+

WO1997043032A1 - Installation de traitement de fumees d'incineration ayant un recyclage interne - Google Patents

Installation de traitement de fumees d'incineration ayant un recyclage interne Download PDF

Info

Publication number
WO1997043032A1
WO1997043032A1 PCT/FR1997/000784 FR9700784W WO9743032A1 WO 1997043032 A1 WO1997043032 A1 WO 1997043032A1 FR 9700784 W FR9700784 W FR 9700784W WO 9743032 A1 WO9743032 A1 WO 9743032A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
zone
fumes
intended
installation according
Prior art date
Application number
PCT/FR1997/000784
Other languages
English (en)
Inventor
Gérard Martin
Jean-Christophe Dolignier
Patrick Flament
Original Assignee
Institut Français Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Français Du Petrole filed Critical Institut Français Du Petrole
Priority to JP9540569A priority Critical patent/JPH11509778A/ja
Priority to US08/981,843 priority patent/US6165421A/en
Priority to EP97921925A priority patent/EP0854750A1/fr
Publication of WO1997043032A1 publication Critical patent/WO1997043032A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0065Separating solid material from the gas/liquid stream by impingement against stationary members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/14Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moving in free vortex flow apparatus

Definitions

  • the present invention relates to the field of treatment of fumes from incineration plants.
  • the invention relates to the structural aspect of the treatment rather than the physico-chemical aspect; the invention indeed aims to improve and therefore to make more effective the contact between the gas phase and the particulate phase.
  • the problem at the origin of the present invention relates to all gas-solid reactions using pulverulent products and therefore therefore largely exceeds the framework of the sole treatment of the aforementioned fumes.
  • heterogeneous reactions are limited by diffusion processes, it is often advantageous to work with very fine products, in order to increase the contact surface and to facilitate the access of gases inside the particles.
  • fine particles that is to say particles which have dimensions of the order of a micron or a few microns, are very easily entrained by the gas phase.
  • the fine particles acquire almost instantaneously a speed of movement which is almost that of the gas which transports them.
  • the residence time of the particles in said reaction system is almost identical to that of the gases.
  • the objective is essentially to capture acidic pollutants such as hydrochloric acid, using an absorbent such as lime.
  • the operation is carried out at low temperature, that is to say between 150 and 400 ° C., sometimes in the presence of water to improve performance somewhat, in reactors of fairly simple geometry.
  • the objective of the present invention is to approach the performance of wet treatments, by continuing to make dry treatments.
  • Poui increase the rate of capture of acid pollutants
  • two solutions are a priori possible on the one hand increase the slip between gas and particles but then the laws of mechanics seem difficult to circumvent, or else proceed to a massive recycling of the absorbent without using sophisticated and expensive gas-solid separation means This second way is the basis of the present invention
  • the inventive concept underlying the present invention consists in using a device which comprises a first zone where the flow is substantially axial, followed by a second zone where the flow is in rotation, so as to separate more or less gas and solid
  • the installation according to the invention comprises at least two gas inlets, the orientation and flow conditions of which are adjusted so as to obtain recirculation of a major part of the particles separated from the flow in the area where it is rotating
  • a first advantage of the invention resides in the capacity of the cyclonic device to ensure prolonged contact of the solid reactants with the gas phase, thanks to the internal recycling of the particles.
  • the recycling rate can be defined as the mass ratio of the flow of solids in recirculation. on the flow of solids provided by the first zone This ratio can be between 0.5 and 50, which means that in the most favorable cases, the residence time of the solids will be 50 times greater than that of the gases
  • the internal recycling of the absorbent makes it possible to capture more than 98%, or even more than 99% of hydrochloric acid, while having absorbent consumption which does not exceed no stoichiometry of more than 30% Recycling also allows better use of the absorbent, with two positive consequences, first of all less need for fresh absorbent, and then, lower quantities of residues to be eliminated, two factors which lead to a reduction in operating costs
  • the invention also has another advantage when the concentrations of reactive gaseous species fluctuate over time, and this is a law still the case with the incineration of waste. Indeed, the presence in the reaction zone of a very large excess of solid reactants compared to the gaseous reactants, makes it possible to cut off any excess of the concentration of the latter
  • Another advantage of the device according to the invention lies in its extreme simplicity, since it consists of a reduced number of static elements. This simplicity is synonymous with great robustness, great ease of maintenance and limited investment costs. .
  • An additional advantage of the installation according to the invention is its flexibility of operation.
  • the device can indeed work with gas flow rates to be treated and flow rates of very solid fresh reagents.
  • the concentration of solids in the reaction zone can be controlled from the flow rate of secondary gas introduced
  • the subject of the present invention is an installation for treating smoke from incinerators comprising:
  • the first and second reactors being arranged in such a way that the fumes enter tangentially into the second reactor
  • the second reactor is essentially cylindrical and comprises three zones
  • peripheral zone intended to collect and / or recycle fumes loaded with absorbent particles
  • the invention further comprises a means such as a venturi placed in the first reactor downstream of the means of injecting the absorbent in order to improve the mixing of the absorbent with the fumes to be treated .
  • the first reactor may have a cross section which decreases as it approaches its connection with the second reactor.
  • the three zones of the second reactor are coaxial, and substantially perpendicular to the longitudinal axis of the first reactor.
  • the installation according to the invention may include means intended to create a depression in the peripheral zone.
  • These means may include a set of injectors intended to distribute homogeneously a gas such as water vapor, or a fraction of the fumes to be treated, said gas making it possible to aspirate the gases present in the peripheral zone.
  • a gas such as water vapor, or a fraction of the fumes to be treated
  • the installation further comprises means, such as grids, placed at the entrance to the peripheral zone, and intended to modify the nature of the flow between the intermediate zone and the peripheral zone.
  • the main axis of the second reactor is substantially vertical.
  • the installation further comprises an element placed between the intermediate zone and the peripheral zone and intended to separate the flow leaving the intermediate zone.
  • the installation comprises a connecting element (80) between the second reactor and the first reactor, intended to direct the flue gases loaded with particles to the first reactor.
  • the main axis of the second reactor is substantially horizontal.
  • FIG. 1 is a longitudinal section of a second reactor according to the invention.
  • - Figure 2 is a section showing the connection between the first and the second reactor according to the invention
  • - Figure 3 is a longitudinal section of another embodiment of the second reactor according to the invention
  • FIG. 4 is a cutaway front view of a second reactor according to a second embodiment of the invention.
  • FIG. 5 is a top view (without upper closure) of the second reactor according to the second embodiment of the invention.
  • FIG. 6 is a simplified section of the first and second reactors according to a third embodiment of the invention.
  • FIG. 7 is a front view of the third embodiment of the invention.
  • FIG. 8 is a schematic side view of a fourth embodiment of the invention.
  • FIG. 9 is a schematic top view of the fourth embodiment of the invention.
  • a first embodiment of the invention is illustrated schematically in Figures 1 and 2, to be considered in relation since Figure 1 relates to the second reactor of the installation while Figure 2 rather shows the first reactor of the installation.
  • the installation according to the invention in fact essentially consists of a first reactor 1 (or pipe) through which the gases enter, and a second reactor 2 where the current g oa "zeux is driven by a helical movement
  • Tubing I may have a cylindrical, rectangular or any other section Upstream of tubing 1, there is one (or more) injector (s) 3 of fresh absorbent Downstream of this injection, a device of the type may be provided venturi 4 or equivalent which ensures good mixing of the fresh absorbent with the treated fumes II there may possibly be several mixing devices placed in series in the reactor I It is also possible to inject water or steam of water in the tubing 1, this injection can be done upstream or downstream of the absorbent injector 3 (the water injection is not shown in FIGS. 1 and 2)
  • the tubing 1 has a output connected to the input of the second reactor
  • the second reactor 2 is essentially cylindrical with a longitudinal axis substantially oriented vertically II is completely closed in upper parts by a disc 100
  • the second reactor 2 essentially comprises three zones which can be coaxial
  • peripheral zone 2a intended for recycling the absorbent particles
  • the intermediate zone is therefore interposed between the peripheral zone and the central zone
  • zones 2a and 2b are carried out by a substantially cylindrical internal 6 while the separation between zones 2b and 2c is embodied by a tubular element 7.
  • the first reactor 1 is directly connected to the reaction zone 2b via a skylight 5.
  • the effluents to be treated, loaded with absorbent are introduced tangentially into the lower part 8 of the reactor 2; they describe in the reaction zone 2b an ascending pseudo-spiral.
  • zone 2d Arrived at the upper end 9 of zone 2b, the gases enter zone 2d where they are divided into two streams: a main gas stream sparingly charged with particles and which is discharged through the central pipe 2c, and a stream of secondary gas loaded with most of the particles and which passes into the peripheral recycling zone 2a.
  • gas jets 12 substantially directed towards the lower end 1 1 create a depression there.
  • a device 13 can be provided, such as for example a grid, intended to modify the flow, passing from a rotational flow to an axial flow.
  • This device 13 can be placed perpendicular to the main axis of the device as shown in FIG. 1, or even placed more or less in the extension of the internal 6.
  • the gas jets 12 are produced by a device which includes a gas supply 14, an O-ring 15 pierced with orifices 16 substantially oriented towards the end 11 of the zone 2a. These orifices 16 are generally equally distributed over the whole of the O-ring 15, so as to ensure a homogeneous distribution of the gas.
  • the entrainment gas can be any gas which does not take part in the reaction, but it can also consist of a fraction of the gas to be treated, this fraction of gas to be treated being, for example, taken upstream from the pipe I. In the case of dechlorination of fumes, this gas can also be water vapor, known to have a beneficial role in the process of capture of hydrochloric acid by calcium absorbents.
  • the jets 12 therefore create a suction movement of the gases present in the zone 2a, which acts more particularly on the fraction of gas highly charged with particles.
  • the internal 6 does not rest on the bottom 17 so that a passage is provided for the gas flow leaving the zone 2a, which directs this flow again to the reaction zone 2b.
  • the bottom 17 of the cyclonic device 2 can have a frusto-conical shape as illustrated in FIG. I, but other shapes which, for example, "better match" the flow are also possible.
  • additional gas injections can be provided in the bottom 17 to facilitate the circulation of the gas-solid suspension, in order to avoid the sedimentation of particles in areas where the velocities of the fluids are low, or again to assist in the re-entrainment of the gas-solid stream migrating into the bottom 17 by the gas stream from the pipe 1.
  • the speed of circulation of the gases to be treated in the tubular zone 1 is between 2 and 200 m / s and preferably between 5 and 50 m / s.
  • the particles introduced have a density of between 0.1 and 10 and preferably between 1 and 3.
  • the particle size of these particles varies between 0.2 and 100 micrometers and preferably between 2 and 30 micrometers.
  • the flow rates of solids are calculated so as to have particle loads in the pipe 1, between 0 and 5 kg / Nm3 and preferably between 0.01 and 0.1 kg / Nm3.
  • the length / diameter ratio of the tubular zone can be between 2 and 50 and preferably between 5 and 20.
  • the section of the skylight 5 can be smaller than that of the tubing 1, so as to increase the speed of the suspension gas - particles at the entrance to reaction zone 2-b, and thus increase the suction and re-entrainment effect of the gas stream charged with recycled absorbent.
  • the geometry of the cyclonic device 2 can be more precisely defined by the H / D ratio, where H is the height of the whole of the cylindrical part and D its outside diameter. This ratio can be between 1 and 20 and preferably 1 and 3.
  • the distance between the tubular element 7 and the internal 6 can be substantially identical to the diameter or the width of the skylight 5, but this distance can possibly be larger
  • the diameter of the self-tie tubing 7 is deteimine in order to have a gas circulation speed of between 2 and 200 m / s, and of full trap 5 and 50 m / s
  • the diameter and the number of orifices 16 are calculated so as to have outlet velocities between 10 and 300 m / s and piefeience between 20 and 50 m / s
  • the mass flow rate of gas introduced into the distribution ring 15 represents between 1 and 100%, and preferably between 5 and 20% of the gas flow rate to be treated Under steady conditions, the concentration of particles in the leaction zone 2a is very high and can reach 100 kg / Nm3 Obviously, since the operating conditions are stabilized, the concentration in particles at the exit is roughly the same as at the entry
  • FIG. 3 illustrates a variant of the installation where the upper part of zone 2b is equipped with an internal 19 of substantially cylindrical geometry, and which has the function of helping to share the gas circulating in zone 2b, between the fraction highly charged with particles and the part weakly charged with particles
  • This internal 19 is placed so as to partially cover the internal 6 to form with it a passage 30 through which passes the fraction of gas highly charged with particles
  • the fraction of gas loaded with particles follows the path indicated by a double arrow in FIG. 3, while the almost purified gases flow according to the simple arrows, as close as possible to the longitudinal axis of the reactor 2
  • FIGs 4 and 5 show another embodiment where the peripheral recycling zone 2a has been modified.
  • Said zone 2a comprises, in the direction of flow of the recycled current (that is to say from top to bottom), a first annular space 20 open towards the top, which is delimited by converging plates 21
  • the plates converging 21 are connected by their lower ends to tubing 22 of rectangular or cylindrical section or other still, said tubing are oriented vertically and open at their lower end in the reaction zone 2b via orifices 23
  • the orifices 23 have a geometry such that the injection of the particulate suspension into the reaction zone 2b is preferably carried out tangentially
  • FIG. 5 shows that the peripheral zone 2a comprises four zones formed by converging plates 21, but this number may possibly be different
  • the recycling of the recycled current is carried out by means of a secondary gas which is injected using the device 24.
  • This device comprises a toric tube 25 surrounding the cyclonic device 2 and supplied with gas by the line 26.
  • Said O-tube 25 itself feeds conduits 27 whose downstream end is directed so as to induce a gas flow in the recycling zone 2a, from the end 10 to the end 1 1.
  • This configuration presents the advantage of limiting the consumption of secondary gas.
  • Figures 6 and 7 (front view) illustrate yet another embodiment of the invention.
  • the gas to be treated arrives via a pipe 50, passes through a first zone (or first reactor) 51 where said gas is in substantially axial flow, then a second zone (or second reactor) 52 where flow is turned on. rotation.
  • the area 51 may for example have a rectangular section. It has a substantially vertical main axis.
  • Zone 52 surmounts zone 51 and consists of a substantially cylindrical enclosure, the longitudinal axis of which is preferably substantially horizontal.
  • the solid reagent, or the absorbent in the case of a smoke treatment is introduced at the upstream end of the zone 51, thanks to one (or more) injector (s) 53.
  • the injection can also be done upstream of the zone 51, as for example in the pipe 50.
  • the zone 51 can be equipped with a device 54 such as a venturi, in order to improve the mixture between gases and solids.
  • the gas-solid suspension is accelerated by passing through a zone with a narrowed section 55. Said suspension then enters zone 52 and passes through a volute 56 where the flow is set in rotation by traversing approximately 3/4 of the circumference of the volute.
  • the particles are subjected to centrifugal forces and therefore concentrate at the peripheral part of the volute.
  • Zone 58 can be a straight vertical passage of rectangular section adjoining zone 51. Without departing from the scope of the invention, zone 58 can be made up of a set of vertical pipes each having its own gas injection.
  • the gas injectors 60 are preferably directed downwards so as to create a suction movement at the outlet of the volute 56.
  • the speed and flow conditions in these injectors are identical to those mentioned in connection with the embodiment according to the figures 1 or 2.
  • the gas injected can be a neutral gas or directly a fraction of the gas to be treated.
  • the gas-solid suspension joins the main flow through passage 61, the orientation and geometry of which are adjusted so as to promote a suction phenomenon.
  • FIG. 7 is a front view of the embodiment according to FIG. 6 which shows the zone 51 with a series of injectors 53 and surmounted by the zone 52.
  • the transition zone 55 between the first reactor and the second reactor can also be narrowed in width to speed up the flow.
  • FIG. 7 represents a single cylindrical zone 52, but it can also be envisaged to have several zones 52 mounted on a common gas discharge line 59. In other words, the passage of the gases from the volute 56 to the line of evacuation 59 can be done over the entire width of the installation or only at specific points.
  • FIGS 8 and 9 schematically illustrate yet another installation according to the invention.
  • This installation comprises, like the installations according to FIGS. 1 to 5, a first tubular reactor 70 of substantially horizontal axis; means 71 for injecting absorbent and preferably one or more venturi 69.
  • the cross section of this reactor decreases as it approaches its connection with the second reactor 72 which has a substantially vertical main axis.
  • the mixture of the gases to be treated and the absorbent produced in the reactor 70 makes it possible to initiate the reaction for the capture of the acid gases.
  • the gas-solid mixture enters tangentially into the second reactor 72 via the zone 74 of reduced cross section relative to the reactor 70.
  • the mixture therefore enters the second reactor 72 with a speed of between 5 and 150 m / s, preferably from 1 '' order of 50 m / s.
  • the mixture is also animated by a vortex movement due to the entry
  • the acid gas capture reaction therefore continues in the second reactor 72, first in the upper zone 75a of constant section then in the lower zone 75b which has a decreasing section downwards, for example in the form of a funnel.
  • An internal 77 is placed at the bottom of the zone 75b, coaxial with said zone. Internal 77 makes it possible to isolate the effluents rich in particles which, under the effect of centrifugal force, are found at the periphery, in a zone 75c.
  • a recycling pipe 80 which connects the zone 75b to the first reactor 70, preferably upstream of the injectors 71 and of the venturi 69.
  • venturi 79 can be arranged in the pipe 80, the cross section of which can decrease as it approaches the connection with the reactor 70; these various means, known in themselves, make it possible to increase the speed of the fumes.
  • a working gas can be injected by means 78, into line 80, preferably below the extraction zone 75b.
  • the injector 78 can be placed at the level of the neck of the venturi 79 in order to create a depression there.
  • Internal 77 may have a solid bottom or be devoid of it so as to allow recycling of the fumes and to prevent the accumulation of solids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Centrifugal Separators (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Installation de traitement des fumées d'incinérateurs comprenant: un premier réacteur (1) à travers lequel les fumées s'écoulent longitudinalement, ayant une entrée et une sortie; des moyens (3) d'injection d'un absorbant dans le premier réacteur; un deuxième réacteur (2) ayant une entrée connectée avec la sortie du premier réacteur, dans lequel les fumées sont animées d'un mouvement rotationnel afin de séparer progressivement par effet centrifuge les particules solides des gaz qui y circulent; des moyens (2a, 2b) destinés à faire recirculer dans l'installation une partie au moins des particules solides séparées dans le deuxième réacteur; des moyens (2c) destinés à évacuer les fumées dépoussiérées; le premier et le deuxième réacteur sont mutuellement agencés de telle sorte que les fumées entrent tangentiellement dans le deuxième réacteur.

Description

INSTALLATION DE TRAITEMENT DE FUMEES D'INCINERATION AYANT UN RECYCLAGE INTERNE
La présente invention concerne le domaine du traitement des fumées issues d'usines d'incinération.
Plus particulièrement l'invention concerne l'aspect structurel du traitement plutôt que l'aspect physico-chimique ; l'invention vise en effet à améliorer et donc à rendre plus efficace le contact entre la phase gazeuse et la phase particulaire.
Le problème à l'origine de la présente invention concerne toutes les réactions gaz-solides mettant en oeuvre des produits pulvérulents et dépasse donc de ce fait très largement le cadre du seul traitement des fumées précitées. Lorsque des réactions hétérogènes sont limitées par les processus diffusionnels, on a souvent intérêt à travailler avec des produits très fins, afin d'augmenter la surface de contact et de faciliter l'accès des gaz à l'intérieur des particules. La contre-partie de ce choix est que les fines particules, c'est-à-dire les particules qui ont des dimensions de l'ordre du micron ou de quelques microns, sont très facilement entraînées par la phase gazeuse. Ainsi, dès leur introduction dans le système réactionnel, les fines particules acquièrent presque instantanément une vitesse de déplacement qui est quasiment celle du gaz qui les véhicule. Il en résulte que le temps de séjour des particules dans ledit système réactionnel est presque identique à celui des gaz. Or, cette situation peut être pénalisante lorsque la réaction est lente et exigerait des temps de contact prolongés de la phase solide avec le gaz. Sur le plan de la chimie, les conséquences sont des rendements de conversion médiocres. Bien qu'il soit possible d'augmenter le rendement de conversion rapporté à la phase gaz en accroissant le débit de solides, cette option est souvent synonyme d'augmentation des coûts opératoires.
Par ailleurs il a déjà été proposé dans le brevet FR 2 669 554 au nom du demandeur de désulfurer des gaz de combustion en fractionnant et en remélangeant plusieurs fois le flux gazeux additionné d'absorbant.
Dans le cas plus précis du traitement en voie sèche des fumées des usines d'incinération d'ordures ménagères, l'objectif est essentiellement de capter des polluants acides tel l'acide chlorhydrique, à l'aide d'absorbant comme la chaux. L'opération s'effectue à basse température, c'est-à-dire entre 150 et 400°C, parfois en présence d'eau pour améliorer quelque peu les performances, dans des réacteurs de géométrie assez simple.
Un exemple de réacteur permettant le traitement des effluents est donné dans le brevet FR 2 636 720. Ce document décrit une canalisation munie d'un venturi en amont duquel sont disposés des moyens d'introduction de l'absorbant dans la veine gazeuse à traiter. Le venturi sert à assurer un mélange correct de la poudre avec les gaz. L'absorbant capte les composants acides pendant son séjour dans la canalisation. Le mélange gaz et absorbant achève son parcours dans un dépoussiereur final, qui peut être un électrofiltre ou un filtre à manches. Le temps de séjour de l'absorbant dans le système est sensiblement identique à celui des fumées et ne dépasse jamais quelques secondes (2 à 3 secondes par exemple).
Pour amener la réaction à son terme dans des conditions de stoechiométrie où le rapport molaire Ca/Cl est de 0,5, il faudrait des temps de séjour beaucoup plus longs. C'est la raison pour laquelle, une fraction seulement de l'absorbant est utilisée. Avec les systèmes actuels, on peut typiquement capter 90% de l'acide chlorhydrique contenu dans des fumées d'usine d'incinération en utilisant des quantités d'absorbant correspondant à un rapport molaire Ca/Cl aux environs de 1 ; ceci signifie qu'à peine la moitié du potentiel de l'absorbant est aujourd'hui utilisé. Dans l'absorbant usé soutiré au dépoussiereur final, on retrouve donc un mélange de chlorure de calcium et de chaux n'ayant pas réagi. Le résidu de ce traitement n'est donc pas négligeable, puisqu'il représente 40 à 50 kg par tonne d'ordures ménagères traitée. Il se pose donc de plus en plus de problèmes d'élimination, dans un contexte où la mise en décharge est prohibée et où les traitements de stabilisation sont onéreux.
On notera que si l'on veut accroître le taux de captation de l'acide chlorhydrique, il faut très sensiblement augmenter la consommation d'absorbant frais ; ce qui se traduit évidemment par des volumes de résidus plus importants. Pour obtenir des rendements de captation des polluants acides plus élevés, une solution est de passer du traitement sec au traitement humide. Dans ce cas, les rendements de captation de l'acide chlorhydrique sont plus élevés et peuvent atteindre 99%. Cette performance est atteinte avec des consommations d'absorbant réduites, puisqu'on peut alors travailler légèrement au-delà de la stoechiométrie. L'inconvénient de cette option est un coût d'investissement beaucoup plus élevé que dans le cas des ti aitements en voie sèche, et en pratique, on ne trouve ce type d'installations que sui des unités de très grandes capacités
L'objectif de la présente invention est d'approcher les performances des traitements en voie humide, en continuant à faire du traitement en voie sèche Poui augmenter le taux de captation des polluants acides, deux solutions sont a priori possibles d'une part accroître le glissement entre gaz et particules mais alors les lois de la mécanique semblent difficiles à contourner , ou bien procéder à un recyclage massif de l'absorbant sans faire appel à des moyens de séparation gaz-solides sophistiqués et onéreux Cette deuxième voie est à la base de la présente invention
Le concept inventif à la base de la présente invention consiste à utiliser un dispositif qui comporte une première zone où l'écoulement est sensiblement axial, suivie d'une seconde zone où l'écoulement est en rotation, de façon à séparer plus ou moins gaz et solides L'installation selon l'invention comporte au moins deux entrées de gaz, dont l'orientation et les conditions de débit sont ajustées de telle sorte qu'on obtienne une recirculation d'une majeure partie des particules séparées de l'écoulement dans la zone où celui-ci est en rotation
Un premier avantage de l'invention réside dans la capacité du dispositif cyclonique à assurer un contact prolongé des réactifs solides avec la phase gazeuse, grâce au recyclage interne des particules Le taux de recyclage peut être défini comme le rapport massique du débit de solides en recirculation sur le débit de solides apporté par la première zone Ce rapport peut être compris entre 0,5 et 50 , ce qui signifie que dans les cas les plus favorables, le temps de séjour des solides sera 50 fois plus important que celui des gaz
Dans le cas particulier de la déchloruration de fumées d'incinération, le recyclage interne de l'absorbant permet de capter plus de 98%, voire plus de 99% de l'acide chlorhydrique, tout en ayant des consommations d'absorbant qui ne dépassent pas la stoechiométrie de plus de 30% Le recyclage permet aussi une meilleure utilisation de l'absorbant , avec deux conséquences positives, d'abord de moindres besoins en absorbant frais, et ensuite, des quantités de résidus à éliminer plus faibles, deux facteurs qui conduisent à une réduction des frais opératoires L'invention présente aussi un autre avantage lorsque les concentrations des espèces réactives gazeuses fluctuent dans le temps, et c'est une lois encore le cas avec l'incinération des déchets. En effet, la présence dans la zone reactionnelle d un très large excès de réactifs solides par rapport aux réactifs gazeux, permet d'éciêter tout dépassement de la concentration de ces derniers
Un autre avantage du dispositif selon l'invention réside dans son extiêmc simplicité, puisqu'il est constitué d'un nombre réduit d'éléments statiques Cette simplicité est synonyme de grande robustesse, de grande facilité d'entretien et de coûts d'investissement limités.
Un avantage supplémentaire de l'installation selon l'invention est sa souplesse de fonctionnement L'appareil peut en effet travailler avec des débits de gaz à traiter et des débits de réactifs solides frais très variables. La concentration en solides dans la zone reactionnelle peut être contrôlée à partir du débit de gaz secondaire introduit
Ainsi, la présente invention a pour objet une installation de traitement des fumées d'incinérateurs comprenant :
- un premier réacteur à travers lequel les fumées s'écoulent longitudinalement, ayant une entrée et une sortie;
- des moyens d'injection d'un absorbant dans le premier réacteur;
- un deuxième réacteur ayant une entrée connectée avec la sortie du premier réacteur, dans lequel les fumées sont animées d'un mouvement rotationnel afin de séparer (progressivement) par effet centrifuge les particules solides des gaz qui y circulent,
- des moyens destinés à faire recirculer dans l'installation une partie au moins des particules solides séparées dans le deuxième réacteur;
- des moyens destinés à évacuer les fumées dépoussiérées
le premier et le deuxième réacteur étant mutuellement agencés de telle sorte que les fumées entrent tangentiellement dans le deuxième réacteur Plus particulièrement, le deuxième réacteur est essentiellement cylindrique et comprend trois zones
- un zone périphérique destinée à recueillir et/ou à recycler des fumées chargées en particules absorbantes;
- une zone intermédiaire où a lieu la mise en rotation de l'écoulement; et
- une zone centrale destinée à l'évacuation des fumées épurées.
Selon l'une de ses caractéristiques, l'invention comprend en outre un moyen tel un venturi placé dans le premier réacteur en aval des moyens d'injection de l'absorbant afin d'améliorer le mélange de l'absorbant avec les fumées à traiter.
Avantageusement, le premier réacteur peut présenter une section transversale qui diminue à l'approche de sa connection avec le deuxième réacteur.
Selon l'un des modes de réalisation de l'invention, les trois zones du deuxième réacteur sont coaxiales, et sensiblement perpendiculaires à l'axe longitudinal du premier réacteur.
En outre, l'installation selon l'invention peut comprendre des moyens destinés à créer une dépression dans la zone périphérique.
Ces moyens peuvent comprendre un ensemble d'injecteurs destinés à distribuer de façon homogène un gaz tel que de la vapeur d'eau, ou une fraction des fumées à traiter, ledit gaz permettant d'aspirer les gaz présents dans la zone périphérique.
Additionnellement, l'installation comprend en outre des moyens, tels que des grilles, placés à l'entrée de la zone périphérique, et destinés à modifier la nature de l'écoulement entre la zone intermédiaire et la zone périphérique.
Selon l'un des modes de réalisation de l'invention, l'axe principal du deuxième réacteur est sensiblement vertical. Selon l'une de ses caractéristiques, l'installation comprend en outre un élément placé entre la zone intermédiaire et la zone périphérique et destine à séparer le flux sortant de la zone intermédiaire.
Selon une autre caractéristique, l'installation comprend un élément (80) de liaison entre le deuxième réacteur et le premier réacteur, destiné à diriger les fumées chargées en particules vers le premier réacteur.
Conformément à un autre mode de réalisation de l'invention, l'axe principal du deuxième réacteur est sensiblement horizontal.
D'autres détails, caractéristiques, et avantages de la présente invention apparaîtront plus clairement à la lecture de la description qui va suivre faite à titre illustratif et nullement limitatif en référence aux figures annexées sur lesquelles:
- la figure 1 est une coupe longitudinale d'un deuxième réacteur selon l'invention;
- la figure 2 est une coupe montrant la liaison entre le premier et le deuxième réacteur selon l'invention; - la figure 3 est une coupe longitudinale d'un autre mode de réalisation du deuxième réacteur selon l'invention;
- la figure 4 est une vue de face écorchée d'un deuxième réacteur selon un deuxième mode de réalisation de l'invention;
- la figure 5 est une vue de dessus (sans fermeture supérieure) du deuxième réacteur selon le deuxième mode de réalisation de l'invention;
- la figure 6 est une coupe simplifiée du premier et du deuxième réacteurs selon un troisième mode de réalisation de l'invention;
- la figure 7 est une vue de face du troisième mode de réalisation de l'invention;
- la figure 8 est une vue schématique de coté d'un quatrième mode de réalisation de l'invention; et
- la figure 9 est une vue schématique de dessus du quatrième mode de réalisation de l'invention.
Un premier mode de réalisation de l'invention est illustré de façon schématique sur les figures 1 et 2, à considérer en relation puisque la figure 1 concerne le deuxième réacteur de l'installation tandis que la figure 2 montre plutôt le premier réacteur de l'installation. L'installation selon l'invention est en effet essentiellement constituée d un premier réacteur 1 (ou tubulure) par lequel les gaz entrent, et d'un deuxième réacteui 2 où le courant g oa"zeux est animé d'un mouvement hélicoïdal
La tubulure I peut présenter une section cylindrique, rectangulane ou toute autre En amont de la tubulure 1 , on trouve un (ou des) ιnjecteur(s) 3 d'absorbant frais En aval de cette injection, il peut être prévu un dispositif du type venturi 4 ou équivalent qui assure un bon mélange de l'absorbant frais avec les fumées à traitei II peut éventuellement y avoir plusieurs dispositifs de mélange placés en série dans le réacteur I II est possible aussi d'injecter de l'eau ou de la vapeur d'eau dans la tubulure 1 , cette injection pouvant se faire en amont ou en aval de l'injecteur d'absorbant 3 (l'injection d'eau n'est pas représentée sur les figures 1 et 2) La tubulure 1 présente une sortie connectée à l'entrée du deuxième réacteur
Selon ce mode de réalisation de l'invention, le deuxième réacteur 2 est essentiellement cylindrique avec un axe longitudinal sensiblement orienté verticalement II est totalement obturé dans des parties supérieures par un disque 100
Le deuxième réacteur 2 comprend essentiellement trois zones qui peuvent être coaxiales
- une zone périphérique 2a destinée au recyclage des particules d'absorbant ,
- une zone intermédiaire 2b, essentiellement annulaire, qui est la zone reactionnelle proprement dite; et
- une zone centrale (ou axiale) 2c pour l'évacuation des fumées traitées
La zone intermédiaire est donc interposée entre la zone périphérique et la zone centrale
La séparation physique entre les zones 2a et 2b est réalisée pai un interne 6 sensiblement cylindrique tandis que la séparation entre les zones 2b et 2c est matérialisée par un élément tubulaire 7.
Le premier réacteur 1 est directement connecté à la zone reactionnelle 2b via une lucarne 5. Ainsi, les effluents à traiter, chargés en absorbant, sont introduits tangentiellement dans la partie basse 8 du réacteur 2 ; ils décrivent dans la zone reactionnelle 2b une pseudo-spirale ascendante.
Pendant ce parcours, tout ou partie des particules contenues dans le gaz sont progressivement centrifugées et regroupées à proximité de l'interne cylindrique 6.
Arrivés à l'extrémité supérieure 9 de la zone 2b, les gaz entrent dans la zone 2d où ils se partagent en deux flux : un flux de gaz principal peu chargé en particules et qui est évacué par la tubulure centrale 2c, et un flux de gaz secondaire chargé avec l'essentiel des particules et qui passe dans la zone périphérique de recyclage 2a.
Le flux de gaz secondaire chargé en particules traverse la zone périphérique
2a, de l'extrémité supérieure 10 à l'extrémité inférieure I I c'est-à-dire selon un mouvement descendant. Afin de maintenir et de renforcer cette circulation, des jets de gaz 12 sensiblement dirigés vers l'extrémité inférieure 1 1 y créent une dépression.
A l'extrémité supérieure 10 de la zone 2a on peut prévoir un dispositif 13, comme par exemple une grille, destiné à modifier l'écoulement, en passant d'un écoulement rotationnel à un écoulement axial. Ce dispositif 13 peut être placé perpendiculairement à l'axe principal du dispositif comme représenté sur la figure 1 , ou encore placé plus ou moins dans le prolongement de l'interne 6.
La production des jets de gaz 12 est assurée par un dispositif qui comporte une alimentation en gaz 14, un anneau torique 15 percé d'orifices 16 sensiblement orientés vers l'extrémité 1 1 de la zone 2a. Ces orifices 16 sont en général équirépartis sur l'ensemble de l'anneau torique 15, de façon à assurer une distribution homogène du gaz. Le gaz d'entraînement peut être un gaz quelconque qui ne participe pas à la réaction, mais il peut aussi être constitué par une fraction du gaz à traiter, cette fraction de gaz à traiter étant par exemple prélevée en amont de la tubulure I . Dans le cas de la déchloruration des fumées, ce gaz peut également être de la vapeur d'eau, connue pour avoir un rôle bénéfique dans le processus de captation de l'acide chlorhydrique par les absorbants calciques. Les jets 12 créent donc un mouvement d'aspiration des gaz présents dans la zone 2a, qui agit plus particulièrement sur la fraction de gaz fortement chargée en particules. Dans la partie basse 17 du réacteur 2, l'interne 6 ne repose pas sur le fond 17 de sorte qu'un passage est prévu pour le flux gazeux sortant de la zone 2a, qui dirige ce flux à nouveau vers la zone reactionnelle 2b.
Autrement dit, à l'extrémité inférieure 1 1 de la zone 2a, les gaz fortement chargés en particules sont recyclés dans la zone 2b ; ceci permet d'accroître très sensiblement la concentration en absorbant dans ladite zone. Le fond 17 du dispositif cyclonique 2 peut avoir une forme tronconique comme illustré sur la figure I , mais d'autres formes qui, par exemple, "épouseraient" mieux l'écoulement sont aussi possibles.
En outre, on peut prévoir des injections complémentaires de gaz (non représentées) dans le fond 17 pour faciliter la circulation de la suspension gaz- solides, afin d'éviter la sédimentation de particules dans des zones où les vitesses des fluides sont faibles, ou encore pour aider au réentraînement du courant gaz-solides migrant dans le fond 17 par le courant gazeux issu de la tubulure 1.
La vitesse de circulation des gaz à traiter dans la zone tubulaire 1 est comprise entre 2 et 200 m/s et de préférence entre 5 et 50 m/s. Les particules introduites ont une densité comprises entre 0, 1 et 10 et de préférence entre 1 et 3. La granulométrie de ces particules varie entre 0,2 et 100 micromètres et de préférence entre 2 et 30 micromètres. Les débits de solides sont calculés de façon à avoir des charges en particules dans la tubulure 1 , comprises entre 0 et 5 kg/Nm3 et de préférence entre 0,01 et 0,1 kg/Nm3. Le rapport longueur/diamètre de la zone tubulaire peut être compris entre 2 et 50 et de préférence entre 5 et 20. La section de la lucarne 5 peut être plus faible que celle de la tubulure 1 , de façon à augmenter la vitesse de la suspension gaz - particules à l'entrée de la zone reactionnelle 2-b, et ainsi accroître l'effet d'aspiration et de réentraînement du courant gazeux chargé en absorbant recyclé.
La géométrie du dispositif cyclonique 2 peut être plus précisément définie par le rapport H/D, où H est la hauteur de l'ensemble de la partie cylindrique et D son diamètre extérieur. Ce rapport peut être compris entre 1 et 20 et de préférence 1 et 3.
La distance entre l'élément tubulaire 7 et l'interne 6 peut être sensiblement identique au diamètre ou à la largeur de la lucarne 5, mais cette distance peut éventuellement être plus grande Le diamètre de la tubulure de soi tie 7 est deteimine afin d'avoir une vitesse de circulation des gaz comprises entre 2 et 200 m/s, et de piéférence entie 5 et 50 m/s Le diamètre et le nombre d orifices 16 sont calcules de façon a avoir des vitesses de sortie comprises entre 10 et 300 m/s et de piefeience entre 20 et 50 m/s Le débit massique de gaz introduit dans l'anneau de distribution 15 représente entre 1 et 100%, et de préférence entre 5 et 20 % du débit de gaz a traiter En régime établi, la concentration en particules dans la zone leactionnelle 2a est très importante et peut atteindre 100 kg/Nm3 Bien évidemment, puisque les conditions de fonctionnement sont stabilisées, la concentration en particules a la sortie est sensiblement la même qu'à l'entrée
La figure 3 illustre une variante de l'installation où la partie supérieure de la zone 2b est équipée d'un interne 19 de géométrie sensiblement cylindrique, et qui a pour fonction d'aider au partage du gaz circulant dans la zone 2b, entie la fraction fortement chargée en particules et la partie faiblement chargée en particules Cet interne 19 est placé de façon à recouvrir partiellement l'interne 6 pour former avec lui un passage 30 par lequel transite la fraction de gaz fortement chargée en particules
Ainsi la fraction de gaz chargée en particules suit le cheminement indiqué par un double fléchage sur la figure 3, tandis que les gaz quasi épurés s écoulent selon les flèches simples, au plus près de l'axe longitudinal du réacteur 2
Les figures 4 et 5 représentent un autre mode de réalisation ou la zone périphérique de recyclage 2a a été modifiée. Ladite zone 2a comprend, dans le sens de l'écoulement du courant recyclé (c'est-à-dire du haut vers le bas), un premier espace annulaire 20 ouvert vers le haut, qui est délimité par des plaques convergentes 21 Les plaques convergentes 21 sont connectées par leurs extrémités inférieures à des tubulures 22 de section rectangulaires ou cylindriques ou autre encore , lesdites tubulures sont orientées verticalement et débouchent à leur extrémité inférieure dans la zone reactionnelle 2b par l'intermédiaire d'orifices 23 Les orifices 23 ont une géométrie telle que l'injection de la suspension particulaire dans la zone reactionnelle 2b se fait préférentiel lement de manière tangentielle
La figure 5 montre que la zone périphérique 2a comprend quatre zones formées de plaques convergentes 21 , mais ce nombre peut éventuellement être différent L'entraînement du courant recyclé s'effectue par l'intermédiaire d'un gaz secondaire qui est injecté à l'aide du dispositif 24. Ce dispositif comporte une tubulure torique 25 entourant le dispositif cyclonique 2 et alimentée en gaz par la ligne 26. Ladite tubulure torique 25 alimente elle-même des conduits 27 dont l'extrémité en aval est dirigée de façon à induire un écoulement gazeux dans la zone de recyclage 2a, de l'extrémité 10 à l'extrémité 1 1. Cette configuration présente l'avantage de limiter la consommation de gaz secondaire.
Les figures 6 et 7 (vue de face) illustrent encore un autre mode de réalisation de l'invention. Dans cette installation, le gaz à traiter arrive par une canalisation 50, traverse une première zone (ou premier réacteur) 51 où ledit gaz est en écoulement sensiblement axial, puis une seconde zone (ou second réacteur) 52 où l'écoulement est mis en rotation. La zone 51 peut avoir par exemple une section rectangulaire. Elle présente un axe principal sensiblement vertical. La zone 52 surmonte la zone 51 et est constituée d'une enceinte sensiblement cylindrique dont l'axe longitudinal est de préférence sensiblement horizontal.
Le réactif solide, ou l'absorbant dans le cas d'un traitement de fumées, est introduit à l'extrémité amont de la zone 51 , grâce à un (ou des) injecteur(s) 53. L'injection peut aussi se faire en amont de la zone 51, comme par exemple dans la canalisation 50. La zone 51 peut être équipée d'un dispositif 54 tel un venturi, afin d'améliorer le mélange entre gaz et solides. A l'extrémité aval de la zone 5 1 , la suspension gaz-solides est accélérée en passant au travers d'une zone à section rétrécie 55. Ladite suspension entre ensuite dans la zone 52 et passe dans une volute 56 où l'écoulement est mis en rotation en parcourant approximativement 3/4 de la circonférence de la volute. Les particules sont soumises aux forces centrifuges et de ce fait se concentrent à la partie périphérique de la volute.
En sortie de la volute 56, le courant gazeux est partagé en deux grâce à un interne 57. La partie de l'écoulement suivant l'extrado est fortement chargée en particules et est dirigée vers une zone 58, tandis que la partie de l'écoulement suivant l'intrado est peu chargée en particules et passe dans la conduite d'évacuation horizontale 59. L'interne 57 est positionné de façon à ne capter qu'une petite partie de l'écoulement gazeux. La zone 58 peut être un passage vertical droit de section rectangulaire accolé à la zone 51. Sans sortir du cadre de l'invention, la zone 58 peut être constituée d'un ensemble de canalisations verticales ayant chacune sa propre injection de gaz.
Les injecteurs de gaz 60 sont préférentiellement dirigés vers le bas de façon à créer un mouvement d'aspiration en sortie de volute 56. Les conditions de vitesse et de débit dans ces injecteurs sont identiques à celles évoquées à propos du mode de réalisation selon les figures 1 ou 2. Là aussi, le gaz injecté peut être un gaz neutre ou directement une fraction du gaz à traiter.
En aval de la zone 58, la suspension gaz-solides rejoint l'écoulement principal par le passage 61 , dont l'orientation et la géométrie sont ajustées de façon à favoriser un phénomène de succion.
La figure 7 est une vue de face du mode de réalisation selon la figure 6 qui montre la zone 51 avec une série d'injecteurs 53 et surmontée de la zone 52. La zone de transition 55 entre le premier réacteur et le deuxième réacteur peut aussi être rétrécie en largeur afin d'accélérer l'écoulement. La figure 7 représente une seule zone cylindrique 52, mais il peut aussi être envisagé d'avoir plusieurs zones 52 montées sur une ligne commune d'évacuation des gaz 59. Autrement dit, le passage des gaz de la volute 56 à la ligne d'évacuation 59 peut se faire sur toute la largeur de l'installation ou seulement en des points particuliers.
Les figures 8 et 9 illustrent de façon schématique encore une autre installation conforme à l'invention.
Cette installation comprend, comme les installations selon les figures 1 à 5, un premier réacteur tubulaire 70 d'axe sensiblement horizontal ; des moyens 71 d'injection d'absorbant et préférentiellement un ou plusieurs venturi 69. La section transversale de ce réacteur diminue à l'approche de sa connection avec le deuxième réacteur 72 qui présente un axe principal sensiblement vertical. Le mélange des gaz à traiter et de l'absorbant, réalisé dans le réacteur 70, permet d'y amorcer la réaction de captation des gaz acides.
Le mélange gaz-solide pénètre tangentiellement dans le deuxième réacteur 72 via la zone 74 de section réduite par rapport au réacteur 70. Le mélange pénètre donc dans le deuxième réacteur 72 avec une vitesse comprise entre 5 et 150 m/s, de préférence de l'ordre de 50 m/s. Le mélange est en outre animé d'un mouvement tourbillonnaire dû à l'entrée
Figure imgf000015_0001
La réaction de capture des gaz acides se poursuit donc dans le deuxième réacteur 72, d'abord dans la zone supérieure 75a de section constante puis dans la zone inférieure 75b qui présente une section décroissante vers le bas, par exemple en forme d'entonnoir.
Un interne 77 est placé dans le bas de la zone 75b, coaxialement à ladite zone. L'interne 77 permet d'isoler les effluents riches en particules qui, sous l'effet de la force centrifuge, se retrouvent en périphérie, dans une zone 75c.
En bas de l'interne 77 et de la zone 75b est prévue une conduite 80 de recyclage qui relie la zone 75b au premier réacteur 70, de préférence en amont des injecteurs 71 et du venturi 69.
Un ou plusieurs venturi 79 peuvent être disposés dans la conduite 80 dont la section transversale peut décroître à l'approche de la connection avec le réacteur 70 ; ces différents moyens, connus en eux-mêmes, permettent en effet d'augmenter la vitesse des fumées.
En outre, un gaz moteur peut être injecté par un moyen 78, dans la conduite 80, préférentiellement en-dessous de la zone d'extraction 75b. Avantageusement l'injecteur 78 peut être placé au niveau du col du venturi 79 afin d'y créer une dépression.
L'essentiel des fumées ayant transité dans le deuxième réacteur 72 en sort, épuré, par une conduite centrale axiale 76.
L'interne 77 peut présenter un fond plein ou en être dépourvu de façon à autoriser un recyclage des fumées et à prévenir l'accumulation des solides.

Claims

REVENDICATIONS
1 ) Installation de traitement des fumées d'incinérateurs comprenant :
un premier réacteur ( 1 ; 51 ; 70) à travers lequel les fumées s'écoulent longitudinalement, ayant une entrée et une sortie;
- des moyens (3 ; 53 ; 71) d'injection d'un absorbant dans le premier réacteur;
- un deuxième réacteur (2 ; 52 ; 72) ayant une entrée connectée avec la sortie du premier réacteur, dans lequel les fumées sont animées d'un mouvement rotationnel afin de séparer par effet centrifuge les particules solides des gaz qui y circulent;
- des moyens (2a, 2b ; 61 ; 80) destinés à faire recirculer dans l'installation une partie au moins des particules solides séparées dans le deuxième réacteur;
- des moyens (2c ; 59 ; 76) destinés à évacuer les fumées dépoussiérées,
caractérisé en ce que le premier et le deuxième réacteur sont mutuellement agencés de telle sorte que les fumées entrent tangentiellement dans le deuxième réacteur, et en ce que le deuxième réacteur est essentiellement cylindrique et comprend trois zones
- une zone périphérique (2a ; 58 ; 75c) destinée à recueillir et/ou à recycler des fumées chargées en particules absorbantes;
- une zone intermédiaire (2b ; 56) où a lieu la mise en rotation de l'écoulement; et
- une zone centrale (2c ; 59 ; 76) destinée à l'évacuation des fumées épurées.-
2) Installation selon la revendication 1 , caractérisée en ce qu'elle comprend en outre un moyen tel un venturi (4 ; 54 ; 69) placé dans le premier réacteur (1) en aval des moyens (3 ; 53 ; 71 ) d'injection de l'absorbant afin d'améliorer le mélange de l'absorbant avec les fumées à traiter. 3) Installation selon l'une quelconque des revendications piécédentes, caractérisée en ce que le premier réacteur ( I ) présente une section transversale qui diminue à l'approche de sa connection avec le deuxième réacteur (2)
4) Installation selon l'une quelconque des revendications piécédentes, caractérisée en ce que les trois zones du deuxième réacteur sont coaxiales, et sensiblement perpendiculaires à l'axe longitudinal du premier îéacteur
5) Installation selon la revendication 4, caractérisée en ce qu'elle comprend en outre des moyens (14, 15, 16 , 24 ; 60) destinés à créer une dépression dans la zone périphérique (2a)
6) Installation selon la revendication 5, caractérisée en ce que lesdits moyens comprennent un ensemble d'injecteurs (16 , 27 ; 60) destinés à distπbuei de façon homogène un gaz tel que de la vapeur d'eau, ou une fraction des fumées à traiter, ledit gaz permettant d'aspirer les gaz présents dans la zone périphérique (2a)
7) Installation selon l'une quelconque des revendications piécédentes, caractérisée en ce qu'elle comprend en outre des moyens, tels que des grilles ( 13), placés à l'entrée de la zone périphérique (2a) dudit deuxième réacteur, et destinés à modifier la nature de l'écoulement entre la zone intermédiaire et la zone périphérique
8) Installation selon l'une quelconque des revendications précédentes, caractérisée en ce que l'axe principal du deuxième réacteur est sensiblement vertical
9) Installation selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend en outre un élément (18, 19) placé entre la zone intermédiaire et la zone périphérique du deuxième réacteur et destiné à séparer le flux sortant de la zone intermédiaire
10) Installation selon l'une quelconque des revendications 1 à 7, caractérisée en ce que l'axe principal du deuxième réacteur est sensiblement horizontal
1 1 ) Installation selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend en outre un élément (80 ; 58) de liaison entre le deuxième réacteur et le premier réacteur, destiné à diriger les fumées chargées en particules vers le premier réacteur.
PCT/FR1997/000784 1996-05-09 1997-05-02 Installation de traitement de fumees d'incineration ayant un recyclage interne WO1997043032A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9540569A JPH11509778A (ja) 1996-05-09 1997-05-02 内部循環を有する焼却排煙処理プラント
US08/981,843 US6165421A (en) 1996-05-09 1997-05-02 Incineration fumes processing plant with internal recycling
EP97921925A EP0854750A1 (fr) 1996-05-09 1997-05-02 Installation de traitement de fumees d'incineration ayant un recyclage interne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9605886A FR2748402B1 (fr) 1996-05-09 1996-05-09 Installation de traitement de fumees d'incineration ayant un recyclage interne
FR96/05886 1996-05-09

Publications (1)

Publication Number Publication Date
WO1997043032A1 true WO1997043032A1 (fr) 1997-11-20

Family

ID=9492049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/000784 WO1997043032A1 (fr) 1996-05-09 1997-05-02 Installation de traitement de fumees d'incineration ayant un recyclage interne

Country Status (6)

Country Link
US (1) US6165421A (fr)
EP (1) EP0854750A1 (fr)
JP (1) JPH11509778A (fr)
FR (1) FR2748402B1 (fr)
TW (1) TW328559B (fr)
WO (1) WO1997043032A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6817304B2 (en) * 2000-09-01 2004-11-16 Institut Francais Du Petrole Process for generating heat to reduce the emission of oxides of sulphur and reduce adsorbent consumption
EP0852963B1 (fr) * 1997-01-13 2005-11-30 Institut Français du Pétrole Séparateur à enroulement direct de particules d'un mélange gazeux et son utilisation en craquage thermique ou catalytique en lit fluidisé

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230149128A (ko) * 2022-04-19 2023-10-26 주식회사 이피아이티 집진장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0027398A1 (fr) * 1979-10-08 1981-04-22 Air Industrie Procédé et installation pour le traitement d'un gaz par mise en contact d'un courant de ce gaz avec des particules de matière solide
EP0181820A1 (fr) * 1984-11-07 1986-05-21 Syprim Air Industrie Environnement Installation pour le traitement de fumées par un produit en poudre
FR2636720A1 (fr) * 1988-09-20 1990-03-23 Inst Francais Du Petrole Procede et dispositif pour generer de la chaleur comportant une desulfuration des effluents avec des particules d'absorbant de fine granulometrie en lit transporte
DE4106319A1 (de) * 1991-02-28 1992-09-03 Burgert Burdosa Verfahren und vorrichtung zum reinigen eines gases mit einer fluessigkeit
EP0540743A1 (fr) * 1990-08-03 1993-05-12 Sanko Industries Corporation Procede, dispositif et systeme pour le traitement des gaz d'echappement
EP0603919A1 (fr) * 1992-12-23 1994-06-29 Norddeutsche Affinerie Ag Procédé et dispositif pour la purification des gaz par voie humide
GB2286542A (en) * 1994-02-02 1995-08-23 Boc Group Plc Treating waste gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218931A (en) * 1991-11-15 1993-06-15 Foster Wheeler Energy Corporation Fluidized bed steam reactor including two horizontal cyclone separators and an integral recycle heat exchanger
US5344629A (en) * 1992-01-03 1994-09-06 A. Ahlstrom Corporation Reducing Z20 emissions
US5341753A (en) * 1993-02-12 1994-08-30 Pyropower Corporation Circulating fluidized bed power plant with improved mixing of sorbents with combustion gases

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0027398A1 (fr) * 1979-10-08 1981-04-22 Air Industrie Procédé et installation pour le traitement d'un gaz par mise en contact d'un courant de ce gaz avec des particules de matière solide
EP0181820A1 (fr) * 1984-11-07 1986-05-21 Syprim Air Industrie Environnement Installation pour le traitement de fumées par un produit en poudre
FR2636720A1 (fr) * 1988-09-20 1990-03-23 Inst Francais Du Petrole Procede et dispositif pour generer de la chaleur comportant une desulfuration des effluents avec des particules d'absorbant de fine granulometrie en lit transporte
EP0362015A1 (fr) * 1988-09-20 1990-04-04 Institut Français du Pétrole Procédé pour générer de la chaleur comportant une désulfuration des effluents avec des particules d'absorbant de fine granulométrie en lit transporté
EP0540743A1 (fr) * 1990-08-03 1993-05-12 Sanko Industries Corporation Procede, dispositif et systeme pour le traitement des gaz d'echappement
DE4106319A1 (de) * 1991-02-28 1992-09-03 Burgert Burdosa Verfahren und vorrichtung zum reinigen eines gases mit einer fluessigkeit
EP0603919A1 (fr) * 1992-12-23 1994-06-29 Norddeutsche Affinerie Ag Procédé et dispositif pour la purification des gaz par voie humide
GB2286542A (en) * 1994-02-02 1995-08-23 Boc Group Plc Treating waste gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852963B1 (fr) * 1997-01-13 2005-11-30 Institut Français du Pétrole Séparateur à enroulement direct de particules d'un mélange gazeux et son utilisation en craquage thermique ou catalytique en lit fluidisé
US6817304B2 (en) * 2000-09-01 2004-11-16 Institut Francais Du Petrole Process for generating heat to reduce the emission of oxides of sulphur and reduce adsorbent consumption

Also Published As

Publication number Publication date
FR2748402B1 (fr) 1998-06-26
TW328559B (en) 1998-03-21
FR2748402A1 (fr) 1997-11-14
EP0854750A1 (fr) 1998-07-29
US6165421A (en) 2000-12-26
JPH11509778A (ja) 1999-08-31

Similar Documents

Publication Publication Date Title
FR2674449A1 (fr) Dispositif separateur de particules a circulation de fluide.
FR2678850A1 (fr) Procede et installation de thermolyse de dechets industriels et/ou menagers.
FR3060417A1 (fr) Reacteur de reactivation de solides
EP0852963A1 (fr) Séparateur à enroulement direct de particules d'un mélange gazeux et son utilisation en craquage thermique ou catalytique en lit fluidisé
EP0854750A1 (fr) Installation de traitement de fumees d'incineration ayant un recyclage interne
EP3797092A1 (fr) Procédé de traitement d'un fluide par flux ascendant à travers un lit de média adsorbant et installation correspondante
FR2726203A1 (fr) Separateur a flottation centripete, notamment pour le traitement d'effluents aqueux charges
EP0381601B1 (fr) Perfectionnements aux procédés d'épuration des fumées
EP0241349A1 (fr) Procédé et dispositif de traitement de fluides contenant en suspension des particules
KR101855825B1 (ko) 원심력 집진방식과 관성력 집진방식을 이용한 입자상 물질 제거용 배기가스 전처리 장치
EP0545771B1 (fr) Séparateur extracteur cyclonique à co-courant
EP0140769B1 (fr) Installation de traitement de matière en lit fluidisé
EP1184622B1 (fr) Procédé de génération de chaleur permettant une émission réduite des oxydes de soufre et une consommation réduite d'absorbant
EP0806235A1 (fr) Dispositif de traitement de fumées d'incinération ayant un moyen rotatif de recyclage interne
FR2714303A1 (fr) Procédé et installation de neutralisation et de filtration de fumées acides.
FR2833189A1 (fr) Procede et installation de traitement de gaz issus de la decomposition par effet thermique d'une charge solide
FR2791281A1 (fr) Installation de traitement de solides carbones issus d'un four de thermolyse de dechets urbains et/ou industriels, et dispositif de separation d'une telle installation
KR102009190B1 (ko) 슬러지 연료화 시스템의 슬러지 회수 장치
RU2186611C1 (ru) Вихревой пылеуловитель
FR2670136A1 (fr) Dispositif de separation et de conditionnement de particules entrainees par un gaz.
WO2023088905A1 (fr) Dispositif de traitement d'un flux d'air
WO2025078279A1 (fr) Installation de traitement d'un flux gazeux
RU2343959C1 (ru) Система пылеулавливания
FR2714850A1 (fr) Appareil séparateur et épurateur de la pollution d'au moins un mélange gazeux.
BE875423A (fr) Separateur a lit de fibres a rendement ameliore electrostatiquement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997921925

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 540569

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 08981843

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997921925

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997921925

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载