 (40, 40, …) は、 本体全長の 1側端から他 側端まで延長された状態で捩れ角が 1 2 0 ° 以上で 3 6 0 ° 以下になる捩れ形状に形 成されたもので、 また、 請求項 1 1記載の発明が講じた手段は、 各ファン体 (30, 30, …) の翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ 角が 1 5 0 ° 以上で 2 7 0 ° 以下になる捩れ形状に形成されたもので、 また、 請求項 1 2記載の発明が講じた手段は、 各ファン体 (30, 30, …) の翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 6 0° 以上で 1 5 0 ° 以 下になる捩れ形状に形成されたものである。 また、 請求項 1 3記載の発明が講じた手段は、 上記請求項 1又は 2記載の発明に おいて、 各ファン体 (30, 30, …) の翼 (40, 40, …) 力等ピッチで配列されたもの
である。 In the invention described in claim 1 or 2, the means of the invention described in claim 10 is that the wings (40, 40,…) of each fan body (30, 30,…) It is formed in a torsion shape in which the torsion angle extends from 120 ° to 360 ° while extending from one side end to the other side end. The means is that the wings (40, 40,…) of each fan body (30, 30,…) extend from one end to the other end of the entire length of the body and have a twist angle of 150 ° or more. The means formed by the invention according to claim 12 is a wing (40, 40,...) Of each fan body (30, 30,...). Is formed in a torsion shape in which the torsion angle extends from 60 ° to 150 ° while extending from one end to the other end of the entire length of the main body. The means taken by the invention according to claim 13 is the invention according to claim 1 or 2, wherein the pitch of the blades (40, 40,…) of each fan body (30, 30,…) Those arranged in It is.
また、 上記請求項 1 3記載の発明において、 請求項 1 4記載の発明が講じた手段 は、 各ファン体 (30, 30, ···) の翼 (40, 40, ···) は、 本体全長の 1側端から他側端 まで延長された状態で捩れ角が翼 (40, 40, ···) の 1ピッチに対応した捩れ形状に形 成されたもので、 また、 請求項 1 5記載の発明力講じた手段は、 各ファン体 (30, 30, ···) の翼 (40, 40, ···) は、 ファン体 (30, 30, ···) の 1側端から他側端までの捩れ 角が翼 (40, 40, ···) の 1ピッチに対応した捩れ形状に形成されたものである。 また、 請求項 1 6記載の発明力講じた手段は、 先ず、 室外空気の吸込口 (71) 及 び吹出口 (72) 力形成されたケーシング (70) と、 該ケーシング (70) 内に吸込口 In the invention described in claim 13, means taken by the invention described in claim 14 is that the wings (40, 40,...) Of each fan body (30, 30,...) The torsion angle is formed in a torsion shape corresponding to one pitch of the wing (40, 40,...) In a state where the torsion angle is extended from one side end to the other side end of the entire length of the main body. The means of the invention described in 5 is that the wings (40, 40,...) Of each fan body (30, 30,...) Are located at one end of the fan body (30, 30,...). The twist angle from the tip to the other end is formed in a twist shape corresponding to one pitch of the wing (40, 40,...). The invention according to claim 16 is characterized in that, first, a suction port (71) and an air outlet (72) of outdoor air, a casing (70) formed with a force, and a suction port inside the casing (70). mouth
(71) から吹出口 (72) に亘つて形成された空気通路 (7A) に設けられ、 吸込口 (71) に近接して配置された熱交換器 (61) と、 上記ケーシング (70) 内の空気通路 (7A) に設けられ、 吹出口 (72) に近接して上下方向に配置されたクロスフローファン (20) とを少なくとも備えた空気調和装置の室外機を前提としている。 A heat exchanger (61) provided in an air passage (7A) formed from the air outlet (71) to the air outlet (72) and disposed in close proximity to the suction port (71); It is assumed that the outdoor unit of the air conditioner is provided at least with a cross flow fan (20) provided in the air passage (7A) of the air conditioner and vertically arranged close to the outlet (72).
そして、 上記クロスフ口一ファン (20) は、 回転軸心方向に延びる複数枚の翼 In addition, the cross mouth fan (20) includes a plurality of blades extending in the rotation axis direction.
(40, 40, ···) を周方向に配列して成るファン体 (30, 30, ···) が回転軸心方向に複 数個配置されて構成されている。 更に、 上記各ファン体 (30, 30, ···) の翼 (40, 40, ···) は、 クロスフローファン (20) の回転軸心 0に直交する真直前方に対して空気吹 出方向が斜め上方に傾斜するように、 翼 (40, 40, ···) の一方の側端面から他方の側 端面にいくに従って回転軸心 0を中心に捩れた捩れ形状に形成されている。 .. Are arranged in the circumferential direction, and a plurality of fan bodies (30, 30,...) Are arranged in the rotation axis direction. Furthermore, the wings (40, 40,...) Of each of the above-mentioned fan bodies (30, 30,...) Blow air just before the rotation axis 0 of the cross flow fan (20). The wings (40, 40, ...) are formed in a twisted shape that is twisted about the rotation axis 0 from one side end face to the other side end face so that the outgoing direction is inclined obliquely upward. .
また、 請求項 1 7記載の発明が講じた手段は、 上記請求項 1 6記載の発明におい て、 クロスフローファン (20) の翼 (40, 40, ···) は、 回転軸心 0と直交する横断面 の翼形 (4S) 力何れの断面位置においても回転軸心◦に対して同一形状となるように 捩れた捩れ形状に形成されたものである。
また、 上記請求項 1 6又は 1 7記載の発明において、 請求項 1 8記載の発明が講 じた手段は、 クロスフローファン (20) の各ファン体 (30, 30, …) の翼 (40, 40, …) が不等ピッチで配列されたもので、 また、 請求項 1 9記載の発明が講じた手段は、 クロスフ口一ファン (20) の各ファン体 (30, 30, …) は、 隣り合うファン体 (30, 30) の翼 (40, 40, …) が連続するように形成されたもので、 また、 請求項 2 0記載 の発明が講じた手段は、 クロスフローファン (20) の各ファン体 (30, 30, …) は、 隣り合うファン体 (30, 30) の翼 (40, 40, …) が不連続状態になるように形成され たもので、 また、 請求項 2 1記載の発明が講じた手段は、 クロスフ口一ファン (20) の各ファン体 (30, 30, …) は、 翼 (40, 40, …) の捩れ方向が同一方向に形成され たものである。 また、 上記請求項 1 6又は 1 7記載の発明において、 請求項 2 2記載の発明が講 じた手段は、 クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 6 0 ° 以上 になる捩れ形状に形成されたもので、 また、 請求項 2 3記載の発明が講じた手段は、 クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 1 8 0 ° になる捩れ形状 に形成されたもので、 また、 請求項 2 4記載の発明が講じた手段は、 クロスフローフ アン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1 側端から他側端まで延長された状態で捩れ角が 3 6 0° になる捩れ形状に形成された ものである。 In the invention according to claim 17, the blades (40, 40,...) Of the cross flow fan (20) are arranged so that the rotation axis is 0. An airfoil with an orthogonal cross section (4S) is formed in a twisted shape so that it has the same shape with respect to the rotation axis ◦ at any cross-sectional position. In the invention described in claim 16 or 17 above, the means taken by the invention described in claim 18 is that the fan body (30, 30, ...) of each fan body (30, 30, ...) of the cross flow fan (20) is provided. , 40,...) Are arranged at unequal pitch, and the means taken by the invention of claim 19 is that each of the fan bodies (30, 30,... The blades (40, 40,...) Of the adjacent fan bodies (30, 30) are formed so as to be continuous, and the means adopted by the invention according to claim 20 is a cross flow fan (20). ) Are formed so that the wings (40, 40,…) of the adjacent fan bodies (30, 30) are in a discontinuous state. 21 The means adopted by the invention described in 1 is that the fan bodies (30, 30, ...) of the cross-floor fan (20) have the same twist direction of the wings (40, 40, ...). And it is formed in the direction. Further, in the invention described in claim 16 or 17, the means taken by the invention described in claim 22 is that the blade (40) in each fan body (30, 30, ...) of the cross flow fan (20) is provided. , 40,...) Are formed in a twisted shape having a twist angle of 60 ° or more in a state of extending from one end of the entire length of the main body to the other end, and the invention according to claim 23. The measures taken by the cross flow fan (20) are as follows: the wings (40, 40,…) of each fan body (30, 30,…) of the cross flow fan (20) are extended from one end to the other end of the overall length of the main body. The twisted angle is set to be 180 °, and the means of the invention according to claim 24 is characterized in that each of the fan bodies (30, 30,...) Of the cross flow fan (20) is provided. The wings (40, 40,…) at) have a twisted shape with a twist angle of 360 ° when extended from one end of the main body to the other end. It was formed.
また、 上記請求項 1 6又は 1 7記載の発明において、 請求項 2 5記載の発明力着 じた手段は、 クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 1 2 0 ° 以 上で 3 6 0 ° 以下になる捩れ形状に形成されたもので、 また、 請求項 2 6記載の発明
が講じた手段は、 クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 1 5 0 ° 以上で 2 7 0 ° 以下になる捩れ形状に形成されたもので、 また、 請求項 2 7記載 の発明が講じた手段は、 クロスフ口一ファン (20) の各ファン体 (30, 30, …) にお ける翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角 が 6 0 ° 以上で 1 5 0 ° 以下になる捩れ形状に形成されたものである。 また、 請求項 2 8記載の発明が講じた手段は、 上記請求項 1 6又は 1 7記載の発 明において、 クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) が等ピッチで配列されたものである。 また、 上記請求項 2 8記載の発明において、 請求項 2 9記載の発明が講じた手段 は、 クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が翼 (40, 40, …) の 1ピッチに対応した捩れ形状に形成されたもので、 また、 請求項 3 0記載の発明が講 じた手段は、 クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 ファン体 (30, 30, …) の 1側端から他側端までの捩れ角が翼 (40, 40, …) の 1ピッチに対応した捩れ形状に形成されたものである。 また、 請求項 3 1記載の発明力驚じた手段は、 上記請求項 1 6又は 1 7記載の発 明において、 ケーシング (70) における吹出口 (72) の上部壁 (77) 及び下部壁 (77) が、斜め上方の空気吹出方向に沿う形状に形成されたものである。 Further, in the invention described in claim 16 or 17, the means invented in claim 25 is characterized in that the wing (40) in each fan body (30, 30, ...) of the cross flow fan (20) is provided. , 40,…) are formed in a torsion shape that extends from one end to the other end of the overall length of the body and has a twist angle of 120 ° or more and 360 ° or less. The invention according to claim 26 The measures taken by the team were that the wings (40, 40,…) of each fan body (30, 30,…) of the cross flow fan (20) were extended from one end to the other end of the overall length of the body. 28. The means according to claim 27, wherein the torsion angle is in a range from 150 ° to 270 ° and the twist angle is from 150 ° to 270 °. The wings (40, 40,…) of the body (30, 30,…) extend from one end to the other end of the total length of the body, and have a twist angle of 60 ° or more and 150 ° or less. It is formed in a twisted shape. The measures taken by the invention according to claim 28 are the invention according to claim 16 or 17, wherein the blade (40, 40) of each fan body (30, 30, ...) of the cross flow fan (20) is provided. , 40, ...) are arranged at equal pitch. In the invention according to claim 28, the means adopted by the invention according to claim 29 is that the blades (40, 40,...) Of each fan body (30, 30,...) Of the cross flow fan (20) are provided. ) Is a shape in which the twist angle is formed in a twisted shape corresponding to one pitch of the wings (40, 40,...) In a state of extending from one side end to the other side end of the entire length of the main body. Means taken by the invention described in paragraph 0 is that the wings (40, 40,…) of each fan body (30, 30,…) of the cross flow fan (20) are one of the fan bodies (30, 30,…). The twist angle from the side end to the other end is formed in a twist shape corresponding to one pitch of the blade (40, 40,…). Further, the means of the present invention as claimed in claim 31 is the invention according to claim 16 or 17, wherein the upper wall (77) and the lower wall (77) of the outlet (72) in the casing (70) are provided. 77) is formed in a shape along the air blowing direction obliquely above.
-作用一 -Action one
上記の発明特定事項の構成により、 請求項 1〜 1 5記載の発明では、 各ファン体
(30, 30, · · ·) を一体に回転すると、 各ファン体 (30, 30, ·' ·) を通って空気が流れ ることになる力 例えば、 舌部の近傍を翼 (40, 40, ■· ·) が通過する際に N Z音が発 生し、 又はファン体 (30, 30, · · ·) で渦が生じ、 この渦を翼 (40, 40, ·· ·) 力く通過す る際に N Z音力発生する。 その際、 翼 (40, 40, ·· ·) 力捩れ形状に形成されているの で、 干渉音が互いに打ち消し合って N Z音が低減され、 騒音の音圧レベルが低減され と Ϊ なる。 According to the configuration of the above-mentioned invention specifying matter, in the inventions of claims 1 to 15, each fan body (30, 30, · · ·) as a unit, the force that causes air to flow through each fan body (30, 30, · '·). For example, the wings (40, 40 , ■ ························································································································································· こ の · NZ sound power is generated at the same time. At this time, since the wing (40, 40, ···) force is formed in a twisted shape, the interference noises cancel each other out, the NZ sound is reduced, and the sound pressure level of the noise is reduced.
特に、 翼 (40, 40, · ··) 力捩れていない場合 (捩れ角 = 0 ) の翼弦長さに比し て、 翼 (40, 40, ···) を所定の捩れ角 0にすると、 翼弦長さ力 曽加することになる。 この結果、 翼 (40, 40, · ··) の単位面積辺りの風量が等しいとすると、 回転数当りの 風量が増加し、 性能が向上することになる。 In particular, the wings (40, 40,...) Are set to a predetermined torsion angle of 0, compared to the chord length when the wings (40, 40, ...) are not twisted (twist angle = 0). Then, chord length power will be added. As a result, if the air volume per unit area of the wings (40, 40, ···) is equal, the air volume per rotation speed increases, and the performance improves.
また、 上記翼 (40, 40, ···) は、 外側縁 (41) 及び内側縁 (42) が円弧状になる ので、 従来の直線状の翼 (b, b, ···) に比してファン体 (30, 30, ···) の外径が両 側端に亘つて鼓状になることなく等しくなる。 この結果、 ファン体 (30, 30, ···) の 中央部の周速度が従来に比して速くなり、 性能が向上することになる。 また、 請求項 1 6〜3 1記載の発明では、 クロスフローファン (20) を回転駆動 すると、 室外空気が吸込口 (71) よりケーシング (70) に吸い込まれ、 熱交換器 (61) で冷媒と熱交換した後、 空気通路 (7A) を流れ、 その後、 上記室外空気はクロスフ口 一ファン (20) を通って吹出口 (72) よりケーシング (70) の外部に吹き出されるこ とになる。 The outer wings (40, 40,...) Are arc-shaped at the outer edge (41) and the inner edge (42), and are therefore smaller than the conventional linear wings (b, b,...). The outer diameters of the fan bodies (30, 30,...) Become equal without a drum-like shape over both ends. As a result, the peripheral speed at the center of the fan body (30, 30,...) Is higher than in the past, and the performance is improved. In the invention according to claims 16 to 31, when the cross flow fan (20) is driven to rotate, the outdoor air is sucked into the casing (70) from the suction port (71) and is cooled by the heat exchanger (61). After the heat exchange with the air, it flows through the air passage (7A), and then the outdoor air is blown out of the casing (70) from the outlet (72) through the cross-floor fan (20). .
その際、 上記クロスフローファン (20) の吹出空気は、 吹出方向が斜め上方にな る。 具体的に、 クロスフローファン (20) の翼 (40, 40, · ·') が回転軸心 0を中心に 捩れているので、 該クロスフローファン (20) 自体の吹出空気が、 回転軸心 0に対し て斜め上方に吹き出すことになる。 よって、 上記クロスフローファン (20) は、 吹出 口 (72) と平行に上下方向に真直に設置されている。
9 また、 請求項 3 1に係る発明では、 ケ一シング (70) における吹出口 (72) の上 部壁 (77) 及び下部壁 (77) が、斜め上方の空気吹出方向に沿う形状に形成されてい るので、 クロスフローファン (20) で偏向された吹出空気が上部壁 (77) に衝突する ことがなく、 スムーズに流れることになる。 一発明の効果— At this time, the blowing direction of the cross flow fan (20) is obliquely upward. Specifically, since the wings (40, 40,...) Of the cross flow fan (20) are twisted about the rotation axis 0, the air blown from the cross flow fan (20) itself is rotated by the rotation axis. It blows out obliquely upward with respect to zero. Therefore, the cross flow fan (20) is installed vertically upright in parallel with the outlet (72). 9 In the invention according to claim 31, the upper wall (77) and the lower wall (77) of the outlet (72) in the casing (70) are formed in a shape along the obliquely upward air blowing direction. Therefore, the blown air deflected by the cross flow fan (20) flows smoothly without colliding with the upper wall (77). Effect of the Invention—
した力 <つて、 請求項 1〜1 5記載の発明によれば、 各ファン体 (30, 30, ···) の 翼 (40, 40, ···) を捩れ形状に形成したために、 干渉音 SWが翼 (40, 40, ···) のピッ チを周期とする正弦波として発生することになる力 各翼 (40, 40, ···) で干渉音 SW の位相がずれるので、 各干渉音 SWが打ち消し合い、 N Z音を低減することができ、 騒 音の音圧レベルを低減することができる。 According to the invention as set forth in claims 1 to 15, the wings (40, 40,...) Of each fan body (30, 30,. The force at which the sound SW is generated as a sine wave with the pitch of the wings (40, 40,...) The phase of the interference sound SW is shifted at each wing (40, 40,. The interference sounds SW cancel each other, and the NZ sound can be reduced, and the sound pressure level of the noise can be reduced.
また、 請求項 2に係る発明によれば、 各ファン体 (30, 30, ···) の翼 (40, 40, ···) を、 翼形 (4S) 力何れの断面位置においても回転軸心 0に対して同一形状になる ように形成したため、 空気の流入角及び流出角が何れの断面位置でも同一にすること ができるので、 最適な流入角及び流出角を保つことができ、 性能の低下を確実に防止 することができる。 According to the second aspect of the present invention, the blades (40, 40,...) Of each fan body (30, 30,...) Rotate at any cross-sectional position of the airfoil (4S) force. Since it is formed to have the same shape with respect to the axis 0, the inflow angle and outflow angle of air can be the same at any cross-sectional position, so that the optimum inflow angle and outflow angle can be maintained, and the performance can be maintained. Can reliably be prevented from decreasing.
また、 上記翼 (40, 40, ···) 力捩れていない場合 (捩れ角 0力零) に比して、 翼 (40, 40, ···) を捩り形状にするとしたために、 翼弦長さを増加させることができる ので、 回転数当りの風量を増加せることができ、 性能の向上を図ることができる。 Since the wings (40, 40, ...) have a twisted shape compared to the case where the wings (40, 40, ...) are not twisted (twist angle 0, no force), the chord is Since the length can be increased, the air volume per rotation can be increased, and the performance can be improved.
また、 上記翼 (40, 40, ···) は、 外側縁 (41) 及び内側縁 (42) が円弧状になる ので、 従来の直線状の翼では中央で外径が小さくなるのに対して、 ファン体 (30, 30, "り の外径が両側端に亘つて等しくすることができる。 この結果、 ファン体 (30, 30, ···) の中央部の周速度を従来に比して速くすることができ、 性能の向上を図ることが できる。 Also, the outer wing (41) and inner rim (42) of the above wings (40, 40,...) Have an arc shape. Therefore, the outer diameter of the fan body (30, 30, ") can be made equal on both sides. As a result, the peripheral speed of the central part of the fan body (30, 30,. Speed, and the performance can be improved.
特に、 請求項 8に係る発明によれば、 6 0 ° 以上の範囲に翼 (40, 40, ···) の捩
れ角 0を設定することにより、 この範囲のほぼ全体に亘つてシミユレ一ションによる 騒音の音圧レベルを低減することができる。 In particular, according to the invention of claim 8, the wings (40, 40,...) By setting the deflection angle to 0, the sound pressure level of the noise due to the simulation can be reduced over almost the entire range.
また、 請求項 1 0に係る発明によれば、 1 2 0 ° から 3 6 0 ° の範囲に翼 (40, 40, ···) の捩れ角 0を設定することにより、 シミュレーションによる広帯域騒音と N Z音とを重畳した音圧レベルがほぼフラットとなり、 さらに騒音の音圧レベルを低減 することができる。 According to the tenth aspect of the present invention, by setting the torsion angle 0 of the wings (40, 40,...) In a range of 120 ° to 360 °, the broadband noise and the simulation can be reduced. The sound pressure level superimposed on the NZ sound becomes almost flat, and the sound pressure level of noise can be further reduced.
また、 請求項 1 1に係る発明によれば、 1 5 0 ° から 2 7 0 ° の範囲に翼 (40, 40, ···) の捩れ角 0を設定することにより、 シミュレーションによる広帯域騒音と N Z音とを重畳した音圧レベルがほぼ最低値となり、 確実に騒音の音圧レベルを低減す ることができる。 According to the invention of claim 11, by setting the torsion angle 0 of the wings (40, 40,...) In a range of 150 ° to 270 °, it is possible to reduce broadband noise by simulation. The sound pressure level superimposed on the NZ sound becomes almost the lowest value, and the sound pressure level of the noise can be reliably reduced.
また、 請求項 1 2に係る発明によれば、 6 0 ° から 1 5 0 ° の範囲に翼 (40, 40, ···) の捩れ角 を設定することにより、 旋回流を考慮して上記広帯域騒音と N Z音と 吹出音とを重畳したシミュレーションによる騒音の音圧レベルがほぼ最低値となり、 確実に全体騒音の音圧レベルを低減することができる。 According to the invention of claim 12, by setting the twist angle of the blades (40, 40,...) In the range of 60 ° to 150 °, The sound pressure level of the noise based on the simulation in which the broadband noise, the NZ sound, and the blowing sound are superimposed is almost the lowest value, and the sound pressure level of the overall noise can be reliably reduced.
また、 上記 N Z音を低減することができるので、 舌部 (15) とクロスフローファ ン (20) との間隔を小さく設定することができる。 この結果、 同一回転数当たりの風 量を増加することができる。 Further, since the NZ sound can be reduced, the distance between the tongue (15) and the cross flow fan (20) can be set small. As a result, it is possible to increase the air volume per the same rotation speed.
また、 サージング領域を小さくすることができるので、 全体形状の薄形化を図る ことができると共に、 安定した領域で使用することができる。 In addition, since the surging area can be reduced, the overall shape can be reduced in thickness, and it can be used in a stable area.
また、 請求項 7に係る発明によれば、 翼 (40, 40, ···) の捩れ方向が異なる 2種 類のファン体 (30, 30, ···) で構成するようにしたために、 旋回流の抑制を図ること ができる。 According to the invention of claim 7, since the blades (40, 40,...) Are constituted by two types of fan bodies (30, 30,...) Having different torsion directions, Swirl flow can be suppressed.
また、 請求項 1 3に係る発明によれば、 翼 (40, 40, ···) を等ピッチに配列して いるので、 性能の向上を図ることができると同時に、 干渉音を相殺させることができ、 N Z音の低減を図ることができる。
W 97/02456 According to the invention of claim 13, the wings (40, 40,...) Are arranged at an equal pitch, so that it is possible to improve the performance and at the same time cancel out the interference sound. NZ sound can be reduced. W 97/02456
また、 請求項 1 6〜3 1記載の発明によれば、 クロスフ口一ファン (20) からの 空気吹出方向力斜め上方になるように該クロスフローファン (20) を構成するように したために、 クロスフローファン (20) によって空気吹出方向が偏向されるので、 グ リルによる偏向分を少なくすることができる。 この結果、 上記グリルによる吹出空気 の圧力損失を低減することができることから、 ファン効率の向上等を図ることができ る According to the invention of claims 16 to 31, the cross flow fan (20) is configured so that the air blowing direction force from the cross mouth opening fan (20) is obliquely upward. Since the air blowing direction is deflected by the cross flow fan (20), the amount of deflection due to the grill can be reduced. As a result, the pressure loss of the air blown out by the grill can be reduced, so that the efficiency of the fan can be improved.
また、 上記グリルの表面における空気流れの乱れを低減することができるので、 騒音の発生源を抑制することができ、 静音化を図ることができる。 Further, since the turbulence of the air flow on the surface of the grill can be reduced, the source of noise can be suppressed, and noise can be reduced.
また、 上記グロスフローファン (20) とグリルとによって空気吹出方向を偏向さ せるので、 十分な上吹き流にすることができる。 この結果、 吹出空気が吸込口 (71) に回り込むショートサーキットを確実に防止することができると共に、 吹出空気が人 に直接に当らないようにすることができ、 し力、も、 吹出口 (72) に近接している壁等 の障害物の影響を受けないようにすることができる。 In addition, since the air blowing direction is deflected by the gross flow fan (20) and the grill, a sufficient upward blowing flow can be achieved. As a result, it is possible to reliably prevent a short circuit in which the blown air flows around the suction port (71), to prevent the blown air from directly hitting a person, and to reduce the force of the blowout (72). ) Can be prevented from being affected by obstacles such as walls that are close to).
また、 捩れ翼 (40, 40, ··') のクロスフローファン (20) を設けるようにしたの で、 空気吹出方向を確実に斜め上方にすることができる一方、 クロスフローファン (20) を上下に真直に設置することができるので、 設置スペースを小さくすることが でき、 小型化を図ることができると共に、 組み立て作業等の簡略化を図ることができ 特に、 クロスフローファン (20) が捩れ翼 (40, 40, ···) であるので、 捩れ角を 大きくすることによつて空気吹出方向の偏向角を大きくすることができることから、 グリルを省略することができ、 構造の簡素化を図ることができる。 In addition, since the cross-flow fan (20) of the torsion blades (40, 40,...) Is provided, the air blowing direction can be reliably obliquely upward, while the cross-flow fan (20) is Since it can be installed straight up and down, the installation space can be reduced, the size can be reduced, and the assembly work can be simplified. In particular, the cross flow fan (20) is twisted. Because of the wings (40, 40, ...), the deflection angle in the air blowing direction can be increased by increasing the torsion angle, so that the grill can be omitted and the structure can be simplified. Can be planned.
また、 上記クロスフローファン (20) を捩れ翼 (40, 40, ···) で構成しているの で、 干渉音が翼 (40, 40, ···) のピッチを周期とする正弦波として発生することにな るが、 各翼 (40, 40, ···) で干渉音の位相がずれるので、 各干渉音が打ち消し合い、
N Z音を低減することができ、 騒音の音圧レベルを低減することができる。 Since the cross flow fan (20) is composed of twisted blades (40, 40, ...), the interference sound has a sinusoidal wave with the pitch of the blades (40, 40, ...) as a period. However, since the phases of the interference sounds are shifted at each wing (40, 40, ...), the interference sounds cancel each other, NZ noise can be reduced, and the sound pressure level of noise can be reduced.
また、 請求項 1 7に係る発明によれば、 各ファン体 (30, 30, ···) の翼 (40, 40, ···) を、 翼形 (5S) 力何れの断面位置においても回転軸心に対して同一形状になるよ うに形成したため、 空気の流入角及び流出角が何れの断面位置でも同一にすることが できるので、 最適な流入角及び流出角を保つことができ、 性能の低下を確実に防止す ることができる。 According to the invention of claim 17, the wings (40, 40,...) Of each fan body (30, 30,. Since it is formed to have the same shape with respect to the rotation axis, the inflow angle and outflow angle of air can be the same at any cross-sectional position, so that the optimum inflow angle and outflow angle can be maintained, and the performance can be maintained. Can be reliably prevented from decreasing.
また、 上記各ファン体 (30, 30, ···) の翼 (40, 40, ···) が捩れていない場合 (捩れ角が零) に比して、 翼 (40, 40, ···) を捩り形状にしたために、 翼弦長さを増 加させることができるので、 回転数当りの風量を増加せることができることから、 性 能の向上を図ることができる。 Also, the wings (40, 40,...) Of each fan body (30, 30,...) Are not twisted (the twist angle is zero). ·) Has a twisted shape, so that the chord length can be increased, so that the air volume per rotation can be increased, and the performance can be improved.
また、 上記翼 (40, 40, ···) は、 外側縁及び内側縁が円弧状になるので、 傾斜翼 (40, 40, ···) では中央での外径が小さくなるのに対し、 ファン体 (30, 30, ···) の 外径が両側端に亘つて等しくすることができる。 この結果、 ファン体 (30, 30, ···) の中央部の周速度を速くすることができ、 性能の向上を図ることができる。 Also, the outer wing and inner rim of the wing (40, 40, ...) have arc shapes, so the outer diameter at the center of the inclined wing (40, 40, ...) is smaller, The outer diameter of the fan body (30, 30,...) Can be made equal on both sides. As a result, the peripheral speed at the center of the fan body (30, 30,...) Can be increased, and performance can be improved.
また、 請求項 2 2に係る発明によれば、 6 0 ° 以上の範囲に翼 (40, 40, '··) の 捩れ角 Θを設定することにより、 吹出空気を確実に上吹き流にすることができると同 時に、 この範囲のほぼ全体に亘つてシミユレ一ションによる騒音の音圧レベルを低減 することができる。 According to the invention of claim 22, by setting the torsion angle 翼 of the wing (40, 40, '··) to a range of 60 ° or more, the blown air is surely made to be the upper stream. At the same time, the sound pressure level of the simulation noise can be reduced substantially throughout this range.
特に、 請求項 2 3に係る発明によれば、 翼 (40, 40, ···) の捩れ角 0を 1 8 0 ° に設定することにより、 吹出空気を確実に上吹き流にすることができると同時に、 こ の範囲のほぼ全体に亘つてシミュレーシヨンによる騒音の音圧レベルを最小にするこ とができる。 In particular, according to the invention of claim 23, by setting the torsion angle 0 of the wings (40, 40, ...) to 180 °, it is possible to surely make the blown air upward. At the same time, the sound pressure level of the simulation noise can be minimized over almost the entire range.
また、 請求項 2 5に係る発明によれば、 1 2 0 ° から 3 6 0 ° の範囲に翼 (40, 40, ···) の捩れ角 0を設定することにより、 吹出空気を確実に上吹き流にすることが できると同時に、 シミュレ一ションによる広帯域騒音と N Z音とを重畳した音圧レべ
ルがほぼフラットとなり、 さらに騒音の音圧レベルを低減することができる。 According to the invention of claim 25, by setting the helix angle 0 of the wings (40, 40,...) In the range of 120 ° to 360 °, the blown air can be reliably discharged. At the same time, the sound pressure level superimposed on the broadband noise and NZ sound by simulation The noise level becomes almost flat, and the sound pressure level of noise can be further reduced.
また、 請求項 2 6に係る発明によれば、 1 5 0 ° から 2 7 0 ° の範囲に翼 (40, 40, ···) の捩れ角 0を設定することにより、 吹出空気を確実に上吹き流にすることが できると同時に、 シミュレーションによる広帯域騒音と N Z音とを重畳した音圧レべ ルがほぼ最低値となり、 確実に騒音の音圧レべルを低減することができる。 According to the invention of claim 26, by setting the helix angle 0 of the wings (40, 40, ...) in the range from 150 ° to 270 °, the blown air can be reliably discharged. Simultaneously with the upper stream, the sound pressure level obtained by superimposing the broadband noise and the NZ sound by simulation becomes almost the lowest value, and the sound pressure level of the noise can be reliably reduced.
また、 請求項 2 7に係る発明によれば、 6 0 ° から 1 5 0 ° の範囲に翼 (40, 40, ···) の捩れ角 0を設定することにより、 吹出空気を確実に上吹き流にすることができ ると同時に、 旋回流を考慮して上記広帯域騒音と N Z音と吹出音とを重畳したシミュ レーシヨンによる騒音の音圧レベルがほぼ最低値となり、 確実に全体騒音の音圧レべ ルを低減することができる。 According to the invention of claim 27, by setting the helix angle 0 of the wings (40, 40, ...) in the range of 60 ° to 150 °, the blown air can be reliably raised. At the same time, the sound pressure level of the simulation obtained by superimposing the broadband noise, the NZ sound, and the blowing sound in consideration of the swirling flow is almost the lowest, and the sound of the overall noise is assured. The pressure level can be reduced.
また、 上記 N Z音を低減することができるので、 舌部 (15) とクロスフローファ ン (20) との間隔を小さく設定することができる。 この結果、 同一回転数当たりの風 量を増加することができる。 Further, since the NZ sound can be reduced, the distance between the tongue (15) and the cross flow fan (20) can be set small. As a result, it is possible to increase the air volume per the same rotation speed.
また、 サージング領域を小さくすることができるので、 全体形状の薄形化を図る ことができると共に、 安定した領域で使用することができる。 In addition, since the surging area can be reduced, the overall shape can be reduced in thickness, and it can be used in a stable area.
また、 請求項 3 1記載の発明によれば、 ケ一シング (20) における吹出口 (22) の上部壁 (27) 及び下部壁 (27) を斜め上方の空気吹出方向に沿う形状に形成したた め、 クロスフローファン (20) で偏向された吹出空気が上部壁 (27) に衝突すること がなく、 スムーズに流れることになり、 圧力損失の低減及び騒音の抑制を図ることが できる。 According to the invention of claim 31, the upper wall (27) and the lower wall (27) of the outlet (22) in the casing (20) are formed in a shape obliquely above the air blowing direction. Therefore, the blown air deflected by the cross flow fan (20) does not collide with the upper wall (27) and flows smoothly, so that pressure loss and noise can be reduced.
[ の簡単な説明 ] [Brief description of]
図 1は、 空気調和装置の断面図である。 FIG. 1 is a cross-sectional view of the air conditioner.
図 2は、 クロスフローファンの正面図である。 FIG. 2 is a front view of the cross flow fan.
図 3は、 図 2の I一 Iにおける一部省略した断面図である。
図 4は、 ファン体の正面図である。 FIG. 3 is a partially omitted cross-sectional view taken along line I-I of FIG. FIG. 4 is a front view of the fan body.
図 5は、 翼の斜視図である。 Figure 5 is a perspective view of the wing.
図 6は、 翼の捩れ角を示すクロスフローファンの正面図である。 FIG. 6 is a front view of the cross flow fan showing the torsional angles of the blades.
図 7は、 翼列の展開図及び干渉音の波形図である。 FIG. 7 is a developed view of the cascade and a waveform diagram of the interference sound.
図 8は、 干渉音の重畳を示す波形図である。 FIG. 8 is a waveform diagram showing superposition of interference sounds.
図 9は、 翼の捩れ角に対する騒音の音圧レベルの特性図である。 Fig. 9 is a characteristic diagram of the sound pressure level of noise with respect to the torsion angle of the blade.
図 1 0は、 垂直フラップを設けたクロスフ口一ファンの正面図である。 図 1 1は、 空気の傾斜を示すファン体の概略正面図である。 FIG. 10 is a front view of a cross flap one fan provided with a vertical flap. FIG. 11 is a schematic front view of the fan body showing the inclination of the air.
図 1 2は、 垂直フラップ間の空気流れを示す説明図である。 FIG. 12 is an explanatory diagram showing the air flow between the vertical flaps.
図 1 3は、 翼弦長さを示す説明図である。 FIG. 13 is an explanatory diagram showing the chord length.
図 1 4は、 流量係数に対する静圧係数の特性図である。 FIG. 14 is a characteristic diagram of the static pressure coefficient with respect to the flow coefficient.
図 1 5は、 実施形態 2のクロスフ口一ファンを示す正面図である。 FIG. 15 is a front view showing the crossed-mouth single fan according to the second embodiment.
図 1 6は、 実施形態 3のクロスフ口一ファンを示す一部省略断面図である。 図 1 7は、 リブレットを示す翼の斜視図である。 FIG. 16 is a partially omitted cross-sectional view showing the cross opening fan of the third embodiment. FIG. 17 is a perspective view of a wing showing a riblet.
図 1 8は、 実施形態 4の空気調和装置の室外機を示す概略構成図である。 図 1 9は、 室外機の水平断面図である。 FIG. 18 is a schematic configuration diagram illustrating an outdoor unit of the air-conditioning apparatus according to Embodiment 4. FIG. 19 is a horizontal sectional view of the outdoor unit.
図 2 0は、 室外機の要部を示す縦断面図である。 FIG. 20 is a longitudinal sectional view showing a main part of the outdoor unit.
図 2 1は、 翼の捩れ角に対する空気吹出角度の特性図である。 FIG. 21 is a characteristic diagram of the air blowing angle with respect to the torsion angle of the blade.
図 2 2は、 翼の捩れ角に対する騒音の特性図である。 FIG. 22 is a characteristic diagram of noise with respect to the torsion angle of the blade.
図 2 3は、 グリルの一部を示す断面図である。 FIG. 23 is a cross-sectional view showing a part of the grill.
図 2 4は、 本発明を適用した場合のダリルの一部を示す断面図である。 図 2 5は、 実施形態 5における室外機の要部を示す縦断面図である。 FIG. 24 is a cross-sectional view showing a part of Daryl when the present invention is applied. FIG. 25 is a vertical cross-sectional view illustrating a main part of the outdoor unit in the fifth embodiment.
図 2 6は、 実施形態 6における室外機の要部を示す縦断面図である。 FIG. 26 is a vertical cross-sectional view illustrating a main part of the outdoor unit in the sixth embodiment.
図 2 7は、 従来の傾斜翼を示す側面図である。 FIG. 27 is a side view showing a conventional inclined wing.
図 2 8は、 図 2 7の翼を備えたファン本体の正面図である。
図 2 9は、 従来の室外機の要部を示す縦断面図である。 FIG. 28 is a front view of a fan main body provided with the blades of FIG. FIG. 29 is a longitudinal sectional view showing a main part of a conventional outdoor unit.
[発明を実施するための最良の形態 ] [Best Mode for Carrying Out the Invention]
一実施形態 1一 One embodiment 11
以下、 本発明の実施形態 1を図面に基づいて詳細に説明する。 Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings.
図 1に示すように、 壁掛式の空気調和装置 (10) は、 ケ一シング (11) の内部に、 ほぼ逆 V字状の熱交換器 (12) 力収納されると共に、 クロスフ口一ファン (20) カ収 納されて構成されている。 上記ケーシング (11) には、 前面上部から上面に亘つて吸 込口 (13) 力形成される一方、 前面下部に吹出口 (14) 力形成されている。 As shown in Fig. 1, the wall-mounted air conditioner (10) is housed inside a casing (11) with a substantially inverted V-shaped heat exchanger (12) and a cross-floor fan. (20) It is configured to store power. The casing (11) has a suction port (13) formed from the upper front surface to the upper surface, and a blowout port (14) formed at the lower front portion.
更に、 上記ケーシング (11) の内部には、 該ケーシング (11) の内部を低圧側と 高圧側とに仕切る舌部 (15) がクロスフローファン (20) に近接して形成されている。 そして、 上記クロスフ口一ファン (20) を回転すると、 室内空気が吸込口 (13) より ケ一シング (11) に吸い込まれ、 熱交換器 (12) で冷媒と熱交換して温風又は冷風の 調和空気となり、 この調和空気がクロスフローファン (20) を通って吹出口 (14) よ り室内に吹き出されることになる。 上記クロスフ口一ファン (20) は、 図 2〜図 4に示すように、 いわゆる連を構成 するファン体 (30, 30, …) が回転軸心方向に複数配置されて構成されている。 この 各ファン体 (30, 30, …) は、 両側の仕切板 (31, 31) の間に翼列を構成する複数の 翼 (40, 40, …) が周方向に配列されて構成されている。 Further, a tongue (15) for partitioning the inside of the casing (11) into a low-pressure side and a high-pressure side is formed in the interior of the casing (11) in proximity to the cross flow fan (20). Then, when the cross-floor fan (20) is rotated, the indoor air is sucked into the casing (11) from the suction port (13), and exchanges heat with the refrigerant in the heat exchanger (12) to generate hot or cold air. The conditioned air passes through the cross flow fan (20) and is blown into the room from the outlet (14). As shown in FIGS. 2 to 4, the cross-floor fan (20) is configured by arranging a plurality of fan bodies (30, 30,...) Constituting a so-called ream in the direction of the rotation axis. Each of the fan bodies (30, 30,…) is composed of a plurality of blades (40, 40,…) constituting a cascade arranged in the circumferential direction between partition plates (31, 31) on both sides. I have.
そして、 上記ファン体 (30, 30, …) は、 例えば、 1 0連接続されて本体 (21) を構成し、 該本体 (21) の両側に位置する仕切板 (31, 31) に回転軸 (22) 力取り付 けられており、 図示しないが、 この回転軸 (22) にモータ力接続されている。 また、 上記ファン体 (30, 30, …) は、 3 5枚の翼 (40, 40, …) 力周方向に配列された円 形翼列に形成されており、 図 3に示すように、 各翼 (40, 40, …) のピッチ?カ異な
る不等ピッチに配列されている。 例えば、 上記翼 (40, 40, ···) のピッチ Pは、 9. 4 ° から 1 1. 1。 の範囲で適宜設定されている。 The fan bodies (30, 30,...) Are connected, for example, in series to form a main body (21), and the rotating bodies are attached to partition plates (31, 31) located on both sides of the main body (21). (22) A force is applied, and although not shown, a motor force is connected to the rotating shaft (22). The fan body (30, 30, ...) is formed in a circular cascade of 35 blades (40, 40, ...) arranged in the circumferential direction. The pitch of each wing (40, 40,…)? Strange Are arranged at irregular pitches. For example, the pitch P of the wings (40, 40, ...) is from 9.4 ° to 11.1. Is appropriately set in the range of.
上記翼 (40, 40, ···) は、 図 5に示すように、 外側縁 (41) から内側縁 (42) に 亘つて所定の反りを有する翼形翼に形成され、 該外側縁 (41) 及び内側縁 (42) は、 所定の円弧の丸み形状に形成されている。 本発明の特徴として、 上記各ファン体 (30, 30, ···) の翼 (40, 40, '··) は、 図 5に示すように、 翼 (40, 40, ···) の一方の側端面から他方の側端面にいくに従って 回転軸心 0を中心に捩れた捩れ形状に形成され、 回転軸心 0と直交する横断面の翼形 As shown in FIG. 5, the wings (40, 40,...) Are formed into airfoil wings having a predetermined curvature from the outer edge (41) to the inner edge (42). 41) and the inner edge (42) are formed in a predetermined circular arc shape. As a feature of the present invention, the wings (40, 40, '...) of each of the fan bodies (30, 30, ...) are, as shown in FIG. The airfoil is formed in a torsion shape that is twisted about the rotation axis 0 as going from one side end face to the other side end face, and has a cross section orthogonal to the rotation axis 0.
(4S) が何れの断面位置においても回転軸心 0に対して同一形状となるように形成さ れている。 つまり、 上記翼 (40, 40, ···) は、 回転軸心 0を中心にしたスパイラル状 に捩れていると共に、 空気の流入角と流出角と力何れの断面位置においても等しくな るように捩れている。 (4S) is formed to have the same shape with respect to the rotation axis 0 at any cross-sectional position. In other words, the wings (40, 40,...) Are twisted in a spiral around the rotation axis 0, and are equal at any cross-sectional position of the air inflow angle, outflow angle, and force. Is twisted.
また、 上記各ファン体 (30, 30, ···) の翼 (40, 40, ···) は、 隣り合うファン体 The wings (40, 40,...) Of each fan body (30, 30,...)
(30, 30) の翼 (40, 40, ···) 力く連続になるように形成されると共に、 翼 (40, 40, ···) の捩れ方向が同一方向に形成され、 例えば、 時計回り方向に形成されている。 The wings (40, 40, ...) of (30, 30) are formed so as to be forcefully continuous, and the torsional directions of the wings (40, 40, ...) are formed in the same direction. For example, It is formed clockwise.
そして、 上記翼 (40, 40, ···) の捩れ角は、 本体 (21) の全長における 1側端か ら他側端まで延長された状態で捩れ角が 6 0 ° 以上で 3 6 0 ° 以下に、 又は、 5 0° 以上で 3 6 0 ° 以下になるように翼形状が形成されている。 例えば、 図 6に示すよう に、 本体 (21) の左端から右端各ファン体 (30, 30, ···) の翼 (40, 40, ···) を繋ぐ と、 この連続線 カ一回転するように翼 (40, 40, ···) が捩れている。 The torsion angle of the wings (40, 40,...) Is 360 ° when the torsion angle is 60 ° or more in the state where the wing extends from one end to the other end in the entire length of the main body (21). The wing shape is formed so as to be less than or equal to or less than or equal to 50 ° and less than or equal to 360 °. For example, as shown in Fig. 6, when the wings (40, 40, ...) of each fan body (30, 30, ...) are connected from the left end of the main body (21) to the right end, this continuous line The wings (40, 40, ...) are twisted.
—捩れ形状にした理由一 —The reason for the twisted shape 1
そこで、 上記翼 (40, 40, ·'·) を捩れ形状に形成した基本的理由について説明す る。
9 先ず、 図 7 ( a ) は、 ファン体 (30, 30, ···) の翼列を展開した一部を示してお り、 この各翼 (40, 40, ···) 力舌部 (15) を通過する際に、 図 7 ( b ) に示すように、 正弦波形の干渉音 SW (圧力波) が発生することになる。 そして、 この干渉音 SWが各翼 列、 つまり、 ファン体 (30, 30, ·'·) で同時に発生する。 具体的に、 図 6に示すよう に、 上述した翼 (40, 40, ···) の捩れ角が本体 (21) の全長で 3 6 0 ° になるように 設定すると、 図 7 ( b ) の正弦波形の干渉音 SW力《所定のずれをもって同時に発生する ことになる。 したがって、 図 8に示すように、 干渉音 SWが重畳されるので、 加算値が 零となり、 N Z音が低減されることになる。 Therefore, the basic reason for forming the wings (40, 40, · '·) into a twisted shape will be described. 9 First, Fig. 7 (a) shows a part of the cascade of the fan body (30, 30, ...) expanded, and each wing (40, 40, ...) force tongue is shown. When passing through (15), a sinusoidal interference sound SW (pressure wave) is generated as shown in Fig. 7 (b). Then, this interference sound SW is simultaneously generated in each blade row, that is, in the fan body (30, 30, '). Specifically, as shown in Fig. 6, if the torsion angle of the wings (40, 40, ...) described above is set to be 360 ° over the entire length of the main body (21), Fig. 7 (b) Interference sound of sinusoidal waveform SW force << will be generated simultaneously with a predetermined shift. Therefore, as shown in FIG. 8, since the interference sound SW is superimposed, the added value becomes zero, and the NZ sound is reduced.
一方、 図 9は、 上述した翼 (40, 40, ···) の捩れ角 (回転角度) 力 0 ° 、 つまり、 捩れていないものから、 本体 (21) の全長で 3 6 0 ° になるように設定した場合の騒 音の音圧レベル (S P L ) を示している。 On the other hand, Fig. 9 shows that the torsional angle (rotation angle) force of the wings (40, 40, ···) is 0 °, that is, it is 360 ° in the total length of the main body (21) from the untwisted one. It shows the sound pressure level (SPL) of noise when set as follows.
先ず、 クロスフローファン (20) の騒音は、 風速によって生じる広帯域騒音と、 回転数と翼枚数との積の周波数で発生する N Z音とが重畳して生ずる。 更に、 本実施 形態 1では、 翼 (40, 40, ···) を捩れ形状にしているので、 旋回流による吹出音が重 畳されることになる。 First, the noise of the cross flow fan (20) is generated by superimposing the broadband noise generated by the wind speed and the NZ sound generated at the frequency of the product of the rotation speed and the number of blades. Furthermore, in the first embodiment, since the wings (40, 40,...) Have a twisted shape, the blowing sound due to the swirling flow is superimposed.
上記干渉音である N Z音は、 シミュレーションから細線 Aに示すように、 捩れ角 0が大きくなるに従って低下し、 上述したように捩れ角 を 3 6 0 ° にすると、 一∞ となる。 次に、 広帯域騒音について説明すると、 この広帯域騒音は、 一般に風速が大きく なるに従って上昇する。 上記図 9に示すシミュレーションでは、 何れの捩れ角 0にお いても風量が同一であるとしており、 この捩れ角 0と風量との関係は後述する力^ 捩 れ角 6>が大きくなるに従って風量が低下する。 このことから、 図 9では、 クロスフ口 一ファン (20) を通過する風速は、 捩れ角 0が大きくなるに従って回転数が上昇して 速くなるので、 広帯域騒音は、 翼 (40, 40, ··') の捩れ角 0を 0。 から 3 6 0 ° まで
変化させると、 図 9の破線 Bに示す通り上昇することになる。 The NZ sound, which is the above-mentioned interference sound, decreases as the torsion angle 0 increases as shown by the thin line A from the simulation, and becomes unitary when the torsion angle is set to 360 ° as described above. Next, broadband noise will be described. Generally, this broadband noise increases as the wind speed increases. In the simulation shown in FIG. 9 above, it is assumed that the air volume is the same at any torsion angle 0, and the relationship between the torsion angle 0 and the air volume is such that as the force, which will be described later, the torsion angle 6> increases, the air volume increases. descend. Thus, in Fig. 9, the wind speed passing through the cross fan and the fan (20) increases as the torsion angle 0 increases, and the rotation speed increases. Therefore, the broadband noise is reduced by the wings (40, 40, ...). ') Torsion angle 0 is 0. Up to 360 ° When changed, it rises as shown by the broken line B in FIG.
—方、 吹出音は、 図 10に示すように、 クロスフローファン (20) の前方に設け た垂直フラップ (16) によって発生し、 上記翼 (40, 40, ···) 力捩れ角 0で捩れてい るので、 クロスフローファン (20) から吹き出される空気流れ AFが斜めになる。 この ため、 垂直フラップ (16) に剥離現象が生じて垂直フラップ (16) の間の通路が狭ま り、 吹出速度力让昇して吹出音カ让昇することになる。 The blowing sound is generated by the vertical flap (16) provided in front of the cross flow fan (20) as shown in Fig. 10, and the wings (40, 40, ...) have a zero force twist angle. Due to the twist, the airflow AF blown from the cross flow fan (20) becomes oblique. For this reason, a separation phenomenon occurs in the vertical flap (16), and the passage between the vertical flaps (16) is narrowed, so that the blowing speed force is increased and the blowing sound is raised.
この吹出音の音圧レベル Δ S P Lは、 次式に示す通り吹出速度の 3乗比で上昇す る。 The sound pressure level ΔSPL of the blowing sound increases at the cube ratio of the blowing speed as shown in the following equation.
ASPL = 10 xlog(Ur/Ub)3 ……① ASPL = 10 xlog (Ur / Ub) 3 …… ①
Ur:翼 (40, 40, …) を捩った場合の吹出速度 Ur: The blowing speed when the wings (40, 40,…) are twisted
Ub:翼 (40, 40, …) を捩らない場合の吹出速度 Ub: The blowing speed when the wings (40, 40,…) are not twisted
そこで、 上記翼 (40, 40, …) の傾斜角 /3は、 該翼 (40, 40, …) を 10連で 3 60° だけ捩った場合、 1つのファン体 (30) である 1連で、 翼 (40, 40, …) の捩 れ角 0が 36° となるので、 図 11に示す高さ Hは、 幅 Nを 60議とすると、 Therefore, the inclination angle / 3 of the wings (40, 40,…) becomes one fan body (30) when the wings (40, 40,…) are twisted by 360 ° in 10 stations. In the series, the torsion angle 0 of the wings (40, 40,…) is 36 °, so the height H shown in Fig. 11 is
H= OxDo X 36) ÷360 = 25. 1 ……② H = OxDo X 36) ÷ 360 = 25. 1 …… ②
β= tan一1 (H/N) =23° ……③ β = tan- 1 (H / N) = 23 ° …… ③
となる。 Becomes
したがって、 翼 (40, 40, …) の捩れ角を 0とすると、 傾斜角 jSは (23/ 360) となり、 図 12に示すように、 捩れ角 Sを 0° から 360° まで変化させた 場合の空気流れの幅 Wo と垂直フラップ (16) の間隔 Wとの比 (Wo/W) に対応した 速度比から上記①式に基づき吹出音の音圧レベル Δ S P Lを導出している。 以上のことから、 広帯域騒音 (破線 B) と NZ音 (細線 A) とを重畳すると、 図 9の実線 Cに示すようになる。 更に、 上記広帯域騒音 (破線 B) と NZ音 (細線 A) と吹出音とを重畳すると、 図 9の実線 Dに示すようになる。
上述した図 9のシミュレーションから、 翼 (40, 40, …) の捩れ角 Sは、 最大の 広帯域騒音より N Z音が低下する 6 0。 から 3 6 0 ° の範囲に設定すること力好まし い。 Therefore, assuming that the torsion angle of the wing (40, 40,…) is 0, the inclination angle jS is (23/360). As shown in Fig. 12, when the torsion angle S is changed from 0 ° to 360 ° The sound pressure level ΔSPL of the blowing sound is derived from the speed ratio corresponding to the ratio (Wo / W) of the width Wo of the air flow to the interval W of the vertical flap (16) based on the above equation (2). From the above, when the broadband noise (broken line B) and the NZ sound (fine line A) are superimposed, the result is as shown by the solid line C in FIG. Further, when the broadband noise (broken line B), the NZ sound (fine line A), and the blowing sound are superimposed, the result is as shown by a solid line D in FIG. From the simulation in Fig. 9 described above, the torsion angle S of the wing (40, 40, ...) is lower for the NZ sound than for the maximum broadband noise 60. It is preferable to set it in the range from 360 ° to 360 °.
また、 より好ましくは、 翼 (40, 40, …) の捩れ角 0は、 広帯域騒音 (破線 B) と N Z音 (細線 A) とを重畳した実線 Cがほぼフラットとなる 1 2 0 ° から 3 6 0 ° の範囲に設定することが好ましい。 More preferably, the torsion angle 0 of the wings (40, 40,...) Is from 120 ° to 3 ° where the solid line C on which the broadband noise (dashed line B) and the NZ sound (fine line A) are superimposed becomes almost flat. It is preferable to set the angle in the range of 60 °.
更に好ましくは、 翼 (40, 40, …) の捩れ角 は、 広帯域騒音 (破線 B) と N Z 音 (細線 A) とを重畳した実線 Cがほぼ最低値となる 1 5 0 ° から 2 7 0 ° の範囲に 設定することがより好ましい。 More preferably, the torsion angle of the wing (40, 40,...) Is from 150 ° to 270 ° where the solid line C in which the broadband noise (dashed line B) and the NZ sound (fine line A) are superimposed has a substantially minimum value. It is more preferable to set it in the range of °.
また、 垂直フラップ (16, 16, …) を適用した場合等において、 旋回流を考慮す ると、 上記広帯域騒音 (破線 B) と N Z音 (細線 A) と吹出音とを重畳した実線 Dが ほぼ最低値となる 6 0 ° から 1 5 0 ° の範囲に設定することがより好ましい。 When the vertical flaps (16, 16, ...) are applied and the swirling flow is taken into consideration, the solid line D obtained by superimposing the broadband noise (broken line B), the NZ sound (fine line A), and the blowing sound is obtained. It is more preferable to set the angle in the range from 60 ° to 150 ° which is almost the lowest value.
—クロスフローファンの作用一 —Effect of Cross Flow Fan
次に、 上記クロスフローファン (20) の作用について説明する。 Next, the operation of the cross flow fan (20) will be described.
上記クロスフローファン (20) を回転駆動すると、 図 1の空気流れ AFに示すよう に、 室内空気が吸込口 (13) よりケーシング (11) に吸い込まれ、 熱交換器 (12) で 冷媒と熱交換して温風又は冷風の調和空気となり、 この調和空気がクロスフローファ ン (20) を通って吹出口 (14) より室内に吹き出される。 When the cross-flow fan (20) is driven to rotate, indoor air is drawn into the casing (11) from the suction port (13) as shown by the airflow AF in Fig. 1, and the refrigerant and heat are passed through the heat exchanger (12). The conditioned air is replaced by warm or cold air, and this conditioned air is blown into the room from the outlet (14) through the cross flow fan (20).
そして、 上記クロスフローファン (20) を通って空気が流れることになるが (図 1の空気流れ AF参照) 、 舌部 (15) の近傍を翼 (40, 40, …) 力通過する際に N Z音 が発生し、 又はクロスフローファン (20) で渦 AVが生じ、 この渦 AVを翼 (40, 40, …) が通過する際に N Z音力発生する。 その際、 上記翼 (40, 40, …) 力捩れ形状に形成 されているので、 図 9に示すように、 干渉音 SW力互いに打ち消し合って N Z音が低減 され、 騒音の音圧レベルが低減されることになる。
特に、 図 1 3に示すように、 翼 (40, 40, …) 力捩れていない場合 (捩れ角 0 = 0 ) の翼弦長さ Lbに比して、 翼 (40, 40, …) を所定の捩れ角 0にすると、 翼弦長さ Lv力く Lb/cos こ増加することになる。 この結果、 翼 (40, 40, …) の単位面積辺りの 風量が等しいとすると、 翼弦長さ力長くなることによつて回転数当りの風量が増加し、 性能が向上することになる。 Then, the air flows through the cross flow fan (20) (see the air flow AF in FIG. 1), but when the wings (40, 40,…) force pass near the tongue (15). NZ sound is generated or vortex AV is generated by the cross flow fan (20), and NZ sound power is generated when the wings (40, 40,…) pass through the vortex AV. At this time, the wings (40, 40,…) are formed in a torsional shape, so as shown in Fig. 9, interference noise SW forces cancel each other, reducing NZ noise and reducing the sound pressure level of noise Will be done. In particular, as shown in Fig. 13, the wings (40, 40,…) have a larger wing (40, 40,…) than the chord length Lb when the wings (40, 40, ...) are not twisted (twist angle 0 = 0). If the torsion angle is set to 0, the chord length Lv will increase by Lb / cos. As a result, assuming that the air volume per unit area of the wings (40, 40,…) is equal, the air volume per rotation increases due to the increase in chord length force, and the performance is improved.
また、 上記翼 (40, 40, …) は、 図 3に示すように、 外側縁 (41) 及び内側縁 (42) が円弧状になるので、 従来の図 2 9及び図 3 0に示すように、 翼 (b, b , …) の中央で外径 Dcが小さくなるのに比してファン体 (30, 30, …) の外径が両側端に亘 つて等しくなる。 この結果、 ファン体 (30, 30, …) の中央部の周速度が従来に比し て速くなり、 性能の向上が図られることになる。 一クロスフ口一ファンの効果一 In addition, as shown in Fig. 3, the outer wing (41) and the inner rim (42) of the wings (40, 40, ...) are arc-shaped, so that the conventional wings (40, 40, ...) have the shape shown in Figs. In addition, the outer diameter of the fan body (30, 30,...) Is equal at both ends, compared with the outer diameter Dc being smaller at the center of the wing (b, b,...). As a result, the peripheral speed at the center of the fan body (30, 30, ...) is higher than in the past, and the performance is improved. The effect of one crossf mouth one fan
以上のように、 本実施形態 1によれば、 上記クロスフローファン (20) の翼 (40, 40, …) を捩れ形状に形成したために、 干渉音 SWが翼 (40, 40, …) のピッチを周期 とする正弦波として発生することになる力 各翼 (40, 40, …) で干渉音 SWの位相が ずれるので、 各干渉音 SWが打ち消し合い、 図 9及び図 1 3に示すように、 N Z音を低 減することができ、 騒音の音圧レベルを低減することができる。 As described above, according to the first embodiment, the wings (40, 40,...) Of the cross flow fan (20) are formed in a twisted shape, so that the interference sound SW is generated by the wings (40, 40,. The force that is generated as a sine wave with the pitch as the cycle The interference sound SWs are out of phase at each wing (40, 40,…), so the interference sound SWs cancel each other out, as shown in Figs. 9 and 13. In addition, the NZ sound can be reduced, and the sound pressure level of the noise can be reduced.
また、 上記翼 (40, 40, …) 力捩れていない場合 (捩れ角 = 0 ) に比して、 翼 (40, 40, …) を捩り形状にするとしたために、 翼弦長さを増加させることができる ので、 回転数当りの風量を増加せることができ、 性能の向上を図ることができる。 In addition, the chord length is increased because the wings (40, 40,…) have a twisted shape compared to the case where the wings (40, 40,…) are not twisted (twist angle = 0). As a result, the air volume per rotation can be increased, and the performance can be improved.
また、 上記翼 (40, 40, …) は、 外側縁 (41) 及び内側縁 (42) が円弧状になる ので、 従来の図 2 7及び図 2 9に示すように、 翼 (b, b, …) の中央で外径 Dcが小 さくなるのに比してファン体 (30, 30, …) の外径が両側端に亘つて等しくすること ができる。 この結果、 ファン体 (30, 30, …) の中央部の周速度を従来に比して速く することができ、 性能の向上を図ることができる。
特に、 最大の広帯域騒音より N Z音が低下する 6 0 ° から 3 6 0 ° の範囲に翼 (40, 40, ···) の捩れ角 0を設定することにより、 この範囲のほぼ全体に亘つてシミ ユレ一シヨンによる騒音の音圧レベルを低減することができる。 In addition, since the outer edge (41) and the inner edge (42) of the wing (40, 40,...) Are arc-shaped, as shown in FIGS. ,…)), The outer diameter of the fan body (30, 30,…) can be made equal on both sides, compared to the outer diameter Dc becoming smaller at the center of the fan body. As a result, the peripheral speed at the center of the fan body (30, 30,...) Can be made higher than before, and the performance can be improved. In particular, by setting the torsion angle 0 of the wings (40, 40, ...) in the range of 60 ° to 360 ° where the NZ sound is lower than the maximum broadband noise, almost all over this range Thus, the sound pressure level of the noise caused by the stain can be reduced.
また、 上記広帯域騒音 (破線 B) と N Z音 (細線 A) とを重畳したシミュレーシ ョンによる実線 C力、 ほぼフラットとなる 1 2 0 ° から 3 6 0 ° の範囲に翼 (40, 40, ···) の捩れ角 を設定することにより、 さらに騒音の音圧レベルを低減することがで さる c The solid line C force obtained by the simulation in which the above broadband noise (broken line B) and the NZ sound (fine line A) are superimposed shows that the wings (40, 40) fall from 120 ° to 360 °, which is almost flat. , ...), the sound pressure level of noise can be further reduced.
また、 上記広帯域騒音 (破線 B) と N Z音 (細線 A) とを重畳したシミュレーシ ヨンによる実線 C力 ほぼ最低値となる 1 5 0。 から 2 7 0 ° の範囲に翼 (40, 40, ··-) の捩れ角 0を設定することにより、 確実に騒音の音圧レベルを低減することがで き 。 In addition, the solid line C force obtained by the simulation in which the above broadband noise (broken line B) and the NZ sound (fine line A) are superimposed is almost the minimum value of 150. By setting the torsion angle 0 of the wings (40, 40,...) In the range from 270 ° to 270 °, the sound pressure level of noise can be reliably reduced.
また、 旋回流を考慮して上記広帯域騒音 (破線 B) と N Z音 (細線 A) と吹出音 とを重畳したシミュレーションによる実線 D力 ほぼ最低値となる 6 0 ° から 1 5 0 。 の範囲に翼 (40, 40, ···) の捩れ角 を設定することにより、 確実に全体騒音の音 圧レベルを低減することができる。 Further, the solid line D force obtained by superimposing the broadband noise (broken line B), the NZ sound (fine line A), and the blowing sound in consideration of the swirling flow has a substantially minimum value from 60 ° to 150 °. By setting the torsional angle of the wings (40, 40,...) Within the range, the sound pressure level of the overall noise can be reliably reduced.
また、 上記各ファン体 (30, 30, ···) の翼 (40, 40, ···) を、 翼形 (4S) が何れ の断面位置においても回転軸心 0に対して同一形状になるように形成したため、 空気 の流入角及び流出角が何れの断面位置でも同一にすること力できるので、 最適な流入 角及び流出角を保つことができ、 性能の低下を確実に防止することができる。 The blades (40, 40,...) Of each of the fan bodies (30, 30,...) Have the same shape with respect to the rotation axis 0 at any cross-sectional position of the airfoil (4S). Since the air inlet and outlet angles can be made the same at any cross-sectional position, the optimum inlet and outlet angles can be maintained and the performance can be reliably prevented from deteriorating. it can.
また、 上記 N Z音を低減することができるので、 舌部 (15) とクロスフローファ ン (20) との間隔を小さく設定することができる。 この結果、 同一回転数当たりの風 量を増加することができる。 Further, since the NZ sound can be reduced, the distance between the tongue (15) and the cross flow fan (20) can be set small. As a result, it is possible to increase the air volume per the same rotation speed.
また、 図 1 4に示すように、 サージング領域を小さくすることができるので、 全 体形状の薄形化を図ることができる。 つまり、 図 1 4の変ィ匕曲線 Xは、 舌部 (15) と クロスフローファン (20) との間隔を 7咖とした従来例を示し、 変化曲線 Yは、 舌部
(15) とクロスフローファン (20) との間隔を 3ranとした本実施形態 1を示している c そして、 この図 1 4から従来のサージング領域 S 1に比して本実施形態 1のサージン グ領域 S 2を小さくすることができ、 全体形状の薄形化を図ることができる。 更に、 図 1 6の曲線 Mは、 機械の抵抗特性を示し、 各変ィヒ曲線 X及び変化曲線 Yとの交点が 使用点となり、 従来に比して安定した領域で使用することができる。 尚、 本実施形態 1において、 翼 (40, 40, ···) の捩れ角 0を 3 6 0 ° までの範囲 に設定したが、 5 0 ° 以上、 つまり、 3 6 0。 以上であってもよく、 要するに干渉音 SW力く互いに相殺されて N Z音が低減されればよいものである。 一発明の実施の形態 2— Further, as shown in FIG. 14, since the surging area can be reduced, the overall shape can be made thinner. That is, the curve X in FIG. 14 shows a conventional example in which the distance between the tongue (15) and the cross flow fan (20) is 7 mm, and the curve Y is FIG. 14 shows the first embodiment in which the distance between (15) and the cross flow fan (20) is 3 ran. C From this FIG. 14, the surging of the first embodiment is compared with the conventional surging area S 1. The area S2 can be reduced, and the overall shape can be made thinner. Further, the curve M in FIG. 16 shows the resistance characteristics of the machine, and the intersection of each variation curve X and variation curve Y becomes a use point, and can be used in a more stable area than before. In the first embodiment, the torsion angle 0 of the wings (40, 40,...) Is set to a range up to 360 °, but is set to 50 ° or more, that is, 360. In other words, it is only necessary that the interference sound SW is canceled by each other and the NZ sound is reduced. Embodiment 2 of One Invention—
本実施形態 2は、 図 1 5に示すように、 前実施形態 1における各ファン体 (30, 30, ···) の翼 (40, 40, ···) 力連続していたのに代り、 各ファン体 (30, 30, ···) の 翼 (40, 40, ···) を不連続にしたものである。 つまり、 図 1 5 ( a ) は、 実施形態 1 のように翼 (40, 40, ···) 力連続するように各ファン体 (30, 30, ···) を配置したも のであって、 このファン体 (30, 30, ···) を①から⑩とすると、 本実施形態 2は、 図 1 5 (b) に示すように、 各ファン体 (30, 30, ···) を①、 ⑥、 ②、 ⑦、 ③、 ⑧、 ④、 ⑨、 ⑤及び⑩の順に配置したものである。 その他の構成及び作用 ·効果は、上記実施 形態 1と同様である。 In the second embodiment, as shown in FIG. 15, the wing (40, 40,...) Force of each fan body (30, 30,...) In the first embodiment is continuous. The wings (40, 40, ...) of each fan body (30, 30, ...) are discontinuous. In other words, FIG. 15 (a) shows the arrangement of the fan bodies (30, 30,...) So that the blades (40, 40,. If the fan bodies (30, 30,...) Are defined as ① to ⑩, the second embodiment will be described with reference to FIG. 15 (b). They are arranged in the order of ①, ⑥, ②, ⑦, ③, ⑧, ④, ⑨, ⑤ and ⑩. Other configurations, operations, and effects are the same as those in the first embodiment.
尚、 上記各ファン体 (30, 30, ···) の翼 (40, 40, ···) を不連続に配置するもの は、 本実施形態 2に限られるものではないことは勿論である。 一発明の実施の形態 3— The wings (40, 40,...) Of the fan bodies (30, 30,...) Arranged discontinuously are not limited to the second embodiment. . Embodiment 3 of the Invention 3—
本実施形態 3は、 図 1 6に示すように、 各翼 (40, 40, ···) にリブレツト (50, In the third embodiment, as shown in FIG. 16, each wing (40, 40,...) Has a rivet (50,
50, ···) を形成したものである。 このリブレツト (50, 50, ···) は、 各翼 (40, 40,
…) の正面である圧力面にのみ形成されており、 各翼 (40, 40, …) の内側縁 (42) から外側縁 (41) に亘つて形成されている。 50, ···). This rivet (50, 50,...) …) Is formed only on the pressure surface, which is the front of the wing, and extends from the inner edge (42) to the outer edge (41) of each wing (40, 40,…).
このリブレッ ト (50, 50, …) の方向は、 図 1 7に示すように、 翼 (40, 40, …) を直角に横断する方向に形成されている。 つまり、 該リブレツト (50, 50, …) は、 翼 (40, 40, …) の骨格線に沿って形成され、 各リブレツト (50, 50, …) の間隔が、 翼 (40, 40, …) の内側縁 (42) で最も狭く、 外側縁 (41) にいくに従って大きくな るように形成されている。 この結果、 空気の流れがリブレット (50, 50, …) に沿う ことになり、 翼 (40, 40) 間の圧力損失が低減し、 ファン効率の向上が図られること になる。 As shown in Fig. 17, the direction of the riblets (50, 50, ...) is formed so as to cross the wings (40, 40, ...) at right angles. That is, the rivets (50, 50,...) Are formed along the skeleton line of the wing (40, 40,...), And the interval between the winglets (50, 50,. ) Is narrowest at the inner edge (42) and becomes larger toward the outer edge (41). As a result, the air flow follows the riblets (50, 50,…), the pressure loss between the blades (40, 40) is reduced, and the fan efficiency is improved.
このリブレット (50, 50, …) は、 境界層の粘性底層に対応した深さに形成され ている。 つまり、 この境界層の粘性底層における流体の流れは、 縦渦の運動となり、 且つ縦渦は多くの場合一対となって運動する。 リブレット (50, 50, …) は、 横方向 の流れを阻止するように働くため、 互いに逆回転する縦渦対力近付く際に発生する二 ャゥォ一ル ·バーストがそれ以前に早まって発生し、 吹き下ろしの強度が弱まると共 に、 その持続時間も減少する。 この結果、 リブレツト (50, 50, …) の表面上の乱流 摩擦抵抗が減少することになる。 These riblets (50, 50, ...) are formed at a depth corresponding to the viscous bottom layer of the boundary layer. That is, the flow of fluid in the viscous bottom layer of the boundary layer becomes a motion of a vertical vortex, and the vertical vortex often moves as a pair. The riblets (50, 50,…) act to block lateral flow, so that a double burst, which occurs when approaching longitudinal vortex counterforce rotating in opposite directions, prematurely occurs, As the strength of the downwash decreases, its duration also decreases. As a result, the turbulent frictional resistance on the surface of the rivets (50, 50,…) is reduced.
尚、 上記翼 (40, 40, …) の背面側においては、 流体の剥離現象が起こるので、 リブレット (50, 50, …) を形成すると抵抗力増大することになる。 On the back side of the wings (40, 40, ...), a fluid separation phenomenon occurs, so that the formation of riblets (50, 50, ...) increases the resistance.
したがって、 本実施形態 3によれば、 翼 (40, 40, …) の圧力面にのみリブレツ ト (50, 50, …) を形成するようにしたために、乱流摩擦抵抗力《減少することができ るので、 圧力損失を低減することができ、 ファン効率の向上を図ることができると共 に、 上記翼 (40, 40, …) の捩れ形状と相俟って、 より騒音の低減を図ることができ また、 上記翼 (40, 40, …) の背面側にはリブレツト (50, 50, …) を形成しな いので、 背面に生ずる流体の剥離現象による抵抗の増大を確実に抑制することができ
る c 一発明の実施の形態 4一 Therefore, according to the third embodiment, since the rivlets (50, 50,...) Are formed only on the pressure surfaces of the wings (40, 40,...), The turbulent frictional resistance < As a result, pressure loss can be reduced, fan efficiency can be improved, and noise can be further reduced in conjunction with the twisted shape of the wings (40, 40, ...). Also, no rivets (50, 50,…) are formed on the back side of the wings (40, 40,…), so that an increase in resistance due to the fluid separation phenomenon occurring on the back surface is reliably suppressed. It is possible C Embodiment 4 of the Invention
図 1 8及び図 1 9に示すように、 本実施形態 4における空気調和装置の室外機 (60) は、 縦置型の室外機であって、 ケ一シング (70) の上段に空気通路 (7A) が、 下段に機器の収納空間 (7B) 力形成されて構成されている。 As shown in FIGS. 18 and 19, the outdoor unit (60) of the air conditioner according to Embodiment 4 is a vertical outdoor unit, and has an air passage (7A) at the upper stage of the casing (70). ) Is formed in the lower part of the equipment storage space (7B).
上記ケーシング (70) の上段には、 1側面から隣り合う側面に亘つて上下方向に 延びる平面視ほぼ L字状の吸込口 (71) 力形成されると共に、 他側面の隅角部には上 下方向に延びる吹出口 (72) 力形成され、 上記空気通路 (7A) が吸込口 (71) から吹 出口 (72) に亘つてケーシング (70) 内に形成されている。 The upper stage of the casing (70) has a substantially L-shaped suction port (71) extending vertically from one side surface to an adjacent side surface, and has an upper surface formed at the corner of the other side surface. A downwardly extending outlet (72) is formed with force, and the air passage (7A) is formed in the casing (70) from the inlet (71) to the outlet (72).
上記空気通路 (7A) には、 吸込口 (71) に近接して上下方向に延びる平面視ほぼ L字状の熱交換器 (61) 力配置されると共に、 吹出口 (72) に近接してクロスフロー ファン (20) 力配置される一方、 上記ケーシング (70) の内部には、 該ケーシング (70) の内部を低圧側と高圧側とに仕切る舌部 (23) がクロスフローファン (20) に 近接して形成されている。 、 In the air passage (7A), a heat exchanger (61) having a substantially L-shape in a plan view and extending in the vertical direction is disposed in proximity to the suction port (71), and is disposed close to the outlet (72). While the crossflow fan (20) is arranged in force, a tongue (23) for partitioning the inside of the casing (70) into a low pressure side and a high pressure side is provided inside the casing (70). It is formed close to ,
また、 上記吹出口 (72) には、 複数枚のグリル (74, 74, ···) が上下方向に所定 間隔を存して平行に配列されている。 該グリル (74, 74, ···) は、 内側から外側に向 つて上方に傾斜して空気吹出方向 AF力上向きになるようにしている。 つまり、 上記グ リル (74, 74, ···) は、 吹出空気力〈上吹き流になるように構成されている。 A plurality of grills (74, 74,...) Are arranged in the outlet (72) in parallel at predetermined intervals in the vertical direction. The grilles (74, 74,...) Are inclined upward from the inside to the outside so that the AF force is upward in the air blowing direction. In other words, the above-mentioned grills (74, 74, ...) are configured so that the blown air force <upstream.
そして、 上記クロスフ口一ファン (20) を回転すると、 室外空気が吸込口 (71) よりケーシング (70) に吸い込まれ、 熱交換器 (61) で冷媒と熱交換し後、 室外空気 がクロスフローファン (20) を通って吹出口 (72) より外部に吹き出されることにな When the cross-floor fan (20) is rotated, the outdoor air is sucked into the casing (70) from the suction port (71) and exchanges heat with the refrigerant in the heat exchanger (61). It will be blown out from the outlet (72) through the fan (20).
また、 上記収納空間 (7B) には圧縮機 (62) が設置される一方、 該圧縮機 (62)
は、 アキュムレータ (63) 力接続されると共に、 図示しないが、 冷媒回路が接続され ており、 該冷媒回路が上記熱交換器 (61) に接続されている。 尚、 上記収納空間 (7B) には、 圧縮機 (62) の制御等を行う電装品 (64) が収納されている。 上記クロスフローファン (20) は、 上述した図 2〜図 5に示す実施形態 1のクロ スフ口一ファン (20) と同一に構成されており、 いわゆる連を構成するファン体 (30, 30, ···) 力 <回転軸心方向に複数連結されて構成され、 上下方向に配置されている。 こ の各ファン体 (30, 30, ·'·) は、 両側の仕切板 (31, 31) の間に翼列を構成する複数 の翼 (50, 50, ···) カ调方向に配列されて構成されている。 A compressor (62) is installed in the storage space (7B), while the compressor (62) Is connected to an accumulator (63) and connected to a refrigerant circuit (not shown), and the refrigerant circuit is connected to the heat exchanger (61). The storage space (7B) stores electrical components (64) for controlling the compressor (62) and the like. The cross-flow fan (20) has the same configuration as the cross-flow fan (20) of the first embodiment shown in FIGS. 2 to 5 described above, and includes a fan body (30, 30, 30, ····) Force <Composed of multiple units in the direction of the rotation axis and arranged vertically. Each of these fan bodies (30, 30, ') is arranged in the direction of the wings (50, 50, ...) constituting a cascade between the partition plates (31, 31) on both sides. It is configured.
上記ファン体 (30, 30, ···) は、 例えば、 6連が接続されて本体 (21) を構成し、 該本体 (21) の両側に位置する仕切板 (31, 31) に回転軸 (22) 力《取り付けられてお り、 該回転軸 (22) の上端にモータ (23) が接続されている。 また、 上記ファン体 (30, 30, ···) は、 複数枚の翼 (40, 40, ···) カ调方向に配列された円形翼列に形成 されている。 The fan body (30, 30,...) Is connected to, for example, six stations to form a main body (21), and a partition plate (31, 31) located on both sides of the main body (21) is provided with a rotating shaft. (22) A force is attached, and a motor (23) is connected to the upper end of the rotating shaft (22). The fan bodies (30, 30,...) Are formed in a circular cascade arranged in a plurality of blades (40, 40,...).
更に、 上記クロスフローファン (20) におけるファン体 (30, 30, ···) の翼 (40, 40, ···) は、 回転軸心に直交する真直前方に対して空気の吹出方向力斜め上方に傾斜 するように、 翼 (40, 40, ···) の一方の側端面から他方の側端面にいくに従って回転 軸心を中心に捩れた捩れ翼に形成されている。 Furthermore, the blades (40, 40,...) Of the fan body (30, 30,...) In the above cross flow fan (20) have the air blowing direction with respect to the direction immediately before the rotation axis. The wings (40, 40, ...) are formed into twisted wings that are twisted about the axis of rotation from one side end face to the other side end face so as to incline diagonally upward.
つまり、 上記ファン体 (30, 30, ···) は、 上述した実施形態 1と同様に、 3 5枚 の翼 (40, 40, ···) が周方向に配列された円形翼列に形成されており、 図 3に示すよ うに、 各翼 (40, 40, ···) のピッチ P力異なる不等ピッチに配列されている。 例えば、 上記翼 (40, 40, ···) のピッチ Pは、 9. 4。 から 1 1. 1 ° の範囲で適宜設定され ている。 In other words, the fan bodies (30, 30,...) Have a circular cascade in which 35 blades (40, 40,...) Are arranged in the circumferential direction, as in the first embodiment. As shown in Fig. 3, the wings (40, 40, ...) are arranged at unequal pitches with different pitch P forces. For example, the pitch P of the above wings (40, 40, ...) is 9.4. It is set as appropriate within the range of 11.1 ° to 11.1 °.
また、 上記翼 (40, 40, ···) は、 図 5に示すように、 外側縁 (51) から内側縁 (52) に亘つて所定の反りを有する翼形翼に形成され、 該外側縁 (51) 及び内側縁
(52) は、 所定の円弧の丸み形状に形成されている。 The wings (40, 40,...) Are formed into airfoil wings having a predetermined curvature from the outer edge (51) to the inner edge (52), as shown in FIG. Rim (51) and inner rim (52) is formed in a round shape of a predetermined arc.
上記各ファン体 (30, 30, ·") の翼 (40, 40, ··') は、 上述した図 3に示すよう に、 翼 (40, 40, ···) の一方の側端面から他方の側端面にいくに従って回転軸心 0を 中心に捩れた捩れ形状に形成され、 回転軸心 0と直交する横断面の翼形 (4S) が何れ の断面位置においても回転軸心〇に対して同一形状となるように形成されている。 つ まり、 上記翼 (40, 40, ···) は、 回転軸心 0を中心にしたスパイラル状に捩れている と共に、 空気の流入角と流出角とが何れの断面位置においても等しくなるように捩れ ている。 The wings (40, 40,...) Of each fan body (30, 30,...) Are, as shown in FIG. 3 described above, from one side end face of the wings (40, 40,...). The airfoil (4S) with a cross section orthogonal to the rotation axis 0 is formed in a torsion shape that is twisted about the rotation axis 0 as it goes to the other side end surface. In other words, the wings (40, 40, ...) are twisted in a spiral around the rotation axis 0, and the air inflow angle and outflow angle It is twisted so that the angle is the same at any cross-sectional position.
また、 上記各ファン体 (30, 30, ··') の翼 (40, 40, ···) は、 隣り合うファン体 (30, 30) の翼 (40, 40, ···) が連続になるように形成されると共に、 翼 (40, 40, ···) の捩れ方向が同一方向に形成され、 例えば、 時計回り方向に形成されている。 The wings (40, 40,...) Of each fan body (30, 30,...) Consist of the wings (40, 40,...) Of adjacent fan bodies (30, 30). And the torsional directions of the wings (40, 40, ...) are formed in the same direction, for example, clockwise.
そして、 上記翼 (40, 40, ···) の捩れ角は、 本体 (21) の全長における 1側端か ら他側端まで延長された状態で捩れ角が、 例えば、 5 0 ° 以上で 3 6 0 ° 以下になる ように翼形状力形成されている。 例えば、 本体 (21) の左端から右端各ファン体 (30, 30, ···) の翼 (40, 40, ···) を繋ぐと、 この連続線が一回転するように翼 (40, 40, ···) が捩れている。 The torsion angle of the wings (40, 40,...) Is, for example, 50 ° or more when the torsion angle is extended from one end to the other end in the entire length of the main body (21). The wing shape force is formed so as to be 360 ° or less. For example, if the wings (40, 40,...) Of each fan body (30, 30,...) Are connected from the left end of the body (21) to the right end, the wings (40, 40, ···) is twisted.
一方、 上記クロスフローファン (20) を通り抜ける空気が、 回転軸心 0に対して 斜め上方に吹き出すので、 該クロスフローファン (20) は、 吹出口 (72) と平行に設 置され、 つまり、 上下方向に真直に設置されている。 そこで、 上記翼 (40, 40, ···) の捩れ角と、 空気の吹出角度、 つまり、 水平方向 に対する上吹出角度は、 図 2 1に示す通りとなる。 この図 2 1において、 翼 (40, 40, ···) の捩れ角が零の場合、 従来の回転軸心 0と平行な直線翼となり、 空気を水平方向 に吹き出すことになる。 そして、 上記翼 (40, 40, ···) の捩れ角 0力大きくなるに従 つて特性曲線 Eに沿って上吹出角度カ大きくなる。
一方、 上記翼 (40, 40, …) の捩れ角 0と、 騒音との関係は、 図 2 2に示す通り となる。 この図 2 2は、 翼 (40, 40, …) が本体 (21) の全長の 1側端から他側端ま で延長された状態で捩れ角 Sが 1 8 0 ° の場合の騒音を基準値として零に設定してい る (図 2 2 F参照) 。 更に、 上記グリル (74, 74, …) は、 図 2 3及び図 2 4に示す ように、 水平方向に対して傾斜角 yが 2 5 ° に設定されている。 On the other hand, since the air passing through the cross flow fan (20) blows obliquely upward with respect to the rotation axis 0, the cross flow fan (20) is installed in parallel with the air outlet (72). It is installed straight up and down. Therefore, the twist angle of the wings (40, 40, ...) and the air blowing angle, that is, the upper blowing angle with respect to the horizontal direction, are as shown in Fig. 21. In FIG. 21, when the torsion angle of the wing (40, 40,...) Is zero, it becomes a conventional straight wing parallel to the rotation axis 0, and blows air in the horizontal direction. Then, as the torsion angle of the wings (40, 40,...) Increases with the zero force, the upper blowing angle increases along the characteristic curve E. On the other hand, the relationship between the torsion angle 0 of the wings (40, 40,...) And noise is as shown in FIG. Figure 22 shows the noise level when the torsional angle S is 180 ° with the wings (40, 40,…) extended from one end to the other end of the main body (21). The value is set to zero (see Figure 22F). Further, as shown in FIGS. 23 and 24, the grille (74, 74,...) Has an inclination angle y of 25 ° with respect to the horizontal direction.
そして、 この捩れ角 0が 1 8 0 ° より大きくなるに従って騒音も大きくなる一方、 逆に、 捩れ角 0が 1 8 0 ° より小さくなつても騒音が大きくなる。 すなわち、 この捩 れ角 0が 1 8 0。 より大きくなると、 ファン性能自体が低下して騒音が大きくなる一 方、 この捩れ角 Sが 1 8 0 ° より小さくなると、 グリル (74, 74, …) の表面で剥離 現象等が生じ、 グリル (74, 74, …) が抵抗となって騒音が増大することになる。 The noise increases as the torsion angle 0 becomes larger than 180 °. On the other hand, the noise increases as the torsion angle 0 becomes smaller than 180 °. That is, this twist angle 0 is 180. If the twisting angle S is smaller than 180 °, the fan performance itself will decrease and the noise will increase. If the twist angle S is smaller than 180 °, the surface of the grill (74, 74,…) will be peeled off, etc. 74, 74,…) becomes resistance and noise increases.
上記図 2 1及び図 2 2から、 室外機 (60) においては、 吹出角度と騒音の面から、 クロスフローファン (20) の翼 (40, 40, …) の捩れ角 0は、 翼 (40, 40, …) が本 体 (21) の全長における 1側端から他側端まで延長された状態で、 1 8 0 ° に設定す ること力望ましい。 According to Figs. 21 and 22 above, in the outdoor unit (60), the torsion angle 0 of the blade (40, 40,…) of the cross flow fan (20) is , 40,…) are extended from one side end to the other side of the entire length of the main body (21), and it is desirable to set 180 °.
特に、 図 2 4に示すように、 クロスフローファン (20) によって空気の吹出角度 が上向きになり、 空気の案内を従来に比してさほど要しなくなるので、 グリル (74, 74, …) の長さ Lsを、 一般的な図 2 3の場合より約半分の長さ Lsにすることができる c この結果、 グリル (74, 74, …) の表面における空気の剥離が少なくなり、 騒音の低 減が図られることになる。 一室外機の動作一 In particular, as shown in Fig. 24, the cross-flow fan (20) raises the air blowing angle so that air guidance is not required much more than before, so that the grills (74, 74,…) The length Ls can be reduced to about half the length Ls compared to the general case of Fig. 23. c As a result, air separation on the grill (74, 74,…) surface is reduced, and noise is reduced. It will be reduced. Operation of one outdoor unit
次に、 上記室外機 (60) の動作について説明する。 Next, the operation of the outdoor unit (60) will be described.
上記クロスフローファン (20) を回転駆動すると、 室外空気が吸込口 (71) より ケーシング (70) に吸い込まれ、 熱交換器 (61) で冷媒と熱交換した後、 空気通路 (7A) を流れ、 その後、 上記室外空気はクロスフローファン (20) を通って吹出口
(72) よりケ一シング (70) の外部に吹き出される。 When the cross flow fan (20) is driven to rotate, outdoor air is sucked into the casing (70) from the suction port (71), exchanges heat with the refrigerant in the heat exchanger (61), and then flows through the air passage (7A). After that, the outdoor air passes through the cross flow fan (20) and blows out (72) is blown out of the casing (70).
その際、 上記クロスフローファン (20) を通り抜けた吹出空気は、 該クロスフ口 —ファン (20) の翼 (40, 40, ···) が捩れ翼に形成されているので、 吹出方向 AFが斜 め上方になる。 更に、 この吹出空気は、 グリル (74, 74, ···) によって空気吹出方向 AFが偏向されるので、 より斜め上方になってケ一シング (70) の外部に吹き出すこと になる。 At this time, the blow-off air passing through the cross flow fan (20) is blown in the direction AF because the wings (40, 40,...) Of the cross-fout opening—fan (20) are formed as twisted wings. Sloping upward. Furthermore, since the air blowing direction AF is deflected by the grilles (74, 74,...), The blown air is blown more obliquely upward and out of the casing (70).
—実施形態 1の効果一 —Effect of Embodiment 1
以上のように、 本実施形態 1によれば、 捩れ翼 (40, 40, ···) のクロスフローフ アン (20) を設けるようにしたので、 空気吹出方向 AFを確実に斜め上方にすることが できるので、 グリル (74, 74, ···) による偏向分を少なくすることができる。 この結 果、 上記グリル (74, 74, ···) による吹出空気の圧力損失を低減することができるの で、 ファン効率の向上等を図ることができる。 As described above, according to the first embodiment, the crossflow fans (20) of the twisted blades (40, 40,...) Are provided, so that the air blowing direction AF is set obliquely upward. Therefore, the amount of deflection due to the grilles (74, 74,...) Can be reduced. As a result, the pressure loss of the blown air by the grills (74, 74,...) Can be reduced, so that the fan efficiency can be improved.
また、 上記グリル (74, 74, ···) の表面における空気流れの乱れを低減すること ができるので、 騒音の発生源を抑制することができ、 静音化を図ることができる。 Also, since the turbulence of the air flow on the surfaces of the grills (74, 74,...) Can be reduced, noise sources can be suppressed and noise can be reduced.
また、 上記クロスフ口一ファン (20) とグリル (74, 74, ···) とによって空気吹 出方向 AFを偏向させるので、 十分な上吹き流にすることができる。 この結果、 吹出空 気が吸込口 (71) に回り込むショートサーキットを確実に防止することができると共 に、 吹出空気力人に直接に当らないようにすることができ、 し力、も、 吹出口 (72) に 近接している壁等の障害物の影響を受けないようにすることができる。 In addition, since the air blowing direction AF is deflected by the cross opening fan (20) and the grills (74, 74,...), A sufficient upward flow can be obtained. As a result, it is possible to reliably prevent a short circuit in which the blown air flows around the intake port (71), and to prevent the blown air from directly hitting a power person. It can be protected from obstacles such as walls that are close to the exit (72).
また、 捩れ翼 (40, 40, ···) のクロスフローファン (20) を設けるようにしたの で、 グリル (74, 74, ···) による吹出空気の圧力損失を低減することができると同時 に、 静音化を図ることができる。 In addition, since the cross flow fan (20) of the twisted blades (40, 40, ...) is provided, the pressure loss of the air blown out by the grill (74, 74, ...) can be reduced. At the same time, noise can be reduced.
また、 上記クロスフローファン (20) を上下に真直に設置することができるので、 設置スペースを小さくすることができ、 小型化を図ることができると共に、組み立て
作業等の簡略化を図ることができる。 In addition, since the cross flow fan (20) can be installed vertically up and down, the installation space can be reduced, and the size can be reduced. Work and the like can be simplified.
また、 上記クロスフローファン (20) を捩れ翼 (40, 40, …) で構成しているの で、 干渉音が翼 (40, 40, …) のピッチを周期とする正弦波として発生することにな るが、 各翼 (40, 40, …) で干渉音の位相がずれるので、 各干渉音が打ち消し合い、 N Z音を低減することができ、 騒音の音圧レベルを低減することができる。 Since the cross flow fan (20) is composed of twisted blades (40, 40, ...), the interference sound is generated as a sine wave having a period of the pitch of the blades (40, 40, ...). However, since the phases of the interfering sounds are shifted from each wing (40, 40,…), the interfering sounds cancel each other out, the NZ sound can be reduced, and the sound pressure level of the noise can be reduced. .
また、 上記各ファン体 (30, 30, …) の翼 (40, 40, …) を、 翼形 (4S) が何れ の断面位置においても回転軸心 0に対して同一形状になるように形成したため、 空気 の流入角及び流出角が何れの断面位置でも同一にすることができるので、 最適な流入 角及び流出角を保つことができ、 性能の低下を確実に防止することができる。 Also, the blades (40, 40,...) Of the fan bodies (30, 30,...) Are formed so that the airfoil (4S) has the same shape with respect to the rotation axis 0 at any cross-sectional position. As a result, the inflow angle and outflow angle of the air can be the same at any cross-sectional position, so that the optimal inflow angle and outflow angle can be maintained, and a decrease in performance can be reliably prevented.
また、 上記各ファン体 (30, 30, …) の翼 (40, 40, …) が捩れていない場合 (捩れ角が零) に比して、 翼 (40, 40, …) を捩り形状にしたために、 翼弦長さを増 加させることができるので、 回転数当りの風量を増加せることができることから、 性 能の向上を図ることができる。 In addition, the wings (40, 40,…) of each fan body (30, 30,…) have a twisted shape compared to the case where the wings (40, 40,…) are not twisted (the twist angle is zero). As a result, the chord length can be increased, and the air volume per rotation can be increased, so that the performance can be improved.
また、 上記翼 (40, 40, …) は、 外側縁 (51) 及び内側縁 (52) が円弧状になる ので、 図 2 7及び図 2 8に示す従来の傾斜翼のファン体 (a ) では鼓状となって中央 での外径が小さくなるのに対し、 ファン体 (30, 30, …) の外径が両側端に亘つて等 しくすることができる。 この結果、 ファン体 (30, 30, …) の中央部の周速度を従来 に比して速くすることができ、 性能の向上を図ることができる。 特に、 上記ファン体 (30, 30, …) の翼 (40, 40, …) の捩れ角 0を 1 8 0 ° に 設定することにより、 吹出空気を確実に上吹き流にすることができると同時に、 この 範囲のほぼ全体に亘つてシミュレーションによる騒音の音圧レベル (図 9参照) を最 小にすることができる。 Also, since the outer edge (51) and the inner edge (52) of the wings (40, 40,...) Are arc-shaped, the fan body (a) of the conventional inclined wing shown in FIGS. In this case, the outer diameter at the center becomes smaller, while the outer diameter of the fan body (30, 30, ...) can be made equal on both sides. As a result, the peripheral speed at the center of the fan body (30, 30,...) Can be made higher than before, and the performance can be improved. In particular, by setting the torsion angle 0 of the wings (40, 40,…) of the fan body (30, 30,…) to 180 °, it is possible to ensure that the blown air can be made to be the upper stream. At the same time, the sound pressure level of the simulated noise (see Figure 9) can be minimized over almost the entire range.
また、 上記翼 (40, 40, …) の捩れ角 0を 1 8 0 ° に設定する場合の他、 6 0 ° 以上の範囲に翼 (40, 40, …) の捩れ角 Sを設定した場合には、 吹出空気を確実に上
吹き流にすることができると同時に、 この範囲のほぼ全体に亘つてシミユレーシヨン による騒音の音圧レベル (図 9参照) を低減することができる。 In addition to the case where the twist angle 0 of the wings (40, 40,…) is set to 180 °, the case where the twist angle S of the wings (40, 40,…) is set to a range of 60 ° or more. To ensure that the air At the same time, the sound pressure level (see Fig. 9) of the simulation noise can be reduced over almost the entire range.
また、 1 2 0 ° から 3 6 0 ° の範囲に翼 (40, 40, ···) の捩れ角 0を設定した場 合には、 吹出空気を確実に上吹き流にすることができると同時に、 シミュレーション による広帯域騒音と N Z音とを重畳した音圧レベル (図 9参照) がほぼフラットとな り、 さらに騒音の音圧レベルを低減することができる。 Also, if the twist angle of the blades (40, 40, ...) is set to 0 in the range of 120 ° to 360 °, it can be ensured that the blown air can be made into the upper stream. At the same time, the sound pressure level (see Fig. 9) obtained by superimposing the broadband noise and the NZ sound according to the simulation becomes almost flat, and the sound pressure level of the noise can be further reduced.
また、 1 5 0 ° から 2 7 0。 の範囲に翼 (40, 40, ···) の捩れ角 0を設定した場 合には、 吹出空気を確実に上吹き流にすることができると同時に、 シミュレーション による広帯域騒音と N Z音とを重畳した音圧レベル (図 9参照) がほぼ最低値となり、 確実に騒音の音圧レベルを低減することができる。 Also from 150 ° to 270 °. When the torsion angle of the wings (40, 40,...) Is set to 0 in the range of, the blown air can be surely made to be the upper stream, and at the same time, the broadband noise and the NZ sound by simulation are reduced. The superimposed sound pressure level (see Fig. 9) becomes almost the lowest value, and the sound pressure level of noise can be reliably reduced.
また、 6 0。 から 1 5 0 ° の範囲に翼 (40, 40, ···) の捩れ角 0を設定した場合 には、 吹出空気を確実に上吹き流にすることができると同時に、 旋回流を考慮して上 記広帯域騒音と N Z音と吹出音とを重畳したシミュレーションによる騒音の音圧レべ ル (図 9参照) がほぼ最低値となり、 確実に全体騒音の音圧レベルを低減することが できる。 Also 60. If the torsion angle of the blades (40, 40, ...) is set to 0 in the range of 150 ° to 150 °, the blown air can be surely turned into the upward flow and the swirl flow must be considered. The sound pressure level of the noise (see Fig. 9) obtained by superimposing the broadband noise, the NZ sound, and the blowing sound is almost the lowest, and the sound pressure level of the overall noise can be reliably reduced.
また、 上記 N Z音を低減することができるので、 舌部 (75) とクロスフローファ ン (20) との間隔を小さく設定することができる。 この結果、 同一回転数当たりの風 量を増加することができる。 Further, since the NZ sound can be reduced, the distance between the tongue (75) and the cross flow fan (20) can be set small. As a result, it is possible to increase the air volume per the same rotation speed.
また、 サージング領域を小さくすることができるので、 全体形状の薄形化を図る ことができると共に、 安定した領域で使用することができる。 In addition, since the surging area can be reduced, the overall shape can be reduced in thickness, and it can be used in a stable area.
—発明の実施の形態 5— —Embodiment 5—
本実施形態 5は、 図 2 5に示すように、 上記実施形態 4のクロスフローファン (20) を備える一方、 グリル (74, 74, ···) に代えてメッシュ状の保護網 (78) を吹 出口 (72) に設けるようにしたものである。
つまり、 クロスフローファン (20) 自体によって空気吹出方向 AFを上向きに変更 することができるので、 グリル (74, 74, …) を省略するようにしたものである。 特 に、 捩れ翼 (40, 40, …) であるので、 捩れ角を大きくすることによって空気吹出方 向 AFの偏向角を大きくすることができることから、 グリル (74, 74, …) を省略して 保護網 (78) を設けるようにしたものである。 この結果、 構造の簡素化を図ることが できる。 その他の構成並びに作用効果は実施形態 4と同様である。 一発明の実施の形態 6— As shown in FIG. 25, the fifth embodiment includes the cross flow fan (20) according to the fourth embodiment, while replacing the grilles (74, 74,...) With a mesh-shaped protection net (78). At the outlet (72). In other words, the airflow direction AF can be changed upward by the cross flow fan (20) itself, so that the grills (74, 74,…) are omitted. In particular, since the torsion blades (40, 40,…) are used, the deflection angle of the air blowing direction AF can be increased by increasing the torsion angle. Therefore, the grills (74, 74,…) are omitted. A protection network (78) is provided. As a result, the structure can be simplified. The other configuration and operation and effect are the same as those of the fourth embodiment. Embodiment 6 of the Invention
本実施形態 6は、 図 2 6に示すように、 上記実施形態 4のクロスフローファン (20) を備える一方、 ケーシング (70) にディフューザ部 (77, 77) を形成するよう にしたものである。 In the sixth embodiment, as shown in FIG. 26, the cross flow fan (20) of the fourth embodiment is provided, while the diffuser portions (77, 77) are formed in the casing (70). .
具体的に、 ケ一シング (70) における吹出口 (72) の上部壁及び下部壁であるデ ィフューザ部 (77, 77) は、 前方の外側に向って上方に傾斜した形状に形成され、 つ まり、 空気吹出方向 AFに沿う形状に形成されている。 Specifically, the diffuser portions (77, 77), which are the upper wall and the lower wall of the outlet (72) in the casing (70), are formed in a shape that is inclined upward and outward toward the front. That is, it is formed in a shape that follows the air blowing direction AF.
した力つて、 上記クロスフローファン (20) で偏向された吹出空気が上部のディ フユ一ザ部 (77) に衝突することがなく、 スムーズに流れることになり、 圧力損失の 低減及び騒音の抑制を図ることができる。 その他の構成並びに作用効果は実施形態 4 と同様である。 一発明の他の実施の形態一 As a result, the blown air deflected by the cross flow fan (20) flows smoothly without colliding with the upper diffuser (77), reducing pressure loss and suppressing noise. Can be achieved. The other configuration and operation and effect are the same as those of the fourth embodiment. Another embodiment of the invention
上記実施形態 1〜実施形態 6は、 翼 (30, 30, …) の捩れ方向を時計回り方向に 設定したが、 本発明は、 翼 (30, 30, …) の捩れ方向を反時計回り方向に設定しても よい。 In the first to sixth embodiments, the torsional direction of the wings (30, 30,...) Is set in the clockwise direction. However, in the present invention, the torsional direction of the wings (30, 30,. May be set.
また、 実施形態 1〜実施形態 4の各ファン体 (30, 30, …) は、 翼 (30, 30, …) の捩れ方向を同一方向に設定したが、 請求項 1〜1 5記載の発明では、 翼 (30, 30,
…) の捩れ方向力異なる 2種類のファン体 (30, 30, …) で構成するようにしてもよ い。 例えば、 翼 (30, 30, …) の捩れ方向を時計回り方向に設定したファン体 (30, 30, …) と、 翼 (30, 30, …) の捩れ方向を反時計回り方向に設定したファン体 (30, 30, …) と交互に配置するようにしてもよい。 これによつて旋回流の抑制を図ること ができる。 In each of the fan bodies (30, 30,...) Of the first to fourth embodiments, the twist direction of the wings (30, 30,...) Is set to the same direction. Then, the wings (30, 30, …) May be composed of two types of fan bodies (30, 30,…) with different torsional forces. For example, the torsion direction of the wings (30, 30,…) is set to the clockwise direction, and the torsion direction of the wings (30, 30,…) is set to the counterclockwise direction. The fan bodies (30, 30, ...) may be arranged alternately. As a result, the swirling flow can be suppressed.
また、 上記ファン体 (30, 30, …) の翼 (30, 30, …) を等ピッチにしてもよく、 その際、 翼 (40, 40, …) の捩れ角は、 翼 (40, 40, …) が本体 (21) の 1側端から 他側端まで延長された状態で翼 (40, 40, …) の 1ピッチに対応させた捩れ形状に形 成する。 又は、 翼 (40, 40, …) の捩れ角は、 ファン体 (30, 30, …) の 1側端から 他側端までで翼 (40, 40, …) の 1ピッチに対応させた捩れ形状に形成する。 これに よって、 干渉音 SWを相殺させることができ、 N Z音の低減を図ることができる。 特に、 翼 (40, 40, …) のピッチが同じであるので、 性能の向上を図ることができる。 Further, the wings (30, 30,…) of the fan body (30, 30,…) may be arranged at the same pitch, and the torsion angle of the wings (40, 40,…) ,…) Extend from one end of the main body (21) to the other end to form a twisted shape corresponding to one pitch of the wings (40, 40,…). Or the torsion angle of the wing (40, 40,…) is from the one end of the fan body (30, 30,…) to the other end, corresponding to one pitch of the wing (40, 40,…). Form into shape. As a result, the interference sound SW can be offset, and the NZ sound can be reduced. In particular, the pitch of the wings (40, 40, ...) is the same, so that performance can be improved.
また、 各実施形態における翼 (40, 40, …) は、 翼形 (4S) が何れの断面位置に おいても回転軸心 0に対して同一形状になるように形成した力^ 請求項 1及び請求項 1 6に係る発明では、 各ファン体 (30, 30, …) の翼 (40, 40, …) は、 各断面位置 における翼形 (4S) が異なるように形成してもよく、 流入角及び流出角が異なる捩れ 形状に形成してもよい。 つまり、 両側の仕切板 (31, 31) の間で所定角度だけ捩れた 形状であって、 翼 (40, 40, …) の両側端の間で流入角及び流出角が異なる捩れ形状 であってもよく、 要するに、 干渉音力互いに打ち消し合うようにすればよい。 Further, the wings (40, 40, ...) in each embodiment have a force formed such that the airfoil (4S) has the same shape with respect to the rotation axis 0 at any cross-sectional position. In the invention according to claim 16, the blades (40, 40,...) Of each fan body (30, 30,...) May be formed so that the blade shape (4S) at each cross-sectional position is different. The inflow angle and the outflow angle may be formed in different twist shapes. That is, the shape is twisted by a predetermined angle between the partition plates (31, 31) on both sides, and the inflow angle and the outflow angle are different between the both ends of the wing (40, 40, ...). In short, the interference powers should cancel each other out.
また、 本各実施形態は、 空気調和装置 (10) について説明したが、 請求項 1〜請 求項 1 5記載の発明のクロスフローファン (20) は各種の送風機として適用すること ができる。 Further, in each of the embodiments, the air conditioner (10) has been described. However, the crossflow fan (20) according to the invention described in claims 1 to 15 can be applied to various types of blowers.
また、 請求項 1 6〜3 1記載の発明では、 室外機 (60) における熱交換器 (61) 等の構造は、 実施形態に限られるものではない。
[ ¾H±の禾 ij用可能性 ] In the inventions of claims 16 to 31, the structure of the outdoor unit (60) such as the heat exchanger (61) is not limited to the embodiment. [Possibility of ± H ± for ij]
以上のように、 本発明のクロスフローファンは、 静音化が望まれる空気調和装置 などに有用であり、 特に、 N Z音の低減カ望まれる機器類に適している。 また、 本発 明の空気調和装置の室外機は、 吹出空気を上向きにしたい場合に有用である。
As described above, the crossflow fan of the present invention is useful for an air conditioner or the like where noise reduction is desired, and is particularly suitable for equipment where reduction of NZ sound is desired. In addition, the outdoor unit of the air conditioner of the present invention is useful when the blown air needs to be directed upward.
Claims
1. 回転軸心方向に延びる複数枚の翼 (40, 40, ···) を周方向に配列して成るファ ン体 (30, 30, ···) が回転軸心方向に複数個配置されているクロスフ口一ファンにお いて、 1. A plurality of fan bodies (30, 30,...) Consisting of a plurality of blades (40, 40,...) Extending in the rotation axis direction arranged in the circumferential direction are arranged in the rotation axis direction In the Crossfloor Fan
上記翼 (40, 40, ···) は、 該翼 (40, 40, ···) の一方の側端面から他方の側端面 にいくに従って回転軸心 0を中心に捩れた捩れ形状に形成されている The wings (40, 40, ...) are formed in a twisted shape that is twisted about the rotation axis 0 as going from one side end face to the other side end face of the wings (40, 40, ...). Has been
ことを特徵とするクロスフローファン。 A cross-flow fan that specializes in:
2. 請求項 1記載のクロスフローファンにおいて、 2. The cross-flow fan according to claim 1,
翼 (40, 40, ···) は、 回転軸心 0と直交する横断面の翼形 (4S) が何れの断面位 置においても回転軸心 0に対して同一形状となるように捩れた捩れ形状に形成されて いる The wings (40, 40, ...) are twisted so that the airfoil (4S) with a cross section orthogonal to the rotation axis 0 has the same shape with respect to the rotation axis 0 at any cross-sectional position. It is formed in a twisted shape
ことを特徵とするクロスフ口一ファン。 A croissant fan who specializes in that.
3. 請求項 1又は 2記載のクロスフローファンにおいて、 3. The cross-flow fan according to claim 1 or 2,
各ファン体 (30, 30, ···) の翼 (40, 40, ···) が不等ピッチで配列されている ことを特徵とするクロスフローファン。 A cross-flow fan characterized in that the wings (40, 40, ...) of each fan body (30, 30, ...) are arranged at unequal pitch.
4. 請求項 1又は 2記載のクロスフローファンにおいて、 4. In the cross flow fan according to claim 1 or 2,
各ファン体 (30, 30, ···) は、 隣り合うファン体 (30, 30) の翼 (40, 40, ···) が連続するように形成されている Each fan body (30, 30, ...) is formed so that the wings (40, 40, ...) of adjacent fan bodies (30, 30) are continuous.
ことを特徵とするクロスフローファン。 A cross-flow fan that specializes in:
5. 請求項 1又は 2記載のクロスフローファンにおいて、
各ファン体 (30, 30, '··) は、 隣り合うファン体 (30, 30) の翼 (40, 40, ···) 力不連続状態になるように形成されている 5. The cross-flow fan according to claim 1 or 2, Each fan body (30, 30, '...) is formed so that the wing (40, 40, ...) force of adjacent fan bodies (30, 30) is discontinuous.
ことを特徴とするクロスフローファン。 A cross flow fan characterized by the following.
6. 請求項 1又は 2記載のクロスフローファンにおいて、 6. The cross-flow fan according to claim 1 or 2,
翼 (40, 40, ···) の捩れ方向が同一方向に形成されたファン体 (30, 30, ···) で 構成されている The wings (40, 40, ...) consist of fan bodies (30, 30, ...) in which the torsional directions are formed in the same direction.
ことを特徴とするクロスフローファン。 A cross flow fan characterized by the following.
7. 請求項 1又は 2記載のクロスフローファンにおいて、 7. The cross-flow fan according to claim 1 or 2,
翼 (40, 40, ···) の捩れ方向力逆方向に形成された 2種類のファン体 (30, 30, ···) で構成されている It consists of two types of fan bodies (30, 30, ...) formed in the opposite direction of the torsional force of the wings (40, 40, ...)
ことを特徴とするクロスフローファン。 A cross flow fan characterized by the following.
8. 請求項 1又は 2記載のクロスフローファンにおいて、 8. The cross-flow fan according to claim 1 or 2,
各ファン体 (30, 30, ···) における翼 (40, 40, ···) は、 本体全長の 1側端から 他側端まで延長された状態で捩れ角が 6 0° 以上になる捩れ形状に形成されている ことを特徵とするクロスフローファン。 The wings (40, 40,...) Of each fan body (30, 30,...) Have a twist angle of 60 ° or more when extended from one end of the main body to the other end. A cross flow fan characterized by being formed in a twisted shape.
9. 請求項 1又は 2記載のクロスフローファンにおいて、 9. In the cross flow fan according to claim 1 or 2,
各ファン体 (30, 30, ···) における翼 (40, 40, ···) は、 本体全長の 1側端から 他側端まで延長された状態で捩れ角が 3 6 0 ° になる捩れ形状に形成されている ことを特徴とするクロスフローファン。 The wings (40, 40,...) Of each fan body (30, 30,...) Have a twist angle of 360 ° when extended from one end to the other end of the overall length of the main body A cross-flow fan characterized by being formed in a twisted shape.
1 0. 請求項 1又は 2記載のクロスフローファンにおいて、
各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から 他側端まで延長された状態で捩れ角が 1 2 0 ° 以上で 3 6 0 ° 以下になる捩れ形状に 形成されている 10. The cross-flow fan according to claim 1 or 2, The wings (40, 40,…) of each fan body (30, 30,…) extend from one end to the other end of the entire length of the main body and have a twist angle of more than 120 ° and 360 °. It is formed in a twisted shape that becomes
ことを特徴とするクロスフローファン。 A cross flow fan characterized by the following.
1 1. 請求項 1又は 2記載のクロスフ口一ファンにおいて、 1 1. The cross mouth opening fan according to claim 1 or 2,
各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から 他側端まで延長された状態で捩れ角が 1 5 0 ° 以上で 2 7 0 ° 以下になる捩れ形状に 形成されている The wings (40, 40,…) of each fan body (30, 30,…) extend from one end to the other end of the entire length of the main body and have a twist angle of 150 ° or more and 270 °. It is formed in a twisted shape that becomes
ことを特徴とするクロスフローファン。 A cross flow fan characterized by the following.
1 2. 請求項 1又は 2記載のクロスフ口一ファンにおいて、 1 2. The cross-floor fan according to claim 1 or 2,
各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から 他側端まで延長された状態で捩れ角が 6 0 ° 以上で 1 5 0 ° 以下になる捩れ形状に形 成されている The wings (40, 40,…) of each fan body (30, 30,…) extend from one end to the other end of the total length of the main body and have a twist angle of 60 ° or more and 150 ° or less. Is formed into a twisted shape
ことを特徴とするクロスフローファン。 A cross flow fan characterized by the following.
1 3. 請求項 1又は 2記載のクロスフローファンにおいて、 1 3. In the cross flow fan according to claim 1 or 2,
各ファン体 (30, 30, …) における翼 (40, 40, …) が等ピッチで配列されてい る The wings (40, 40,…) in each fan body (30, 30,…) are arranged at equal pitch
ことを特徵とするクロスフローファン。 A cross-flow fan that specializes in:
1 4. 請求項 1 3記載のクロスフローファンにおいて、 1 4. In the cross flow fan according to claim 13,
各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から 他側端まで延長された状態で捩れ角が翼 (40, 40, …) の 1ピッチに対応した捩れ形
状に形成されている The wings (40, 40,…) of each fan body (30, 30,…) have a twist angle of one of the wings (40, 40,…) while extending from one end to the other end of the overall length of the main body. Twist type corresponding to pitch Is shaped like
ことを特徵とするクロスフ口一ファン。 A croissant fan who specializes in that.
1 5. 請求項 1 3記載のクロスフローファンにおいて、 1 5. The cross flow fan according to claim 13,
各ファン体 (30, 30, ···) における翼 (40, 40, ···) は、 ファン体 (30, 30, ···) の 1側端から他側端までの捩れ角力翼 (40, 40, ···) の 1 ピッチに対応した捩れ形状 に形成されている The wings (40, 40,...) Of each fan body (30, 30,...) Are composed of torsional angular force wings (1) from one end of the fan body (30, 30,. (40, 40, ...) is formed in a twisted shape corresponding to one pitch
ことを特徵とするクロスフ口一ファン。 A croissant fan who specializes in that.
1 6. 室外空気の吸込口 (71) 及び吹出口 (72) 力形成されたケ一シング (70) と、 該ケーシング (70) 内に吸込口 (71) から吹出口 (72) に亘つて形成された空気 通路 (7A) に設けられ、 吸込口 (71) に近接して配置された熱交換器 (61) と、 1 6. Outdoor air inlet (71) and outlet (72) Forced casing (70) and the casing (70) from the inlet (71) to the outlet (72). A heat exchanger (61) provided in the formed air passage (7A) and arranged in close proximity to the suction port (71);
上記ケ一シング (70) 内の空気通路 (7A) に設けられ、 吹出口 (72) に近接して 上下方向に配置されたクロスフ口一ファン (20) とを少なくとも備えた空気調和装置 の室外機において、 An outdoor air conditioner having at least a cross opening and a fan (20) provided in an air passage (7A) in the casing (70) and arranged vertically in close proximity to an air outlet (72). On the machine,
上記クロスフローファン (20) は、 回転軸心方向に延びる複数枚の翼 (40, 40, ···) を周方向に配列して成るファン体 (30, 30, ···) が回転軸心方向に複数個配置さ れて構成される一方、 The cross flow fan (20) consists of a plurality of blades (40, 40,...) Extending in the direction of the axis of rotation arranged in the circumferential direction. While it is composed of multiple arrangements in the center direction,
上記各ファン体 (30, 30, '··) の翼 (40, 40, ··') は、 クロスフローファン (20) の回転軸心 0に直交する真直前方に対して空気吹出方向力斜め上方に傾斜するように、 翼 (40, 40, ···) の一方の側端面から他方の側端面にいくに従って回転軸心 0を中心 に捩れた捩れ形状に形成されている The wings (40, 40,...) Of each of the above-mentioned fan bodies (30, 30, '·') exert an air blowing directional force against the position immediately before the rotation axis 0 of the cross flow fan (20). The wings (40, 40, ...) are formed in a twisted shape that is twisted about the rotation axis 0 as going from one side end face to the other side end face so as to incline diagonally upward.
ことを特徵とする空気調和装置の室外機。 An outdoor unit of an air conditioner, which is characterized in that:
1 7. 請求項 1 6記載の空気調和装置の室外機において、
クロスフローファン (20) の翼 (40, 40, …) は、 回転軸心 0と直交する横断面 の翼形 (4S) 力何れの断面位置においても回転軸心 0に対して同一形状となるように 捩れた捩れ形状に形成されている 1 7. In the outdoor unit of the air conditioner according to claim 16, The wings (40, 40,…) of the cross flow fan (20) have an airfoil with a cross section perpendicular to the rotation axis 0 (4S). Is formed into a twisted twisted shape
ことを特徴とする空気調和装置の室外機。 An outdoor unit for an air conditioner, comprising:
1 8. 請求項 1 6又は 1 7記載の空気調和装置の室外機において、 1 8. In the outdoor unit of the air conditioner according to claim 16 or 17,
クロスフローファン (20) の各ファン体 (30, 30, …) の翼 (40, 40, …) 力く不 等ピッチで配列されている The wings (40, 40,…) of the fan bodies (30, 30,…) of the cross flow fan (20) are arranged at an uneven pitch
ことを特徴とする空気調和装置の室外機。 An outdoor unit for an air conditioner, comprising:
1 9. 請求項 1 6又は 1 7記載の空気調和装置の室外機において、 1 9. The outdoor unit of the air conditioner according to claim 16 or 17,
クロスフローファン (20) の各ファン体 (30, 30, …) は、 隣り合うファン体 (30, 30) の翼 (40, 40, …) が連続するように形成されている Each fan body (30, 30, ...) of the cross flow fan (20) is formed so that the wings (40, 40, ...) of the adjacent fan bodies (30, 30) are continuous.
ことを特徴とする空気調和装置の室外機。 An outdoor unit for an air conditioner, comprising:
2 0. 請求項 1 6又は 1 7記載の空気調和装置の室外機において、 20. In the outdoor unit of the air conditioner according to claim 16 or 17,
クロスフローファン (20) の各ファン体 (30, 30, …) は、 隣り合うファン体 (30, 30) の翼 (40, 40, …) 力不連続状態になるように形成されている Each fan body (30, 30, ...) of the cross flow fan (20) is formed so that the wings (40, 40, ...) of the adjacent fan bodies (30, 30) are in a discontinuous state.
ことを特徴とする空気調和装置の室外機。 An outdoor unit for an air conditioner, comprising:
2 1, 請求項 1 6又は 1 7記載の空気調和装置の室外機において、 21. The outdoor unit of an air conditioner according to claim 16 or 17,
クロスフ口一ファン (20) の各ファン体 (30, 30, …) は、 翼 (40, 40, …) の 捩れ方向が同一方向に形成されている Each of the fan bodies (30, 30,…) of the cross-floor fan (20) has the wings (40, 40,…) with the same twisting direction.
ことを特徴とする空気調和装置の室外機。
An outdoor unit for an air conditioner, comprising:
2 2. 請求項 1 6又は 1 7記載の空気調和装置の室外機において、 2 2. In the outdoor unit of the air conditioner according to claim 16 or 17,
クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 6 0 ° 以上になる捩 れ形状に形成されている The wings (40, 40,…) in each fan body (30, 30,…) of the cross flow fan (20) have a twist angle of 60 ° extending from one end of the main body to the other end. Is formed into a twisted shape
ことを特徴とする空気調和装置の室外機。 An outdoor unit for an air conditioner, comprising:
2 3. 請求項 1 6又は 1 7記載の空気調和装置の室外機において、 2 3. In the outdoor unit of the air conditioner according to claim 16 or 17,
クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 1 8 0 ° になる捩れ 形状に形成されている The wings (40, 40,…) of the fan bodies (30, 30,…) of the cross flow fan (20) have a twist angle of 180 when extended from one end to the other end of the entire length of the main body. ° twisted shape
ことを特徴とする空気調和装置の室外機。 An outdoor unit for an air conditioner, comprising:
2 4. 請求項 1 6又は 1 7記載の空気調和装置の室外機において、 2 4. The outdoor unit of the air conditioner according to claim 16 or 17,
クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 3 6 0 ° になる捩れ 形状に形成されている The wings (40, 40,…) of each fan body (30, 30,…) of the cross flow fan (20) have a twist angle of 360 ° while extending from one end to the other end of the entire length of the main body. ° twisted shape
ことを特徴とする空気調和装置の室外機。 An outdoor unit for an air conditioner, comprising:
2 5. 請求項 1 6又は 1 7記載の空気調和装置の室外機において、 2 5. The outdoor unit for an air conditioner according to claim 16 or 17,
クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 1 2 0 ° 以上で 3 6 0 ° 以下になる捩れ形状に形成されている The wings (40, 40,…) of each fan body (30, 30,…) of the cross flow fan (20) have a twist angle of 120 while extending from one end to the other end of the entire length of the main body. It is formed in a twisted shape that is above 360 ° and below 360 °
ことを特徴とする空気調和装置の室外機。 An outdoor unit for an air conditioner, comprising:
2 6. 請求項 1 6又は 1 7記載の空気調和装置の室外機において、
クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 1 5 0 ° 以上で 2 7 0 ° 以下になる捩れ形状に形成されている 2 6. In the outdoor unit of the air conditioner according to claim 16 or 17, The wings (40, 40,…) of each fan body (30, 30,…) of the cross-flow fan (20) have a twist angle of 150 while extending from one end to the other end of the entire length of the main body. It is formed in a twisted shape that becomes more than 270 °
ことを特徴とする空気調和装置の室外機。 An outdoor unit for an air conditioner, comprising:
2 7. 請求項 1 6又は 1 7記載の空気調和装置の室外機において、 2 7. The outdoor unit of the air conditioner according to claim 16 or 17,
クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角が 6 0 ° 以上で 1 5 0 ° 以下になる捩れ形状に形成されている The wings (40, 40,…) of the fan bodies (30, 30,…) of the cross flow fan (20) have a twist angle of 60 ° extending from one end of the entire length of the main body to the other end. As a result, it is formed into a twisted shape that is less than 150 °
ことを特徵とする空気調和装置の室外機。 An outdoor unit of an air conditioner, which is characterized in that:
2 8. 請求項 1 6又は 1 7記載の空気調和装置の室外機において、 2 8. In the outdoor unit of the air conditioner according to claim 16 or 17,
クロスフ口一ファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) 力等ピッチで配列されている ことを特徵とする空気調和装置の室外機。 An outdoor unit of an air conditioner, characterized in that the wings (40, 40,…) in each fan body (30, 30,…) of the cross-hook fan (20) are arranged at a pitch such as the force.
2 9. 請求項 2 8記載の空気調和装置の室外機において、 2 9. In the outdoor unit of the air conditioner according to claim 28,
クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 本体全長の 1側端から他側端まで延長された状態で捩れ角力翼 (40, 40, …) の 1ピッチに対応した捩れ形状に形成されている The wings (40, 40,…) of each fan body (30, 30,…) of the cross-flow fan (20) extend from one end to the other end of the entire length of the main body, and the torsional angular force wings (40, 40,…) 40,…) is formed in a twisted shape corresponding to one pitch of
ことを特徴とする空気調和装置の室外機。 An outdoor unit for an air conditioner, comprising:
3 0. 請求項 2 8記載の空気調和装置の室外機において、 30. In the outdoor unit of the air conditioner according to claim 28,
クロスフローファン (20) の各ファン体 (30, 30, …) における翼 (40, 40, …) は、 ファン体 (30, 30, …) の 1側端から他側端までの捩れ角が翼 (40, 40, …) の
1ピッチに対応した捩れ形状に形成されている The wings (40, 40,…) in each fan body (30, 30,…) of the cross flow fan (20) have a twist angle from one end of the fan body (30, 30,…) to the other end. Of the wings (40, 40,…) It is formed in a twisted shape corresponding to one pitch
ことを特徴とする空気調和装置の室外機。 An outdoor unit for an air conditioner, comprising:
3 1. 請求項 1 6又は 1 7記載の空気調和装置の室外機において、 3 1. In the outdoor unit of the air conditioner according to claim 16 or 17,
ケ一シング (70) における吹出口 (72) の上部壁 (77) 及び下部壁 (77) は、 斜 め上方の空気吹出方向に沿う形状に形成されている The upper wall (77) and the lower wall (77) of the air outlet (72) in the casing (70) are formed in a shape that follows the direction of the air blowing above the slope.
ことを特徴とする空気調和装置の室外機。
An outdoor unit for an air conditioner, comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16545395 | 1995-06-30 | ||
JP7/165453 | 1995-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997002456A1 true WO1997002456A1 (en) | 1997-01-23 |
Family
ID=15812713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1996/001813 WO1997002456A1 (en) | 1995-06-30 | 1996-06-27 | Cross flow fan and outdoor unit for an air-conditioner |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1997002456A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108826450A (en) * | 2018-05-14 | 2018-11-16 | 朱小菊 | Laterally pendulum wind air-conditioning |
WO2021169438A1 (en) * | 2020-02-24 | 2021-09-02 | 青岛海尔空调器有限总公司 | Cross-flow fan and air conditioner |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645196U (en) * | 1979-09-18 | 1981-04-23 | ||
JPS63140891A (en) * | 1986-12-03 | 1988-06-13 | Taiheiyo Kogyo Kk | Cross flow fan made of plastic |
JPH01260241A (en) * | 1988-04-11 | 1989-10-17 | Sanyo Electric Co Ltd | Heat exchanger unit |
-
1996
- 1996-06-27 WO PCT/JP1996/001813 patent/WO1997002456A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645196U (en) * | 1979-09-18 | 1981-04-23 | ||
JPS63140891A (en) * | 1986-12-03 | 1988-06-13 | Taiheiyo Kogyo Kk | Cross flow fan made of plastic |
JPH01260241A (en) * | 1988-04-11 | 1989-10-17 | Sanyo Electric Co Ltd | Heat exchanger unit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108826450A (en) * | 2018-05-14 | 2018-11-16 | 朱小菊 | Laterally pendulum wind air-conditioning |
WO2021169438A1 (en) * | 2020-02-24 | 2021-09-02 | 青岛海尔空调器有限总公司 | Cross-flow fan and air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3061026B2 (en) | Air conditioner indoor unit | |
WO2011114925A1 (en) | Fan, metallic mold, and fluid delivery device | |
WO2012086147A1 (en) | Through-flow fan, and indoor unit for air conditioner | |
WO2007148645A1 (en) | Outdoor unit for air conditioner | |
JP6524331B2 (en) | Blower and air conditioner using the same | |
CN204329267U (en) | Air-conditioner outdoor unit and air outlet grate thereof | |
CN104428595A (en) | Indoor unit for air conditioner, and air conditioner with indoor unit | |
CN1247294A (en) | Air conditioner | |
WO2020121484A1 (en) | Centrifugal fan and air conditioner | |
KR100976496B1 (en) | Fan | |
JP2003172528A (en) | Fan grill and outdoor equipment for air-conditioner | |
WO1997002456A1 (en) | Cross flow fan and outdoor unit for an air-conditioner | |
WO2022191034A1 (en) | Propeller fan and refrigeration device | |
JP4976791B2 (en) | Centrifugal fan impeller | |
JP3530044B2 (en) | Cross flow fan and fluid feeder using the same | |
JP2002357194A (en) | Cross-flow fan | |
US11466871B2 (en) | Cross flow fan blade, cross flow fan, and air conditioner indoor unit | |
JP2822934B2 (en) | Cross flow fan | |
JP2953136B2 (en) | Front grill for outdoor unit of air conditioner | |
CN211474520U (en) | Axial flow wind wheel and air conditioner | |
CN213116853U (en) | Volute, centrifugal fan and household appliance | |
CN212130847U (en) | Axial flow fan blade, fan assembly and air conditioner thereof | |
JPH07225035A (en) | Air conditioner outdoor unit | |
JPH0972297A (en) | Cross flow fan and air conditioner | |
CN220060023U (en) | Centrifugal fan spiral case, centrifugal fan and air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |