WO1997046105A1 - Procede de lutte contre les insectes nuisibles - Google Patents
Procede de lutte contre les insectes nuisibles Download PDFInfo
- Publication number
- WO1997046105A1 WO1997046105A1 PCT/EP1997/002737 EP9702737W WO9746105A1 WO 1997046105 A1 WO1997046105 A1 WO 1997046105A1 EP 9702737 W EP9702737 W EP 9702737W WO 9746105 A1 WO9746105 A1 WO 9746105A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- toxin
- type
- plant
- gene
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 241000607479 Yersinia pestis Species 0.000 title claims description 27
- 241000238631 Hexapoda Species 0.000 title claims description 21
- 241000196324 Embryophyta Species 0.000 claims abstract description 160
- 241000346285 Ostrinia furnacalis Species 0.000 claims abstract description 89
- 240000008042 Zea mays Species 0.000 claims abstract description 40
- 241000894007 species Species 0.000 claims abstract description 26
- 244000038559 crop plants Species 0.000 claims abstract description 14
- 235000013339 cereals Nutrition 0.000 claims abstract description 6
- 108700012359 toxins Proteins 0.000 claims description 134
- 108090000623 proteins and genes Proteins 0.000 claims description 133
- 102000004169 proteins and genes Human genes 0.000 claims description 95
- 239000000203 mixture Substances 0.000 claims description 57
- 230000009261 transgenic effect Effects 0.000 claims description 36
- 244000005700 microbiome Species 0.000 claims description 33
- 241000193388 Bacillus thuringiensis Species 0.000 claims description 31
- 229940097012 bacillus thuringiensis Drugs 0.000 claims description 30
- 239000004480 active ingredient Substances 0.000 claims description 29
- 230000006378 damage Effects 0.000 claims description 16
- 108020004414 DNA Proteins 0.000 claims description 14
- 230000001666 entomocidal effect Effects 0.000 claims description 12
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 9
- 241000193755 Bacillus cereus Species 0.000 claims description 6
- 108700010070 Codon Usage Proteins 0.000 claims description 6
- 102000053602 DNA Human genes 0.000 claims description 5
- 108020004705 Codon Proteins 0.000 claims description 3
- 101000953492 Homo sapiens Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1 Proteins 0.000 claims description 3
- 102100037739 Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1 Human genes 0.000 claims description 3
- 108700005078 Synthetic Genes Proteins 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims description 2
- 241000931987 Sesamia Species 0.000 claims 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 abstract description 32
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 abstract description 29
- 235000009973 maize Nutrition 0.000 abstract description 29
- 240000007594 Oryza sativa Species 0.000 abstract description 7
- 235000007164 Oryza sativa Nutrition 0.000 abstract description 7
- 235000021307 Triticum Nutrition 0.000 abstract description 7
- 235000009566 rice Nutrition 0.000 abstract description 7
- 235000007319 Avena orientalis Nutrition 0.000 abstract description 5
- 244000075850 Avena orientalis Species 0.000 abstract description 5
- 235000017166 Bambusa arundinacea Nutrition 0.000 abstract description 5
- 235000017491 Bambusa tulda Nutrition 0.000 abstract description 5
- 240000005979 Hordeum vulgare Species 0.000 abstract description 5
- 235000007340 Hordeum vulgare Nutrition 0.000 abstract description 5
- 244000082204 Phyllostachys viridis Species 0.000 abstract description 5
- 235000015334 Phyllostachys viridis Nutrition 0.000 abstract description 5
- 241000209504 Poaceae Species 0.000 abstract description 5
- 240000000111 Saccharum officinarum Species 0.000 abstract description 5
- 235000007201 Saccharum officinarum Nutrition 0.000 abstract description 5
- 235000007238 Secale cereale Nutrition 0.000 abstract description 5
- 244000082988 Secale cereale Species 0.000 abstract description 5
- 240000006394 Sorghum bicolor Species 0.000 abstract description 5
- 235000011684 Sorghum saccharatum Nutrition 0.000 abstract description 5
- 244000062793 Sorghum vulgare Species 0.000 abstract description 5
- 239000011425 bamboo Substances 0.000 abstract description 5
- 239000004459 forage Substances 0.000 abstract description 5
- 235000019713 millet Nutrition 0.000 abstract description 5
- 244000098338 Triticum aestivum Species 0.000 abstract 1
- -1 tackifiers Substances 0.000 description 20
- 238000009472 formulation Methods 0.000 description 19
- 230000014509 gene expression Effects 0.000 description 16
- 230000000749 insecticidal effect Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 239000004094 surface-active agent Substances 0.000 description 12
- 206010020649 Hyperkeratosis Diseases 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000002671 adjuvant Substances 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 239000002158 endotoxin Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 230000009466 transformation Effects 0.000 description 10
- 239000000969 carrier Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 206010061217 Infestation Diseases 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 108700003918 Bacillus Thuringiensis insecticidal crystal Proteins 0.000 description 6
- 231100000111 LD50 Toxicity 0.000 description 6
- 241000209140 Triticum Species 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 210000002257 embryonic structure Anatomy 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 230000000977 initiatory effect Effects 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 239000003053 toxin Substances 0.000 description 6
- 231100000765 toxin Toxicity 0.000 description 6
- 241000255777 Lepidoptera Species 0.000 description 5
- 238000009395 breeding Methods 0.000 description 5
- 230000001488 breeding effect Effects 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 5
- 239000004009 herbicide Substances 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 230000001976 improved effect Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 239000002736 nonionic surfactant Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000003337 fertilizer Substances 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000002779 inactivation Effects 0.000 description 4
- 239000002917 insecticide Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 210000001938 protoplast Anatomy 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 241000255925 Diptera Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 108700001094 Plant Genes Proteins 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000000417 fungicide Substances 0.000 description 3
- 210000001035 gastrointestinal tract Anatomy 0.000 description 3
- 230000035784 germination Effects 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000005645 nematicide Substances 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 230000010152 pollination Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 108010064245 urinary gonadotropin fragment Proteins 0.000 description 3
- 230000003442 weekly effect Effects 0.000 description 3
- UUTKICFRNVKFRG-WDSKDSINSA-N (4R)-3-[oxo-[(2S)-5-oxo-2-pyrrolidinyl]methyl]-4-thiazolidinecarboxylic acid Chemical compound OC(=O)[C@@H]1CSCN1C(=O)[C@H]1NC(=O)CC1 UUTKICFRNVKFRG-WDSKDSINSA-N 0.000 description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 2
- HSSBORCLYSCBJR-UHFFFAOYSA-N Chloramben Chemical compound NC1=CC(Cl)=CC(C(O)=O)=C1Cl HSSBORCLYSCBJR-UHFFFAOYSA-N 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 241000254173 Coleoptera Species 0.000 description 2
- 101710151559 Crystal protein Proteins 0.000 description 2
- 240000004585 Dactylis glomerata Species 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical class C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 241000364057 Peoria Species 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920001214 Polysorbate 60 Polymers 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 108020005067 RNA Splice Sites Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 235000007244 Zea mays Nutrition 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229940072056 alginate Drugs 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- 101150103518 bar gene Proteins 0.000 description 2
- 125000003785 benzimidazolyl group Chemical class N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- 238000004166 bioassay Methods 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 235000021186 dishes Nutrition 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000002363 herbicidal effect Effects 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000003750 molluscacide Substances 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- QHOQHJPRIBSPCY-UHFFFAOYSA-N pirimiphos-methyl Chemical group CCN(CC)C1=NC(C)=CC(OP(=S)(OC)OC)=N1 QHOQHJPRIBSPCY-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000151 polyglycol Polymers 0.000 description 2
- 239000010695 polyglycol Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 238000009331 sowing Methods 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- LDVVMCZRFWMZSG-OLQVQODUSA-N (3ar,7as)-2-(trichloromethylsulfanyl)-3a,4,7,7a-tetrahydroisoindole-1,3-dione Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)Cl)C(=O)[C@H]21 LDVVMCZRFWMZSG-OLQVQODUSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical group COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- JDSQBDGCMUXRBM-UHFFFAOYSA-N 2-[2-(2-butoxypropoxy)propoxy]propan-1-ol Chemical group CCCCOC(C)COC(C)COC(C)CO JDSQBDGCMUXRBM-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical class CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N 4-nonylphenol Chemical compound CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 241000218475 Agrotis segetum Species 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241001203868 Autographa californica Species 0.000 description 1
- 241000201370 Autographa californica nucleopolyhedrovirus Species 0.000 description 1
- 101001126327 Avena fatua Probable prefoldin subunit 4 Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 241001147758 Bacillus thuringiensis serovar kurstaki Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 101100084118 Caenorhabditis elegans ppt-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 239000005745 Captan Substances 0.000 description 1
- 239000005746 Carboxin Substances 0.000 description 1
- 241001660259 Cereus <cactus> Species 0.000 description 1
- 240000001817 Cereus hexagonus Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 241001057636 Dracaena deremensis Species 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000234642 Festuca Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108700005443 Microbial Genes Proteins 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241001147397 Ostrinia Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000005924 Pirimiphos-methyl Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241001330029 Pooideae Species 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical group CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- 241000187391 Streptomyces hygroscopicus Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000005843 Thiram Substances 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical class OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 101150077913 VIP3 gene Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003322 aneuploid effect Effects 0.000 description 1
- 208000036878 aneuploidy Diseases 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000000443 biocontrol Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229940117949 captan Drugs 0.000 description 1
- GYSSRZJIHXQEHQ-UHFFFAOYSA-N carboxin Chemical compound S1CCOC(C)=C1C(=O)NC1=CC=CC=C1 GYSSRZJIHXQEHQ-UHFFFAOYSA-N 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000010154 cross-pollination Effects 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 238000009109 curative therapy Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical group OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000000408 embryogenic effect Effects 0.000 description 1
- 239000004495 emulsifiable concentrate Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000005452 ethyl sulfates Chemical class 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000003501 hydroponics Substances 0.000 description 1
- 238000009399 inbreeding Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009403 interspecific hybridization Methods 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000001057 ionotropic effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 150000005451 methyl sulfates Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000002013 molluscicidal effect Effects 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- UYDLBVPAAFVANX-UHFFFAOYSA-N octylphenoxy polyethoxyethanol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCOCCOCCOCCO)C=C1 UYDLBVPAAFVANX-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical class C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000003090 pesticide formulation Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008659 phytopathology Effects 0.000 description 1
- 238000003976 plant breeding Methods 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 210000002706 plastid Anatomy 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000003118 sandwich ELISA Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 230000014639 sexual reproduction Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 230000028070 sporulation Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 235000020354 squash Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- 238000003971 tillage Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 101150101900 uidA gene Proteins 0.000 description 1
- 241000701366 unidentified nuclear polyhedrosis viruses Species 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 230000009105 vegetative growth Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000004563 wettable powder Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8286—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/50—Isolated enzymes; Isolated proteins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- the present invention relates to a method of controlling species of the Lepidoptera genus Ostrinia species preferably Ostrinia furnacalis (Asian Corn Borer), in crop plants by use of toxin proteins obtainable from Bacillus thuringiensis and/or other Bacillus species.
- Bacillus thuringiensis belongs to the large group of gram-positive, aerobic, endospore-forming bacteria. Unlike other very closely related species of Bacillus such as B. cereus or B. anthracis, the majority of the hitherto known Bacillus thuringiensis species produce in the course of their sporulation a parasporal inclusion body which, due to its crystalline structure, is generally referred to as a crystalline body. This crystalline body is composed of insecticidally active crystalline protoxin proteins, the so-called ⁇ -endotoxins.
- the protein crystals are responsible for the toxicity to insects of Bacillus thuringiensis.
- the ⁇ -endotoxin does not exhibit its insecticidal activity until after oral ingestion of the crystalline body, when the latter is dissolved in the intestinal juice of the target insects.
- the actual toxic component is released from the protoxin as a result of proteolytic cleavage caused by the action of proteases from the digestive tract of the insects.
- the ⁇ -endotoxins of the various Bacillus thuringiensis strains are characterized by high specificity toward certain target insects, especially with respect to various Lepidoptera, Coleoptera and Diptera larvae, and by a high degree of activity against such succeptible larvae.
- a further advantage of Bacillus thuringiensis ⁇ -endotoxins resides in the fact that the toxins are harmless to humans, other mammals, birds and fish.
- the various insecticidal crystal proteins from Bacillus thuringiensis have been classified based upon their spectrum of activity and sequence similarity.
- the classification put forth by Höfte and Whiteley, Microbiol. Rev.53:242-255 (1989) placed the then known insecticidal crystal proteins into four major classes.
- the major classes are defined by their spectrum of activity, with the Cryl proteins being active against Lepidoptera, Cryll proteins against both Lepidoptera and Diptera, Crylll proteins being active against Coleoptera, and CrylV proteins against Diptera.
- ⁇ -endotoxins are grouped according to sequence similarity.
- the Cryl proteins are typically produced as 130-140 kDa protoxin proteins which are proteolytically cleaved to produce insecticidally active toxin proteins about 60-70 kDa in size
- the active portion of a ⁇ -endotoxin resides in the NH 2 -term ⁇ nal portion of the full- length molecule.
- Hofte and Whiteley, supra classified the then known Cryl proteins into six groups, IA(a), IA(b), IA(c), IB, IC, and ID. Since then, proteins classified as CrylE, CrylF, CrylG, CrylH and CrylX have also been characterized.
- This object could surprisingly be achieved within the scope of the invention by administering a toxin protein of Bacillus thuringiensis such as a Cryl-type toxin protein, to the crop plant to be protected.
- toxin proteins obtainable from vegetative cultures of Bacillus species, so-called Vegetative Insecticidal Proteins (VIPs) such as VIP3 [EP-A0 690916; International Application no EP95/03826, the disclosure of which is incorporated herein by reference in its entirety], can also be used to control Ostrinia furnacalis (Asian Corn Borer) pests.
- VIPs Vegetative Insecticidal Proteins
- the present invention thus relates to a method for protecting plants including progeny thereof against damage caused by Ostrinia furnacalis (Asian Corn Borer) species comprising directly or indirectly administering to the plant or the plant seed or the growing area of the plant to be protected a toxin protein of Bacillus species, preferably a Cryl-type or a VIP-type protein mentioned above, either purely or in the form of an ento- mocidal composition comprising at least one of said proteins or a microorganism, preferably a Bacillus thuringiensis and/or a Bacillus cereus strain, containing at least one toxin gene encoding the toxin protein.
- Said microorganisms used in the method according to the invention may either be naturally occurring strains or, in the alternative, recombinant strains comprising a recombinant gene encoding the toxin.
- transgenic plants are used to administer the toxin to the plants to be protected against damage caused by Ostrinia furnacalis (Asian Corn Borer) species.
- Such plants are obtained by transformation with a toxin gene encoding an insecticidal toxin protein from a Bacillus species such as a Cry-type, preferably a Cryl- type toxin protein or a VIP-type protein, and expressing said toxin protein in an amount sufficient to provide control against Ostrinia furnacalis (Asian Corn Borer) species upon planting the so transformed plant in an area where said insect pest occurs.
- Entomocidal compositions to be used in the method according to the invention for protecting crop plants against Ostrinia furnacalis (Asian Corn Borer) pests for example comprise as an active ingredient at least one Cry-type toxin protein, more preferred at least one Cryl-type toxin protein, even more preferred at least one CrylA-type toxin protein, particularly preferred at least one CrylA(b)-type toxin protein and most particularly preferred at least one crylA(b) type toxin protein according to SEQ ID NOS: 53 to 55, even more preferred of Bacillus thuringiensis or a microorganism containing at least one gene encoding said toxin protein, preferably a Bacillus thuringiensis strain containing at least one gene encoding said toxin protein, or a derivative or mutant thereof, together with an agricultural adjuvant such as a carrier, diluent, surfactant or application-promoting adjuvant.
- an agricultural adjuvant such as a carrier, dil
- the active ingredient contained in the entomocidal composition may also be a VIP-type toxin protein as disclosed in EP-A-0690916 and the PCT International Application No EP95/03826 or a combination of Cryl-type and VIP-type proteins.
- aVIP1-type protein such as a VIP1 A(a) protein or a VIP1A(b) protein
- a VIP2- type protein such as a VIP2A(a) protein or a VIP2A(b) protein or a combination of a VIP1-type protein and a VIP2-type protein or aVIP3-type protein, such as a VIP3A(a) protein or a VIP3A(b) protein.
- VIP-type toxin proteins as shown in SEQ ID NOS: 1 , 2, 4-7, 17-24, 26-32, 35, 36, 39, 40, 42, 43, 45, 46, 49, 50, 51 or 52.
- the composition may also contain a further biologically active compound.
- Said compound can be both a fertilizer or micronutrient donor or other preparations that influence plant growth. It can also be a selective herbicide, insecticide, fungicide, bactericide, nematicide, molluscide or mixtures of several of these preparations, if desired, together with further agriculturally acceptable carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation.
- Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders or fertilizers.
- the composition may comprise from 0.1 to 99% by weight of the active ingredient, from 1 to 99.9% by weight of a solid or liquid adjuvant, and from 0 to 25% by weight of a surfactant.
- the active ingredient or the composition containing said active ingredient may be administered to the plants or crops to be protected together with certain other insecticides or chemicals (1993 Crop Protection Chemicals Reference, Chemical and Pharmaceutical Press, Canada) without loss of potency. It is compatible with most other commonly used agricultural spray materials but should not be used in extremely alkaline spray solutions if a Cryl-type toxin is involved. It may be administered as a dust, a suspension, a wettable powder or in any other material form suitable for agricultural application.
- the active ingredient that is preferably a Cryl-type toxin protein of Bacillus thuringiensis and/or one of the VIP-type proteins mentioned previously, or the composition comprising said active ingredient may be applied to (a) an environment in which the insect pest may occur, (b) a plant or plant part in order to protect said plant or plant part from damage caused by an insect pest, or (c) seed in order to protect a plant which develops from said seed from damage caused the pest.
- a preferred method of application in the area of plant protection is application to the foliage of the plants (foliar application), with the number of applications and the rate of application depending on the plant to be protected and the risk of infestation by the pest in question.
- compositions to be used in a method according to the invention are also suitable for protecting plant propagating material, e.g. seed, such as fruit, tubers or grains, or plant cuttings, from insect pests.
- the propagation material can be treated with the formulation before planting: seed, for example, can be dressed before being sown.
- the active ingredient of the invention can also be applied to grains (coating), either by impregnating the grains with a liquid formulation or by coating them with a solid formulation.
- the formulation can also be applied to the planting site when the propagating material is being planted, for example to the seed furrow during sowing.
- the invention relates also to those methods of treating plant propagation material and to the plant propagation material thus treated.
- compositions may be applied in any method known for treatment of seed or soil with bacterial strains.
- the strains are effective for biocontrol even if the microorganism is not living. Preferred is, however, the application of the living microorganism.
- Target crops to be protected within the scope of the present invention are those that are host plants for Ostrinia furnacalis (Asian Corn Borer) species and include but are not limited to the species of maize, wheat, barley, rye, oats, rice, sorghum, millet and related crops, forage grasses, bamboo and sugar cane.
- Ostrinia furnacalis Asian Corn Borer
- the active ingredient according to the invention may be used in unmodified form or together with any suitable agriculturally acceptable carrier.
- suitable agriculturally acceptable carrier are adjuvants conventionally employed in the art of agricultural formulation, and are therefore formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations, for example, in polymer substances.
- the methods of application such as spraying, atomizing, dusting, scattering or pouring, are chosen in accordance with the intended objective and the prevailing circumstances.
- Advantageous rates of application range from about 50 g to about 5 kg of active ingredient (a.i.) per hectare ("ha", approximately 2.471 acres), and preferably from about 100 g to about 2 kg a.i./ha.
- Preferred rates of application are 200 g to about 1 kg a.i./ha or 200 g to 500 g a.i./ha.
- advantageous application rates range from 0.5 g to 1000 g a.i. per 100 kg seed, preferably from 3g to 100 g a.i. per 100kg seed. Most preferred are application rate from 10 g to 50 g a.i. per 100 kg seed.
- Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders or fertilizers.
- the formulations i.e. the entomocidal compositions, preparations or mixtures thereof with other active ingredients, and, where appropriate, a solid or liquid adjuvant, are prepared in known manner, e.g., by homogeneously mixing and/or grinding the active ingredients with extenders, e.g., solvents, solid carriers, and in some cases surface-active compounds (surfactants).
- Suitable solvents are.
- aromatic hydrocarbons preferably the fractions containing 8 to 12 carbon atoms, e.g. xylene mixtures or substituted naphthalenes, phthalates such as dibutyl phthalate or dioctyl phthalate, aliphatic hydrocarbons such as cyclohexane or paraffins, alcohols and glycols and their ethers and esters, such as ethanol, ethylene glycol monomethyl or monoethyl ether, ketones such as cyclohexanone, strongly polar solvents such as N-methyl-2-pyrrol ⁇ done, dimethylsulfoxide or dimethylformamide, as well as vegetable oils or epoxidised vegetable oils such as epoxidised coconut oil or soybean oil, or water.
- phthalates such as dibutyl phthalate or dioctyl phthalate
- aliphatic hydrocarbons such as cyclohexane or paraffins
- alcohols and glycols and their ethers and esters such
- the solid carriers used are normally natural mineral fillers such as calcite, talcum, kaolin, montmorillonite or attapulgite.
- Suitable granulated adsorptive carriers are porous types, for example pumice, broken brick, sepiolite or bentonite; and suitable nonsorbent carriers are materials such as calcite or sand.
- a great number of pregranulated materials of inorganic or organic nature can be used, e.g. especially dolomite or pulverized plant residues.
- suitable surface- active compounds are non-ionic, cationic and/or anionic surfactants having good emulsifying, dispersing and wetting properties.
- surfactants will also be understood as comprising mixtures of surfactants.
- Suitable anionic surfactants can be both water-soluble soaps and water-soluble synthetic surface-active compounds.
- Suitable soaps are the alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts of higher fatty acids (C sub 10-C sub 22), e.g. the sodium or potassium salts of oleic or steanc acid, or of natural fatty acid mixtures which can be obtained, e.g. from coconut oil or tallow oil.
- Further suitable surfactants are also the fatty acid methyltaurin salts as well as modified and unmodified phospholipids.
- fatty sulfonates especially fatty sulfonates, fatty sulfates, sulfonated benzimidazole derivatives or alkylarylsulfonates.
- the fatty sulfonates or sulfates are usually in the forms of alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts and generally contain a C sub 8 -C sub 22 alkyl radical which also includes the alkyl moiety of acyl radicals, e.g.
- the sodium or calcium salt of Itgnosulfonic acid, of dodecylsulfate, or of a mixture of fatty alcohol sulfates obtained from natural fatty acids also comprise the salts of sulfuric acid esters and sulfonic acids of fatty alcohol/ethylene oxide adducts.
- the sulfonated benzimidazole derivatives preferably contain 2 sulfonic acid groups and one fatty acid radical containing about 8 to 22 carbon atoms.
- alkylarylsulfonates are the sodium, calcium or triethanolamine salts of dodecylbenzenesulfonic acid, dibutylnaphthalenesulfonic acid, or of a naphthalenesulfonic acid/formaldehyde condensation product.
- corresponding phosphates e.g. salts of the phosphoric acid ester of an adduct of p-nonylphenol with 4 to 14 moles of ethylene oxide.
- Non-ionic surfactant are preferably polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols, or saturated or unsaturated fatty acids and alkylphenols, said derivatives containing 3 to 30 glycol ether groups and 8 to 20 carbon atoms in the (aliphatic) hydrocarbon moiety and 6 to 18 carbon atoms in the alkyl moiety of the alkylphenols.
- non-ionic surfactants are the water-soluble adducts of polyethylene oxid e with polypropylene glycol, ethylenediaminopolypropylene glycol and alkylpolypropylene glycol containing 1 to 10 carbon atoms in the alkyl chain, which adducts contain 20 to 250 ethylene glycol ether groups and 10 to 100 propylene glycol ether groups. These compounds usually contain 1 to 5 ethylene glycol units per propylene glycol unit.
- non-ionic surfactants are nonylphenolpolyethoxyethanols, castor oil polyglycol ethers, polypropylene/polyethylene oxid e adducts, tributylphenoxypolyethoxyethanol, polyethylene glycol and octylphenoxypolyethoxyethanol .
- Fatty acid esters of polyoxyethylene sorbitan, such as polyoxyethylene sorbitan trioleate, are also suitable non-ionic surfactants.
- Cationic surfactants are preferably quaternary ammonium salts which contain, as N- substituent, at least one C sub 8 -C sub 22 alkyl radical and, as further substituents, lower unsubstituted or halogenated alkyl, benzyl or hydroxyl-lower alkyl radicals.
- the salts are preferably in the form of halides, methylsulfates or ethylsulfates, e.g., stearyltnmethylammonium chloride or benzyld ⁇ -(2-chloroemyl)ethylammon ⁇ um bromide.
- an entomocidal composition of the present invention is the persistence of the active ingredient when applied to plants and soil
- Possible causes for loss of activity include inactivation by ultra-violet light, heat, leaf exudates and pH.
- inactivation by ultra-violet light, heat, leaf exudates and pH For example, at high pH, particularly in the presence of reductant, ⁇ - endotoxin crystals are solubilized and thus become more accessible to proteolytic inactivation.
- High leaf pH might also be important, particularly where the leaf surface can be in the range of pH 8-10.
- Formulation of an entomocidal composition to be used in a method according to the present invention can address these problems by either including additives to help prevent loss of the active ingredient or encapsulating the material in such a way that the active ingredient is protected from inactivation.
- Encapsulation can be accomplished chemically (McGuire and Shasha, J Econ Entomol 85:1425-1433, 1992) or biologically (Barnes and Cummings, 1986; EP-A 0192319).
- Chemical encapsulation involves a process in which the active ingredient is coated with a polymer while biological encapsulation involves the expression of the ⁇ -endotoxin genes in a microbe.
- biological encapsulation the intact microbe containing the toxin protein is used as the active ingredient in the formulation.
- the addition of UV protectants might effectively reduce irradiation damage. Inactivation due to heat could also be controlled by including an appropriate additive.
- formulations comprising living microorganisms as an active ingredient either in form of the vegetative cell or more preferable in form of spores, if available.
- Suitable formulations may consist, for example, of polymer gels which are crosslinked with polyvalent cations and comprise these microorganisms. This is described, for example, by D.R. Fravel et al. in Phytopathology, Vol.75, No.7, 774-777, 1985 for alginate as the polymer material. It is also known from this publication that carrier materials can be co-used.
- formulations are as a rule prepared by mixing solutions of naturally occurring or synthetic gel-forming polymers, for example alginates, and aqueous salt solutions of polyvalent metal ions such that individual droplets form, it being possible for the microorganisms to be suspended in one of the two or in both reaction solutions.
- Gel formation starts with the mixing in drop form. Subsequent drying of these gel particles is possible. This process is called ionotropic gelling.
- compact and hard particles of polymers which are structurally crosslinked via polyvalent cations and comprise the microorganisms and a carrier present predominantly uniformly distributed are formed.
- the size of the particles can be up to 5 mm.
- compositions based on partly crosslinked polysaccharides which, in addition to a microorganism, for example, can also comprise finely divided silicic acid as the carrier material, crosslinking taking place, for example, via Ca ++ ions, are described in EP-A1-0 097571.
- the compositions have a water activity of not more than 0.3.
- W.J. Cornick et al. describe in a review article [New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases, pages 345-372, Alan R. Liss, Inc. (1990)] various formulation systems, granules with vermicuhte as the carrier and compact alginate beads prepared by the lonotropic gelling process being mentioned.
- compositions are also disclosed by D.R.Fravel in Pesticide Formulations and Application Systems:11th Volume, ASTM STP 1 112 American Society for Testing and Materials, Philadelphia, 1992, pages 173 to 179 and can be used to formulate the recombinant microorganisms according to the invention. Further methods for formulating living microorganism are described in WO96/02638.
- compositions according to the invention are valuable for preventive and/or curative treatment in the field of pest control even at low rates of application while being well tolerated by and non-toxic to warm-blooded species, fish and plants and have a very favourable biocidal spectrum.
- the compositions according to the invention are active against all or individual development stages of Ostrinia furnacalis (Asian Corn Borer) pests.
- the insecticidal action of the compounds according to the invention can become obvious either directly, i.e. by destroying the pests immediately or only after some time has elapsed.
- the said composition can be provided in form of a chemical mixture comprising the toxin proteins in an essentially pure form or in form of a mixture comprising at least one of the toxin proteins as part of a microorganism or a transgenic plant.
- one of the active ingredients may be applied to the plant directly by, for example, leaf application as described herein previously, whereas the second active principle may be provided by the plant itself upon expression of a previously transformed gene encoding the said second principle.
- the entomocidal compositions to be used in the method according to the invention usually contain from about 0.1 to about 99%, preferably from about 01 to about 95%, and most preferably from about 3 to about 90% of active ingredient; from about 1 to about 99.9%, preferably from about 1 to about 99%, and most preferably from about 5 to about 95% of a solid or liquid adjuvant, and from about 0 to about 25%, preferably about 0.1 to about 25%, and most preferably from about 0.1 to about 20% of a surfactant .
- compositions may also contain further ingredients, such as stabilizers, antifoams, viscosity regulators, binders, tackifiers as well as fertilizers or other active ingredients in order to obtain special effects.
- the present invention also relates to formulations comprising living microorganisms as an active ingredient which are present in the form of vegetative cells or more in the form of spores, if available.
- a further object of the invention relates to the use of recombinant microorganisms comprising a toxin gene encoding a toxin protein of Bacillus thuringiensis such as a Cryl-type protein, in a method of controlling crop plants against damages caused by Ostrinia furnacalis (Asian Corn Borer) species, which recombinant organisms are either applied directly to the plant to be protected or the recombinantly produced toxin protein is first isolated from the recombinant microorganism and formulated as described above before being applied to the crop plant to be protected.
- the recombinant microorganisms may also contain a toxin gene encoding a VIP-type toxin protein as disclosed in the EP-A-690 916 and the International Application No EP95/03826 or a combination of genes encoding at least a Cry-type toxin and a VIP-type toxin, respectively.
- the coding sequence may be inserted into an expression cassette designed for the chosen host and introduced into the host where it is recombinantly produced.
- the choice of specific regulatory sequences such as promoter, signal sequence, 5' and 3' untranslated sequences, and enhancer appropriate for the chosen host is within the level of skill of the practioneer in the art.
- the resultant molecule, containing the individual elements linked in the proper reading frame, are inserted into a vector capable of being transformed into the host cell. Suitable expression vectors and methods for recombinant production of proteins are well known for host organisms such as E. coli (see, e.g. Studier and Moffatt, J. Mol.
- plasmids such as pBluescnpt (Stratagene, La Jolla, CA), pFLAG (International Biotechnologies, Inc., New Haven, CT), pTrcHis (Invitrogen, La Jolla, CA), and baculovirus expression vectors, e.g., those derived from the genome of Autographica californica nuclear polyhedrosis virus (AcMNPV).
- a preferred baculovirus/insect system is pVI11392/Sf21 cells (Invitrogen, La Jolla, CA).
- the recombinantly produced toxin protein can be isolated and purified using a variety of standard techniques. The actual techniques which may be used will vary depending upon the host organism used, whether the toxin protein is designed for secretion, and other such factors a skilled artisan is aware of (see, e.g. chapter 16 of Ausubel, F. et al., "Current Protocols in Molecular Biology", pub. by John Wiley & Sons, Inc. (1994).
- a preferred object of the invention relates to the use of transgenic plants comprising and expressing a toxin gene encoding a toxin protein of Bacillus thuringiensis, especially a Cryl-type toxin protein, in an amount sufficient to provide control against Ostrinia furnacalis (Asian Corn Borer) species, in a method of protecting crop plants against damages caused by Ostrinia furnacalis (Asian Corn Borer) pests.
- the plants can be the result of nuclear transformation or plastid transformation (see WO 95/24492).
- transgenic plants expressing a CrylA(b) toxin protein of Bacillus thuringiensis are especially preferred.
- the invention also relates to the use of transgenic plants comprising a toxin gene encoding a VIP-type protein as described in EP-A-690916 and International Application No EP95/03826, herein incorporated by reference in its entirety.
- the invention also relates to the use of transgenic plants comprising and expressing a toxin gene encoding a toxin protein of Bacillus thuringiensis, but especially a Cry-type toxin protein, and also comprising and expressing a toxin gene encoding a VIP-type protein in an amount sufficient to provide control against Ostrinia furnacalis (Asian Corn Borer) species.
- a host plant expressing said toxin genes will have enhanced resistance to insect attack of Ostrinia furnacalis (Asian Corn Borer) species and will be better equipped to withstand crop losses associated with such attack.
- expression of one or more Bt ⁇ -endotoxins in a transgenic plant is accompanied by the expression of one or more VIP-type proteins.
- This co-expression of more than one insecticidal principle in the same transgenic plant can be achieved by genetically engineering a plant to contain and express all the genes necessary.
- a plant, Parent 1 can be genetically engineered for the expression of VIP-type proteins.
- a second plant, Parent 2 can be genetically engineered for the expression of Bt ⁇ -endotoxin. By crossing Parent 1 with Parent 2, progeny plants are obtained which express all the genes introduced into Parents 1 and 2.
- Particularly preferred Bt ⁇ - endotoxins are those disclosed in EP-A 0618976, herein incorporated by reference.
- Also comprised by the present invention is the use of recombinant microorganisms or transgenic plants comprising a gene encoding DNA molecules which hybridizes to a DNA molecule encoding a toxin protein of Bacillus species, but preferably to an oligonucleotide probe obtainable from said DNA molecule comprising a contiguous portion of the coding sequence for the said toxin protein at least 10 nucleotides in length, under moderately stringent conditions.
- the invention preferably comprises the use of recombinant microorganisms or transgenic plants comprising a gene encoding DNA molecules which hybridizes to a DNA molecule encoding a toxin protein of Bacillus thuringiensis or B cereus especially to a DNA molecule encoding a Cry-type protein or to a toxin gene encoding a VIP-type toxin protein, preferably to a CrylA(b) protein.
- T m melting temperature
- the preferred hybridization temperature is in the range of about 25°C below the calculated melting temperature T m and preferably in the range of about 12-15°C below the calculated melting temperature T m and in the case of oligonucleotides in the range of about 5-10°C below the melting temperature T m .
- the invention further relates to a commercial bag comprising seed of a transgenic plant comprising at least a toxin gene encoding a toxin protein of Bacillus thuringiensis, preferably a Cry-type toxin protein, more preferably a Cryl-type toxin protein, but most preferably a CrylA-type toxin protein and expressing the said toxin protein in an amount sufficient to provide control against Ostrinia furnacalis (Asian Corn Borer) species, together with lable instructions for the use thereof for control of Ostrinia furnacalis (Asian Corn Borer) pests in crop plants.
- a toxin gene encoding a toxin protein of Bacillus thuringiensis, preferably a Cry-type toxin protein, more preferably a Cryl-type toxin protein, but most preferably a CrylA-type toxin protein and expressing the said toxin protein in an amount sufficient to provide control against Ostrinia fur
- Preferred within this invention is a commercial bag comprising seed of a transgenic plant comprising as an active ingredient a gene encoding at least a Cry-type toxin protein and a VIP-type protein.
- a gene encoding at least a Cry-type toxin protein and a VIP-type protein is particularly preferred.
- a combination of a CrylA(b) toxin protein with a VIP-type protein is especially preferred.
- the further object of the invention is a commercial bag comprising an insecticidal composition according to the invention together with lable instructions for the use thereof for control of Ostrinia furnacalis (Asian Corn Borer) pests in crop plants.
- plant any plant species which can be genetically transformed by methods known in the art, but especially those plants that are host plants for Ostrinia furnacalis (Asian Corn Borer) species including, but not limited to, the following species of plants: maize, wheat, barley, rye, oats, rice, sorghum, millet and related crops, forage grasses, bamboo (orchardgrass, fescue, and the like), and sugar cane.
- Ostrinia furnacalis Asian Corn Borer
- Host plants include, but are not limited to, those species previously listed as target crops.
- the invention further relates to seed of a transgenic plant comprising a gene encoding a toxin protein of Bacillus thuringiensis and expressing said toxin protein in an amount sufficient to provide control against Ostrinia furnacalis (Asian Corn Borer) species, and a commercial bag containing said seed.
- plant any plant species that is a host for Ostrinia furnacalis (Asian Corn Borer) including, but not limited to, the species of maize, wheat, barley, rye, oats, rice, sorghum, millet and related crops, forage grasses, bamboo and sugar cane.
- Ostrinia furnacalis Asian Corn Borer
- codon usage of a native Bacillus thuringiensis toxin gene is significantly different from that which is typical of a plant gene.
- the codon usage of a native Bacillus thuringiensis gene is very different from that of a maize gene.
- Codon usage might influence the expression of genes at the level of translation or transcription or mRNA processing.
- the codon usage is optimized by using the codons which are most preferred in maize (maize preferred codons) in the synthesis of a synthetic gene which encodes the same protein as found for the native toxin gene sequence.
- the optimized maize preferred codon usage is effective for expression of high levels of the Bt insecticidal protein
- Toxin genes derived from microorganisms may also differ from plant genes. Plant genes differ from genes found in microorganisms in that their transcribed RNA does not possess defined nbosome binding site sequence adjacent to the initiating methionine Consequently, microbial genes can be enhanced by the inclusion of a eukaryotic consensus translation initiator at the ATG. Clontech (1993/1994 catalog, page 210) has suggested the sequence GTCGACCATGGTC as a consensus translation initiator for the expression of the E. coli uidA gene in plants. Further, Joshi (Nucl Acids Res 15: 6643- 6653 (1987)) has compared many plant sequences adjacent to the ATG and suggests the consensus TAAACAATGGCT.
- nucleotides adjacent to the initiating methionine may differ between different plant species.
- protoxins Many ⁇ -endotoxin proteins from Bacillus thuringiensis are expressed as protoxins. These protoxins are solubilized in the alkaline environment of the insect gut and are then proteolytically converted by proteases into a toxic core fragment (Höfte and Whiteley, Microbiol Rev.53:242-255 (1989)). For ⁇ -endotoxin proteins of the Cryl class, the toxic core fragment is localized in the N-terminal half of the protoxin. It is within the scope of the present invention that genes encoding either the full-length protoxin form or the truncated toxic core fragment of the novel toxin protein can be used in plant transformation vectors to confer insecticidal properties upon the host plant.
- the recombinant DNA molecules can be introduced into the plant cell in a number of art-recognized ways. Those skilled in the art will appreciate that the choice of method might depend on the type of plant, i.e. monocot or dicot, targeted for transformation. Suitable methods of transforming plant cells include microinjection (Crossway et al., BioTechniques 4:320-334 (1986)), electroporation (Riggs et al, Proc. Natl. Acad. Sci. USA 83:5602-5606 (1986), Agrobacterium-mediated transformation (Hinchee et al., Biotechnology 6:915-921 (1988)), direct gene transfer (Paszkowski et al., EMBO J.
- the genetic properties engineered into the transgenic seeds and plants described above are passed on by sexual reproduction or vegetative growth and can thus be maintained and propagated in progeny plants.
- said maintenance and propagation make use of known agricultural methods developed to fit specific purposes such as tilling, sowing or harvesting.
- Specialized processes such as hydroponics or greenhouse technologies can also be applied.
- measures are undertaken to control weeds, plant diseases, insects, nematodes, and other adverse conditions to improve yield.
- Use of the advantageous genetic properties of the transgenic plants and seeds according to the invention can further be made in plant breeding which aims at the development of plants with improved properties such as tolerance of pests, herbicides, or stress, improved nutritional value, increased yield, or improved structure causing less loss from lodging or shattering.
- the various breeding steps are characterized by well-defined human intervention such as selecting the lines to be crossed, directing pollination of the parental lines, or selecting appropriate progeny plants. Depending on the desired properties different breeding measures are taken.
- the relevant techniques are well known in the art and include but are not limited to hybridization, inbreeding, backcross breeding, multiline breeding, variety blend, interspecific hybridization, aneuploid techniques, etc.
- Hybridization techniques also include the sterilization of plants to yield male or female sterile plants by mechanical, chemical or biochemical means.
- Cross pollination of a male sterile plant with pollen of a different line assures that the genome of the male sterile but female fertile plant will uniformly obtain properties of both parental lines.
- the transgenic seeds and plants according to the invention can be used for the breeding of improved plant lines which for example increase the effectiveness of conventional methods such as herbicide or pestidice treatment or allow to dispense with said methods due to their modified genetic properties.
- new crops with improved stress tolerance can be obtained which, due to their optimized genetic "equipment", yield harvested product of better quality than products which were not able to tolerate comparable adverse developmental conditions.
- Propagation material to be used as seeds is customarily treated with a protectant coating comprising herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures thereof.
- a protectant coating comprising herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures thereof.
- Customarily used protectant coatings comprise compounds such as captan, carboxin, thiram (TMTD ® ), methalaxyl (Apron ® ), and pirimiphos-methyl (Actellic ® ). If desired these compounds are formulated together with further carriers, surfactants or application- promoting adjuvants customarily employed in the art of formulation to provide protection against damage caused by bacterial, fungal or animal pests.
- the protectant coatings may be applied by impregnating propagation material with a liquid formulation or by coating with a combined wet or dry formulation. Other methods of application are also possible such as treatment directed at the buds or the fruit. It is a further aspect of the present invention to provide new agricultural methods such as the methods examplified above which are characterized by the use of transgenic plants, transgenic plant material, or transgenic seed according to the present invention to provide control against Ostrinia furnacalis (Asian Corn Borer).
- a method such as that which follows may be used: maize plants produced as described in the examples set forth below are grown in pots in a greenhouse or in soil, as is known in the art, and permitted to flower. Pollen is obtained from the mature tassel and used to pollinate the ears of the same plant, sibling plants, or any desirable maize plant. Similarly, the ear developing on the transformed plant may be pollinated by pollen obtained from the same plant, sibling plants, or any desirable maize plant. Transformed progeny obtained by this method may be distinguished from non-transformed progeny by the presence of the introduced gene(s) and/or accompanying DNA (genotype), or the phenotype conferred.
- the transformed progeny may similarly be selfed or crossed to other plants, as is normally done with any plant carrying a desirable trait.
- tobacco or other transformed plants produced by this method may be selfed or crossed as is known in the art in order to produce progeny with desired characteristics.
- other transgenic organisms produced by a combination of the methods known in the art and this invention may be bred as is known in the art in order to produce progeny with desired characteristics.
- Plant transformation is accomplished using the transformation vectors pCIB 4431 and pCIB 3064 described in WO 93/07278 and Koziel et al (1993) [Biotechnology Vol 11 , 194-200], both disclosures being incorporated herein by reference.
- pCIB4431 is a vector designed to transform maize. It contains two chimeric synthetic Bt crylA(b) endotoxin genes expressible in maize the one of them constituting a PEP carboxylase promoter/synthetic-crylA(b) gene, the other one a pollen promoter/synthetic- crylA(b) gene.
- pCIB4431 contains the synthetic crylA(b) gene provided in SEQ ID NO: 1 and was deposited on September 21, 1992 with the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, U.S.A. under accession no NRRL B-18998.
- pCIB3064 contains a plant expressible bar gene (615 bp), which was originally cloned from Streptomyces hygroscopicus [Thompson etal. (1987) EMBO J 6, 2519-2523]. It encodes a phosphinotricin acetyltransferase (PAT), conferring tolerance to phosphinotricin.
- PAT phosphinotricin acetyltransferase
- the bar gene is under the control of the CaMV 35S promoter and terminator [OW et al (1987) Proc Natl Acad Sci USA 84, 4870-4874] to provide resistance to phosphinotricin.
- EXAMPLE 3 Production of transgenic maize plants containing the synthetic maize
- the example below utilizes a biolistic device to introduce DNA coated particles into maize cells, from which transformed plants are generated.
- Immature maize embryos approximately 1.5-2.5 mm in length, were excised from an ear of genotype 6N61514-15 days after pollination. The mother plant was grown in the greenhouse. Before excision, the ear was surface sterilized with 20% Clorox for 20 minutes and rinsed 3 times with sterile water. Individual embryos were plated scutellum side up in a 2 cm square area, 36 embryos to a plate, on the callus initiation medium, 2DG4+5 chloramben medium (N6 major salts, B5 minor salts, MS iron, 2% sucrose, with 5 mg/l chloramben, 20 mg/l glucose, and 10 ml G4 additions (Table 1) added after autoclaving.
- 2DG4+5 chloramben medium N6 major salts, B5 minor salts, MS iron, 2% sucrose, with 5 mg/l chloramben, 20 mg/l glucose, and 10 ml G4 additions (Table 1) added after autoclaving.
- the microcarrier was prepared essentially according to the instructions supplied with the Biolistic device. While vortexing 50 ⁇ l 1.0 ⁇ m gold microcarrier, 5 ⁇ l of pCIB4431 (1.23 ⁇ g/ ⁇ l) [#898] + 2 ⁇ l pCIB3064 (0.895 ⁇ g/ ⁇ l) [#456] was added followed by 50 ⁇ l 2.5 M CaCl 2 , then 20 ⁇ l 0.1 M spermidine (free base, TC grade). The resulting mixture was vortexed 3 minutes and microfuged for 10 sec.
- the supernatant was removed and the microcarriers washed 2 times with 250 ⁇ l of 100% EtOH (HPLC grade) by vortexing briefly, centrfiuging and removing the supernatant.
- the microcarriesr are resuspended in 65 ⁇ l 100% EtOH.
- Tissue was bombarded using the PDS-1000He Biolistics device.
- the tissue was placed on the shelf 8 cm below the stopping screen shelf.
- the tissue was shot one time with the DNA/gold microcarriersolution, 10 ⁇ l dried onto the microcarrier.
- the stopping screen used was hand punched using 10x10 stainless steel mesh screen. Rupture discs of 1550 psi value were used. After bombardment, the embryos were cultured in the dark at 25°C.
- Embryos were transferred to callus initiation medium with 3 mg/l PPT 1 day after bombardment. Embryos were scored for callus initiation at 2 and 3 weeks after bombardment. Any responses were transferred to callus maintenance medium, 2DG4+
- 0.52,4-D medium with 3 mg/L PPT 0.52,4-D medium with 3 mg/L PPT.
- Callus maintenance medium is N6 major salts, B5 minor salts, MS iron, 2% sucrose, with 0.5 mg/l 2,4-D, 20 mg/l glucose, and 10 ml G4 additions added after autoclaving Embryogenic callus was subcultured every 2 weeks to fresh maintenance medium containing 3 mg/L PPT. All callus was incubated in the dark at 25°C.
- the Type I callus formation response was 15%. Every embryo which produced callus was cultured as an individual event giving rise to an individual line. 3.5 Regeneration
- Regeneration medium is 0.25MS3S5BA (0.25 mg/l 2,4 D, 5 mg/l BAP, MS salts, 3% sucrose) for 2 weeks followed by subculture to MS3S medium for regeneration of plants. After 4 to 10 weeks, plants were removed and put into GA 7's.
- crylA(b) gene expression in transgenic maize is monitored using Asian corn borer insect bioassays and ELISA analysis for a quantitative determination of the level of crylA(b) protein obtained.
- Corn extracts are made by grinding leaf tissue in gauze lined plastic bags using a hand held ball-bearing homogenizer (AGDIA, Elkart IN.) in the presence of extraction buffer (50 mM
- Protein determination is performed using the Bio-Rad (Richmond, CA) protein assay.
- One to four 4 cm sections are cut from an extended leaf of a corn plant. Each leaf piece is placed on a moistened filter disc in a 50 x 9 mm petri dish. Five neonate Asian corn borer larvae are placed on each leaf piece (making a total of 5-20 larvae per plant). The petri dishes are incubated at 29.5°C. Leaf feeding damage and mortality data are scored after 24, 48, and 72 hours.
- transgenic seedlings which were first tested for the presence and the expression of the transgene, are transplanted into the field.
- Non-transgenic inbred lines are planted in the same field over a six week period, to serve as controls and for pollinations.
- a mean Asian Corn Borer damage rating score is calculated for each transgenic and non-transgenic control plant. As each plant reaches anthesis, 300 larvae/plant are applied weekly for four weeks to stimulate second generation infestation.
- One hundred of neonate larvae in corn cob grits are introduced into the leaf axil at the primary ear and at the leaf axil one node above and below the primary ear node. Therefore a total of approximatively 2400 larvae are applied to each plant. About 50 days after the initial second generation infestation, stalks from all transplanted and some non-transgenic plants are harvested. The extent of internal second generation infestation tunneling damage in the whole plants is determined.
- EXAMPLE 6 Assay of extract from transformed protoplasts for insecticidal activity against Ostrinia furnacalis (Asian Corn Borer)
- Bacillus thuringiensis (Bt) crystals are prepared for stock suspension with 22 ml of distilled water. The suspension is kept in the refrigerator.
- Plants of two homozygous inbred lines of Zea mays susceptible to Asian Corn Borer are used (Lines A and B). Seedling plants aged 9-10 days are dipped in various concentrations of Bt protein suspension and are used in feeding experiments, wherein larvae are released on dried leaves of seedling plants, 5-10 larvae per plant. The seedling plants are covered with nylon mesh bags and kept in a nylon mesh case.4-5 concentrations with 4 replications are tested and mortality is determined. The temperature is kept at 21-30°C. 7.4 Results
- 5mg of VIP3A protein were prepared with 50ml of distilled water in order to prepare varying concentration of VIP3 protein: 100ppm, 50ppm, 25ppm, 12.5ppm, 6.25ppm and Oppm (check).
- L2 Larvae
- Lines B and C Plants of two homozygous inbred lines of Zea mays susceptible to Asian Corn Borer are used (Lines B and C).
- Line B was conducted for potted plant test (4 replications 5 rated concentation and check) and
- Line C was conducted for leaf dipping test (4 replications with 100, 50, 25ppm and check).
- Seedling plants aged 10-14 days are dipped in various concentrations of VIP3A protein suspension and are used in feeding experiments, wherein larvae are released on dried leaves of seedling plants, 5-10 larvae per plant.
- the seedling plants are covered with nylon mesh bags and kept in a nylon mesh case. Cut leaves were put in platic blocks and kept in control room four replications were applied for this experiment.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Pest Control & Pesticides (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Plant Pathology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Insects & Arthropods (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Agronomy & Crop Science (AREA)
- Virology (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10500186A JP2000511543A (ja) | 1996-06-06 | 1997-05-27 | 害虫の駆除法 |
AU30296/97A AU728817B2 (en) | 1996-06-06 | 1997-05-27 | Method of controlling insect pests |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9611777.5A GB9611777D0 (en) | 1996-06-06 | 1996-06-06 | Method of controlling insect pests |
GB9611777.5 | 1996-06-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997046105A1 true WO1997046105A1 (fr) | 1997-12-11 |
Family
ID=10794802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1997/002737 WO1997046105A1 (fr) | 1996-06-06 | 1997-05-27 | Procede de lutte contre les insectes nuisibles |
Country Status (7)
Country | Link |
---|---|
JP (1) | JP2000511543A (fr) |
CN (2) | CN1221318A (fr) |
AU (1) | AU728817B2 (fr) |
GB (1) | GB9611777D0 (fr) |
HK (1) | HK1041414A1 (fr) |
ID (1) | ID17325A (fr) |
WO (1) | WO1997046105A1 (fr) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998044137A3 (fr) * | 1997-04-03 | 1998-12-17 | Novartis Ag | Lutte contre des ennemis des plantes |
WO2001087931A3 (fr) * | 2000-05-18 | 2002-05-10 | Aventis Cropscience Nv | Nouvelles toxines |
WO2003080656A1 (fr) * | 2002-03-22 | 2003-10-02 | Bayer Bioscience N.V. | Nouvelles proteines insecticides issues du bacillus thuringiensis |
US6706860B2 (en) | 2000-05-18 | 2004-03-16 | Bayer Bioscience N.V. | Toxins |
EP1499176A4 (fr) * | 2002-03-06 | 2006-05-03 | Syngenta Participations Ag | Nouvelles toxines vip3 et leurs procedes d'utilisation |
US7091399B2 (en) | 2000-05-18 | 2006-08-15 | Bayer Bioscience N.V. | Transgenic plants expressing insecticidal proteins and methods of producing the same |
US7265268B2 (en) | 2002-03-22 | 2007-09-04 | Bayer Bioscience N.V. | Insecticidal proteins derived from Bacillus thuringiensis |
CN103266132A (zh) * | 2013-05-31 | 2013-08-28 | 中国农业科学院生物技术研究所 | 苏云金芽胞杆菌cry1Ah/cry1Ie双价基因表达载体及其应用 |
CN104145020A (zh) * | 2012-02-16 | 2014-11-12 | 先正达参股股份有限公司 | 工程化的杀有害生物蛋白质 |
WO2017146899A1 (fr) * | 2016-02-26 | 2017-08-31 | Syngenta Participations Ag | Compositions et procédés de lutte contre les phytoravageurs |
CN117024536A (zh) * | 2023-10-08 | 2023-11-10 | 莱肯生物科技(海南)有限公司 | 控制亚洲玉米螟害虫的方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104488945B (zh) * | 2014-12-22 | 2017-01-04 | 北京大北农科技集团股份有限公司 | 杀虫蛋白的用途 |
CN107347919A (zh) * | 2017-08-14 | 2017-11-17 | 南阳市农业科学院 | 一种防治小麦赤霉病的复配杀菌剂 |
CN113186194A (zh) * | 2020-01-14 | 2021-07-30 | 先正达生物科技(中国)有限公司 | 亚洲玉米螟的控制 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0589110A1 (fr) * | 1992-08-19 | 1994-03-30 | Plant Genetic Systems N.V. | Contrôle d'ostrinia |
WO1996010083A1 (fr) * | 1994-09-28 | 1996-04-04 | Novartis Ag | Nouvelles proteines et souches pesticides |
WO1997026339A1 (fr) * | 1996-01-15 | 1997-07-24 | Novartis Ag | Procede de protection de plantes cultivees contre les insectes nuisibles |
-
1996
- 1996-06-06 GB GBGB9611777.5A patent/GB9611777D0/en active Pending
-
1997
- 1997-05-27 WO PCT/EP1997/002737 patent/WO1997046105A1/fr active Application Filing
- 1997-05-27 JP JP10500186A patent/JP2000511543A/ja not_active Ceased
- 1997-05-27 CN CN97195250A patent/CN1221318A/zh active Pending
- 1997-05-27 AU AU30296/97A patent/AU728817B2/en not_active Ceased
- 1997-05-27 CN CNB001201387A patent/CN1163146C/zh not_active Expired - Fee Related
- 1997-06-06 ID IDP971936A patent/ID17325A/id unknown
-
2002
- 2002-02-27 HK HK02101514.3A patent/HK1041414A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0589110A1 (fr) * | 1992-08-19 | 1994-03-30 | Plant Genetic Systems N.V. | Contrôle d'ostrinia |
WO1996010083A1 (fr) * | 1994-09-28 | 1996-04-04 | Novartis Ag | Nouvelles proteines et souches pesticides |
WO1997026339A1 (fr) * | 1996-01-15 | 1997-07-24 | Novartis Ag | Procede de protection de plantes cultivees contre les insectes nuisibles |
Non-Patent Citations (13)
Title |
---|
DATABASE BIOSIS BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; CHENG W Y ET AL: "Biological control of Asian corn borer in sweet corn fields.", XP002041105 * |
DATABASE BIOSIS BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; CHENG W Y ET AL: "The pathogenicity of Bacillus thuringiensis var. kurstaki to the 4th instar larvae of Asian corn borer, Ostrinia furnacalis, in the laboratory.", XP002041104 * |
DATABASE BIOSIS BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; SUN LIANGWU ET AL: "Construction of shuttle vector containing delta-endotoxin gene of Bacillus thuringiensis.", XP002041106 * |
DATABASE CHEMABS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; CHEN, QI ET AL: "Molecular cloning and expression of Bacillus thuringiensis subsp. galleriae insecticidal crystal protein genes in Escherichia coli", XP002041107 * |
DATABASE CHEMABS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; DING, QUN-XING ET AL: "Introducing Bt gene into maize with ovary injection", XP002041108 * |
H.HÖFTE & H.R.WHITELEY: "Insecticidal Crystal Proteins of Bacillus thuringiensis", MICROBIOLOGICAL REVIEWS, vol. 53, no. 2, June 1989 (1989-06-01), WASHINTON, DC, US, pages 242 - 55, XP002041103 * |
I.H.SCHREINER ET AL.: "Detasseling and Insecticides for Control of Ostrinia furnacalis (Lepidoptera: Pyralidae) on Sweet Corn", JOURNAL OF ECONOMIC ENTOMOLOGY, vol. 80, no. 1, February 1987 (1987-02-01), COLLEGE PARK, MD, US, pages 263 - 267, XP002041102 * |
M.G.KOZIEL ET AL.: "Field Performance of Elite Transgenic Maize Plants Expressing an Insecticidal Protein Derived from Bacillus thuringiensis", BIO/TECHNOLOGY, vol. 11, February 1993 (1993-02-01), NEW YORK,US, pages 194 - 200, XP002029715 * |
REPORT OF THE TAIWAN SUGAR RESEARCH INSTITUTE 0 (148). 1995. 11-29. ISSN: 0257-5493 * |
REPORT OF THE TAIWAN SUGAR RESEARCH INSTITUTE 0 (149). 1995. 13-19. ISSN: 0257-5493 * |
SCI. CHINA, SER. B (1989), 32(7), 830-6 CODEN: SCBSE5, 1989 * |
SCI. CHINA, SER. B (1994), 37(5), 563-72 CODEN: SCBSE5;ISSN: 1001-652X, 1994 * |
WEISHENGWU XUEBAO 36 (1). 1996. 69-72. ISSN: 0001-6209 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6291156B1 (en) | 1997-04-03 | 2001-09-18 | Syngenta Participations Ag | Plant pest control |
WO1998044137A3 (fr) * | 1997-04-03 | 1998-12-17 | Novartis Ag | Lutte contre des ennemis des plantes |
US7919609B2 (en) | 2000-05-18 | 2011-04-05 | Bayer Bioscience N.V. | Toxins |
WO2001087931A3 (fr) * | 2000-05-18 | 2002-05-10 | Aventis Cropscience Nv | Nouvelles toxines |
JP2003533214A (ja) * | 2000-05-18 | 2003-11-11 | バイエル・バイオサイエンス・エヌ・ヴェー | 新規トキシン |
US6706860B2 (en) | 2000-05-18 | 2004-03-16 | Bayer Bioscience N.V. | Toxins |
US7091399B2 (en) | 2000-05-18 | 2006-08-15 | Bayer Bioscience N.V. | Transgenic plants expressing insecticidal proteins and methods of producing the same |
US9347072B2 (en) | 2002-03-06 | 2016-05-24 | Syngenta Participations Ag | VIP3 toxins and methods of use |
EP1499176A4 (fr) * | 2002-03-06 | 2006-05-03 | Syngenta Participations Ag | Nouvelles toxines vip3 et leurs procedes d'utilisation |
US8686232B2 (en) | 2002-03-06 | 2014-04-01 | Syngenta Participations Ag | Vip3 toxins and methods of use |
US7378493B2 (en) | 2002-03-06 | 2008-05-27 | Syngenta Participations Ag | Vip3 toxins and methods of use |
US7745700B2 (en) | 2002-03-22 | 2010-06-29 | Bayer Bioscience N.V. | Insecticidal proteins derived from Bacillus thuringiensis |
EP2213681A1 (fr) * | 2002-03-22 | 2010-08-04 | Bayer BioScience N.V. | Nouvelles protéines insecticides à base de Bacillus thuringiensis |
EP2360179A1 (fr) * | 2002-03-22 | 2011-08-24 | Bayer BioScience N.V. | Nouvelles protéines insecticides à base de Bacillus thuringiensis |
US8237021B2 (en) | 2002-03-22 | 2012-08-07 | Bayer Cropscience N.V. | Insecticidal proteins derived from Bacillus thuringiensis |
US7265268B2 (en) | 2002-03-22 | 2007-09-04 | Bayer Bioscience N.V. | Insecticidal proteins derived from Bacillus thuringiensis |
WO2003080656A1 (fr) * | 2002-03-22 | 2003-10-02 | Bayer Bioscience N.V. | Nouvelles proteines insecticides issues du bacillus thuringiensis |
CN104145020A (zh) * | 2012-02-16 | 2014-11-12 | 先正达参股股份有限公司 | 工程化的杀有害生物蛋白质 |
CN103266132A (zh) * | 2013-05-31 | 2013-08-28 | 中国农业科学院生物技术研究所 | 苏云金芽胞杆菌cry1Ah/cry1Ie双价基因表达载体及其应用 |
WO2017146899A1 (fr) * | 2016-02-26 | 2017-08-31 | Syngenta Participations Ag | Compositions et procédés de lutte contre les phytoravageurs |
CN117024536A (zh) * | 2023-10-08 | 2023-11-10 | 莱肯生物科技(海南)有限公司 | 控制亚洲玉米螟害虫的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN1312005A (zh) | 2001-09-12 |
JP2000511543A (ja) | 2000-09-05 |
CN1163146C (zh) | 2004-08-25 |
GB9611777D0 (en) | 1996-08-07 |
AU728817B2 (en) | 2001-01-18 |
AU3029697A (en) | 1998-01-05 |
ID17325A (id) | 1997-12-18 |
HK1041414A1 (zh) | 2002-07-12 |
CN1221318A (zh) | 1999-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2142009B1 (fr) | Protéines de toxines actives d'hémiptéroïdes et de coléoptères provenant du bacillus thuringiensis | |
RU2382822C2 (ru) | ИНСЕКТИЦИДНЫЕ БЕЛКИ, ВЫДЕЛЕННЫЕ ИЗ ВИДОВ БАКТЕРИЙ Bacillus, И ИХ ПРИМЕНЕНИЕ | |
Benedict et al. | Impact of δ-endotoxin-producing transgenic cotton on insect–plant interactions with Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae) | |
US20200184403A1 (en) | Engineered cry6a insecticidal proteins | |
AU775683B2 (en) | Methods of controlling cutworm pests | |
KR20000048680A (ko) | 갑충류 곤충과 크테노세팔라이드 종에 독성인 바실러스 투린지엔시스 씨알와이이티29 조성물들 | |
US20090105074A1 (en) | Bacterial bioherbicide for control of grassy weeds | |
KR102624543B1 (ko) | 인시류에 대하여 활성인 살충 독소 단백질 | |
WO2001021821A2 (fr) | Plants de riz resistants aux insectes | |
WO1997046105A1 (fr) | Procede de lutte contre les insectes nuisibles | |
EP0871737B1 (fr) | Procede de protection de plantes cultivees contre les insectes nuisibles | |
UA124757C2 (uk) | Інсектицидний поліпептид проти лускокрилого або твердокрилого шкідника та його застосування | |
CN112368296A (zh) | 新型昆虫抑制性蛋白 | |
Voisey et al. | Release of transgenic white clover plants expressing Bacillus thuringiensis genes: An ecological perspective | |
WO2010043928A1 (fr) | Protéines dérivées de gènes de cry de bacillus thuringiensis | |
US6180775B1 (en) | Bacillus thuringiensis isolates active against weevils | |
JP2002509710A (ja) | キメラ殺虫タンパク質およびそれをコードする遺伝子 | |
US10612036B2 (en) | Engineered Cry6A insecticidal proteins | |
JP2022531146A (ja) | CRY2Aiタンパク質をコードするコドン最適化合成ヌクレオチド配列及びその使用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 97195250.7 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1199800962 Country of ref document: VN |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |