+

WO1996038935A1 - Regulation du gain d'un emetteur dans un systeme de telecommunications sans fil - Google Patents

Regulation du gain d'un emetteur dans un systeme de telecommunications sans fil Download PDF

Info

Publication number
WO1996038935A1
WO1996038935A1 PCT/US1996/008519 US9608519W WO9638935A1 WO 1996038935 A1 WO1996038935 A1 WO 1996038935A1 US 9608519 W US9608519 W US 9608519W WO 9638935 A1 WO9638935 A1 WO 9638935A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
power
transmit signal
gain
card
Prior art date
Application number
PCT/US1996/008519
Other languages
English (en)
Inventor
Raymond Gavin Lea
Martin Lysejko
Original Assignee
Dsc Communications Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB9510870A external-priority patent/GB2301751B/en
Application filed by Dsc Communications Corporation filed Critical Dsc Communications Corporation
Priority to AU59737/96A priority Critical patent/AU5973796A/en
Publication of WO1996038935A1 publication Critical patent/WO1996038935A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/546Message passing systems or structures, e.g. queues
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/7077Multi-step acquisition, e.g. multi-dwell, coarse-fine or validation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7085Synchronisation aspects using a code tracking loop, e.g. a delay-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • H04L41/0816Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/52Transmission power control [TPC] using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/70735Code identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/7077Multi-step acquisition, e.g. multi-dwell, coarse-fine or validation
    • H04B1/70775Multi-dwell schemes, i.e. multiple accumulation times
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B2001/70706Spread spectrum techniques using direct sequence modulation using a code tracking loop, e.g. a delay locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70702Intercell-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70706Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with means for reducing the peak-to-average power ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70707Efficiency-related aspects
    • H04B2201/7071Efficiency-related aspects with dynamic control of receiver resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70707Efficiency-related aspects
    • H04B2201/7071Efficiency-related aspects with dynamic control of receiver resources
    • H04B2201/70711Efficiency-related aspects with dynamic control of receiver resources with modular structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/7097Direct sequence modulation interference
    • H04B2201/709709Methods of preventing interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • H04J13/0048Walsh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/12Generation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1305Software aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13093Personal computer, PC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13098Mobile subscriber
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13109Initializing, personal profile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1319Amplifier, attenuation circuit, echo suppressor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13196Connection circuit/link/trunk/junction, bridge, router, gateway
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13199Modem, modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13202Network termination [NT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13204Protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13216Code signals, frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13292Time division multiplexing, TDM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13296Packet switching, X.25, frame relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13298Local loop systems, access network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13299Bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13335Simulation, emulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13376Information service, downloading of information, 0800/0900 services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/14WLL [Wireless Local Loop]; RLL [Radio Local Loop]

Definitions

  • the present invention relates in general to telecommunications technology and more particularly to an apparatus and a method of controlling transmitter gain in a wireless telecommunications system.
  • radio frequency gain In order to meet transmitted power specifications, radio frequency gain should be accurate in a wireless telecommunications system.
  • inaccuracies typically occur in the radio frequency gain of wireless telecommunications systems. These inaccuracies may occur as a result of effects such as shifts in tolerances, temperature variations, and device limitations, among others. Therefore, it is desirable to eliminate or reduce these effects on the accuracy of the radio frequency gain.
  • An object of the invention is to provide an apparatus and a method of controlling transmitter gain in a wireless telecommunications system that substantially eliminate or reduce disadvantages and problems associated with conventional wireless telecommunications systems.
  • a method of controlling transmitter power in a wireless telecommunications system includes transmitting a composite transmit signal.
  • the composite transmit signal carries information from inputs for a plurality of downlink communication signals.
  • An output radio frequency power of the composite transmit signal is sampled and compared to the inputs for the plurality of downlink communication paths.
  • a gain of the output radio frequency power is adjusted according to results of the comparison.
  • the present invention provides various technical advantages over conventional wireless telecommunications systems. For example, one technical advantage is to control a gain of an output radio frequency power for a composite transmit signal. Another technical advantage is to eliminate or reduce effects affecting the accuracy of the gain of the output radio frequency power. Yet another technical advantage is to maintain a constant gain for the output radio frequency power. Other technical advantages are readily apparent to one skilled in the art from the following figures, description, and claims.
  • Figure 2 is a schematic illustration of an example of a subscriber terminal of the telecommunications system of Figure 1;
  • Figure 3 is a schematic illustration of an example of a central terminal of the telecommunications system of Figure 1;
  • Figure 3A is a schematic illustration of a modem shelf of a central terminal of the telecommunications system of Figure 1;
  • Figure 4 is an illustration of an example of a frequency plan for the telecommunications system of Figure 1;
  • Figures 5A and 5B are schematic diagrams illustrating possible configurations for cells for the telecommunications system of Figure 1;
  • Figure 6 is a schematic diagram illustrating aspects of a code division multiplex system for the telecommunications system of Figure 1;
  • Figure 7 is a schematic diagram illustrating signal transmission processing stages for the telecommunications system of Figure 1;
  • Figure 8 is a schematic diagram illustrating signal reception processing stages for the telecommunications system of Figure 1;
  • Figure 9 is a block diagram of the central terminal in the wireless telecommunications system with an output power gain controlling feature.
  • FIG. 1 is a schematic overview of an example of a wireless telecommunications system.
  • the telecommunications system includes one or more service areas 12, 14 and 16, each of which is served by a respective central terminal (CT) 10 which establishes a radio link with subscriber terminals (ST) 20 within the area concerned.
  • CT central terminal
  • ST subscriber terminals
  • the area which is covered by a central terminal 10 can vary. For example, in a rural area with a low density of subscribers, a service area 12 could cover an area with a radius of 15- 20Km.
  • a service area 14 in an urban environment where is there is a high density of subscriber terminals 20 might only cover an area with a radius of the order of 100m.
  • a service area 16 might cover an area with a radius of the order of IK .
  • the area covered by a particular central terminal 10 can be chosen to suit the local requirements of expected or actual subscriber density, local geographic considerations, etc, and is not limited to the examples illustrated in Figure 1.
  • the coverage need not be, and typically will not be circular in extent due to antenna design considerations, geographical factors, buildings and so on, which will affect the distribution of transmitted signals.
  • the links can include conventional telecommunications technology using copper wires, optical fibers, satellites, microwaves, etc.
  • each subscriber terminal 20 is provided with a permanent fixed access link to its central terminal 10.
  • demand-based access could be provided, so that the number of subscribers which can be serviced exceeds the number of telecommunications links which can currently be active.
  • Figure 2 illustrates an example of a configuration for a subscriber terminal 20 for the telecommunications system of Figure 1.
  • Figure 2 includes a schematic representation of customer premises 22.
  • a customer radio unit (CRU) 24 is mounted on the customer's premises.
  • the customer radio unit 24 includes a flat panel antenna or the like 23.
  • the customer radio unit is mounted at a location on the customer's premises, or on a mast, etc., and in an orientation such that the flat panel antenna 23 within the customer radio unit 24 faces in the direction 26 of the central terminal 10 for the service area in which the customer radio unit 24 is located.
  • the customer radio unit 24 is connected via a drop line 28 to a power supply unit (PSU) 30 within the customer's premises.
  • PSU power supply unit
  • the power supply unit 30 is connected to the local power supply for providing power to the customer radio unit 24 and a network terminal unit (NTU) 32.
  • the customer radio unit 24 is also connected to via the power supply unit 30 to the network terminal unit 32, which in turn is connected to telecommunications equipment in the customer's premises, for example to one or more telephones 34, facsimile machines 36 and computers 38.
  • the telecommunications equipment is represented as being within a single customer's premises. However, this need not be the case, as the subscriber terminal 20 preferably supports either a single or a dual line, so that two subscriber lines could be supported by a single subscriber terminal 20.
  • the subscriber terminal 20 can also be arranged to support analogue and digital telecommunications, for example analogue communications at 16, 32 or 64kbits/sec or digital communications in accordance with the ISDN BRA standard.
  • FIG 3 is a schematic illustration of an example of a central terminal of the telecommunications system of Figure 1.
  • the common equipment rack 40 comprises a number of equipment shelves 42, 44, 46, including a RF Combiner and power amp shelf (RFC) 42, a Power Supply shelf (PS) 44 and a number of (in this example four) Modem Shelves (MS) 46.
  • the RF combiner shelf 42 allows the four modem shelves 46 to operate in parallel. It combines and amplifies the power of four transmit signals, each from a respective one of the four modem shelves, and amplifies and splits received signals four way so that separate signals may be passed to the respective modem shelves.
  • the power supply shelf 44 provides a connection to the local power supply and fusing for the various components in the common equipment rack 40.
  • a bidirectional connection extends between the RF combiner shelf 42 and the main central terminal antenna 52, typically an omnidirectional antenna, mounted on a central terminal mast 50.
  • This example of a central terminal 10 is connected via a point-to-point microwave link to a location where an interface to the public switched telephone network 18, shown schematically in Figure 1, is made.
  • other types of connections e.g., copper wires or optical fibers
  • the modem shelves are connected via lines 47 to a microwave terminal (MT) 48.
  • a microwave link 49 extends from the microwave terminal 48 to a point-to-point microwave antenna 54 mounted on the mast 50 for a host connection to the public switched telephone network 18.
  • a personal computer, workstation or the like can be provided as a site controller (SO 56 for supporting the central terminal 10.
  • the site controller 56 can be connected to each modem shelf of the central terminal 10 via, for example, RS232 connections 55.
  • the site controller 56 can then provide support functions such as the localization of faults, alarms and status and the configuring of the central terminal 10.
  • a site controller 56 will typically support a single central terminal 10, although a plurality of site controllers 56 could be networked for supporting a plurality of central terminals 10.
  • data connections such as an X.25 links 57 (shown with dashed lines in Figure 3) could instead be provided from a pad 228 to a switching node 60 of an element manager (EM) 58.
  • An element manager 58 can support a number of distributed central terminals 10 connected by respective connections to the switching node 60.
  • the element manager 58 enables a potentially large number (e.g., up to, or more than 1000) of central terminals 10 to be integrated into a management network.
  • the element manager 58 is based around a powerful workstation 62 and can include a number of computer terminals 64 for network engineers and control personnel.
  • FIG. 3A illustrates various parts of a modem shelf 46.
  • a transmit/receive RF unit (RFU - for example implemented on a card in the modem shelf) 66 generates the modulated transmit RF signals at medium power levels and recovers and amplifies the baseband RF signals for the subscriber terminals.
  • the RF unit 66 is connected to an analogue card (AN) 68 which performs A-D/D-A conversions. baseband filtering and the vector summation of 15 transmitted signals from the modem cards (MCs) 70.
  • the analogue unit 68 is connected to a number of (typically 1- 8) modem cards 70.
  • the modem cards perform the baseband signal processing of the transmit and receive signals to/from the subscriber terminals 20.
  • Each modem card 70 in the present example has two modems, each modem supporting one subscriber link (or two lines) to a subscriber terminal 20. Thus, with two modems per card and 8 modems per modem shelf, each modem shelf could support 16 possible subscriber links. However, in order to incorporate redundancy so that a modem may be substituted in a subscriber link when a fault occurs, only up to 15 subscriber links are preferably supported by a single modem shelf 46. The 16th modem is then used as a spare which can be switched in if a failure of one of the other 15 modems occurs.
  • the modem cards 70 are connected to the tributary unit (TU) 74 which terminates the connection to the host public switched telephone network 18 (e.g., via one of the lines 47) and handles the signaling of telephony information to, for example, up to 15 subscriber terminals (each via a respective one of 15 of the 16 modems) .
  • TU tributary unit
  • the wireless telecommunications between a central terminal 10 and the subscriber terminals 20 could operate on various frequencies.
  • Figure 4 illustrates one possible example of the frequencies which could be used.
  • the wireless telecommunication system is intended to operate in the 1.5-2.5GHZ Band.
  • the present example is intended to operate in the Band defined by ITU-R (CCIR) Recommendation F.701 (2025-2110MHz, 2200-2290MHz) .
  • Figure 4 illustrates the frequencies used for the uplink from the subscriber terminals 20 to the central terminal 10 and for the downlink from the central terminal 10 to the subscriber terminals 20.
  • 12 uplink and 12 downlink radio channels of 3.5MHz each are provided centered about 2155MHz. The spacing between the receive and transmit channels exceeds the required minimum spacing of 70MHz.
  • each modem shelf will support 1 frequency channel (i.e. one uplink frequency plus the corresponding downlink frequency) . Up to 15 subscriber links may be supported on one frequency channel, as will be explained later.
  • each central terminal 10 can support 60 links, or 120 lines.
  • the radio traffic from a particular central terminal 10 will extend into the area covered by a neighboring central terminal 10. To avoid, or at least to reduce interference problems caused by adjoining areas, only a limited number of the available frequencies will be used by any given central terminal 10.
  • Figure 5A illustrates one cellular type arrangement of the frequencies to mitigate interference problems between adjacent central terminals 10.
  • the hatch lines for the cells 76 illustrate a frequency set (FS) for the cells.
  • FS frequency set
  • FS1 FI, F4, F7, F10
  • FS2 F2, F5, F8, Fll
  • FS3 F3, F6, F9, F12
  • each central terminal 10 The transmitter power of each central terminal 10 is set such that transmissions do not extend as far as the nearest cell which is using the same frequency set.
  • each central terminal 10 can use the four frequency pairs (for the uplink and downlink, respectively) within its cell, each modem shelf in the central terminal 10 being associated with a respective RF channel (channel frequency pair) .
  • each central terminal 10 will support 60 subscriber links (i.e., 120 lines).
  • the 10 cell arrangement in Figure 5A can therefore support up to 600 ISDN links or 1200 analogue lines, for example.
  • Figure 5B illustrates a cellular type arrangement employing sectored cells to mitigate problems between adjacent central terminals 10.
  • the different type of hatch lines in Figure 5B illustrate different frequency sets.
  • the cells are sectored by using a sectored central terminal (SCT) 13 which includes three central terminals 10, one for each sector Si, S2 and S3, with the transmissions for each of the three central terminals 10 being directed to the appropriate sector among SI, S2 and S3.
  • SCT sectored central terminal
  • a seven cell repeat pattern is used such that for a cell operating on a given frequency, all six adjacent cells operating on the same frequency are allowed unique PN codes. This prevents adjacent cells from inadvertently decoding data.
  • each channel frequency can support 15 subscriber links.
  • this is achieved using by multiplexing signals using a Code Division Multiplexed Access (CDMA) technique.
  • CDMA Code Division Multiplexed Access
  • Figure 6 gives a schematic overview of CDMA encoding and decoding.
  • base band signals for example the user signals for each respective subscriber link
  • base band signals are encoded at 80-80N into a 160ksymbols/sec baseband signal where each symbol represents 2 data bits (see, for example the signal represented at 81) .
  • This signal is then spread by a factor of 16 using a respective Walsh pseudo random noise (PN) code spreading function 82-82N to generate signals at an effective chip rate of 2.56Msymbols/sec in 3.5MHz.
  • PN Walsh pseudo random noise
  • the signals for respective subscriber links are then combined and converted to radio frequency (RF) to give multiple user channel signals (e.g., 85) for transmission from the transmitting antenna 86.
  • RF radio frequency
  • a transmitted signal will be subjected to interference sources 88, including external interference 89 and interference from other channels 90. Accordingly, by the time the CDMA signal is received at the receiving antenna 91, the multiple user channel signals may be distorted as is represented at 93.
  • a Walsh correlator 94-94N uses the same pseudo random noise (PN) code that was used for the encoding for each subscriber link to extract a signal (e.g, as represented at 95) for the respective received baseband signal 96-96N.
  • PN pseudo random noise
  • the received signal will include some residual noise. However, unwanted noise can be removed using a low pass filter and signal processing.
  • the key to CDMA is the application of orthogonal codes that allow the multiple user signals to be transmitted and received on the same frequency at the same time. Once the bit stream is orthogonally isolated using the Walsh codes. the signals for respective subscriber links do not interfere with each other.
  • Walsh codes are a mathematical set of sequences that have the function of "orthonormality". In other words, if any Walsh code is multiplied by any other Walsh code, the results are zero.
  • FIG. 7 is a schematic diagram illustrating signal transmission processing stages as configured in a subscriber terminal 20 in the telecommunications system of Figure 1.
  • the central terminal is also configured to perform equivalent signal transmission processing.
  • an analogue signal from one of a pair of telephones is passed via a two-wire interface 102 to a hybrid audio processing circuit 104 and then via a codec 106 to produce a digital signal into which an overhead channel including control information is inserted at 108.
  • the resulting signal is processed by a convolutional encoder 110 before being passed to a spreader 116 to which the Raderaum-Walsh and PN codes are applied by a RW code generator 112 and PN Code generator 114, respectively.
  • the resulting signals are passed via a digital to analogue converter 118.
  • the digital to analogue converter 118 shapes the digital samples into an analogue waveform and provides a stage of baseband power control.
  • the signals are then passed to a low pass filter 120 to be modulated in a modulator 122.
  • the modulated signal from the modulator 122 is mixed with a signal generated by a voltage controlled oscillator 126 which is responsive to a synthesizer 160.
  • the output of the mixer 128 is then amplified in a low noise amplifier 130 before being passed via a band pass filter 132.
  • the output of the band pass filter 132 is further amplified in a further low noise amplifier 134, before being passed to power control circuitry 136.
  • the output of the power control circuitry is further amplified in a further low noise amplifier 138 before being passed via a further band pass filter 140 and transmitted from the transmission antenna 142.
  • FIG 8 is a schematic diagram illustrating the equivalent signal reception processing stages as configured in a subscriber terminal 20 in the telecommunications system of Figure 1.
  • the central terminal is also configured to perform equivalent signal reception processing.
  • signals received at a receiving antenna 150 are passed via a band pass filter 152 before being amplified in a low noise amplifier 154.
  • the output of the amplifier 154 is then passed via a further band pass filter 156 before being further amplified by a further low noise amplifier 158.
  • the output of the amplifier 158 is then passed to a mixer 164 where it is mixed with a signal generated by a voltage controlled oscillator 162 which is responsive to a synthesizer 160.
  • the output of the mixer 164 is then passed via the de-modulator 166 and a low pass filter 168 before being passed to an analogue to digital converter 170.
  • the digital output of the A/D converter 170 is then passed to a correlator 178, to which the same Rademacher-Walsh and PN codes used during transmission are applied by a RW code generator 172 (corresponding to the RW code generator 112) and a PN code generator 174 (corresponding to PN code generator 114), respectively.
  • the output of the correlator is applied to a Viterbi decoder 180.
  • the output of the Viterbi decoder 180 is then passed to an overhead extractor 182 for extracting the overhead channel information.
  • the output of the overhead extractor 182 is then passed via a codec 184 and a hybrid circuit 188 to a two wire interface 190 where the resulting analogue signals are passed to a selected telephone 192.
  • a stage of automatic gain control is incorporated at the IF stage.
  • the control signal is derived from the digital portion of the CDMA receiver using the output of a signal quality estimator.
  • FIG. 9 is a block diagram of central terminal 10 in wireless telecommunications system 1.
  • Central terminal 10 includes a modem shelf 200 and a combining shelf 201.
  • Modem shelf 200 includes a tributary unit 202, a plurality of modem units 204, an analog card 206, a radio frequency card 208, a shelf controller 210, and a shelf alarm card 212.
  • Tributary unit 202 terminates connections to a host telephone network and handles the signaling of telephony information to preferably fifteen subscriber terminals 20.
  • Modem units 204 perform the baseband signal processing of the transmit and receive signals to and from subscriber terminals 20.
  • Analog card 206 performs analog to digital and digital to analog conversions, baseband filtering, and vector summation of the fifteen transmit signals from modem units 204.
  • Radio frequency card 208 receives a composite transmit signal 214 from analog card 206 and generates a modulated transmit RF signal therefrom. Radio frequency card 208 also recovers and amplifies baseband RF signals from subscriber terminals 20 for application to modem units 204 through analog card 206.
  • Shelf controller 210 manages the operation of modem shelf 200.
  • Shelf alarm card 212 indicates the operational status of modem shelf 200.
  • Combining shelf 201 includes a low noise amplifier
  • Low noise amplifier 216 is designed to overcome losses in the antenna feeder, circulator, RF filter, and receive splitter.
  • Power amplifier 218 amplifies the RF modulated composite transmit signal 214 to a desired transmit level.
  • Power supply 220 supplies power to active components in combining shelf 201.
  • Shelf monitor 222 reads operation and maintenance information and passes the information to shelf controller 210.
  • Branching unit 224 provides combiner and RF filtering operations on the transmit side and circulating, RF filtering, and splitting functions in the receive side.
  • Central terminal 10 also includes feeder cables 230, antennas 232, an equipment power interface shelf 234, and an element manager 236.
  • Antennas 232 provide the mechanism to receive and transmit radio frequency signals in conjunction with feeder cables 230.
  • Equipment power interface shelf 234 provides connection to a local DC power supply and the fusing of various supply distribution channels within central terminal 10.
  • An alarm system is also provided to detect faulty components within central terminal 10.
  • Element manager 236 provides external control capability of central terminal 10 functions.
  • Element manager 236 is designed to handle small or large networks of subscriber terminals 20 within wireless telecommunications system.
  • tributary unit 202 receives telephony information from the telephone network.
  • Tributary unit 202 provides telephony information to modem units 204 over a transmit timeslot bus.
  • Telephony information from each modem unit 204 is received at analog card 206.
  • Analog 206 combines the telephony information from each modem unit 204 into a composite transmit signal 214.
  • Composite transmit signal 214 is modulated into a radio frequency signal by radio frequency card 208.
  • Modulated composite transmit signal 214 is amplified by power amplifier 218 for wireless transmission over antennas 232.
  • Power amplifier 218 includes a detector 240.
  • Detector 240 measures an output radio frequency power of composite transmit signal 208 from power amplifier 218. Detector 240 may also be used to measure output voltage from power amplifier 218 which is proportional to the output radio frequency power. The measured output radio frequency power is sent to shelf controller 210 through combiner monitor 222. Shelf controller 210 provides the measured output radio frequency power to analog card 206.
  • Analog card 206 determines a power estimate from the inputs of each modem unit 204 representing the downlink communication paths from central terminal 10 to subscriber terminals 20. Analog card 206 compares the power estimate to the measured output radio frequency power. Alternatively, analog card 206 may determine a voltage estimate from the inputs of each modem unit 204 for comparison to the output voltage measured by detector 240. In response to this comparison, analog card 206 generates an adjustment signal 242. Adjustment signal 242 adjusts a gain of radio frequency card 208 to control the output radio frequency power from power amplifier 218.
  • Element manager 236 may be used to set the gain of radio frequency card 208 to an initial nominal value.
  • central terminal 10 establishes a desired transmit power level of 20 db +/- 0.5 db per each subscriber terminal within wireless telecommunications system 1.
  • a central terminal controls a radio frequency gain by measuring an output radio frequency power of a modulated composite transmit signal.
  • the modulated composite transmit signal carries the inputs from a plurality modem units representing the downlink communication paths from the central terminal to corresponding subscriber terminals.
  • the output radio frequency power is compared to a power estimate of the inputs from the modem units.
  • a radio frequency gain is adjusted in response to the comparison. Adjustment of the radio frequency gain maintains a constant output radio frequency power of the composite transmit signal, providing improved accuracy for the wireless telecommunications system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Terminal central (10) dans un système (1) de télécommunications sans fil comprenant une carte analogique (206) qui combine des signaux d'entrée provenant d'une pluralité d'unités de modem (204) pour une pluralité de voies de communication de liaison descendante. Ladite carte analogique (206) génère un signal d'émission composite (214) qui est fourni à une carte de radiofréquence (208). Ladite carte (208) prépare le signal d'émission composite (214) pour le transmettre par radiofréquence à partir du terminal central (10). Un amplificateur de puissance (218) dans un châssis de combinaison (201) amplifie le signal d'émission composite (214) jusqu'à un niveau d'émission souhaité. Un détecteur (240) mesure une puissance de sortie de l'amplificateur de puissance (218). La mesure de la puissance de sortie déterminée par le détecteur (240) est recueillie par un moniteur (222) de combineur et transmise à un contrôleur (210) de châssis du châssis (200) de modems. Ledit contrôleur (210) de châssis transmet ladite mesure de puissance de sortie à la carte analogique (206). La carte analogique (206) compare la mesure aux estimations de puissance des signaux d'entrée provenant des unités de modem (204) et génère un signal de réglage (242) pour réguler la puissance de sortie provenant de l'amplificateur de puissance (218) en réglant un gain de la carte de radiofréquence en fonction de la comparaison.
PCT/US1996/008519 1995-06-02 1996-06-03 Regulation du gain d'un emetteur dans un systeme de telecommunications sans fil WO1996038935A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU59737/96A AU5973796A (en) 1995-06-02 1996-06-03 Controlling transmitter gain in a wireless telecommunication s system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9510870.0 1995-06-02
GB9510870A GB2301751B (en) 1995-06-02 1995-06-02 Control message transmission in telecommunications systems
GB9513912A GB2301719B (en) 1995-06-02 1995-07-07 Controlling transmitter gain in a wireless telecommunications system
GB9513912.7 1995-07-07

Publications (1)

Publication Number Publication Date
WO1996038935A1 true WO1996038935A1 (fr) 1996-12-05

Family

ID=26307112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/008519 WO1996038935A1 (fr) 1995-06-02 1996-06-03 Regulation du gain d'un emetteur dans un systeme de telecommunications sans fil

Country Status (2)

Country Link
AU (1) AU5973796A (fr)
WO (1) WO1996038935A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1150458A2 (fr) * 2000-04-27 2001-10-31 Nokia Mobile Phones Ltd. Dispositif et procédé associé pour mesurer des caractéristiques d'opération d'un appareil radio
WO2001050778A3 (fr) * 2000-01-03 2001-12-27 Adc Telecomm Israel Ltd Systeme d'acces sans fil
CN104994015A (zh) * 2015-07-13 2015-10-21 苏州大学 基于无线射频与电力线载波相结合的rf-plc网关系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392132A2 (fr) * 1989-04-10 1990-10-17 Mitsubishi Denki Kabushiki Kaisha Dispositif d'émission et de réception radio avec amplificateur du type booster
US5128629A (en) * 1991-04-22 1992-07-07 Hughes Aircraft Company Method for controlling the output power of digital cellular telephones
EP0565505A2 (fr) * 1992-04-10 1993-10-13 Ericsson Inc. Commande de puissance en duplex dans un système radio-téléphonique mobile cellulaire
US5303395A (en) * 1991-11-06 1994-04-12 Mitsubishi Consumer Electronics America, Inc. Power control with a constant gain amplifier for portable radio transceivers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392132A2 (fr) * 1989-04-10 1990-10-17 Mitsubishi Denki Kabushiki Kaisha Dispositif d'émission et de réception radio avec amplificateur du type booster
US5128629A (en) * 1991-04-22 1992-07-07 Hughes Aircraft Company Method for controlling the output power of digital cellular telephones
US5303395A (en) * 1991-11-06 1994-04-12 Mitsubishi Consumer Electronics America, Inc. Power control with a constant gain amplifier for portable radio transceivers
EP0565505A2 (fr) * 1992-04-10 1993-10-13 Ericsson Inc. Commande de puissance en duplex dans un système radio-téléphonique mobile cellulaire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050778A3 (fr) * 2000-01-03 2001-12-27 Adc Telecomm Israel Ltd Systeme d'acces sans fil
EP1150458A2 (fr) * 2000-04-27 2001-10-31 Nokia Mobile Phones Ltd. Dispositif et procédé associé pour mesurer des caractéristiques d'opération d'un appareil radio
EP1150458A3 (fr) * 2000-04-27 2003-05-07 Nokia Corporation Dispositif et procédé associé pour mesurer des caractéristiques d'opération d'un appareil radio
US7006447B1 (en) 2000-04-27 2006-02-28 Nokia Mobile Phones Ltd. Apparatus, and associated method, for measuring radio operating characteristics of a radio device
CN104994015A (zh) * 2015-07-13 2015-10-21 苏州大学 基于无线射频与电力线载波相结合的rf-plc网关系统

Also Published As

Publication number Publication date
AU5973796A (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US6198911B1 (en) Controlling transmitter gain in a wireless telecommunications system
US5696766A (en) Apparatus and method of synchronizing a transmitter in a subscriber terminal of a wireless telecommunications system
US5815798A (en) Apparatus and method of controlling transmitting power in a subscriber terminal of a wireless telecommunications system
CA2222734C (fr) Transmission amrc avec fonction d'ecretage
US5915216A (en) Apparatus and method of transmitting and receiving information in a wireless telecommunications system
EP0830759B1 (fr) Appareil et procede d'informations d'alignement de trames dans un systeme de telecommunication sans fil
US5923668A (en) Apparatus and method of establishing a downlink communication path in a wireless telecommunications system
US5889837A (en) Testing a subscriber terminal of a wireless telecommunications system
US6052365A (en) Multi-channel digital data transmission in a wireless telecommunications system
AU705738B2 (en) Apparatus and method of controlling transmitting power and transmit rate of a wireless telecommunications system
WO1996038935A1 (fr) Regulation du gain d'un emetteur dans un systeme de telecommunications sans fil
GB2301756A (en) Multi-channel digital data transmission in a wireless telecommunications system
GB2301755A (en) Multiline wireless transmission in a wireless telecommunications system
US6324208B1 (en) Apparatus and method of controlling transmitting power in a subscriber of a wireless telecommunications system
GB2322490A (en) Calibrating the gain of receiver units for a central terminal of a communications system using a reference signal
AU724130B2 (en) Apparatus and method of controlling transmitting power of a wireless telecommunications system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载