+

WO1997050141A1 - Anode pour une pile a combustible directe au methanol - Google Patents

Anode pour une pile a combustible directe au methanol Download PDF

Info

Publication number
WO1997050141A1
WO1997050141A1 PCT/DE1997/001321 DE9701321W WO9750141A1 WO 1997050141 A1 WO1997050141 A1 WO 1997050141A1 DE 9701321 W DE9701321 W DE 9701321W WO 9750141 A1 WO9750141 A1 WO 9750141A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
membrane
methanol
concentration
catalyst
Prior art date
Application number
PCT/DE1997/001321
Other languages
German (de)
English (en)
Inventor
Günter Luft
Konrad Mund
Walter Preidel
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO1997050141A1 publication Critical patent/WO1997050141A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an anode for a membrane-electrode assembly of a direct methanol fuel cell, in which a diffusion gradient for methanol within the anode causes a low methanol concentration to exist at the anode / membrane phase boundary.
  • the polymer electrolyte membrane (PEM) system with an ion exchange membrane as the electrolyte in the membrane electrode assembly (ME) is particularly suitable for the direct electrochemical oxidation of methanol in a fuel cell (DMFC cell).
  • DMFC cell fuel cell
  • Electrode oxidizes without contributing to electrical power generation. At the same time, the cell voltage drops as a result of the mixed potential formation of the cathode.
  • the methanol gets into the working layer of the cathode and lowers the hydrophobicity of the gas transport pores so that they are flooded by the water of reaction. This hinders the transport of oxygen and the cell voltage collapses.
  • the object of the present invention is therefore to provide an anode for an ME (membrane electrode assembly) of a DMFC, in which the diffusion of the methanol to the cathode is reduced compared to conventional systems and without a higher area-related resistance the membrane, d. that is, losses in cell voltage arise.
  • the invention is based on the knowledge that a concentration gradient for methanol over the predetermined current density on the one hand and the amount of methanol supplied on the other hand can be set within the anode in such a way that a low concentration of methanol arises at the anode / membrane phase boundary, which greatly reduces or almost eliminates the diffusion pressure through the membrane towards the cathode.
  • the invention relates to an anode for a membrane electrode assembly (ME) of a direct methanol fuel cell (DMFC), in which means are provided which keep the particles of the anode catalyst in electrolytic and electronic contact in such a way that electrolytic and electronic current transport within the anode is guaranteed and in the anode the offered methanol is almost completely oxidized (consumed).
  • ME membrane electrode assembly
  • DMFC direct methanol fuel cell
  • the present invention furthermore relates to a method for producing an anode according to the invention and a method for operating a DMFC with ME.
  • agents which keep the particles of the anode catalyst in electronic contact are understood to mean media in which the catalyst particles are embedded, so that an electrolytic (ie ionic) current transport from all catalyst particles to the membrane and an electronic (that is, current transport via electrons) from the catalyst particles to the contacting current collector is ensured.
  • agents are ion exchangers.
  • these ion exchangers can be used neat or as ion exchange solutions, ie, for example, a suspension of ion exchange molecules in a solvent such as alcohol.
  • the ME membrane-electrode assembly
  • a solid electrolyte a membrane which generally represents a proton-conducting polymer (sulfonated polystyrene membranes or Nafion (registered trademark), a perfluorinated polymer) and two electrodes , a cathode and an anode.
  • a membrane which generally represents a proton-conducting polymer (sulfonated polystyrene membranes or Nafion (registered trademark), a perfluorinated polymer) and two electrodes , a cathode and an anode.
  • cathode material is not discussed further here, because according to the invention it does not matter which cathode material is used and therefore the disclosure here relates to the prior art known to the person skilled in the art or during the term of the patent.
  • the catalysts platinum, ruthenium and Pt / Ru alloys, molybdenum, titanium, rhenium,
  • Tin and alloys of these components are not limited to the anode catalyst materials mentioned because an anode according to the invention can also be realized with any new or unmentioned anode materials.
  • these noble metals or noble metal alloys can be applied to carrier materials such as carbon, silver or copper particles. These can be simple, thin coatings, but thicker films can also be present on the carrier materials.
  • the carrier materials should be conductive, at least in one direction, so that the electrolytic and electronic current transport within the anode is ensured.
  • the "direct methanol fuel cell” is referred to as "DMFC” and, in analogy to the general principle of electrochemical energy converters, consists of anode, cathode and a suitable electrolyte.
  • the electrodes are generally d. H. contacted with the side facing away from the electrolyte by a current collector, which has the task of gas or reactant distribution.
  • Carbon base e.g. B. carbon fiber paper or tissue is used.
  • concentrations are less than
  • 0.05 mol / l are designated.
  • the range of less than 0.03 mol / l is favorable and a concentration of is particularly advantageous about 0.01mol / l as assumed in the model calculations. According to the invention, the lowest possible concentration is naturally to be aimed for.
  • D diffusion coefficient of methanol in water
  • c 0 the MeOH concentration at the anode
  • c ⁇ the MeOH concentration at the phase boundary
  • c m special concentration, which is characteristic of the cell voltage drop low concentration is
  • FIGS. 1 and 2 it is examined how the thickness of the working layer of the anode works when one assumes the low value of 0.01 mol / l for c ⁇ .
  • the membrane has a thickness of 200 ⁇ m and the diffusion coefficient for the metha- nol within the membrane is assumed to be 8x10 " 7 cm 2 / s. This value was determined experimentally and corresponds to a limiting current density of 25 mA / cm 2.
  • a high diffusion coefficient d 5 ⁇ 10 ⁇ 6 cm 2 / s can be taken into account
  • Fig. 1 shows that the current density is approximately proportional to the layer thickness. However, this is only achieved if a corresponding amount of catalyst is used.
  • 2 shows the methanol concentration to be demanded in the anode compartment. It can be seen that thicker working layers allow higher methanol concentrations and that they can be increased if the cell is operated with higher current densities.
  • FIGS. 3 and 4 consider the extent to which the predetermined concentration C] of methanol has an effect at the phase boundary of the anode / membrane. The characteristics improve if you allow a higher methanol concentration. However, this statement applies only to anode polarization and does not describe the extent to which a high methanol concentration affects the behavior of the cathode. 4 shows that an increased concentration C] _ also enables an increase in the methanol content in front of the anode.
  • Thickness d of the working layer remains constant.
  • Fig. 7 shows that it is convenient to use thicker electrodes, but that the current density is no longer proportional to the layer thickness.
  • FIG. 8 additionally demonstrates that with thicker working layers one is able to use higher methanol concentrations, but that the methanol concentration of the current density must always be adjusted in order to meet the requirement of a low transport of Methanol through the membrane is sufficient.
  • the model examinations therefore show that the diffusion of methanol can be restricted even in the working layer of the anode. To this end, care must be taken to ensure that all catalyst particles remain in electronic and electrolytic contact.
  • the model calculations also show that thick working layers must be used so that the methanol can be offered to the anode in high concentration and thus high current densities can also be achieved.
  • For each thickness of the working layer there is an optimal methanol concentration for the anode, which is dependent on the current density and which then leads to the fact that the predetermined low methanol concentration is established at the anode / membrane phase boundary.
  • the first The result of this measure is that only a little methanol passes through the membrane and the problems which are normally associated with methanol diffusion to the cathode are eliminated.
  • an anode according to the invention in the required thickness can be achieved by mixing the membrane powder and the catalyst for the anode and then using hot pressing to obtain a mechanically stable and pore-free structure which is connected to the membrane.
  • the ratio of catalyst to membrane powder must be selected so that the catalyst particles remain in electronic and / or electrolytic contact so that the current can flow off. This could be done by using the catalyst e.g. PtRu, applied to carbon powder.
  • PtRu applied to carbon powder.
  • silver or copper powder as the carrier, since both materials are corrosion-resistant in the potential range of the anode.
  • a Nafion (registered trademark) powder or a powder of another ion-conducting polymer is used for the membrane itself and that the membrane / anode unit is produced in a single operation.
  • the catalyst or the catalyst located on the support material can be present in an ion exchange solution and to be suspended on the membrane. The solvent can then be evaporated or otherwise removed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

L'invention concerne une anode destinée à une unité à électrodes et membrane d'une pile à combustible directe au méthanol, dans laquelle un gradient de diffusion du méthanol à l'intérieur de l'anode entraîne une faible concentration de méthanol au niveau de la limite de phases anode/membrane. Le gradient de diffusion est obtenu par le fait que les particules du catalyseur anodique sont incorporées de sorte qu'elles présentent un contact électronique et qu'un flux de courant soit garanti le long de l'anode.
PCT/DE1997/001321 1996-06-26 1997-06-25 Anode pour une pile a combustible directe au methanol WO1997050141A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19625615.1 1996-06-26
DE19625615 1996-06-26

Publications (1)

Publication Number Publication Date
WO1997050141A1 true WO1997050141A1 (fr) 1997-12-31

Family

ID=7798097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/001321 WO1997050141A1 (fr) 1996-06-26 1997-06-25 Anode pour une pile a combustible directe au methanol

Country Status (1)

Country Link
WO (1) WO1997050141A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022508A1 (fr) * 1999-09-23 2001-03-29 Siemens Aktiengesellschaft Anode pour pile a combustible et son procede de production
EP1055018A4 (fr) * 1998-02-10 2004-08-11 California Inst Of Techn Electrodes asymetriques pour piles a combustible a alimentation directe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483085A2 (fr) * 1990-10-25 1992-04-29 Tanaka Kikinzoku Kogyo K.K. Procédé de fabrication d'une électrode pour pile à combustible
JPH04132168A (ja) * 1990-09-21 1992-05-06 Matsushita Electric Ind Co Ltd 液体燃料電池
JPH04305249A (ja) * 1991-04-03 1992-10-28 Matsushita Electric Ind Co Ltd 液体燃料電池用触媒の製造方法及びその電極の製造方法
WO1996012317A1 (fr) * 1994-10-18 1996-04-25 University Of Southern California Pile a combustible organique, mise en oeuvre de cette pile et fabrication d'une electrode qui lui est destinee
US5523177A (en) * 1994-10-12 1996-06-04 Giner, Inc. Membrane-electrode assembly for a direct methanol fuel cell
WO1997014189A1 (fr) * 1995-10-10 1997-04-17 E.I. Du Pont De Nemours And Company Ensemble membrane et electrode utilisant une membrane d'echange cationique pour une pile a combustible alimentee directement au methanol
WO1997023010A1 (fr) * 1995-12-18 1997-06-26 Ballard Power Systems Inc. Procede et appareil permettant de reduire la migration de reactifs dans une cellule electrochimique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132168A (ja) * 1990-09-21 1992-05-06 Matsushita Electric Ind Co Ltd 液体燃料電池
EP0483085A2 (fr) * 1990-10-25 1992-04-29 Tanaka Kikinzoku Kogyo K.K. Procédé de fabrication d'une électrode pour pile à combustible
JPH04305249A (ja) * 1991-04-03 1992-10-28 Matsushita Electric Ind Co Ltd 液体燃料電池用触媒の製造方法及びその電極の製造方法
US5523177A (en) * 1994-10-12 1996-06-04 Giner, Inc. Membrane-electrode assembly for a direct methanol fuel cell
WO1996012317A1 (fr) * 1994-10-18 1996-04-25 University Of Southern California Pile a combustible organique, mise en oeuvre de cette pile et fabrication d'une electrode qui lui est destinee
WO1997014189A1 (fr) * 1995-10-10 1997-04-17 E.I. Du Pont De Nemours And Company Ensemble membrane et electrode utilisant une membrane d'echange cationique pour une pile a combustible alimentee directement au methanol
WO1997023010A1 (fr) * 1995-12-18 1997-06-26 Ballard Power Systems Inc. Procede et appareil permettant de reduire la migration de reactifs dans une cellule electrochimique

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ALLEN P ET AL: "ELECTROCATALYSIS IN POLYMER ELECTROLYTE FUEL CELLS - FUNDAMENTAL AND PRACTICAL ASPECTS", EXTENDED ABSTRACTS SPRING MEETING 1993 MAY 16-21 HONOLULU, vol. 93/1, 1993, pages 2418, XP000421933 *
CHEMICAL ABSTRACTS, vol. 117, no. 14, 5 October 1992, Columbus, Ohio, US; abstract no. 134541 *
CHEMICAL ABSTRACTS, vol. 118, no. 12, 22 March 1993, Columbus, Ohio, US; abstract no. 106337 *
DATABASE WPI Derwent World Patents Index; AN 92-409952 *
GOTTESFELD S: "ON DIRECT AND INDIRECT METHANOL FUEL CELLS FOR TRAMSPORTATION APPLICATIONS", EXTENDED ABSTRACTS FALL MEETING OCTOBER 8/13 ST LOUIS, vol. 95/2, 1995, pages 1074, XP000553959 *
HAMNETT A ET AL: "ELECTROCATALYSIS AND THE DIRECT METHANOL FUEL CELL", CHEMISTRY AND INDUSTRY CHEMISTRY AND INDUSTRY REVIEW, no. 13, 6 July 1992 (1992-07-06), pages 480 - 483, XP000294430 *
NARAYANAN S R ET AL: "STUDIES ON METHANOL CROSSOVER IN LIQUID-FEED DIRECT METHANOL PEM FUEL CELLS", ELECTROCHEMICAL SOCIETY PROCEEDINGS, vol. 95, no. 23, 1995, pages 278 - 283, XP002025323 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 397 (E - 1252) 24 August 1992 (1992-08-24) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 131 (C - 1036) 18 March 1993 (1993-03-18) *
REN X ET AL: "HIGH PERFORMANCE DIRECT METHANOL POLYMER ELECTROLYTE FUEL CELLS", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 143, no. 1, 1 January 1996 (1996-01-01), pages L12 - L15, XP000556203 *
WILSON M S ET AL: "HIGH PERFORMANCE CATALYZED MEMBRANES OF ULTRA-LOW PT LOADINGS FOR POLYMER ELECTROLYTE FUEL CELLS", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 139, no. 2, 1 February 1992 (1992-02-01), pages L28 - L30, XP000461062 *
XIAOMING REN ET AL: "Methanol Cross-over in Direct Methanol Fuel Cells", PROCEEDINGS OF THE FIRST INTERNATIONAL SYMPOSIUM ON PROTON CONDUCTING MEMBRANE FUEL CELLS I, vol. 95, no. 23, 1995, THE ELECTROCHEMICAL SOCIETY, INC. PENNINGTON, pages 284 - 297, XP002045798 *
ZAWODZINSKI T A ET AL: "METHANOL CROSS-OVER IN DMFC'S: DEVELOPMENT OF STRATEGIES FOR MINIMIZATION", EXTENDED ABSTRACTS SPRING MEETING 1994 OCTOBER 9/14 ST. LOUIS, vol. 94/2, 1992, pages 960, XP000550926 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055018A4 (fr) * 1998-02-10 2004-08-11 California Inst Of Techn Electrodes asymetriques pour piles a combustible a alimentation directe
WO2001022508A1 (fr) * 1999-09-23 2001-03-29 Siemens Aktiengesellschaft Anode pour pile a combustible et son procede de production

Similar Documents

Publication Publication Date Title
DE69435082T2 (de) Organische brennstoffzelle, verfahren zum betrieb der zelle und herstellung einer elektrode dafür
DE69622747T2 (de) Vorrichtung zur verringerung des reaktandenübertritts in einer elektrochemischen brennstoffzelle
DE69900256T2 (de) Pt-Ru Elektrokatalysator auf Träger, sowie diesen enthaltende Elektrode, MEA und Festelektrolyt-Brennstoffzelle
DE102008003197B4 (de) Membranelektrodeneinheit und Verfahren zum Mindern von Elektrodendegradation während Einschalt- und Abschaltzyklen
EP1961841B1 (fr) Procédé de dépôt électrochimique de particules de catalyseur sur des substrats contenant des fibres de carbone et son dispositif
EP0797265A2 (fr) Electrode à diffusion gazeuse pour piles à combustible à membrane et méthode de fabrication
DE10392493T5 (de) Brennstoffzellen und Brennstoffzellenkatalysatoren
DE102008009114A1 (de) Fluorbehandlung von Polyelektrolytmembranen
EP4229687A1 (fr) Membrane à revêtement catalytique et cellule d'électrolyse de l'eau
EP1051768A1 (fr) Pile a combustible a electrolyte conducteur protonique
EP1012896B1 (fr) Pile a combustible a transformation directe du methanol en courant
EP1601037B1 (fr) Membrane-électrode-assemblage pour pile à combustible à alimentation directe en méthanole (DMFC)
DE19945667C2 (de) Brennstoffzelle, Verfahren zu deren Betrieb und zugehörige Verwendung
DE10052195B4 (de) Verfahren zur Herstellung einer Brennstoffzellenelektrode
DE10052224B4 (de) Gasdiffusionselektrode mit erhöhter Toleranz gegenüber Feuchteschwankung, eine diese aufweisende Membranelektrodenanordnung, Verfahren zur Herstellung der Gasdiffusionselektrode und der Membranelektrodenanordnung sowie Verwendung der Membranelektrodenanordnung
DE10052189B4 (de) Mehrschichtige Gasdiffusionselektrode einer Polymerelektrolytmembran-Brennstoffzelle, Membranelektrodenanordnung, Verfahren zur Herstellung einer Gasdiffusionselektrode und einer Membranelektrodenanordnung sowie Verwendung der Membranelektrodenanordnung
WO1997050141A1 (fr) Anode pour une pile a combustible directe au methanol
EP2618417B1 (fr) Pile à combustible directe à méthanol et procédé de fonctionnement de celle-ci
DE10052190B4 (de) Gasdiffusionselektrode, Membranelektrodenanordnung, Verfahren zur Herstellung einer Gasdiffusionselektrode und Verwendung einer Membranelektrodenanordnung
EP1627440B1 (fr) Plaque bipolaire et pile a combustible comprenant une telle plaque bipolaire
DE602004010006T2 (de) Brennstoffzelle mit hoher aktiver Oberfläche
DE19744028C2 (de) Elektrode mit aufgebrachten, kohlenmonoxidempfindlichen Katalysatorpartikeln sowie deren Verwendung
DE112012001206T5 (de) Brennstoffzellen-System
EP1500150A2 (fr) Couche de diffusion microstructuree dans des electrodes a diffusion gazeuse
DE102013009555B4 (de) Verfahren zum Betreiben einer Niedertemperatur- Brennstoffzelle sowie Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 98502110

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载