+

WO1997043411A1 - T-cell receptor alpha-chain constant-region peptides, processes for producing the peptides, and use thereof - Google Patents

T-cell receptor alpha-chain constant-region peptides, processes for producing the peptides, and use thereof Download PDF

Info

Publication number
WO1997043411A1
WO1997043411A1 PCT/JP1997/001565 JP9701565W WO9743411A1 WO 1997043411 A1 WO1997043411 A1 WO 1997043411A1 JP 9701565 W JP9701565 W JP 9701565W WO 9743411 A1 WO9743411 A1 WO 9743411A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
dna
tcr
seq
amino acid
Prior art date
Application number
PCT/JP1997/001565
Other languages
French (fr)
Japanese (ja)
Inventor
Noriko YUYAMA
Nakayuki Honma
Toshifumi Mikayama
Original Assignee
Kirin Beer Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Beer Kabushiki Kaisha filed Critical Kirin Beer Kabushiki Kaisha
Priority to AU26519/97A priority Critical patent/AU2651997A/en
Publication of WO1997043411A1 publication Critical patent/WO1997043411A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • T cell receptor ⁇ -chain constant region peptide T cell receptor ⁇ -chain constant region peptide, method for producing the peptide and use thereof
  • the present invention relates to a constant region polypeptide of a ⁇ -cell receptor ⁇ -chain having an antigen-specific immunosuppressive action.
  • TCR The cell receptor chain
  • TCR T cell receptor chain
  • TCR T cell receptor chain
  • C the constant region of the TCR chain
  • which is uniform in all T cells having a TCR
  • C / 3 the constant region of the TCR / S
  • immunoglobulins which have a structure that specifically reacts with antigens like the TCR, consist of a variable region and a constant region, similar to the TCR, and the antibody molecule on the surface of the B cell is an organism similar to the TCR. It has a biological function. However, for antibodies, there are more soluble antibodies that are secreted by B cells. In this case, in addition to the variable region that binds to the antigen, the constant region also has important biological functions. That is, many cells have receptors for this constant region, and antibodies bind to these cells via the constant region to induce various antibody-dependent immune responses.
  • TCRa is degraded in the endoplasmic reticulum unless it forms a complex with the CD3 complex protein (Bonifacino et al., Science, 247: 79-82, 1990), or as a TCR-CD3 complex on the cell surface. It is shown to be degraded by lysosomes unless it is transported to other countries (Minami et al., Proc. Natl. Acad. Sci. USA, 84: 2688-2692, 1987).
  • TCRa is highly likely to be secreted by sublesser T cells, and it is thought that factors including this TCR may be involved in antigen-specific immunosuppressive reactions.
  • TCR variable region The involvement of the TCR variable region in regulating immune responses has also been shown for TCR0.
  • immunization with the TCR / 3 variable region peptide specific for the antigen myelin basic protein suppresses the development of this disease.
  • TCR / 3 variable region peptide specific for the antigen myelin basic protein suppresses the development of this disease.
  • Vandenbark et al. Nature, 341: 541-544, 1989, and Howell et al., Science, 246: 668-670, 1989
  • Dosquenne- Clark et al. Proc. Natl. Acad. Sci. USA, 88: 7219-7223, 1991.
  • TCRa Japanese Patent Laid-Open No. 6-2988662
  • TCRa containing this special variable region suppresses the onset of diabetes mellitus in autoimmune NOD (Nonobese diabetogenic) mice in addition to the response to KLH.
  • autoimmune NOD Nonobese diabetogenic mice
  • the TCRa of 14J ⁇ 28 1 is completely different from the TCR on normal T cells, and is thought to be involved in the regulation of autoimmune diseases, etc. ⁇ Expressed in cells
  • the TCR was found to be In other words, the function of this special TCR essentially depends on the structure of the variable region.
  • TCRa for immunosuppressive applications are expected to have antigen-specific immunity involving the variable region of TCRa, but none have been clinically put to practical use. Due to its specific action, when it is used for immunosuppression, it is necessary to prepare and use a specific TCRa for each antigen involved in each immune response. It is considered that there is a therapeutic constraint that this should not be done. Further, as shown in the present specification, there is also a problem that administration of TCRa containing a variable region easily induces an antibody against the administered TCRa.
  • An object of the present invention is to solve the above problems. Disclosure of the invention
  • the present invention is based on the finding, for the first time, that the constant region, but not the variable region of TCR ⁇ , exhibits an antigen-nonspecific immunosuppressive effect. Completely overturns the idea.
  • the present invention provides a polypeptide that substantially contains a part or all of the constant region of a T cell receptor chain, has an immunosuppressive effect, but does not substantially induce the production of an antibody against itself upon administration. Things.
  • the present invention also includes the amino acid sequence of SEQ ID NO: 1 in which one or more amino acid residues in the amino acid sequence may be deleted, inserted, or substituted, and has an immunosuppressive effect.
  • the present invention includes an amino acid sequence of SEQ ID NO: 2 in which one or more amino acid residues of the amino acid sequence may be deleted, inserted, or substituted, or has an immunosuppressive effect.
  • the present invention provides a DNA encoding the above-mentioned polypeptide.
  • the present invention also provides the following formula:
  • R 1 is a carrier polypeptide
  • X is a protease recognition site
  • R 2 is the polypeptide according to any one of claims 1 to 3.
  • a DNA having a base sequence encoding the fusion polypeptide represented by R 1 may be calmodulin.
  • X is the site recognized by thrombin
  • the site recognized by thrombin may be represented by the amino acid sequence of SEQ ID NO: 3 below.
  • the present invention also provides an expression vector carrying the above-mentioned DNA and a host cell transformed with the expression vector.
  • the host cell may be a prokaryotic cell, and the prokaryotic cell may be E. coli.
  • the present invention also relates to the above-mentioned method for producing a polypeptide, wherein the host cell transformed with an expression vector carrying a DNA having a nucleotide sequence encoding the polypeptide is cultured,
  • the above-mentioned production method is also provided, wherein the peptide is isolated.
  • the host cell may be a prokaryotic cell, and the prokaryotic cell may be E. coli.
  • the present invention provides a method for producing the above-mentioned polypeptide, comprising the following formula:
  • R 1 is the carrier polypeptide
  • X is the protease recognition site
  • R 2 is the polypeptide described above.
  • a host cell transformed with an expression vector carrying DNA having a nucleotide sequence encoding the fusion polypeptide represented by is cultured, the fusion polypeptide is expressed, and the fusion polypeptide is subjected to proteolysis.
  • the above-described production method is also provided, wherein the method is cleaved with an enzyme to isolate a polypeptide represented by R2.
  • R 1 may be calmodulin.
  • X is a site recognized by thrombin, and thrombin may be used as a protease.
  • the site recognized by thrombin may be represented by the amino acid sequence of SEQ ID NO: 3 below.
  • the present invention provides a pharmaceutical composition comprising the above polypeptide as an active ingredient.
  • the pharmaceutical composition of the present invention comprises an immunosuppressant, a delayed-type hypersensitivity reaction inhibitor, an antibody production inhibitor, a prophylactic and / or therapeutic agent for an allergic disease, a prophylactic and / or therapeutic agent for an autoimmune disease, or an agent for organ transplantation. And the like.
  • FIG. 1 shows the DNA sequence of 3B3-derived TCRa c DNA.
  • FIG. 2 shows a restriction map of pCF1—3B3TCRa VJ.
  • FIG. 3 shows a restriction map of pCF1 — 3B3 TCR Hi VJC25.
  • FIG. 4 shows a restriction map of pCF1—TCRa—Ca.
  • FIG. 5 shows the inhibitory effect of recombinant TCRa-C on allergic reactions induced by the 0VA antigen sensitization.
  • FIG. 6 shows the DNA sequence of the TCR or cDNA derived from B4-9.5.2.
  • FIG. 7 shows a restriction map of pCF1—TCRa—humanC.
  • FIG. 8 shows the inhibitory effect of recombinant TCRa-C ⁇ on transplant rejection.
  • the polypeptide of the present invention may include at least a region essential for immunosuppressive action or an analog thereof.
  • a region essential for immunosuppressive action or an analog thereof For example, Yanagi et al., Proc. Natl. Acad. Sci. USA, 82: 3430-3434, 1985 and Morris et al., Immunogenetics, 27: 174-179, 1988, all the constant regions of the T-cell receptor- ⁇ chain of various organisms, including humans and mice, which are essential for at least immunosuppressive action.
  • one or more amino acid residues of these amino acid sequences, including a region thereof have an immunosuppressive action, deletion, insertion and / or substitution can be mentioned.
  • polypeptides of the present invention include polypeptides comprising the amino acid sequence of SEQ ID NO: 1 or 2, wherein one or more amino acid residues of the amino acid sequence may be deleted, inserted and / or substituted.
  • the polypeptide of the present invention can be produced by a gene recombination technique as described below, a chemical synthesis method based on a known amino acid sequence, or the like.
  • the immunosuppressive action of the polypeptide of the present invention is an antigen-nonspecific action. It also suppresses not only the humoral immune response of antibody production but also the cellular immune response. Another preferred property of the polypeptides of the present invention is that they do not substantially elicit the production of antibodies to themselves as seen with administration of TCRa containing the variable region.
  • substantially does not induce antibody production means that an amount of the antibody detectable by the western blot is detected by at least 14 days after the administration, as described in Examples 9 and 14 described below. It is not found in the blood.
  • the antigen-nonspecific immunosuppressive activity of the polypeptide can be easily determined by the presence or absence of an immunosuppressive effect when administered to animals in vivo as described in the Examples of the present application.
  • polypeptide of the present invention may have a sugar chain.
  • the glycosylated polypeptide of the present invention can be produced as a recombinant product by secretory expression using a host cell capable of producing a glycoprotein such as a mammalian cell or a yeast cell, as described below. .
  • the present invention also provides a polypeptide which substantially comprises part or all of the constant region of a T cell receptor chain, has an immunosuppressive effect, but does not substantially induce the production of an antibody against itself upon administration.
  • the DNA of the present invention can be used for producing the above-described polypeptide of the present invention by gene recombination technology.
  • the term "encode” means that the amino acid sequence information of the polypeptide of the present invention is encoded on the base sequence of the DNA, and is directly expressed in various host vector systems or in the form of a fusion protein. This means that the polypeptide of the present invention can be produced by appropriately adding a base sequence encoding another amino acid sequence suitable for intracellular or secretory production.
  • a nucleotide sequence encoding another known secretory protein signal peptide depending on the host is used. This can be done by adding a peptide upstream of the nucleotide sequence to be coded.
  • expression in a host cell can be carried out by adding a translation initiation codon upstream of a nucleotide sequence encoding the polypeptide of the present invention. Any of these techniques is a technique well known to those skilled in the gene recombination technical field, and can be appropriately implemented. Further, specific embodiments of the DNA of the present invention in expressing a fusion protein include:
  • R 1 is a carrier polypeptide
  • X is a protease recognition site
  • R 2 contains part or all of the constant region of the T cell receptor chain and has an immunosuppressive effect. Is a polybeptide that does not substantially elicit the production of antibodies against itself.
  • R1 is a calmodulinka
  • X is a thrombin recognition site sequence (particularly preferably Lys-Va1-Pro-Arg-G). (sequence of ly) (see Ishii et al., J. Immunol. Methods, 186: 27-36, 1995).
  • other well-known techniques for recombinant production by a fusion protein method see, for example, JP-A-54-145289) can be used.
  • the DNA of the present invention is prepared by cloning from the cDNA library or synthesizing the DNA, or by subjecting the obtained DNA to site-directed mutagenesis or cassette mutagenesis. This can be achieved by modification using a genetic mutation technique.
  • the TCR ⁇ gene and its structure are already known for various organisms including humans and mice (for example, Yanagi et al., Pro Natl. Acad. Sci. USA, 82: 3430-3434). , 1985 and Morris et al., Immunogenetics, 27: 174-1 79, 1988), based on these known base sequence or amino acid sequence information, the PCR method and the DNA The DNA encoding the TCR constant region can be appropriately obtained using synthetic techniques or the like.
  • the cDNA library is prepared from a known mouse ⁇ cell line by a conventional method.
  • the TCRa cDNA can be obtained by the PCR method using a primer prepared based on the known nucleotide sequence of the C region of mouse TCRa. Perform PCR again using primers that amplify the DNA fragment corresponding to the C region (132 to 241 of the amino acid sequence in Fig. 1) to obtain the desired DNA fragment. be able to.
  • the PCR method can be performed using the latter primer directly in the cDNA library to obtain a desired DNA fragment.
  • cDNA was also prepared from a known human T cell line, and a primer prepared based on the known nucleotide sequence of the Ca region of the human TCR was used for the mouse mouse.
  • the desired DNA fragment can be obtained in the same manner as in the above.
  • the DNA is obtained by chemical synthesis, for example, the method of Alton et al. Based on the known amino acid sequence of C ⁇ , if necessary, considering the use of preferential codons, the nucleotide sequence is designed and DN ⁇ Fragments can be obtained.
  • a polypeptide having an amino acid sequence in which one or more amino acid residues have been deleted, inserted, Z or substituted from a known constant region amino acid sequence also includes a DNA encoding the above-mentioned TCR constant region.
  • site-directed mutagenesis techniques such as oligonucleotide site-directed mutagenesis and cassette mutation (for example, DF Mark et al., Pro Natl. Acad. Sci. USA, Vol. 81, p5662). -5666, 1984, S. Inouye et al., Pro Natl. Acad. Sci. USA, Vol.
  • an expression vector incorporating the above-described DNA of the present invention a host cell transformed with the vector, and culturing the host cell to isolate and purify the polypeptide of the present invention.
  • a manufacturing method is provided.
  • prokaryotic eg, bacteria, preferably E. coli
  • eukaryotic eg, yeast, insect, or mammalian cells
  • mammalian cells include COS cells, Chinese hamster ovary (Chines e Hamster Ovary) cells, X63.6.5.3. Cells, C-127 cells, BHK (Baby Hamster Kidney) cells, and human-derived cells (eg, , HeLa cells) and the like.
  • yeast include baker's yeast (Saccharomyces cerevisiae) and methanol-assimilating yeast (Picia pastoris).
  • insect cells include silkworm cultured cells (eg, Sf21 cells).
  • Vectors used to transform these host cells include pKC30 (Shimatake H. and M. Rosenberg, Nature ⁇ 292, 128-132, 1981), pTrc99A (Amann B. et al., Gene 6, 69, 301-315, 1988).
  • pKC30 Shiatake H. and M. Rosenberg, Nature ⁇ 292, 128-132, 1981
  • pTrc99A Amann B. et al., Gene 6, 69, 301-315, 1988.
  • PSV2-neo Southern and Berg; J. Mol. Appl. Genet., 1, 327-341, 1982
  • pCAGGS Newa et al .; Gene, 108, 193-200, 1991
  • Is PCD SR 296 Takebe et al .: Mol. Cell. Biol., 8, 466-472, 1988
  • yeast pG-1 (Scena M.
  • transfer vector pAc373 for recombinant virus production (Luckow et al., Bio / Technology, 6, 47-55, 1988) and the like are listed.
  • vectors contain an origin of replication, a selection marker, and a promoter, if necessary, and an eukaryotic cell vector may contain an RNA splice site, a polyadenylation signal, etc., as necessary. .
  • a vector derived from SV40, adenovirus, or espapilloma virus can be used as a vector for mammalian cells.
  • a vector for Escherichia coli those derived from CollEl, R factor, F factor and the like can be used.
  • yeast those derived from 2 / mDNA, ARS1, etc. can be used.
  • a vector derived from a virus such as retrovirus, poliovirus, adenovirus, SV40, or a chromosome (eg, EF1- ⁇ )
  • a vector for mammalian cells is used as a vector for mammalian cells.
  • a vector for Escherichia coli a vector derived from bacteriophage ⁇ , a trp, lpp, lac, or tac promoter can be used.
  • ADH, PH05, GPD, PGK, and MAF ⁇ promoter can be used for baker's yeast, and A0X1 promoter can be used for methanol-assimilating yeast.
  • a vector for silkworm cells a vector derived from nucleopolyhedrovirus can be used.
  • vectors for mammalian cells include neomycin (neo) resistance gene, thymidine kinase (TK) gene, dihydrofolate reductase (DHFR) gene, and Escherichia coli xanthinganine phospho- Ribbon transferase (Ecogpt) gene or the like can be used.
  • neomycin (neo) resistance gene thymidine kinase (TK) gene, dihydrofolate reductase (DHFR) gene
  • Escherichia coli a kanamycin resistance gene, an ampicillin resistance gene, a tetracycline resistance gene and the like can be used.
  • yeast Leu2, TrpK Ura3 genes and the like can be used.
  • the polypeptide of the present invention In order to obtain the polypeptide of the present invention using the host-one vector system as described above, after transforming a host cell with a recombinant DNA in which the DNA of the present invention is incorporated into an appropriate site of the above vector, The obtained transformant may be cultured, and the polypeptide may be separated and purified from the cells or the culture solution.
  • the specific embodiment of the method for producing the polypeptide of the present invention includes the following embodiments.
  • DNA of the present invention in an embodiment in which a nucleotide sequence encoding a signal peptide of another known secretory protein depending on the host is added upstream of the nucleotide sequence encoding the polypeptide of the present invention.
  • the polypeptide is separated and purified from the culture solution.
  • the polypeptide when production is performed by genetic recombination using the DNA of the present invention in which a translation initiation codon is added upstream of the nucleotide sequence encoding the polypeptide of the present invention, the polypeptide may be introduced into host cells. Since the peptide is produced, the polypeptide is separated and purified from the cells.
  • R 1 is a carrier polypeptide
  • X is a protease recognition site
  • R 2 substantially or partially contains the constant region of one T cell receptor chain, and has an immunosuppressive effect. It is a polypeptide that does not substantially elicit the production of antibodies against itself upon administration.
  • the carrier polypeptide of R1 may be any that functions to transport the fusion polypeptide to the inclusion body, extracellular membrane, outer membrane, or, preferably, to the external environment, and may be a prokaryotic or true non-T cell receptor chain. It can be any polypeptide derived from a nuclear cell.
  • R 1 examples include calmodulin
  • examples of X include a thrombin recognition site sequence (particularly preferably a sequence of Lys—Va 1—Pro—Arg—G 1 y).
  • the method for producing the polypeptide of the present invention relating to fusion expression is not limited to this, as already described for the DNA of the present invention.
  • the separation and purification of an expression product is generally used for protein purification.
  • Process ion exchange chromatography, lectin affinity chromatography, dye adsorption chromatography, hydrophobic mutual chromatography, gel filtration chromatography, reverse phase chromatography, heparin affinity chromatography.
  • Conventional purification methods such as sulfated gel chromatography, hydroquinone patite chromatography, metal chelating chromatography, isoelectric focusing, preparative electrophoresis, and isoelectric focusing.
  • the present invention provides a pharmaceutical composition comprising the boreptide of the present invention as an active ingredient.
  • One embodiment thereof is an immunosuppressant.
  • the immunosuppressive agent of the present invention is very useful for treating many immune diseases. One reason is that when variable regions are used, a type that perfectly matches the histocompatibility antigen must be selected for each patient, whereas the constant regions are common to all. It can be used without the need for selection.
  • the polypeptide of the present invention clearly suppresses IgE and IgG1, which trigger the onset of allergic disease. More importantly, even when administered to mice that have been primed with an antigen, the increase in antibody production due to the next antigen challenge is suppressed, and those that are in the on-going antibody production state are also suppressed. That is what is shown. No drug showing these effects has been found so far, except for steroid drugs, for which strong side effects are a problem. In addition to suppressing humoral immune response, which is the suppression of antibody production, it also suppresses cell-mediated immunity such as delayed hypersensitivity.
  • the regulation of humoral immunity and cellular immunity is thought to be controlled by the balance between two types of helper T cells (Thl and Th2). It also has an inhibitory effect on, and is very unique, indicating that it may be effective in treating many immune diseases. Therefore, since the immunosuppressant containing the polypeptide of the present invention exhibits a potent anti-antigen non-specific antibody production inhibitory effect or a delayed type hypersensitivity reaction inhibitory effect, various allergic diseases include autoimmune diseases and organ transplantation. Can be used as an inhibitor of rejection it can.
  • the immunosuppressive agent of the present invention may contain a useful and suitable diluent, preservative, solubilizer, emulsifier, adjuvant and / or carrier together with a therapeutically effective amount of the polypeptide of the present invention.
  • therapeutically effective amount refers to an amount that provides a therapeutic effect for a specified condition and mode of administration.
  • Such formulations may be in liquid or lyophilized or otherwise dried dosage forms, having buffers of varying pH and ionic strength (eg, tris-HCl, acetate, phosphate, etc.).
  • diluents of choice additives such as albumin or gelatin to prevent adsorption on surfaces, surfactants (eg Tween 20, Tween 80, Pluronic F68, bile salts), yes Solubilizers (eg, glycerol, polyethylene glycol), antioxidants (eg, ascorbic acid, sodium metabisulfite), preservatives (eg, thimerosal, benzyl alcohol, paraben), excipients or tonicity agents (eg, lactate) And mannitol).
  • surfactants eg Tween 20, Tween 80, Pluronic F68, bile salts
  • Solubilizers eg, glycerol, polyethylene glycol
  • antioxidants eg, ascorbic acid, sodium metabisulfite
  • preservatives eg, thimerosal, benzyl alcohol, paraben
  • excipients or tonicity agents eg, lactate
  • mannitol
  • the covalent bond of a polypeptide to a polymer such as polyethylene glycol, complexation with a metal ion, or in or on the surface of a granular preparation of a polymer compound such as polylactic acid, polyglycolic acid, or hydrogel includes the incorporation of the substance onto or into ribosomes, microemulsions, micelles, unilamellar or multilamellar vesicles, erythrocyte ghosts, or sup X-mouth plasts.
  • Such a composition is considered to affect the physical state, solubility, stability, in vivo release rate, and in vivo clearance of the polypeptide of the present invention. Depends on physical and chemical properties.
  • compositions of the immunosuppressant of the present invention include a granular form, a form coated with a protective film, a form containing a protease inhibitor or an absorption enhancer, and the like.
  • the immunosuppressive agent of the present invention can be administered by various administration routes including parenteral, pulmonary, nasal, and oral.
  • the immunosuppressant containing the polypeptide of the present invention as an active ingredient is usually 1 g Z kg body weight to 2 mg Z kg body weight as an active ingredient, depending on the disease state, sex, administration route, etc.-once or several times a day. The degree can be administered.
  • Example 1 cDNA Cloning and Expression of TCR Gene of Sublesser T Cell Line Specific to Bee Venom Phospholipase A2
  • PHA2 PLA2-specific subcellular T cell bipridoma strain 3B3 cell expressing TCRa and ⁇ chain specific to bee venom phospholipase A2 (hereinafter referred to as "PLA2”) has been established ( Mori et al., Int. Immunol., 5: 833-842, 1993). Acquisition of TCR acDNA from 33 cells has already been reported (International Publication WO95-164642 mentioned above). Specifically, the TCR was cloned by PCR according to the method described in Murus et al., Nucl. Acid. Res., 8: 3895-3950, 1980.
  • mRNA A was isolated from 5 X 1 0 7 of 3 B 3 cells (described above).
  • cDNA was generated using a cDNA synthesis system (Pharmacia). After its generation, the cDNA was ligated at the 5 'and 3' ends using T4 ligase (Takara) to construct a circular DNA.
  • Oligonucleotide primers encoding mouse CDN A were synthesized using the phosphoramidite method with a DNA / RNA synthesizer (Applied Biosystems) (Beaucage et al., Tetrahedron Lett., 22). : 1859-1862, 1981). The sequences of these primers are as follows.
  • PCR was performed in a Thermo 'cycler' in the presence of type I cDNA, primers and dNTPs with TaqI DNA polymerase (Even Color).
  • the PCR conditions were as follows: denaturation step at 94 ° C. for 1 minute; annealing step at 54 ° C. for 1 minute; and elongation step at 72 ° C. for 2 minutes.
  • the amplified cDNA was subcloned into the pCR100 vector of TA Cloning System® (Invitrogen). The DNA sequence of the input was determined by didequin sequencing.
  • TCRa cDNA Three different TCRa cDNAs were cloned and sequenced. Two of them are fusion partner cells of the 3B3 hybridoma, BW5147 (Chien et al., Nature, 312: 31-35, 1984; Kumar et al., J. Exp. Med., 170: 2183-2188, 1989) was identified. Other TCR c DNA may be not expressed in BW5 1 4 within 7, this TCRa heritage c was confirmed using code sul several PCR primers scratch different portions of gene This means that this TCR ac This indicates that the DNA originated from the PLA2-specific T cells. Two independent clones encoding this TCRa cDNA were isolated and confirmed that their DNA sequences were identical. The DNA sequence of the 3B3-derived TCR cDNA is shown in FIG. 1 and SEQ ID NO: 4.
  • This TCRa encoded an open reading frame of 268 amino acids, and the first 20 amino acids were identified as signal peptides.
  • the pCF1 vector has a trp promoter and a trp terminator, and has rat calmodulin followed by a thrombin recognition (cleavage) site between the promoter and the terminator, and BamHI, XbaI, N
  • a base sequence corresponding to the otI restriction enzyme site is arranged, and a fusion protein can be expressed by inserting a gene of a desired protein into the restriction enzyme site.
  • Competent DH5 E. coli cells (ATCC No. 53868) were transformed with pCFl-3B3 TCR HiVJ and the DNA sequence was confirmed.
  • the transformant W3110 E. coli cells (ATCC No. 27325) were transformed.
  • DNA fragments encoding the amino acids 21 to 157 (the V and J regions of the 3B3-derived TCR and up to the 25th amino acid of the constant region (C region)) in Fig. 1 PCR using two primers, each containing a BamHI site for the 5 'end and a stop codon and an XbaI site for the 3' end, yielded pCR100-3. Amplified from B3 TCR plasmid. The sequences of these primers are as follows.
  • Competent DH5 E. coli cells were transformed with this novel plasmid, designated pCF1- 3B3TCRa-VJC25, and its DNA sequence was confirmed.
  • transformant W3110 E. coli cells were transformed.
  • the DNA fragments encoding amino acids 1332 to 2441 in FIG. 1 were each contained an XbaI site for the 5 ′ end, and the 3 ′ end PCR using two primers containing a stop codon and a NotI site for PCR, pCR100—3B3 TCRa plasmid was amplified.
  • the sequences of these primers are as follows.
  • W3110 E. coli carrying the respective plasmids shown in A, B and C of Example 2 were cultured in 50 ml of Luria medium containing 100 g / ml of ampicillin.
  • the inoculum culture was transferred to 1 L of M9 medium consisting of 0.8% glucose, 0.4% casamino acid, 100/1 ampicillin so that other bacteria did not enter, and 3 hours 37 ° C.
  • M9 medium consisting of 0.8% glucose, 0.4% casamino acid, 100/1 ampicillin so that other bacteria did not enter
  • indoleacrylic acid was added to a final concentration of 20 ⁇ M, and the culture was further cultured at 37 ° C for 5 hours.
  • fusion proteins of the calmodulin TCRs VJ, VJC25 and C were expressed in a soluble form, which was about 10% of the total protein.
  • Example 3 1. About 0.5 g of each cell cultured in Example 3 was suspended in 100 ml of water, and the cells were disrupted with a French press (800 psi, repeated 4 times). The disrupted cell pellet was centrifuged at 15,000 xg for 10 minutes at 4 ° C, and the supernatant was collected. Further, calmodulin-3B3TCRa-Ca was heat-treated at 80 at 10 minutes, centrifuged at 1500 xg for 15 minutes, and the supernatant was collected.
  • the supernatant fraction was diluted with 100 volumes of 2 mM glutathione (reduced form) and 0.2 mM glutathione (oxidized form) in 5 OmM Tris HC1 buffer (pH 8.0). . C overnight. This sample solution was added to an appropriate mixture so that the final concentration in the mixture was 2.5 mM CaCl 2 and 5 mM MgCl 2 . 3. Transfer the mixture to 50 mM Tris HC1 buffer (pH 8.0), 2.5 mM CaCl 2 and 5 mM MgC and equilibrate with a phenylsepharose 6 subcolumn (Falmana, 3 x 6 cm). C.
  • calmodulin-13B3TCR-1 VJ, VJC25 and C ⁇ fusion protein were added to 50 mM Tris HC1 buffer (pH 8.0) and 5 mM EDTA (pH 8. 0). SDS-PAGE confirmed the expression of calmodulin-1 3B3TCRa-VJ. VJ C25 and Ca protein.
  • the eluted fraction was reduced 10 times with a YM10 ultrafiltration membrane, and applied to a DEAE Toyopearl (T0S0H, 2 x 10 cm) column equilibrated with 5 OmM Tris HC1 buffer (pH 8.0). Run at room temperature. After washing the column with 5 OmM Tris HC1 buffer (pH 8.0) at a flow rate of 2.0 ml / min, calmodulin-1 3B3 TCR ⁇ was added using a concentration gradient of 0 to 0.5 M NaCl. -VJ, VJC25 and Ca fusion proteins were eluted. As a result, calmodulin-13B3TCR and other VJ.VJC25 and Ca fusion proteins were eluted at a concentration of about 30 OmM NaCl.
  • the eluted fraction was dialyzed against 100 volumes of 50 mM Tris HC1 buffer (pH 8.0) at 4 ° C. Glycerol was added to a final concentration of 10%, dithiothreitol (hereinafter referred to as “DTT”) to a final concentration of 2 niM, and NaCl to a final concentration of 100 mM, to the 50 ml dialyzed fraction.
  • DTT dithiothreitol
  • NaCl sodium chloride
  • TCR-1Ca contains 10% glycerol and 2 mM DTT on a NAP (Pharmacia) column.
  • TCR-C ⁇ protein After washing with 5 OmM Tris HC1 buffer (pH 8.0) containing 0% glycerol and 2 mM TTT, the TCR-C ⁇ protein was eluted using a concentration gradient of 0 to 0.5 M NaCl. As a result, TCRa-C was eluted at a concentration of about 30 OmM NaCl. The amount of purified TCRa-C ⁇ protein was about 1 mg / L. TCR ⁇ -protein was added to PBS containing 10% glycerol for stabilization. And stored at 20 ° C. The recombinant TCR protein in Escherichia coli was named recCa.
  • 3B 3 TCR ⁇ -VJ and VJC 25 were replaced with 50 mM Tris HC1 buffer ( ⁇ 8.0) and equilibrated with 5 OmM Tris HC1 buffer (pH 8.0).
  • the column was loaded at room temperature.
  • the column was washed with 5 OmM Tris HC1 buffer (pH 8.0) at a flow rate of 0 ml / min, and then 3 B 3 TCR "—VJ and VJC 25 using a concentration gradient of 0 to 0.5 M NaCl.
  • these proteins were eluted in the DEAE-5 PW non-adsorbed fraction.
  • the amount of purified 3B3TCR-VJ and VJC25 proteins was about 0.5 mg / L.
  • 3B3 TCR-VJ and VJC25 proteins were stored in PBS at -2 (stored in TC. These recombinant in E. coli 3B3-TCR-HIVJ and VJC25 proteins Were named rec VJ and rec VJC 25, respectively.
  • rec VJ protein was administered to mice immunized with bee venom PLA2.
  • a dinitrophenyl (hereinafter referred to as “DNP”) derivative of the bee venom PLA2 was prepared as an antigen by standard procedures, and Balb / c mice were immunized with 1 mg of aluminum hydroxide (hereinafter “A1 um”). Immunization was performed by intraperitoneal injection of 1 g of DNP-PLA2 adsorbed to the DNA. recVJ was injected intraperitoneally at a dose of 5 g per day on days ⁇ 5, ⁇ 3, ⁇ 1, 0, and control mice received only PBS. Two weeks after immunization, serum was collected from each mouse, and anti-DNP-IgGl was assayed by ELISA (Iwa evening, J. I recitation unol., 141: 3270-3277,
  • recVJ protein did not suppress anti-DNP-IgG1 production.
  • Example 6 In vivo immunosuppressive activity of recombinant 3B3-TCRa-VJC25 1.
  • rec VJC25 To evaluate whether or not to suppress the immune response in vivo, rec VJC25 protein was administered to mice immunized with the bee venom PLA2.
  • Balb / c mice were immunized by intraperitoneal injection of 1 g of DNP-PLA2 adsorbed to 1 Alum using PLA2 subjected to DNP as an antigen in the same manner as in Example 5.
  • rec VJC25 was injected intraperitoneally at a dose of 4 ⁇ g / time on days ⁇ 3, ⁇ 1, 0, and 1; control mice received only PBS.
  • recCa protein was administered to mice immunized with bee venom PLA2.
  • Balb / c mice were immunized by intraperitoneal injection of DNP-PLA21 adsorbed on 1 mg of Alum, using DNP-bound PLA2 as an antigen in the same manner as in Example 5.
  • recC ⁇ was injected intraperitoneally at a dose of 5 g per day on days ⁇ 1, 0, 1, and 3, and control mice received only PBS containing 10% glycerol.
  • serum was collected from each mouse, and anti-DNP-IgGl was measured by EUSA (Iwa-Yu et al., J. Immunol., 141: 3270-3277, 1988).
  • rec C a The protein significantly suppressed anti-DNP-igGl production as compared to rec VJ and rec VJC25.
  • ovalbumin ovalbumin
  • mice were immunized with “OVAj”. Using DNP-epitched OVA prepared according to the procedure of Example 5, Balb / c mice were adsorbed to 1 mg of Alum with DNP-0VA0. Immunization was performed by intraperitoneal injection of 1 zg.6. Injected intraperitoneally at a dose of 5 g per dose on days -1, 0, 1, and 3, and 10% for control mice Two weeks after immunization, serum was collected from each mouse, and anti-DNP-IgGl was assayed by ELISA (Iwa-Yu et al., J.I. 141: 3270-3277,
  • CM-P LA 2 denatured carboxymethylated PLA 2
  • mice were immunized by intraperitoneal injection of 0.1 g of OVA adsorbed on 1 mg of Alum.
  • IgG specific to the OVA antigen was measured by ELISA (Iwa evening, J. Immunol., 141: 3270-3277, 1988), and after confirming an increase in antibody titer, rec C was measured.
  • Intraperitoneal injections were made at a dose of 5 g per dose on days 16, 17, and 18, and control mice were administered only PBS containing 10% glycerol. On day 28, serum was collected from each mouse, and OVA-specific IgG was measured by EUSA (Iwa evening, J.
  • mice were immunized by intraperitoneal injection of 10 g of OVA adsorbed on 1 mg of Alum.
  • recC was injected intraperitoneally at a dose of 5 / zg per day on days -1 and 0, and control mice were administered PBS and saline containing 10% glycerol.
  • dexamethasone was injected intraperitoneally as a control drug at a dose of 0.1 ⁇ g / dose on days 6 and 7.
  • the challenge was induced by injection of 50 g of AVA adsorbed on 50 ig of Alum into the feet. At 24 hours after the induction, edema of the foot was measured.
  • mice to which recC ⁇ was administered showed almost the same inhibitory activity as dexamethasone (Fig. 5).
  • Example 9 Production of antibody against recombinant TCR ⁇ -C ⁇ in mouse serum after administration of recombinant TCRa-Ca
  • TTB S 0.1% Tvveen-20
  • GZTTB S manufactured by Boehringer Mannheim
  • a PLA2-specific helper T cell line expressing PLA2-specific TCRa and chains was established according to the method of Kimoto et al. (Kimoto et al., J. Exp. Med., 15 2: 759-767, 1980, J. Exp. Med., 153: 375-383, 1981). 100 g of PLA2 antigen was dissolved in PBS, and an emulsion mixed in complete 'Freund' adjuvant (CFA) and 1: 1 was immunized subcutaneously at the base of the tail of Balb / c mice.
  • CFA complete 'Freund' adjuvant
  • the lymph nodes at the radii and para-aorta which were the injected lymph nodes, were taken out and made into a single cell suspension in the culture medium.
  • the cells were made up to 4 xiO 6 / ml with Click's Medium-10% FCS and PLA2 was added to a final concentration of 200 ⁇ g / ml.
  • the cells were collected, and 2 ⁇ 10 6 viable cells and spleen cells of syngeneic mice were used as antigen-presenting cells (X-irradiated at 200 OR).
  • X 1 0 6 the Click 's Medium- 1 0% were cultured in FCS, the final concentration 2 0 0 g / ml to PLA 2 at that time,
  • helper-I T cell line specific for the PLA2 antigen was obtained. This helper T cell line was named B4-9.52 cells.
  • TCR cDNA of B4-9.52 cells was cloned by PCR according to the method described in Murus et al., Nucl. Acid. Res., 8: 3895-3950, 1980. Use fur strike track ®mRNA isolation kit Bok the (Invitrogen (Inv rogen)), mRNA was isolated from B4-9.52 cells 5 X 1 0 7.
  • the cDNA synthesis system (Pharmacia) was used to generate cDNA. After its generation, the cDNA was ligated at the 5 'and 3' ends using T4 ligase (Takara) to construct a circular DNA.
  • Oligonucleotide primers encoding mouse C DNA were synthesized by a DNA / RNA synthesizer (Applied Biosystems) using the phosphoramidite method (Beaucage et al., Tetra hedron Lett., 22: 1859-1862, 1981). The sequences of these primers are as follows.
  • PCR was performed in a Thermo 'cycler' with Taq I DN ⁇ polymerase (evening color) in the presence of type I cDNA, primers and dNTPs.
  • the PCR conditions were as follows: denaturation step at 94 ° C. for 1 minute; annealing step at 54 ° C. for 1 minute; and elongation step at 72 ° C. for 2 minutes.
  • Amplified c DN A was subcloned into the pCRII vector of TA Cloning System (Invitrogen). The DNA sequence of the input was confirmed by dideoxy sequencing (Sanger et al., Proc. Nalt. Acad. Sci. USA 74: 5463-5367, 1977).
  • the DNA sequence of the T4-acR derived from B4-9.52 is shown in FIG. 6 and SEQ ID NO: 5 (Yague et al., Nucleic Acids Research 16: 11355-11364, 1988).
  • the DNA fragments encoding amino acids 21 to 24 (TCR extracellular region derived from B4-9.52) shown in Fig. 6 were ligated with BamHI sites for the 5 'end and for the 3' end, respectively.
  • the PCR conditions were as follows: denaturation step at 94 ° C for 1 minute; annealing step at 55 ° C for 1 minute; and elongation step at 72 ° C for 1 minute. .
  • the sequences of these primers are as follows.
  • W3110 E. coli harboring plasmid pCF1-B4-9.52-TCR was cultured overnight in 5 Oml of Luria medium containing 100 g / ml of ampicillin.
  • the inoculum culture was transferred to 1 L of M9 medium consisting of 0.8% glucose, 0.4% casamino acid, 100 mg / 1 ampinline so that other bacteria did not enter the cells, and 3 hours 3
  • the cells were cultured at 7 ° C.
  • indoleacrylic acid was added to a final concentration of 20 2, and the culture was further cultured at 37 ° C for 5 hours.
  • the fusion protein of rumodulin-B4-9.52-TCRa was expressed in a soluble form, about 10% of the total protein.
  • the eluted fraction was dialyzed against 100 volumes of 50 mM Tris HC1 buffer (pH 8.0) at 4 ° C. Glycerol was added to a final concentration of 10%, dithiothreitol (hereinafter referred to as DTT) to a final concentration of 2 mM, and NaCl to a final concentration of 10 OmM to 50 ml of the dialyzed fraction, and 1% thrombin (Sigma) was added. ) was added and the mixture was incubated at 25 ° C. for 6 hours to digest the fusion protein. 6.
  • DTT dithiothreitol
  • the mixture was concentrated by centrifugation using MACR0SEP3K (FILTR0N) and exchanged with a 50 mM Tris HC1 buffer (pH 8.0) containing 10% glycerol and 2 mM DTT using a NAP (Pharmacia) column.
  • the column was loaded at room temperature on a DEAE-5PW (0.75 ⁇ 7.5 cm) column equilibrated with 50 mM Tris HC1 buffer (pH 8.0) containing 10% glycerol and 2 mM DTT. Run the column at a flow rate of 1.0 ml / min and a 10%
  • B4-9.52-TCR ⁇ protein c After washing with 5 0 mM Tris HC1 buffer containing Le and 2 mM DTT (pH 8.0), using a gradient of NaCl of 0 to 0. 5M, it was eluted B4-9.52-TCR ⁇ protein c As a result, B4-9.52-TCR was eluted at a concentration of about 300 mM NaCl. The amount of the purified B 4-9.52-TCR ⁇ protein was about 1 mg. The B4-9.52-TCR ⁇ protein was stored at 120 ° C. in PBS containing 10% glycerol for stabilization. This recombinant B4-9.52-T CRa in Escherichia coli was named rec VJ C (Va4.4).
  • the rec VJC (V aAA) protein was administered to mice immunized with the bee venom PLA2.
  • the bee venom PLA2 dinitrophenyl hereinafter referred to as “DNP
  • mice were immunized by intraperitoneal injection of 1 g of DNP-PLA2 adsorbed to 1 mg / um. r e c V J C
  • Va4.4 was injected intraperitoneally at a dose of 5 g / time on days -1, 0, and 3 and control mice were administered only PBS containing 10% glycerol. Two weeks after immunization, serum was collected from each mouse, and anti-DNP-IgGl was measured by ELISA (Iwata et al., J. 1 Oki unol., 141: 3270-3277, 1988). As a result, the production of anti-DNP-Iggl1 was strongly suppressed as in the case of C. Therefore, the antibody production against rec VJC (V ⁇ 4.4) in the serum of each of these mice was examined by eastern blotting.
  • the 0-fold dilution was shake-cultured at room temperature for 1 hour. Wash the membrane with TTB S for 5 minutes at room temperature, and use a goat anti-mouse IgG (H + -alkaline phosphatase-labeled antibody (manufactured by Bio-Lat)) as a secondary antibody, and dilute it 200-fold.
  • a goat anti-mouse IgG H + -alkaline phosphatase-labeled antibody (manufactured by Bio-Lat)
  • the cells were cultured with shaking for 1 hour.
  • the membrane was washed twice with TTB S at room temperature for 5 minutes, and further washed twice with TBS at room temperature for 5 minutes. Finally, coloring was performed using an alkaline phosphatase coloring kit (manufactured by Biorat).
  • Rec VJ C (V ⁇ 4.4) is derived from TCR ⁇ of helper ⁇ cells, but is a recombinant polypeptide of the VJC region (extracellular region of TCR) of TCRa derived from suppressor ⁇ cells 3 33 (see above).
  • VJC region extracellular region of TCR
  • WO95-166462 A similar test was also conducted for the international publication WO95-166462, which also confirmed production of an antibody against the administered recombinant polypeptide.
  • a PLA2-specific GIF-producing human T cell expressing PLA2-specific TCRa and / 3 chain T cell hybridoma strain AC5 cells have been established (Thomas et al., The Journa 1 of Immunology, 92: 729-737, 1992).
  • the TCR cDNA of this cell was cloned by PCR according to the method described in Murus et al., Nucl. Acid. Res., 8: 3895-3950, 1980.
  • mRNA was isolated from 5 X 1 0 7 AC5 cells.
  • cDNA was generated using a cDNA synthesis system (Falmana).
  • the cDNA was ligated at the 5 'and 3' ends using T4 ligase (Takara) to construct a circular DNA.
  • T4 ligase T4 ligase
  • an oligonucleotide primer encoding human CaDNA was converted to a DNA / RNA synthesizer (Applied. It was synthesized by the phosphoramidite method using the 'biosystem' (Beaucage et al., Tetrahedron Lett., 22: 1859-1862, 1981). The sequences of these primers are as follows.
  • PCR was performed in a Thermo 'cycler' with Taql DNA polymerase (Takara) in the presence of type I cDNA, primers and dNTPs.
  • the PCR conditions were as follows: denaturation step: 94 ° C. for 1 minute; annealing step: 54 ° C. for 1 minute; and elongation step: 72 ° C. for 2 minutes.
  • the amplified cDNA was subcloned into the pCR1000 vector of the TA Cloning System TM (Invitrogen). This was named pCRIOOO-human TCR.
  • the amplified DNA fragment was cloned into the pCFl vector at its unique Bam HI and Xba I sites, as in Example 1: A ( Figure 7).
  • the novel plasmid called pCFl-TCRa-human Ca was used to transform competent X-Blue E. coli cells (Stratagene), and its DNA sequence was confirmed (shown in SEQ ID NO: 20).
  • the transformant was transformed into W3110 E. coli cells.
  • the w3U0 colon orchid holding the plasmid pCF1-TCRa-human Ca shown in Example 10 was cultured in 50 ml of Luria medium containing 100 wg / nil of ampicillin.
  • the inoculum culture was transferred to 1 L of M9 medium consisting of 0.8% glucose, 0.4% casamino acid, 100 mg / 1 ampicillin in a manner that no other bacteria entered, and 3 hours 3 7 Cultured at ° C.
  • indoleacrylic acid was added to a final concentration of 20, and the culture was cultured for a further 5 hours at 37.
  • the calmodulin-TCRa-human C fusion protein was expressed in a soluble form, about 10% of the total protein.
  • Example 11 About 0.5 g of the cells cultured in Example 11 were disrupted in the same manner as in Example 4, and the supernatant was recovered. The expression level of these fusion proteins was about 5 mg / L. After heat treatment at 80 ° C for 10 minutes, the mixture was centrifuged at 1500 xg for 15 minutes, and the supernatant was recovered.
  • the supernatant fraction was diluted with 50 mM Tris HC1 buffer (PH8.0) containing 100 volumes of 2 mM glutathione (reduced form) and 0.2 m glutathione (oxidized form).
  • the eluted fraction was concentrated 10-fold with an ultrafiltration membrane, applied to a DEAE Toyopearl column under the same conditions as in Example 4, and subjected to a concentration gradient of 0.5 M NaCl at 0. Calmodulin-TCR-human C fusion protein was eluted.
  • the fusion protein TCRa-human Ca fusion protein was eluted at a concentration of about 500 mM NaCl.
  • the eluted fraction was dialyzed against 100 volumes of 50 mM Tris HC1 buffer (pH 8.0) at 4 ° C overnight. Under the same conditions as in Example 4, the fusion protein was digested with thrombin (Sigma).
  • TCRa-human Ca was eluted at a concentration of about 200 mM NaCl.
  • the amount of purified TCRa-human Ca protein was about 1 mg / L.
  • TCRa-human Ca protein was stored at 120 ° C in PBS containing 10% glycerol for stabilization.
  • the recombinant TCR-human C protein in Escherichia coli was named rechC.
  • the rechCa protein was administered to mice immunized with the bee venom PLA2.
  • DNP-modified PLA2 was used as an antigen
  • Balb / c mice were immunized by intraperitoneal injection of DNP-PLA2 1 fig adsorbed to 1 mg of Alum.
  • recCa was injected intraperitoneally at a dose of 5 per day on days -1, 0 and 1, and control mice received only PBS containing 10% glycerol.
  • the production of antibodies to the recombinant TCR-human C ⁇ in the serum of each mouse shown in Example 13 was examined by estanbuling.
  • SDS-PAGE was performed on a 10 to 20% gradient gel of TCR-human C161 at a concentration of 1 g / ml under reducing conditions containing 5 mDTT.
  • the protein was transferred to a nitrocellulose membrane at 150 mA per gel for 30 minutes.
  • the membrane was washed with TBS at room temperature for 5 minutes, and further washed twice with TTBS at room temperature for 5 minutes. Thereafter, the cells were shake-cultured in G / TTBS for 1 hour at room temperature to fix the membrane.
  • each mouse serum diluted 50-fold with G / TTBS was cultured with shaking at room temperature for 1 hour.
  • the membrane was washed with TTBS at room temperature for 5 minutes, and a goat anti-mouse lgG (H +) alkaline phosphatase-labeled antibody (manufactured by Bio-Rat) was used as a secondary antibody, and diluted 200-fold.
  • the culture was shake-cultured at room temperature for 1 hour.
  • the membrane was washed twice with TTBS at room temperature for 5 minutes, and further washed twice with TBS at room temperature for 5 minutes.
  • coloring was performed using an alkaline phosphatase coloring kit (manufactured by Biorat).
  • the polypeptide of the present invention has an antigen-nonspecific immunosuppressive action, and can suppress not only humoral immune reaction but also cell-mediated immune reaction. Furthermore, administration of the polypeptide of the present invention does not substantially induce the production of antibodies against TCR ⁇ .
  • Organism name Mus musculus (Mus)
  • Sequence type nucleic acid
  • Organism name Mus musculus (Mus)
  • Sequence type nucleic acid 6 ⁇ ⁇ ⁇
  • VN oi VN (P: ii3 ⁇ 4 ⁇ 1 ⁇ 2a @ ⁇ S: ⁇ - ⁇
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid
  • Sequence type nucleic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Polypeptides that contain substantially part or the whole of the constant region of a T-cell receptor α-chain, have immunosuppressive effects, but do not substantially cause any production of antibodies against themselves even when administered; DNAs coding for the polypeptides; a DNA having a base sequence coding for fused polypeptides represented by the general formula R1-X-R2 (wherein R1 is a carrier polypeptide; X is a protease recognition site; and R2 is a polypeptide that contains substantially part or the whole of the constant region of a T-cell receptor α-chain, has immunosuppressive activities, but does not substantially cause any production of antibodies against itself even when administered); an expression vector having the above DNA carried thereon; host cells transformed by the above vector; processes for producing the above polypeptides; and pharmaceutical compositions containing the above polypeptides as the active ingredient. These polypeptides have non-antigen-specific immunosuppressive effects and can suppress not only humoral but also cell-mediated immunoreactions. Furthermore, the administration, if ever, of them does not substantially cause any production of antibodies against them.

Description

明 細 書  Specification
T細胞リセプタ— α鎖定常領域べプチド、 該ぺプチドの製造方法及び用途 技術分野 T cell receptor α-chain constant region peptide, method for producing the peptide and use thereof
本発明は、 抗原非特異的な免疫抑制作用を有する Τ細胞リセプター α鎖の定常 領域ポリベプチドに関する。 背景技術  The present invention relates to a constant region polypeptide of a Τ-cell receptor α-chain having an antigen-specific immunosuppressive action. Background art
Τ細胞リセプター 鎖 (以下、 Τ細胞レセプターを 「TCR」 、 T細胞レセプ ター 鎖を 「TCR 」 という) は、 抗原を認識する特異的なアミノ酸配列を持 つ可変領域と、 生物種ごとに固有のアミノ酸配列を持つ定常領域からなる。 これ まで TCRの生物学的機能としては、 TCRaと TCR 鎖 (以下、 「TCR;S」 という) の可変領域が、 MHC分子上に提示された抗原を認識することによって、 T細胞がその抗原に応答し、 免疫反応の調節が行われることであると考えられて きた。 また、 TCR 、 ^を持つあらゆる T細胞において均一である TCR 鎖 の定常領域 (以下、 「C 」 という) は、 TCR/Sの定常領域 (以下、 「C /3」 という) と会合することによって TCRの構造を維持する機能を持つことと、 細 胞内へシグナルを伝達することがその役割と考えられてきた。  ΤThe cell receptor chain (hereinafter, レ セ プ タ ー cell receptor is called “TCR” and T cell receptor chain is called “TCR”) is composed of a variable region having a specific amino acid sequence that recognizes antigen, and a unique region for each species. Consists of a constant region having an amino acid sequence. Until now, the biological function of TCR is that TC cells and the variable region of the TCR chain (hereinafter referred to as “TCR; S”) recognize antigens presented on MHC molecules, and T cells It has been thought that responding and modulating the immune response. In addition, the constant region of the TCR chain (hereinafter, referred to as “C”), which is uniform in all T cells having a TCR, ^, associates with the constant region of the TCR / S (hereinafter, referred to as “C / 3”). Its role has been to maintain the structure of the TCR and to transmit signals into cells.
一方、 TCRと同様に抗原に特異的に反応する構造を持ったィ ミュノグロプリ ン (抗体) は、 TCR同様、 可変領域と定常領域からなり、 B細胞表面にある抗 体分子は TCRと類似した生物学的機能を持っている。 しかし抗体では、 さらに 可溶性抗体が存在し、 これは B細胞より分泌される。 この場合、 抗原に結合する 可変領域以外に、 定常領域も重要な生物学的機能を示す。 すなわち、 多くの細胞 にはこの定常領域の受容体があり、 抗体が定常領域を介してそれらの細胞に結合 する事によって、 抗体依存性の様々な免疫応答を誘導する。  On the other hand, immunoglobulins (antibodies), which have a structure that specifically reacts with antigens like the TCR, consist of a variable region and a constant region, similar to the TCR, and the antibody molecule on the surface of the B cell is an organism similar to the TCR. It has a biological function. However, for antibodies, there are more soluble antibodies that are secreted by B cells. In this case, in addition to the variable region that binds to the antigen, the constant region also has important biological functions. That is, many cells have receptors for this constant region, and antibodies bind to these cells via the constant region to induce various antibody-dependent immune responses.
TCRaについては、 これまで可溶性 T CR が存在するという明快な証拠は 見出されていない。 ましてや、 TCR の定常領域に対する受容体の存在などは、 何ら報告されていない。 すなわち、 可溶性 TCR の定常領域が、 生物学的な機 能を持つことを予見させる現象は皆無であった。 For TCRa, no clear evidence has been found to date on the presence of soluble TCR. Furthermore, the existence of a receptor for the TCR constant region has not been reported at all. That is, the constant region of the soluble TCR There were no phenomena to foresee having ability.
可溶性 TC R が細胞から分泌、 あるいは切り出される可能性を示唆する報告 はある (Guy et al. , Science, 244 : 1477-1480, 1989、 及び、 Fairchild et a 1. , J. Immunol. , 145 :2001-2009, 1990)。 しかし、 それがどのような構造をし ているのかについては何ら明らかにされていない。 一方で、 TCR タンパクが その機能を担ったまま細胞から放出されるということについては、 否定的な意見 も多い。 すなわち、 TCRaは CD 3複合体タンパクと複合体を形成しない限り 小胞体で分解されること (Bonifacino et al. , Science, 247 : 79-82, 1990)や、 TCR-CD 3複合体として細胞表面に輸送されない限り リソゾームで分解され ること (Minami et al. , Proc. Natl. Acad. Sci. USA, 84 : 2688-2692, 1987) などが示されている。  There are reports suggesting that soluble TCR may be secreted or excreted from cells (Guy et al., Science, 244: 1477-1480, 1989, and Fairchild et al., J. Immunol., 145: 2001-2009, 1990). However, it is not clear what structure it has. On the other hand, there are many negative opinions that the TCR protein is released from cells while maintaining its function. That is, TCRa is degraded in the endoplasmic reticulum unless it forms a complex with the CD3 complex protein (Bonifacino et al., Science, 247: 79-82, 1990), or as a TCR-CD3 complex on the cell surface. It is shown to be degraded by lysosomes unless it is transported to other countries (Minami et al., Proc. Natl. Acad. Sci. USA, 84: 2688-2692, 1987).
抗原特異的サブレッサー因子の研究においては、 T C R αが可溶性の形でその 活性に関与していることを示唆する報告がある。 このような因子は、 抗 TCRひ 抗体と反応する性質を示す (Bissonnette et al. , J. Immunol., 146 :2898-290 7, 1991、 Collins et al. , J. Immunol. , 145 :2809-2812, 1990、 及び、 Taka da et al., J. Immunol. , 145 :2846-2853, 1990 )0 また最近になって、 サブレ ッサー T細胞に T C R 遺伝子を導入すると、 抗原特異的サブレッサー活性が培 養上清に検出できるようになること (Kuchroo et al. , J. 〖隱 unol., 154 : 503 0-5038, 1995) や、 ヒスチジンタグを付加した T C R α遺伝子をサプレッサ一 T 細胞に導入すると、 タグを保持し、 また TCR 抗原決定基を持ったタンパクが 分泌されること (Ishii et al., J. Immunol., 156 : 1735-1742, 1996) なども 見出された。 すなわち、 TCRaはサブレッサー T細胞においては分泌される可 能性が高く、 またこの TCRなを含む因子は、 抗原特異的な免疫抑制反応に関与 している可能性が考えられている。 In studies of antigen-specific sub-esser factors, there are reports suggesting that TCRα is involved in its activity in a soluble form. Such factors exhibit the property of reacting with anti-TCR antibody (Bissonnette et al., J. Immunol., 146: 2898-290 7, 1991; Collins et al., J. Immunol., 145: 2809- 2812, 1990, and Taka da et al., J. Immunol., 145: 2846-2853, 1990) 0 Recently, when the TCR gene was introduced into subpressor T cells, antigen-specific subrepressor activity was reduced. Being able to be detected in culture supernatants (Kuchroo et al., J. 〖-Oki unol., 154: 5030-5038, 1995), and introducing the histidine-tagged TCR α gene into suppressor-I T cells As a result, it was found that proteins retaining the tag and having a TCR antigenic determinant were secreted (Ishii et al., J. Immunol., 156: 1735-1742, 1996). That is, TCRa is highly likely to be secreted by sublesser T cells, and it is thought that factors including this TCR may be involved in antigen-specific immunosuppressive reactions.
また、 抗原特異的な TCRa及び 3鎖を発現する P L A 2特異的サブレッサー T細胞ハイプリ ドーマ株からクローニングした TCRa c DNAの細胞外領域を コードする D N Aを作成し大腸菌宿主で発現させたものについて抗原特異的な免 疫抑制活性を確認したという報告がある (国際公開 WO 9 5— 1 6 4 6 2号; 1 9 9 5年 6月 2 2日) 。 これらの結果が示していることは、 実際に可溶性 T C R が存在したとしても、 その機能は抗原特異的な免疫調節に関わるものであり、 この場合当然、 可変領域 の構造がその機能を担っていると考えられることである。 Ondaら(Proc. Natl. A cad. Sci. USA, 92 : 3004-3008, 1995)は、 抗原特異的免疫抑制活性に必要な T CRaの領域は、 可変領域と 2 5アミノ酸以下の定常領域部分であることを示し ている。 In addition, a DNA encoding the extracellular region of TCRa cDNA cloned from a PLA2-specific sublesser T cell hybridoma expressing the antigen-specific TCRa and 3 chains was prepared and expressed in an E. coli host. It has been reported that a specific immunosuppressive activity was confirmed (International Publication WO95-166462; June 22, 1995). These results indicate that, even if soluble TCRs do exist, their function is involved in antigen-specific immunomodulation, and in this case, naturally, the structure of the variable region plays a role. It is considered that. Onda et al. (Proc. Natl. Acad. Sci. USA, 92: 3004-3008, 1995) describe that the region of TCRa required for antigen-specific immunosuppressive activity consists of a variable region and a constant region of 25 amino acids or less. It is shown that it is.
T C Rの可変領域が免疫応答の調節に関わることについては、 T C R 0につい ても示されている。 例えば、 マウスの実験的自己免疫性脳脊髄炎モデルにおいて は、 抗原であるミエリ ン塩基性夕ンパクに特異的な T C R /3の可変領域べプチド を免疫することで、 この疾患の発症を抑制したり (Vandenbark et al. , Nature, 341 :541-544, 1989、 及び、 Howell et al., Science, 246 : 668-670, 1989) 、 あるいは時には増強したり (Desquenne- Clark et al. , Proc. Natl. Acad. Sci. USA, 88 : 7219-7223, 1991)することが見出されている。  The involvement of the TCR variable region in regulating immune responses has also been shown for TCR0. For example, in an experimental mouse model of autoimmune encephalomyelitis, immunization with the TCR / 3 variable region peptide specific for the antigen myelin basic protein suppresses the development of this disease. (Vandenbark et al., Nature, 341: 541-544, 1989, and Howell et al., Science, 246: 668-670, 1989), or sometimes enhance (Desquenne- Clark et al., Proc. Natl. Acad. Sci. USA, 88: 7219-7223, 1991).
TCR がその認識抗原とは特に関係のない免疫応答でも抑制する可能性を示 唆したケースは、 唯一、 KLH特異的サブレッサー T細胞より取得された Va 1 4 J 2 8 1 という可変領域を持つ TCRaについての場合だけである (特開平 6 - 2 9 8 6 6 2 ) 。 ここでは、 この特殊な可変領域を含む T C R αが、 KLH に対する反応以外に自己免疫性の NOD (Nonobese diabetogenic) マウスの糖 尿病発症を抑制することが示されている。 しかしこれは、 他の TCR にもこの ような抗原非特異的な免疫抑制作用があるということを示唆しているわけではな い。 それは、 この 1 4 J α 2 8 1 という TCRaは、 通常の T細胞上にある T C R とは全く異なつているものであり、 自己免疫疾患等の調節に関与してい ると考えられる ΝΚΤ細胞に発現している TCRであることが判明したことによ る。 すなわち、 この特殊な TCRなの持つ機能も、 本質的には可変領域の構造が その役割を担っているのである。  The only case suggesting that the TCR may suppress immune responses that are not particularly related to its recognition antigen is the only one that has a variable region of Va 14 J 28 1 obtained from KLH-specific sub-lesser T cells. This is only for the case of TCRa (Japanese Patent Laid-Open No. 6-2988662). Here, it has been shown that TCRa containing this special variable region suppresses the onset of diabetes mellitus in autoimmune NOD (Nonobese diabetogenic) mice in addition to the response to KLH. However, this does not suggest that other TCRs also have such an antigen-specific immunosuppressive effect. The TCRa of 14Jα28 1 is completely different from the TCR on normal T cells, and is thought to be involved in the regulation of autoimmune diseases, etc.ΝΚΤExpressed in cells The TCR was found to be In other words, the function of this special TCR essentially depends on the structure of the variable region.
従来の TCRaを免疫抑制用途に使用するという試みは、 TCRaの可変領域 が関与した抗原特異的免疫作用を期待したものであるが、 実際に臨床上実用化さ れたものはなく、 また、 抗原特異的作用ゆえにそれを免疫抑制用途で使う場合に はそれぞれの免疫反応に関る抗原毎に特異的な T C R aを調製し使用しなくては ならないという治療上の制約があると考えられる。 また、 本願明細書において示 すように、 可変領域を含む T C R aを投与すると、 投与した T C R aに対する抗 体が容易に惹起されるという問題も存在する。 Conventional attempts to use TCRa for immunosuppressive applications are expected to have antigen-specific immunity involving the variable region of TCRa, but none have been clinically put to practical use. Due to its specific action, when it is used for immunosuppression, it is necessary to prepare and use a specific TCRa for each antigen involved in each immune response. It is considered that there is a therapeutic constraint that this should not be done. Further, as shown in the present specification, there is also a problem that administration of TCRa containing a variable region easily induces an antibody against the administered TCRa.
従って、 投与すべき患者の組織適合性抗原を考慮することなく、 また、 抗体産 生を容易に惹起しない免疫抑制作用を持った T C R αの開発が望まれていた。 本発明は、 上記の課題を解決することを目的とする。 発明の開示  Therefore, there has been a demand for the development of TCRα having an immunosuppressive effect without considering the histocompatible antigen of the patient to be administered and without easily inducing antibody production. An object of the present invention is to solve the above problems. Disclosure of the invention
本発明は、 T C R αの可変領域ではなく定常領域が抗原非特異的な免疫抑制作 用を示すということを初めて見出したことに基づく ものであり、 これは T C R a の機能に対する上述したような従来の考えを全く覆すものである。  The present invention is based on the finding, for the first time, that the constant region, but not the variable region of TCRα, exhibits an antigen-nonspecific immunosuppressive effect. Completely overturns the idea.
本発明は、 T細胞リセプター 鎖の定常領域の一部または全部を実質的に含み、 免疫抑制作用を有するが、 投与によりそれ自体に対する抗体の産生を実質的に惹 起しないポリべプチドを提供するものである。  The present invention provides a polypeptide that substantially contains a part or all of the constant region of a T cell receptor chain, has an immunosuppressive effect, but does not substantially induce the production of an antibody against itself upon administration. Things.
また、 本発明は、 アミノ酸配列の 1以上のアミノ酸残基が欠失、 挿入およびノ または置換されていてもよい配列番号 1のァミノ酸配列を含み、 免疫抑制作用を 有するが、 投与によりそれ自体に対する抗体の産生を実質的に惹起しないポリベ プチドを提供する。  The present invention also includes the amino acid sequence of SEQ ID NO: 1 in which one or more amino acid residues in the amino acid sequence may be deleted, inserted, or substituted, and has an immunosuppressive effect. A polypeptide that does not substantially elicit the production of antibodies against
さらに、 本発明は、 アミノ酸配列の 1以上のアミノ酸残基が欠失、 挿入および ノまたは置換されていてもよい配列番号 2のァミノ酸配列を含み、 免疫抑制作用 を有するが、 投与によりそれ自体に対する抗体の産生を実質的に惹起しないポリ ぺプチドを提供する。  Furthermore, the present invention includes an amino acid sequence of SEQ ID NO: 2 in which one or more amino acid residues of the amino acid sequence may be deleted, inserted, or substituted, or has an immunosuppressive effect. A polypeptide that does not substantially elicit the production of antibodies against
さらにまた、 本発明は、 上記のポリペプチドをコー ドする D N Aを提供する。 本発明は、 また、 以下の式:  Furthermore, the present invention provides a DNA encoding the above-mentioned polypeptide. The present invention also provides the following formula:
R 1 - X - R 2  R 1-X-R 2
(式中、 R 1は担体ポリペプチド、 Xは蛋白質分解酵素認識部位、 そして R 2は 請求項 1〜 3のいずれかに記載のポリぺプチドである)  (Wherein, R 1 is a carrier polypeptide, X is a protease recognition site, and R 2 is the polypeptide according to any one of claims 1 to 3.)
で示される融合ポリぺプチドをコ一 ドする塩基配列を有する D N Aを提供する。 R 1はカルモジュリ ンであってもよい。 Xはトロンビンによって認識される部位 であってもよく、 卜ロンビンによって認識される部位は下記の配列番号 3のァミ ノ酸配列で示されてもよい。 And a DNA having a base sequence encoding the fusion polypeptide represented by R 1 may be calmodulin. X is the site recognized by thrombin The site recognized by thrombin may be represented by the amino acid sequence of SEQ ID NO: 3 below.
L y s - V a 1 -P r o-A r g-G l y (配列番号 3 )  Lys-Va1-Pro-Arg-Gly (SEQ ID NO: 3)
本発明は、 上記の DN Aを担持した発現ベクターおよび該発現ベクターで形質 転換された宿主細胞も提供する。 宿主細胞は原核細胞であってもよく、 原核細胞 は大腸菌であってもよい。  The present invention also provides an expression vector carrying the above-mentioned DNA and a host cell transformed with the expression vector. The host cell may be a prokaryotic cell, and the prokaryotic cell may be E. coli.
本発明は、 また、 上記のポリペプチドの製造方法であって、 該ポリペプチドを コ一ドする塩基配列を有する D N Aを担持した発現べクターで形質転換された宿 主細胞を培養し、 該ポリペプチドを単離することを特徴とする、 前記の製造方法 も提供する。 宿主細胞は原核細胞であってもよく、 原核細胞は大腸菌であっても よい。  The present invention also relates to the above-mentioned method for producing a polypeptide, wherein the host cell transformed with an expression vector carrying a DNA having a nucleotide sequence encoding the polypeptide is cultured, The above-mentioned production method is also provided, wherein the peptide is isolated. The host cell may be a prokaryotic cell, and the prokaryotic cell may be E. coli.
本発明は、 上記のポリペプチドの製造方法であって、 以下の式:  The present invention provides a method for producing the above-mentioned polypeptide, comprising the following formula:
R 1 -X-R 2  R 1 -X-R 2
(式中、 R 1は担体ポリペプチド、 Xは蛋白質分解酵素認識部位、 そして R 2は 上記のポリべプチドである)  Where R 1 is the carrier polypeptide, X is the protease recognition site, and R 2 is the polypeptide described above.
で示される融合ポリベプチドをコ一 ドする塩基配列を有する DN Aを担持した発 現ベクターで形質転換された宿主細胞を培養し、 該融合ポリべプチドを発現させ、 該融合ポリべプチドを蛋白質分解酵素で開裂処理し、 R 2で示されるポリべプチ ドを単離することを特徴とする、 前記の製造方法も提供する。 R 1はカルモジュ リ ンであってもよい。 Xはトロンビンによって認識される部位であり、 且つ蛋白 質分解酵素としてトロンビンが用いられてもよい。 トロンビンによって認識され る部位は下記の配列番号 3のァミノ酸配列で示されてもよい。 A host cell transformed with an expression vector carrying DNA having a nucleotide sequence encoding the fusion polypeptide represented by is cultured, the fusion polypeptide is expressed, and the fusion polypeptide is subjected to proteolysis. The above-described production method is also provided, wherein the method is cleaved with an enzyme to isolate a polypeptide represented by R2. R 1 may be calmodulin. X is a site recognized by thrombin, and thrombin may be used as a protease. The site recognized by thrombin may be represented by the amino acid sequence of SEQ ID NO: 3 below.
L y s - V a 1 -P r o-A r g-G l y (配列番号 3 )  Lys-Va1-Pro-Arg-Gly (SEQ ID NO: 3)
さらに、 本発明は、 上記のポリペプチドを有効成分として含む医薬組成物を提 供する。 本発明の医薬組成物は、 免疫抑制剤、 遅延型過敏反応抑制剤、 抗体産生 抑制剤、 アレルギー疾患の予防および/または治療剤、 自己免疫疾患の予防およ び Zまたは治療剤、 臓器移植時の拒絶反応の抑制剤などであってもよい。 図面の簡単な説明 第 1図は、 3 B 3由来 TCRa c DNAの DNA配列を示す。 Further, the present invention provides a pharmaceutical composition comprising the above polypeptide as an active ingredient. The pharmaceutical composition of the present invention comprises an immunosuppressant, a delayed-type hypersensitivity reaction inhibitor, an antibody production inhibitor, a prophylactic and / or therapeutic agent for an allergic disease, a prophylactic and / or therapeutic agent for an autoimmune disease, or an agent for organ transplantation. And the like. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 shows the DNA sequence of 3B3-derived TCRa c DNA.
第 2図は、 p C F l — 3 B 3 TCRa VJの制限酵素地図を示す。  FIG. 2 shows a restriction map of pCF1—3B3TCRa VJ.
第 3図は、 p C F l — 3 B 3 TCRひ一 VJ C 2 5の制限酵素地図を示す。 第 4図は、 p C F 1 — TCRa— C aの制限酵素地図を示す。  FIG. 3 shows a restriction map of pCF1 — 3B3 TCR Hi VJC25. FIG. 4 shows a restriction map of pCF1—TCRa—Ca.
第 5図は、 0 V A抗原感作により惹起されるアレルギー反応に対する組換え T C Ra-C の抑制効果を示す。  FIG. 5 shows the inhibitory effect of recombinant TCRa-C on allergic reactions induced by the 0VA antigen sensitization.
第 6図は、 B 4— 9. 5 2由来 T C Rひ c DN Aの DN A配列を示す。  FIG. 6 shows the DNA sequence of the TCR or cDNA derived from B4-9.5.2.
第 7図は、 p C F l —TCRa— h uma n C の制限酵素地図を示す。  FIG. 7 shows a restriction map of pCF1—TCRa—humanC.
第 8図は、 移植拒絶反応に対する組換え T C Ra - C αの抑制効果を示す。 発明を実施するための最良の形態  FIG. 8 shows the inhibitory effect of recombinant TCRa-Cα on transplant rejection. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のポリべプチドは、 少なく とも免疫抑制作用に必須の領域またはその類 縁体を含めばよく、 例えば、 Yanagi et al., Proc. Natl. Acad. Sci. USA, 82: 3430-3434, 1985 や Morris et al. , Immunogenetics, 27:174-179, 1988 に記載 のヒ ト、 マウスを含む種々の生物の T細胞リセプタ一 α鎖の定常領域の全部、 少 なくとも免疫抑制作用に必須の領域を含むその一部、 これらのァミノ酸配列の 1 以上のアミノ酸残基が、 免疫抑制作用を有する限りにおいて、 欠失、 挿入および /または置換されているものを挙げることができる。 本発明のポリぺプチドには、 ァミノ酸配列の 1以上のァミノ酸残基が欠失、 挿入および または置換されてい てもよい配列番号 1または 2のアミノ酸配列を含むポリベプチドが含まれる。 本発明のポリペプチドは、 後述するような遣伝子組換え技術や、 既知のァミノ 酸配列に基づく化学合成法などにより製造することができる。  The polypeptide of the present invention may include at least a region essential for immunosuppressive action or an analog thereof. For example, Yanagi et al., Proc. Natl. Acad. Sci. USA, 82: 3430-3434, 1985 and Morris et al., Immunogenetics, 27: 174-179, 1988, all the constant regions of the T-cell receptor-α chain of various organisms, including humans and mice, which are essential for at least immunosuppressive action. As long as one or more amino acid residues of these amino acid sequences, including a region thereof, have an immunosuppressive action, deletion, insertion and / or substitution can be mentioned. The polypeptides of the present invention include polypeptides comprising the amino acid sequence of SEQ ID NO: 1 or 2, wherein one or more amino acid residues of the amino acid sequence may be deleted, inserted and / or substituted. The polypeptide of the present invention can be produced by a gene recombination technique as described below, a chemical synthesis method based on a known amino acid sequence, or the like.
本発明ポリペプチドの免疫抑制作用は、 抗原非特異的な作用である。 また、 抗 体産生という体液性免疫反応だけではなく、 細胞性免疫反応も抑制する。 本発明 のポリべプチドの他の好ましい特性としては、 可変領域を含む TCRaの投与で 見られるようなそれ自体に対する抗体の産生を実質的に惹起しないことである。 ここで 「抗体の産生を実質的に惹起しない」 とは、 後述の実施例 9および 1 4に 示す方法で、 投与後少なく とも 1 4日目までにウェスタンプロッ 卜で検出可能な 量の抗体が血中に認められないことである。 ポリペプチドの抗原非特異的な免疫抑制活性は、 本願実施例に示すような i n V i voで動物に投与した場合の免疫抑制作用の有無により容易に判定できる。 The immunosuppressive action of the polypeptide of the present invention is an antigen-nonspecific action. It also suppresses not only the humoral immune response of antibody production but also the cellular immune response. Another preferred property of the polypeptides of the present invention is that they do not substantially elicit the production of antibodies to themselves as seen with administration of TCRa containing the variable region. Here, "substantially does not induce antibody production" means that an amount of the antibody detectable by the western blot is detected by at least 14 days after the administration, as described in Examples 9 and 14 described below. It is not found in the blood. The antigen-nonspecific immunosuppressive activity of the polypeptide can be easily determined by the presence or absence of an immunosuppressive effect when administered to animals in vivo as described in the Examples of the present application.
また、 本発明ポリペプチドは、 糖鎖を有するものであってもよい。 糖鎖付加さ れた本発明ポリペプチドは、 後述するように、 例えば哺乳動物細胞や酵母細胞な どの糖蛋白質を産生する能力を有する宿主細胞を用いた分泌発現による遺伝子組 換え産物として製造し得る。  Further, the polypeptide of the present invention may have a sugar chain. The glycosylated polypeptide of the present invention can be produced as a recombinant product by secretory expression using a host cell capable of producing a glycoprotein such as a mammalian cell or a yeast cell, as described below. .
本発明は、 また、 T細胞リセプター 鎖の定常領域の一部または全部を実質的 に含み、 免疫抑制作用を有するが、 投与によりそれ自体に対する抗体の産生を実 質的に惹起しないポリぺプチドをコ一ドする D N Aを提供する。 本発明の D N A は、 上述の本発明ポリベプチドを遗伝子組換え技術により製造するために使用で きる。 ここで、 「コードする」 とは、 本発明ポリペプチドのアミノ酸配列情報が その D N Aの塩基配列上に暗号化されていることをいい、 種々の宿主ノベクター 系において直接発現或は融合蛋白の形で細胞内或は分泌生産するための適切な他 のァミノ酸配列をコードする塩基配列を適宜付加して発現させれば、 本発明ポリ ぺプチドの製造が可能となるものを意味する。 直接発現法により本発明ポリぺプ チドを分泌発現しょうとする場合には、 その宿主に応じた既に知られている他の 分泌蛋白のシグナルべプチドをコ一ドする塩基配列を、 本発明ポリべプチドをコ ードする塩基配列の上流に付加することにより行うことができる。 また、 宿主細 胞内で発現させる場合には、 本発明ポリべプチドをコ一ドする塩基配列の上流に 翻訳開始コ ドンを付加することにより行うことができる。 これらの技術は、 いず れも遗伝子組換え技術分野の当業者には周知の手法であり、 適宜実施し得る。 ま た、 融合蛋白発現における本発明 D N Aの具体的態様としては、  The present invention also provides a polypeptide which substantially comprises part or all of the constant region of a T cell receptor chain, has an immunosuppressive effect, but does not substantially induce the production of an antibody against itself upon administration. Provides the coding DNA. The DNA of the present invention can be used for producing the above-described polypeptide of the present invention by gene recombination technology. Here, the term "encode" means that the amino acid sequence information of the polypeptide of the present invention is encoded on the base sequence of the DNA, and is directly expressed in various host vector systems or in the form of a fusion protein. This means that the polypeptide of the present invention can be produced by appropriately adding a base sequence encoding another amino acid sequence suitable for intracellular or secretory production. When the polypeptide of the present invention is to be secreted and expressed by the direct expression method, a nucleotide sequence encoding another known secretory protein signal peptide depending on the host is used. This can be done by adding a peptide upstream of the nucleotide sequence to be coded. In addition, expression in a host cell can be carried out by adding a translation initiation codon upstream of a nucleotide sequence encoding the polypeptide of the present invention. Any of these techniques is a technique well known to those skilled in the gene recombination technical field, and can be appropriately implemented. Further, specific embodiments of the DNA of the present invention in expressing a fusion protein include:
以下の式: The following formula:
R 1 - X - R 2  R 1-X-R 2
(式中、 R 1は担体ポリペプチド、 Xは蛋白質分解酵素認識部位、 そして R 2は T細胞リセプター 鎖の定常領域の一部または全部を実質的に含み、 免疫抑制作 用を有するが、 投与によりそれ自体に対する抗体の産生を実質的に惹起しないポ リベプチドである)  (Where R 1 is a carrier polypeptide, X is a protease recognition site, and R 2 contains part or all of the constant region of the T cell receptor chain and has an immunosuppressive effect. Is a polybeptide that does not substantially elicit the production of antibodies against itself.)
で示される融合ポリべプチドをコ— ドする塩基配列を有する D N Aが挙げられる c 融合蛋白発現法において使用できる本発明 DN Aの好ましい態様として、 R 1に ついてはカルモジュリンカ、 また、 Xについてはトロンビン認識部位配列 (特に 好ましくは L y s— V a 1— P r o— A r g— G l yの配列) が挙げられる (Is hii et al., J. Immunol. Methods, 186 : 27-36, 1995参照) 力く、 これに限定さ れるものではない。 あるいはまた、 他の周知の融合蛋白法による遺伝子組換え製 造技術 (たとえば、 特開昭 5 4 - 1 4 5 2 8 9号参照) を用いることができる。 本発明 DN Aの作成は、 c DN Aライブラリ一からのクローニングや DN A合 成により、 またはこれにより得られた DNAをォリゴヌクレオチド部位特異的突 然変異法やカセッ 卜変異法等の部位特異的突然変異技術を用いて改変することに より、 行うことができる。 In shown are fused Poribe peptide co - sul having the nucleotide sequence c which include DNA In a preferred embodiment of the DNA of the present invention that can be used in the fusion protein expression method, R1 is a calmodulinka, and X is a thrombin recognition site sequence (particularly preferably Lys-Va1-Pro-Arg-G). (sequence of ly) (see Ishii et al., J. Immunol. Methods, 186: 27-36, 1995). Alternatively, other well-known techniques for recombinant production by a fusion protein method (see, for example, JP-A-54-145289) can be used. The DNA of the present invention is prepared by cloning from the cDNA library or synthesizing the DNA, or by subjecting the obtained DNA to site-directed mutagenesis or cassette mutagenesis. This can be achieved by modification using a genetic mutation technique.
T C R α遺伝子及びその構造については、 ヒ ト、 マウスを含む種々の生物のも のについて既に知られているので(例えば、 Yanagi et al. , Pro Natl. Acad. Sci. USA, 82:3430-3434, 1985 や Morris et al. , Immunogenetics, 27 : 174-1 79, 1988の第 7図参照)、 これら公知の塩基配列或はアミノ酸配列情報に基づき、 c DN Aライブラリ一から P CR法や DN A合成技術等を用いて TCR 定常領 域をコードする D N Aを適宜取得 Z作成することができる。  The TCR α gene and its structure are already known for various organisms including humans and mice (for example, Yanagi et al., Pro Natl. Acad. Sci. USA, 82: 3430-3434). , 1985 and Morris et al., Immunogenetics, 27: 174-1 79, 1988), based on these known base sequence or amino acid sequence information, the PCR method and the DNA The DNA encoding the TCR constant region can be appropriately obtained using synthetic techniques or the like.
c DNAライブラリ一から取得する方法については、 例えばマウスの C α領域 の場合には、 本願実施例に開示しているように、 公知のマウス Τ細胞株から慣用 の手法により c DNAライブラリ一を作成し、 既に知られているマウス TCRa の C 領域の塩基配列に基づき作成したプライマーを用いた P CR法により、 該 TCRa c DNAを取得することができ、 この c DNAを铸型としてマウス C α の C領域 (第 1図のァミ ノ酸配列の 1 3 2〜2 4 1 ) に対応する DN Α断片を増 幅するようなプライマーを用いて再度 P C R法を行い、 所望の DN A断片をえる ことができる。 また、 後者のプライマーを c DNAライブラリ一に直接用いて P CR法を行ない、 所望の DN A断片をえることもできる。 ヒ ト C a領域の場合に も、 公知のヒ ト T細胞株から c DNAを作成し、 公知であるヒ ト TCR の C a 領域の塩基配列に基づき作成したプライマ一を用いて、 前述マウスの場合と同様 の手法により所望の DN A断片を得ることができる。  For the method of obtaining from the cDNA library, for example, in the case of the mouse Cα region, as described in the present example, the cDNA library is prepared from a known mouse Τ cell line by a conventional method. The TCRa cDNA can be obtained by the PCR method using a primer prepared based on the known nucleotide sequence of the C region of mouse TCRa. Perform PCR again using primers that amplify the DNA fragment corresponding to the C region (132 to 241 of the amino acid sequence in Fig. 1) to obtain the desired DNA fragment. be able to. Alternatively, the PCR method can be performed using the latter primer directly in the cDNA library to obtain a desired DNA fragment. In the case of the human Ca region, cDNA was also prepared from a known human T cell line, and a primer prepared based on the known nucleotide sequence of the Ca region of the human TCR was used for the mouse mouse. The desired DNA fragment can be obtained in the same manner as in the above.
DN A化学合成により取得する場合には、 例えばアルトンらの方法 (特表昭 5 9一 5 0 1 0 9 7 ) によって、 公知の C αのアミ ノ酸配列に基づき、 必要であれ ば優先コ ドンの使用も考慮して、 塩基配列をデザインし、 Cひ領域をコードする DN Α断片を得ることができる。 When the DNA is obtained by chemical synthesis, for example, the method of Alton et al. Based on the known amino acid sequence of Cα, if necessary, considering the use of preferential codons, the nucleotide sequence is designed and DN Α Fragments can be obtained.
また、 公知の定常領域アミノ酸配列から 1以上のアミ ノ酸残基が欠失、 挿入及 び Z又は置換されたアミノ酸配列を有するポリべプチドについても、 上述した T CR 定常領域をコードする DN Aを元にオリゴヌクレオチド部位特異的突然変 異法ゃカセッ ト変異法等の部位特異的突然変異技術を用いて (例えば、 D. F. Mar k等, Pro Natl. Acad. Sci. USA, Vol.81, p5662-5666, 1984、 S. Inouye等, Pro Natl. Acad. Sci. USA, Vol.79, p3438- 3441, 1982、 PCT W085/00817, 1985年 2月 28日公開、 R. P. Wharton等, Nature, Vol.316, p601-605, Aug. 15, 1985等参照) 、 また DNAの化学合成により、 そのような変異体ポリペプチドを コードする DN Aを作成することができる。  In addition, a polypeptide having an amino acid sequence in which one or more amino acid residues have been deleted, inserted, Z or substituted from a known constant region amino acid sequence also includes a DNA encoding the above-mentioned TCR constant region. Using site-directed mutagenesis techniques such as oligonucleotide site-directed mutagenesis and cassette mutation (for example, DF Mark et al., Pro Natl. Acad. Sci. USA, Vol. 81, p5662). -5666, 1984, S. Inouye et al., Pro Natl. Acad. Sci. USA, Vol. 79, p3438-3441, 1982, PCT W085 / 00817, published February 28, 1985, RP Wharton et al., Nature, Vol. 316, p601-605, Aug. 15, 1985, etc.), and DNA encoding such a mutant polypeptide can be produced by chemical synthesis of DNA.
また、 本発明によれば、 上記の本発明 DN Aを組み込んだ発現べクタ一、 該べ クタ一で形質転換された宿主細胞、 該宿主細胞を培養し本発明ポリぺプチドを分 離 ·精製する製造方法が提供される。  Further, according to the present invention, an expression vector incorporating the above-described DNA of the present invention, a host cell transformed with the vector, and culturing the host cell to isolate and purify the polypeptide of the present invention. A manufacturing method is provided.
この場合の宿主細胞としては、 原核生物 (例えば細菌、 好ましくは大腸菌) 、 真核生物 (例えば酵母、 昆虫、 あるいは哺乳動物) 細胞を用いることができる。 哺乳動物細胞の例としては、 COS細胞、 チャイニーズハムスター卵巣 (Chines e Hamster Ovary ) 細胞、 X63.6.5.3. 細胞、 C- 127細胞、 BHK (Baby Hamst er Kidney ) 細胞、 ヒ ト由来細胞 (例えば、 HeLa細胞) 等があげられる。 酵母の 例としては、 パン酵母 (Saccharomyces cerevisiae) やメタノール資化性酵母 (Pic ia pastoris ) 等があげられる。 昆虫細胞の例としては、 蚕培養細胞 (例 えば、 Sf21細胞) 等があげられる。  In this case, prokaryotic (eg, bacteria, preferably E. coli) and eukaryotic (eg, yeast, insect, or mammalian) cells can be used as host cells. Examples of mammalian cells include COS cells, Chinese hamster ovary (Chines e Hamster Ovary) cells, X63.6.5.3. Cells, C-127 cells, BHK (Baby Hamster Kidney) cells, and human-derived cells (eg, , HeLa cells) and the like. Examples of yeast include baker's yeast (Saccharomyces cerevisiae) and methanol-assimilating yeast (Picia pastoris). Examples of insect cells include silkworm cultured cells (eg, Sf21 cells).
これらの宿主細胞を形質転換させるために用いられるベクターには、 大腸菌用 として pKC30 (Shimatake H. and M. Rosenberg 、 Nature^ 292、 128-132、 19 81) 、 pTrc99A (Amann B.ら、 Gene6、 69、 301-315、 1988) 等があげられる。 哺乳動物細胞用としては PSV2- neo (Southern and Berg ; J. Mol. Appl. Genet.、 1、 327-341、 1982) 、 pCAGGS (Niwaら; Gene、 108、 193-200、 1991) 、 ある いは pcDい SR ひ 296 (Takebeら : Mol. Cell. Biol. 、 8、 466-472、 1988) 等 がある。 酵母用としては pG- 1 (Sc ena M. and Yamamo to K. R.; Sc i ence, 241 、 965-967、 1988) 等がある。 蚕細胞用としては、 組み換えウィルス作製用 卜ラン スファ一ベクタ一 pAc373 (Luckowら、 B i o/Techno l ogy、 6、 47-55、 1988) 等が める。 Vectors used to transform these host cells include pKC30 (Shimatake H. and M. Rosenberg, Nature ^ 292, 128-132, 1981), pTrc99A (Amann B. et al., Gene 6, 69, 301-315, 1988). For mammalian cells, PSV2-neo (Southern and Berg; J. Mol. Appl. Genet., 1, 327-341, 1982), pCAGGS (Niwa et al .; Gene, 108, 193-200, 1991), and the like are available. Is PCD SR 296 (Takebe et al .: Mol. Cell. Biol., 8, 466-472, 1988), etc. There is. For yeast, pG-1 (Scena M. and Yamamo to KR; Science, 241, 965-967, 1988) and the like are exemplified. For silkworm cells, transfer vector pAc373 for recombinant virus production (Luckow et al., Bio / Technology, 6, 47-55, 1988) and the like are listed.
これらのベクタ一は必要に応じて複製起点、 選択マーカ一、 プロモータ一を含 み、 さらに真核細胞用のベクタ一には、 必要に応じて R N Aスプライス部位、 ポ リアデニル化シグナル等が付加される。  These vectors contain an origin of replication, a selection marker, and a promoter, if necessary, and an eukaryotic cell vector may contain an RNA splice site, a polyadenylation signal, etc., as necessary. .
複製起点として、 哺乳動物細胞用ベクターには、 SV40、 アデノウイルス、 ゥシ パピローマウィルス由来のもの等を用いることができる。 大腸菌用べクタ一とし ては、 Co l El、 R 因子、 F 因子由来のもの等を用いることができる。 酵母用とし ては 2 / mD N A、 ARS1由来のもの等を用いることができる。  As the origin of replication, a vector derived from SV40, adenovirus, or espapilloma virus can be used as a vector for mammalian cells. As a vector for Escherichia coli, those derived from CollEl, R factor, F factor and the like can be used. For yeast, those derived from 2 / mDNA, ARS1, etc. can be used.
遣伝子発現用プロモーターとして哺乳動物細胞用ベクターには、 ウィルス由来 であるレトロウイルス、 ポリオ一マウィルス、 アデノウイルス、 SV40由来のもの 等あるいは、 染色体由来のもの (例えば、 EF1 - α ) 等を用いることができる。 大 腸菌用ベクターとしてはバクテリオファージ λ由来のものや、 t rp、 l pp、 lac, tac プロモーター等を用いることができる。 パン酵母用としては ADH、 PH05、 GP D 、 PGK 、 MAF αプロモーター、 メタノール資化性酵母については A0X1プロモー ター等を用いることができる。 蚕細胞用ベクターとしては核多角体病ウィルス由 来のもの等を用いることができる。  As a promoter for gene expression, a vector derived from a virus, such as retrovirus, poliovirus, adenovirus, SV40, or a chromosome (eg, EF1-α), is used as a vector for mammalian cells. be able to. As a vector for Escherichia coli, a vector derived from bacteriophage λ, a trp, lpp, lac, or tac promoter can be used. ADH, PH05, GPD, PGK, and MAFα promoter can be used for baker's yeast, and A0X1 promoter can be used for methanol-assimilating yeast. As a vector for silkworm cells, a vector derived from nucleopolyhedrovirus can be used.
選択マ一カーとして、 哺乳動物細胞用ベクターには、 ネオマイシン (neo ) 耐 性遣伝子、 チミ ジンキナーゼ (TK) 遗伝子、 ジヒ ドロ葉酸還元酵素 (DHFR) 遺伝 子、 大腸菌キサンチングァニンホスホリボンルトランスフェラーゼ (Ecogp t) 遣 伝子等を用いることができる。 大腸菌用べクタ一としては、 カナマイシン耐性遺 伝子、 アンピシリ ン耐性遺伝子、 テ トラサイク リ ン耐性遺伝子等を用いることが できる。 酵母用としては Leu2、 TrpK Ura3遺伝子等を用いることができる。  As selection markers, vectors for mammalian cells include neomycin (neo) resistance gene, thymidine kinase (TK) gene, dihydrofolate reductase (DHFR) gene, and Escherichia coli xanthinganine phospho- Ribbon transferase (Ecogpt) gene or the like can be used. As a vector for Escherichia coli, a kanamycin resistance gene, an ampicillin resistance gene, a tetracycline resistance gene and the like can be used. For yeast, Leu2, TrpK Ura3 genes and the like can be used.
以上の様な宿主一ベクター系を用いて本発明ポリぺプチドを得るためには、 上 記ベクターの適当な部位に本発明 D N Aを組み込んだ組み換え D N A体により、 宿主細胞を形質転換させた後、 得られた形質転換体を培養し、 さらに細胞内ある いは培養液から該ポリべプチドを分離 ·精製すればよい。 具体的な本発明ポリベプチド製造方法としては、 次の態様が挙げられる。 In order to obtain the polypeptide of the present invention using the host-one vector system as described above, after transforming a host cell with a recombinant DNA in which the DNA of the present invention is incorporated into an appropriate site of the above vector, The obtained transformant may be cultured, and the polypeptide may be separated and purified from the cells or the culture solution. The specific embodiment of the method for producing the polypeptide of the present invention includes the following embodiments.
宿主に応じた既に知られている他の分泌蛋白のシグナルぺプチドをコ一ドする 塩基配列を、 本発明ポリべプチドをコ一ドする塩基配列の上流に付加する態様の 本発明 D N Aを用いて遺伝子組換えによる生産を行なう場合には、 培養液から該 ポリベプチドを分離精製する。  Using the DNA of the present invention in an embodiment in which a nucleotide sequence encoding a signal peptide of another known secretory protein depending on the host is added upstream of the nucleotide sequence encoding the polypeptide of the present invention. When the production is performed by genetic recombination, the polypeptide is separated and purified from the culture solution.
また、 本発明ポリべプチドをコ一ドする塩基配列の上流に翻訳開始コ ドンを付 加する態様の本発明 D N Aを用いて遺伝子組換えによる生産を行なう場合には、 宿主細胞内に該ポリぺプチドが生産されるので、 細胞内から該ボリぺプチドを分 離精製する。  In addition, when production is performed by genetic recombination using the DNA of the present invention in which a translation initiation codon is added upstream of the nucleotide sequence encoding the polypeptide of the present invention, the polypeptide may be introduced into host cells. Since the peptide is produced, the polypeptide is separated and purified from the cells.
融合蛋白発現法を用いた本発明ポリベプチド製造方法の場合は、  In the case of the polypeptide production method of the present invention using the fusion protein expression method,
以下の式: The following formula:
R 1 - X - R 2  R 1-X-R 2
(式中、 R 1は担体ポリペプチド、 Xは蛋白質分解酵素認識部位、 そして R 2は T細胞リセプタ一 鎖の定常領域の一部または全部を実質的に含み、 免疫抑制作 用を有するが、 投与によりそれ自体に対する抗体の産生を実質的に惹起しないポ リベプチドである)  (Wherein R 1 is a carrier polypeptide, X is a protease recognition site, and R 2 substantially or partially contains the constant region of one T cell receptor chain, and has an immunosuppressive effect. It is a polypeptide that does not substantially elicit the production of antibodies against itself upon administration.)
で示される融合ポリベプチドをコ一 ドする塩基配列を有する D N Aを担持した発 現ベクターで形質転換された宿主細胞を培養し、 該融合ポリペプチドを発現させ、 該融合ポリぺプチドを蛋白質分解酵素で開裂処理し、 R 2で示されるポリぺプチ ドを単離する。 R 1の担体ポリペプチドは、 融合ポリペプチドを封入体、 外質、 外膜、 または好ましくは外部環境へと輸送するように機能するものであればよく、 T細胞リセプターな鎖以外の原核または真核細胞由来のいかなるポリぺプチドで あってもよい。 なお、 R 1についてはカルモジュリンが、 また、 Xについてはト 口ンビン認識部位配列 (特に好ましくは L y s—V a 1— P r o— A r g— G 1 yの配列) が、 それぞれ例として挙げられるが、 融合発現に関する本発明ポリべ プチド製造方法は、 本発明 D N Aに関するところで既に述べたように、 これに限 定されるものではないことはいうまでもない。 Culturing a host cell transformed with an expression vector carrying a DNA having a nucleotide sequence encoding the fusion polypeptide represented by, expressing the fusion polypeptide, and converting the fusion polypeptide with a protease. After cleavage, the polypeptide represented by R2 is isolated. The carrier polypeptide of R1 may be any that functions to transport the fusion polypeptide to the inclusion body, extracellular membrane, outer membrane, or, preferably, to the external environment, and may be a prokaryotic or true non-T cell receptor chain. It can be any polypeptide derived from a nuclear cell. Examples of R 1 include calmodulin, and examples of X include a thrombin recognition site sequence (particularly preferably a sequence of Lys—Va 1—Pro—Arg—G 1 y). However, it goes without saying that the method for producing the polypeptide of the present invention relating to fusion expression is not limited to this, as already described for the DNA of the present invention.
本発明の製造方法における、 発現産物 (融合蛋白発現法の場合は、 開裂処理前 及び Z又は後の産物) の分離精製については、 一般にタンパク質の精製に用いる 工程 (イオン交換クロマトグラフィー、 レクチンァフィ二ティークロマ卜グラフ ィ一、 色素吸着クロマトグラフィー、 疎水相互クロマトグラフィー、 ゲル濾過ク ロマ 卜グラフィ一、 逆相クロマ トグラフィー、 へパリ ンァフィ二ティークロマ 卜 グラフィ一、 硫酸化ゲルクロマ 卜グラフィ一、 ハイ ドロキンルァパタイ トクロマ 卜グラフィー、 金属キレーティ ングクロマ トグラフィー、 等電点クロマ トグラフ ィー、 分取電気泳動法、 および等電点電気泳動法など) 等慣用の精製手段を適宜 組み合わせて用いることができるが、 発現産物の安定化のため精製工程において グリセロールを加えることが好ま しい。 In the production method of the present invention, the separation and purification of an expression product (in the case of a fusion protein expression method, before and / or after cleavage treatment) is generally used for protein purification. Process (ion exchange chromatography, lectin affinity chromatography, dye adsorption chromatography, hydrophobic mutual chromatography, gel filtration chromatography, reverse phase chromatography, heparin affinity chromatography, Conventional purification methods, such as sulfated gel chromatography, hydroquinone patite chromatography, metal chelating chromatography, isoelectric focusing, preparative electrophoresis, and isoelectric focusing. Can be used in combination as appropriate, but it is preferable to add glycerol in the purification step for stabilizing the expression product.
また本発明は、 本発明ボリべプチドを有効成分として含む医薬組成物を提供す る。 その一態様として、 免疫抑制剤が挙げられる。 本発明の免疫抑制剤は、 多く の免疫疾患の治療に非常に有用である。 ひとつの理由は、 可変領域を用いる場合、 組織適合性抗原と完全に合致するタイプのものを患者毎に選択しなければならな いのに対し、 定常領域はすべてに共通であるためそのような選択の必要なく用い ることができるからである。  Further, the present invention provides a pharmaceutical composition comprising the boreptide of the present invention as an active ingredient. One embodiment thereof is an immunosuppressant. The immunosuppressive agent of the present invention is very useful for treating many immune diseases. One reason is that when variable regions are used, a type that perfectly matches the histocompatibility antigen must be selected for each patient, whereas the constant regions are common to all. It can be used without the need for selection.
実施例で示すように、 本発明ボリペプチドは、 アレルギー疾患発症の引き金と なる I gEや IgGlはクリアに抑制する。 さらに重要なことは、 すでに抗原によって プライムされた状態のマウスに投与しても、 次の抗原チヤレンジによる抗体産生 の上昇も抑制するし、 また、 on-go ing抗体産生の状態にあるものでも抑制すると いうことが示されていることである。 これらの効果を示す薬剤はこれまで、 強い 副作用が問題となっているステロイ ド剤以外には見出されていない。 また、 抗体 産生抑制という体液性免疫反応抑制以外に、 遅延型過敏反応といつた細胞性免疫 も抑制する。  As shown in the examples, the polypeptide of the present invention clearly suppresses IgE and IgG1, which trigger the onset of allergic disease. More importantly, even when administered to mice that have been primed with an antigen, the increase in antibody production due to the next antigen challenge is suppressed, and those that are in the on-going antibody production state are also suppressed. That is what is shown. No drug showing these effects has been found so far, except for steroid drugs, for which strong side effects are a problem. In addition to suppressing humoral immune response, which is the suppression of antibody production, it also suppresses cell-mediated immunity such as delayed hypersensitivity.
今日、 体液性免疫と細胞性免疫の調節は、 二つのタイプのヘルパー T細胞 (Thl と Th2) のバランスによって制御されていると考えられるようになってきたが、 本発明ボリベプチドはいずれの免疫応答に対しても抑制作用を示すことから、 非 常にユニークであり、 多くの免疫疾患治療に有効である可能性を示している。 従 つて、 本発明ボリペプチドを含有する免疫抑制剤は、 抗原非特異的に強力な抗体 産生抑制、 あるいは遅延型過敏反応抑制効果を示すため、 種々のアレルギー疾患 も自己免疫疾患、 あるいは臓器移植時の拒絶反応等の抑制剤として用いることが できる。 Today, the regulation of humoral immunity and cellular immunity is thought to be controlled by the balance between two types of helper T cells (Thl and Th2). It also has an inhibitory effect on, and is very unique, indicating that it may be effective in treating many immune diseases. Therefore, since the immunosuppressant containing the polypeptide of the present invention exhibits a potent anti-antigen non-specific antibody production inhibitory effect or a delayed type hypersensitivity reaction inhibitory effect, various allergic diseases include autoimmune diseases and organ transplantation. Can be used as an inhibitor of rejection it can.
本発明の免疫抑制剤は、 治療上有効量の本発明のポリペプチドとともに、 有用 で好適な希釈剤、 防腐剤、 可溶化剤、 乳化剤、 アジュバントおよび/または担体 を含有してもよい。 ここで、 「治療上有効量」 という用語は、 指定の条件および 投与法に対して治療効果を提供する量を示す。 このような製剤は、 液体であるか、 あるいは凍結乾燥またはさもなくば乾燥された剤形であって、 種々の pH、 および イオン強度から成る緩衝剤 (例えば卜リス- 塩酸、 酢酸塩、 燐酸塩) より選択し た希釈剤、 表面に吸着しないようにするためのアルブミ ンまたはゼラチンのよう な添加剤、 界面活性剤 (例えば Tween 20、 Tween 80、 P l uron i c F68、 胆汁酸塩) 、 可溶化剤 (例えばグリセロール、 ポリエチレングリコール) 、 酸化防止剤 (例え ばァスコルビン酸、 メタ重亜硫酸ナトリウム) 、 防腐剤 (例えばチメロサール、 ベンジルアルコール、 パラベン) 、 賦形剤または等張化剤 (例えばラク 卜ース、 マンニトール) を配合した製剤が含まれる。 また、 ポリペプチドに対するポリエ チレングリコールのような重合体との共有結合、 金属イオンとの錯体化、 あるい はポリ乳酸、 ポリグリコール酸、 ヒ ドロゲルなどのような重合化合物の粒状製剤 中またはその表面上への、 あるいはリボソーム、 ミクロエマルジヨ ン、 ミセル、 単層または多層小胞、 赤血球ゴースト、 またはスフ X口プラスト中への当該物質 の取り込みを包含する。 このような組成物は、 本発明ポリペプチドの物理的状態、 溶解性、 安定性、 i n v i vo 放出速度、 i n v i vo クリアランスに影響を及ぼすと思 われるので、 組成の選択は、 本発明ポリペプチドの有する物理的および化学的特 性による。 本発明の免疫抑制剤の別の剤形としては、 粒状形態、 保護被膜で被覆 された形態、 プロテアーゼ阻害剤または吸収促進剤を配合した形態などが挙げら れる。 本発明の免疫抑制剤は、 非経口、 経肺、 経鼻、 および経口を含めた種々の 投与経路で投与されうる。  The immunosuppressive agent of the present invention may contain a useful and suitable diluent, preservative, solubilizer, emulsifier, adjuvant and / or carrier together with a therapeutically effective amount of the polypeptide of the present invention. As used herein, the term "therapeutically effective amount" refers to an amount that provides a therapeutic effect for a specified condition and mode of administration. Such formulations may be in liquid or lyophilized or otherwise dried dosage forms, having buffers of varying pH and ionic strength (eg, tris-HCl, acetate, phosphate, etc.). ) Yes, diluents of choice, additives such as albumin or gelatin to prevent adsorption on surfaces, surfactants (eg Tween 20, Tween 80, Pluronic F68, bile salts), yes Solubilizers (eg, glycerol, polyethylene glycol), antioxidants (eg, ascorbic acid, sodium metabisulfite), preservatives (eg, thimerosal, benzyl alcohol, paraben), excipients or tonicity agents (eg, lactate) And mannitol). In addition, the covalent bond of a polypeptide to a polymer such as polyethylene glycol, complexation with a metal ion, or in or on the surface of a granular preparation of a polymer compound such as polylactic acid, polyglycolic acid, or hydrogel. Includes the incorporation of the substance onto or into ribosomes, microemulsions, micelles, unilamellar or multilamellar vesicles, erythrocyte ghosts, or sup X-mouth plasts. Such a composition is considered to affect the physical state, solubility, stability, in vivo release rate, and in vivo clearance of the polypeptide of the present invention. Depends on physical and chemical properties. Other dosage forms of the immunosuppressant of the present invention include a granular form, a form coated with a protective film, a form containing a protease inhibitor or an absorption enhancer, and the like. The immunosuppressive agent of the present invention can be administered by various administration routes including parenteral, pulmonary, nasal, and oral.
本発明のポリベプチドを有効成分として含む免疫抑制剤は、 活性成分として通 常 1 g Z k g体重〜 2 m g Z k g体重を、 病状、.性別及び投与経路等に応じて- 一日 1乃至数回程度投与することができる。  The immunosuppressant containing the polypeptide of the present invention as an active ingredient is usually 1 g Z kg body weight to 2 mg Z kg body weight as an active ingredient, depending on the disease state, sex, administration route, etc.-once or several times a day. The degree can be administered.
本発明を以下の実施例によりさらに具体的に説明する。 これらの実施例は説明 のためのものであり、 本発明の範囲を限定するものではない。 〔実施例 1〕 ハチ毒ホスホリパーゼ A 2に特異的なサブレッサー T細胞株の T C Rな遺伝子の c DN Aクローニングと発現 The present invention will be more specifically described by the following examples. These examples are illustrative and do not limit the scope of the invention. Example 1 cDNA Cloning and Expression of TCR Gene of Sublesser T Cell Line Specific to Bee Venom Phospholipase A2
A. TC R 遺伝子の c DNAクローニング A. cDNA cloning of TCR gene
ハチ毒ホスホリパ一ゼ A 2 (以下、 「P LA 2」 という) に特異的な TCRa 及び^鎖を発現する PL A 2特異的サブレッサー T細胞バイプリ ドーマ株 3 B 3 細胞が確立されている (モリら, Int. Immunol. , 5:833-842, 1993) 。 この 3 Β 3細胞の T C R a c DN Aの取得についても既に報告されている (前出の国際公 開 WO 9 5— 1 6 4 6 2号) 。 具体的には、 T C R を、 ムルスら, Nucl. Acid. Res., 8:3895-3950, 1980 に記載された方法に従って P C Rによりクローニング した。 ファース ト トラック®mRNA単離キッ ト (インビトロゲン (Ιπν roge n) ) を使用して、 5 X 1 07 の 3 B 3細胞 (前述) から mRN Aを単離した。 c DNA合成システム (フアルマシア) を使用して c DN Aを生成させた。 その 生成後に、 T 4 リガーゼ (タカラ) を使用して c DNAを 5' 末端及び 3' 末端 で連結して環状 DN Aを構築した。 マウス C DN Aをコードするオリゴヌクレ ォチドプライマ一を DN A/RNA合成装置 (アプライ ド ·バイオシステム) に よりホスホアミダイ ド (phosphoramidite) 法を用いて合成した (バウケージ (B eaucage) ら, Tetrahedron Lett. , 22: 1859-1862, 1981) 。 これらのプライマ 一の配列は以下の通りである。 A PLA2-specific subcellular T cell bipridoma strain 3B3 cell expressing TCRa and ^ chain specific to bee venom phospholipase A2 (hereinafter referred to as "PLA2") has been established ( Mori et al., Int. Immunol., 5: 833-842, 1993). Acquisition of TCR acDNA from 33 cells has already been reported (International Publication WO95-164642 mentioned above). Specifically, the TCR was cloned by PCR according to the method described in Murus et al., Nucl. Acid. Res., 8: 3895-3950, 1980. Use Fast preparative track ®mRNA isolation kit (Invitrogen (Ιπν roge n)), the mRNA A was isolated from 5 X 1 0 7 of 3 B 3 cells (described above). cDNA was generated using a cDNA synthesis system (Pharmacia). After its generation, the cDNA was ligated at the 5 'and 3' ends using T4 ligase (Takara) to construct a circular DNA. Oligonucleotide primers encoding mouse CDN A were synthesized using the phosphoramidite method with a DNA / RNA synthesizer (Applied Biosystems) (Beaucage et al., Tetrahedron Lett., 22). : 1859-1862, 1981). The sequences of these primers are as follows.
5 ' -GTGGTCCAGTTGAGGTCTGCAAGA- 3 ' (配列番号 6 )  5'-GTGGTCCAGTTGAGGTCTGCAAGA- 3 '(SEQ ID NO: 6)
5 ' - TTGAAAGTTTAGGTTCATATC - 3 ' (配列番号 7 )  5 '-TTGAAAGTTTAGGTTCATATC-3' (SEQ ID NO: 7)
P CRは、 T a q I DNAポリメラーゼ (夕カラ) により、 铸型 c DNA、 プ ライマー及び dNTPの存在下、 サーモ 'サイクラ一 (thermo cycler) 中で行った。 P C Rの条件は、 変性工程が 9 4 °Cで 1分; ァニーリ ング工程が 5 4 °Cで 1分; 及び伸長工程が 7 2°Cで 2分;で、 これらを 3 5サイクルした。 増幅した c DN Aを、 TAクローニングシステム ® (インビトロゲン) の p CR l 0 0 0ベクタ 一内にサブクローン化した。 該揷入物の DN A配列は、 ジデォキン配列決定法 PCR was performed in a Thermo 'cycler' in the presence of type I cDNA, primers and dNTPs with TaqI DNA polymerase (Even Color). The PCR conditions were as follows: denaturation step at 94 ° C. for 1 minute; annealing step at 54 ° C. for 1 minute; and elongation step at 72 ° C. for 2 minutes. The amplified cDNA was subcloned into the pCR100 vector of TA Cloning System® (Invitrogen). The DNA sequence of the input was determined by didequin sequencing.
(サンガー (Sanger) ら, Proc. Nalt. Acad. Sci. USA 74: 5463-5367, 1977(Sanger et al., Proc. Nalt. Acad. Sci. USA 74: 5463-5367, 1977.
) により確認した。 3つの異なる TCRa c DNAをクローン化し配列決定し た。 それらのうちの 2つは、 3 B 3ハイブリ ドーマの融合パートナー細胞、 つま り BW5 1 4 7 (チヱン(Chien)ら, Nature, 312:31-35, 1984;クマ一(Kumar)ら, J. Exp. Med. , 170:2183-2188, 1989) から生じたものであると同定された。 他 の TCR c DNAは BW5 1 4 7内では発現されないことが、 この TCRa遺 伝子の異なる部分をコー ドする幾つかの P C Rプライマ一を使用して確認された c このことは、 この TCR a c DNAが P LA 2特異的 T細胞から生じたことを示 すものである。 この TCRa c DNAをコードする 2つの独立クローンを単離し、 それらの DN A配列が同一であることを確認した。 この 3 B 3由来 T C Rな c D NAの DNA配列を第 1図および配列番号 4に示す。 ). Three different TCRa cDNAs were cloned and sequenced. Two of them are fusion partner cells of the 3B3 hybridoma, BW5147 (Chien et al., Nature, 312: 31-35, 1984; Kumar et al., J. Exp. Med., 170: 2183-2188, 1989) Was identified. Other TCR c DNA may be not expressed in BW5 1 4 within 7, this TCRa heritage c was confirmed using code sul several PCR primers scratch different portions of gene This means that this TCR ac This indicates that the DNA originated from the PLA2-specific T cells. Two independent clones encoding this TCRa cDNA were isolated and confirmed that their DNA sequences were identical. The DNA sequence of the 3B3-derived TCR cDNA is shown in FIG. 1 and SEQ ID NO: 4.
この TCRaは 2 6 8アミノ酸からなるオープンリ一ディ ングフレームをコー ドし、 最初の 2 0アミノ酸はシグナルべプチドであると同定された。  This TCRa encoded an open reading frame of 268 amino acids, and the first 20 amino acids were identified as signal peptides.
〔実施例 2〕 組換え 3 B 3 - T C Rな誘導体の発現系の構築 [Example 2] Construction of expression system for recombinant 3B3-TCR derivative
組換え 3 B 3— T C R αポリぺプチド (T C R αの細胞外領域) に免疫抑制活 性があることは既に知られている (前出の国際公開 WO 9 5— 1 6 4 6 2号) 。 この TCRaのどの領域が免疫抑制活性に重要な役割を示すのかを決定するため に、 3種類のデレーンョンされた組換え 3 B 3— T CR 誘導体の構築を行った 方法を記載するものである。  It is already known that recombinant 3B3-TCRα polypeptide (extracellular region of TCRα) has immunosuppressive activity (the above-mentioned international publication WO95-164642). . It describes how three delaminated recombinant 3B3-TCR derivatives were constructed to determine which regions of TCRa play an important role in immunosuppressive activity.
A. 大腸菌内での組換え 3 B 3 TCRな一 V Jの発現系の構築  A. Construction of recombinant 3B3 TCR-like VJ expression system in E. coli
実施例 1記載の 3 B 3 T CR c DN Aを担持した p CR 1 0 0 0プラスミ ド (p C R 1 0 0 0 - 3 B 3 ) から、 第 1図のアミノ酸 2 1〜1 3 2 (3 B 3由来 T CRa可変部領域 (Variable region; V領域) から結合部領域 (Joining regi on; J領域) ) をコードする DNAフラグメ ン トを、 それぞれ 5' 末端用に B a mH I部位を含有し、 3' 末端用に停止コ ドンと Xb a I部位を含有する 2つの プライマ一を使用する P CRにより増幅した。 これらのプライマーの配列は以下 の通りである。  From pCR1000 plasmid (pCR100-0-3B3) carrying 3B3TCRcDNA described in Example 1, amino acids 21-132 (FIG. 3 DNA fragment encoding the B region-derived T CRa variable region (V region) to the joining region (J region)), and a BamHI site for the 5 'end. Amplified by PCR using two primers containing a stop codon for the 3 'end and an XbaI site. The sequences of these primers are as follows.
5 ' - AATTTAGGATCCGGACAGCAAGTGCAGCAG - 3 ' (配列番号 8 )  5 '-AATTTAGGATCCGGACAGCAAGTGCAGCAG-3' (SEQ ID NO: 8)
5 ' -GACTCTAGATTACTAGTTTGGATGGACCCTAAG- 3 ' (配列番号 9 ) 增幅した DN Aフラグメ ントはァガロースゲル電気泳動により回収し、 発現プ ラスミ ド p C F lベクタ一 (J. Immunological Methods 186: 27-36, 1995) 内 にその特有の B a mH I及び Xb a I部位においてクローン化し、 この新規ブラ スミ ドを p C F 1— 3 B 3 TC R α— V Jと命名した (第 2図) 。 なお、 p C F 1ベクターは、 t r pプロモーター及び t r pターミネ一ターを保持し、 プロモ 一ターとターミネーターの間にラッ トカルモジュリンとそれに続いて トロンビン 認識 (切断) 部位、 B amH I , X b a I , N o t I制限酵素部位に対応する塩 基配列が配置されており、 該制限酵素部位に所望の蛋白の遺伝子を揷入すると融 合蛋白を発現できるようになっている。 p C F l— 3 B 3 TCRひ一 VJでコン ピテン卜 DH 5大腸菌細胞 (ATCC No. 53868) を形質転換し、 その DNA配列を 確認した。 さらに、 コンビテント W3 1 1 0大腸菌細胞 (ATCC No. 27325) を形 質転換した。 5'-GACTCTAGATTACTAGTTTGGATGGACCCTAAG-3 '(SEQ ID NO: 9) The widened DNA fragment was recovered by agarose gel electrophoresis and expressed in the expression plasmid pCF1 vector (J. Immunological Methods 186: 27-36, 1995). The clone was cloned at its unique BamHI and XbaI sites, and the new plasmid was named pCF1-3B3TCRa-VJ (Figure 2). The pCF1 vector has a trp promoter and a trp terminator, and has rat calmodulin followed by a thrombin recognition (cleavage) site between the promoter and the terminator, and BamHI, XbaI, N A base sequence corresponding to the otI restriction enzyme site is arranged, and a fusion protein can be expressed by inserting a gene of a desired protein into the restriction enzyme site. Competent DH5 E. coli cells (ATCC No. 53868) were transformed with pCFl-3B3 TCR HiVJ and the DNA sequence was confirmed. In addition, the transformant W3110 E. coli cells (ATCC No. 27325) were transformed.
B . 大腸菌内での組換え 3 B 3 TCRa— VJ C 2 5の発現系の構築  B. Construction of recombinant 3B3TCRa—VJC25 expression system in E. coli
第 1図のアミ ノ酸 2 1〜 1 5 7 ( 3 B 3由来 T CR の V、 J領域とさらに定 常領域 (C領域) の 2 5番目までのアミノ酸) をコードする DN Aフラグメ ン ト を、 それぞれ 5' 末端用に B amH I部位を含有し、 3' 末端用に停止コ ドンと X b a I部位を含有する 2つのプライマーを使用する P CRにより、 p CR 1 0 0 0— 3 B 3 TCR プラスミ ドから増幅した。 これらのプライマーの配列は以 下の通りである。  DNA fragments encoding the amino acids 21 to 157 (the V and J regions of the 3B3-derived TCR and up to the 25th amino acid of the constant region (C region)) in Fig. 1 PCR using two primers, each containing a BamHI site for the 5 'end and a stop codon and an XbaI site for the 3' end, yielded pCR100-3. Amplified from B3 TCR plasmid. The sequences of these primers are as follows.
5 ' -AATTTAGGATCCGGACAGCAAGTGCAGCAG- 3 ' (配列番号 1 0 ) 5 ' - TCCTCTAGATTACTAGGTGAACAGGCAGAGGGT - 3 ' (配列番号 1 1 ) 増幅した DNAフラグメ ン トは前項 A. 記載と同様の操作で、 p C F lベクタ —内にその特有の B amH I及び Xb a I部位においてクローン化した (第 3 図) 。 p C F l— 3 B 3 TCRa— VJ C 2 5と呼ぶこの新規なプラスミ ドでコ ンピテン ト DH 5大腸菌細胞を形質転換し、 その DN A配列を確認した。 さらに、 コンビテン ト W 3 1 1 0大腸菌細胞を形質転換した。  5'-AATTTAGGATCCGGACAGCAAGTGCAGCAG- 3 '(SEQ ID NO: 10) 5'-TCCTCTAGATTACTAGGTGAACAGGCAGAGGGT- 3' (SEQ ID NO: 11) It was cloned at its unique BamHI and XbaI sites (FIG. 3). Competent DH5 E. coli cells were transformed with this novel plasmid, designated pCF1- 3B3TCRa-VJC25, and its DNA sequence was confirmed. In addition, transformant W3110 E. coli cells were transformed.
C. 大腸菌内での組換え TCRa- Cひの発現系の構築  C. Construction of recombinant TCRa-C expression system in E. coli
第 1図のアミノ酸 1 3 2〜2 4 1をコードする (マウス由来 TCR の。領域 のアミノ酸) をコードする DN Aフラグメントを、 それぞれ 5' 末端用に Xb a I部位を含有し、 3' 末端用に停止コ ドンと No t I部位を含有する 2つのブラ イマ一を使用する P CRにより、 p CR l 0 0 0— 3 B 3 TCRaプラスミ ドか ら増幅した。 これらのプライマーの配列は以下の通りである。 The DNA fragments encoding amino acids 1332 to 2441 in FIG. 1 (amino acids of the mouse-derived TCR. Region) were each contained an XbaI site for the 5 ′ end, and the 3 ′ end PCR using two primers containing a stop codon and a NotI site for PCR, pCR100—3B3 TCRa plasmid Was amplified. The sequences of these primers are as follows.
5 ' - CTTTCTAGAGACATCCAGAACCCAGAACCT - 3 ' (配列番号 1 2 )  5 '-CTTTCTAGAGACATCCAGAACCCAGAACCT-3' (SEQ ID NO: 12)
5' -AAGCGGCCGCTTAGTTTTGAAAGTTTAGGTT- 3 ' (配列番号 1 3 ) 増幅した DN Aフラグメントは前項 A. 記載と同様の操作で、 p C F lベクタ 一内にその特有の X b a I部位及び N o t I部位においてクローン化した (第 4 図) 。 p C F l — TCR 一C と呼ぶこの新規なプラスミ ドでコンビテント D H 5大腸菌細胞を形質転換し、 その DN A配列を確認した。 さらに、 コンビテン ト W3 1 1 0大腸菌細胞を形質転換した。  5'-AAGCGGCCGCTTAGTTTTGAAAGTTTAGGTT-3 '(SEQ ID NO: 13) The amplified DNA fragment was cloned in the unique XbaI site and NotI site within one pCFl vector by the same operation as described in A. above. (Fig. 4). Combinable DH5 E. coli cells were transformed with this novel plasmid, called pCF1-TCR-C, to confirm its DNA sequence. In addition, transformant W3110 E. coli cells were transformed.
〔実施例 3〕 TCR -VJ, VJ C 2 5及び C a産生大腸菌の培養 Example 3 Culture of E. coli producing TCR-VJ, VJ C25 and Ca
実施例 2の A、 B及び Cに示したそれぞれのプラスミ ドを保持する W3 1 1 0 大腸菌を、 1 0 0 g/mlのァンピシリンを含有する 5 0 mlのルリァ培地でー晚培 養した。 該接種源培養液を 0. 8 %グルコース、 0. 4 %カザミノ酸、 1 0 0 /1 のァンピシリンからなる 1 Lの M 9培地に他の菌が入らないように移し、 3時間 3 7 °Cで培養した。 この最初の培養の終盤に最終濃度 2 0〃Mになるようにイン ドールアクリル酸を添加し、 該培養液を更に 5時間 3 7 °Cで培養した。 この発現 系において、 カルモジュリン TCRな一 V J, V J C 2 5及び C の融合夕ンパ ク質が可溶型で発現され、 それらは全タンパク質の約 1 0 %であった。  W3110 E. coli carrying the respective plasmids shown in A, B and C of Example 2 were cultured in 50 ml of Luria medium containing 100 g / ml of ampicillin. The inoculum culture was transferred to 1 L of M9 medium consisting of 0.8% glucose, 0.4% casamino acid, 100/1 ampicillin so that other bacteria did not enter, and 3 hours 37 ° C. At the end of the first culture, indoleacrylic acid was added to a final concentration of 20〃M, and the culture was further cultured at 37 ° C for 5 hours. In this expression system, fusion proteins of the calmodulin TCRs VJ, VJC25 and C were expressed in a soluble form, which was about 10% of the total protein.
〔実施例 4〕 大腸菌組換え 3 B 3 TCR -VJ, V J C 2 5及び C aの精製[Example 4] Purification of Escherichia coli recombinant 3B3TCR-VJ, VJC25 and Ca
1. 実施例 3で培養したそれぞれの細胞約 0. 5gを、 1 0 0mlの水に懸濁後、 フ レンチプレス (8 0 0 0 psi、 4回繰返し) で菌体を破砕した。 破砕した細胞べ レツ 卜を 4°Cで 1 5 0 0 0 xg、 1 0分間遠心分離し、 その上清を回収した。 さ らに、 カルモジュリ ン— 3 B 3 TCRa— C aは、 8 0でで 1 0分間熱処理を行 つた後、 1 5 0 0 0 xg、 1 5分間遠心し、 上清を回収した。 1. About 0.5 g of each cell cultured in Example 3 was suspended in 100 ml of water, and the cells were disrupted with a French press (800 psi, repeated 4 times). The disrupted cell pellet was centrifuged at 15,000 xg for 10 minutes at 4 ° C, and the supernatant was collected. Further, calmodulin-3B3TCRa-Ca was heat-treated at 80 at 10 minutes, centrifuged at 1500 xg for 15 minutes, and the supernatant was collected.
2. 該上清画分を 1 0 0倍量の 2 mMグル夕チオン (還元型) 及び 0. 2mMグルタ チオン (酸化型) を含有する 5 OmMトリス HC1緩衝液 (pH8.0) で、 4。Cで一晩透 析した。 このサンプル溶液を適当な混合液に添加して、 該混合液中の最終濃度が 2. 5mM CaCl2及び 5mM MgCl 2となるようにした。 3. 該混合液を 5 0 mMトリス HC1緩衝液 (pH8.0) 、 2. 5 mM CaCl 2及び 5 mM MgC で平衡化したフエ二ルセファロース 6のサブカラム (ファルマンァ、 3 x 6 c m) に 4°Cでかけ、 0. 5 ml/分の流速で流した。 同じ緩衝液でカラムを洗浄した 後、 カルモジュリン一 3 B 3 TC R 一 V J, V J C 2 5及び C α融合タンパク 質を 5 0 mMト リス HC1緩衝液 (pH8.0) と 5 mM EDTA (pH8.0) で溶出した。 S D S — PAGEにより、 カルモジュ リ ン一 3 B 3 TCRa— VJ. VJ C 2 5及び C a夕ンパク質の発現を確認した。 2. The supernatant fraction was diluted with 100 volumes of 2 mM glutathione (reduced form) and 0.2 mM glutathione (oxidized form) in 5 OmM Tris HC1 buffer (pH 8.0). . C overnight. This sample solution was added to an appropriate mixture so that the final concentration in the mixture was 2.5 mM CaCl 2 and 5 mM MgCl 2 . 3. Transfer the mixture to 50 mM Tris HC1 buffer (pH 8.0), 2.5 mM CaCl 2 and 5 mM MgC and equilibrate with a phenylsepharose 6 subcolumn (Falmana, 3 x 6 cm). C. and flowed at a flow rate of 0.5 ml / min. After washing the column with the same buffer, calmodulin-13B3TCR-1 VJ, VJC25 and Cα fusion protein were added to 50 mM Tris HC1 buffer (pH 8.0) and 5 mM EDTA (pH 8. 0). SDS-PAGE confirmed the expression of calmodulin-1 3B3TCRa-VJ. VJ C25 and Ca protein.
4. 該溶出画分を YM10限外濾過膜にて 1 0倍澳縮し、 5 OmMトリス HC1緩衝液 (p H8.0) で平衡化した DEAEトヨパール (T0S0H、 2 x 1 0 cm) カラムに室温でかけ た。 このカラムを 2. 0ml/分の流速で、 5 OmM卜リス HC1緩衝液 (pH8.0) で洗浄 後、 0から 0. 5M の NaClの濃度勾配を用いて、 カルモジュリ ン一 3 B 3 T C R α -V J, V J C 2 5及び C a融合夕ンパク質を溶出させた。 その結果、 カルモ ジュリ ン一 3 B 3 TCRな 一 VJ. VJ C 2 5及び C a融合タンパク質は、 約 3 0 OmM NaCl濃度で溶出された。  4. The eluted fraction was reduced 10 times with a YM10 ultrafiltration membrane, and applied to a DEAE Toyopearl (T0S0H, 2 x 10 cm) column equilibrated with 5 OmM Tris HC1 buffer (pH 8.0). Run at room temperature. After washing the column with 5 OmM Tris HC1 buffer (pH 8.0) at a flow rate of 2.0 ml / min, calmodulin-1 3B3 TCR α was added using a concentration gradient of 0 to 0.5 M NaCl. -VJ, VJC25 and Ca fusion proteins were eluted. As a result, calmodulin-13B3TCR and other VJ.VJC25 and Ca fusion proteins were eluted at a concentration of about 30 OmM NaCl.
5. 該溶出画分を 1 0 0倍量の 5 0 mMトリス HC1緩衝液 (pH8.0) で、 4 °Cでー晚 透析した。 5 0mlの透析した画分にグリセロールを最終 1 0 %濃度に、 またジチ オスレィ トール (以下、 「DTT」 と示す) を最終 2niM、 NaClを 1 0 0 mM 濃度 になるまで添加し、 1 %のトロンビン (シグマ) を加えて 2 5 °Cで 6時間インキ ュベートして該融合タンパク質を消化した。  5. The eluted fraction was dialyzed against 100 volumes of 50 mM Tris HC1 buffer (pH 8.0) at 4 ° C. Glycerol was added to a final concentration of 10%, dithiothreitol (hereinafter referred to as “DTT”) to a final concentration of 2 niM, and NaCl to a final concentration of 100 mM, to the 50 ml dialyzed fraction. The fusion protein was digested by adding thrombin (Sigma) and incubating at 25 ° C for 6 hours.
6. 該混合液を MACR0SEP3 K (FILTRON) にて遠心濃縮し、 TCR 一 C aは、 N AP (フアルマシア) カラムにて 1 0 %グリセロール及び 2mMDTTを含有する 5 6. The mixture is concentrated by centrifugation using MACR0SEP3K (FILTRON), and TCR-1Ca contains 10% glycerol and 2 mM DTT on a NAP (Pharmacia) column.
0 ト リス HC1緩衝液 (pH8.0) に交換した。 1 0 %グリセロール及び 2mMDTT を含有する 5 OmMト リス HCi緩衝液 (pH8.0) で平衡化した DEAE- 5PW (東ソ一、 0.It was changed to Tris HC1 buffer (pH 8.0). DEAE-5PW (Toso-I., 0.1%) equilibrated with 5 OmM Tris HCi buffer (pH 8.0) containing 10% glycerol and 2 mM TTT.
7 5 X 7. 5 cm) カラムに室温でかけた。 このカラムを 1. 0 ml/分の流速で、 i(75 x 7.5 cm) column. Use this column at a flow rate of 1.0 ml / min.
0 %グリセロール及び 2mMDTTを含有する 5 OmMトリス HC1緩衝液 (pH8.0) で 洗浄後、 0から 0. 5Mの NaClの濃度勾配を用いて、 T C R 一 C αタンパク質を 溶出させた。 その結果、 TCRa— C は約 3 0 OmM NaCl濃度で溶出された。 精製された TCRa— C αのタンパク質量は 1 L当たり約 lmgであった。 TCR α— タンパク質は、 安定化させるため 1 0 %グリセロールを含有する PBSに て一 2 0 °Cで保存した。 この大腸菌内での組換え T C Rひ— Cひタンパク質を r e c C aと命名した。 After washing with 5 OmM Tris HC1 buffer (pH 8.0) containing 0% glycerol and 2 mM TTT, the TCR-Cα protein was eluted using a concentration gradient of 0 to 0.5 M NaCl. As a result, TCRa-C was eluted at a concentration of about 30 OmM NaCl. The amount of purified TCRa-Cα protein was about 1 mg / L. TCR α-protein was added to PBS containing 10% glycerol for stabilization. And stored at 20 ° C. The recombinant TCR protein in Escherichia coli was named recCa.
一方、 3 B 3 T C R α— V J及び V J C 2 5は、 5 0 mM卜リス HC1緩衝液 (ρΗ8. 0) に交換し、 5 OmMトリス HC1緩衝液 (pH8.0) で平衡化した DEAE-5PWカラムに 室温でかけた。 このカラムをし 0ml/分の流速で、 5 OmMトリス HC1緩衝液 (pH 8.0) で洗浄後、 0から 0. 5Mの NaClの濃度勾配を用いて、 3 B 3 TCR"— V J及び V J C 2 5タンパク質を結合させた結果、 これらのタンパク質は、 DEAE - 5 PW非吸着画分に溶出された。 精製された 3 B 3 T C R 一 V J及び V J C 2 5の タンパク質量は、 1 L当たり約 0. 5mgであった。 3 B 3 TCR 一 V J及び V J C 2 5タンパク質は、 PBSにて— 2 (TCで保存した。 これら大腸菌内での組換 え 3 B 3— TCRひ 一 VJ及び VJ C 2 5タンパク質を、 それぞれ r e c VJ及 び r e c V J C 2 5と命名した。  On the other hand, 3B 3 TCR α-VJ and VJC 25 were replaced with 50 mM Tris HC1 buffer (ρΗ8.0) and equilibrated with 5 OmM Tris HC1 buffer (pH 8.0). The column was loaded at room temperature. The column was washed with 5 OmM Tris HC1 buffer (pH 8.0) at a flow rate of 0 ml / min, and then 3 B 3 TCR "—VJ and VJC 25 using a concentration gradient of 0 to 0.5 M NaCl. As a result of protein binding, these proteins were eluted in the DEAE-5 PW non-adsorbed fraction.The amount of purified 3B3TCR-VJ and VJC25 proteins was about 0.5 mg / L. 3B3 TCR-VJ and VJC25 proteins were stored in PBS at -2 (stored in TC. These recombinant in E. coli 3B3-TCR-HIVJ and VJC25 proteins Were named rec VJ and rec VJC 25, respectively.
7. 必要に応じて大腸菌由来エンドトキシンを除去するため、 精製サンプルに 1 0分の 1量の PyoSep C (ダイセル化学社製) を添加し、 必要に応じて 1 ~ 1 2 時間撹拌後、 上清を回収した。 エンドトキシン量は、 リムラス ES- IIシングルテ スト (和光純薬社製) またはエンドスぺシ一 ES6 (生化学工業社製) で測定した c  7. If necessary, add 1/10 of the amount of PyoSep C (manufactured by Daicel Chemical) to the purified sample to remove endotoxin from E. coli, and stir for 1-2 hours if necessary. Was recovered. The endotoxin level was measured using Limulus ES-II Single Test (Wako Pure Chemical Industries) or Endosushiichi ES6 (Seikagaku Corporation).
〔実施例 5〕 組換え 3 B 3— TCRa - VJの in vivo免疫抑制活性 [Example 5] In vivo immunosuppressive activity of recombinant 3B3-TCRa-VJ
1. r e c V Jが in vivoで免疫応答を抑制するか否かを評価するために、 r e c VJタンパク質を、 ハチ毒 P L A 2で免疫感作したマウスに投与した。 抗原と して、 ハチ毒 P L A 2のジニトロフヱニル (以下、 「DNP」 と示す) 誘導体を標 準操作により調製し、 Balb/cマウスを、 1 mgの水酸化アルミニウム (以下、 「A1 um」 という) に吸着させた DNP-P L A 2 1 gの腹腔内注射により免疫感作した。 r e c V Jを、 - 5、 - 3、 - 1、 0日目に 1回あたり 5 gの投与量で腹腔内注射 し、 コントロールマウスには PBSだけを投与した。 免疫後 2週間目に各マウスか ら血清を採取し、 抗 DNP- IgGlを ELISA (イワ夕ら, J. I誦 unol., 141: 3270-3277, 1. To evaluate whether rec VJ suppresses the immune response in vivo, rec VJ protein was administered to mice immunized with bee venom PLA2. A dinitrophenyl (hereinafter referred to as “DNP”) derivative of the bee venom PLA2 was prepared as an antigen by standard procedures, and Balb / c mice were immunized with 1 mg of aluminum hydroxide (hereinafter “A1 um”). Immunization was performed by intraperitoneal injection of 1 g of DNP-PLA2 adsorbed to the DNA. recVJ was injected intraperitoneally at a dose of 5 g per day on days −5, −3, −1, 0, and control mice received only PBS. Two weeks after immunization, serum was collected from each mouse, and anti-DNP-IgGl was assayed by ELISA (Iwa evening, J. I recitation unol., 141: 3270-3277,
1988) により測定した。 下に示したように r e c V Jタンパク質は、 抗 DNP- IgG 1産生を抑制していなかった。 1988). As shown below, recVJ protein did not suppress anti-DNP-IgG1 production.
r e c V Jによる免疫反応の抑制 試料 N 抗 DNP-lgGK g/ml) Suppression of immune response by rec VJ (Sample N anti-DNP-lgGK g / ml)
PB S 7 1.201±0.163  PB S 7 1.201 ± 0.163
r e c V J 7 0.982±0.230 r e c V J 7 0.982 ± 0.230
〔実施例 6〕 組換え 3 B 3— TCRa— VJ C 2 5の in vivo免疫抑制活性 1. r e c VJ C 2 5力く in vivoで免疫応答を抑制するか否かを評価するために、 r e c V J C 2 5タンパク質を、 ハチ毒 P L A 2で免疫感作したマウスに投与し た。 実施例 5と同様に抗原として DNPィヒした P L A 2を用い、 Balb/cマウスを、 1 の Alum に吸着させた DNP- P LA 2 1 gの腹腔内注射により免疫感作した。 r e c VJ C 2 5を、 - 3、 - 1、 0、 1 日目に 1回あたり 4〃 gの投与量で腹腔 内注射し、 コン トロールマウスには PBSだけを投与した。 免疫後 2週間目に各マ ウスから血清を採取し、 抗 DNP- IgGlを EUSA (イワ夕ら, Immunol., 141: 3 270-3277, 1988) により測定した。 下に示したように、 r e c V J C 2 5タンパ ク質は、 抗 DNP- IgGl産生を抑制していなかった。 [Example 6] In vivo immunosuppressive activity of recombinant 3B3-TCRa-VJC25 1. rec VJC25 To evaluate whether or not to suppress the immune response in vivo, rec VJC25 protein was administered to mice immunized with the bee venom PLA2. Balb / c mice were immunized by intraperitoneal injection of 1 g of DNP-PLA2 adsorbed to 1 Alum using PLA2 subjected to DNP as an antigen in the same manner as in Example 5. rec VJC25 was injected intraperitoneally at a dose of 4 μg / time on days −3, −1, 0, and 1; control mice received only PBS. Two weeks after immunization, serum was collected from each mouse, and anti-DNP-IgGl was measured by EUSA (Iwa-Yu et al., Immunol., 141: 3270-3277, 1988). As shown below, the recVJC25 protein did not suppress anti-DNP-Iggl1 production.
r e c V J C 2 5による免疫反応の抑制  Inhibition of immune response by r e c V J C 25
試料 N 抗 DNP-lgGl(/zg/ml) Sample N anti-DNP-lgGl (/ zg / ml)
PB S 7 1.240±0.555  PB S 7 1.240 ± 0.555
r e c V J C 2 5 7 1.810±0.362  r e c V J C 2 5 7 1.810 ± 0.362
〔実施例 7〕 組換え T C Rひ一 C の生物活性 Example 7 Biological Activity of Recombinant TCR HiC
A. 組換え TCRa— Caの in vivo 免疫抑制活性 A. In vivo immunosuppressive activity of recombinant TCRa-Ca
1. r e c C αが in vivo で免疫応答を抑制するか否かを評価するために、 r e c C aタンパク質を、 ハチ毒 P LA 2で免疫感作したマウスに投与した。 実施例 5と同様に抗原として DNPィ匕した P L A 2を用い、 Balb/cマウスを、 1 mgの Alum に吸着させた DNP- PL A 2 1 の腹腔内注射により免疫感作した。 r e c C α を、 - 1、 0、 1、 3日目に 1回あたり 5 gの投与量で腹腔内注射し、 コン ト口 —ルマウスには 1 0 %グリセロールを含有した PBSだけを投与した。 免疫後 2週 間目に各マウスから血清を採取し、 抗 DNP- IgGlを EUSA (イワ夕ら, J. Immunol., 141: 3270-3277, 1988) により測定した。 下に示したように、 r e c C aタン パク質は、 r e c V J及び r e c V J C 2 5と比較して、 顕著に抗 DNP- igGl産生 を抑制した。 1. To evaluate whether recCα suppresses the immune response in vivo, recCa protein was administered to mice immunized with bee venom PLA2. Balb / c mice were immunized by intraperitoneal injection of DNP-PLA21 adsorbed on 1 mg of Alum, using DNP-bound PLA2 as an antigen in the same manner as in Example 5. recCα was injected intraperitoneally at a dose of 5 g per day on days −1, 0, 1, and 3, and control mice received only PBS containing 10% glycerol. Two weeks after immunization, serum was collected from each mouse, and anti-DNP-IgGl was measured by EUSA (Iwa-Yu et al., J. Immunol., 141: 3270-3277, 1988). As shown below, rec C a The protein significantly suppressed anti-DNP-igGl production as compared to rec VJ and rec VJC25.
r e c C αによる Balb/cマウスの抗ハプテン抗体応答の抑制 試料 N 抗 DNP- lgGl( g/ml)  Inhibition of anti-hapten antibody response in Balb / c mice by r e C C α Sample N Anti-DNP-lgGl (g / ml)
PBSI10¾ Glycerol 6 1.451±1.010  PBSI10¾ Glycerol 6 1.451 ± 1.010
r e c C α 6 0.068±0.016  r e c C α 6 0.068 ± 0.016
B. 組換え TCRa - C の in vivo 抗原非特異的免疫抑制活性 B. In vivo antigen-nonspecific immunosuppressive activity of recombinant TCRa-C
1. r e c C a力く、 in vivoでハチ毒 P L A 2抗原以外にも免疫応答を抑制する か否かを評価するために、 r e c C aタンパク質を、 オボアルブミ ン (以下、 1. To evaluate whether r c Ca is powerful and suppresses an immune response other than the bee venom PLA2 antigen in vivo, the r c Ca protein is converted to ovalbumin (hereinafter, referred to as ovalbumin).
「OVAj という) で免疫感作したマウスに投与した。 実施例 5の操作に準じて 調製した DNPィヒした OVAを用い、 Balb/cマウスを、 1 mgの Alumに吸着させた DNP - 0VA0. 1 zgの腹腔内注射により免疫感作した。 6 。じ《を、 -1、 0、 1、 3日目に 1回あたり 5 gの投与量で腹腔内注射し、 コントロールマウスには 1 0%グリセロールを含有した PBS だけを投与した。 免疫後 2週間目に各マウスか ら血清を採取し、 抗 DNP- IgGlを ELISA (イワ夕ら, J. I瞧画し 141: 3270-3277,The mice were immunized with “OVAj”. Using DNP-epitched OVA prepared according to the procedure of Example 5, Balb / c mice were adsorbed to 1 mg of Alum with DNP-0VA0. Immunization was performed by intraperitoneal injection of 1 zg.6. Injected intraperitoneally at a dose of 5 g per dose on days -1, 0, 1, and 3, and 10% for control mice Two weeks after immunization, serum was collected from each mouse, and anti-DNP-IgGl was assayed by ELISA (Iwa-Yu et al., J.I. 141: 3270-3277,
1988) により測定した。 下に示したように抗 DNP- IgGl 産生は抑制されており、 r e c C aは、 他の抗原に対しても免疫抑制活性を示すことが明らかになった。 1988). As shown below, the production of anti-DNP-IgGl was suppressed, and it was revealed that recCa also exhibited immunosuppressive activity against other antigens.
r e c C αによる OVA抗原に対する免疫反応の抑制  Inhibition of immune response to OVA antigen by r e c C α
試料 N 抗 DNP- lgGl( g/ml) Sample N Anti-DNP-lgGl (g / ml)
PBS+10¾glycerol 6 31.52±6.220  PBS + 10¾glycerol 6 31.52 ± 6.220
r e c C 6 8.370±4.390  r e c C 6 8.370 ± 4.390
C. 組換え TCRa— C αの 2次免疫応答における in vivo 抑制活性 C. In vivo inhibitory activity of recombinant TCRa-Cα on secondary immune response
1. r e c C aが、 2次応答においても免疫応答を抑制するか否かを評価した。 Balb/c マウスを、 1 mgの Alumに吸着させた変性カルボキシルメチル化した P L A 2 (以下、 「CM-P LA 2」 と示す) 1 /zgの腹腔内注射により免疫感作した。 免疫後、 1 4日目に DNP- PLA 2 1 gを腹腔内注射することにより惹起した。 r e c Caは、 A群では感作時の- 1、 0、 1、 3日目に、 B群では惹起時の 1 3、 1 4、 1 5、 1 7日目にそれぞれ 1回あたり 5 gの投与量で腹腔内注射し、 コ ントロールマウスには 1 0 %グリセロールを含有した P B Sだけを投与した。 惹 起後 2週間目に各マウスから血清を採取し、 抗 DNP- IgGlを ELISA (イワ夕ら , J.1. It was evaluated whether recCa suppresses the immune response also in the secondary response. Balb / c mice were immunized by intraperitoneal injection of 1 / zg of denatured carboxymethylated PLA 2 (hereinafter referred to as “CM-P LA 2”) adsorbed on 1 mg of Alum. On day 14 after immunization, it was induced by intraperitoneal injection of 2 g of DNP-PLA. rec Ca was sensitized in group A on days -1, 0, 1, and 3 at sensitization, and in group B at 13, On days 14, 15, 15 and 17, injection was performed intraperitoneally at a dose of 5 g each time, and control mice were administered only PBS containing 10% glycerol. Two weeks after the induction, serum was collected from each mouse, and anti-DNP-IgGl was assayed by ELISA (Iwa-Yu et al.
Immunol., 141: 3270-3277, 1988) により測定した。 下に示したように抗 DNP-lgImmunol., 141: 3270-3277, 1988). Anti-DNP-lg as shown below
G1産生は、 A群、 B群ともに抑制されており、 r e c C aは、 2次免疫応答におい ても免疫応答抑制することを示した。 G1 production was suppressed in both groups A and B, and recCa showed that the immune response was also suppressed in the secondary immune response.
r e c C aによる 1次及び 2次免疫反応の抑制  Suppression of primary and secondary immune response by r e c Ca
試料 N 抗 DNP- IgGK g/ml)  (Sample N anti-DNP- IgGK g / ml)
A群— PBS+10¾iglycerol 6 499.7±352.1  Group A—PBS + 10¾iglycerol 6 499.7 ± 352.1
A群— r e c C α 6 221.8 ±56.89  Group A — r e c C α 6 221.8 ± 56.89
Β群— glycerol 6 595.1±77.47 Group ——glycerol 6 595.1 ± 77.47
B群一 r e c C α 6 196.5 ±105.8  Group B r e c C α 6 196.5 ± 105.8
D. 組換え T C R — C の on- going抗体産生における in vivo 抑制活性 D. In vivo inhibitory activity of recombinant TCR-C on on-going antibody production
1. r e c Cな力 on- going抗体産生も抑制するか否かを評価した。 Balb/cマウ スを、 lmgの Alumに吸着させた OVA 0. 1 gの腹腔内注射により免疫感作した。 免疫後、 1 4日目に OVA抗原に特異的な IgGを ELISA (イワ夕ら, J. Immunol., 141: 3270-3277, 1988) により測定し、 抗体価の上昇を確認後、 r e c C を 1 6、 1 7、 1 8日目に 1回あたり 5 gの投与量で腹腔内注射し、 コン トロー ルマウスには 1 0 %グリセロールを含有した PBSだけを投与した。 2 8日目に各 マウスから血清を採取し、 OVA特異的 IgGを EUSA (イワ夕ら, J. 1麵 unol., 1 41: 3270-3277, 1988) により測定した。 このときのスタンダードは、 OVA抗 原を免疫し OVA抗体価の上昇したマウスの血清をプールし希釈したものを用い、 1 0 0 0 0 0倍希釈を 1 Unitとして表した。 下に示したように 0 V A特異的 IgG 産生は抑制されており、 r e c C は on- going抗体産生も抑制することを示した c r e c Caによる on-going抗体産生の抑制 1. The ability to suppress on-going antibody production with rec C was evaluated. Balb / c mice were immunized by intraperitoneal injection of 0.1 g of OVA adsorbed on 1 mg of Alum. On day 14 after immunization, IgG specific to the OVA antigen was measured by ELISA (Iwa evening, J. Immunol., 141: 3270-3277, 1988), and after confirming an increase in antibody titer, rec C was measured. Intraperitoneal injections were made at a dose of 5 g per dose on days 16, 17, and 18, and control mice were administered only PBS containing 10% glycerol. On day 28, serum was collected from each mouse, and OVA-specific IgG was measured by EUSA (Iwa evening, J. 1 unol., 141: 3270-3277, 1988). The standard at this time was obtained by pooling and diluting the sera of mice immunized with the OVA antigen and having an elevated OVA antibody titer, and was expressed as 1 000-fold dilution as 1 unit. As shown below, 0 VA specific IgG production was suppressed, and rec C also suppressed on-going antibody production.Suppression of on-going antibody production by c rec Ca
試料 N 抗 OVA- IgG (Unit) Sample N Anti-OVA- IgG (Unit)
PBS+10¾; glycerol 8 8.300±11.21  PBS + 10¾; glycerol 8 8.300 ± 11.21
r e c C a 6 3.510±5.410 E. 組換え TCR a— C αの他のマウス系統における in vivo抑制活性 rec C a 6 3.510 ± 5.410 E. In vivo inhibitory activity of recombinant TCR a-C α in other mouse strains
r e c C aが他の系統のマウスについても免疫反応を in vivoで抑制するか否 かを評価するために、 前項 Cと同様に BDF1マウスを用い、 1 mgの Alumに吸着させ た DNP-P L A 1 を腹腔内注射することにより免疫感作した。 r e c C aを、 — 1、 0、 1、 1 2日目に 1回あたり 5 gの投与量で腹腔内注射し、 コント口 ールマウスには 1 0 %グリセロールを含有した P B Sだけを投与した。 免疫後 1 3 日目に各マウスから血清を採取し、 抗 DNP- IgGlを EL1SA (イワ夕ら, J. 1画 un ol., 141: 3270-3277, 1988) により測定した。 下に示したように抗 DNP- IgGl産 生は、 BDF1マウスに対しても顕著に抑制されており、 r e c C aは他の系統のマ ウスについても高い免疫抑制活性を示した。  In order to evaluate whether recCa suppresses the immune response of other strains of mice in vivo as well, DNP-PLA adsorbed on 1 mg of Alum using BDF1 1 was immunized by intraperitoneal injection. recCa was injected intraperitoneally at a dose of 5 g per day on days 1, 0, 1, and 12, and control mice received only PBS containing 10% glycerol. On day 13 after immunization, serum was collected from each mouse, and anti-DNP-IgGl was measured by EL1SA (Iwa-Yu et al., J. 1 fraction unol., 141: 3270-3277, 1988). As shown below, anti-DNP-Iggl1 production was also remarkably suppressed in BDF1 mice, and recCa showed high immunosuppressive activity also in mice of other strains.
r e c C による BDF1マウスにおける免疫反応の抑制  Inhibition of immune response in BDF1 mice by r e c C
試料 N 抗 DNP- IgGl ( g/ml) Sample N Anti-DNP- IgGl (g / ml)
PBSU0¾glycerol 6 495.2±82.57  PBSU0¾glycerol 6 495.2 ± 82.57
r e c C a 6 62.32±38.86  r e c C a 6 62.32 ± 38.86
〔実施例 8〕 組換え T C Ra-C aの遅延型過敏反応における活性 Example 8 Activity of Recombinant TCRa-Ca in Delayed Type Hypersensitivity Reaction
本実施例は、 r e c C 力'遅延型過敏反応 (delayed—type hypersensitivity; In this example, r e c C force 'delayed-type hypersensitivity;
DTH) を抑制することを示すものである。 r e c C を用いて、 抗原感作により 惹起されるアレルギー反応に対する抑制効果を調べた。 Balb/cマウスを、 1 mgの Alumに吸着させた OVA 1 0 gの腹腔内注射により免疫感作した。 r e c C を、 - 1、 0日目に 1回あたり 5 /zgの投与量で腹腔内注射し、 コントロールマウ スには 1 0 %グリセロールを含有する P B S及び生理食塩水を投与した。 一方、 コントロール薬剤として、 デキサメサゾンを 6、 7 日目に 1回あたり 0. 1 〃gの 投与量で腹腔内注射した。 免疫感作後 7日目に、 5 0 i gの Alumに吸着させた 0 V A 1 0 g の足摭への注射により惹起した。 惹起 2 4時間後の足踱の浮腫を調 ベた。 DTH). Using recC, the inhibitory effect on allergic reactions induced by antigen sensitization was examined. Balb / c mice were immunized by intraperitoneal injection of 10 g of OVA adsorbed on 1 mg of Alum. recC was injected intraperitoneally at a dose of 5 / zg per day on days -1 and 0, and control mice were administered PBS and saline containing 10% glycerol. On the other hand, dexamethasone was injected intraperitoneally as a control drug at a dose of 0.1 μg / dose on days 6 and 7. Seven days after immunization, the challenge was induced by injection of 50 g of AVA adsorbed on 50 ig of Alum into the feet. At 24 hours after the induction, edema of the foot was measured.
その結果、 r e c C αを投与したマウスでは、 デキサメサゾンとほぼ同等な抑 制活性を示した (第 5図) 。 〔実施例 9〕 組換え TCRa— C a投与マウス血清における組換え T C R α— C αに対する抗体産生 As a result, mice to which recCα was administered showed almost the same inhibitory activity as dexamethasone (Fig. 5). [Example 9] Production of antibody against recombinant TCR α-C α in mouse serum after administration of recombinant TCRa-Ca
本実施例は、 実施例 7の Αに示した TCRひ一 C a投与マウスにつき、 各マウ スの血清中の組換え T C R — Cひに対する抗体産生をゥエスタンブロッティ ン グにて調べたものである。 1 g/mlの'濃度の r e c C α 1 6 1を 5mMDTTを 含んだ還元条件下で、 1 0〜 2 0 %グラジェントゲルにて S D S— P AG Eを行 つた。 このタンパク質を、 1ゲルにつき 1 5 0 mA 、 3 0分の条件でニトロセル ロース膜に転送した。 2 0 m トリス · HC1 (pH 7.5)及び 5 0 0 mM NaCl (以下、 In this example, the production of antibodies to the recombinant TCR-C in the serum of each mouse was examined by estanblotting on the mice to which the TCR-I-Ca was administered as shown in ① of Example 7 It is. SDS-PAGE was performed on a 10 to 20% gradient gel under reducing conditions containing 5 mM DTT at a concentration of 1 g / ml of recCα161. The protein was transferred to a nitrocellulose membrane at 150 mA per gel for 30 minutes. 20 m TrisHC1 (pH 7.5) and 500 mM NaCl (hereinafter, referred to as
「丁 B S」 という) にて室温で 5分間膜を洗浄し、 さらにこれに 0. 1 % Tvveen - 20 を加えたもの (以下、 「TTB S」 という) にて室温で 5分間、 2回洗浄し た。 その後、 ゼラチンを含む TTB Sにて (以下、 「GZTTB S」 という (ベ ーリンガー ·マンハイム社製) ) 室温で 1時間振とう培養し、 膜を固定化した。 次に、 各マウス血清を GZTTB Sで 5 0倍希釈したものを室温で 1時間振とう 培養した。 TTB Sにて室温で 5分間膜を洗浄し、 2次抗体としてャギ抗マウスWash the membrane at room temperature for 5 minutes with “Ding BS” and then add 0.1% Tvveen-20 (hereinafter called “TTB S”) twice at room temperature for 5 minutes. did. After that, the cells were shake-cultured for 1 hour at room temperature in TTB S containing gelatin (hereinafter, referred to as “GZTTB S” (manufactured by Boehringer Mannheim)) to immobilize the membrane. Next, each mouse serum was diluted 50-fold with GZTTBS and cultured with shaking at room temperature for 1 hour. Wash the membrane with TTB S for 5 minutes at room temperature.
IgG(H+L) のアルカリフォスファターゼ標識抗体 (バイオラッ ト社製) を用い、 これを 2 0 0 0倍希釈したものを室温で 1時間振とう培養した。 TTB Sにて 2 回、 室温で 5分間膜を洗浄し、 さらに、 TB Sにて 2回、 室温で 5分間洗浄した。 最後に、 アルカリフォスファタ一ゼ発色キッ ト (バイオラッ ト社製) を用い発色 ¾行った。 Using an IgG (H + L) alkaline phosphatase-labeled antibody (manufactured by Bio-Rat), a 200-fold dilution of this was shake-cultured at room temperature for 1 hour. The membrane was washed twice with TTB S at room temperature for 5 minutes, and further washed twice with TBS at room temperature for 5 minutes. Finally, color development was performed using an alkaline phosphatase color development kit (manufactured by Biorat).
その結果、 後述参考例に示した TCR の V J C領域を持つ組換え B4- 9.52- TCR 及び組換え 3 B 3 - TCRaの場合とは異なり、 組換え TCRa— C a 投与マウス血清中に組換え TCRa-Caに対する抗体は検出されなかった。  As a result, unlike the recombinant B4-9.52-TCR and recombinant 3B3-TCRa having the VCR region of the TCR shown in the Reference Example below, the recombinant TCRa-Ca No antibody to -Ca was detected.
〔参考例 1〕 ハチ毒ホスホリパーゼ A 2に特異的なヘルパー T細胞株の T C R a 遺伝子の c DN Aクローニングと発現 [Reference Example 1] cDNA cloning and expression of the TCRa gene of a helper T cell line specific for bee venom phospholipase A2
A. TCR 遺伝子の c DNAクローニング A. cDNA cloning of TCR gene
1. P L A 2に特異的な TCRa及び 鎖を発現する P L A 2特異的ヘルパー T 細胞株は、 木本らの方法に従い樹立した (キモト(Kimoto)ら, J. Exp. Med., 15 2: 759-767, 1980, J. Exp. Med. , 153: 375-383, 1981) 。 P L A 2抗原 1 0 0 gを P B Sに溶解し、 コンプリート ' フロイン ト ' アジュバン ト (C FA) と 1 : 1に混合したェマルジョンを Balb/cマウスの尾の基底部皮下に免疫した。 免 疫 1 0日後に注入リンパ節であるそ径部、 旁大動脈部のリンパ節を取り出し、 培 養液中で単細胞浮遊液にした。 その細胞を Click's Medium- 1 0 %FCSで 4 xiO6 /mlになるようにし、 P L A 2を最終濃度 2 0 0 〃g/mlとなるように加えた。 初 回培養後 7 日後の細胞を回収し、 2 X 1 06 の生細胞と、 同系のマウスの脾臓細 胞を抗原提示細胞 ( 2 0 0 ORで X線照射したもの) とし、 その細胞 6 X 1 06 を Click' s Medium- 1 0 %FCSで培養し、 その際に P L A 2を最終濃度 2 0 0 g/ml、1. A PLA2-specific helper T cell line expressing PLA2-specific TCRa and chains was established according to the method of Kimoto et al. (Kimoto et al., J. Exp. Med., 15 2: 759-767, 1980, J. Exp. Med., 153: 375-383, 1981). 100 g of PLA2 antigen was dissolved in PBS, and an emulsion mixed in complete 'Freund' adjuvant (CFA) and 1: 1 was immunized subcutaneously at the base of the tail of Balb / c mice. Ten days after the immunization, the lymph nodes at the radii and para-aorta, which were the injected lymph nodes, were taken out and made into a single cell suspension in the culture medium. The cells were made up to 4 xiO 6 / ml with Click's Medium-10% FCS and PLA2 was added to a final concentration of 200 μg / ml. Seven days after the initial culture, the cells were collected, and 2 × 10 6 viable cells and spleen cells of syngeneic mice were used as antigen-presenting cells (X-irradiated at 200 OR). X 1 0 6 the Click 's Medium- 1 0% were cultured in FCS, the final concentration 2 0 0 g / ml to PLA 2 at that time,
1 L 2を最終濃度 1 Ounit/mlとなるように加えた。 さらに、 2回同様の抗原刺 激を行った後、 限外希釈法を用いて培養を行い、 P L A 2抗原に特異的なヘルパ 一 T細胞株が得られた。 このヘルパー T細胞株を B4- 9.52細胞と命名した。 1 L 2 was added to a final concentration of 1 Ounit / ml. Furthermore, after the same antigen stimulation was performed twice, culture was performed using the ultradilution method, and a helper-I T cell line specific for the PLA2 antigen was obtained. This helper T cell line was named B4-9.52 cells.
2. B4- 9.52細胞の T C R c DN Aを、 ムルスら, Nucl. Acid. Res. , 8:3895 - 3950, 1980 に記載された方法に従って P CRによりクローニングした。 ファー スト トラック ®mRNA単離キッ 卜 (インビトロゲン (Inv rogen) ) を使用し て、 5 X 1 07 の B4-9.52 細胞から mRNAを単離した。 c DNA合成システ ム (フアルマシア) を使用して c DN Aを生成させた。 その生成後に、 T 4 リガ ーゼ (タカラ) を使用して c DNAを 5' 末端及び 3' 末端で連結して環状 DN Aを構築した。 マウス C DNAをコードするオリゴヌクレオチドプライマ一を DNA/RNA合成装置 (アプライ ド ·バイオシステム) によりホスホアミダイ ド (phosphoramidi te) 法を用いて合成した (バウケージ (Beaucage) ら, Tetra hedron Lett. , 22: 1859-1862, 1981) 。 これらのプライマーの配列は以下の通 りである。 2. The TCR cDNA of B4-9.52 cells was cloned by PCR according to the method described in Murus et al., Nucl. Acid. Res., 8: 3895-3950, 1980. Use fur strike track ®mRNA isolation kit Bok the (Invitrogen (Inv rogen)), mRNA was isolated from B4-9.52 cells 5 X 1 0 7. The cDNA synthesis system (Pharmacia) was used to generate cDNA. After its generation, the cDNA was ligated at the 5 'and 3' ends using T4 ligase (Takara) to construct a circular DNA. Oligonucleotide primers encoding mouse C DNA were synthesized by a DNA / RNA synthesizer (Applied Biosystems) using the phosphoramidite method (Beaucage et al., Tetra hedron Lett., 22: 1859-1862, 1981). The sequences of these primers are as follows.
5 ' 一 GTGGTCCAGTTGAGGTCTGCAAGA - 3 ' (配列番号 6 )  5 '1 GTGGTCCAGTTGAGGTCTGCAAGA-3' (SEQ ID NO: 6)
5 * -TTGAAAGTTTAGGTTCATATC- 3 ' (配列番号 7 )  5 * -TTGAAAGTTTAGGTTCATATC- 3 '(SEQ ID NO: 7)
P C Rは、 T a q I DN Αポリメラーゼ (夕カラ) により、 铸型 c D NA、 プ ライマー及び dNTPの存在下、 サーモ 'サイクラ一 (thermo cycler) 中で行った。 P CRの条件は、 変性工程が 9 4 °Cで 1分; ァニーリ ング工程が 5 4 で 1分; 及び伸長工程が 7 2°Cで 2分;で、 これらを 3 5サイクルした。 増幅した c DN Aを、 T Aクローニングシステムョ (インビトロゲン) の pCRIIベクタ一内にサブ クローン化した。 該揷入物の DNA配列は、 ジデォキシ配列決定法 (サンガ一 (Sanger) ら, Proc. Nalt. Acad. Sci. USA 74: 5463-5367, 1977) により確 認した。 この B4-9.52由来 T C R a c DNAの DNA配列を第 6図および配列番 号 5に示す (ヤーグ (Yague) ら, Nucleic Acids Research 16: 11355-11364, 1988) 。 PCR was performed in a Thermo 'cycler' with Taq I DNΑ polymerase (evening color) in the presence of type I cDNA, primers and dNTPs. The PCR conditions were as follows: denaturation step at 94 ° C. for 1 minute; annealing step at 54 ° C. for 1 minute; and elongation step at 72 ° C. for 2 minutes. Amplified c DN A was subcloned into the pCRII vector of TA Cloning System (Invitrogen). The DNA sequence of the input was confirmed by dideoxy sequencing (Sanger et al., Proc. Nalt. Acad. Sci. USA 74: 5463-5367, 1977). The DNA sequence of the T4-acR derived from B4-9.52 is shown in FIG. 6 and SEQ ID NO: 5 (Yague et al., Nucleic Acids Research 16: 11355-11364, 1988).
B. 大腸菌内での組換え B4- 9.52- TCRaの発現系の構築  B. Construction of recombinant B4-9.52-TCRa expression system in E. coli
第 6図のァミノ酸 2 1 ~ 2 4 4 (B4- 9.52由来 TCR 細胞外領域) をコー ド する DN Aフラグメントを、 それぞれ 5' 末端用に B amH I部位を含有し、 3' 末端用に停止コ ドンと Xb a I部位を含有する 2つのプライマ一を使用する P CRにより、 pCRII— B4- 9.52- TCR プラスミ ドから増幅した。 P CRの条 件は、 変性工程が 9 4 °Cで 1分; ァニーリング工程が 5 5 °Cで 1分;及び伸長ェ 程が 7 2°Cで 1分;で、 これらを 3 0サイクルした。 これらのプライマーの配列 は以下の通りである。  The DNA fragments encoding amino acids 21 to 24 (TCR extracellular region derived from B4-9.52) shown in Fig. 6 were ligated with BamHI sites for the 5 'end and for the 3' end, respectively. Amplified from pCRII-B4-9.52-TCR plasmid by PCR using two primers containing a stop codon and an XbaI site. The PCR conditions were as follows: denaturation step at 94 ° C for 1 minute; annealing step at 55 ° C for 1 minute; and elongation step at 72 ° C for 1 minute. . The sequences of these primers are as follows.
5 ' - AATTTAGGATCCGATTCCGTGACTCAAACA - 3 ' (配列番号 1 4 )  5 '-AATTTAGGATCCGATTCCGTGACTCAAACA-3' (SEQ ID NO: 14)
5 ' - GCCTCTAGATTACTATTGAAAGTTTAGGTT - 3 ' (配列番号 1 5 ) 増幅した DN Aフラグメントはァガロースゲル電気泳動により回収し、 B am H I及び X b a Iで消化し、 実施例 2で使用した発現プラスミ ド p C F 1ベクタ 一内にその特有の B amH I及び Xb a I部位においてクローン化した。 p C F 1 - B4- 9.52-T C R αと呼ぶこの新規なプラスミ ドでコンピテント DH 5大腸菌 細胞を形質転換し、 その DNA配列を確認した。 さらに、 コンビテント W3 1 1 0大腸菌細胞を形質転換した。  5'-GCCTCTAGATTACTATTGAAAGTTTAGGTT-3 '(SEQ ID NO: 15) The amplified DNA fragment was recovered by agarose gel electrophoresis, digested with BamHI and XbaI, and used as the expression plasmid pCF1 vector used in Example 2. In cloning at its unique BamHI and XbaI sites. Competent DH5 E. coli cells were transformed with this novel plasmid, designated pCF1-B4-9.52-TCRa, and its DNA sequence was confirmed. In addition, competent W3110 E. coli cells were transformed.
C. Β4- 9.52- TCRa産生大腸菌の培養  C. Β4-9.52- Culture of TCRa-producing E. coli
プラスミ ド p C F 1 - B4 - 9.52- TCRなを保持する W3 1 1 0大腸菌を、 1 0 0 g/mlのアンピシリ ンを含有する 5 Omlのルリア培地で一晩培養した。 該接種 源培養液を 0. 8 %グルコース、 0. 4 %カザミノ酸、 1 0 0 mg/1のアンピンリ ン からなる 1 Lの M 9培地に他の菌が入らないように移し、 3時間 3 7 °Cで培養し た。 この最初の培養の終盤に最終濃度 2 0 ίΜになるようにィンドールァクリル 酸を添加し、 該培養液を更に 5時間 3 7 °Cで培養した。 この発現系において、 力 ルモジュリン -B4-9.52- TCRaの融合タンパク質が可溶型で発現され、 それは、 全タンパク質の約 1 0 %であった。 W3110 E. coli harboring plasmid pCF1-B4-9.52-TCR was cultured overnight in 5 Oml of Luria medium containing 100 g / ml of ampicillin. The inoculum culture was transferred to 1 L of M9 medium consisting of 0.8% glucose, 0.4% casamino acid, 100 mg / 1 ampinline so that other bacteria did not enter the cells, and 3 hours 3 The cells were cultured at 7 ° C. At the end of the first culture, indoleacrylic acid was added to a final concentration of 20 2, and the culture was further cultured at 37 ° C for 5 hours. In this expression system, The fusion protein of rumodulin-B4-9.52-TCRa was expressed in a soluble form, about 10% of the total protein.
〔参考例 2〕 大腸菌組換え B4-9.52- TCRひの精製 [Reference Example 2] Purification of Escherichia coli recombinant B4-9.52-TCR strain
1. 参考例 1で培養した細胞約 0. 5 gを 1 0 0 mlの水に懸濁後、 フレンチプレス ( 8 0 0 0 psu 4回繰返し) で菌体を破砕した。 破砕した細胞ペレツ トを 4°C で 1 5 0 0 0 Xg、 1 0分間遠心分離し、 その上清を回収した。 この融合タンパ ク質の発現量は、 1 L当たり約 5mgであった。  1. About 0.5 g of the cells cultured in Reference Example 1 were suspended in 100 ml of water, and the cells were disrupted with a French press (repeated 800 000 psu 4 times). The disrupted cell pellet was centrifuged at 15,000 Xg for 10 minutes at 4 ° C, and the supernatant was collected. The expression level of this fusion protein was about 5 mg / L.
2. 該上清画分を 1 0 0倍量の 2 mMグルタチオン (還元型) 及び 0. 2mMグノレ夕 チオン (酸化型) を含有する 5 OmMトリス HC1緩衝液 (pH8.0) で、 4 °Cで一晚透 析した。 このサンプル溶液を適当な混合液に添加して、 該混合液中の最終濃度が 2. The supernatant fraction was added with 100 volumes of 2 mM glutathione (reduced form) and 0.2 mM guanolethione (oxidized form) in 5 OmM Tris HC1 buffer (pH 8.0) at 4 ° C. C was used for the whole analysis. Add this sample solution to the appropriate mixture to make the final concentration in the mixture
2. 5mM CaCl2及び 5mM MgCl 2となるようにした。 2. It was adjusted to 5 mM CaCl 2 and 5 mM MgCl 2 .
3. 該混合液を 5 OmM卜リス HC1緩衝液 (pH8.0) 、 2. 5 mM CaCl 2及び 5 mM MgC 12で平銜化したフエ二ルセファロース 6のサブカラム (フアルマシア、 3 x 6c m) に 4°Cでかけ、 0. 5ml/分の流速で流した。 同じ緩衝液でカラムを洗浄した 後、 カルモジュ リ ンー B4- 9.52- TCR 融合タンパク質を 5 0 mMト リス HC1緩衝 液 (PH8.0) と 5mM EDTA (pH8.0) で溶出し、 S DS— PAGEにより、 カルモ ジュリン— B4- 9.52- TC R α融合タンパク質の発現を確認した。 3. The mixture 5 Omm Bok squirrel HC1 buffer (pH8.0), 2. 5 mM CaCl 2 and 5 mM MgC 1 2 flat銜化the phenylene Rusefarosu of 6 sub-column (Pharmacia, 3 x 6c m ) At 4 ° C. and a flow rate of 0.5 ml / min. After washing the column with the same buffer, the Calmodulin B4-9.52-TCR fusion protein was eluted with 50 mM Tris HC1 buffer (PH8.0) and 5 mM EDTA (pH 8.0), followed by SDS-PAGE. As a result, the expression of the calmodulin-B4-9.52-TCRα fusion protein was confirmed.
4. 該溶出画分を YM10限外濾過膜にて 1 0倍濃縮し、 5 OmMトリス HC1緩衝液 (p H8.0) で平衡化した DEAEトヨパール (TOS0H、 2 x 1 0 cm) カラムに室温でかけ た。 このカラムを 2. 0 ml/分の流速で、 5 0 mM卜リス HC1緩衝液 (pH8.0) で洗浄 後、 0から 0. 5Mの NaClの濃度勾配を用いて、 カルモジュリ ン- B4-9.52-T C R α融合タンパク質を溶出させた。 その結果、 カルモジュリン- Β4- 9.52-TCRa は約 3 0 0 mM NaCl濃度で溶出された。  4. Concentrate the eluted fractions 10-fold on a YM10 ultrafiltration membrane and equilibrate with 5 OmM Tris HC1 buffer (pH 8.0) on a DEAE Toyopearl (TOS0H, 2 x 10 cm) column at room temperature. went out. After washing the column with 50 mM Tris HC1 buffer (pH 8.0) at a flow rate of 2.0 ml / min, calmodulin-B4-9.52 was purified using a gradient of NaCl from 0 to 0.5 M. -TCR alpha fusion protein was eluted. As a result, calmodulin-Δ4-9.52-TCRa was eluted at a concentration of about 300 mM NaCl.
5. 該溶出画分を 1 0 0倍量の 5 0 mMトリス HC1緩衝液 (pH8.0) に対して、 4 °C でー晚透析した。 5 0 mlの透析した画分にグリセロールを最終 1 0 %濃度に、 ま たジチオスレィ トール (以下 DTTと示す) を最終 2mM、 NaClを 1 0 OmM濃度に なるまで添加し、 1 %のトロンビン (シグマ) を加えて 2 5 °Cで 6時間インキュ ベ一 卜して該融合夕ンパク質を消化した。 6. 該混合液を MACR0SEP3 K (FILTR0N) にて遠心濃縮し、 NAP (フアルマシア) カラムにて 1 0 %グリセロール及び 2 mMDTTを含有する 5 0 mMトリス HC1緩衝 液 (pH8.0) に交換した。 1 0 %グリセロール及び 2mMDTTを含有する 5 0 mM トリス HC1緩衝液 (pH8.0) で平衡化した DEAE-5PW (東ソ一、 0. 7 5 X 7. 5 cm ) カラムに室温でかけた。 このカラムを 1. 0 ml/分の流速で、 1 0 %グリセ口5. The eluted fraction was dialyzed against 100 volumes of 50 mM Tris HC1 buffer (pH 8.0) at 4 ° C. Glycerol was added to a final concentration of 10%, dithiothreitol (hereinafter referred to as DTT) to a final concentration of 2 mM, and NaCl to a final concentration of 10 OmM to 50 ml of the dialyzed fraction, and 1% thrombin (Sigma) was added. ) Was added and the mixture was incubated at 25 ° C. for 6 hours to digest the fusion protein. 6. The mixture was concentrated by centrifugation using MACR0SEP3K (FILTR0N) and exchanged with a 50 mM Tris HC1 buffer (pH 8.0) containing 10% glycerol and 2 mM DTT using a NAP (Pharmacia) column. The column was loaded at room temperature on a DEAE-5PW (0.75 × 7.5 cm) column equilibrated with 50 mM Tris HC1 buffer (pH 8.0) containing 10% glycerol and 2 mM DTT. Run the column at a flow rate of 1.0 ml / min and a 10%
—ル及び 2mMDTTを含有する 5 0 mMトリス HC1緩衝液 (pH8.0) で洗浄後、 0か ら 0. 5Mの NaClの濃度勾配を用いて、 B4-9.52-T C R αタンパク質を溶出させた c その結果、 B4- 9.52-TCR は約 3 0 0 mM NaCl濃度で溶出された。 精製された B 4-9.52- T C R αのタンパク質量は約 1 mgであった。 B4- 9.52-T C R αのタン パク質は、 安定化させるため 1 0 %グリセロールを含有する P B Sにて一 2 0°C で保存した。 この大腸菌内での組換え B4-9.52-T CRaを r e c VJ C(V a 4. 4 )と命名した。 - After washing with 5 0 mM Tris HC1 buffer containing Le and 2 mM DTT (pH 8.0), using a gradient of NaCl of 0 to 0. 5M, it was eluted B4-9.52-TCR α protein c As a result, B4-9.52-TCR was eluted at a concentration of about 300 mM NaCl. The amount of the purified B 4-9.52-TCRα protein was about 1 mg. The B4-9.52-TCRα protein was stored at 120 ° C. in PBS containing 10% glycerol for stabilization. This recombinant B4-9.52-T CRa in Escherichia coli was named rec VJ C (Va4.4).
7. さらに、 必要に応じて大腸菌由来エンドトキシンを除去するため、 精製サン プルに 1 0分の 1量の PyoSep C (ダイセル化学社製) を添加し、 必要に応じて 1 〜1 2時間撹拌後、 上清を回収した。 エンドトキシン量は、 リムラス ES- IIシン グルテス ト (和光純薬社製) またはエン ドスぺシ一 ES6 (生化学工業社製) で測 疋した。  7. If necessary, add 1/10 of the amount of PyoSep C (manufactured by Daicel Chemical) to the purified sample to remove endotoxin derived from Escherichia coli, and stir for 1-2 hours if necessary. The supernatant was collected. The amount of endotoxin was measured by Limulus ES-II single test (manufactured by Wako Pure Chemical Industries, Ltd.) or Endosushi ES6 (manufactured by Seikagaku Corporation).
〔参考例 3〕 組換え TCRaV J C領域ポリべプチド投与マウス血清における該 ポリぺプチドに対する抗体産生 [Reference Example 3] Antibody production against the polypeptide in mouse serum treated with recombinant TCRaV JC region polypeptide
r e c V J C (V aAA) タンパク質を、 ハチ毒 P L A 2で免疫感作したマウ スに投与した。 抗原として、 ハチ毒 P L A 2のジニ トロフヱニル (以下、 「DNP The rec VJC (V aAA) protein was administered to mice immunized with the bee venom PLA2. As an antigen, the bee venom PLA2 dinitrophenyl (hereinafter referred to as “DNP
」 と示す) 誘導体を標準操作により調製した。 Balb/cマウスを、 lmgの/ umに吸 着させた DNP-P L A 2 1 gの腹腔内注射により免疫感作した。 r e c V J CDerivatives were prepared by standard procedures. Balb / c mice were immunized by intraperitoneal injection of 1 g of DNP-PLA2 adsorbed to 1 mg / um. r e c V J C
(Va4.4) を、 - 1、 0、 し 3 日目に 1回あたり 5 gの投与量で腹腔内注射 し、 コン トロールマウスには 1 0 %グリセロールを含有した P B Sだけを投与し た。 免疫後 2週間目に各マウスから血清を採取し、 抗 DNP-IgGlを ELISA (イワタ ら, J. 1隱 unol., 141: 3270-3277, 1988) により測定した。 その結果、 Cひと 同様に抗 DNP- IgGl産生は強く抑制されていた。 そこで、 これら各マウスの血清中の r e c V J C (V α4.4) に対する抗体産 生をゥエスタンブロッティングにて調べた。 (Va4.4) was injected intraperitoneally at a dose of 5 g / time on days -1, 0, and 3 and control mice were administered only PBS containing 10% glycerol. Two weeks after immunization, serum was collected from each mouse, and anti-DNP-IgGl was measured by ELISA (Iwata et al., J. 1 Oki unol., 141: 3270-3277, 1988). As a result, the production of anti-DNP-Iggl1 was strongly suppressed as in the case of C. Therefore, the antibody production against rec VJC (Vα4.4) in the serum of each of these mice was examined by eastern blotting.
1〃g/mlの濃度の r e c V J C (V α4.4) 1 6〃 1を 5 mMD Τ Τを含んだ還元 条件下で、 1 0〜 2 0 %グラジェン卜ゲルにて SDS- PAGEを行った。 このタンパク 質を、 1ゲルにつき 1 5 0mA、 3 0分の条件でニトロセルロース膜に転送した。 TB Sにて室温で 5分間膜を洗浄し、 さらに TTB Sにて室温で 5分間、 2回洗 浄した。 その後、 G/TTB S (ベーリンガー ' マンハイム社製) にて、 室温で SDS-PAGE was performed on a 10% to 20% gradient gel under reducing conditions containing 1 mM / g of rec VJC (V α4.4) 16〃1 at a concentration of 5 mM DΤΤ. . This protein was transferred to a nitrocellulose membrane at 150 mA per gel for 30 minutes. The membrane was washed with TBS at room temperature for 5 minutes, and further washed twice with TTBS at room temperature for 5 minutes. Then, use G / TTB S (Boehringer's Mannheim) at room temperature
1時間振とう培養し、 膜を固定化した。 次に、 各マウス血清を G/TTB Sで 5After shaking culture for 1 hour, the membrane was immobilized. Next, each mouse serum was subjected to 5 G / TTB S
0倍希釈したものを室温で 1時間振とう培養した。 TTB Sにて室温で 5分間膜 を洗浄し、 2次抗体としてャギ抗マウス IgG(H+い のアルカリフォスファタ一ゼ 標識抗体 (バイオラッ ト社製) を用い、 これを 2 0 0 0倍希釈したものを室温でThe 0-fold dilution was shake-cultured at room temperature for 1 hour. Wash the membrane with TTB S for 5 minutes at room temperature, and use a goat anti-mouse IgG (H + -alkaline phosphatase-labeled antibody (manufactured by Bio-Lat)) as a secondary antibody, and dilute it 200-fold. At room temperature
1時間振とう培養した。 TTB Sにて 2回、 室温で 5分間膜を洗浄し、 さらに、 TB Sにて 2回、 室温で 5分間洗浄した。 最後に、 アルカリフォスファターゼ発 色キッ 卜 (バイオラッ ト社製) を用い発色を行った。 The cells were cultured with shaking for 1 hour. The membrane was washed twice with TTB S at room temperature for 5 minutes, and further washed twice with TBS at room temperature for 5 minutes. Finally, coloring was performed using an alkaline phosphatase coloring kit (manufactured by Biorat).
その結果、 r e c VJ C (Va4.4) を投与されたマウスの血清中には、 r e c V J C (Va4.4) に対する抗体が検出された。  As a result, an antibody against recVJC (Va4.4) was detected in the serum of the mice to which recVJC (Va4.4) was administered.
前述 r e c VJ C (V α4.4) はヘルパー Τ細胞の T C R α由来であるが、 サ プレッサー Τ細胞 3 Β 3由来の TCRaの V J C領域 (TCR の細胞外領域) の組換えポリペプチド (前出の国際公開 WO 9 5— 1 6 4 6 2号) についても同 様の試験を行ったところ、 やはり、 投与した該組換えポリペプチドに対する抗体 の産生が確認された。 Rec VJ C (V α4.4) is derived from TCR α of helper Τ cells, but is a recombinant polypeptide of the VJC region (extracellular region of TCR) of TCRa derived from suppressor Τ cells 3 33 (see above). A similar test was also conducted for the international publication WO95-166462, which also confirmed production of an antibody against the administered recombinant polypeptide.
〔実施例 1 0〕 (Example 10)
A. ヒ ト TCR 遺伝子の発現  A. Expression of human TCR gene
PLA2 特異的な TCRa及び /3鎖を発現する PLA2 特異的 GIF 産生ヒ 卜 T細胞 ハイプリ ドーマ株 AC5細胞が樹立されている (トーマス(Thomas)ら、 The Journa 1 of Immunology, 92: 729-737, 1992) 。 この細胞の TCRな cDNA を、 ムルスら, Nucl. Acid. Res., 8:3895-3950, 1980 に記載された方法に従って PCR により クローニング化した。 ファース ト トラック (商標) mRNA 単離キッ 卜 (イ ンビト ロゲン (Invitrogen) ) を使用して、 5 X 1 0 7 AC5細胞から mRNAを単離した。 cDNA 合成システム (ファルマンァ) を使用して cDNA を生成させた。 その生成 後に、 T4 リガ一ゼ (タカラ) を使用して cDNA を 5 ' 末端及び 3' 末端で連結 して環状 DNA を構築した。 公知の TCRa鎖 DNA配列 (Yanagi ら、 Proc. Nalt. Acad. Sci. USA, 82: 3430-3434, 1985) に基づき、 ヒ 卜 CaDNA をコードする オリゴヌクレオチドプライマ一を DNA/RNA 合成装置 (アプライ ド 'バイオシス テム) によりホスホアミダイ ド (phosphoramicHte) 法を用いて合成した (バウ ケージ (Beaucage) ら, Tetrahedron Lett. , 22: 1859-1862, 1981) 。 これらの プライマ一の配列は以下の通りである。 A PLA2-specific GIF-producing human T cell expressing PLA2-specific TCRa and / 3 chain T cell hybridoma strain AC5 cells have been established (Thomas et al., The Journa 1 of Immunology, 92: 729-737, 1992). The TCR cDNA of this cell was cloned by PCR according to the method described in Murus et al., Nucl. Acid. Res., 8: 3895-3950, 1980. Use Fast preparative track (TM) mRNA isolation kit Bok the (i Nbito androgenic (Invitrogen)), mRNA was isolated from 5 X 1 0 7 AC5 cells. cDNA was generated using a cDNA synthesis system (Falmana). After its generation, the cDNA was ligated at the 5 'and 3' ends using T4 ligase (Takara) to construct a circular DNA. Based on a known TCRa chain DNA sequence (Yanagi et al., Proc. Nalt. Acad. Sci. USA, 82: 3430-3434, 1985), an oligonucleotide primer encoding human CaDNA was converted to a DNA / RNA synthesizer (Applied. It was synthesized by the phosphoramidite method using the 'biosystem' (Beaucage et al., Tetrahedron Lett., 22: 1859-1862, 1981). The sequences of these primers are as follows.
5 ' - CTAGGATCCATCCAGAACCCTGACCCT- 3 ' (配列番号 1 6 )  5 '-CTAGGATCCATCCAGAACCCTGACCCT-3' (SEQ ID NO: 16)
5 ' - CTAGAATTCTCAGCTGGACCACAGCCG- 3 ' (配列番号 1 7 )  5 '-CTAGAATTCTCAGCTGGACCACAGCCG- 3' (SEQ ID NO: 17)
P CRは、 Taql DNA ポリメラーゼ (タカラ) により、 铸型 cDNA 、 プライマ 一及び dNTPの存在下、 サーモ 'サイクラ一 (thermo cycler) 中で行った。 P C Rの条件は、 変性工程が 9 4 °Cで 1分; ァニーリング工程が 5 4 °Cで 1分;及び 伸長工程が 7 2 °Cで 2分;で、 これらを 3 5サイクルした。 増幅した cDNA を、 TA クローニングシステム (商標) (インビトロゲン) の pCRlOOO ベクタ一内 にサブクローン化した。 これを、 pCRlOOO-human TCRなと命名した。  PCR was performed in a Thermo 'cycler' with Taql DNA polymerase (Takara) in the presence of type I cDNA, primers and dNTPs. The PCR conditions were as follows: denaturation step: 94 ° C. for 1 minute; annealing step: 54 ° C. for 1 minute; and elongation step: 72 ° C. for 2 minutes. The amplified cDNA was subcloned into the pCR1000 vector of the TA Cloning System ™ (Invitrogen). This was named pCRIOOO-human TCR.
B. 大腸菌内での組換え TCRa- の発現系の構築  B. Construction of recombinant TCRa- expression system in E. coli
ヒ ト由来 TCR の C 領域の DNA フラグメ ン トを、 それぞれ 5 ' 末端用に Bam HI 部位を含有し、 3 ' 末端用に停止コ ドンと Xba I部位を含有する 2つのブラ イマ一を使用する P C Rにより、 pCRlOOO - human TCRaプラスミ ドから増幅した ( これらのプライマーの配列は以下の通りである。 5 ' - GACGGATCCATCCAGAACCCTGACCCTGCCGTG - 3 ' (配列番号 1 8 ) 5 ' -TCCTCTAGATTACTATTGAAAGTTTAGGTTCGTATC- 3 ' (配列番号 1 9 ) Use two primers, each containing a Bam HI site for the 5 'end and a stop codon and an Xba I site for the 3' end, for the DNA fragment of the C region of the human-derived TCR. Amplified from pCRlOO-human TCRa plasmid by PCR ( The sequences of these primers are as follows. 5'-GACGGATCCATCCAGAACCCTGACCCTGCCGTG-3 '(SEQ ID NO: 18) 5'-TCCTCTAGATTACTATTGAAAGTTTAGGTTCGTATC- 3' (SEQ ID NO: 19)
増幅した DNA フラグメン卜は実施例 1 : Aと同様に、 pCFl ベクター内にそ の特有の Bam HI及び Xba I部位においてクローン化した (第 7図) 。 pCFl-TCRa -human Caと呼ぶこの新規なプラスミ ドでコンビテント Xい- Blue 大腸菌細胞 (ス トラタジーン社製) を形質転換し、 その DNA配列を確認した (配列番号 2 0に示す) 。 さらに、 コンビテン ト W3110 大腸菌細胞に形質転換した。  The amplified DNA fragment was cloned into the pCFl vector at its unique Bam HI and Xba I sites, as in Example 1: A (Figure 7). The novel plasmid called pCFl-TCRa-human Ca was used to transform competent X-Blue E. coli cells (Stratagene), and its DNA sequence was confirmed (shown in SEQ ID NO: 20). In addition, the transformant was transformed into W3110 E. coli cells.
〔実施例 1 1〕 大腸菌組換え TCRa- human Caの発現 [Example 11] Expression of E. coli recombinant TCRa-human Ca
実施例 1 0に示したプラスミ ド pCFl- TCR a -human Caを保持する w3U0 大 腸蘭を、 1 0 0 wg/nil のアンピシリ ンを含有する 5 0 mlのルリア培地で一 晚培養した。 該接種源培養液を 0. 8 %グルコース、 0. 4 %カザミノ酸、 1 0 0 mg/1 のアンピシリンからなる 1 Lの M 9培地に他の菌が入らないように移し、 3時間 3 7 °Cで培養した。 この最初の培養の終盤に最終濃度 20 になるよう にインドールアクリル酸を添加し、 該培養液を更に 5時間 3 7てで培養した。 こ の発現系において、 カルモジュリン- TCRa- human C の融合タンパク質が可溶 型で発現され、 それは、 全タンパク質の約 1 0 %であった。  The w3U0 colon orchid holding the plasmid pCF1-TCRa-human Ca shown in Example 10 was cultured in 50 ml of Luria medium containing 100 wg / nil of ampicillin. The inoculum culture was transferred to 1 L of M9 medium consisting of 0.8% glucose, 0.4% casamino acid, 100 mg / 1 ampicillin in a manner that no other bacteria entered, and 3 hours 3 7 Cultured at ° C. At the end of the first culture, indoleacrylic acid was added to a final concentration of 20, and the culture was cultured for a further 5 hours at 37. In this expression system, the calmodulin-TCRa-human C fusion protein was expressed in a soluble form, about 10% of the total protein.
〔実施例 1 2〕 大腸菌組換え TCR - human Caの精製 [Example 12] Purification of E. coli recombinant TCR-human Ca
1. 実施例 1 1の培養した細胞約 0. 5 g を、 実施例 4と同様に菌体を破砕し、 上清を回収した。 これらの融合タンパク質の発現量は、 1 L当たり約 5 mgであ つた。 さらに、 8 0 °Cで 1 0分間熱処理を行った後、 1 5 0 0 0 xg、 1 5分間 遠心し、 上清を回収した。  1. About 0.5 g of the cells cultured in Example 11 were disrupted in the same manner as in Example 4, and the supernatant was recovered. The expression level of these fusion proteins was about 5 mg / L. After heat treatment at 80 ° C for 10 minutes, the mixture was centrifuged at 1500 xg for 15 minutes, and the supernatant was recovered.
2. 該上清画分を 1 0 0倍量の 2 mM グルタチオン (還元型) 及び 0. 2 m グ ルタチオン (酸化型) を含有する 5 0 mM トリス HC1 緩衝液 (PH8.0) で、 4 2. The supernatant fraction was diluted with 50 mM Tris HC1 buffer (PH8.0) containing 100 volumes of 2 mM glutathione (reduced form) and 0.2 m glutathione (oxidized form).
°Cで一晩透析した。 このサンプル溶液を適当な混合液に添加して、 該混合液中の 最終濃度が 2. 5 mMCaC 及び 5 mM MgCl 2となるようにした。 Dialysis at ° C overnight. This sample solution was added to an appropriate mixture so that the final concentration in the mixture was 2.5 mM CaC and 5 mM MgCl 2 .
3. 該混合液を実施例 4と同様な条件でフエ二ルセファロース 6サブカラムにか け、 カルモジュリン一 TCRa- human C 融合タンパク質を 5 0 mM 卜リス HC1 緩衝液 (pH8.0) と 5 m BDTA (pH8.0) で溶出した。 S D S— P A G Eにより、 カルモジュリン— TCRa- human Caタンパク質の発現を確認した。 3. Apply the mixture to a Phenyl Sepharose 6 subcolumn under the same conditions as in Example 4, and add calmodulin-TCRa-human C fusion protein to 50 mM Tris HC1. Elution was performed with buffer (pH 8.0) and 5mBDTA (pH 8.0). The expression of calmodulin-TCRa-human Ca protein was confirmed by SDS-PAGE.
4. 該溶出画分を 丽 限外濾過膜にて 1 0倍濃縮し、 実施例 4と同様な条件で DEAEトヨパールカラムにかけ、 0カヽら 0. 5 M の NaCl の濃度勾配を用いて、 カルモジュリ ン一 TCR - human C 融合タンパク質を溶出させた。 その結果、 力 ルモジュリ ンー TCRa - human Ca融合タンパク質は、 約 5 0 0 mM NaCl 濃度 で溶出された。 4. The eluted fraction was concentrated 10-fold with an ultrafiltration membrane, applied to a DEAE Toyopearl column under the same conditions as in Example 4, and subjected to a concentration gradient of 0.5 M NaCl at 0. Calmodulin-TCR-human C fusion protein was eluted. As a result, the fusion protein TCRa-human Ca fusion protein was eluted at a concentration of about 500 mM NaCl.
5. 該溶出画分を 1 0 0倍量の 5 0 mM トリス HC1 緩衝液 (pH8.0) で、 4 °C で一晩透析した。 実施例 4と同様な条件で、 トロンビン (シグマ) にて該融合夕 ンパク質を消化した。  5. The eluted fraction was dialyzed against 100 volumes of 50 mM Tris HC1 buffer (pH 8.0) at 4 ° C overnight. Under the same conditions as in Example 4, the fusion protein was digested with thrombin (Sigma).
6. 該混合液を MACR0SEP 3 K (FILTR0N ) にて遠心濃縮し、 TCRa - human C は、 NAP (フアルマシア) カラムにて 1 0 %グリセロール及び 2 mM D TTを含 有する 5 0 mM トリス HC1 緩衝液 (pH8.0) に交換した。 実施例 4と同様な 条件で DEAE-5PW カラムにかけ、 0から 0. 5 M の NaCl の濃度勾配を用いて、 TCRa -human C αをタンパク質を溶出させた。 その結果、 TCRa- human Caは約 2 0 0 mM NaCl 濃度で溶出された。 精製された TCRa - human Caのタンパク質 量は 1 L当たり約 1 mg であった。 TCRa - human Caタンパク質は、 安定化さ せるため 1 0 %グリセロールを含有する PBS にて一 2 0 °Cで保存した。 この大 腸菌内での組換え TCR - human C タンパク質を rechC と命名した。  6. Centrifuge the mixture with MACR0SEP 3 K (FILTR0N), and convert TCRa-human C to 50 mM Tris HC1 buffer containing 10% glycerol and 2 mM DTT on a NAP (Pharmacia) column. (PH 8.0). The protein was applied to a DEAE-5PW column under the same conditions as in Example 4 and TCRa-human Cα was eluted with a concentration gradient of 0 to 0.5 M NaCl. As a result, TCRa-human Ca was eluted at a concentration of about 200 mM NaCl. The amount of purified TCRa-human Ca protein was about 1 mg / L. TCRa-human Ca protein was stored at 120 ° C in PBS containing 10% glycerol for stabilization. The recombinant TCR-human C protein in Escherichia coli was named rechC.
7. 必要に応じて実施例 4 と同様に、 大腸菌由来エン ドトキシンを PyoSep C (ダイセル化学社製) を用いて除去した。  7. Endotoxin derived from Escherichia coli was removed using PyoSep C (manufactured by Daicel Chemical Industries) as necessary in the same manner as in Example 4.
〔実施例 1 3〕 組換え TCRa - human Caの in vivo 免疫抑制活性 [Example 13] In vivo immunosuppressive activity of recombinant TCRa-human Ca
rechCaが in vivo で免疫応答を抑制するか否かを評価するために、 rechC aタンパク質を、 ハチ毒 PLA2 で免疫感作したマウスに投与した。 実施例 5と同 様に抗原として DNP 化した PLA2 を用い、 Balb/c マウスを、 1 mg の Alum に 吸着させた DNP-PLA2 1 fig の腹腔内注射により免疫感作した。 recCaを、 - 1、 0、 1 日目に 1回あたり 5 の投与量で腹腔内注射し、 コントロールマウスに は 1 0 %グリセロールを含有した PBS だけを投与した。 免疫後 2週間目に各マウ スから血清を採取し、 抗 DNP- IgGl を EL1SA (イワ夕ら, 1讓 unol. , 141: 32 70-3277, 1988) により測定した。 下に示したように、 rechCひ タンパク質は、 抗 DNP- IgGl 産生を抑制した。 To evaluate whether rechCa suppresses the immune response in vivo, the rechCa protein was administered to mice immunized with the bee venom PLA2. As in Example 5, DNP-modified PLA2 was used as an antigen, and Balb / c mice were immunized by intraperitoneal injection of DNP-PLA2 1 fig adsorbed to 1 mg of Alum. recCa was injected intraperitoneally at a dose of 5 per day on days -1, 0 and 1, and control mice received only PBS containing 10% glycerol. Each mouse 2 weeks after immunization Serum was collected from the sample, and anti-DNP-IgGl was measured by EL1SA (Iwa-Yu, 1 Cell unol., 141: 3270-3277, 1988). As shown below, rechC protein inhibited anti-DNP-Iggl1 production.
rechC による Balb/c マウスの抗ハプテン抗体応答の抑制  Inhibition of anti-hapten antibody response in Balb / c mice by rechC
試料 N 抗 DNP- IgGl (/z /ml)  Sample N anti-DNP- IgGl (/ z / ml)
PBS+10 ¾ glycerol 6 42.81±i9.72  PBS + 10 ¾ glycerol 6 42.81 ± i9.72
rechCa 6 14.36±11.03  rechCa 6 14.36 ± 11.03
〔実施例 1 4〕 組換え TCR - human C α投与マウス血清における組換え TCR - h uman Caに対する抗体産生 [Example 14] Antibody production against recombinant TCR-human Ca in mouse serum from recombinant TCR-human Cα-administered mice
本実施例は、 実施例 1 3で示された各マウスの血清中の組換え TCR - human C αに対する抗体産生をゥエスタンブロッティ ングにて調べたものである。 1 g /ml の濃度の TCRひ- human Cな 1 6 1 を 5 m D T Tを含んだ還元条件下で、 1 0〜2 0 %グラジェントゲルにて SDS-PAGE を行った。 このタンパク質を、 1 ゲルにつき 1 5 0 mA で 3 0分の条件で二トロセルロース膜に転送した。 TBSに て室温で 5分間膜を洗浄し、 さらに TTBSにて室温で 5分間、 2回洗浄した。 その 後、 G/TTBSにて室温で 1時間振とう培養し、 膜を固定化した。 次に、 各マウス血 清を G/TTBSで 5 0倍希釈したものを室温で 1時間振とう培養した。 TTBSにて室 温で 5分間膜を洗浄し、 2次抗体としてャギ抗マウス lgG(H+し) のアルカリフォ スファターゼ標識抗体 (バイオラッ 卜社製) を用い、 これを 2 0 0 0倍希釈した ものを室温で 1時間振とう培養した。 TTBSにて 2回、 室温で 5分間膜を洗浄し、 さらに、 TBSにて 2回、 室温で 5分間洗浄した。 最後に、 アルカリフォスファタ ーゼ発色キッ ト (バイオラッ ト社製) を用い発色を行った。  In this example, the production of antibodies to the recombinant TCR-human Cα in the serum of each mouse shown in Example 13 was examined by estanbuling. SDS-PAGE was performed on a 10 to 20% gradient gel of TCR-human C161 at a concentration of 1 g / ml under reducing conditions containing 5 mDTT. The protein was transferred to a nitrocellulose membrane at 150 mA per gel for 30 minutes. The membrane was washed with TBS at room temperature for 5 minutes, and further washed twice with TTBS at room temperature for 5 minutes. Thereafter, the cells were shake-cultured in G / TTBS for 1 hour at room temperature to fix the membrane. Next, each mouse serum diluted 50-fold with G / TTBS was cultured with shaking at room temperature for 1 hour. The membrane was washed with TTBS at room temperature for 5 minutes, and a goat anti-mouse lgG (H +) alkaline phosphatase-labeled antibody (manufactured by Bio-Rat) was used as a secondary antibody, and diluted 200-fold. The culture was shake-cultured at room temperature for 1 hour. The membrane was washed twice with TTBS at room temperature for 5 minutes, and further washed twice with TBS at room temperature for 5 minutes. Finally, coloring was performed using an alkaline phosphatase coloring kit (manufactured by Biorat).
その結果、 組換え TCRa- human 投与マウス血清中には、 組換え TCRひ- hum an Caに対する抗体が検出されなかった。  As a result, no antibody against the recombinant TCR human Ca was detected in the serum of the mouse administered with the recombinant TCRa-human.
〔実施例 1 5〕 組換え TCR - Cひの移植拒絶反応における抑制活性 [Example 15] Inhibitory activity of recombinant TCR-C cells in transplant rejection
本実施例は、 recCひが移植拒絶反応を抑制することを示すものである。 ビリ ン グハム (BiUingham) らの手法 (ピリ ングハム (B lingham) ら、 J. Exp. Med. 28, 285-402, 1951)を改変し、 皮膚移植を行った。 約 7 nun 角に整形した 1 0 週齢の DBA/2NCr j雌性マウスの尾部皮) *をエーテル麻酔下にて同一週齢の Bal b/ cAnNCrj 雌性マウス (N= 9 ) 側胸背部に移植し、 ガーゼ付きの絆創膏にて移植 面を覆った。 移植後 6曰に絆創裔を削除し、 移植片の生着の有無を毎日観察した c 移植片全体が、 壊死または硬結し脱落した場合を拒絶と判明した。 5 g の rec Cなを移植前日から 5日間連日腹腔内投与した。 コントロールマウスには 1 0 % グリセロールを含有した PBS のみを同様に投与した。 This example shows that recC inhibits transplant rejection. The method of BiUingham et al. (Blingham et al., J. Exp. Med. 28, 285-402, 1951), and skin transplantation was performed. The tail skin of a 10-week-old DBA / 2NCrj female mouse (having an approximately 7 nun angle) was transplanted into the same-week Balb / cAnNCrj female mouse (N = 9) under ether anesthesia. The surface to be transplanted was covered with a bandage with gauze. After transplantation6, he removed the bond descendants and observed the graft every day to determine if the entire c- graft was necrotic or indurated and fell off. 5 g of rec C was intraperitoneally administered every day for 5 days from the day before transplantation. Control mice were similarly administered only PBS containing 10% glycerol.
その結果、 コントロール群は、 移植後 11日目までに全例拒絶されたが、 recC ひ投与群は、 移植後最長 19日目まで拒絶が遅延された (第 8図) 。 産業上の利用可能性  As a result, the control group was rejected in all cases by day 11 after transplantation, whereas the recC-treated group was delayed in rejection up to day 19 after transplantation (Fig. 8). Industrial applicability
本発明のポリペプチドは、 抗原非特異的な免疫抑制作用を有し、 体液性免疫反 応のみならず、 細胞性免疫反応も抑制することができる。 さらに、 本発明のポリ ぺプチドを投与しても、 T C R αに対する抗体の産生が実質的に惹起されない。 The polypeptide of the present invention has an antigen-nonspecific immunosuppressive action, and can suppress not only humoral immune reaction but also cell-mediated immune reaction. Furthermore, administration of the polypeptide of the present invention does not substantially induce the production of antibodies against TCRα.
配 列 表 Arrangement table
配列番号: 1 SEQ ID NO: 1
配列の長さ : 1 0 9 Array length: 1 0 9
配列の型: アミノ酸 Sequence type: amino acid
トポロジー : 直鎖状  Topology: linear
配列の種類: ペプチド Sequence type: Peptide
起源 Origin
生物名 :ハツカネズミ (Mu s)  Organism name: Mus musculus (Mus)
配列: Array:
Asn lie Gin Asn Pro Glu Pro Ala Val Tyr Gin Leu Lys Asp Pro Arg Asn lie Gin Asn Pro Glu Pro Ala Val Tyr Gin Leu Lys Asp Pro Arg
1 5 10 151 5 10 15
Ser Gin Asp Ser Thr Leu Cys Leu Phe Thr Asp Phe Asp Ser Gin lie Ser Gin Asp Ser Thr Leu Cys Leu Phe Thr Asp Phe Asp Ser Gin lie
20 25 30  20 25 30
Asn Val Pro Lys Thr Met Glu Ser Gly Thr Phe lie Thr Asp Lys Thr  Asn Val Pro Lys Thr Met Glu Ser Gly Thr Phe lie Thr Asp Lys Thr
35 40 45  35 40 45
Val Leu Asp Met Lys Ala Met Asp Ser Lys Ser Asn Gly Ala He Ala Val Leu Asp Met Lys Ala Met Asp Ser Lys Ser Asn Gly Ala He Ala
50 55 60 50 55 60
Trp Ser Asn Gin Thr Ser Phe Thr Cys Gin Asp He Phe Lys Glu Thr 65 70 75 80 Trp Ser Asn Gin Thr Ser Phe Thr Cys Gin Asp He Phe Lys Glu Thr 65 70 75 80
Asn Ala Thr Tyr Pro Ser Ser Asp Val Pro Cys Asp Ala Thr Leu Thr Asn Ala Thr Tyr Pro Ser Ser Asp Val Pro Cys Asp Ala Thr Leu Thr
85 90 95 85 90 95
Glu Lys Ser Phe Glu Thr Asp Met Asn Leu Asn Phe Gin Glu Lys Ser Phe Glu Thr Asp Met Asn Leu Asn Phe Gin
100 105 配列番号: 2  100 105 SEQ ID NO: 2
配列の長さ : 1 1 3 Array length: 1 1 3
配列の型: アミノ酸 Sequence type: amino acid
トポロジー :直鎖状  Topology: linear
配列の種類: ぺプチド 9 ε : 暴
Figure imgf000038_0001
Sequence type: peptide 9 ε: violent
Figure imgf000038_0001
A ^ : mno m ■ - ^ ci^ ^ ^ ■ ourn A ^: mno m ■-^ ci ^ ^ ^ ■ ourn
9 : $¥0) ε : 觀 επ on 50ΐ ΟΟΐ 9: $ ¥ 0) ε: View επ on 50ΐ ΟΟΐ
3Md us naq usy J¾ dsv J¾ "10 3Md sAq nio Ι¾Λ sAq 3Md us naq usy J¾ dsv J¾ "10 3Md sAq nio s sAq
S6 06 S8 S6 06 S8
dsv SAQ J9S J3S nio OJJ jas OJJ aqd aqd jqi dsy nio OJd an 311dsv SAQ J9S J3S nio OJJ jas OJJ aqd aqd jqi dsy nio OJd an 311
08 S2, 01 9908 S2, 01 99
J3S usv usv 3Md ^IV usv ¾I sAg ¾jy 9Md dsy J3S s usy J9S c 丄 J3S usv usv 3Md ^ IV usv ¾I sAg ¾jy 9Md dsy J3S s usy J9S c 丄
09 95 09 09 95 09
¾IV 1¾A ^IV J3S usv J3S sAi aqj dsy )9^ J9S 3JV }9W dsv "31 八 ¾IV 1¾A ^ IV J 3S usv J3S sAi aqj dsy) 9 ^ J9S 3JV} 9W dsv "31 eight
Of' SS  Of 'SS
JiU sA dsy JM1 311 J ΙΒΛ dsy J3S dsy sAq JSS UIQ J9S Ι¾Λ USV  JiU sA dsy JM1 311 J ΙΒΛ dsy J3S dsy sAq JSS UIQ J9S Ι¾Λ USV
OC 02  OC 02
丄 ui3 J3S dsy 3Md dsy J41 9Md "31 sAo Ι¾Λ J3S sA dsy J3S J3S 丄 ui3 J3S dsy 3Md dsy J41 9Md "31 sAo Ι¾Λ J3S sA dsy J3S J3S
SI 01 S ΐ s J9g dsy 3JV n3l uio J ΙΒΛ ¾1V OJJ dsy OJJ USV "10 311 usy SI 01 S ΐ s J9g dsy 3 J V n3 l uio J ¾ V1V OJJ dsy OJJ USV "10 311 usy
(suaid-es ouiOH) ^ : dDT/XDd ひ仏 60AV 配列の長さ : 8 0 7 (suaid-es ouiOH) ^: dDT / XDd Array length: 8 0 7
配列の型:核酸 Sequence type: nucleic acid
鎖の数:二本鎖 Number of chains: double strand
トポロジー :直鎖状  Topology: linear
配列の種類: cDNA to mRNA Sequence type: cDNA to mRNA
起源 Origin
生物名 : ハツカネズミ (Mu s)  Organism name: Mus musculus (Mus)
株名 : サブレッサー T細胞ハイプリ ドーマ 3 B 3株  Strain name: Sublesser T cell Hypri-Doma 3 B 3 strain
配列 : Array:
9 18 27 36 45 54 9 18 27 36 45 54
ATG AAG AGC CTG CTG AGC TCT CTC CTG GGG CTT CTG TGC ACC CAG GTT TGC TGG ATG AAG AGC CTG CTG AGC TCT CTC CTG GGG CTT CTG TGC ACC CAG GTT TGC TGG
Met Lys Ser Leu Leu Ser Ser Leu Leu Gly Leu Leu Cys Thr Gin Val Cys Trp  Met Lys Ser Leu Leu Ser Ser Leu Leu Gly Leu Leu Cys Thr Gin Val Cys Trp
63 72 81 90 99 108 63 72 81 90 99 108
GTG AAA GGA CAG CAA GTG CAG CAG AGT CCT GCA TCC TTG GTT CTG CAG GAG GGG GTG AAA GGA CAG CAA GTG CAG CAG AGT CCT GCA TCC TTG GTT CTG CAG GAG GGG
Val Lys Gly Gin Gin Val Gin Gin Ser Pro Ala Ser Leu Val Leu Gin Glu Gly  Val Lys Gly Gin Gin Val Gin Gin Ser Pro Ala Ser Leu Val Leu Gin Glu Gly
117 126 135 144 153 162 117 126 135 144 153 162
GAG AAC GCA GAG CTG CAG TGT AAC TTT TCC TCC ACA GCA ACC CAG CTG CAG TGG GAG AAC GCA GAG CTG CAG TGT AAC TTT TCC TCC ACA GCA ACC CAG CTG CAG TGG
Glu Asn Ala Glu Leu Gin Cys Asn Phe Ser Ser Thr Ala Thr Gin Leu Gin Trp  Glu Asn Ala Glu Leu Gin Cys Asn Phe Ser Ser Thr Ala Thr Gin Leu Gin Trp
171 180 189 198 207 216 171 180 189 198 207 216
TTT TAC CAA CGT CCT GGG GGA AGC CTC GTC AGC CTG TTG TAC AAT CCT TCT GGG TTT TAC CAA CGT CCT GGG GGA AGC CTC GTC AGC CTG TTG TAC AAT CCT TCT GGG
Phe Tyr Gin Arg Pro Gly Gly Ser Leu Val Ser Leu Leu Tyr Asn Pro Ser Gly  Phe Tyr Gin Arg Pro Gly Gly Ser Leu Val Ser Leu Leu Tyr Asn Pro Ser Gly
225 234 243 252 261 270 225 234 243 252 261 270
ACA AAG CAC ACT GGA AGA CTG ACA TCC ACC ACA GTC ACT AAA GAA CGT CGC AGC ACA AAG CAC ACT GGA AGA CTG ACA TCC ACC ACA GTC ACT AAA GAA CGT CGC AGC
Thr Lys His Thr Gly Arg Leu Thr Ser Thr Thr Val Thr Lys Glu Arg Arg Ser  Thr Lys His Thr Gly Arg Leu Thr Ser Thr Thr Val Thr Lys Glu Arg Arg Ser
279 288 297 306 315 324 279 288 297 306 315 324
TCT TTG CAC ATT TCC TCC TCC CAG ATC ACA GAC TCA GGC ACT TAT TTC TGT GCT TCT TTG CAC ATT TCC TCC TCC CAG ATC ACA GAC TCA GGC ACT TAT TTC TGT GCT
Ser Leu His lie Ser Ser Ser Gin lie Thr Asp Ser Gly Thr Tyr Phe Cys Ala  Ser Leu His lie Ser Ser Ser Gin lie Thr Asp Ser Gly Thr Tyr Phe Cys Ala
333 342 351 360 369 378 333 342 351 360 369 378
ATG GAA GAC ACT GGA GCT AAC ACT GGA AAG CTC ACG TTT GGA CAC GGC ACC ATC Met Glu Asp Thr Gly Ala Asn Thr Gly Lys Leu Thr Phe Gly His Gly Thr HeATG GAA GAC ACT GGA GCT AAC ACT GGA AAG CTC ACG TTT GGA CAC GGC ACC ATC Met Glu Asp Thr Gly Ala Asn Thr Gly Lys Leu Thr Phe Gly His Gly Thr He
387 396 405 414 423 432387 396 405 414 423 432
CTT AGG GTC CAT CCA AAC ATC CAG AAC CCA GAA CCT GCT CTG TAC CAG TTA AAA CTT AGG GTC CAT CCA AAC ATC CAG AAC CCA GAA CCT GCT CTG TAC CAG TTA AAA
Leu Arg Val His Pro Asn lie Gin Asn Pro Glu Pro Ala Val Tyr Gin Leu Lys  Leu Arg Val His Pro Asn lie Gin Asn Pro Glu Pro Ala Val Tyr Gin Leu Lys
441 450 459 468 477 486 441 450 459 468 477 486
GAT CCT CGG TCT CAG GAC AGC ACC CTC TGC CTG TTC ACC GAC TTT GAC TCC CAA GAT CCT CGG TCT CAG GAC AGC ACC CTC TGC CTG TTC ACC GAC TTT GAC TCC CAA
Asp Pro Arg Ser Gin Asp Ser Thr Leu Cys Leu Phe Thr Asp Phe Asp Ser Gin  Asp Pro Arg Ser Gin Asp Ser Thr Leu Cys Leu Phe Thr Asp Phe Asp Ser Gin
495 504 513 522 531 540 495 504 513 522 531 540
ATC AAT GTG CCG AAA ACC ATG GAA TCT GGA ACG TTC ATC ACT GAC AAA ACT GTG ATC AAT GTG CCG AAA ACC ATG GAA TCT GGA ACG TTC ATC ACT GAC AAA ACT GTG
lie Asn Val Pro Lys Thr Met Glu Ser Gly Thr Phe lie Thr Asp Lys Thr Val lie Asn Val Pro Lys Thr Met Glu Ser Gly Thr Phe lie Thr Asp Lys Thr Val
549 558 567 576 585 594 549 558 567 576 585 594
CTG GAC ATG AAA GCT ATG GAT TCC AAG AGC AAT GGG GCC ATT GCC TGG AGC AAC CTG GAC ATG AAA GCT ATG GAT TCC AAG AGC AAT GGG GCC ATT GCC TGG AGC AAC
Leu Asp Met Lys Ala Met Asp Ser Lys Ser Asn Gly Ala He Ala Trp Ser Asn  Leu Asp Met Lys Ala Met Asp Ser Lys Ser Asn Gly Ala He Ala Trp Ser Asn
603 612 621 630 639 648 603 612 621 630 639 648
CAG ACA AGC TTC ACC TGC CAA GAT ATC TTC AAA GAG ACC AAC GCC ACC TAC CCC CAG ACA AGC TTC ACC TGC CAA GAT ATC TTC AAA GAG ACC AAC GCC ACC TAC CCC
Gin Thr Ser Phe Thr Cys Gin Asp lie Phe Lys Glu Thr Asn Ala Thr Tyr Pro  Gin Thr Ser Phe Thr Cys Gin Asp lie Phe Lys Glu Thr Asn Ala Thr Tyr Pro
657 666 675 684 693 702 657 666 675 684 693 702
AGT TCA GAC GTT CCC TGT GAT GCC ACG TTG ACC GAG AAA AGC TTT GAA ACA GAT AGT TCA GAC GTT CCC TGT GAT GCC ACG TTG ACC GAG AAA AGC TTT GAA ACA GAT
Ser Ser Asp Val Pro Cys Asp Ala Thr Leu Thr Glu Lys Ser Phe Glu Thr Asp  Ser Ser Asp Val Pro Cys Asp Ala Thr Leu Thr Glu Lys Ser Phe Glu Thr Asp
711 720 729 738 747 756 711 720 729 738 747 756
ATG AAC CTA AAC TTT CAA AAC CTG TCA GTT ATG GGA CTC CGA ATC CTC CTG CTG ATG AAC CTA AAC TTT CAA AAC CTG TCA GTT ATG GGA CTC CGA ATC CTC CTG CTG
Met Asn Leu Asn Phe Gin Asn Leu Ser Val Met Gly Leu Arg lie Leu Leu Leu  Met Asn Leu Asn Phe Gin Asn Leu Ser Val Met Gly Leu Arg lie Leu Leu Leu
765 774 783 792 801  765 774 783 792 801
AAA GTA GCG GGA TTT AAC CTG CTC ATG ACG CTG AGG CTG TGG TCC AGT TGA  AAA GTA GCG GGA TTT AAC CTG CTC ATG ACG CTG AGG CTG TGG TCC AGT TGA
Lys Val Ala Gly Phe Asn Leu Leu Met Thr Leu Arg Leu Trp Ser Ser 配列番号: 5  Lys Val Ala Gly Phe Asn Leu Leu Met Thr Leu Arg Leu Trp Ser Ser SEQ ID NO: 5
配列の長さ : 8 1 9 Array length: 8 1 9
配列の型:核酸 6 ε ζζ^ Sequence type: nucleic acid 6 ε ζζ ^
^10 3iJd ΙΒΛ naq ^ uio ^IO J3S J9S ^IO O-^d o^d s つ ¾iv SA3 J JA IOO 111110 013 OVV OVO 30010V VDl 100 003 300 IOV 013 1D0101 OVI 3V丄 ^ 10 3iJd ΙΒΛ naq ^ uio ^ IO J3S J9S ^ IO O- ^ d o ^ d s ¾iv SA3 J JA IOO 111110 013 OVV OVO 30010V VDl 100 003 300 IOV 013 1D0101 OVI 3V
8ζε 69c 09ε Tss 2 εεε 8ζε 69c 09ε Tss 2 εεε
ΙΒΛ Βΐν J3S dsv J3S nio "10 Ι¾Λ J3S ¾IV δΑ naq S!H 3Md as JMI JMI ΙΒΛ Βΐν J3S dsv J3S nio "10 Ι¾Λ J3S ¾IV δΑ naq S! H 3Md as JMI JMI
010130 031 OVO VOX OVO VVO 010 VOX 300 VVV 0V3 Oil OVO 311 DDI 03V D3V 010130 031 OVO VOX OVO VVO 010 VOX 300 VVV 0V3 Oil OVO 311 DDI 03V D3V
SIS 90S LQZ 882 6LZ  SIS 90S LQZ 882 6LZ
"ID sXi usv ¾IV niO ^IO 3J J3S J3S IO sA UJO ΑϊΟ ¾IV 丄 "ID sXi usv ¾IV niO ^ IO 3J J3S J3S IO sA UJO ΑϊΟ ¾IV 丄
VVO VVV XVV 3V1 VDV 330 VVO 1X1000 VOV OOV OOV VOO OVV OVO 900130 93VVVO VVV XVV 3V1 VDV 330 VVO 1X1000 VOV OOV OOV VOO OVV OVO 900 130 93V
OLZ 19Z SSS £H ΠΖ 522 OLZ 19Z SSS £ H ΠΖ 522
311 ΙΒΛ s q na ngq ngq naq λιο nio ^io OJJ JAI 3JV 1¾Λ 丄 djx aqd 311 ΙΒΛ s q na ngq ngq naq λιο nio ^ io OJJ JAI 3JV 1¾Λ 丄 djx aqd
LLV 310 VVV 013 DID 310 VVO VIO 100 VVO VOO 133 IVI VOO 110 IVi OOX 311LLV 310 VVV 013 DID 310 VVO VIO 100 VVO VOO 133 IVI VOO 110 IVi OOX 311
912 102 861 681 081 T 912 102 861 681 081 T
nai usy OJJ J/ί丄 ¾i 911 J3S J¾l ¾IV J3S J jqi SAQ USV 3Π 9Π nai J3Snai usy OJJ J / ί 丄 ¾i 911 J3S J¾l ¾IV J3S J jqi SAQ USV 3Π 9Π nai J3S
113 IVV 133 3V1130 VIV OOV VOV 330 V31 IVI OOV 301 IVV VIV VIV 010 DDI113 IVV 133 3V1 130 VIV OOV VOV 330 V31 IVI OOV 301 IVV VIV VIV 010 DDI
Z9i esT SCT i\\ Z9i esT SCT i \\
sA^i J9S nio J3S 1¾Λ JMI 1¾Λ UIO Aio nio J¾ J¾ 1¾Λ J3g dsv AIO S!H OVV OOV VVO VOX 310 33V 010 VVO 300 VVO VOV VVO 13V 010 331 IVO V09 OVO 801 66 06 18 ZL S9 sA ^ i J9S nio J3S 1¾Λ JMI 1¾Λ UIO Aio nio J¾ J¾ 1¾Λ J3g dsv AIO S! H OVV OOV VVO VOX 310 33V 010 VVO 300 VVO VOV VVO 13V 010 331 331 IVO V09 OVO 801 66 06 18 ZL S9
JiJ丄 3JV Aio naq an naq na na ΙΒΛ ¾IV Ι¾Λ 9Md ^IO ojd J3S J3S dsv }9W 03V OOV V0911D VIV 310 UO VIO 010100 010 311300 V331311310V9 01V S S 9C LZ 81 6 JiJ 丄 3JV Aio naq an naq na na ¾ ¾IV Ι¾Λ 9Md ^ IO o j d J3S J3S dsv} 9W 03V OOV V0911D VIV 310 UO VIO 010100 010 311300 V331311310V9 01V SS 9C LZ 81 6
 :
¾ z s · 6— g¾B睐丄一 : ¾^ ¾ z s · 6— g¾B 睐 丄 ichi: ¾ ^
(s n^) ^ x C K, ^: ^ ^  (s n ^) ^ x C K, ^: ^ ^
VN oi VN(P: ii¾©½a@ ^ S:ー - α VN oi VN (P: ii¾ © ½a @ ^ S: ー-α
鹩本ニ:綠 0鹩  鹩 本 二 : 綠 0 鹩
S9SI0/£6df/XDd UPZP/L6 OAS. 0 t' S9SI0 / £ 6df / XDd UPZP / L6 OAS. 0 t '
9 : 2里 本本ネ J9S J3S9: 2 ri Honmoto J9S J3S
V9110V 031 618 V9110V 031 618
dj丄 naq Sjy na
Figure imgf000042_0001
naq naq usy 9 ]d AjQ ¾iv s q naq naq naq an JL 3丄 3 00V OID 93V 01V 3X3 013 OVV丄丄 V09 000 VXO VVV 910 OID DID 31V
dj 丄 naq Sjy na
Figure imgf000042_0001
naq naq usy 9] d AjQ ¾iv sq naq naq naq an JL 3 丄 3 00V OID 93V 01V 3X3 013 OVV 丄 丄 V09 000 VXO VVV 910 OID DID 31V
018 108 261 281 ll S9L 018 108 261 281 ll S9L
3J nai ^io 19W 1¾Λ J3S "31 usy uio aild "sy naq usy }dn dsy Jill nig aqd 3J nai ^ io 19W 1¾Λ J3S "31 usy uio aild" sy naq usy} dn dsy Jill nig aqd
VOO 313 VOO OIV 110 VOX 013 OVV VV3 111 OVV VIO DVV OIV IVO VDV VVO丄丄丄
Figure imgf000042_0002
VOO 313 VOO OIV 110 VOX 013 OVV VV3 111 OVV VIO DVV OIV IVO VDV VVO 丄 丄 丄
Figure imgf000042_0002
J9S s nio JM1 naq jqi ¾iv dsy SAQ OJd \ dsy J3S J3S OJd JA丄 jq ¾iv J9S s nio JM1 naq jqi ¾iv dsy SAQ OJd \ dsy J3S J3S OJd JA 丄 jq ¾iv
30V VVV OVO ODV 911 OOV 330 IVO 191 330 1X0 DVO VOX 10V 330 3V1 33V DOO30V VVV OVO ODV 911 OOV 330 IVO 191 330 1X0 DVO VOX 10V 330 3V1 33V DOO
Z L m 219 999 丄 S9 usv JMi nio sAq 9i an ds\ UIQ SAQ jqi a j J3S JMl uio USV ^ dJi ¾ivZL m 219 999 丄 S9 usv JMi nio sAq 9i an ds \ UIQ SAQ jqi aj J3S JMl uio US V ^ dJi ¾iv
3VV OOV OVO VVV 311 31V IVO VVO DDI ODV Oil 30V V3V OVD OVV 30V 0910003VV OOV OVO VVV 311 31V IVO VVO DDI ODV Oil 30V V3V OVD OVV 30V 091000
8^9 6£9 089 129 219 809 8 ^ 9 6 £ 9 089 129 219 809
311 ¾iv O usv J3S sAn J3S dsy }3W ¾1V sA dsy naq 八 jqi sAq dsv 丄丄 V 300 900 IVV OOV OVV 331 IVO OIV 130 VVV OIV OVO 019 010 13V VVV OVO 311 ¾iv O usv J3S sAn J3S dsy} 3W ¾1V sA dsy naq octal jqi sAq dsv 丄 丄 V 300 900 IVV OOV OVV 331 IVO OIV 130 VVV OIV OVO 019 010 13V VVV OVO
^6S S8S 9iS 丄 9S 8SS 6 S jiU an J 41 i9 J3S nio ^Vi sAq OJd Ι¾Λ usv 311 "10 s dsv aqd^ 6S S8S 9iS 丄 9S 8SS 6 S jiU an J 41 i9 J3S nio ^ Vi sAq OJd Ι¾Λ usv 311 "10 s dsv aqd
13V OIV 311 03V VOO 1D1 VVO OXV 33V VVV 03D OIO IVV OIV VVO 301 3V0丄丄丄13V OIV 311 03V VOO 1D1 VVO OXV 33V VVV 03D OIO IVV OIV VVO 301 3V0 丄 丄 丄
0^9 185 ZZ eig 0S S6 dsv Jm sqd nai sA^ naq Jm J3S dsy uj J3S 3JV OJd dsv sAi na ^Ιΰ "^丄0 ^ 9 185 ZZ eig 0S S6 dsv Jm sqd nai sA ^ naq Jm J3S dsy uj J3S 3JV OJd dsv sAi na ^ Ιΰ "^ 丄
3V9 33V 311013 001 313 33V OOV OVO DVO X31000 100 IVO VVV Vll 0V3 OVI3V9 33V 311013 001 313 33V OOV OVO DVO X31000 100 IVO VVV Vll 0V3 OVI
98 LL 89^ 6 09^ i 98 LL 89 ^ 6 09 ^ i
ΙΒΛ BIV OJd nio OJd usy uio 911 S IH naq JA丄 Ι¾Λ sA naq d\\ jqi AIQ uio ΙΒΛ BIV OJd nio OJd usy uio 911 S IH naq JA 丄 Ι¾Λ sA naq d \\ jqi AIQ uio
019130133 VV9 V33 DVV OVD OIV OVO 010 3V1 D10 9VV Vll VIV ODV 900 9V3 019130133 VV9 V33 DVV OVD OIV OVO 010 3V1 D10 9VV Vll VIV ODV 900 9V3
S9SI0/Z.6dLT/XDd Ϊ t fr€ 6 ΟΛ\ 配列の型:核酸 S9SI0 / Z.6dLT / XDd Ϊ t fr € 6 ΟΛ \ Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類:他の核酸 合成 D N A 配列: Sequence type: Other nucleic acid Synthetic DNA sequence:
GTGGTCCAGT TGAGGTCTGC AAGA 配列番号: 7  GTGGTCCAGT TGAGGTCTGC AAGA SEQ ID NO: 7
配列の長さ : 2 1 Array length: 2 1
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類:他の核酸 合成 D N A 配列 : Sequence type: Other nucleic acid Synthetic DNA sequence:
TTGAAAGTTT AGGTTCATAT C 配列番号: 8  TTGAAAGTTT AGGTTCATAT C SEQ ID NO: 8
配列の長さ : 3 0 Array length: 30
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類:他の核酸 合成 D N A 配列: Sequence type: Other nucleic acid Synthetic DNA sequence:
AATTTAGGAT CCGGACAGCA AGTGCAGCAG 配列番号: 9  AATTTAGGAT CCGGACAGCA AGTGCAGCAG SEQ ID NO: 9
配列の長さ : 2 3 Array length: 2 3
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 トポロジー :直鎖状 Number of chains: single strand Topology: linear
配列の種類:他の核酸 合成 DNA 配列: Sequence type: Other nucleic acid Synthetic DNA sequence:
GACTCTAGAT TACTAGTTTG GATGGACCCT AAG 配列番号: 1 0  GACTCTAGAT TACTAGTTTG GATGGACCCT AAG SEQ ID NO: 10
配列の長さ : 3 0 Array length: 30
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類:他の核酸 合成 DNA 配列: Sequence type: Other nucleic acid Synthetic DNA sequence:
AATTTAGGAT CCGGACAGCA AGTGCAGCAG 配列番号: 1 1  AATTTAGGAT CCGGACAGCA AGTGCAGCAG SEQ ID NO: 1 1
配列の長さ : 3 3 Array length: 3 3
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類:他の核酸 合成 DNA 配列: Sequence type: Other nucleic acid Synthetic DNA sequence:
TCCTCTAGAT TACTAGGTGA ACAGGCAGAG GGT 配列番号: 1 2  TCCTCTAGAT TACTAGGTGA ACAGGCAGAG GGT SEQ ID NO: 1 2
配列の長さ : 3 0 Array length: 30
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類:他の核酸 合成 DNA 配列: Sequence type: other nucleic acid synthetic DNA Array:
CTTTCTAGAG CAATCCAGAA CCCAGAACCT 配列番号: 1 3  CTTTCTAGAG CAATCCAGAA CCCAGAACCT SEQ ID NO: 1 3
配列の長さ : 3 1 Array length: 3 1
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状  Topology: linear
配列の種類:他の核酸 合成 D N A 配列: Sequence type: Other nucleic acid Synthetic DNA sequence:
AAGCGGCCGC TTAGTTTTGA AAGTTTAGGT T 配列番号: 1 4  AAGCGGCCGC TTAGTTTTGA AAGTTTAGGT T SEQ ID NO: 14
配列の長さ : 3 0 Array length: 30
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状  Topology: linear
配列の種類:他の核酸 合成 D N A 配列: Sequence type: Other nucleic acid Synthetic DNA sequence:
AATTTAGGAT CCGATTCCGT GACTCAAACA 配列番号: 1 5  AATTTAGGAT CCGATTCCGT GACTCAAACA SEQ ID NO: 15
配列の長さ : 3 0 Array length: 30
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー:直鎖状  Topology: linear
配列の種類:他の核酸 合成 D N A 配列: Sequence type: Other nucleic acid Synthetic DNA sequence:
GCCTCTAGAT TACTATTGAA AGTTTAGGTT 配列番号: 1 6 GCCTCTAGAT TACTATTGAA AGTTTAGGTT SEQ ID NO: 1 6
配列の長さ : 2 7 Array length: 2 7
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類:他の核酸 合成 D N A 配列 : Sequence type: Other nucleic acid Synthetic DNA sequence:
CTAGGATCCA TCCAGAACCC TGACCCT 配列番号: 1 7  CTAGGATCCA TCCAGAACCC TGACCCT SEQ ID NO: 17
配列の長さ : 2 7 Array length: 2 7
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類:他の核酸 合成 D N A 配列: Sequence type: Other nucleic acid Synthetic DNA sequence:
CTAGAATTCT CAGCTGGACC ACAGCCG 配列番号: 1 8  CTAGAATTCT CAGCTGGACC ACAGCCG SEQ ID NO: 18
配列の長さ : 3 3 Array length: 3 3
配列の型:核酸 Sequence type: nucleic acid
鎖の数:一本鎖 Number of chains: single strand
トポロジー :直鎖状  Topology: linear
配列の種類:他の核酸 合成 D N A 配列: Sequence type: Other nucleic acid Synthetic DNA sequence:
GACGGATCCA TCCAGAACCC TGACCCTGCC GTG 配列番号: 1 9 丄 3丄 111 OVO 1D1 VVV OVV OOV 9D100901013010V OVV DOV 3VV Dll DVOGACGGATCCA TCCAGAACCC TGACCCTGCC GTG SEQ ID NO: 19 丄 3 丄 111 OVO 1D1 VVV OVV OOV 9D100901013010V OVV DOV 3VV Dll DVO
9T2 LOZ 861 68ΐ 081 \L\ 9T2 LOZ 861 68ΐ 081 \ L \
^Yi J3S 3JV law dsv Π91 \s\ jqi sAq dsv ail J [ΈΛ dsv J9S dsy sA OIV 131 OOV OIV 3V0 V1301013V VVV 3V9 VOV OIV 1V1010 IVO 1D1 IVO OVV ^ Yi J3S 3JV law dsv Π91 \ s \ jqi sAq dsv ail J [ΈΛ dsv J9S dsy sA OIV 131 OOV OIV 3V0 V1301013V VVV 3V9 VOV OIV 1V1010 IVO 1D1 IVO OVV
Z9i m m ssi 921 LU Z9i mm ssi 921 LU
J9S uiO J3S Ι¾Λ usv JM1 "Ϊ9 s dsy 9qj dsv JM1 9Md na SAQ Ι¾Λ J3S sAq 10V VVO V31010 IVV VOV VVO 131 IVO 111 IVO 33V 311 V133013101019VV 801 66 06 18 ZL 89 dsy J3S J9S sA J3S dsy 3JV na uig 丄 I¾A ¾1V 0Jd dsv 0Jd usv UIQ an 3V010V 001 VVV JLOI OVO VOV 013 OVO DVI 0100301333V0100 OVV OVD OXV S 9 9C LZ 8ΐ 6 J9S uiO J3S Ι¾Λ usv JM1 "Ϊ9 s dsy 9qj dsv JM1 9Md na SAQ Ι¾Λ J3S sAq 10V VVO V31010 IVV VOV VVO 131 IVO 111 IVO 33V 311 V133013101019VV 801 66 06 18 ZL 89 dsy J 3S J 9S sA J3S dsy 3JV na uig丄I¾A ¾1V 0Jd dsv 0Jd usv UIQ an 3V010V 001 VVV JLOI OVO VOV 013 OVO DVI 0100301333V0100 OVV OVD OXV S 9 9C LZ 8ΐ 6
Figure imgf000047_0001
I一 4ん ·:
:
Figure imgf000047_0001
I-one
mm 丽コ:腿 o 鹩本 Z '· ©耨 : mm 丽 ko: thigh o 鹩 本 Z '
9 ε ε :  9 ε ε:
0 Z ■  0 Z ■
31V1931100V1110V VVOllVlOVl 1V0VI31D3131V1931 100V1110V VVOllVlOVl 1V0VI31D31
:
驟本ー: 漏: fSG?½2SSuimoto: Leak: fSG? ½2S
9 ε : 9 ε:
S9SI0/.6dT/13d OAV 9 ί' S9SI0 / .6dT / 13d OAV 9 ί '
UIO 3Md us "31UIO 3Md us "31
VVO丄丄丄 DVV VIO usv JM1 dsy J l nio 3iid J3S sXq nig naq sAq Ι¾Λ dsy sAo jas J9S nioVVO 丄 丄 丄 DVV VIO usv JM1 dsy J l nio 3iid J3S sXq nig naq sAq Ι¾Λ dsy sAo jas J9S nio
DVV OOV IVO V3V VVO 11130V VVV OVO DIO 013 OVV DIO IVO 10X 33110V VVO m sie 9οε LQZ 882 QLZ DVV OOV IVO V3V VVO 11 130V VVV OVO DIO 013 OVV DIO IVO 10X 33 110V VVO m sie 9οε LQZ 882 QLZ
OJd J3S OJd 3i]d 9Md J ll dsv "10 ojd 311 ail J3S USV usv ¾IV usv ¾IVOJd J3S OJd 3i] d 9Md J ll dsv "10 o j d 311 ail J3S US V usv ¾IV usv ¾IV
V33 OOV 333311 Oil 33V OVO VVO V3D LLV 11V 30V 3VV OVV 311300 DVV V30V33 OOV 333311 Oil 33V OVO VVO V3D LLV 11V 30V 3VV OVV 311 300 DVV V30
OLZ 292 ΠΖ ^ZZ OLZ 292 ΠΖ ^ ZZ
SAQ ¾IV aqd dsv J3S sA usy J9S dj丄 ΈΙ / 八 BIV J3S usy J8S s q 9qj dsy  SAQ ¾IV aqd dsv J3S sA usy J9S dj 丄 ΈΙ / eight BIV J3S usy J8S s q 9qj dsy

Claims

請 求 の 範 囲 The scope of the claims
1. T細胞リセプタ一 鎖の定常領域の一部または全部を実質的に含み、 免疫抑 制作用を有するが、 投与によりそれ自体に対する抗体の産生を実質的に惹起しな ぃポリぺプチド。 1. A polypeptide that contains substantially all or part of the constant region of a T cell receptor chain, has immunosuppressive properties, but does not substantially induce the production of antibodies against itself upon administration.
2. アミノ酸配列の 1以上のアミノ酸残基が欠失、 挿入および/または置換され ていてもよい配列番号 1のアミノ酸配列を含み、 免疫抑制作用を有するが、 投与 によりそれ自体に対する抗体の産生を実質的に惹起しないポリぺプチド。  2. It contains an amino acid sequence of SEQ ID NO: 1 in which one or more amino acid residues in the amino acid sequence may be deleted, inserted and / or substituted, and has an immunosuppressive effect. A polypeptide that does not substantially elicit.
3. アミノ酸配列の 1以上のアミノ酸残基が欠失、 挿入および Ζまたは置換され ていてもよい配列番号 2のアミノ酸配列を含み、 免疫抑制作用を有するが、 投与 によりそれ自体に対する抗体の産生を実質的に惹起しないポリぺプチド。  3. Contains an amino acid sequence of SEQ ID NO: 2 in which one or more amino acid residues in the amino acid sequence may be deleted, inserted and / or substituted, and has an immunosuppressive effect. A polypeptide that does not substantially elicit.
4. 請求の範囲第 1項〜第 3項のいずれかに記載のポリべプチドをコ— ドする D ΝΑ。  4. A DNA encoding the polypeptide according to any one of claims 1 to 3.
5. 以下の式:  5. The following formula:
R 1 -X-R 2  R 1 -X-R 2
(式中、 R 1は担体ポリペプチド、 Xは蛋白質分解酵素認識部位、 そして R 2は 請求の範囲第 1項〜第 3項のいずれかに記載のポリぺプチドである)  (Wherein, R 1 is a carrier polypeptide, X is a protease recognition site, and R 2 is a polypeptide according to any one of claims 1 to 3)
で示される融合ポリべプチドをコ一 ドする塩基配列を有する DNA。 DNA having a nucleotide sequence encoding the fusion polypeptide represented by
6. R 1がカルモジュリ ンである請求の範囲第 5項記載の DN A。  6. The DNA according to claim 5, wherein R 1 is calmodulin.
7. Xがトロンビンによって認識される部位である請求の範囲第 5項記載の DN  7. The DN according to claim 5, wherein X is a site recognized by thrombin.
8. 卜ロンビンによって認識される部位が下記の配列番号 3のァミノ酸配列で示 される請求の範囲第 7項記載の D N A。 8. The DNA of claim 7, wherein the site recognized by thrombin is represented by the following amino acid sequence of SEQ ID NO: 3.
L y s -V a l -P r o -A r g-G l y (配列番号 3 )  Lys-Val-Pro-Arg-Gly (SEQ ID NO: 3)
9. 請求の範囲第 4項〜第 8項のいずれかに記載の DN Aを担持した発現べクタ  9. An expression vector carrying the DNA according to any one of claims 4 to 8
10. 請求の範囲第 9項記載の発現べクタ—で形質転換された宿主細胞。 10. A host cell transformed with the expression vector according to claim 9.
11. 宿主細胞が原核細胞である請求の範囲第 1 0項記載の宿主細胞。  11. The host cell according to claim 10, wherein the host cell is a prokaryotic cell.
12. 原核細胞が大腸菌である請求の範囲第 1 1項記載の宿主細胞。 12. The host cell according to claim 11, wherein the prokaryotic cell is Escherichia coli.
13. 請求の範囲第 1項〜第 3項のいずれかに記載のポリぺプチドの製造方法であ つて、 該ポリぺプチドをコ一ドする塩基配列を有する D N Aを担持した発現べク ターで形質転換された宿主細胞を培養し、 該ポリべプチドを単離することを特徴 とする、 前記の製造方法。 13. A method for producing a polypeptide according to any one of claims 1 to 3, wherein the expression vector carries a DNA having a nucleotide sequence encoding the polypeptide. The above-mentioned production method, wherein the transformed host cell is cultured, and the polypeptide is isolated.
14. 宿主細胞が原核細胞である請求の範囲第 1 3項記載の製造方法。  14. The production method according to claim 13, wherein the host cell is a prokaryotic cell.
15. 原核細胞が大腸菌である請求の範囲第 1 3項記載の製造方法。  15. The production method according to claim 13, wherein the prokaryotic cell is Escherichia coli.
16. 請求の範囲第 1項〜第 3項のいずれかに記載のポリぺプチドの製造方法であ つて、 以下の式:  16. A method for producing a polypeptide according to any one of claims 1 to 3, which comprises the following formula:
R 1 - X - R 2  R 1-X-R 2
(式中、 R 1は担体ポリペプチド、 Xは蛋白質分解酵素認識部位、 そして R 2は 請求の範囲第 1項〜第 3項のいずれかに記載のポリべプチドである)  (Wherein, R 1 is a carrier polypeptide, X is a protease recognition site, and R 2 is a polypeptide according to any one of claims 1 to 3)
で示される融合ポリぺプチドをコ一ドする塩基配列を有する D N Aを担持した発 現ベクターで形質転換された宿主細胞を培養し、 該融合ポリべプチドを発現させ、 該融合ポリぺプチドを蛋白質分解酵素で開裂処理し、 R 2で示されるポリぺプチ ドを単離することを特徵とする、 前記の製造方法。 Culturing a host cell transformed with an expression vector carrying a DNA having a nucleotide sequence encoding the fusion polypeptide represented by The above-mentioned production method, which comprises cleaving with a degrading enzyme and isolating the polypeptide represented by R2.
17. R 1がカルモジュリ ンである請求の範囲第 1 6項記載の製造方法。  17. The production method according to claim 16, wherein R 1 is calmodulin.
18. Xがトロンビンによって認識される部位であり、 且つ蛋白質分解酵素として トロンビンが用いられる請求の範囲第 1 6項記載の製造方法。  18. The production method according to claim 16, wherein X is a site recognized by thrombin, and thrombin is used as a protease.
19. 卜ロンビンによって認識される部位が下記の配列番号 3のァミノ酸配列で示 される請求の範囲第 1 8項記載の製造方法。  19. The production method according to claim 18, wherein the site recognized by thrombin is represented by the following amino acid sequence of SEQ ID NO: 3.
L y s - V a 1 一 P r o— A r g— G l y (配列番号 3 )  Lys-Va1Pro—Arg—Gly (SEQ ID NO: 3)
20. 請求の範囲第 1項〜第 3項のいずれかに記載のポリぺプチドを有効成分とし て含む医薬組成物。  20. A pharmaceutical composition comprising the polypeptide according to any one of claims 1 to 3 as an active ingredient.
21. 免疫抑制剤である請求の範囲第 2 0項記載の医薬組成物。  21. The pharmaceutical composition according to claim 20, which is an immunosuppressant.
22. 遅延型過敏反応抑制剤である請求の範囲第 2 0項記載の医薬組成物。  22. The pharmaceutical composition according to claim 20, which is a delayed type hypersensitivity reaction inhibitor.
23. 抗体産生抑制剤である請求の範囲第 2 0項記載の医薬組成物。  23. The pharmaceutical composition according to claim 20, which is an antibody production inhibitor.
24. アレルギー疾患の予防および または治療剤である請求の範囲第 2 0項記載 の医薬組成物。  24. The pharmaceutical composition according to claim 20, which is an agent for preventing and / or treating allergic diseases.
25. 自己免疫疾患の予防および Zまたは治療剤である請求の範囲第 2 0項記載の 医薬組成物。 25. The preventive and / or therapeutic agent for autoimmune diseases according to claim 20 Pharmaceutical composition.
26. 臓器移植時の拒絶反応の抑制剤である請求の範囲第 2 0項記載の医薬組成物 c 26. The pharmaceutical composition c according to claim 20, which is an inhibitor of rejection during organ transplantation.
PCT/JP1997/001565 1996-05-10 1997-05-09 T-cell receptor alpha-chain constant-region peptides, processes for producing the peptides, and use thereof WO1997043411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU26519/97A AU2651997A (en) 1996-05-10 1997-05-09 T-cell receptor alpha-chain constant-region peptides, processes for producing the peptides, and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11610196 1996-05-10
JP8/116101 1996-05-10
JP8/135572 1996-05-29
JP13557296 1996-05-29

Publications (1)

Publication Number Publication Date
WO1997043411A1 true WO1997043411A1 (en) 1997-11-20

Family

ID=26454480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001565 WO1997043411A1 (en) 1996-05-10 1997-05-09 T-cell receptor alpha-chain constant-region peptides, processes for producing the peptides, and use thereof

Country Status (2)

Country Link
AU (1) AU2651997A (en)
WO (1) WO1997043411A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508517A (en) * 2005-09-22 2009-03-05 コーエン,イルン,アール Immunogenic fragments of T cell receptor constant domains and peptides derived therefrom
US7795223B2 (en) 2004-05-27 2010-09-14 Novozymes Biopharma Au Ltd. Treatment of inflammatory airway disease
WO2020138256A1 (en) * 2018-12-27 2020-07-02 国立大学法人京都大学 T-cell receptor modified object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05500068A (en) * 1990-05-15 1993-01-14 イー・アール・スクイブ・アンド・サンズ・インコーポレイテッド Soluble single chain T cell receptor
JPH06298662A (en) * 1993-02-22 1994-10-25 Hoechst Japan Ltd Preventive and therapeutic agents for autoimmune diseases
WO1995007933A1 (en) * 1993-09-16 1995-03-23 Allergene, Inc. Methods and composition for the modulation of host immune response to allergens
JPH07502977A (en) * 1991-05-31 1995-03-30 ゾーマ・コーポレーション T-cell receptor peptides as therapeutic agents for immune-related diseases
WO1995016462A1 (en) * 1993-12-13 1995-06-22 La Jolla Institute For Allergy And Immunology Method for antigen-specific immunoregulation by t-cell alpha chain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05500068A (en) * 1990-05-15 1993-01-14 イー・アール・スクイブ・アンド・サンズ・インコーポレイテッド Soluble single chain T cell receptor
JPH07502977A (en) * 1991-05-31 1995-03-30 ゾーマ・コーポレーション T-cell receptor peptides as therapeutic agents for immune-related diseases
JPH06298662A (en) * 1993-02-22 1994-10-25 Hoechst Japan Ltd Preventive and therapeutic agents for autoimmune diseases
WO1995007933A1 (en) * 1993-09-16 1995-03-23 Allergene, Inc. Methods and composition for the modulation of host immune response to allergens
WO1995016462A1 (en) * 1993-12-13 1995-06-22 La Jolla Institute For Allergy And Immunology Method for antigen-specific immunoregulation by t-cell alpha chain

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NATURE, Vol. 312, (1984), H. SAITO et al., "A Third Rearranged and Expressed Gene in a Clone of Cytotoxic T Lymphocytes", pages 36-40. *
PROC. NATL. ACAD. SCI. U.S.A., Vol. 82, (1985), Y. YANAGI et al., "Analysis of cDNA Clones Specific for Human T Cells and the alpha and beta Chains of the T-Cell Receptor Heterodimer from a Human T-Cell Line", pages 3430-3434. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795223B2 (en) 2004-05-27 2010-09-14 Novozymes Biopharma Au Ltd. Treatment of inflammatory airway disease
JP2009508517A (en) * 2005-09-22 2009-03-05 コーエン,イルン,アール Immunogenic fragments of T cell receptor constant domains and peptides derived therefrom
US9078843B2 (en) 2005-09-22 2015-07-14 Irun R. Cohen Immunogenic fragments of T-cell receptor constant domains and peptides derived therefrom
WO2020138256A1 (en) * 2018-12-27 2020-07-02 国立大学法人京都大学 T-cell receptor modified object
JPWO2020138256A1 (en) * 2018-12-27 2021-11-04 国立大学法人京都大学 T cell receptor variants

Also Published As

Publication number Publication date
AU2651997A (en) 1997-12-05

Similar Documents

Publication Publication Date Title
US20240207379A1 (en) Strategies to prevent and/or treat immune responses to soluble allofactors
US5827516A (en) Immunomodulatory peptides
EP3013356B1 (en) Interleukin 15 (il-15) antagonists and uses thereof for the treatment of autoimmune diseases and inflammatory diseases
CA2243986A1 (en) Antibodies and immunoglobulin fusion proteins having modified effector functions and uses therefor
ZA200501118B (en) Pituitary adenylate cyclase activating peptide (PACAP) receptor (VPA2) agonists and their pharmalogical methods of use
CA3163549A1 (en) Peptide-mhc ii protein constructs and uses thereof
BRPI0207933B1 (en) mutant interleukin-18 polypeptide and pharmaceutical composition
US5910427A (en) Antigen non-specific glycosylation inhibiting factor derivatives
CN113891723A (en) Peptides
NO893452L (en) RECOMBINANT NATURAL DREPER CELL ACTIVATOR.
AU2007278756A1 (en) A cancer vaccine comprising a Mucin 1 (MUC1) T cell epitope-derived peptide
WO1997043411A1 (en) T-cell receptor alpha-chain constant-region peptides, processes for producing the peptides, and use thereof
JPH09504432A (en) Prokaryotic expression of MHC proteins
CN109251244B (en) TCR (T cell receptor) for recognizing LMP1 antigen derived from EBV (Epstein-Barr Virus) membrane protein
Karr et al. The role of polymorphic HLA-DR beta chain residues in presentation of viral antigens to T cells.
JPH08149981A (en) Method of antigen-specific immune regulation by T cell α chain
CN113321727B (en) A T cell receptor recognizing AFP antigen short peptide and its coding sequence
EP0833930A2 (en) Fused soluble mhc heterodimer:peptide complexes and their uses
JP2004535778A (en) hdm2 protein-specific murine α / β T-cell receptor polypeptides, nucleic acids encoding them and uses thereof
EP0539748B1 (en) Polypeptides capable of binding to heavy chains of IL-2 receptors
WO1999009167A1 (en) Porcine mhc class i genes and uses thereof
AU2004240831B2 (en) Hypoallergenic variants of the Parietaria judaica major allergens, uses thereof and compostions comprising them
US20040171111A1 (en) Polypeptide of a p53 protein-specific murin a/t-cell receptor, nucleic acids coding therefor and use thereof
JPH11302299A (en) T-cell receptor beta-chain constant region peptide, its production and use
JPH0884596A (en) Recombination production method for biologically active polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载