WO1997040755A1 - Dispositif destine a retablir la capacite des valvules du sinus veineux - Google Patents
Dispositif destine a retablir la capacite des valvules du sinus veineux Download PDFInfo
- Publication number
- WO1997040755A1 WO1997040755A1 PCT/US1997/007151 US9707151W WO9740755A1 WO 1997040755 A1 WO1997040755 A1 WO 1997040755A1 US 9707151 W US9707151 W US 9707151W WO 9740755 A1 WO9740755 A1 WO 9740755A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- support
- external support
- vein
- valve
- edges
- Prior art date
Links
- 210000002073 venous valve Anatomy 0.000 title claims abstract description 38
- 210000003462 vein Anatomy 0.000 claims abstract description 77
- 230000006835 compression Effects 0.000 claims abstract description 32
- 238000007906 compression Methods 0.000 claims abstract description 32
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims description 20
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 19
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 18
- -1 polytetrafluoroethylene Polymers 0.000 claims description 17
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000004812 Fluorinated ethylene propylene Substances 0.000 claims description 4
- 229920001774 Perfluoroether Polymers 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 229920009441 perflouroethylene propylene Polymers 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 230000010339 dilation Effects 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000000560 biocompatible material Substances 0.000 abstract description 9
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 11
- 230000017531 blood circulation Effects 0.000 description 8
- 230000008439 repair process Effects 0.000 description 8
- 229920000544 Gore-Tex Polymers 0.000 description 5
- 230000002526 effect on cardiovascular system Effects 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 208000007536 Thrombosis Diseases 0.000 description 3
- 206010046996 Varicose vein Diseases 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 229920003266 Leaf® Polymers 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 208000001297 phlebitis Diseases 0.000 description 2
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 2
- 210000003752 saphenous vein Anatomy 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 210000002105 tongue Anatomy 0.000 description 2
- 208000027185 varicose disease Diseases 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 206010002329 Aneurysm Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 206010051055 Deep vein thrombosis Diseases 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 206010047249 Venous thrombosis Diseases 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 206010003549 asthenia Diseases 0.000 description 1
- 210000004763 bicuspid Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 201000002816 chronic venous insufficiency Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920000295 expanded polytetrafluoroethylene Polymers 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
- 208000037997 venous disease Diseases 0.000 description 1
- 201000002282 venous insufficiency Diseases 0.000 description 1
- 208000016258 weakness Diseases 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2475—Venous valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/122—Clamps or clips, e.g. for the umbilical cord
- A61B17/1227—Spring clips
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
Definitions
- the present invention relates to a device for repairing incompetent venous valves and more specifically relates to an implantable support device which is positionable about a dilated vein to apply an external deformation force to a vein in the area of a venous valve, which force tends to flatten the valve and impart an oval shape to the vein.
- the flattening force is generally normal to the edges of the valve cusps, tensioning the cusp edges and bringing the valve edges into apposition to restore competence.
- Venous valves in humans and other animals are normally bicuspid valves in which each valve cusp forms a reservoir for blood under pressure which forces the free edges of the cusps together to prevent reflux.
- Incompetence is a condition in which the cusps do not properly coapt when a pressure differential or gradient is applied across a valve permitting reflux or retrograde flow of blood to occur.
- Medical literature indicates that many physicians believe that chronic venous insufficiency of the lower limbs is the result of deep venous thrombosis and associated inflammatory changes of venous valve cusps. Varicose veins often occur in the long saphenous veins in the lower legs when valve incompetence occurs.
- a varicose vein is considered to be a condition which occurs when a vein dilates and the tributaries become elongated and tortuous, resulting in cosmetic impairment, inflammatory phlebitis, pain and thrombosis.
- the valves of the varicose, long saphenous vein are examined, changes are evident including dilation, evagination between the cusps, and in later stages the membrane between the commissures thins and may have numerous fenestrae. These conditions are generally termed venous valve incompetence.
- FIG. 9 Another internal method of valve repair is described in PCT Publication WO93-01764.
- This publication describes an intravenous device that may be used to partially or totally flatten a vein.
- the device consists of two bearing rods which are connected by at least one spreader element having a spring effect which are capable, when inserted into the lumen of the vein, to apply an outward force on the two opposite sides of the vein so that it pushes the commissures of the vein apart, flattening the vein and thus improving coaptation. While effective, this device remains in the lumen of the blood vessel and may obstruct blood flow potentially contributing to thrombosis.
- Restoration of venous valve competence can also be surgically achieved without performing venotomy by placing an external row of sutures along the diverging margins of the valve cusp insertion in the vein wall. Sutures for external repair are begun in each commissure on both sides of the vein.
- External valvuloplasty is discussed in a number of recent articles including: "The Role of External Banding Valvuloplasty in the Surgical Management of Chronic Deep Venous Disease", H. Schanzer et al., Phleboloqy (1994) 9:8-12; "External Valvuloplasty of the Saphenofemoral Junction"; P. Zamboni et al., Vascular Surgery. Vol. 28 No. 5, June 1994. Zamboni et al., describe the use of porous PTFE material to surround an incompetent venous valve whereby the region of the venous valve is forced into a round or circular transverse cross section.
- Another approach to restore competence of incompetent venous valves involves reducing the diameter of the appropriate vein at the valve site.
- a cuff is applied around the vein which cuff consists of a band of biocompatible, implantable material that is not stretchable, at least at blood flow pressures.
- the band is of sufficient length to encompass the vein at the valve site with the ends of the band overlapping.
- the cuff is attached by a special applicator which reduces the circumference of the cuff until competence is restored. This system reduces the diameter of the lumen to restore competence.
- U.S. Patent 5,441 ,509 shows a surgical clip having a monolithic hinge with projecting legs for compressing a vessel or tissue but are not implantable and are generally intended for temporary occlusion of a vessel.
- the present invention involves an implantable support device that is applied externally about the vein at a venous valve site which device serves to flatten or compress but not occlude the vein. Flattening is induced generally normal to the coapting edges of the valve cusps restoring the competence of the valve by causing an elongating tension to be applied to the free edges of the cusps to bring them into apposition.
- the support has opposed compression members fabricated from a biocompatible material such as polytetra-fluoroethylene (hereinafter PTFE) or polyethylene terephthalate which incorporate a reinforcing or spring-like member such as stainless steel wire to provide strength and rigidity
- PTFE polytetra-fluoroethylene
- the opposing members can be opened and closed along an intermediate hinge section and when closed over the vein, the members flatten the vein by applying a restorative force generally normal to the coapting edges of the valve.
- the support must have sufficient rigidity to maintain compression to impart an elliptical or oval shape to the vein sufficient to tension the cusp edges.
- the support may be provided in different sizes to assist the surgeon in properly applying the desired compressive force to different vein sizes and to treat different degrees of valve incompetence.
- the hinge section facilitates positioning the valve and the device may include a latching or locking member for securing the support about the vein.
- the support may also include relieved areas or recesses in the opposed compression members which relieved areas are positioned to be located over the sinus areas so that a compressive force is not applied to the sinus areas.
- the support may be fabricated from a biocompatible matenal such as that sold under the trademark GORE-TEX® Cardiovascular Patch manufactured by W. L. Gore & Associates, Inc. of Flagstaff, Arizona.
- the density and thickness of the material may be selectively varied in different areas of the support device to provide the desired compressive force and hinging.
- Still other useful materials from which the support may be made include fluo ⁇ nated ethylene propylene, perfluoro alkoxy, polypropylene, polyurethane and resorbable polymers
- the support may comprise a slightly ovoid helical winding of biocompatible material having reinforcing wire adhered to or inco ⁇ orated into the winding. The support is extended and placed about the vein at the valve site and permitted to return to its ovoid shape to compress the vein to restore competence to the valve.
- Figure 1 is a perspective view illustrating a vein and a typical venous valve site
- Figure 2 is a perspective view of a vein which has been partially cut away to expose the venous valve
- Figure 3 is a cross sectional view of a vein showing a competent venous valve
- Figure 4 is a view similar to Figure 3 showing a venous valve in which the valve edges and corneal areas are incompetent and permit reflux blood flow;
- Figure 5 is a cross sectional view illustrating application of a normal force to the incompetent valve flattening the valve and bringing the leading edges of the valve cusps into apposition;
- Figure 6 is a perspective view of a preferred embodiment of the venous valve support of the present invention.
- Figure 7 is a plan view of the support of Figure 6 shown in laid open flat position
- Figure 8 is a perspective view of a vein with the support shown in Figures 6 and 7 applied thereto
- Figure 9 is a perspective view of another embodiment of the support of the present invention.
- Figure 10 is a perspective view of yet another embodiment of the device of the present invention.
- Figures 11 to 11 B are representative cross sectional views of the support and a vein illustrating various configurations of the support to achieve vein flattening;
- Figure 12 is a plan view showing yet another embodiment of the support of the present invention applied to a vein
- Figure 13 is a cross sectional view showing the support illustrated in Figure 12 applied to a vein
- Figure 14 is a sectional view taken along line 14-14 of Figure 12
- Figure 15 is a perspective view showing another embodiment of the support of the present invention in which multiple venous supports are formed as a series of interconnected helices;
- Figure 16 is a view of a single helical support which comprises a single helix as compared to the series of multiple helices shown in Figure 15;
- Figure 17 is an enlarged cross sectional view taken along line 17-17 of Figure 15;
- Figure 18 is a cross sectional view of a vein showing the support shown in Figure 16 thereon.
- Figures 1 to 3 illustrate a typical bicuspid venous valve 10 commonly found in humans and many animals.
- the valve 10 is located in a vein "V" at a valve site.
- the valve 10 has a pair of valve cusps 12 and 12A which are diaphanous, tough membranes, crescentic in shape.
- the blood flow direction is indicated by the arrow.
- the concave, coapting edges 16, 16A of the competent valve prevent reflux or retrograde flow in the opposite direction.
- the cusps are attached to opposite walls of the vein and meet at commissures 18, 18A, all of which together form sinuses 20, 20A.
- the free edges 16, 16A of the cusps will allow blood flow in the direction shown by the arrow and will restrict flow in the opposite direction.
- the sinuses 20, 20A and cusps 12, 12A form sacks or reservoirs for blood which force the edges 16, 16A together.
- the free edges of the cusps are in apposition in a competent valve generally along the axis A-A which will be termed the transverse axis of the vein and is coincident with the commissures.
- valve incompetence occurs, which may be due to inflammatory phlebitis, thrombosis or congenital factors which contribute to inherent or primary weaknesses of the vein wall, problems such as edema, pain and ulcerations can occur.
- Progressive development of varicose veins occur generally in the form of a dilatation near the valve, most frequently at the commissures, causing poor coaptation of the valve cusps due to enlargement of the commisural spaces and/or elongation of the leading edges of the cusps.
- Figure 4 illustrates this condition.
- the commissures 18 are distended and the free edges 16, 16A of the cusps are floppy and separated with numerous fenestrae permitting retrograde blood flow both at the free edges of the cusps and at the commissures.
- veins are collapsible tubes, when compressive force F is applied at opposite sides of the vein generally perpendicular to the axis A-A of the leading edges of the cusps, the vein will tend to flatten as shown in Figure 5. The flattening tends to elongate, tension and straighten the edges 16, 16A of the cusp substantially improving coaptation and reducing commissural spaces. It also serves to bring the valve cusps closer together.
- the force F should be applied normal to the cusp edges and exteriorly to the vein. This force F will assist in restoring competence to the valve by removing the slack or looseness of the free edges and bringing free edges of the cusps close together. It is important that the force F be applied so as not to restrict the vein and also it is desirable that the force F not be applied to restrict or compress the sinus areas of the vein which are aneurysm-like dilations in the valve.
- the basis for the present invention is the discovery that such application of external force when applied at the height of the coapting surfaces will flatten the vein and extend the cusps laterally bringing them into apposition restoring competence.
- a support for applying a corrective flattening force to the vein in accordance with the present invention is shown.
- the support is generally designated by the numeral 100 and, in Figure 8, is shown in connection with a vein "V" having distended sinus areas "S".
- the support 100 has a pair of opposite compression members 112, 112A which are identical and each is shown as being generally rectangular and each defining an aperture or relieved area 106.
- the members may have an elliptical or an arcuate configuration as seen in Figures 11 and 11 B respectively or may be flat having curved ends as seen in Figure 11 A.
- the members 112 are preferably fabricated from a biocompatible material such as porous, expanded PTFE, such as that sold under the trademark GORE-TEX Cardiovascular Patch as manufactured by W. L. Gore & Associates of Flagstaff, Arizona. This material has the structure of nodes interconnected by fibrils and is inert and has been demonstrated effective in vascular reconstruction.
- a biocompatible material such as porous, expanded PTFE, such as that sold under the trademark GORE-TEX Cardiovascular Patch as manufactured by W. L. Gore & Associates of Flagstaff, Arizona. This material has the structure of nodes interconnected by fibrils and is inert and has been demonstrated effective in vascular reconstruction.
- the members 112, 112A are joined together by integrally formed intermediate hinge portion 114 which, when the support is positioned about a valve, generally extends axially with respect to the vein and is placed to be adjacent to one of the commissures 18, 18A.
- the width "W" of the hinge determines to some extent the compressive force applied by the support to the valve.
- a typical width for the hinge is from about 1 to 3 mm.
- the opposing members 112, 112A are positioned to apply a force generally normal to the free edges of the cusps so as to flatten the vein and tension the edges of the cusps as has been explained with reference to Figure 5.
- reinforcing elements 110, 110A are attached to or embedded within the opposite compression members 112, 112A.
- the elements may be formed from a small diameter stainless steel medical grade wire, as for example MP35N.
- the wire may be formed into a desired pattern to provide the biasing force and to reinforce compression members 112, 112A.
- the spring-like elements 110,110A are formed into a general serpentine configuration, although other shapes such as S, V or W shapes will work.
- Peripheral portions of the reinforcing members 110, 110A extend adjacent to the edge of each compression member. This reinforcing member may also provide for attachment of sutures used to secure the support over a vein.
- the adjacent edges 120, 120A are secured together by suitable sutures 101 and may also be sutured to the tissue surrounding the vein to prevent the support from becoming dislocated as seen in Figure 8.
- the support has a configuration which, when closed as seen in Figures 11 to 11B, provides lateral clearance for the increased transverse width of a valve as vein flattening occurs.
- the shape of the members 112, 112A may be oval or elliptical (Fig. 11), planar with curved edges (Fig. 11 A), or arcuate (Fig. 11B).
- the members 112, 112A provide increased surface area to apply the force over a substantial area of the vein and also present a soft surface to the vein.
- the biocompatible material of the members may be selected having a porosity to allow or permit limited tissue ingrowth.
- the support has an axial length of from about 1 to 2 times greater than the width.
- the support 100 can be fabricated by starting with a sheet of GORE-TEX® Cardiovascular Patch material and splitting it into separate leafs from opposite edges working toward the middle leaving a non-slit portion of about 2 mm in width which becomes the hinge portion 1 14.
- the pre-formed reinforcing members 110, 110A are then inserted into the two slits between the leafs and the assembly is then sealed by compression for about 30 seconds in a hot press that has been pre-heated to a temperature of about 380°C to cause the material to soften and adhere. After cooling, the slit sections attach to one another with the reinforcing member sandwiched between the layers of material.
- a support member 200 is shown which is substantially equivalent in construction to that shown in Figures 6 and 7 having opposed compression members 212, 212A flexibly joined at intermediate hinge section 214. Reinforcing elements 210 and 220 are provided in the compression members.
- the members are fabricated from a biocompatible material, preferably porous expanded PTFE.
- the relieved area 206 is shown as a dome or hemispherical projection located in each compression member at a location to register with the valve sinus area.
- support 300 has opposed compression members 312, 312A fabricated of a biocompatible material and flexibly joined at hinge 314.
- the members are reinforced by a suitable material such as medical grade stainless steel wire, the reinforcing elements being designated by 310, 31 OA.
- Relief in the sinus areas of the valves is provided by perpendicularly intersecting slits 306, 308 in the members.
- support 400 is again configured having opposite compression members 412 and 412A which may be a surgical grade metal or plastic and have a predetermined rigidity.
- the members 412, 412A have increased thickness in areas 410, 410A.
- the opposite members 412, 412A are joined by a hinge section 414 which is a flexible section preferably of the same material. If metal, a suitable stainless steel having the desired flexibility may be selected or the members may be formed from a medical grade polymer such as fluorinated ethylene propylene or polytetrafluoroethylene.
- the members and the hinge are preferably covered or jacketed with a biocompatible material such as porous expanded PTFE of the type sold under the trademark GORE-TEX® Cardiovascular Patch manufactured by W. L. Gore & Associates of Flagstaff, Arizona. The covering presents a soft, protective surface to the vein.
- the axial length of the support is from about 1 to 4 times the transverse width.
- a locking mechanism 415 is provided opposite the hinge 414. The locking mechanism 415
- the 415 includes apertures 420 in the free end of the upper member 412 and a pair of tabs 425 extending from the free end of the lower member 412A.
- the tabs are each provided with a plurality of teeth 430 which may also serve as calibrations. A physician may then engage a selected tooth 430 of each tab in the upper aperture locked by tongues 432 to provide the desired degree of flattening force to the vein.
- the tongues engage a selected tooth on the tabs to prevent loosening of the support.
- the support is provided with a relieved area 406 in members 412, 412A at locations to register with the sinus areas.
- a helical support 500 is shown.
- elongated strips of material such as porous expanded PTFE are spirally wound about a cylindrical mandrel and one or more reinforcing members are wound about the mandrel.
- the wire is selected to provide reinforcement and strength and MP35N surgical wire has been found acceptable. Any desired number of wires can be incorporated into the member depending upon the degree of compression required.
- the mandrel is then heated to a temperature in the range of 360°F to 380°C in an air convection oven, causing the porous expanded PTFE to soften and adhere so the wires become embedded as a unitary part of the helical structure.
- two reinforcing wires 510 and 511 are shown.
- the helical structure is then removed from the mandrel and is deformed by compression to assume a transverse elliptical cross section.
- wires 510 and 511 may be provided with an outer covering of another layer of PTFE adhered to the first layer.
- the helical structure comprised of a series of helical supports is shown in Figure 15. Five such supports 501 , 501 A etc. are shown.
- the helical structure consisting of a plurality of helical supports can be severed at any desired location to separate a single support 501 as shown by Figure 16.
- the separated support can then be easily placed about the venous valve by elongating it, rotating it about its axis, positioning it and then releasing it, allowing it to return to the helical condition so that it encircles the venous valve, and applying the compressive pressure to achieve a desired flattening.
- a significant length of the helical structure can be used to protect a valve and length of vein against dilatation.
- the support will have a slightly elliptical or oval transverse cross section as best seen in Figure 18, so that the compression force is oppositely applied generally normal to the edges of the valve cusps. This also leaves a clearance area "C” at the opposite sides of the vein for lateral expansion of the vein "V” as compression occurs, as seen in Figure 18.
- a preferred material for the substrate of the compression member of Figures 15-18 is porous expanded polytetrafluoroethylene.
- porous expanded PTFE Another advantage of the porous expanded PTFE is that the pore size can be varied in the fabrication technique to facilitate tissue attachment. Also, the density of the material can be controlled and the substrate can be fabricated having varying density with increased density in the area of the surfaces which apply the pe ⁇ endicular compression force.
- porous expanded PTFE material see U.S. Patent Nos. 3,953,566 and 4,187,390, herein incorporated by reference.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Reproductive Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Prostheses (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97922522A EP0898463A1 (fr) | 1996-04-29 | 1997-04-28 | Dispositif destine a retablir la capacite des valvules du sinus veineux |
JP09539143A JP2000510006A (ja) | 1996-04-29 | 1997-04-28 | 静脈弁の能力回復装置 |
AU28170/97A AU718164B2 (en) | 1996-04-29 | 1997-04-28 | Device for restoring competence to venous valves |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63946896A | 1996-04-29 | 1996-04-29 | |
US08/639,468 | 1996-04-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997040755A1 true WO1997040755A1 (fr) | 1997-11-06 |
Family
ID=24564218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/007151 WO1997040755A1 (fr) | 1996-04-29 | 1997-04-28 | Dispositif destine a retablir la capacite des valvules du sinus veineux |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0898463A1 (fr) |
JP (1) | JP2000510006A (fr) |
AU (1) | AU718164B2 (fr) |
CA (1) | CA2252894A1 (fr) |
WO (1) | WO1997040755A1 (fr) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999003428A1 (fr) * | 1997-07-18 | 1999-01-28 | Advanced Medical Solutions Limited | Sinus de valvule prothetique |
WO2002003893A3 (fr) * | 2000-06-26 | 2002-06-27 | Rex Medical Lp | Dispositif vasculaire pour apposition de valvule |
WO2002026168A3 (fr) * | 2000-09-29 | 2002-08-15 | Tricardia Llc | Dispositif et procede de valvuloplastie veineuse |
WO2002076305A1 (fr) * | 2001-03-23 | 2002-10-03 | Rodney James Lane | Perfectionnements apportes dans la conception de stents de valvules du sinus pour la correction de valvules du sinus incompetentes |
US6475235B1 (en) * | 1999-11-16 | 2002-11-05 | Iowa-India Investments Company, Limited | Encapsulated stent preform |
US6527800B1 (en) | 2000-06-26 | 2003-03-04 | Rex Medical, L.P. | Vascular device and method for valve leaflet apposition |
US6569198B1 (en) * | 2000-03-31 | 2003-05-27 | Richard A. Wilson | Mitral or tricuspid valve annuloplasty prosthetic device |
WO2002039906A3 (fr) * | 2000-11-20 | 2003-05-30 | Avantec Vascular Corp | Methode et dispositif de traitement d'un site tissulaire vulnerable |
US6585760B1 (en) | 2000-06-30 | 2003-07-01 | Vascular Architects, Inc | AV fistula and function enhancing method |
US6607542B1 (en) | 1998-12-11 | 2003-08-19 | Andrew Michael Wild | Surgical apparatus and method for occluding or encircling a body passageway |
US6645237B2 (en) | 1999-02-26 | 2003-11-11 | Vascular Architects, Inc. | Expandable coiled endoluminal prosthesis |
US6652574B1 (en) | 2000-09-28 | 2003-11-25 | Vascular Concepts Holdings Limited | Product and process for manufacturing a wire stent coated with a biocompatible fluoropolymer |
US6676698B2 (en) | 2000-06-26 | 2004-01-13 | Rex Medicol, L.P. | Vascular device with valve for approximating vessel wall |
US6685627B2 (en) | 1998-10-09 | 2004-02-03 | Swaminathan Jayaraman | Modification of properties and geometry of heart tissue to influence heart function |
WO2004026178A3 (fr) * | 2002-09-19 | 2004-06-24 | Exstent Ltd | Ameliorations apportees ou associees a des extenseurs |
WO2004078073A1 (fr) * | 2003-02-28 | 2004-09-16 | Edward G Shifrin | Correcteur extraveineux pour la reparation de valvules veineuses incontinentes |
WO2005041781A1 (fr) * | 2003-10-30 | 2005-05-12 | Sunshine Heart Company Pty Ltd | Methodes et dispositifs de mise en tension d'une bande autour d'un vaisseau sanguin |
WO2005051238A1 (fr) * | 2003-11-27 | 2005-06-09 | Forschungszentrum Karlsruhe Gmbh | Manchon de compression |
US6921414B2 (en) * | 2000-06-30 | 2005-07-26 | Vascular Architects, Inc. | Endoluminal prosthesis and tissue separation condition treatment method |
EP1561437A1 (fr) * | 2004-02-06 | 2005-08-10 | Sango S.A.S | Support extérieur pour rétablir la capacité des valvules du sinus veineux par traction de leur paroies intercommissurales |
US6974473B2 (en) | 2000-06-30 | 2005-12-13 | Vascular Architects, Inc. | Function-enhanced thrombolytic AV fistula and method |
WO2006033385A1 (fr) * | 2004-09-24 | 2006-03-30 | National University Corporation Kobe University | Pince a clamper intestinale |
US7063720B2 (en) | 2004-09-14 | 2006-06-20 | The Wallace Enterprises, Inc. | Covered stent with controlled therapeutic agent diffusion |
US20070225799A1 (en) * | 2006-03-24 | 2007-09-27 | Medtronic Vascular, Inc. | Stent, intraluminal stent delivery system, and method of treating a vascular condition |
EP1874194A2 (fr) * | 2005-01-09 | 2008-01-09 | Shifrin, Edward G. | Procede et correcteur extraveineux pour reparation simultanee de multiples valvules veineuses incontinentes |
JP2008207018A (ja) * | 1999-06-10 | 2008-09-11 | Sunshine Heart Co Pty Ltd | 心臓補助デバイス |
US7479159B2 (en) * | 2005-02-04 | 2009-01-20 | Sango S.A.S. Di Cattani Rita & C. | External support for restoring competence to venous valves by traction of their intercommissural walls |
DE102007061301A1 (de) * | 2007-12-10 | 2009-06-18 | Aesculap Ag | Ummantelung zur Wiederherstellung der Klappenfunktion variköser Venen und Verwendung der Ummantelung in der Chirurgie |
US7666222B2 (en) * | 1997-04-18 | 2010-02-23 | Cordis Corporation | Methods and devices for delivering therapeutic agents to target vessels |
RU2393817C2 (ru) * | 2005-02-09 | 2010-07-10 | Санго С.А.С. Ди Каттани Рита И К. | Внешняя опора для восстановления компетентности венозных клапанов путем растяжения их межспайковых стенок |
US7758633B2 (en) * | 2004-04-12 | 2010-07-20 | Boston Scientific Scimed, Inc. | Varied diameter vascular graft |
EP2417934A1 (fr) * | 2010-08-10 | 2012-02-15 | Sangomed S.R.L. | Support extra-veineux à base d'endoprothèse pour la réparation de valves veineuses |
US8246673B2 (en) | 2002-09-19 | 2012-08-21 | Exstent Limited | External support for a blood vessel |
EP2536353A1 (fr) * | 2010-02-17 | 2012-12-26 | Medtronic Vascular Inc. | Appareil permettant de former une valvule veineuse à partir d'un tissu autologue |
US8425397B2 (en) | 2003-10-31 | 2013-04-23 | Sunshine Heart Company Pty Ltd | Percutaneous gas-line |
US8469873B2 (en) | 2003-10-30 | 2013-06-25 | Sunshine Heart Company Pty Ltd | Blood vessel wrap |
CN103239309A (zh) * | 2012-02-13 | 2013-08-14 | 桑戈门德有限责任公司 | 用于静脉瓣修补的支架型外静脉支撑件 |
US8702583B2 (en) | 2003-11-11 | 2014-04-22 | Sunshine Heart Company Pty, Ltd. | Actuator for a heart assist device |
US8715156B2 (en) | 1998-10-09 | 2014-05-06 | Swaminathan Jayaraman | Modification of properties and geometry of heart tissue to influence function |
US8795302B2 (en) | 2003-03-14 | 2014-08-05 | Teresa Kathleen Wild | Surgical clip |
US8834551B2 (en) | 2007-08-31 | 2014-09-16 | Rex Medical, L.P. | Vascular device with valve for approximating vessel wall |
US9042979B2 (en) | 2010-04-02 | 2015-05-26 | Sunshine Heart Company Pty Limited | Combination heart assist systems, methods, and devices |
US9119908B2 (en) | 2003-10-31 | 2015-09-01 | Sunshine Heart Company Pty. Ltd. | Synchronization control system |
US9168122B2 (en) | 2012-04-26 | 2015-10-27 | Rex Medical, L.P. | Vascular device and method for valve leaflet apposition |
US9555176B2 (en) | 2002-11-15 | 2017-01-31 | Sunshine Heart Company Pty, Ltd. | Implantable device utilizing arterial deformation |
US9668861B2 (en) | 2014-03-15 | 2017-06-06 | Rex Medical, L.P. | Vascular device for treating venous valve insufficiency |
IT201700001625A1 (it) * | 2017-01-10 | 2018-07-10 | Tarabini Carlo Castellani | Protesi correttiva per vasi biologici prolassati |
EP3337425A4 (fr) * | 2015-10-13 | 2018-11-07 | Venarum Medical, LLC | Valvule implantable, et procédé |
CN114681161A (zh) * | 2016-08-11 | 2022-07-01 | 4C医学技术有限公司 | 用于在心脏腔室内扩张植入的装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPR669001A0 (en) | 2001-07-30 | 2001-08-23 | Sunshine Heart Company Pty Ltd | A fluid pressure generating means |
EP1637134A4 (fr) * | 2003-06-20 | 2010-01-27 | Mochida Pharm Co Ltd | Composition pour la prevention et le traitement des varices |
JP4740619B2 (ja) * | 2005-02-17 | 2011-08-03 | サンゴ エッセ.ア.エッセ. ディ カッターニ リータ エ チ. | 静脈弁にそれらの交連間壁の牽引力によって能力を回復させるための外部支持体 |
ES2732090T3 (es) | 2006-08-21 | 2019-11-20 | Sunshine Heart Co Pty Ltd | Una envoltura mejorada para un dispositivo de asistencia cardiaca |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4489446A (en) * | 1982-07-14 | 1984-12-25 | Reed Charles C | Heart valve prosthesis |
US4586501A (en) * | 1982-10-21 | 1986-05-06 | Michel Claracq | Device for partly occluding a vessel in particular the inferior vena cava and inherent component of this device |
FR2688692A1 (fr) * | 1992-03-20 | 1993-09-24 | Seguin Jacques | Anneau prothetique pour chirurgie de reconstruction de la valve aortique. |
US5336157A (en) * | 1992-12-04 | 1994-08-09 | Ralph Hale | Penile clamp for impotence |
US5476471A (en) * | 1993-08-19 | 1995-12-19 | Mind - E.M.S.G. Ltd | Device and method for external correction of insufficient valves in venous junctions |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5062846A (en) * | 1989-03-28 | 1991-11-05 | Edward Weck Incorporated | Penetrating plastic ligating clip |
CA2094463A1 (fr) * | 1992-04-28 | 1993-10-29 | Claude Vidal | Pinces pour vaisseaux |
-
1997
- 1997-04-28 AU AU28170/97A patent/AU718164B2/en not_active Ceased
- 1997-04-28 WO PCT/US1997/007151 patent/WO1997040755A1/fr not_active Application Discontinuation
- 1997-04-28 CA CA002252894A patent/CA2252894A1/fr not_active Abandoned
- 1997-04-28 JP JP09539143A patent/JP2000510006A/ja active Pending
- 1997-04-28 EP EP97922522A patent/EP0898463A1/fr not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4489446A (en) * | 1982-07-14 | 1984-12-25 | Reed Charles C | Heart valve prosthesis |
US4586501A (en) * | 1982-10-21 | 1986-05-06 | Michel Claracq | Device for partly occluding a vessel in particular the inferior vena cava and inherent component of this device |
FR2688692A1 (fr) * | 1992-03-20 | 1993-09-24 | Seguin Jacques | Anneau prothetique pour chirurgie de reconstruction de la valve aortique. |
US5336157A (en) * | 1992-12-04 | 1994-08-09 | Ralph Hale | Penile clamp for impotence |
US5476471A (en) * | 1993-08-19 | 1995-12-19 | Mind - E.M.S.G. Ltd | Device and method for external correction of insufficient valves in venous junctions |
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7666222B2 (en) * | 1997-04-18 | 2010-02-23 | Cordis Corporation | Methods and devices for delivering therapeutic agents to target vessels |
WO1999003428A1 (fr) * | 1997-07-18 | 1999-01-28 | Advanced Medical Solutions Limited | Sinus de valvule prothetique |
US8715156B2 (en) | 1998-10-09 | 2014-05-06 | Swaminathan Jayaraman | Modification of properties and geometry of heart tissue to influence function |
US7390293B2 (en) | 1998-10-09 | 2008-06-24 | Swaminathan Jayaraman | Modification of properties and geometry of heart tissue to influence function |
US6685627B2 (en) | 1998-10-09 | 2004-02-03 | Swaminathan Jayaraman | Modification of properties and geometry of heart tissue to influence heart function |
US6607542B1 (en) | 1998-12-11 | 2003-08-19 | Andrew Michael Wild | Surgical apparatus and method for occluding or encircling a body passageway |
US6660032B2 (en) | 1999-02-26 | 2003-12-09 | Vascular Architects, Inc. | Expandable coil endoluminal prosthesis |
US6645237B2 (en) | 1999-02-26 | 2003-11-11 | Vascular Architects, Inc. | Expandable coiled endoluminal prosthesis |
JP2008207018A (ja) * | 1999-06-10 | 2008-09-11 | Sunshine Heart Co Pty Ltd | 心臓補助デバイス |
US6475235B1 (en) * | 1999-11-16 | 2002-11-05 | Iowa-India Investments Company, Limited | Encapsulated stent preform |
US6746478B2 (en) * | 1999-11-16 | 2004-06-08 | Vascular Concepts Holdings Limited | Stent formed from encapsulated stent preforms |
US6569198B1 (en) * | 2000-03-31 | 2003-05-27 | Richard A. Wilson | Mitral or tricuspid valve annuloplasty prosthetic device |
AU2001269875B2 (en) * | 2000-06-26 | 2006-04-06 | Rex Medical, L.P. | Vascular device for valve leaflet apposition |
US6676698B2 (en) | 2000-06-26 | 2004-01-13 | Rex Medicol, L.P. | Vascular device with valve for approximating vessel wall |
US6695878B2 (en) | 2000-06-26 | 2004-02-24 | Rex Medical, L.P. | Vascular device for valve leaflet apposition |
JP2004514467A (ja) * | 2000-06-26 | 2004-05-20 | レックス メディカル リミテッド パートナーシップ | 小葉様弁膜を近接させるための血管装置 |
US7833262B2 (en) | 2000-06-26 | 2010-11-16 | Rex Medical, L.P. | Vascular device with valve for approximating vessel wall |
US7041128B2 (en) | 2000-06-26 | 2006-05-09 | Rex Medical, L.P. | Vascular device for valve leaflet apposition |
US9675474B2 (en) | 2000-06-26 | 2017-06-13 | Rex Medical, L.P. | Vascular device with valve for approximating vessel wall |
US6527800B1 (en) | 2000-06-26 | 2003-03-04 | Rex Medical, L.P. | Vascular device and method for valve leaflet apposition |
WO2002003893A3 (fr) * | 2000-06-26 | 2002-06-27 | Rex Medical Lp | Dispositif vasculaire pour apposition de valvule |
US8668730B2 (en) | 2000-06-26 | 2014-03-11 | Rex Medical L.P. | Vascular device with valve for approximating vessel wall |
US6585760B1 (en) | 2000-06-30 | 2003-07-01 | Vascular Architects, Inc | AV fistula and function enhancing method |
US6974473B2 (en) | 2000-06-30 | 2005-12-13 | Vascular Architects, Inc. | Function-enhanced thrombolytic AV fistula and method |
US6921414B2 (en) * | 2000-06-30 | 2005-07-26 | Vascular Architects, Inc. | Endoluminal prosthesis and tissue separation condition treatment method |
US7000305B2 (en) | 2000-09-28 | 2006-02-21 | Vascular Concepts Holding Limited | Method for manufacturing a wire stent coated with a biocompatible fluoropolymer |
US6652574B1 (en) | 2000-09-28 | 2003-11-25 | Vascular Concepts Holdings Limited | Product and process for manufacturing a wire stent coated with a biocompatible fluoropolymer |
US6932838B2 (en) | 2000-09-29 | 2005-08-23 | Tricardia, Llc | Venous valvuloplasty device and method |
WO2002026168A3 (fr) * | 2000-09-29 | 2002-08-15 | Tricardia Llc | Dispositif et procede de valvuloplastie veineuse |
WO2002039906A3 (fr) * | 2000-11-20 | 2003-05-30 | Avantec Vascular Corp | Methode et dispositif de traitement d'un site tissulaire vulnerable |
WO2002076305A1 (fr) * | 2001-03-23 | 2002-10-03 | Rodney James Lane | Perfectionnements apportes dans la conception de stents de valvules du sinus pour la correction de valvules du sinus incompetentes |
US7335214B2 (en) | 2001-03-23 | 2008-02-26 | Lane Rodney James | External venous valve stents for the correction of incompetent venous valves |
US8252039B2 (en) | 2002-09-19 | 2012-08-28 | Golesworthy Taliesin John | Aortic root dissection treatment |
WO2004026178A3 (fr) * | 2002-09-19 | 2004-06-24 | Exstent Ltd | Ameliorations apportees ou associees a des extenseurs |
US8246673B2 (en) | 2002-09-19 | 2012-08-21 | Exstent Limited | External support for a blood vessel |
US9555176B2 (en) | 2002-11-15 | 2017-01-31 | Sunshine Heart Company Pty, Ltd. | Implantable device utilizing arterial deformation |
WO2004078073A1 (fr) * | 2003-02-28 | 2004-09-16 | Edward G Shifrin | Correcteur extraveineux pour la reparation de valvules veineuses incontinentes |
EP1617788A1 (fr) * | 2003-02-28 | 2006-01-25 | Edward G. Shifrin | Correcteur extraveineux pour la reparation de valvules veineuses incontinentes |
US7776082B2 (en) | 2003-02-28 | 2010-08-17 | Valcor Ltd. | Method and extravenous corrector for simultaneous repair of multiple incompetent valves |
EP1617788A4 (fr) * | 2003-02-28 | 2007-05-02 | Edward G Shifrin | Correcteur extraveineux pour la reparation de valvules veineuses incontinentes |
US8795302B2 (en) | 2003-03-14 | 2014-08-05 | Teresa Kathleen Wild | Surgical clip |
WO2005041781A1 (fr) * | 2003-10-30 | 2005-05-12 | Sunshine Heart Company Pty Ltd | Methodes et dispositifs de mise en tension d'une bande autour d'un vaisseau sanguin |
US8469873B2 (en) | 2003-10-30 | 2013-06-25 | Sunshine Heart Company Pty Ltd | Blood vessel wrap |
US9561375B2 (en) | 2003-10-31 | 2017-02-07 | Sunshine Heart Company Pty, Ltd. | Synchronization control system |
US8425397B2 (en) | 2003-10-31 | 2013-04-23 | Sunshine Heart Company Pty Ltd | Percutaneous gas-line |
US9119908B2 (en) | 2003-10-31 | 2015-09-01 | Sunshine Heart Company Pty. Ltd. | Synchronization control system |
US8702583B2 (en) | 2003-11-11 | 2014-04-22 | Sunshine Heart Company Pty, Ltd. | Actuator for a heart assist device |
WO2005051238A1 (fr) * | 2003-11-27 | 2005-06-09 | Forschungszentrum Karlsruhe Gmbh | Manchon de compression |
US8388616B2 (en) | 2003-11-27 | 2013-03-05 | Endosmart Gesellschaft Für Medizintechnik MbH | Compression sleeve |
EP1561437A1 (fr) * | 2004-02-06 | 2005-08-10 | Sango S.A.S | Support extérieur pour rétablir la capacité des valvules du sinus veineux par traction de leur paroies intercommissurales |
US7758633B2 (en) * | 2004-04-12 | 2010-07-20 | Boston Scientific Scimed, Inc. | Varied diameter vascular graft |
US7063720B2 (en) | 2004-09-14 | 2006-06-20 | The Wallace Enterprises, Inc. | Covered stent with controlled therapeutic agent diffusion |
US9066721B2 (en) | 2004-09-24 | 2015-06-30 | National University Corporation Kobe University | Gut clamp |
WO2006033385A1 (fr) * | 2004-09-24 | 2006-03-30 | National University Corporation Kobe University | Pince a clamper intestinale |
EP1874194A2 (fr) * | 2005-01-09 | 2008-01-09 | Shifrin, Edward G. | Procede et correcteur extraveineux pour reparation simultanee de multiples valvules veineuses incontinentes |
EP1874194A4 (fr) * | 2005-01-09 | 2008-12-03 | Shifrin Edward G | Procede et correcteur extraveineux pour reparation simultanee de multiples valvules veineuses incontinentes |
US7479159B2 (en) * | 2005-02-04 | 2009-01-20 | Sango S.A.S. Di Cattani Rita & C. | External support for restoring competence to venous valves by traction of their intercommissural walls |
RU2393817C2 (ru) * | 2005-02-09 | 2010-07-10 | Санго С.А.С. Ди Каттани Рита И К. | Внешняя опора для восстановления компетентности венозных клапанов путем растяжения их межспайковых стенок |
US20070225799A1 (en) * | 2006-03-24 | 2007-09-27 | Medtronic Vascular, Inc. | Stent, intraluminal stent delivery system, and method of treating a vascular condition |
US8834551B2 (en) | 2007-08-31 | 2014-09-16 | Rex Medical, L.P. | Vascular device with valve for approximating vessel wall |
EP2438888A1 (fr) * | 2007-12-10 | 2012-04-11 | Aesculap AG | Gaine destinée à la reproduction de la fonction de clapets de veines variqueuses |
DE102007061301A1 (de) * | 2007-12-10 | 2009-06-18 | Aesculap Ag | Ummantelung zur Wiederherstellung der Klappenfunktion variköser Venen und Verwendung der Ummantelung in der Chirurgie |
US8313533B2 (en) | 2007-12-10 | 2012-11-20 | Aesculap Ag | Sheathing for restoring the function of valves of varicose veins and use of the sheathing in surgery |
EP2536353A1 (fr) * | 2010-02-17 | 2012-12-26 | Medtronic Vascular Inc. | Appareil permettant de former une valvule veineuse à partir d'un tissu autologue |
EP2536353B1 (fr) * | 2010-02-17 | 2022-10-12 | Medtronic Vascular Inc. | Appareil permettant de former une valvule veineuse à partir d'un tissu autologue |
US9042979B2 (en) | 2010-04-02 | 2015-05-26 | Sunshine Heart Company Pty Limited | Combination heart assist systems, methods, and devices |
EP2417934A1 (fr) * | 2010-08-10 | 2012-02-15 | Sangomed S.R.L. | Support extra-veineux à base d'endoprothèse pour la réparation de valves veineuses |
CN103239309A (zh) * | 2012-02-13 | 2013-08-14 | 桑戈门德有限责任公司 | 用于静脉瓣修补的支架型外静脉支撑件 |
US9737305B2 (en) | 2012-04-26 | 2017-08-22 | Rex Medical, L.P. | Vascular device and method for valve leaflet apposition |
US10159488B2 (en) | 2012-04-26 | 2018-12-25 | Rex Medical, L.P. | Vascular device and method for valve leaflet apposition |
US9168122B2 (en) | 2012-04-26 | 2015-10-27 | Rex Medical, L.P. | Vascular device and method for valve leaflet apposition |
US9668861B2 (en) | 2014-03-15 | 2017-06-06 | Rex Medical, L.P. | Vascular device for treating venous valve insufficiency |
US10064722B2 (en) | 2014-03-15 | 2018-09-04 | Rex Medical, L.P. | Vascular device for treating venous valve insufficiency |
US10765519B2 (en) | 2014-03-15 | 2020-09-08 | Rex Medical, L.P. | Vascular device for treating venous valve insufficiency |
EP3337425A4 (fr) * | 2015-10-13 | 2018-11-07 | Venarum Medical, LLC | Valvule implantable, et procédé |
US11083583B2 (en) | 2015-10-13 | 2021-08-10 | Venarum Medical, Llc | Implantable valve and method |
CN114681161A (zh) * | 2016-08-11 | 2022-07-01 | 4C医学技术有限公司 | 用于在心脏腔室内扩张植入的装置 |
IT201700001625A1 (it) * | 2017-01-10 | 2018-07-10 | Tarabini Carlo Castellani | Protesi correttiva per vasi biologici prolassati |
Also Published As
Publication number | Publication date |
---|---|
EP0898463A1 (fr) | 1999-03-03 |
CA2252894A1 (fr) | 1997-11-06 |
AU2817097A (en) | 1997-11-19 |
JP2000510006A (ja) | 2000-08-08 |
AU718164B2 (en) | 2000-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU718164B2 (en) | Device for restoring competence to venous valves | |
US10500050B2 (en) | Device for regulating blood flow | |
US7776082B2 (en) | Method and extravenous corrector for simultaneous repair of multiple incompetent valves | |
CA2441999C (fr) | Valvules veineuses a endoprothese | |
JP3174883B2 (ja) | 選択的に可撓性の弁輪形成リング | |
US8167933B2 (en) | Annuloplasty apparatus and methods | |
US7335214B2 (en) | External venous valve stents for the correction of incompetent venous valves | |
US8968388B2 (en) | Device for regulating blood flow | |
EP2384165B1 (fr) | Dispositif de régulation du flux sanguin | |
EP2237747B1 (fr) | Dispositif permettant de réguler la circulation sanguine | |
US20040162611A1 (en) | Method of implanting a self-molding annuloplasty ring | |
AU2002248669A1 (en) | Stent-based venous valves | |
WO2015168508A2 (fr) | Dispositifs d'anastomose | |
WO2009088957A1 (fr) | Dispositif permettant de réguler la circulation sanguine | |
WO2006072926A2 (fr) | Procede et correcteur extraveineux pour reparation simultanee de multiples valvules veineuses incontinentes | |
CN108513541B (zh) | 闭塞装置和吻合装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1997922522 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2252894 Country of ref document: CA Ref country code: CA Ref document number: 2252894 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1997922522 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997922522 Country of ref document: EP |