WO1997044420A2 - Detergent composition - Google Patents
Detergent composition Download PDFInfo
- Publication number
- WO1997044420A2 WO1997044420A2 PCT/US1997/008279 US9708279W WO9744420A2 WO 1997044420 A2 WO1997044420 A2 WO 1997044420A2 US 9708279 W US9708279 W US 9708279W WO 9744420 A2 WO9744420 A2 WO 9744420A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition according
- aqa
- surfactant
- surfactants
- alkyl
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 321
- 239000003599 detergent Substances 0.000 title claims abstract description 132
- 239000004094 surface-active agent Substances 0.000 claims abstract description 192
- -1 alkylbenzene sulfonate Chemical class 0.000 claims abstract description 87
- 150000008051 alkyl sulfates Chemical class 0.000 claims abstract description 47
- 239000003093 cationic surfactant Substances 0.000 claims abstract description 20
- 239000002689 soil Substances 0.000 claims description 129
- 239000007844 bleaching agent Substances 0.000 claims description 86
- 102000004190 Enzymes Human genes 0.000 claims description 61
- 108090000790 Enzymes Proteins 0.000 claims description 61
- 239000004615 ingredient Substances 0.000 claims description 60
- 229920000642 polymer Polymers 0.000 claims description 35
- 239000003945 anionic surfactant Substances 0.000 claims description 34
- 239000002304 perfume Substances 0.000 claims description 32
- 125000000217 alkyl group Chemical group 0.000 claims description 31
- 239000003795 chemical substances by application Substances 0.000 claims description 31
- 239000003054 catalyst Substances 0.000 claims description 30
- 239000002736 nonionic surfactant Substances 0.000 claims description 30
- 239000012190 activator Substances 0.000 claims description 29
- 125000004432 carbon atom Chemical group C* 0.000 claims description 27
- 150000001412 amines Chemical class 0.000 claims description 25
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 23
- 239000000194 fatty acid Substances 0.000 claims description 23
- 229930195729 fatty acid Natural products 0.000 claims description 23
- 239000004927 clay Substances 0.000 claims description 21
- 125000000129 anionic group Chemical group 0.000 claims description 19
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 17
- 150000004665 fatty acids Chemical class 0.000 claims description 17
- 239000002270 dispersing agent Substances 0.000 claims description 14
- 238000012546 transfer Methods 0.000 claims description 14
- 239000000344 soap Substances 0.000 claims description 13
- 150000004996 alkyl benzenes Chemical class 0.000 claims description 12
- 230000002401 inhibitory effect Effects 0.000 claims description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 11
- 229910052783 alkali metal Inorganic materials 0.000 claims description 11
- 150000001450 anions Chemical class 0.000 claims description 10
- 229940077388 benzenesulfonate Drugs 0.000 claims description 9
- 150000001340 alkali metals Chemical class 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- 239000002979 fabric softener Substances 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000013522 chelant Substances 0.000 claims description 2
- YKYIFUROKBDHCY-ONEGZZNKSA-N (e)-4-ethoxy-1,1,1-trifluorobut-3-en-2-one Chemical group CCO\C=C\C(=O)C(F)(F)F YKYIFUROKBDHCY-ONEGZZNKSA-N 0.000 claims 1
- 125000003545 alkoxy group Chemical group 0.000 claims 1
- 125000005526 alkyl sulfate group Chemical group 0.000 claims 1
- 239000004744 fabric Substances 0.000 description 75
- 238000004140 cleaning Methods 0.000 description 61
- 229940088598 enzyme Drugs 0.000 description 60
- 239000000463 material Substances 0.000 description 44
- 239000000047 product Substances 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 38
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 37
- 230000008901 benefit Effects 0.000 description 35
- 102000013142 Amylases Human genes 0.000 description 33
- 108010065511 Amylases Proteins 0.000 description 33
- 235000019418 amylase Nutrition 0.000 description 30
- 150000001875 compounds Chemical class 0.000 description 30
- 230000002209 hydrophobic effect Effects 0.000 description 29
- 238000000034 method Methods 0.000 description 27
- 239000000243 solution Substances 0.000 description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 239000007788 liquid Substances 0.000 description 24
- 108090001060 Lipase Proteins 0.000 description 23
- 102000004882 Lipase Human genes 0.000 description 23
- 235000019441 ethanol Nutrition 0.000 description 23
- 229920001223 polyethylene glycol Polymers 0.000 description 23
- 150000003839 salts Chemical class 0.000 description 23
- 238000005406 washing Methods 0.000 description 23
- 229920001577 copolymer Polymers 0.000 description 22
- 108091005804 Peptidases Proteins 0.000 description 21
- 102000035195 Peptidases Human genes 0.000 description 21
- 125000002091 cationic group Chemical group 0.000 description 21
- 239000011734 sodium Substances 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- 150000002148 esters Chemical class 0.000 description 19
- 239000004367 Lipase Substances 0.000 description 18
- 239000004365 Protease Substances 0.000 description 18
- 239000007859 condensation product Substances 0.000 description 18
- 235000019421 lipase Nutrition 0.000 description 18
- 229920001296 polysiloxane Polymers 0.000 description 18
- 229940025131 amylases Drugs 0.000 description 17
- 238000009472 formulation Methods 0.000 description 17
- 229920005646 polycarboxylate Polymers 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 16
- 239000000975 dye Substances 0.000 description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 14
- 238000004061 bleaching Methods 0.000 description 14
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 14
- 239000004382 Amylase Substances 0.000 description 13
- 239000002253 acid Substances 0.000 description 13
- 239000000460 chlorine Substances 0.000 description 13
- 239000008187 granular material Substances 0.000 description 13
- 229910052708 sodium Inorganic materials 0.000 description 13
- 239000010457 zeolite Substances 0.000 description 13
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 12
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 150000004760 silicates Chemical class 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 11
- 239000011575 calcium Substances 0.000 description 11
- 229910052801 chlorine Inorganic materials 0.000 description 11
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 11
- 238000004851 dishwashing Methods 0.000 description 11
- 230000003203 everyday effect Effects 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 11
- 241000894007 species Species 0.000 description 11
- 239000002202 Polyethylene glycol Substances 0.000 description 10
- 229910021536 Zeolite Inorganic materials 0.000 description 10
- 239000002738 chelating agent Substances 0.000 description 10
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 10
- 239000000835 fiber Substances 0.000 description 10
- 230000006872 improvement Effects 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 229920000768 polyamine Polymers 0.000 description 10
- 229920000728 polyester Polymers 0.000 description 10
- 229920001451 polypropylene glycol Polymers 0.000 description 10
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 108010084185 Cellulases Proteins 0.000 description 9
- 102000005575 Cellulases Human genes 0.000 description 9
- 150000001298 alcohols Chemical class 0.000 description 9
- 108090000637 alpha-Amylases Proteins 0.000 description 9
- 102000004139 alpha-Amylases Human genes 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 9
- 238000004900 laundering Methods 0.000 description 9
- 230000000087 stabilizing effect Effects 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- 229920000742 Cotton Polymers 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 8
- 229910019142 PO4 Inorganic materials 0.000 description 8
- 230000009471 action Effects 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 8
- 238000007046 ethoxylation reaction Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 239000011572 manganese Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 235000021317 phosphate Nutrition 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 7
- YGUMVDWOQQJBGA-VAWYXSNFSA-N 5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 YGUMVDWOQQJBGA-VAWYXSNFSA-N 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 7
- 102000003992 Peroxidases Human genes 0.000 description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 150000007942 carboxylates Chemical class 0.000 description 7
- 239000003292 glue Substances 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 7
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 230000001590 oxidative effect Effects 0.000 description 7
- 150000004965 peroxy acids Chemical class 0.000 description 7
- 229920000058 polyacrylate Polymers 0.000 description 7
- 229910052700 potassium Inorganic materials 0.000 description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 7
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 6
- FKUPPRZPSYCDRS-UHFFFAOYSA-N Cyclopentadecanolide Chemical compound O=C1CCCCCCCCCCCCCCO1 FKUPPRZPSYCDRS-UHFFFAOYSA-N 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 229910000323 aluminium silicate Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 6
- 235000010216 calcium carbonate Nutrition 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 125000001183 hydrocarbyl group Chemical group 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- 150000001204 N-oxides Chemical class 0.000 description 5
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 5
- 150000003863 ammonium salts Chemical class 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N benzo-alpha-pyrone Natural products C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 5
- 235000010338 boric acid Nutrition 0.000 description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 description 5
- 150000001720 carbohydrates Chemical group 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 5
- 230000002538 fungal effect Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 235000010755 mineral Nutrition 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- 150000002978 peroxides Chemical class 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 239000002516 radical scavenger Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 159000000000 sodium salts Chemical class 0.000 description 5
- 150000003626 triacylglycerols Chemical class 0.000 description 5
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- 241000193830 Bacillus <bacterium> Species 0.000 description 4
- ZCTQGTTXIYCGGC-UHFFFAOYSA-N Benzyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OCC1=CC=CC=C1 ZCTQGTTXIYCGGC-UHFFFAOYSA-N 0.000 description 4
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 4
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 4
- 108010059892 Cellulase Proteins 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 102000004157 Hydrolases Human genes 0.000 description 4
- 108090000604 Hydrolases Proteins 0.000 description 4
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 4
- 229910016887 MnIV Inorganic materials 0.000 description 4
- 108700020962 Peroxidase Proteins 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- 244000300264 Spinacia oleracea Species 0.000 description 4
- 235000009337 Spinacia oleracea Nutrition 0.000 description 4
- 235000011941 Tilia x europaea Nutrition 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 4
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 4
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 4
- 239000004327 boric acid Substances 0.000 description 4
- 229910001424 calcium ion Inorganic materials 0.000 description 4
- 230000001461 cytolytic effect Effects 0.000 description 4
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 239000004571 lime Substances 0.000 description 4
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 4
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- KVWWIYGFBYDJQC-UHFFFAOYSA-N methyl dihydrojasmonate Chemical compound CCCCCC1C(CC(=O)OC)CCC1=O KVWWIYGFBYDJQC-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 125000001453 quaternary ammonium group Chemical group 0.000 description 4
- 150000003333 secondary alcohols Chemical class 0.000 description 4
- 229920002545 silicone oil Polymers 0.000 description 4
- 238000005063 solubilization Methods 0.000 description 4
- 230000007928 solubilization Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 108010075550 termamyl Proteins 0.000 description 4
- CIEZZGWIJBXOTE-UHFFFAOYSA-N 2-[bis(carboxymethyl)amino]propanoic acid Chemical compound OC(=O)C(C)N(CC(O)=O)CC(O)=O CIEZZGWIJBXOTE-UHFFFAOYSA-N 0.000 description 3
- BJLRAKFWOUAROE-UHFFFAOYSA-N 2500-83-6 Chemical compound C12C=CCC2C2CC(OC(=O)C)C1C2 BJLRAKFWOUAROE-UHFFFAOYSA-N 0.000 description 3
- 101100310920 Caenorhabditis elegans sra-2 gene Proteins 0.000 description 3
- 244000060011 Cocos nucifera Species 0.000 description 3
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- 102100038417 Cytoplasmic FMR1-interacting protein 1 Human genes 0.000 description 3
- 101710181791 Cytoplasmic FMR1-interacting protein 1 Proteins 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- BCXBKOQDEOJNRH-UHFFFAOYSA-N NOP(O)=O Chemical class NOP(O)=O BCXBKOQDEOJNRH-UHFFFAOYSA-N 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 108010056079 Subtilisins Proteins 0.000 description 3
- 102000005158 Subtilisins Human genes 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical class OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 3
- 241000223258 Thermomyces lanuginosus Species 0.000 description 3
- ZUBJEHHGZYTRPH-KTKRTIGZSA-N [(z)-octadec-9-enyl] hydrogen sulfate Chemical compound CCCCCCCC\C=C/CCCCCCCCOS(O)(=O)=O ZUBJEHHGZYTRPH-KTKRTIGZSA-N 0.000 description 3
- 229940022663 acetate Drugs 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 229940024171 alpha-amylase Drugs 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 229910001914 chlorine tetroxide Inorganic materials 0.000 description 3
- 229960000956 coumarin Drugs 0.000 description 3
- 235000001671 coumarin Nutrition 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- BLBJUGKATXCWET-UHFFFAOYSA-N cyclaprop Chemical compound C12CC=CC2C2CC(OC(=O)CC)C1C2 BLBJUGKATXCWET-UHFFFAOYSA-N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 125000003147 glycosyl group Chemical group 0.000 description 3
- 239000004519 grease Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 159000000003 magnesium salts Chemical class 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 3
- 238000006384 oligomerization reaction Methods 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920001748 polybutylene Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 235000013772 propylene glycol Nutrition 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 3
- 238000005809 transesterification reaction Methods 0.000 description 3
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 3
- 229920001567 vinyl ester resin Polymers 0.000 description 3
- 238000004383 yellowing Methods 0.000 description 3
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 2
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 2
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 2
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 2
- DNRJTBAOUJJKDY-UHFFFAOYSA-N 2-Acetyl-3,5,5,6,8,8-hexamethyl-5,6,7,8- tetrahydronaphthalene Chemical compound CC(=O)C1=C(C)C=C2C(C)(C)C(C)CC(C)(C)C2=C1 DNRJTBAOUJJKDY-UHFFFAOYSA-N 0.000 description 2
- XSAYZAUNJMRRIR-UHFFFAOYSA-N 2-acetylnaphthalene Chemical compound C1=CC=CC2=CC(C(=O)C)=CC=C21 XSAYZAUNJMRRIR-UHFFFAOYSA-N 0.000 description 2
- XMVBHZBLHNOQON-UHFFFAOYSA-N 2-butyl-1-octanol Chemical compound CCCCCCC(CO)CCCC XMVBHZBLHNOQON-UHFFFAOYSA-N 0.000 description 2
- YLAXZGYLWOGCBF-UHFFFAOYSA-N 2-dodecylbutanedioic acid Chemical compound CCCCCCCCCCCCC(C(O)=O)CC(O)=O YLAXZGYLWOGCBF-UHFFFAOYSA-N 0.000 description 2
- HGECJFVPNUYRJZ-UHFFFAOYSA-N 2-methyl-2-(4-propan-2-ylphenyl)propanal Chemical compound CC(C)C1=CC=C(C(C)(C)C=O)C=C1 HGECJFVPNUYRJZ-UHFFFAOYSA-N 0.000 description 2
- FAGGUIDTQQXDSJ-UHFFFAOYSA-N 3-benzoylazepan-2-one Chemical compound C=1C=CC=CC=1C(=O)C1CCCCNC1=O FAGGUIDTQQXDSJ-UHFFFAOYSA-N 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 2
- CNGYZEMWVAWWOB-VAWYXSNFSA-N 5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S(O)(=O)=O)=CC=2)S(O)(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 CNGYZEMWVAWWOB-VAWYXSNFSA-N 0.000 description 2
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 2
- 240000008772 Cistus ladanifer Species 0.000 description 2
- 235000005241 Cistus ladanifer Nutrition 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 239000005770 Eugenol Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000005792 Geraniol Substances 0.000 description 2
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 239000004869 Labdanum Substances 0.000 description 2
- 235000019501 Lemon oil Nutrition 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- GLZPCOQZEFWAFX-JXMROGBWSA-N Nerol Natural products CC(C)=CCC\C(C)=C\CO GLZPCOQZEFWAFX-JXMROGBWSA-N 0.000 description 2
- 235000019502 Orange oil Nutrition 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920000388 Polyphosphate Polymers 0.000 description 2
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229920006243 acrylic copolymer Polymers 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical group OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- GUUHFMWKWLOQMM-NTCAYCPXSA-N alpha-hexylcinnamaldehyde Chemical compound CCCCCC\C(C=O)=C/C1=CC=CC=C1 GUUHFMWKWLOQMM-NTCAYCPXSA-N 0.000 description 2
- GUUHFMWKWLOQMM-UHFFFAOYSA-N alpha-n-hexylcinnamic aldehyde Natural products CCCCCCC(C=O)=CC1=CC=CC=C1 GUUHFMWKWLOQMM-UHFFFAOYSA-N 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 150000008064 anhydrides Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000012431 aqueous reaction media Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 235000015241 bacon Nutrition 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 2
- 229940007550 benzyl acetate Drugs 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 235000011148 calcium chloride Nutrition 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 229910001748 carbonate mineral Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- SVURIXNDRWRAFU-OGMFBOKVSA-N cedrol Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@@H]1[C@@](O)(C)CC2 SVURIXNDRWRAFU-OGMFBOKVSA-N 0.000 description 2
- 229940026455 cedrol Drugs 0.000 description 2
- PCROEXHGMUJCDB-UHFFFAOYSA-N cedrol Natural products CC1CCC2C(C)(C)C3CC(C)(O)CC12C3 PCROEXHGMUJCDB-UHFFFAOYSA-N 0.000 description 2
- 229940106157 cellulase Drugs 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- HQKQRXZEXPXXIG-VJOHVRBBSA-N chembl2333940 Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@H]1[C@@](OC(C)=O)(C)CC2 HQKQRXZEXPXXIG-VJOHVRBBSA-N 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 235000021438 curry Nutrition 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- PMPJQLCPEQFEJW-GNTLFSRWSA-L disodium;2-[(z)-2-[4-[4-[(z)-2-(2-sulfonatophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC=CC=C1\C=C/C1=CC=C(C=2C=CC(\C=C/C=3C(=CC=CC=3)S([O-])(=O)=O)=CC=2)C=C1 PMPJQLCPEQFEJW-GNTLFSRWSA-L 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- HFJRKMMYBMWEAD-UHFFFAOYSA-N dodecanal Chemical compound CCCCCCCCCCCC=O HFJRKMMYBMWEAD-UHFFFAOYSA-N 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000000686 essence Substances 0.000 description 2
- CBOQJANXLMLOSS-UHFFFAOYSA-N ethyl vanillin Chemical compound CCOC1=CC(C=O)=CC=C1O CBOQJANXLMLOSS-UHFFFAOYSA-N 0.000 description 2
- 229940093476 ethylene glycol Drugs 0.000 description 2
- 229960002217 eugenol Drugs 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229930182830 galactose Chemical group 0.000 description 2
- 229940113087 geraniol Drugs 0.000 description 2
- 229930182478 glucoside Natural products 0.000 description 2
- 150000008131 glucosides Chemical class 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- WPFVBOQKRVRMJB-UHFFFAOYSA-N hydroxycitronellal Chemical compound O=CCC(C)CCCC(C)(C)O WPFVBOQKRVRMJB-UHFFFAOYSA-N 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229930002839 ionone Natural products 0.000 description 2
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- SVURIXNDRWRAFU-UHFFFAOYSA-N juniperanol Natural products C1C23C(C)CCC3C(C)(C)C1C(O)(C)CC2 SVURIXNDRWRAFU-UHFFFAOYSA-N 0.000 description 2
- 238000010412 laundry washing Methods 0.000 description 2
- 239000010501 lemon oil Substances 0.000 description 2
- SDQFDHOLCGWZPU-UHFFFAOYSA-N lilial Chemical compound O=CC(C)CC1=CC=C(C(C)(C)C)C=C1 SDQFDHOLCGWZPU-UHFFFAOYSA-N 0.000 description 2
- 229930007744 linalool Natural products 0.000 description 2
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- VAMXMNNIEUEQDV-UHFFFAOYSA-N methyl anthranilate Chemical compound COC(=O)C1=CC=CC=C1N VAMXMNNIEUEQDV-UHFFFAOYSA-N 0.000 description 2
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- UHGIMQLJWRAPLT-UHFFFAOYSA-N octadecyl dihydrogen phosphate Chemical class CCCCCCCCCCCCCCCCCCOP(O)(O)=O UHGIMQLJWRAPLT-UHFFFAOYSA-N 0.000 description 2
- 239000010502 orange oil Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 2
- 239000006174 pH buffer Substances 0.000 description 2
- DMCJFWXGXUEHFD-UHFFFAOYSA-N pentatriacontan-18-one Chemical compound CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCC DMCJFWXGXUEHFD-UHFFFAOYSA-N 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 229940067107 phenylethyl alcohol Drugs 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 108010064470 polyaspartate Proteins 0.000 description 2
- 239000001205 polyphosphate Substances 0.000 description 2
- 235000011176 polyphosphates Nutrition 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 235000015067 sauces Nutrition 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 2
- 229960001922 sodium perborate Drugs 0.000 description 2
- 229940048086 sodium pyrophosphate Drugs 0.000 description 2
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 2
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 235000019832 sodium triphosphate Nutrition 0.000 description 2
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 2
- 230000003381 solubilizing effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000000271 synthetic detergent Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 2
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 2
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 2
- 235000012141 vanillin Nutrition 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 229910009112 xH2O Inorganic materials 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- FINOAUDUYKVGDS-UHFFFAOYSA-N (2-tert-butylcyclohexyl) acetate Chemical compound CC(=O)OC1CCCCC1C(C)(C)C FINOAUDUYKVGDS-UHFFFAOYSA-N 0.000 description 1
- YPZUZOLGGMJZJO-XRGAULLZSA-N (3as,5as,9as,9br)-3a,6,6,9a-tetramethyl-2,4,5,5a,7,8,9,9b-octahydro-1h-benzo[e][1]benzofuran Chemical compound CC([C@@H]1CC2)(C)CCC[C@]1(C)[C@@H]1[C@@]2(C)OCC1 YPZUZOLGGMJZJO-XRGAULLZSA-N 0.000 description 1
- QBLFZIBJXUQVRF-UHFFFAOYSA-N (4-bromophenyl)boronic acid Chemical compound OB(O)C1=CC=C(Br)C=C1 QBLFZIBJXUQVRF-UHFFFAOYSA-N 0.000 description 1
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 1
- KHQDWCKZXLWDNM-KPKJPENVSA-N (e)-2-ethyl-4-(2,2,3-trimethylcyclopent-3-en-1-yl)but-2-en-1-ol Chemical compound CC\C(CO)=C/CC1CC=C(C)C1(C)C KHQDWCKZXLWDNM-KPKJPENVSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- RIKYKLUZQHPPQI-UHFFFAOYSA-N 1-(1,6,10-trimethylcyclododeca-2,5,9-trien-1-yl)ethanone Chemical compound CC(=O)C1(C)CCC(C)=CCCC(C)=CCC=C1 RIKYKLUZQHPPQI-UHFFFAOYSA-N 0.000 description 1
- FVUGZKDGWGKCFE-UHFFFAOYSA-N 1-(2,3,8,8-tetramethyl-1,3,4,5,6,7-hexahydronaphthalen-2-yl)ethanone Chemical compound CC1(C)CCCC2=C1CC(C(C)=O)(C)C(C)C2 FVUGZKDGWGKCFE-UHFFFAOYSA-N 0.000 description 1
- QPKFVRWIISEVCW-UHFFFAOYSA-N 1-butane boronic acid Chemical compound CCCCB(O)O QPKFVRWIISEVCW-UHFFFAOYSA-N 0.000 description 1
- KJESGYZFVCIMDE-UHFFFAOYSA-N 1-chloroethanol Chemical compound CC(O)Cl KJESGYZFVCIMDE-UHFFFAOYSA-N 0.000 description 1
- OFHHDSQXFXLTKC-UHFFFAOYSA-N 10-undecenal Chemical compound C=CCCCCCCCCC=O OFHHDSQXFXLTKC-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- VJSWLXWONORKLD-UHFFFAOYSA-N 2,4,6-trihydroxybenzene-1,3,5-trisulfonic acid Chemical compound OC1=C(S(O)(=O)=O)C(O)=C(S(O)(=O)=O)C(O)=C1S(O)(=O)=O VJSWLXWONORKLD-UHFFFAOYSA-N 0.000 description 1
- GFJSEPREQTXWHA-UHFFFAOYSA-N 2,5-diphenyl-1,3-dihydropyrazole Chemical class C1C=C(C=2C=CC=CC=2)NN1C1=CC=CC=C1 GFJSEPREQTXWHA-UHFFFAOYSA-N 0.000 description 1
- MPJQXAIKMSKXBI-UHFFFAOYSA-N 2,7,9,14-tetraoxa-1,8-diazabicyclo[6.6.2]hexadecane-3,6,10,13-tetrone Chemical compound C1CN2OC(=O)CCC(=O)ON1OC(=O)CCC(=O)O2 MPJQXAIKMSKXBI-UHFFFAOYSA-N 0.000 description 1
- HHOUUNSSXPYWKJ-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethanesulfonic acid Chemical compound OCCOCCS(O)(=O)=O HHOUUNSSXPYWKJ-UHFFFAOYSA-N 0.000 description 1
- YXFNFSBQEDFMHR-UHFFFAOYSA-N 2-(2-sulfoethoxy)ethanesulfonic acid Chemical compound OS(=O)(=O)CCOCCS(O)(=O)=O YXFNFSBQEDFMHR-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- HCYSJBICYOIBLS-UHFFFAOYSA-N 2-(dodecylamino)ethanol Chemical compound CCCCCCCCCCCCNCCO HCYSJBICYOIBLS-UHFFFAOYSA-N 0.000 description 1
- LUZDYPLAQQGJEA-UHFFFAOYSA-N 2-Methoxynaphthalene Chemical compound C1=CC=CC2=CC(OC)=CC=C21 LUZDYPLAQQGJEA-UHFFFAOYSA-N 0.000 description 1
- NSMMFSKPGXCMOE-UHFFFAOYSA-N 2-[2-(2-sulfophenyl)ethenyl]benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C=CC1=CC=CC=C1S(O)(=O)=O NSMMFSKPGXCMOE-UHFFFAOYSA-N 0.000 description 1
- HECHAOUMONWDAO-UHFFFAOYSA-N 2-[4-[2-[4-(triazol-2-yl)phenyl]ethenyl]phenyl]triazole Chemical class C=1C=C(N2N=CC=N2)C=CC=1C=CC(C=C1)=CC=C1N1N=CC=N1 HECHAOUMONWDAO-UHFFFAOYSA-N 0.000 description 1
- UGFSLKRMHPGLFU-UHFFFAOYSA-N 2-[5-(1,3-benzoxazol-2-yl)thiophen-2-yl]-1,3-benzoxazole Chemical compound C1=CC=C2OC(C3=CC=C(S3)C=3OC4=CC=CC=C4N=3)=NC2=C1 UGFSLKRMHPGLFU-UHFFFAOYSA-N 0.000 description 1
- GOKVKLCCWGRQJV-UHFFFAOYSA-N 2-[6-(decanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O GOKVKLCCWGRQJV-UHFFFAOYSA-N 0.000 description 1
- JKZLOWDYIRTRJZ-UHFFFAOYSA-N 2-[6-(octanoylamino)hexanoyloxy]benzenesulfonic acid Chemical compound CCCCCCCC(=O)NCCCCCC(=O)OC1=CC=CC=C1S(O)(=O)=O JKZLOWDYIRTRJZ-UHFFFAOYSA-N 0.000 description 1
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-UHFFFAOYSA-N 2-dodec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCC=CC(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- GCVQVCAAUXFNGJ-UHFFFAOYSA-N 2-hexadecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)CC(O)=O GCVQVCAAUXFNGJ-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- PSZAEHPBBUYICS-UHFFFAOYSA-N 2-methylidenepropanedioic acid Chemical compound OC(=O)C(=C)C(O)=O PSZAEHPBBUYICS-UHFFFAOYSA-N 0.000 description 1
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 1
- DXPLEDYRQHTBDJ-UHFFFAOYSA-N 2-pentadec-1-enylbutanedioic acid Chemical compound CCCCCCCCCCCCCC=CC(C(O)=O)CC(O)=O DXPLEDYRQHTBDJ-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- MWTDCUHMQIAYDT-UHFFFAOYSA-N 2-tetradecylbutanedioic acid Chemical compound CCCCCCCCCCCCCCC(C(O)=O)CC(O)=O MWTDCUHMQIAYDT-UHFFFAOYSA-N 0.000 description 1
- CJAZCKUGLFWINJ-UHFFFAOYSA-N 3,4-dihydroxybenzene-1,2-disulfonic acid Chemical class OC1=CC=C(S(O)(=O)=O)C(S(O)(=O)=O)=C1O CJAZCKUGLFWINJ-UHFFFAOYSA-N 0.000 description 1
- QWZHDKGQKYEBKK-UHFFFAOYSA-N 3-aminochromen-2-one Chemical class C1=CC=C2OC(=O)C(N)=CC2=C1 QWZHDKGQKYEBKK-UHFFFAOYSA-N 0.000 description 1
- CDWQJRGVYJQAIT-UHFFFAOYSA-N 3-benzoylpiperidin-2-one Chemical compound C=1C=CC=CC=1C(=O)C1CCCNC1=O CDWQJRGVYJQAIT-UHFFFAOYSA-N 0.000 description 1
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 1
- OLDXODLIOAKDPY-UHFFFAOYSA-N 3-decanoylpiperidin-2-one Chemical compound CCCCCCCCCC(=O)C1CCCNC1=O OLDXODLIOAKDPY-UHFFFAOYSA-N 0.000 description 1
- MXRGSJAOLKBZLU-UHFFFAOYSA-N 3-ethenylazepan-2-one Chemical compound C=CC1CCCCNC1=O MXRGSJAOLKBZLU-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- NGYMOTOXXHCHOC-UHFFFAOYSA-N 3-methyl-5-(2,2,3-trimethylcyclopent-3-en-1-yl)pentan-2-ol Chemical compound CC(O)C(C)CCC1CC=C(C)C1(C)C NGYMOTOXXHCHOC-UHFFFAOYSA-N 0.000 description 1
- WVILLSKUJNGUKA-UHFFFAOYSA-N 3-nonanoylpiperidin-2-one Chemical compound CCCCCCCCC(=O)C1CCCNC1=O WVILLSKUJNGUKA-UHFFFAOYSA-N 0.000 description 1
- YILDPURCUKWQHU-UHFFFAOYSA-N 3-octanoylpiperidin-2-one Chemical compound CCCCCCCC(=O)C1CCCNC1=O YILDPURCUKWQHU-UHFFFAOYSA-N 0.000 description 1
- CNGYZEMWVAWWOB-UHFFFAOYSA-N 4,4'-bis({4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl}amino)stilbene-2,2'-disulfonic acid Chemical compound N=1C(NC=2C=C(C(C=CC=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S(O)(=O)=O)=CC=2)S(O)(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 CNGYZEMWVAWWOB-UHFFFAOYSA-N 0.000 description 1
- ORMHZBNNECIKOH-UHFFFAOYSA-N 4-(4-hydroxy-4-methylpentyl)cyclohex-3-ene-1-carbaldehyde Chemical compound CC(C)(O)CCCC1=CCC(C=O)CC1 ORMHZBNNECIKOH-UHFFFAOYSA-N 0.000 description 1
- KOEDSBONUVRKAF-UHFFFAOYSA-N 4-(nonylamino)-4-oxobutaneperoxoic acid Chemical compound CCCCCCCCCNC(=O)CCC(=O)OO KOEDSBONUVRKAF-UHFFFAOYSA-N 0.000 description 1
- IKTHMQYJOWTSJO-UHFFFAOYSA-N 4-Acetyl-6-tert-butyl-1,1-dimethylindane Chemical compound CC(=O)C1=CC(C(C)(C)C)=CC2=C1CCC2(C)C IKTHMQYJOWTSJO-UHFFFAOYSA-N 0.000 description 1
- SFHBJXIEBWOOFA-UHFFFAOYSA-N 5-methyl-3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical compound O=C1OC(C)COC(=O)C2=CC=C1C=C2 SFHBJXIEBWOOFA-UHFFFAOYSA-N 0.000 description 1
- AVLQNPBLHZMWFC-UHFFFAOYSA-N 6-(nonylamino)-6-oxohexaneperoxoic acid Chemical compound CCCCCCCCCNC(=O)CCCCC(=O)OO AVLQNPBLHZMWFC-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical group CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 241000607534 Aeromonas Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 241000750142 Auricula Species 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 241000717739 Boswellia sacra Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 108010073997 Bromide peroxidase Proteins 0.000 description 1
- FHNUZQMQPXBPJV-UHFFFAOYSA-N CC(C)(C)CC(C)CC(=O)C1CCCNC1=O Chemical compound CC(C)(C)CC(C)CC(=O)C1CCCNC1=O FHNUZQMQPXBPJV-UHFFFAOYSA-N 0.000 description 1
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 108010035722 Chloride peroxidase Proteins 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 244000037364 Cinnamomum aromaticum Species 0.000 description 1
- 235000014489 Cinnamomum aromaticum Nutrition 0.000 description 1
- 241000640882 Condea Species 0.000 description 1
- 244000018436 Coriandrum sativum Species 0.000 description 1
- 235000002787 Coriandrum sativum Nutrition 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 241001459693 Dipterocarpus zeylanicus Species 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 241000237379 Dolabella Species 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 241000402754 Erythranthe moschata Species 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 239000004863 Frankincense Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241001480714 Humicola insolens Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 102100027612 Kallikrein-11 Human genes 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 244000178870 Lavandula angustifolia Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 235000015511 Liquidambar orientalis Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- 241000237852 Mollusca Species 0.000 description 1
- 244000270834 Myristica fragrans Species 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- 235000014150 Myroxylon pereirae Nutrition 0.000 description 1
- 244000302151 Myroxylon pereirae Species 0.000 description 1
- DMULVCHRPCFFGV-UHFFFAOYSA-N N,N-dimethyltryptamine Chemical compound C1=CC=C2C(CCN(C)C)=CNC2=C1 DMULVCHRPCFFGV-UHFFFAOYSA-N 0.000 description 1
- 101100217524 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) apg-1 gene Proteins 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical compound OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 240000002505 Pogostemon cablin Species 0.000 description 1
- 235000011751 Pogostemon cablin Nutrition 0.000 description 1
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 235000006894 Primula auricula Nutrition 0.000 description 1
- 101710180012 Protease 7 Proteins 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000145542 Pseudomonas marginata Species 0.000 description 1
- 101000968491 Pseudomonas sp. (strain 109) Triacylglycerol lipase Proteins 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101001069700 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Saccharolysin Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 239000004870 Styrax Substances 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 108090000787 Subtilisin Proteins 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 241001625808 Trona Species 0.000 description 1
- 101710152431 Trypsin-like protease Proteins 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- IFEUBXRSLPUMSI-UHFFFAOYSA-N [ClH]1NN=NC=C1 Chemical class [ClH]1NN=NC=C1 IFEUBXRSLPUMSI-UHFFFAOYSA-N 0.000 description 1
- WVGUWLORQPNVOX-UHFFFAOYSA-D [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])=O.[O-]P([O-])=O.[O-]P([O-])=O.[O-]P([O-])=O.[O-]P([O-])=O.NCCNCCN Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])=O.[O-]P([O-])=O.[O-]P([O-])=O.[O-]P([O-])=O.[O-]P([O-])=O.NCCNCCN WVGUWLORQPNVOX-UHFFFAOYSA-D 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 159000000021 acetate salts Chemical class 0.000 description 1
- WJGAPUXHSQQWQF-UHFFFAOYSA-N acetic acid;hydrochloride Chemical compound Cl.CC(O)=O WJGAPUXHSQQWQF-UHFFFAOYSA-N 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 229910001574 afghanite Inorganic materials 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000004171 alkoxy aryl group Chemical group 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- HMKKIXGYKWDQSV-KAMYIIQDSA-N alpha-Amylcinnamaldehyde Chemical compound CCCCC\C(C=O)=C\C1=CC=CC=C1 HMKKIXGYKWDQSV-KAMYIIQDSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003625 amylolytic effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000010936 aqueous wash Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 235000001053 badasse Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 125000005619 boric acid group Chemical class 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 125000005620 boronic acid group Chemical class 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 229960002713 calcium chloride Drugs 0.000 description 1
- 239000004281 calcium formate Substances 0.000 description 1
- 235000019255 calcium formate Nutrition 0.000 description 1
- 229940044172 calcium formate Drugs 0.000 description 1
- 229940095643 calcium hydroxide Drugs 0.000 description 1
- OLOZVPHKXALCRI-UHFFFAOYSA-L calcium malate Chemical compound [Ca+2].[O-]C(=O)C(O)CC([O-])=O OLOZVPHKXALCRI-UHFFFAOYSA-L 0.000 description 1
- 239000001362 calcium malate Substances 0.000 description 1
- 229940016114 calcium malate Drugs 0.000 description 1
- 235000011038 calcium malates Nutrition 0.000 description 1
- HDRTWMBOUSPQON-ODZAUARKSA-L calcium;(z)-but-2-enedioate Chemical compound [Ca+2].[O-]C(=O)\C=C/C([O-])=O HDRTWMBOUSPQON-ODZAUARKSA-L 0.000 description 1
- 229910052663 cancrinite Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 229940021722 caseins Drugs 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000002752 cationic softener Substances 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- XENVCRGQTABGKY-ZHACJKMWSA-N chlorohydrin Chemical compound CC#CC#CC#CC#C\C=C\C(Cl)CO XENVCRGQTABGKY-ZHACJKMWSA-N 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 229910001603 clinoptilolite Inorganic materials 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 125000002592 cumenyl group Chemical group C1(=C(C=CC=C1)*)C(C)C 0.000 description 1
- 108010005400 cutinase Proteins 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- KVFDZFBHBWTVID-UHFFFAOYSA-N cyclohexane-carboxaldehyde Natural products O=CC1CCCCC1 KVFDZFBHBWTVID-UHFFFAOYSA-N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- IKJFYINYNJYDTA-UHFFFAOYSA-N dibenzothiophene sulfone Chemical compound C1=CC=C2S(=O)(=O)C3=CC=CC=C3C2=C1 IKJFYINYNJYDTA-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940079919 digestives enzyme preparation Drugs 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- VVYVUOFMPAXVCH-UHFFFAOYSA-L disodium;5-[[4-anilino-6-[2-hydroxyethyl(methyl)amino]-1,3,5-triazin-2-yl]amino]-2-[2-[4-[[4-anilino-6-[2-hydroxyethyl(methyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical group [Na+].[Na+].N=1C(NC=2C=C(C(C=CC=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(C)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)C)=NC=1NC1=CC=CC=C1 VVYVUOFMPAXVCH-UHFFFAOYSA-L 0.000 description 1
- YJHDFAAFYNRKQE-YHPRVSEPSA-L disodium;5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 YJHDFAAFYNRKQE-YHPRVSEPSA-L 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- JHUXOSATQXGREM-UHFFFAOYSA-N dodecanediperoxoic acid Chemical compound OOC(=O)CCCCCCCCCCC(=O)OO JHUXOSATQXGREM-UHFFFAOYSA-N 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940073505 ethyl vanillin Drugs 0.000 description 1
- 229940071087 ethylenediamine disuccinate Drugs 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229940044170 formate Drugs 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000002519 galactosyl group Chemical group C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000008195 galaktosides Chemical class 0.000 description 1
- IFYYFLINQYPWGJ-UHFFFAOYSA-N gamma-decalactone Chemical compound CCCCCCC1CCC(=O)O1 IFYYFLINQYPWGJ-UHFFFAOYSA-N 0.000 description 1
- 229920000370 gamma-poly(glutamate) polymer Polymers 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 239000003722 gum benzoin Substances 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000000514 hepatopancreas Anatomy 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 150000002499 ionone derivatives Chemical class 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 244000056931 lavandin Species 0.000 description 1
- 235000009606 lavandin Nutrition 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 108010062085 ligninase Proteins 0.000 description 1
- 235000019626 lipase activity Nutrition 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229920001427 mPEG Polymers 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- FODOUIXGKGNSMR-UHFFFAOYSA-L magnesium;2-oxidooxycarbonylbenzoate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-]OC(=O)C1=CC=CC=C1C([O-])=O FODOUIXGKGNSMR-UHFFFAOYSA-L 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 108010003855 mesentericopeptidase Proteins 0.000 description 1
- LULAYUGMBFYYEX-UHFFFAOYSA-N metachloroperbenzoic acid Natural products OC(=O)C1=CC=CC(Cl)=C1 LULAYUGMBFYYEX-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229940102398 methyl anthranilate Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 108010020132 microbial serine proteinases Proteins 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 239000001157 myroxylon pereirae klotzsch resin Substances 0.000 description 1
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- BKIMMITUMNQMOS-UHFFFAOYSA-N normal nonane Natural products CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 239000001702 nutmeg Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000004533 oil dispersion Substances 0.000 description 1
- 230000003606 oligomerizing effect Effects 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 238000001935 peptisation Methods 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229940100595 phenylacetaldehyde Drugs 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 239000010665 pine oil Substances 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- SATCULPHIDQDRE-UHFFFAOYSA-N piperonal Chemical compound O=CC1=CC=C2OCOC2=C1 SATCULPHIDQDRE-UHFFFAOYSA-N 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- MGNVWUDMMXZUDI-UHFFFAOYSA-N propane-1,3-disulfonic acid Chemical class OS(=O)(=O)CCCS(O)(=O)=O MGNVWUDMMXZUDI-UHFFFAOYSA-N 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical class CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 238000005956 quaternization reaction Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000006268 reductive amination reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910001752 sacrofanite Inorganic materials 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 239000010671 sandalwood oil Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229940071207 sesquicarbonate Drugs 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- FQUAWOQWQIVZLB-UHFFFAOYSA-M sodium;2-(2,3-dihydroxypropoxy)ethanesulfonate Chemical compound [Na+].OCC(O)COCCS([O-])(=O)=O FQUAWOQWQIVZLB-UHFFFAOYSA-M 0.000 description 1
- SZINDZNWFLBXKV-UHFFFAOYSA-M sodium;2-(2-hydroxyethoxy)ethanesulfonate Chemical compound [Na+].OCCOCCS([O-])(=O)=O SZINDZNWFLBXKV-UHFFFAOYSA-M 0.000 description 1
- CVXNPALMJQXREE-UHFFFAOYSA-M sodium;2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethanesulfonate Chemical compound [Na+].OCCOCCOCCOCCS([O-])(=O)=O CVXNPALMJQXREE-UHFFFAOYSA-M 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- KQHKITXZJDOIOD-UHFFFAOYSA-M sodium;3-sulfobenzoate Chemical compound [Na+].OS(=O)(=O)C1=CC=CC(C([O-])=O)=C1 KQHKITXZJDOIOD-UHFFFAOYSA-M 0.000 description 1
- 239000008234 soft water Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000004758 synthetic textile Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical group NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 150000004685 tetrahydrates Chemical class 0.000 description 1
- MSLRPWGRFCKNIZ-UHFFFAOYSA-J tetrasodium;hydrogen peroxide;dicarbonate Chemical compound [Na+].[Na+].[Na+].[Na+].OO.OO.OO.[O-]C([O-])=O.[O-]C([O-])=O MSLRPWGRFCKNIZ-UHFFFAOYSA-J 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M toluenesulfonate group Chemical group C=1(C(=CC=CC1)S(=O)(=O)[O-])C LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- QQOWHRYOXYEMTL-UHFFFAOYSA-N triazin-4-amine Chemical class N=C1C=CN=NN1 QQOWHRYOXYEMTL-UHFFFAOYSA-N 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- FUQAYSQLAOJBBC-PAPYEOQZSA-N β-caryophyllene alcohol Chemical compound C1C[C@](C2)(C)CCC[C@]2(O)[C@H]2CC(C)(C)[C@@H]21 FUQAYSQLAOJBBC-PAPYEOQZSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
- C11D3/2086—Hydroxy carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/65—Mixtures of anionic with cationic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/645—Mixtures of compounds all of which are cationic
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/042—Acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/10—Carbonates ; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/40—Monoamines or polyamines; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/42—Amino alcohols or amino ethers
- C11D1/44—Ethers of polyoxyalkylenes with amino alcohols; Condensation products of epoxyalkanes with amines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
Definitions
- the present invention relates to detergent compositions which comprise selected mixtures of anionic surfactants and selected ethoxylated quaternary ammonium compounds.
- laundry detergents and other cleaning compositions present a considerable challenge, since modern compositions are required to remove a variety of soils and stains from diverse substrates.
- laundry detergents typically require the proper selection and combination of ingredients in order to function effectively.
- such detergent compositions will contain one or more types of surfactants which are designed to loosen and remove soils and stains.
- surfactants and surfactant combinations exhibit optimal performance on certain types of soils and stains, they can actually diminish performance on other soils.
- surfactants which remove greasy/oily soils from fabrics can sometimes be sub- optimal for removing particulate soils, such as clay.
- alkoxylated quaternary ammonium (AQA) compounds can be used in laundry detergents to boost performance.
- AQA alkoxylated quaternary ammonium
- low levels of these AQA compounds provide superior cleaning performance when used in certain combinations with conventional alkyl sulfate and alkyl benzene sulfonate surfactants at specified ratios and proportions.
- the present invention provides an improvement in laundry cleaning performance without the need to develop new, expensive surfactant species.
- the AQA surfactants used in the present manner provide substantial advantages to the formulator over cationic surfactants known heretofore.
- the AQA surfactants herein are compatible with the preferred alkyl sulfate and alkyl benzene sulfonate detersive surfactants.
- the AQA surfactants are formulatable over a broad pH range from 5 to 12.
- the AQA surfactants can be prepared as 30% (wt.) solutions which are pumpable, and therefore easy to handle in a manufacturing plant.
- AQA surfactants with degrees of ethoxylation above 5 are sometimes in a liquid form and can be provided as 100% neat materials.
- the ability of the AQA surfactants herein to be provided as high concentrate solutions provides a substantial economic advantage in transportation costs.
- the AQA surfactants are also compatible with various perfume ingredients, unlike other quats known in the art.
- the AQA surfactants herein appear to minimize or eliminate redeposition of fatty acids/oily materials present in an aqueous laundry liquor back onto fabrics which have been previously soiled with body soils. Accordingly, the AQA surfactants herein have now been found to prevent the redeposition of polar lipids from an aqueous laundry bath back onto fabrics from whence body soils have been removed through the laundering process. Stated otherwise, in a laundering liquor, the AQA surfactants herein remove such polar lipids and keep them suspended in the aqueous medium, rather than allowing them to redeposit onto the cleaned fabrics.
- the AQA surfactants herein are surprisingly compatible with the polyanionic materials such as polyacrylates and acrylate/maleate copolymers which are used to provide a builder and/or dispersant function with many conventional detersive surfactants.
- Other advantages for the AQA surfactants herein include their ability to enhance enzymatic cleaning and fabric care performance in a laundering liquor. While not intending to be limited by theory, it is speculated that enzymes may be partially denatured by conventional anionic surfactants. It is further speculated that the AQA surfactants herein somehow interact with the anionic surfactants to inhibit that degradation.
- AQA surfactants herein provide substantial cleaning enhancement with respect to clay soil removal from fabrics, as compared with conventional detergent mixtures. Again, while not intending to be limited by theory, it may be speculated that conventional cationic surfactants associate with the clay in "close-packed” fashion and render the clay more difficult to remove.
- the alkoxylated AQA surfactants are believed to provide more open associations with clays, which are then more readily removed from fabric surfaces.
- the compositions herein containing the AQA surfactants provide improved performance over conventional cationic surfactants with special regard to clay soil removal. Still further advantages for the AQA surfactants herein have been discovered. For example, in bleaching compositions which comprise a bleach activator (as disclosed herein) it appears that some sort of ion pair or other associative complex is formed with the per-acid released from the activator.
- compositions without bleach the formulator my choose to use somewhat higher levels of AQA to provide enhanced performance benefits.
- AQA surfactants herein to modify the solution characteristics of conventional anionic surfactants such as alkyl sulfates or alkyl benzene sulfonates to allow more of the surfactants to be available to perform their cleaning function. This is particularly true in situations faced by the formulator where the detergent composition is "underbuilt” with respect to calcium and/or magnesium water hardness ions. Under such circumstances, it is preferred to use sufficient AQA surfactant to provide from about 10 ppm to about 50 ppm of the AQA surfactants in the wash liquor.
- compositional usage ranges from about 1% to about 5%, by weight, in fully-formulated detergent compositions.
- concentration can vary with product usage rates and the amount of other surfactant present in the wash liquor.
- the AQA level may be as high as 100-150 ppm in solution. This still only translates to 3-4% AQA surfactant in the finished detergent composition.
- AQA surfactants herein containing about 2 ethylene oxide (EO) groups perform extremely well under circumstances of low water hardness or when well-built detergent compositions are used. However, under circumstances of high hardness (about 170 ppm calcium carbonate, and higher) it is more preferred to use AQA surfactants with at least about 5 EO groups. Moreover, for some soils and stains, such as fecal matter, AQA surfactants having on the order of 10-20 EO groups are preferred. Accordingly, it has now been discovered that mixtures of AQA surfactants can be blended and used to provide a broad spectrum of cleaning performance over a wide variety of soils and stains and under a wide range of usage conditions. Representative, but non-limiting, examples of such combinations of AQA surfactants are disclosed in the Examples hereinafter.
- the AQA surfactants used in the manner of the present invention, successfully address many of the problems associated with the formulation of modern, high-performance detergent compositions.
- the AQA surfactants allow the formulation of effective laundry compositions which can be used to remove a wide variety of soils and stains under a wide spectrum of usage conditions.
- the present invention encompasses a composition of matter comprising a mixture of, or prepared by combining, a cationic surfactant and a member selected from each of two classes of anionic surfactants, said surfactants having the respective formulae:
- R* is an alkyl or alkenyl moiety containing from about 8 to about 18 carbon atoms, preferably 10 to about 16 carbon atoms, most preferably from about 10 to about 14 carbon atoms
- R ⁇ is an alkyl group containing from one to three carbon atoms, preferably methyl
- R J and R ⁇ can vary independently and are selected from hydrogen (preferred), methyl and ethyl
- R is a linear or branched alkyl or alkenyl moiety having from about 10 to about 20 carbon atoms, preferably C12 to Cjg alkyl or as found in secondary alkyl sulfates
- R ⁇ is C ⁇ Q-C ⁇ alkylbenzene, preferably C j j -C j 3 alkylbenzene
- M + and M' + can vary independently and are selected from alkali metals, alkaline earths, alkanolammonium and ammonium
- X" is an anion such as chloride, bro
- a and A' can vary independently and are each selected from C1-C4 alkoxy, especially ethoxy (i.e.. -CH2CH2O-), propoxy, butoxy and mixed ethoxy/propoxy; p is from 1 to about 30, preferably 1 to about 4 and q is from 1 to about 30. preferably 1 to about 4, and most preferably to about 4; preferably both p and q are 1.
- the weight ratio of (I) to (II) + (III) is preferably about 1 : 100 to about
- the weight ratio of (II):(III) is preferably 4: 1-1 :4, more preferably 2: 1-1 :2.
- the weight ratio of R ⁇ to R ⁇ is preferably from 1 :13-1 :5.
- AQA compounds wherein the hydrocarbyl substituent R' is Cg-C j i , especially C ⁇ Q, enhance the rate of dissolution of laundry granules, especially under cold water conditions, as compared with the higher chain length materials.
- the Cg-Cn AQA surfactants may be preferred by some formulators.
- the levels of the AQA surfactants used to prepare finished laundry detergent compositions can range from about 0.1% to about 5%, typically from about 0.45% to about 2.5%, by weight.
- the composition comprises: surfactants (I), (II) and (III) in a weight ratio of (I) to (II + III) in a weight range of at least about 1 : 10.
- said anionic surfactant (II) is a C ⁇ -Cjg primary or secondary alkyl sulfate (AS) and said anionic surfactant (III) is an alkyl benzene sulfonate with cx C ⁇ ⁇ -C ⁇ , branched or linear alkyl chain.
- the composition also comprises a nonionic surfactant which is a member selected from the group consisting of alcohol ethoxylates, alkylphenol ethoxylates, polyhydroxy fatty acid amides, alkyl polyglucosides, and mixtures thereof.
- a nonionic surfactant which is a member selected from the group consisting of alcohol ethoxylates, alkylphenol ethoxylates, polyhydroxy fatty acid amides, alkyl polyglucosides, and mixtures thereof.
- compositions herein comprise: (a) from about 0.25% to about 3%, by weight, of Coco Methyl EO2 as surfactant (I); (b) from about 3% to about 40%, by weight, of straight chain or branched chain primary or secondary AS as surfactant (II);
- the invention also encompasses fully formulated detergent compositions comprising adjunct ingredients and at least about 3%. by weight, of the aforesaid detersive surfactant system, said surfactant system comprising a cationic surfactant, a mixture of anionic surfactants, and optional nonionic surfactants, all as disclosed above, and adjunct ingredients including those selected from the group consisting of builders, enzymes, soil release polymers, bleaches, clay soil removal/antiredeposition agents, polymeric dispersing agents, brighteners, dye transfer inhibiting agents, suds suppressors, fabric softeners, and other adjuncts disclosed herein, as well as detersive surfactants not encompassed by surfactants (I)- (IV), e.g., a member selected from the group consisting of soaps, oleyl sulfate, alkyl alkoxy sulfates, alkyl alkoxy carboxylates, sulfated
- the AQA surfactants used in the manner of the present invention also provide an improved method for removing the following soils and stains from fabrics: blood; greasy food stain; particulate stain; body soils (including fabric "dinginess” caused by small, but noticeable, stain/soil accumulations over time) and other stains noted herein.
- Such stains and soils are removed from fabrics such as cotton, polyester/cotton blends (P/C) and double-knit polyester (DKPE).
- the method comprises contacting fabrics in need of removal of such soils with an effective amount of the compositions herein, in the presence of water, and preferably with agitation.
- Various suitable usage levels and methods are disclosed hereinafter.
- the AQA surfactants herein, especially the preferred CocoMeEO2 are disclosed hereinafter.
- AQA-1 hereinafter
- the AQA surfactants herein, especially AQA-1 provide improved (even synergistic) performance with amylase and cellulase enzymes. This improvement is seen especially in the absence of bleach.
- this invention provides a means for enhancing the removal of greasy/oily soils by combining a lipase enzyme with an AQA surfactant.
- Greasy/oily "everyday "soils are a mixture of triglycerides, lipids, complex polysaccharides, inorganic salts and proteinaceous matter.
- This invention also provides improved cleaning and fabric care benefits by combining a cellulytic enzyme with an AQA surfactant.
- a cellulytic enzyme In older/worn cotton fabrics or other cellulosic fabrics the sheathes around individual fibres degrade to form gelatinous/amorphous cellulose "glues" which entrap dirt.
- the glue acts as an ideal substrate for deposition/retention of greasy /oily body soils (e.g., on collars and pillowcases) which are a mixture of triglycerides, lipids, complex polysaccharides, inorganic salts and proteinaceous matter. Removal of these hydrophobic soils from worn fabrics is thus very difficult and low levels of residual stain often remain on the fabric after washing. Again, after successive wearing/washing these soils build up, leading to yellowing and more entrapment of dirt.
- detergent compositions containing the AQA surfactants and cellulytic enzymes deliver superior cleaning and whiteness performance vs. products containing either ingredient alone.
- cellulytic enzymes e.g., cellulases and/or endoglucanases
- these benefits appear to be the result of the effective penetration of hydrophobic body soils by the AQA surfactants.
- This boosts access of the cellulytic enzymes which degrade the amorphous cellulose glue (which binds the soil on the fabric) around the fibers. As the glue dissolves, the entrapped dirt is released and whiteness is restored.
- the combined cellulytic/AQA system also provides softness benefits vs. the cationic or enzyme alone; effective depilling and ungluing of worn fibers leads to improved fabric softness feel.
- This invention also provides detergent compositions which deliver effective cleaning of greasy/oily everyday soils via use of percarbonate bleach with an AQA surfactant as disclosed herein.
- Percarbonate which delivers peroxide bleach into the wash, is a cornerstone technology of modern, ultra-compact granular laundry detergent formulas.
- Peroxide bleach is very hydrophilic and, while it cannot match the bleaching effectiveness delivered by peracids (formed for example from peroxide interaction with TAED), it is effective at decoloration of pigments (e.g., in particulates or beverage stains) and also can help remove the color from the organic residues associated with body soils.
- compositions containing AQA surfactants and percarbonate bleach deliver superior cleaning and whiteness performance vs. products containing either technology alone. These benefits appear to be driven by the effective solubilization of the greasy oil soils by AQA, thereby allowing access of the hydrophilic peroxide bleach to the color bodies in the soil (e.g., entrapped pigments) and resulting in improved soil decoloration.
- This invention also provides detergent compositions which deliver effective cleaning of greasy/oily everyday soils by means of hydrophobic bleach activators used in combination with a water-soluble AQA surfactant of the present type. Everyday soil cleaning and whiteness benefits for hydrophobic bleach activators and peracids have already been demonstrated.
- This invention also provides compositions which deliver effective cleaning of greasy/oily soils via use of bleach catalysts using an AQA surfactant.
- Bleach catalysts characterized by the presence of at least one transition metal atom
- the catalysts deliver strong benefits on colored hydrophilic stains and hydrophilic everyday soils (i.e., socks).
- the catalysts are typically used at extremely low levels in cleaning products.
- products containing AQA and catalysts deliver superior cleaning and whiteness performance vs. products containing either technology alone, and are especially potent on everyday soils.
- These benefits are believed to be driven by effective AQA solubilization on the greasy oil soils which allow access of the hydrophilic "catalyst" bleach to the color bodies in the soil, thereby leading to effective soil decolorization.
- historical use of bleach catalysts was made difficult because of concerns about fabric damage. Using a dimanganese catalyst, known to cause fabric damage, it has now been found that the occurrence of fabric damage is much reduced when AQA cationics are present. Presumably, these cationics adsorb onto fabrics where they modify the surface charge and are available to ion-pair with the activated catalyst to minimize or prevent fabric damage.
- this invention allows the use of high levels of insoluble inorganic builders, without fabric encrustation, using layered silicates with a water- soluble AQA surfactant.
- Layered silicates are composed of discreet units some faces of which are negatively charged. It may be speculated that the positively charged head-group of AQA interacts, via electrostatic bond formation, with the negatively charged face to form a surfactant monolayer upon which a second "hydrophilic" surfactant layer builds up. This drives particle lift-off from fabrics, thereby minimizing encrustation which can otherwise result in a harsh "feel to the fabrics".
- This invention also allows the formulation of high levels of insoluble inorganic or soluble (bi)carbonate builders in compositions containing relatively low polycarboxylate polymers, without driving fabric encrustation issues by using the different types of builder with an AQA surfactant as disclosed herein.
- high molecular weight polycarboxylate polymers have been used as dispersants in granular laundry detergents. These polymers are, however, generally expensive.
- the polymers, as well as being effective at soil suspension, also effectively control fabric encrustation by lifting off inorganics (including builders/precipitated carbonates) from fabrics.
- Low polymer formulations known heretofore are prone to fabric encrustation shortcomings.
- This invention also provides detergent compositions which deliver effective cleaning of greasy/oily "everyday” soils (and accidental soils), via use of polyethoxyated-polyamine polymers (PPP) with the AQA surfactants herein.
- PPP polyethoxyated-polyamine polymers
- greasy/oily "everyday” soils e.g., on collars, pillowcases
- PPP polyethoxyated-polyamine polymers
- Characteristic features of these materials include: (1 ) a reasonably low molecular weight "hydrophobic” polyamine backbone (which is slightly cationic in nature providing an affinity for soils and fabrics); and (2) pendant "hydrophilic" polyethoxylate groups which provide steric stabilization and greasy soil suspension. During the wash, these polymers work at the stain/wash liquor interface.
- detergent compositions containing the AQA surfactants herein and ethoxylated polyamine polymers deliver superior cleaning and whiteness performance vs. compositions containing either technology alone.
- Benefits for the mixed system are believed to be the result of: ( 1 ) AQA action on the stain surface to prevent lime soap formation and to lift off any calcium soaps present, thereby facilitating improved polymer deposition; (2) AQA providing solubilization deep into the soil, while the polymer acts as a "grease removal shuttle", stripping out the AQA-solubilized stain components and dispersing them into the wash liquor.
- This invention also provides detergent compositions which deliver effective cleaning of greasy/oily everyday soils, by means of use of high levels of surfactant (optionally including branched surfactants) with an AQA surfactant.
- high levels of surfactant optionally including branched surfactants
- modern "ultra-compact" detergent compositions generally contain high levels of surfactants (nonionic and anionic) and are fairly effective at body soil cleaning.
- anionic or mixed anionic/nonionic surfactants (optionally including branched surfactants) deliver superior cleaning performance vs. products containing either technology alone.
- this invention provides detergent, bleach and other compositions which deliver improved perfume residuality on fabrics after the wash, via use of perfume with a water-soluble AQA surfactant.
- Natural and synthetic fabrics can be characterized by the surface charge on their fibers. Cotton is hydrophilic with a net negative surface charge, whereas polyester is hydrophobic with a neutral surface charge.
- Perfumes are a complex mixture of hydrophobic organic actives, including esters, alcohols, ketones, aldehydes, ethers, and the like. The fabric substantivity of different perfume actives depends on: (1) functionality (how polar they are); (2) the molecular weight of the active; and (3) the charge on the fabric fibers. Most perfume actives contain electron-rich oxygen atoms which will be attracted to electron deficient molecules/surfaces.
- AQA surfactants with perfumes (characterized as having >10% of components with molecular weight >150) provides improved perfume fabric substantivity. While not intending to be limited by theory, it appears that, as well as increasing the hydrophobicity of anionic or anionic/nonionic surfactant systems, the AQA surfactants have high fabric substantivity (especially for cotton). The AQA surfactants appear to adsorb onto the fibers where they change the surface charge from neutral/negative to positive (or electron deficient). This modified fabric surface acts like a magnet to the electron rich domains of the perfume actives, thereby drawing them onto the fabrics where they are held electrostatically. This significantly increases perfume residuality. These benefits are most pronounced for perfume components having at least one oxygen atom and a molecular weight greater than 150. The level of such perfume ingredients should account for at least about 10% of the total perfume mixture to achieve the maximum benefit of this effect.
- the alkoxylated quaternary ammonium (“AQA") compounds used according to the present invention enhance the cleaning performance of fabric laundry detergent compositions which contain select amounts of certain anionic surfactants.
- the AQA compounds herein also have the advantage that they are commercially accessible and are compatible with the various detersive ingredients such as builders, detersive enzymes, and the like, which are used in many modern, high quality, fully-formulated laundry detergents.
- the AQA compounds exhibit satisfactory stability in the presence of the bleach ingredients commonly used in laundry detergent-plus-bleach compositions.
- the AQA surfactants herein exhibit superior performance with respect to the removal of body soils and everyday soils such as sock soil.
- the combination of the AQA surfactants with the specified anionic surfactants removes such soils from fabrics.
- the specified combination of the AQA surfactants with otherwise conventional anionic surfactants provides excellent cleaning performance on a variety of other soils and stains, including food stains, particulate soils and greasy/oily stains.
- the compositions herein provide improved performance for cleaning a broad spectrum of soils and stains including body soils from collars and cuffs, greasy soils, and enzyme/bleach sensitive stains such as spinach and coffee.
- the compositions herein also provide excellent cleaning on builder sensitive stains such as clay, and thus are especially useful in a nil-P context.
- the bis- alkoxylated cationics herein have sufficient solubility that they can be used in combination with mixed surfactant systems which are quite low in nonionic surfactants and which contain, for example, alkyl sulfate surfactants.
- This can be an important consideration for formulators of detergent compositions of the type which are conventionally designed for use in automatic washing machines, especially of the type used in Japan, as well as under North American usage conditions.
- such compositions will comprise an anionic (total LAS/AS) surfactant:nonionic surfactant weight ratio in the range from about 25:1 to about 1 :25, preferably about 20:1 to about 3:1.
- European-type formulas which typically will comprise anionic: nonionic ratios in the range of about 10:1 to 1 : 10, preferably about 5: 1 to about 1 :5.
- the present invention employs an "effective amount" of the AQA surfactants to improve the performance of cleaning compositions which contain other adjunct ingredients.
- an “effective amount” of the AQA surfactants and adjunct ingredients herein is meant an amount which is sufficient to improve, either directionally or significantly at the 90% confidence level, the performance of the cleaning composition against at least some of target soils and stains.
- the formulator will use sufficient AQA to at least directionally improve cleaning performance against such stains.
- the formulator will use sufficient AQA to at least directionally improve cleaning performance against such soil.
- the AQA surfactants can be used at levels which provide at least a directional improvement in cleaning performance over a wide variety of soils and stains, as will be seen from the data presented hereinafter.
- the AQA surfactants are used herein in detergent compositions in combination with other detersive surfactants at levels which are effective for achieving at least a directional improvement in cleaning performance.
- usage levels can vary depending not only on the type and severity of the soils and stains, but also on the wash water temperature, the volume of wash water and the type of washing machine.
- a wash cycle of about 10 to about 14 minutes and a wash water temperature of about 10°C to about 50°C it is preferred to include from about 2 ppm to about 50 ppm, preferably from about 5 ppm to about 25 ppm, of the AQA surfactant in the wash liquor.
- this translates into an in-product concentration (wt.) of the AQA surfactant of from about 0.1% to about 3.2%, preferably about 0.3% to about 1.5%, for a heavy-duty liquid laundry detergent.
- a wash cycle of about 10 to about 60 minutes and a wash water temperature of about 30°C to about 95°C it is preferred to include from about 13 ppm to about 900 ppm, preferably from about 16 ppm to about 390 ppm, of the AQA surfactant in the wash liquor.
- this translates into an in-product concentration (wt.) of the AQA surfactant of from about 0.4% to about 2.64%, preferably about 0.55% to about 1.1%, for a heavy-duty liquid laundry detergent.
- a wash cycle of about 8 to about 15 minutes and a wash water temperature of about 5°C to about 25°C it is preferred to include from about 1.67 ppm to about 66.67 ppm, preferably from about 3 ppm to about 6 ppm, of the AQA surfactant in the wash liquor.
- this translates into an in-product concentration (wt.) of the AQA surfactant of from about 0.25% to about 10%, preferably about 1.5% to about 2%, for a heavy-duty liquid laundry detergent.
- usage rates of from about 18 g to about 35 g per wash load for dense ("compact") granular laundry detergents (density above about 650 , , l o
- Cationic Surfactants The preferred bis-ethoxylated cationic surfactants herein are available under the trade name ETHOQUAD from Akzo Nobel
- Step 1 of the reaction is preferably conducted in an aqueous medium.
- Reaction temperatures are typically in the range of 140-200°C.
- Reaction pressures are 50-1000 psig.
- a base catalyst preferably sodium hydroxide can be used.
- the mole ratio of reactants are 2: 1 to 1 : 1 amine to alkyl sulfate.
- the process herein is preferably conducted using Cg-C] 3 alkyl sulfate, sodium salt.
- the ethoxylation and quaternization reactions are conducted using conventional conditions and reactants.
- Step 1 of reaction Scheme 5 results in products which are sufficiently soluble in the aqueous reaction medium that gels may form. While the desired product can be recovered from the gel.
- an alternate, two-step synthesis Scheme 6, hereinafter, may be more desirable in some commercial circumstances.
- the second step (ethoxylation) is preferably conducted using ethylene oxide and an acid such as HCI which provides the quaternary surfactant. As shown below, chlorohydrin i.e., chloroethanol, can also be reacted to give the desired bishydroxyethyl derivative.
- the first step is preferably conducted in an aqueous medium. Reaction temperatures are typically in the range of 100-230° C.
- Reaction pressures are 50-1000 psig.
- a base preferably sodium hydroxide
- the mole ratio of amine to alkyl sulfate is typically from 10: 1 to 1 : 1.5; preferably from 5:1 to 1: 1.1; more preferably from 2: 1 to 1 : 1.
- the desired substituted amine is simply allowed to separate as a distinct phase from the aqueous reaction medium in which it is insoluble.
- the second step of the process is conducted under conventional reaction conditions. Further ethoxylation and quatemization to provide AQA surfactants are conducted under standard reaction conditions.
- Scheme 7 can optionally be conducted using ethylene oxide under standard ethoxylation conditions, but without catalyst, to achieve monoethoxylation.
- the mixture is cooled to room temperature and the liquid contents of the glass liner are poured into a 250 ml separatory funnel along with 80 ml of chloroform.
- the funnel is shaken well for a few minutes and then the mixture is allowed to separate.
- the lower chloroform layer is drained and the chloroform evaporated off to obtain product.
- Synthesis B Preparation of N,N-Bis(2-hvdroxyethyl)dodecylamine 1 Mole of sodium dodecyl sulfate is reacted with 1 mole of ethanolamine in the presence of base in the manner described in Synthesis A. The resulting 2- hydroxyethyldodecylamine is recovered and reacted with 1 -chloroethanol to prepare the title compound.
- the glass liner is sealed into a 500 ml, stainless steel, rocking autoclave and heated to 160-180°C under 300-400 psig nitrogen for 3-4 hours. The mixture is cooled to room temperature and the liquid contents of the glass liner are poured into a 250 ml separatory funnel along with 80 ml of chloroform. The funnel is shaken well for a few minutes and then allowed mixture to separate. The lower chloroform layer is drained and the chloroform is evaporated off to obtain product. The product is then reacted with 1 molar equivalent of ethylene oxide in the absence of base catalyst at 120-130°C to produce the desired final product.
- the bis-substituted amines prepared in the foregoing Syntheses can be further ethoxylated in standard fashion. Quatemization with an alkyl halide to form the AQA surfactants herein is routine.
- AQA surfactants used herein. It is to be understood that the degree of alkoxylation noted herein for the AQA surfactants is reported as an average, following common practice for conventional ethoxylated nonionic surfactants. This is because the ethoxylation reactions typically yield mixtures of materials with differing degrees of ethoxylation. Thus, it is not uncommon to report total EO values other than as whole numbers, e.g., "EO2.5", “EO3.5”, and the like.
- R ⁇ is C io-Cjg hydrocarbyl and mixtures thereof, preferably C J Q, C ⁇ J, C 14 alkyl and mixtures thereof, and X is any convenient anion to provide charge balance, preferably chloride.
- R ⁇ is derived from coconut (C 12-C 14 alkyl) fraction fatty acids
- R2 is methyl and ApR 3 and A'qR 4 are each monoethoxy. This preferred type of compound is referred to herein as "CocoMeE02" or "AQA- 1 " in the above list.
- Other preferred AQA compounds herein include compounds of the formula:
- Rl is Cio-Cjg hydrocarbyl, preferably C 1 Q-C 14 alkyl, independently p is 1 to about 3 and q is 1 to about 3, R 2 is C1-C3 alkyl, preferably methyl, and X is an anion, especially chloride.
- CH2CH2O units are replaced by butoxy (Bu), isopropoxy [CH(CH3)CH2 ⁇ ] and [CH2CH(CH 3 O] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.
- Anionic Surfactants - The alkyl benzene sulfonate (“LAS") and primary (preferred; "AS”) or secondary alkyl sulfate components of the present compositions are well-known and widely-used commercial surfactants. As noted above, one of the important advantages of the present invention is the discovery that the AQA surfactants, when used in the manner disclosed herein, boost the performance of these otherwise conventional materials.
- the LAS surfactant has an alkyl chain length typically in the Cjo-Ci 6 range, and commercially available LAS has an average alkyl chain length in the 1 1-13 range, usually around 11.5.
- the AS surfactant has a chain length typically in the CJ Q-C20 ran 8 e » and many commercial sources of AS are in the 12-18 range. All such commercial LAS and AS materials may be used herein. Unsaturated sulfates such as oleyl sulfate can also be used.
- Nonionic Surfactants typically at levels from about 1% to about 55%, by weight include the alkoxylated alcohols (AE's) and alkyl phenols, polyhydroxy fatty acid amides (PFAA's), alkyl polyglycosides (APG's), CiQ-Cj g glycerol ethers, and the like.
- AE alkoxylated alcohols
- PFAA's polyhydroxy fatty acid amides
- APG's alkyl polyglycosides
- CiQ-Cj g glycerol ethers and the like.
- condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide (AE) are suitable for use as the nonionic surfactant in the present invention.
- the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms.
- nonionic surfactants of this type include: Tergitol ⁇ M 15-S-9 (the condensation product of C ⁇ 1-C15 linear alcohol with 9 moles ethylene oxide) and TergitolTM 24-L-6 NMW (the condensation product of Cj2-C]4 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Co ⁇ oration; Neodol ⁇ M 45.9 (the condensation product of C ,4- ⁇ 5 linear alcohol with 9 moles of ethylene oxide), NeodolTM 23-3 (the condensation product of C12- C j 3 linear alcohol with 3 moles of ethylene oxide), Neodol ⁇ M 45.7 ( me condensation product of CJ4-C15 linear alcohol with 7 moles of ethylene oxide) and NeodolTM 45.5 ( me condensation product of C14-C15 linear alcohol with 5 moles of ethylene oxide) marketed by Shell Chemical Company; Kyro ⁇ M rfOB (the condensation product of C13-C15 alcohol with 9 moles ethylene oxide
- Another class of preferred nonionic surfactants for use herein are the polyhydroxy fatty acid amide surfactants of the formula.
- Rl is H, or C1.4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof
- R 2 is C5.31 hydrocarbyl
- Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
- R ⁇ is methyl
- R2 is a straight Cl l-15 alkyl or C15.17 alkyl or alkenyl chain such as coconut alkyl or mixtures thereof
- Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
- Typical examples include the Cj2-C j g and C 12 -C i4 N-methylglucamides. See U.S. 5,194,639 and 5,298,636. N-alkoxy polyhydroxy fatty acid amides can also be used; see U.S. 5,489,393.
- alkylpolysaccharides such as those disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms, and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units.
- a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms
- a polysaccharide e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units.
- Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties (optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside).
- the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-. and/or 6- positions on the preceding saccharide units.
- the preferred alkylpolyglycosides have the formula: R2 ⁇ (C n H 2n O)t(glycosyl) x wherein R2 is selected from the group consisting of alkyl, alkylphenyl. hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3. most preferably from about 1.3 to about 2.7.
- the glycosyl is preferably derived from glucose.
- the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1 -position).
- the additional glycosyl units can then be attached between their 1- position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position.
- Polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are also suitable for use as the nonionic surfactant of the surfactant systems of the present invention, with the polyethylene oxide condensates being preferred.
- These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 14 carbon atoms, preferably from about 8 to about 14 carbon atoms, in either a straight-chain or branched-chain configuration with the alkylene oxide.
- the ethylene oxide is present in an amount equal to from about 2 to about 25 moles, more preferably from about 3 to about 15 moles, of ethylene oxide per mole of alkyl phenol.
- nonionic surfactants of this type include Igepal ⁇ M CO-630, marketed by the GAF Co ⁇ oration; and TritonTM X-45, X-l 14, X-100 and X-102, all marketed by the Rohm & Haas Company. These surfactants are commonly referred to as alkylphenol alkoxylates (e.g., alkyl phenol ethoxylates).
- alkylphenol alkoxylates e.g., alkyl phenol ethoxylates.
- the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are also suitable for use as the additional nonionic surfactant in the present invention.
- the hydrophobic portion of these compounds will preferably have a molecular weight of from about 1500 to about 1800 and will exhibit water insolubility.
- polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation product, which corresponds to condensation with up to about 40 moles of ethylene oxide.
- examples of compounds of this type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
- PluronicTM surfactants also suitable for use as the nonionic surfactant of the nonionic surfactant system of the present invention, are the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine.
- the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
- This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 11,000.
- Examples of this type of nonionic surfactant include certain of the commercially available Tetronic ⁇ M compounds, marketed by BASF.
- Additional Surfactants include the conventional the Cio-Cj g alkyl alkoxy sulfates ("AE X S"; especially EO 1-7), C iQ-C j g alkyl alkoxy carboxylates (especially the EO 1-5) and Cjo-Cjg alpha-sulfonated fatty acid esters.
- C ⁇ -C j g betaines and sulfobetaines ("sultaines”), Cjn-C ig amine oxides, and the like, can also be used.
- C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain Cjo-Ci ⁇ soaps may be used.
- Other conventional useful surfactants are listed in standard texts.
- adjunct ingredients which may be used in the compositions of this invention, but is not intended to be limiting thereof. While the combination of the AQA and the anionic surfactants with such adjunct compositional ingredients can be provided as finished products in the form of liquids, gels, bars, or the like using conventional techniques, the manufacture of the granular laundry detergents herein requires some special processing techniques in order to achieve optimal performance. Accordingly, the manufacture of laundry granules will be described hereinafter separately in the Granules Manufacture section (below), for the convenience of the formulator.
- Builders - Detergent builders can optionally but preferably be included in the compositions herein, for example to assist in controlling mineral, especially Ca and/or Mg, hardness in wash water or to assist in the removal of particulate soils from surfaces.
- Builders can operate via a variety of mechanisms including forming soluble or insoluble complexes with hardness ions, by ion exchange, and by offering a surface more favorable to the precipitation of hardness ions than are the surfaces of articles to be cleaned.
- Builder level can vary widely depending upon end use and physical form of the composition.
- Built detergents typically comprise at least about 1% builder.
- Liquid formulations typically comprise about 5% to about 50%, more typically 5% to 35% of builder.
- Granular formulations typically comprise from about 10% to about 80%, more typically 15% to 50% builder by weight of the detergent composition.
- Lower or higher levels of builders are not excluded. For example, certain detergent additive or high- surfactant formulations can be unbuilt.
- Suitable builders herein can be selected from the group consisting of phosphates and polyphosphates, especially the sodium salts; silicates including water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amo ⁇ hous-solid or non-structured-liquid types; carbonates, bicarbonates, sesquicarbonates and carbonate minerals other than sodium carbonate or sesquicarbonate; aluminosilicates; organic mono-, di-, tri-, and tetracarboxylates especially water-soluble nonsurfactant carboxylates in acid, sodium, potassium or alkanolammonium salt form, as well as oligomeric or water- soluble low molecular weight polymer carboxylates including aliphatic and aromatic types; and phytic acid.
- silicates including water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amo ⁇ hous-solid or non-structured-liquid types
- borates e.g., for pH- buffering purposes
- sulfates especially sodium sulfate and any other fillers or carriers which may be important to the engineering of stable surfactant and/or builder-containing detergent compositions.
- Builder mixtures sometimes termed “builder systems” can be used and typically comprise two or more conventional builders, optionally complemented by chelants, pH-buffers or fillers, though these latter materials are generally accounted for separately when describing quantities of materials herein.
- preferred builder systems are typically formulated at a weight ratio of surfactant to builder of from about 60:1 to about 1 :80.
- Certain preferred laundry detergents have said ratio in the range 0.90:1.0 to 4.0:1.0. more preferably from 0.95:1.0 to 3.0:1.0.
- P-containing detergent builders often preferred where permitted by legislation include, but are not Hmited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates exemplified by the tripolyphosphates, pyrophosphates, glassy polymeric meta-phosphates; and phosphonates.
- Suitable silicate builders include alkali metal silicates, particularly those liquids and solids having a Si ⁇ 2:Na2 ⁇ ratio in the range 1.6:1 to 3.2:1, including, particularly for automatic dishwashing pu ⁇ oses, solid hydrous 2-ratio silicates marketed by PQ Co ⁇ . under the tradename BRITESIL®, e.g., BRITESIL H2O; and layered silicates, e.g., those described in U.S. 4,664,839, May 12, 1987, H. P. Rieck.
- NaSKS-6 is a crystalline layered aluminium-free ⁇ -Na2SiO5 mo ⁇ hology silicate marketed by Hoechst and is preferred especially in granular laundry compositions. See preparative methods in German DE-A- 3,417,649 and DE-A-3,742,043.
- Other layered silicates such as those having the general formula NaMSi x O2 x +i yH2O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0, can also or alternately be used herein.
- Layered silicates from Hoechst also include NaSKS-5, NaSKS-7 and NaSKS-11, as the ⁇ , ⁇ and ⁇ layer-silicate forms.
- Other silicates may also be useful, such as magnesium silicate, which can serve as a crispening agent in granules, as a stabilising agent for bleaches, and as a component of suds control systems.
- crystalline ion exchange materials or hydrates thereof having chain structure and a composition represented by the following general formula in an anhydride form: xM 2 ⁇ ySi ⁇ 2 .zM'O wherein M is Na and/or K, M 1 is Ca and/or Mg; y/x is 0.5 to 2.0 and z/x is 0.005 to 1.0 as taught in U.S. 5,427,711, Sakaguchi et al, June 27, 1995.
- Suitable carbonate builders include alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973, although sodium bicarbonate, sodium carbonate, sodium sesquicarbonate, and other carbonate minerals such as trona or any convenient multiple salts of sodium carbonate and calcium carbonate such as those having the composition 2Na2CO3.CaCO3 when anhydrous, and even calcium carbonates including calcite, aragonite and vaterite, especially forms having high surface areas relative to compact calcite may be useful, for example as seeds or for use in synthetic detergent bars.
- Aluminosilicate builders are especially useful in granular detergents, but can also be inco ⁇ orated in liquids, pastes or gels. Suitable for the present pu ⁇ oses are those having empirical formula: [M z (AlO2) z (SiO2)v] xH2O wherein z and v are integers of at least 6, the molar ratio of z to v is in the range from 1.0 to 0.5, and x is an integer from 15 to 264.
- Aluminosilicates can be crystalline or amo ⁇ hous, naturally-occurring or synthetically derived. An aluminosilicate production method is in U.S. 3,985,669, Krummel, et al, October 12, 1976.
- the aluminosilicate has a particle size of 0.1-10 microns in diameter.
- Suitable organic detergent builders include polycarboxylate compounds, including water-soluble nonsurfactant dicarboxylates and tricarboxylates. More typically builder polycarboxylates have a plurality of carboxylate groups, preferably at least 3 carboxylates.
- Carboxylate builders can be formulated in acid, partially neutral, neutral or overbased form. When in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
- Polycarboxylate builders include the ether polycarboxylates. such as oxydisuccinate, see Berg, U.S. 3,128,287, April 7, 1964, and Lamberti et al, U.S.
- Suitable builders are the ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether; 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid; carboxymefhyloxysuccinic acid; the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid: as well as mellitic acid, succinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxy- methyloxysuccinic acid, and soluble salts thereof.
- Citrates e.g., citric acid and soluble salts thereof are important carboxylate builders e.g., for heavy duty liquid detergents, due to availability from renewable resources and biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicates. Oxydisuccinates are also especially useful in such compositions and combinations.
- alkali metal phosphates such as sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
- Phosphonate builders such as ethane- 1 -hydroxy- 1 , 1 -diphosphonate and other known phosphonates, e.g., those of U.S. 3,159,581 ; 3,213,030; 3,422,021; 3,400,148 and 3,422,137 can also be used and may have desirable antiscaling properties.
- detersive surfactants or their short-chain homologs also have a builder action. For unambiguous formula accounting pu ⁇ oses, when they have surfactant capability, these materials are summed up as detersive surfactants.
- Preferred types for builder functionality are illustrated by: 3,3-dicarboxy-4-oxa-l ,6- hexanedioates and the related compounds disclosed in U.S. 4,566,984, Bush, January 28, 1986.
- Succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof.
- Succinate builders also include: laurylsuccinate.
- Lauryl-succinates are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
- Fatty acids e.g., C ⁇ 2-C ⁇ g monocarboxylic acids
- Other suitable polycarboxylates are disclosed in U.S. 4,144,226, Crutchfield et al, March 13, 1979 and in U.S. 3,308,067, Diehl, March 7, 1967. See also Diehl, U.S. 3.723,322.
- Mineral Builders Waters of hydration or anions other than carbonate may be added provided that the overall charge is balanced or neutral.
- a water-soluble cation selected from the group consisting of hydrogen, water-soluble metals, hydrogen, boron, ammonium, silicon, and mixtures thereof, more preferably, sodium, potassium, hydrogen, lithium, ammonium and mixtures thereof, sodium and potassium being highly preferred.
- noncarbonate anions include those selected from the group consisting of chloride, sulfate, fluoride, oxygen, hydroxide, silicon dioxide, chromate, nitrate, borate and mixtures thereof.
- Preferred builders of this type in their simplest forms are selected from the group consisting of Na2Ca(CO3)2, K2Ca(CO3) 2 , Na 2 Ca2(CO 3 )3, NaKCa(CO 3 )2, NaKCa 2 (C0 3 ) 3 , K 2 Ca 2 (CO3)3, and combinations thereof.
- An especially preferred material for the builder described herein is Na2Ca(CO3)2 in any of its crystalline modifications. Suitable builders of the above-defined type are further illustrated by.
- MckelveyiteY Microsommite, Mroseite, Natrofairchildite, Nyerereite, RemonditeCe, Sacrofanite, Schrockingerite, Shortite, Surite, Tunisite, Chineseite, Tyrolite, Vishnevite, and Zemkorite.
- Preferred mineral forms include Nyererite, Fairchildite and Shortite.
- Enzymes - Enzymes can be included in the present detergent compositions for a variety of purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains from substrates, for the prevention of refugee dye transfer in fabric laundering, and for fabric restoration.
- Suitable enzymes include proteases, amylases, lipases, cellulases, peroxidases, and mixtures thereof of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Preferred selections are influenced by factors such as pH-activity and/or stability optima, thermostability, and stability to active detergents, builders and the like.
- bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
- Detersive enzyme means any enzyme having a cleaning, stain removing or otherwise beneficial effect in a laundry, hard surface cleaning or personal care detergent composition.
- Preferred detersive enzymes are hydrolases such as proteases, amylases and lipases.
- Preferred enzymes for laundry pu ⁇ oses include, but are not limited to, proteases, cellulases, lipases and peroxidases.
- Highly preferred for automatic dishwashing are amylases and/or proteases, including both current commercially available types and improved types which, though more and more bleach compatible though successive improvements, have a remaining degree of bleach deactivation susceptibility.
- Enzymes are normally incorporated into detergent or detergent additive compositions at levels sufficient to provide a "cleaning-effective amount".
- cleaning effective amount refers to any amount capable of producing a cleaning, stain removal, soil removal, whitening, deodorizing, or freshness improving effect on substrates such as fabrics, dishware and the like. In practical terms for current commercial preparations, typical amounts are up to about 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of the detergent composition. Stated otherwise, the compositions herein will typically comprise from 0.001% to 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation.
- Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
- AU Anson units
- proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis.
- One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1 ,243,784 to Novo.
- proteases include ALCALASE® and SAVINASE® from Novo and MAXATASE® from International Bio-Synthetics, Inc., The Netherlands; as well as Protease A as disclosed in EP 130,756 A, January 9, 1985 and Protease B as disclosed in EP 303,761 A, April 28, 1987 and EP 130,756 A, January 9, 1985. See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO 9318140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 9203529 A to Novo.
- proteases include those of WO 9510591 A to Procter & Gamble .
- a protease having decreased adso ⁇ tion and increased hydrolysis is available as described in WO 9507791 to Procter & Gamble.
- a recombinant trypsin-like protease for detergents suitable herein is described in WO 9425583 to Novo.
- protease D is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206.
- Amylases suitable herein, especially for, but not limited to automatic dishwashing pu ⁇ oses include, for example, ⁇ -amylases described in GB 1,296,839 to Novo; RAPIDASE®, International Bio-Synthetics, Inc. and TERMAMYL®, Novo. FUNGAMYL® from Novo is especially useful.
- Engineering of enzymes for improved stability, e.g., oxidative stability, is known. See, for example J. Biological Chem., Vol. 260, No. 11, June 1985, pp. 6518-6521.
- Certain preferred embodiments of the present compositions can make use of amylases having improved stability in detergents such as automatic dishwashing types, especially improved oxidative stability as measured against a reference-point of TERMAMYL ® in commercial use in 1993.
- These preferred amylases herein share the characteristic of being "stability-enhanced" amylases, characterized, at a minimum, by a measurable improvement in one or more of: oxidative stability, e.g., to hydrogen peroxide / tetraacetylethylenediamine in buffered solution at pH 9-10; thermal stability, e.g., at common wash temperatures such as about 60°C; or alkaline stability, e.g., at a pH from about 8 to about 1 1 , measured versus the above- identified reference-point amylase.
- Stability can be measured using any of the art- disclosed technical tests. See, for example, references disclosed in WO 9402597. Stability-enhanced amylases can be obtained from Novo or from Genencor International. One class of highly preferred amylases herein have the commonality of being derived using site-directed mutagenesis from one or more of the Bacillus amylases, especially the Bacillus ⁇ -amylases, regardless of whether one, two or multiple amylase strains are the immediate precursors. Oxidative stability-enhanced amylases vs. the above-identified reference amylase are preferred for use, especially in bleaching, more preferably oxygen bleaching, as distinct from chlorine bleaching, detergent compositions herein.
- Such preferred amylases include (a) an amylase according to the hereinbefore inco ⁇ orated WO 9402597, Novo, Feb. 3, 1994, as further illustrated by a mutant in which substitution is made, using alanine or threonine, preferably threonine, of the methionine residue located in position 197 of the B. licheniformis alpha-amylase, known as TERMAMYL®, or the homologous position variation of a similar parent amylase, such as B. amyloliquefaciens, B. subtilis, or B.
- Met was substituted, one at a time, in positions 8, 15, 197, 256, 304, 366 and 438 leading to specific mutants, particularly important being M197L and M197T with the M197T variant being the most stable expressed variant. Stability was measured in CASCADE® and SUNLIGHT®; (c) particularly preferred amylases herein include amylase variants having additional modification in the immediate parent as described in WO 9510603 A and are available from the assignee, Novo, as DURAMYL®. Other particularly preferred oxidative stability enhanced amylase include those described in WO 9418314 to Genencor International and WO 9402597 to Novo.
- Any other oxidative stability-enhanced amylase can be used, for example as derived by site-directed mutagenesis from known chimeric, hybrid or simple mutant parent forms of available amylases. Other preferred enzyme modifications are accessible. See WO 9509909 A to Novo. Other amylase enzymes include those described in WO 95/26397 and in co- pending application by Novo Nordisk PCT/DK96/00056.
- Specific amylase enzymes for use in the detergent compositions of the present invention include ⁇ - amylases characterized by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 25°C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas® ⁇ -amylase activity assay. (Such Phadebas® ⁇ -amylase activity assay is described at pages 9-10, WO 95/26397.) Also included herein are ⁇ -amylases which are at least 80% homologous with the amino acid sequences shown in the SEQ ID listings in the references. These enzymes are preferably inco ⁇ orated into laundry detergent compositions at a level from 0.00018% to 0.060% pure enzyme by weight of the total composition, more preferably from 0.00024% to 0.048% pure enzyme by weight of the total composition.
- Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5.
- U.S. 4,435,307, Barbesgoard et al, March 6, 1984 discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander.
- Suitable cellulases are also disclosed in GB-A- 2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
- CAREZYME® and CELLUZYME® are especially useful. See also WO 91 17243 to Novo.
- Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in GB 1,372,034. See also lipases in Japanese Patent Application 53,20487, laid open Feb. 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," or "Amano-P.” Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var.
- lipolyticum NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Co ⁇ ., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
- the lipase variant may be added in an amount corresponding to 0.001-100- mg (5-500,000 LU/liter) lipase variant per liter of wash liquor.
- the present invention provides the benefit of improved whiteness maintenance on fabrics using low levels of D96L variant in detergent compositions containing the AQA surfactants in the manner disclosed herein, especially when the D96L is used at levels in the range of about 50 LU to about 8500 LU per liter of wash solution.
- Cutinase enzymes suitable for use herein are described in WO 8809367 A to
- Peroxidase enzymes may be used in combination with oxygen sources, e.g., percarbonate, perborate, hydrogen peroxide, etc., for "solution bleaching" or prevention of transfer of dyes or pigments removed from substrates during the wash io other substrates present in the wash solution.
- oxygen sources e.g., percarbonate, perborate, hydrogen peroxide, etc.
- Known peroxidases include horseradish peroxidase, ligninase, and haloperoxidases such as chloro- or bromo- peroxidase.
- Peroxidase-containing detergent compositions are disclosed in WO 89099813 A, October 19, 1989 to Novo and WO 8909813 A to Novo.
- a range of enzyme materials and means for their inco ⁇ oration into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101 ,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their inco ⁇ oration into such formulations, are disclosed in U.S. 4,261.868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilised by various techniques.
- Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971 , Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC 13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo. , ,
- the enzyme-containing compositions herein may optionally also comprise from about 0.001% to about 10%, preferably from about 0.005% to about 8%, most preferably from about 0.01% to about 6%, by weight of an enzyme stabilizing system.
- the enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such a system may be inherently provided by other formulation actives, or be added separately, e.g., by the formulator or by a manufacturer of detergent-ready enzymes.
- Such stabilizing systems can, for example, comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acids, boronic acids, and mixtures thereof, and are designed to address different stabilization problems depending on the type and physical form of the detergent composition.
- One stabilizing approach is the use of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes.
- Calcium ions are generally more effective than magnesium ions and are preferred herein if only one type of cation is being used.
- Typical detergent compositions, especially liquids will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 8 to about 12 millimoles of calcium ion per liter of finished detergent composition, though variation is possible depending on factors including the multiplicity, type and levels of enzymes inco ⁇ orated.
- Preferably water-soluble calcium or magnesium salts are employed, including for example calcium chloride, calcium hydroxide, calcium formate, calcium malate, calcium maleate, calcium hydroxide and calcium acetate; more generally, calcium sulfate or magnesium salts corresponding to the exemplified calcium salts may be used. Further increased levels of Calcium and/or Magnesium may of course be useful, for example for promoting the grease-cutting action of certain types of surfactant.
- Borate stabilizers when used, may be at levels of up to 10% or more of the composition though more typically, levels of up to about 3% by weight of boric acid or other borate compounds such as borax or orthoborate are suitable for liquid detergent use.
- Substituted boric acids such as phenylboronic acid, butaneboronic acid, p-bromophenylboronic acid or the like can be used in place of boric acid and reduced levels of total boron in detergent compositions may be possible though the use of such substituted boron derivatives.
- Stabilizing systems of certain cleaning compositions may further comprise from 0 to about 10%, preferably from about 0.01% to about 6% by weight, of chlorine bleach scavengers, added to prevent chlorine bleach species present in many water supplies from attacking and inactivating the enzymes, especially under alkaline conditions.
- chlorine bleach scavengers While chlorine levels in water may be small, typically in the range from about 0.5 ppm to about 1.75 ppm. the available chlorine in the total volume of water that comes in contact with the enzyme, for example during dish- or fabric-washing, can be relatively large; accordingly, enzyme stability to chlorine in-use is sometimes problematic.
- Suitable chlorine scavenger anions are widely known and readily available, and, if used, can be salts containing ammonium cations with sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc.
- Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used.
- EDTA ethylenediaminetetracetic acid
- MEA monoethanolamine
- special enzyme inhibition systems can be inco ⁇ orated such that different enzymes have maximum compatibility.
- scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate tetrahydrate, sodium perborate monohydrate and sodium percarbonate, as well as phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, malate, tartrate, salicylate, etc., and mixtures thereof can be used if desired.
- the chlorine scavenger function can be performed by ingredients separately listed under better recognized functions, (e.g., hydrogen peroxide sources), there is no absolute requirement to add a separate chlorine scavenger unless a compound performing that function to the desired extent is absent from an enzyme-containing embodiment of the invention; even then, the scavenger is added only for optimum results.
- the formulator will exercise a chemist's normal skill in avoiding the use of any enzyme scavenger or stabilizer which is majorly incompatible, as formulated, with other reactive ingredients.
- ammonium salts such salts can be simply admixed with the detergent composition but are prone to adsorb water and/or liberate ammonia during storage. Accordingly, such materials, if present, are desirably protected in a particle such as that described in US 4,652,392, Baginski et al.
- SRA Polymeric Soil Release Agent - Known polymeric soil release agents. hereinafter “SRA” or “SRA's”, can optionally be employed in the present detergent compositions. If utilized, SRA's will generally comprise from 0.01% to 10.0%. typically from 0.1% to 5%, preferably from 0.2% to 3.0% by weight, of the composition.
- Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with SRA to be more easily cleaned in later washing procedures.
- SRA's can include a variety of charged, e.g., anionic or even cationic (see U.S. 4,956,447), as well as noncharged monomer units and structures may be linear, branched or even star-shaped. They may include capping moieties which are especially effective in controlling molecular weight or altering the physical or surface-active properties. Structures and charge distributions may be tailored for application to different fiber or textile types and for varied detergent or detergent additive products.
- Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide.
- esters may be made using additional monomers capable of being inco ⁇ orated into the ester structure through one, two, three, four or more positions, without of course forming a densely crosslinked overall structure.
- Suitable SRA's include: a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451 , November 6, 1990 to J.J. Scheibel and E.P.
- ester oligomers can be prepared by (a) ethoxylating allyl alcohol, (b) reacting the product of (a) with dimethyl terephthalate (“DMT”) and 1,2-propylene glycoi (“PG”) in a two-stage transesterification/ oligomerization procedure and (c) reacting the product of (b) with sodium metabisulfite in water; the nonionic end-capped 1,2- propylene/polyoxyethylene terephthalate polyesters of U.S.
- DMT dimethyl terephthalate
- PG 1,2-propylene glycoi
- Gosselink et al 4,71 1,730, December 8, 1987 to Gosselink et al, for example those produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG and poly(ethylenegiycol) ("PEG"); the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26. 1988 to Gosselink, such as oligomers from ethylene glycol (“EG”), PG, DMT and Na-3,6-dioxa-8- hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S. 4,702,857, October 27, 1987 to Gosselink.
- EG ethylene glycol
- PG PG
- DMT poly(ethylenegiycol)
- Na-3,6-dioxa-8- hydroxyoctanesulfonate the nonionic-capped block polyester oligomeric compounds of U.S
- DMT for example produced from DMT, Me-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S. 4,877,896, October 31, 1989 to Maldonado, Gosselink et al, the latter being typical of SRA's useful in both laundry and fabric conditioning products, an example being an ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT optionally but preferably further comprising added PEG, e.g., PEG 3400.
- PEG e.g., PEG 3400.
- SRA's also include simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; and the C1-C4 alkylcelluloses and C4 hydroxyalkyl celluloses; see U.S. 4,000,093, December 28, 1976 to Nicol, et ai.
- Suitable SRA's characterised by poly( vinyl ester) hydrophobe segments include graft copolymers of poly( vinyl ester), e.g., C ⁇ -C ⁇ vinyl esters, preferably poly(vinyl acetate), grafted onto polyalkylene oxide backbones. See European Patent Application 0 219 048, published April 22, 1987 by Kud. et al. Commercially available examples include SOKALAN SRA's such as SOKALAN HP-22, available from BASF, Germany. Other SRA's are polyesters with repeat units containing 10- 15% by weight of ethylene terephthalate together with 90-80% by weight of polyoxyethylene terephthalate, derived from a polyoxyethylene glycol of average molecular weight 300-5,000. Commercial examples include ZELCON 5126 from Dupont and MILEASE T from ICI. Another preferred SRA is an oligomer having empirical formula
- CAP2(EG/PG)5(T)5(SIP) ⁇ which comprises terephthaloyl (T), sulfoisophthaloyl (SIP), oxyethyleneoxy and oxy-l ,2-propylene (EG/PG) units and which is preferably terminated with end-caps (CAP), preferably modified isethionates, as in an oligomer comprising one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-l,2-propyleneoxy units in a defined ratio, preferably about 0.5:1 to about 10:1, and two end-cap units derived from sodium 2-(2- hydroxyethoxy)-ethanesulfonate.
- Said SRA preferably further comprises from 0.5% to 20%, by weight of the oligomer, of a crystallinity-reducing stabiliser, for example an anionic surfactant such as linear sodium dodecylbenzenesulfonate or a member selected from xylene-, cumene-, and toluene- sulfonates or mixtures thereof, these stabilizers or modifiers being introduced into the synthesis pot, all as taught in U.S. 5,415,807, Gosselink, Pan, Kellett and Hall, issued May 16, 1995.
- Suitable monomers for the above SRA include Na 2-(2-hydroxyethoxy)-ethanesulfonate. DMT, Na- dimethyl 5-sulfoisophthalate, EG and PG.
- oligomeric esters comprising: (1) a backbone comprising (a) at least one unit selected from the group consisting of dihydroxysulfonates, polyhydroxy sulfonates, a unit which is at least trifunctional whereby ester linkages are formed resulting in a branched oligomer backbone, and combinations thereof; (b) at least one unit which is a terephthaloyl moiety; and (c) at least one unsulfonated unit which is a 1 ,2-oxyalkyleneoxy moiety; and (2) one or more capping units selected from nonionic capping units, anionic capping units such as alkoxylated, preferably ethoxylated, isethionates, alkoxylated propanesulfonates, alkoxylated propanedisulfonates, alkoxylated phenolsulfonates, sulfoaroyl derivatives and mixtures thereof.
- Preferred of such esters are those of empirical formula:
- SEG and CAP monomers for the above esters include Na-2-(2-,3- dihydroxypropoxy)ethanesulfonate (“SEG”), Na-2- ⁇ 2-(2-hydroxyethoxy) ethoxy ⁇ ethanesulfonate (“SE3”) and its homologs and mixtures thereof and the products of ethoxylating and sulfonating allyl alcohol.
- Preferred SRA esters in this class include the product of transesterifying and oligomerizing sodium 2- ⁇ 2-(2-hydroxyethoxy)- ethoxyjethanesulfonate and/or sodium 2-[2- ⁇ 2-(2-hydroxyethoxy)ethoxy ⁇ ethoxy]- ethanesulfonate, DMT, sodium 2-(2,3-dihydroxypropoxy) ethane sulfonate, EG, and PG using an appropriate Ti(IV) catalyst and can be designated as (CAP)2(T)5(EG/PG)1.4(SEG)2.5(B)0.13 wherein CAP is (Na+ O 3 S[CH 2 CH 2 O]3.5)- and B is a unit from glycerin and the mole ratio EG/PG is about 1.7:1 as measured by conventional gas chromatography after complete hydrolysis.
- SRA's include (I) nonionic terephthalates using diisocyanate coupling agents to link up polymeric ester structures, see U.S. 4,201,824, Violland et al. and U.S. 4.240,918 Lagasse et al; (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With a proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage.
- Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S. 4,525,524 Tung et al.; (Ill) anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201,824, Violland et al; (IV) poly( vinyl caprolactam) and related co-polymers with monomers such as vinyl pyrrolidone and/or dimethylaminoethyl methacrylate, including both nonionic and cationic polymers, see U.S.
- bleaching agents may be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering. If present, the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
- the bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning pu ⁇ oses that are now known or become known. These include oxygen bleaches as well as other bleaching agents.
- Perborate bleaches e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
- Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof.
- Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4- oxoperoxybutyric acid and diperoxydodecanedioic acid.
- Such bleaching agents are disclosed in U.S. Patent 4,483,781 , Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1 , 1983.
- Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4.634,551, issued January 6, 1987 to Burns et al.
- Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate” bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.
- a preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1 ,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 'micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers.
- the percarbonate can be coated with silicate, borate or water-soluble surfactants.
- Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
- bleaching agents can also be used.
- Peroxygen bleaching agents, the perborates, the percarbonates, etc. are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator.
- bleach activators Various nonlimiting examples of activators are disclosed in
- amido-derived bleach activators are those of the formulae: R!N(R5)C(O)R 2 C(O)L or R 1 C(O)N(R 5 )R 2 C(O)L wherein Rl is an alkyl group containing from about 6 to about 12 carbon atoms, R 2 is an alkylene containing from 1 to about 6 carbon atoms. R ⁇ is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group.
- a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion.
- a preferred leaving group is phenyl sulfonate.
- bleach activators of the above formulae include (6- octanamido-caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesul- fonate, (6-decanamido-caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551, inco ⁇ orated herein by reference.
- Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, inco ⁇ orated herein by reference.
- a highly preferred activator of the benzoxazin- type is:
- Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
- R° is H or an alkyl, aryl, alkoxyaryl. or alkaryl group containing from 1 to about 12 carbon atoms.
- Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3.5.5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof.
- the bleaching compounds can be catalyzed by means of a manganese compound.
- a manganese compound Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621, U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,1 14,606; and European Pat. App. Pub. Nos.
- Preferred examples of these catalysts include Mn IV 2(u-O)3(l,4,7-trimethyl-l,4,7-triazacyclo- nonane)2(PF6)2, Mn I ⁇ 2(u-O) j (u-OAc)2( 1 ,4,7-trimethy 1- 1 ,4,7-triazacyclononane)2_ (ClO 4 ) 2 , Mn IV 4(u-O) 6 (l,4,7-triazacyclononane)4(ClO 4 )4, Mn ⁇ I Mn IV 4(u-O) ⁇ (u- OAc)2.(l ,4,7-trimethyl-l,4,7-triazacyclononane)2(ClO4)3, Mn IV (1.4,7-trimethyl- 1 ,4,7-triazacyclononane)- (OCH3)3(PF6),
- metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,1 14,61 1.
- the use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,1 17; 5,274,147; 5,153,161; and 5,227,084.
- compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
- Cobalt bleach catalysts useful herein are known, and are described, for example, in M. L. Tobe, "Base Hydrolysis of Transition-Metal Complexes", Adv. Inorg. Bioinorg. Mech.. (1983), 2, pages 1-94.
- the most preferred cobalt catalyst useful herein are cobalt pentaamine acetate salts having the formula [Co(NH3)5OAc] T v , wherein "OAc” represents an acetate moiety and "T y " is an anion, and especially cobalt pentaamine acetate chloride, [Co(NH3)5OAc]Cl2; as well as [Co(NH3)5OAc](OAc)2; [Co(NH 3 ) 5 OAc](PF6)2; [Co(NH3) 5 OAc](SO 4 ); [Co(NH3)5OAc](BF 4 )2; and [Co(NH 3 )5OAc](NO 3 )2 (herein "PAC").
- the automatic dishwashing compositions and cleaning processes herein can be adjusted to provide on the order of at least one part per hundred million of the active bleach catalyst species in the aqueous washing medium, and will preferably provide from about 0.01 ppm to about 25 ppm, more preferably from about 0.05 ppm to about 10 ppm, and most preferably from about 0.1 ppm to about 5 ppm, of the bleach catalyst species in the wash liquor.
- typical automatic dishwashing compositions herein will comprise from about 0.0005% to about 0.2%, more preferably from about 0.004% to about 0.08%, of bleach catalyst, especially manganese or cobalt catalysts, by weight of the cleaning compositions.
- compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and antiredeposition properties.
- Granular detergent compositions which contain these compounds typically contain from about 0.01% to about 10.0% by weight of the water-soluble ethoxylates amines; liquid detergent compositions typically contain about 0.01% to about 5%.
- the most preferred soil release and anti-redeposition agent is ethoxylated tetraethylenepentamine.
- Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1 , 1986.
- Another group of preferred clay soil removal-antiredeposition agents are the cationic compounds disclosed in European Patent Application 11 1,965, Oh and Gosselink, published June 27, 1984.
- Other clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 1 11,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S.
- Patent 4,548,744, Connor issued October 22, 1985.
- Other clay soil removal and/or anti redeposition agents known in the art can also be utilized in the compositions herein. See U.S. Patent 4,891 ,160, VanderMeer, issued January 2, 1990 and WO 95/32272, published November 30, 1995.
- Another type of preferred antiredeposition agent includes the carboxy methyl cellulose (CMC) materials. These materials are well known in the art.
- Polymeric Dispersing Agents can advantageously be utilized at levels from about 0.1% to about 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders.
- Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, particulate soil release peptization, and anti-redeposition.
- Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form.
- Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
- the presence in the polymeric polycarboxylates herein or monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight.
- Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
- acrylic acid-based polymers which are useful herein are the water- soluble salts of polymerized acrylic acid.
- the average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000.
- Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl. U.S. Patent 3,308,067, issued march 7, 1967.
- Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent.
- Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
- the average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7.000 to 65,000.
- the ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1 : 1 , more preferably from about 10: 1 to 2: 1.
- Water- soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
- Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982. as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate. Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol te ⁇ olymers. Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 te ⁇ olymer of acrylic/maleic/vinyl alcohol.
- polyethylene glycol Another polymeric material which can be included is polyethylene glycol
- PEG polystyrene resin
- PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent.
- Typical molecular weight ranges for these pu ⁇ oses range from about 500 to about 100,000, preferably from about 1,000 to about
- Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders.
- Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000.
- Brightener Any optical brighteners or other brightening or whitening agents known in the art can be inco ⁇ orated at levels typically from about 0.01% to about 1.2%, by weight, into the detergent compositions herein.
- Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiophene-5,5- dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York ( 1982).
- optical brighteners which are useful in the present compositions are those identified in U.S. Patent 4.790,856, issued to Wixon on December 13, 1988. These brighteners include the PHORWHITE series of brighteners from Verona. Other brighteners disclosed in this reference include: Tinopal UNPA, Tinopal CBS and Tinopal 5BM; available from Ciba-Geigy; Artie White CC and Artie White CWD, the 2-(4-styryl-phenyl)-2H-na ⁇ tho[l ,2-d]triazoles; 4,4'-bis-(l,2,3-triazol-2-yl)-stilbenes; 4,4'-bis(styryl)bisphenyls; and the amino- coumarins.
- these brighteners include 4-methyl-7-diethyI- amino coumarin; l,2-bis(benzimidazol-2-yl)ethylene; 1 ,3-diphenyl-pyrazolines; 2,5- bis(benzoxazol-2-yl)thiophene; 2-styryl-naptho[l,2-d]oxazole; and 2-(stilben-4-yl)- 2H-naphtho[l ,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972 to Hamilton.
- compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one fabric to another during the cleaning process.
- dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N- oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, 4g
- manganese phthalocyanine peroxidases, and mixtures thereof. If used, these agents typically comprise from about 0.01% to about 10% by weight of the composition, preferably from about 0.01% to about 5%. and more preferably from about 0.05% to about 2%.
- the polyamine N-oxide polymers preferred for use herein contain units having the following structural formula: R-A x -P; wherein P is a polymerizable unit to which an N-O group can be attached or the N-O group can form part of the polymerizable unit or the N-O group can be attached to both units;
- x is 0 or 1; and
- R is aliphatic, ethoxylated aliphatics, aromatics, heterocyclic or alicyclic groups or any combination thereof to which the nitrogen of the N-O group can be attached or the N-O group is part of these groups.
- Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
- R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
- the N-O group can be represented by the following general structures:
- the amine oxide unit of the polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferred pKa ⁇ 6.
- Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
- suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide.
- the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10: 1 to 1 :1 ,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation.
- the polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1 ,000.000: more preferred 1,000 to 500.000; most preferred 5.000 to 100,000. This preferred class of materials can be referred to as "PVNO". W ⁇ 4 Q 9
- poly(4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1 :4.
- Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers are also preferred for use herein.
- the PVPVI has an average molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis, Vol 1 13.
- the PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 :1 to 0.2:1, more preferably from 0.8:1 to 0.3:1, most preferably from 0.6:1 to 0.4: 1. These copolymers can be either linear or branched.
- compositions also may employ a polyvinylpyrrolidone 5 (“PVP") having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 200,000, and more preferably from about 5,000 to about 50,000.
- PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A-256,696, inco ⁇ orated herein by reference.
- Compositions containing PVP can also contain polyethylene glycol (“PEG”) having 0 an average molecular weight from about 500 to about 100,000, preferably from about 1 ,000 to about 10,000.
- PEG polyethylene glycol
- the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50: 1 , and more preferably from about 3: 1 to about 10: 1.
- the detergent compositions herein may also optionally contain from about 5 0.005% to 5% by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, the compositions herein will preferably comprise from about 0.01% to 1% by weight of such optical brighteners.
- hydrophilic optical brighteners useful in the present invention are those having the structural formula:
- R ⁇ is selected from anilino. N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, mo ⁇ hilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
- the brightener is 4.4',-bis[(4-anilino-6-(N-2-bis- hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Co ⁇ oration. Tinopal- UN PA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
- R ⁇ is anilino
- R2 is N-2-hydroxyethyl-N-2- methylamino
- M is a cation such as sodium
- the brightener is 4,4'-bis[(4-anilino- 6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Co ⁇ oration.
- R] is anilino
- R2 is mo ⁇ hilino
- M is a cation such as sodium
- the brightener is 4,4'-bis[(4-anilino-6-mo ⁇ hilino-s-triazine-2- yl)amino]2,2'-stilbenedisulfonic acid, sodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Co ⁇ oration.
- the specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described.
- the combination of such selected polymeric materials (e.g., PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA- GX, Tinopal 5BM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics.
- the extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient".
- the exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor.
- Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
- other, conventional optical brightener types of compounds can optionally be used in the present compositions to provide conventional fabric "brightness" benefits, rather than a true dye transfer inhibiting effect. Such usage is conventional and well-known to detergent formulations.
- the detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents.
- chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
- Amino carboxylates useful as optional chelating agents include ethylenediaminetetracetates, N-hydroxyethylethylenediaminetriacetates, nitrilo- triacetates, ethylenediamine tetraproprionates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates, and ethanoldiglycines. alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
- Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at lease low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
- Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21 , 1974, to Connor et al.
- Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as l,2-dihydroxy-3,5-disulfobenzene.
- a preferred biodegradable chelator for use herein is ethylenediamine disuccinate ("EDDS"), especially the [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
- compositions herein may also contain water-soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder useful with, for example, insoluble builders such as zeolites, layered silicates and the like.
- MGDA water-soluble methyl glycine diacetic acid
- these chelating agents will generally comprise from about 0.1% to about 15% by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from about 0.1% to about 3.0% by weight of such compositions.
- Suds Suppressors - Compounds for reducing or suppressing the formation of suds can be inco ⁇ orated into the compositions of the present invention. Suds suppression can be of particular importance in the so-called "high concentration 5?
- suds suppressors A wide variety of materials may be used as suds suppressors, and suds suppressors are well known to those skilled in the art. See, for example, Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-447 (John Wiley & Sons, Inc., 1979).
- One category of suds suppressor of particular interest encompasses monocarboxylic fatty acid and soluble salts therein. See U.S. Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
- the monocarboxylic fatty acids and salts thereof used as suds suppressor typically have hydrocarbyl chains of 10 to about 24 carbon atoms, preferably 12 to 18 carbon atoms.
- Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
- the detergent compositions herein may also contain non-surfactant suds suppressors.
- non-surfactant suds suppressors include, for example: high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g., fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C]g-C4o ketones (e.g., stearone), etc.
- suds inhibitors include N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e.g., K, Na, and Li) phosphates and phosphate esters.
- the hydrocarbons such as paraffin and haloparaffin can be utilized in liquid form.
- the liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of about -40°C and about 50°C, and a minimum boiling point not less than about 1 10°C (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below about 100°C.
- the hydrocarbons constitute a preferred category of suds suppressor for detergent compositions. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al.
- the hydrocarbons thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms.
- the term "paraffin,” as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
- Non-surfactant suds suppressors comprises silicone suds suppressors.
- This category includes the use of polyorganosiloxane oils, such as polydimethylsiloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed or fused onto the silica.
- Silicone suds suppressors are well known in the art and are, for example, disclosed in U.S. Patent 4.265,779, issued May 5, 1981 to Gandolfo et al and European Patent Application No. 89307851.9, published February 7, 1990, by Starch, M. S.
- Other silicone suds suppressors are disclosed in U.S. Patent 3,455.839 which relates to compositions and processes for defoaming aqueous solutions by inco ⁇ orating therein small amounts of polydimethylsiloxane fluids.
- German Patent Application DOS 2,124,526 Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Patent
- An exemplary silicone based suds suppressor for use herein is a suds suppressing amount of a suds controlling agent consisting essentially of: (i) polydimethylsiloxane fluid having a viscosity of from about 20 cs. to about 1,500 cs. at 25 °C; (ii) from about 5 to about 50 parts per 100 parts by weight of (i) of siloxane resin composed of (CH3)3SiO ⁇ /2 units of Si ⁇ 2 units in a ratio of from (CH3)3 SiOj/2 units and to Si ⁇ 2 units of from about 0.6: 1 to about 1.2:1 ; and
- the solvent for a continuous phase is made up of certain polyethylene glycols or polyethylene- polypropylene glycol copolymers or mixtures thereof (preferred), or polypropylene glycol.
- the primary silicone suds suppressor is branched/crosslinked and preferably not linear.
- typical liquid laundry detergent compositions with controlled suds will optionally comprise from about 0.001 to about 1, preferably from about 0.01 to about 0.7, most preferably from about 0.05 to about 0.5, weight % of said silicone suds suppressor, which comprises (1 ) a nonaqueous emulsion of a primary antifoam agent which is a mixture of (a) a polyorganosiloxane, (b) a resinous siloxane or a silicone resin-producing silicone compound, (c) a finely divided filler material, and (d) a catalyst to promote the reaction of mixture components (a), (b) and (c), to form silanolates; (2) at least one nonionic silicone surfactant; and (3) polyethylene glycol or a copolymer of polyethylene-polypropylene glycol having a solubility in water at room temperature of more than about 2 weight %; and without polypropylene glycol.
- a primary antifoam agent which is a mixture of (a) a polyorgano
- the silicone suds suppressor herein preferably comprises polyethylene glycol and a copolymer of polyethylene glycol/polypropylene glycol, all having an average molecular weight of less than about 1,000, preferably between about 100 and 800.
- the polyethylene glycol and polyethylene/polypropylene copolymers herein have a solubility in water at room temperature of more than about 2 weight %, preferably more than about 5 weight %.
- the preferred solvent herein is polyethylene glycol having an average molecular weight of less than about 1,000, more preferably between about 100 and 800, most preferably between 200 and 400. and a copolymer of polyethylene glycol/polypropylene glycol, preferably PPG 200/PEG 300. Preferred is a weight ratio of between about 1 : 1 and 1 :10, most preferably between 1 :3 and 1 :6, of polyethylene glycolxopolymer of polyethylene-polypropylene glycol.
- the preferred silicone suds suppressors used herein do not contain polypropylene glycol, particularly of 4,000 molecular weight. They also preferably -do not contain block copolymers of ethylene oxide and propylene oxide, like PLURONIC LI 01.
- suds suppressors useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798,679, 4,075,1 18 and EP 150,872.
- the secondary alcohols include the C ⁇ -Ci ⁇ alkyl alcohols having a C ] -C i 6 chain.
- a preferred alcohol is 2-butyl octanol, which is available from Condea under the trademark ISOFOL 12.
- Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem.
- Mixed suds suppressors typically comprise mixtures of alcohol + silicone at a weight ratio of 1 :5 to 5: 1.
- suds should not form to the extent that they overflow the washing machine.
- Suds suppressors when utilized, are preferably present in a "suds suppressing amount.
- Suds suppressing amount is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry detergent for use in automatic laundry washing machines.
- the compositions herein will generally comprise from 0% to about 10% of suds suppressor.
- monocarboxylic fatty acids, and salts therein will be present typically in amounts up to about 5%, by weight, of the detergent composition.
- fatty monocarboxylate suds suppressor is utilized.
- Silicone suds suppressors are typically utilized in amounts up to about 2.0%, by weight, of the detergent composition, although higher amounts may be used. This upper limit is practical in nature, due primarily to concern with keeping costs minimized and effectiveness of lower amounts for effectively controlling sudsing.
- from about 0.01% to about 1% of silicone suds suppressor is used, more preferably from about 0.25% to about 0.5%.
- these weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any adjunct materials that may be utilized.
- Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from about 0.1% to about 2%, by weight, of the composition. Hydrocarbon suds suppressors are typically utilized in amounts ranging from about 0.01% to about 5.0%, although higher levels can be used. The alcohol suds suppressors are typically used at 0.2%-3% by weight of the finished compositions.
- Alkoxylated Polycarboxylates Alkoxylated Polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described in WO 91/08281 and PCT 90/01815 at p. 4 et seq., inco ⁇ orated herein by reference. Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units. The side- chains are of the formula -(CH2CH2O) m (CH2) n CH3 wherein m is 2-3 and n is 6- 12. The side-chains are ester-linked to the polyacrylate "backbone” to provide a "comb" polymer type structure. The molecular weight can vary, but is typically in the range of about 2000 to about 50,000. Such alkoxylated polycarboxylates can comprise from about 0.05% to about 10%, by weight, of the compositions herein.
- Fabric Softeners Various through-the-wash fabric softeners, especially the impalpable smectite clays of U.S. Patent 4,062,647, Storm and Nirschl, issued December 13, 1977, as well as other softener clays known in the art, can optionally be used typically at levels of from about 0.5% to about 10% by weight in the present compositions to provide fabric softener benefits concurrently with fabric cleaning.
- Clay softeners can be used in combination with amine and cationic softeners as disclosed, for example, in U.S. Patent 4,375,416, Crisp et al, March 1 , 1983 and U.S. Patent 4,291,071, Harris et al, issued September 22, 1981.
- Perfumes - Perfumes and perfumery ingredients useful in the present compositions and processes comprise a wide variety of natural and synthetic chemical ingredients, including, but not limited to, aldehydes, ketones, esters, and the like. Also included are various natural extracts and essences which can comprise complex mixtures of ingredients, such as orange oil, lemon oil, rose extract, lavender, musk, patchouli, balsamic essence, sandalwood oil, pine oil, cedar, and the like. Finished perfumes can comprise extremely complex mixtures of such ingredients. Finished perfumes typically comprise from about 0.01% to about 2%, by weight, of the detergent compositions herein, and individual perfumery ingredients can comprise from about 0.0001% to about 90% of a finished perfume composition.
- Example VIII Several perfume formulations are set forth in Example VIII, hereinafter.
- Non-limiting examples of perfume ingredients useful herein include: 7-acetyl- l,2,3,4,5,6,7,8-octahydro-l,l,6,7-tetramethyl naphthalene; ionone methyl; ionone gamma methyl; methyl cedrylone; methyl dihydrojasmonate; methyl 1,6,10- trimethyl-2,5,9-cyclododecatrien-l-yl ketone; 7-acetyl- 1,1, 3, 4,4,6-hexamethyl tetralin; 4-acetyl-6-tert-butyl- 1,1 -dimethyl indane; para-hydroxy-phenyl-butanone; benzophenone; methyl beta-naphthyl ketone; 6-acetyl-l,l,2,3,3,5-hexamethyl indane; 5-acetyl-3-isopropyl-l,l,2,6-tetramethyl indane; 1
- perfume materials are those that provide the largest odor improvements in finished product compositions containing cellulases.
- These perfumes include but are not limited to: hexyl cinnamic aldehyde; 2-methyl-3- (para-tert-butylphenyl)-propionaldehyde; 7-acetyl- 1,2,3 ,4,5,6,7,8-octahydro- 1,1 , 6,7- tetramethyl naphthalene; benzyl salicylate; 7-acetyl- 1,1 , 3, 4,4,6-hexamethyl tetralin; para-tert-butyl cyclohexyl acetate; methyl dihydro jasmonate; beta-napthol methyl ether; methyl beta-naphthyl ketone; 2-methyl-2-(para-iso-propylphenyl)- propionaldehyde; 1, 3,4,6,7, 8-hexahydro-4,6,6, 7,8,
- perfume materials include essential oils, resinoids, and resins from a variety of sources including, but not limited to: Peru balsam, Olibanum resinoid, styrax, labdanum resin, nutmeg, cassia oil, benzoin resin, coriander and lavandin.
- Still other perfume chemicals include phenyl ethyl alcohol, te ⁇ ineol, linalool, linalyl acetate, geraniol, nerol, 2-(l ,l-dimethylethyl)-cyclohexanol acetate, benzyl acetate, and eugenol.
- Carriers such as diethylphthalate can be used in the finished perfume compositions.
- compositions herein A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, solid fillers for bar compositions, etc.
- suds boosters such as the C ⁇ Q-C ⁇ alkanolamides can be inco ⁇ orated into the compositions, typically at 1%-10% levels.
- the C10-C14 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
- Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
- water-soluble magnesium and/or calcium salts such as MgCb, MgSO4, CaCl2, CaSO4, and the like, can be added at levels of, typically, 0.1%-2%, to provide additional suds and to enhance grease removal performance.
- detersive ingredients employed in the present compositions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating.
- the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate.
- the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
- a porous hydrophobic silica (trademark SIPERNAT D10, DeGussa) is admixed with a proteolytic enzyme solution containing 3%-5% of C 13.15 ethoxylated alcohol (EO 7) nonionic surfactant.
- EO 7 ethoxylated alcohol
- the enzyme/surfactant solution is 2.5 X the weight of silica.
- the resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used).
- silicone oil various silicone oil viscosities in the range of 500-12,500 can be used.
- the resulting silicone oil dispersion is emulsified or otherwise added to the final detergent matrix.
- ingredients such as the aforementioned enzymes, bleaches, bleach activators, bleach catalysts, photoactivators, dyes, fluorescers, fabric conditioners and hydrolyzable surfactants can be "protected” for use in detergents, including liquid laundry detergent compositions.
- Liquid detergent compositions can contain water and other solvents as carriers.
- Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable.
- Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., 1,3-propanediol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used.
- the compositions may contain from 5% to 90%, typically 10% to 50% of such carriers.
- the detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and about 1 1, preferably between about 7.5 and 10.5.
- Liquid dishwashing product formulations preferably have a pH between about 6.8 and about 9.0.
- Laundry products are typically at pH 9-1 1. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
- PEG4000 Polyethylene glycol; average molecular weight 4000
- SRA-1 Soil release agent methyl cellulose; molecular weight about
- the formulator wishes to prepare an admixable particle containing the alkoxylated cationics for use in, for example, a high density granular detergent, it is preferred that the particle composition not be highly alkaline. Processes for preparing high density (above 650 g/I) granules are described in U.S. Patent 5,366,652. Such particles may be formulated to have an effective in-use pH of 9, or below, to avoid the odor of impurity amines.
- Examples I and II illustrate granular detergent compositions of the invention.
- the AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any surfactants AQA-2 through AQA-22 or other AQA surfactants herein.
- CocoMeEO2* 0.47 3.13 Builder-Alkalinity SKS-6 3.29 21.94 Copolymer 7.10 47.36 Zeolite 8.40 56.03
- AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any surfactants AQA-2 through AQA-22 or other AQA surfactants herein.
- the individual surfactants are weighed and mixed in the following sequence
- Silicate 148.32 gms per 900 ml of Distilled water; 50 mis of this solution are used per wash.
- Copolymer 92.88 gms per 900 ml of Distilled water; 50 mis of this solution are used per wash.
- Granules Each granule component is weighed separately in the same beaker.
- Hardness No extra hardness are added on top of tap water hardness.
- Load 2.4 kg of load of following composition are typically used, Cotton dress shirt ( 1 )
- DKPE is double-knit polyester.
- DMO is dirty motor oil.
- Test Results I show the performance of compositions according to the present invention using CoCoMeEO2 plus a mixture of LAS/AS and Test Results II show the performance using CoCoMeEOlO* plus LAS/AS, as compared with CoCoMeEO2/LAS.
- performance is measured against various soil types, i.e., body soil, builder sensitive soil, bleach sensitive soil, surfactant sensitive soil and socks.
- EO10 indicates two poly-EO chains with an overall average of 10 EO units in the molecule, typically "(but not restricted to) about 5 per chain.
- compositions of Examples I and II are modified by removing the bleach system (NOBS/PB j ).
- the AQA level is adjusted to about 1.5% of the composition (range 0.5-5%). Quite satisfactory cleaning performance on a variety of soils and stains is secured even in the absence of bleach.
- compositions of Examples I, II and III can also be provided in the form of tablets by means of standard tabletting and compaction apparatus.
- EXAMPLE IV
- a detergent bar is prepared with the surfactant mixture is prepared using conventional extrusion techniques, and comprises the following: Ingredient % (wt.) Range (% wt.)
- Sodium diethylenetriamine penta (phosphonate) ⁇ Sokolan CP-5 is maleic-acrylic copolymer ⁇ Balance comprises water (about 2% to 8%, including water of hydration), sodium sulfate, calcium carbonate, and other minor ingredients.
- the AQA-1 (CocoMeEO2) surfactant of the Example may be replaced by an equivalent amount of any surfactants AQA-2 through AQA-22 or other AQA surfactants herein.
- EXAMPLE V The following illustrates mixtures of AQA surfactants which can be substituted for the AQA surfactants listed in any of the foregoing Examples. As disclosed hereinabove, such mixtures can be used to provide a spectrum of performance benefits and/or to provide cleaning compositions which are useful over a wide variety of usage conditions. Preferably, the AQA surfactants in such mixtures differ by at least about 1.5, preferably 2.5-20, total EO units. Ratio ranges(wt.) for such mixtures are typically in the 10: 1 to 1 : 10 range. Non-limiting examples of such mixtures are as follows.
- compositions herein can comprise detersive non-AQA surfactants and optional builders at usage levels and ranges as disclosed hereinabove, said compositions also comprising an effective amount of one or more of the following combinations of ingredients:
- Percarbonate bleach 1 OO- 1 : 1, preferably 1 :20-1 :5 Branched alkyl sulfate 100-1 :2, preferably 1 : 10-1 :3
- MAP Zeolite P 1 :300- 1 :1, preferably 1 :100-1 :5
- Polymeric Dispersant* *** 1 :10-10:1, preferably 1 :5-1:1
- laundry detergent compositions prepared using one or more foregoing combinations of ingredients can optionally be built with any non-phosphate or phosphate builders, or mixtures thereof, typically at levels of from 5% to about 70%, by weight of finished composition.
- any non-phosphate or phosphate builders, or mixtures thereof typically at levels of from 5% to about 70%, by weight of finished composition.
- the "tallow” chain length AS is particularly useful under hot water conditions, up to the boil.
- "Coconut” AS is preferred for cooler wash temperatures.
- the mixtures of alkyl sulfate/anionic surfactants noted above are modified by inco ⁇ orating a nonionic non-AQA surfactant therein at a weight ratio of anionic (total) to nonionic in the range of about 25: 1 to about 1 :5.
- the nonionic surfactant can comprise any of the conventional classes of ethoxylated alcohols or alkyl phenols, alkylpolyglycosides or polyhydroxy fatty acid amides (less preferred), or mixtures thereof, such as those disclosed hereinabove.
- Highly preferred combinations of the foregoing non-AQA surfactants will comprise from about 3% to about 60%, by weight, of the total finished laundry detergent composition.
- the finished compositions will preferably comprise from about 0.25% to about 3.5%, by weight, of the AQA surfactant.
- EXAMPLE VIII This Example provides perfume formulations (A-C) for inco ⁇ oration into any of the foregoing Examples of AQA-containing detergent compositions, but is not intended to be limiting thereof.
- the various ingredients and levels are set forth below.
- Total 100.0 100.0 100.0 100.0 The foregoing perfume compositions are admixed or sprayed-onto (typically at levels up to about 2% by weight of the total detergent composition) any of the AQA surfactant-containing cleaning compositions disclosed herein. Improved deposition and/or retention of the perfume or individual components thereof on the surface being cleaned is thus secured.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU30683/97A AU3068397A (en) | 1996-05-17 | 1997-05-16 | Detergent composition |
EP97925591A EP0918834A2 (en) | 1996-05-17 | 1997-05-16 | Detergent composition |
BR9709320A BR9709320A (en) | 1996-05-17 | 1997-05-16 | Detergent composition |
JP9542559A JPH11511793A (en) | 1996-05-17 | 1997-05-16 | Detergent composition |
CA002254955A CA2254955A1 (en) | 1996-05-17 | 1997-05-16 | Detergent composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1788496P | 1996-05-17 | 1996-05-17 | |
US60/017,884 | 1996-05-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1997044420A2 true WO1997044420A2 (en) | 1997-11-27 |
WO1997044420A3 WO1997044420A3 (en) | 1997-12-24 |
Family
ID=21785080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/008279 WO1997044420A2 (en) | 1996-05-17 | 1997-05-16 | Detergent composition |
Country Status (12)
Country | Link |
---|---|
EP (1) | EP0918834A2 (en) |
JP (1) | JPH11511793A (en) |
KR (1) | KR20000011102A (en) |
CN (1) | CN1225672A (en) |
AR (1) | AR007771A1 (en) |
AU (1) | AU3068397A (en) |
BR (1) | BR9709320A (en) |
CA (1) | CA2254955A1 (en) |
HU (1) | HUP9902979A2 (en) |
MX (1) | MX9809625A (en) |
WO (1) | WO1997044420A2 (en) |
ZA (1) | ZA974222B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000077137A1 (en) * | 1999-06-14 | 2000-12-21 | Colgate-Palmolive Company | Liquid laundry detergent composition containing ethoxylated quaternary surfactant |
CN114892178A (en) * | 2022-05-12 | 2022-08-12 | 武汉奥邦表面技术有限公司 | Silicon-free phosphorus-free environment-friendly water-based degreasing agent and application thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050077583A (en) | 2004-01-28 | 2005-08-03 | 삼성전자주식회사 | Ice manufacture apparatus |
DE602005006796D1 (en) * | 2005-08-05 | 2008-06-26 | Procter & Gamble | Particulate fabric treatment composition containing silicones, layered silicates and anionic surfactants |
US9969958B2 (en) * | 2013-05-02 | 2018-05-15 | Ecolab Usa Inc. | Concentrated detergent composition for the improved removal of starch in warewashing applications |
JP2015196701A (en) * | 2014-03-31 | 2015-11-09 | 花王株式会社 | solid detergent |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3668136A (en) * | 1969-07-07 | 1972-06-06 | Witco Chemical Corp | Compatible anionic-catonic surfactant compositions |
EP0087914A1 (en) * | 1982-03-01 | 1983-09-07 | The Procter & Gamble Company | Detergent composition |
EP0095205A1 (en) * | 1982-05-24 | 1983-11-30 | THE PROCTER & GAMBLE COMPANY | Fatty acid containing detergent compositions |
EP0266931A1 (en) * | 1986-10-22 | 1988-05-11 | The Procter & Gamble Company | Granular detergents which contain high levels of anionic surfactant |
US4751009A (en) * | 1987-08-05 | 1988-06-14 | Akzo America Inc. | Fabric softeners comprising stable single phase clear solutions of anionic and cationic surfactants |
EP0495554A1 (en) * | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Detergent compositions with high activity cellulase and quaternary ammonium compounds |
US5290475A (en) * | 1990-05-08 | 1994-03-01 | Colgate Palmolive | Liquid softening and anti-static nonionic detergent composition with soil release promoting PET-POET copolymer |
US5441541A (en) * | 1989-07-19 | 1995-08-15 | Colgate Polmolive Co. | Anionic/cationic surfactant mixtures |
WO1995029218A1 (en) * | 1994-04-25 | 1995-11-02 | The Procter & Gamble Company | Stable, aqueous laundry detergent composition having improved softening properties |
-
1997
- 1997-05-15 ZA ZA974222A patent/ZA974222B/en unknown
- 1997-05-16 BR BR9709320A patent/BR9709320A/en not_active Application Discontinuation
- 1997-05-16 CN CN97196474A patent/CN1225672A/en active Pending
- 1997-05-16 CA CA002254955A patent/CA2254955A1/en not_active Abandoned
- 1997-05-16 JP JP9542559A patent/JPH11511793A/en active Pending
- 1997-05-16 AR ARP970102070A patent/AR007771A1/en unknown
- 1997-05-16 KR KR1019980709261A patent/KR20000011102A/en not_active Application Discontinuation
- 1997-05-16 WO PCT/US1997/008279 patent/WO1997044420A2/en not_active Application Discontinuation
- 1997-05-16 HU HUP9902979 patent/HUP9902979A2/en unknown
- 1997-05-16 AU AU30683/97A patent/AU3068397A/en not_active Abandoned
- 1997-05-16 EP EP97925591A patent/EP0918834A2/en not_active Withdrawn
-
1998
- 1998-11-17 MX MX9809625A patent/MX9809625A/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3668136A (en) * | 1969-07-07 | 1972-06-06 | Witco Chemical Corp | Compatible anionic-catonic surfactant compositions |
EP0087914A1 (en) * | 1982-03-01 | 1983-09-07 | The Procter & Gamble Company | Detergent composition |
EP0095205A1 (en) * | 1982-05-24 | 1983-11-30 | THE PROCTER & GAMBLE COMPANY | Fatty acid containing detergent compositions |
EP0266931A1 (en) * | 1986-10-22 | 1988-05-11 | The Procter & Gamble Company | Granular detergents which contain high levels of anionic surfactant |
US4751009A (en) * | 1987-08-05 | 1988-06-14 | Akzo America Inc. | Fabric softeners comprising stable single phase clear solutions of anionic and cationic surfactants |
US5441541A (en) * | 1989-07-19 | 1995-08-15 | Colgate Polmolive Co. | Anionic/cationic surfactant mixtures |
US5290475A (en) * | 1990-05-08 | 1994-03-01 | Colgate Palmolive | Liquid softening and anti-static nonionic detergent composition with soil release promoting PET-POET copolymer |
EP0495554A1 (en) * | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Detergent compositions with high activity cellulase and quaternary ammonium compounds |
WO1995029218A1 (en) * | 1994-04-25 | 1995-11-02 | The Procter & Gamble Company | Stable, aqueous laundry detergent composition having improved softening properties |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000077137A1 (en) * | 1999-06-14 | 2000-12-21 | Colgate-Palmolive Company | Liquid laundry detergent composition containing ethoxylated quaternary surfactant |
CN114892178A (en) * | 2022-05-12 | 2022-08-12 | 武汉奥邦表面技术有限公司 | Silicon-free phosphorus-free environment-friendly water-based degreasing agent and application thereof |
CN114892178B (en) * | 2022-05-12 | 2023-11-03 | 武汉奥邦表面技术有限公司 | Silicon-free phosphorus-free environment-friendly water-based degreasing agent and application thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20000011102A (en) | 2000-02-25 |
ZA974222B (en) | 1998-12-28 |
AU3068397A (en) | 1997-12-09 |
HUP9902979A2 (en) | 2000-01-28 |
WO1997044420A3 (en) | 1997-12-24 |
EP0918834A2 (en) | 1999-06-02 |
BR9709320A (en) | 1999-08-10 |
CN1225672A (en) | 1999-08-11 |
CA2254955A1 (en) | 1997-11-27 |
JPH11511793A (en) | 1999-10-12 |
AR007771A1 (en) | 1999-11-24 |
MX9809625A (en) | 1999-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6136769A (en) | Alkoxylated cationic detergency ingredients | |
US5958858A (en) | Low anionic surfactant detergent compositions | |
WO1997044419A2 (en) | Detergent composition | |
EP0929628A2 (en) | Alkoxylated, quaternized diamine detergent ingredients | |
WO1998005749A1 (en) | Detergent compositions containing dianionic esters | |
EP0918834A2 (en) | Detergent composition | |
EP0951528A2 (en) | Detergent compositions containing isopeptidase | |
GB2314339A (en) | Cleaning compositions containing amido surfactants derived from amido furandiones | |
WO1998051771A1 (en) | Detergent compositions | |
EP0912694A1 (en) | Bleaching detergent compositions containing selected dianionic or alkoxylated dianionic surfactants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 97196474.2 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2254955 Country of ref document: CA Ref document number: 2254955 Country of ref document: CA Kind code of ref document: A Ref document number: 1997 542559 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1998/009625 Country of ref document: MX Ref document number: 1019980709261 Country of ref document: KR Ref document number: 1199800953 Country of ref document: VN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997925591 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1997925591 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997925591 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1019980709261 Country of ref document: KR |
|
WWR | Wipo information: refused in national office |
Ref document number: 1019980709261 Country of ref document: KR |