+

WO1996038912A1 - Variable delay circuit - Google Patents

Variable delay circuit Download PDF

Info

Publication number
WO1996038912A1
WO1996038912A1 PCT/JP1996/001482 JP9601482W WO9638912A1 WO 1996038912 A1 WO1996038912 A1 WO 1996038912A1 JP 9601482 W JP9601482 W JP 9601482W WO 9638912 A1 WO9638912 A1 WO 9638912A1
Authority
WO
WIPO (PCT)
Prior art keywords
effect transistor
circuit
delay circuit
variable delay
mos field
Prior art date
Application number
PCT/JP1996/001482
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroo Suzuki
Toshiyuki Okayasu
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to KR1019970700673A priority Critical patent/KR970705234A/en
Priority to DE19680525T priority patent/DE19680525T1/en
Publication of WO1996038912A1 publication Critical patent/WO1996038912A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • H03K5/134Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices with field-effect transistors

Definitions

  • the present invention relates to a variable delay circuit useful for, for example, generating various timing signals.
  • timing signals are required to generate a test pattern given to an IC under test and various control signals.
  • a conventional timing signal generator for generating various timing signals generally, a large number of delay elements are cascaded, and a desired delay time is provided between each stage of the cascade-connected delay elements or from each output side. delay circuit force s are used and configured to obtain a timing signal having a.
  • a logic element formed as an IC such as an IC having a MOS structure (MOS ⁇ IC) is generally used.
  • CMOS ⁇ IC CMOS integrated circuit
  • CMOS complementary MOS
  • a delay circuit for extracting a signal having a different delay time from each output side is conventionally known. The signal extracted from this delay circuit is used as various timing signals.
  • the delay time given to the input signal is determined by the number of connection stages of the logic elements, so that the delay time cannot be finely adjusted. Therefore, there is a disadvantage that the delay time cannot be set with a fine resolution. Disclosure of the invention
  • a delay circuit configured to extract a signal having a different delay time s from each stage or from each output side of a plurality of cascaded logic elements formed as an IC.
  • a series circuit composed of a field-effect transistor and a capacitor is connected between each stage of a plurality of connected logic elements or between each output side and a common potential point to continuously change a delay time.
  • a variable delay circuit is provided.
  • the plurality of cascaded logic elements are formed as CMO S ICs, and a CM 0 S electric field is applied between each stage of the cascaded logic elements or between each output and a common potential point.
  • a series circuit composed of an effect transistor and a capacitor is connected.
  • variable delay circuit According to the variable delay circuit according to the first aspect, a forward bias is applied to the gate electrode of the field effect transistor connected in series with the capacitance element, and the forward bias voltage is changed, so that the The resistance value between drain and source can be changed. Therefore, it becomes equivalent to a circuit configuration in which a variable resistor is connected in series with a capacitive element. By changing the resistance value of this variable resistor, the delay time of the logical element can be finely adjusted.
  • a p-type (p-channel) MOS field-effect transistor and an n-type (n-channel) MOS field-effect transistor are connected in series by connecting their drain electrodes in common.
  • the gate electrodes of these field effect transistors are connected in common, and the connection point is used as an input terminal, and the connection point of both commonly connected drain electrodes is used as an output terminal to constitute a polarity inversion type logic circuit.
  • a variable delay circuit that controls the delay time by changing the bias voltage applied to each substrate electrode of the p-type MOS field-effect transistor and the n-type MOS field-effect transistor Is provided.
  • variable delay circuit According to the variable delay circuit according to the second aspect, the delay time is continuously changed by changing the voltage applied to each substrate electrode of the p-type MOS field-effect transistor and the n-type MOS field-effect transistor. Can be done. As a result, the delay It is possible to provide a variable delay circuit that can maintain the delay time automatically at a constant value by the addition of automatic control means. Description
  • FIG. 1 is a circuit connection diagram showing a first embodiment of the variable delay circuit according to the present invention.
  • FIG. 2 is a circuit connection diagram electrically equivalent to the variable delay circuit shown in FIG.
  • FIG. 3 is a circuit connection diagram showing a second embodiment of the variable delay circuit according to the present invention.
  • FIG. 4 is a circuit connection diagram that is electrically equivalent to the variable delay circuit shown in FIG.
  • FIG. 5 is a block diagram showing an application example of the variable delay circuit shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a first embodiment of the variable delay circuit according to the present invention.
  • the variable delay circuit is composed of a plurality (two in this example) of logic elements LG, such as a buffer amplifier, connected in cascade between its input terminal 2 and output terminal 3. And a series circuit composed of a field effect transistor Tr and a capacitor C connected between the stages of the logic elements LG and the common potential point (ground point) G.
  • This variable delay circuit is formed as CMOS.IC.
  • the gate electrode of the field-effect transistor Tr is connected to a control terminal 4 provided outside the CMOS IC, and a control voltage is applied to the control terminal 4 so that the resistance value between the drain and the source of the field-effect transistor Tr is reduced. Set any resistance value.
  • the field effect transistor Tr of the variable delay circuit 1 can be regarded as a circuit element equivalent to the variable resistor VR as shown in FIG. Accordingly, the time constant of the capacitor C can be changed by changing the control voltage applied to the gate of the field-effect transistor Tr to change the resistance value between the drain and source of the field-effect transistor Tr. Therefore, the delay time between the input terminal 2 and the output terminal 3 can be continuously and finely changed. Therefore, the variable delay circuit 1 having the configuration shown in FIG. 1 is cascaded, and a delay signal is extracted from an arbitrary stage of the cascade-connected variable delay circuits. However, a slightly different delay signal can be obtained. That is, the delay time can be accurately set to the target value.
  • FIG. 3 shows a second embodiment of the variable delay circuit according to the present invention.
  • a p-type MOS field-effect transistor PMOS and an n-type MOS field-effect transistor NMOS are connected in series by connecting their drain electrodes D in common, and a gate electrode is formed. Gs are commonly connected, the connection point of the commonly connected gate electrode is connected to the input terminal 2, and the output terminal 3 is derived from the connection point of the commonly connected drain electrode D.
  • This series connection circuit of the p-type MOS field-effect transistor PMOS and the n-type MOS field-effect transistor NMOS is equivalent to a polarity inversion amplifier, also called an inverter.
  • variable delay circuit 1 is configured by connecting a capacitor C between a connection point of the commonly connected drain electrode D and a common potential point (ground point).
  • This variable delay circuit 1 is also formed as a CMOS IC.
  • the substrate electrodes 5 and 6 of the p-type M 0 S field-effect transistor PM 0 S and the n-type M 0 S field-effect transistor NMOS are separated from the source electrode, and the substrate bias voltage is applied to the substrate electrodes 5 and 6. + V BP and one V BN .
  • the substrate bias voltage + V BP and one VBN apply the voltage applied to the source of the P-type M 0 S field-effect transistor PM ⁇ S to + VDD, and the voltage applied to the source electrode of the n-type M 0 S field-effect transistor XM 0 S Voltage is 1 Vss,
  • VBP VDD + ⁇
  • VBN VSS (1).
  • FIG. 4 shows an electrical equivalent circuit of the variable delay circuit 1 of FIG.
  • the p-type MOS field-effect transistor PMOS and the n-type MOS field-effect transistor NMOS are it force regarded as a series circuit of respectively switch SW as shown in Figure 4 and the resistor R? can.
  • the substrate noise voltage + V BP and one V BN are changed, the threshold voltages of the field effect transistors PMOS and NMOS are changed, and the resistance value of the resistor R can be equivalently changed.
  • the resistance value is in equation (1).
  • Control can be performed in the direction in which the resistance value increases.
  • FIG. 5 shows an application example of the variable delay circuit shown in FIG.
  • a control circuit that automatically controls the variable delay circuit 1 shown in Fig. 3 to prevent the delay time s ' from changing due to temperature fluctuations and to maintain a constant delay time is added. It is.
  • the logic element denoted by reference numeral 10 is an in-phase amplification type (polarity non-inverting type) variable delay circuit configured by cascading two stages of the polarity inversion type variable delay circuit 1 shown in FIG. is there.
  • N in-phase amplification type variable delay circuits 10 are cascaded to form an N-stage variable delay circuit 11.
  • the N-stage variable delay circuit 11 is formed as CMOS ⁇ IC.
  • a pulse train CLK is applied to the input terminal 12 of the N-stage variable delay circuit 11 (the input terminal of the first-stage in-phase amplification type variable delay circuit 10).
  • the other input terminal of the phase comparator 13 is connected to the input terminal 12 of the N-stage variable delay circuit 11, and the pulse train CLK supplied to this input terminal 12 is directly supplied to the phase comparator 13 to perform phase comparison.
  • the phase of the pulse delayed by the N-stage variable delay circuit 11 is compared with the phase of the pulse that is not delayed in the device 13.
  • phase comparison result output of the phase comparator 13 is smoothed by the filter 14, and the smoothed phase comparison result output is supplied to the substrate bias generator 15. to generate a bias voltage + V BP and single V B N, the board Baiasu voltage + V B p and - giving each VBN to the substrate electrode 5 and 6 were derived from the phase-amplified variable delay circuit 1 0, the phase It is configured to control the delay time of the amplification type variable delay circuit 10. In this configuration, if the delay amount of the N-stage variable delay circuit 11 fluctuates in a direction to be shortened due to, for example, temperature change, the fluctuation of the delay amount appears in the phase comparison result output of the phase comparator 13.
  • the phase comparison result output is controlled so that the absolute values of the substrate bias voltage + V BP and 1 V BN generated from the substrate bias generator 15 increase.
  • the delay time of each phase amplified variable delay circuit 1 0 is controlled in a direction in which a long, original delay time Is returned to.
  • the phase comparison result output of the phase comparator 13 is opposite to the previous case (in the case of shifting in the direction of decreasing the delay time). Polarity, so that the substrate bias generator 15
  • the change in the substrate bias voltage controls the delay time of the N-stage variable delay circuit 11 to be shortened.
  • each output side of the N common-mode amplification type variable delay circuits 10 constituting the N-stage variable delay circuit 11 is connected to, for example, one input of a corresponding AND gate of the AND gate group G.
  • the N-stage variable delay circuit 11 connected to the terminal, and through an AND gate group G, the N-stage variable delay circuit 11 constitutes an N-stage in-phase amplification type variable delay circuit 10 so that a delayed signal is extracted between any one of the stages or from the output side.
  • each AND gate of the AND gate group G is connected to the control circuit, and only the AND gate to which a control signal is applied from this control circuit is in an operable state. It has been.
  • the output of the AND gate group G is configured to be output to the outside via the OR circuit.
  • the variable delay circuit is configured as one CMOS IC.
  • the present invention can be applied to a case where the variable delay circuit is configured by an integrated circuit other than the CMOS IC. Needless to say, an effect can be obtained.
  • the delay time of the delay circuit is changed by changing the time constant by using the resistance change of the field effect transistor. It can be changed continuously, and minute delay times can be set with good resolution.
  • automatic control can be performed so that the delay time of the delay circuit is always constant.
  • a stable and fine delay time can be set. Therefore, there is obtained an advantage that a desired delay time can be obtained with high accuracy, and the delay time can be maintained at a constant value for a long period of time.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Pulse Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

A variable delay circuit using logic circuits constituted in a CMOS IC. The delay circuit comprises a plurality of cascaded logic devices LG in a CMOS IC to produce a time delay depending on the number of logic devices. A series circuit comprising an MOS transistor and a capacitor C is connected between a junction of adjacent logic devices or each output and a common potential point. A bias voltage applied to the gate of the MOS transistor is controlled to vary the resistance value between the drain and the source. In this way, the time constant of the series circuit is changed and the delay time is continuously changed.

Description

明 細 書 可変遅延回路 技術分野  Description Variable delay circuit Technical field
この発明は、 例えば各種のタイミング信号を生成する場合等に使用して有用な 可変遅延回路に関する。  The present invention relates to a variable delay circuit useful for, for example, generating various timing signals.
'景技術— 'Jing Technology—
例えば各種の半導体集積回路 (I C ) を試験する I C試験装置においては、 被 試験 I Cに与えるテストパターンや、 種々の制御信号等を発生させるために各種 のタイミング信号を必要とする。 各種のタイミング信号を発生させるための従来 のタイミング信号発生装置には、 一般に、 遅延素子を多数個縦続接続し、 この縦 続接続された遅延素子の各段間或いは各出力側から所望の遅延時間を持つタイミ ング信号を得るように構成した遅延回路力 s使用されている。 各遅延素子には、 一 般に、 MO S構造の I C (MO S · I C ) のような I Cとして形成された論理素 子が用いられている。 例えば、 縦続接続された多数個の論理ゲート素子を CMO S (相補形 MO S ) 構造の半導体集積回路 (CMO S · I C ) として形成し、 こ の縦続接続した各論理ゲート素子の各段間或いは各出力側から遅延時間が異なる 信号を取り出すようにした遅延回路は従来より知られている。 この遅延回路から 取り出された信号は各種のタイミング信号として利用される。 For example, in an IC tester for testing various semiconductor integrated circuits (ICs), various timing signals are required to generate a test pattern given to an IC under test and various control signals. In a conventional timing signal generator for generating various timing signals, generally, a large number of delay elements are cascaded, and a desired delay time is provided between each stage of the cascade-connected delay elements or from each output side. delay circuit force s are used and configured to obtain a timing signal having a. For each delay element, a logic element formed as an IC such as an IC having a MOS structure (MOS · IC) is generally used. For example, a large number of cascaded logic gate elements are formed as a CMOS integrated circuit (CMOS · IC) having a CMOS (complementary MOS) structure, and the logic gate elements between the cascade-connected logic gate elements or between each stage are formed. A delay circuit for extracting a signal having a different delay time from each output side is conventionally known. The signal extracted from this delay circuit is used as various timing signals.
しかしながら、 従来の多数個の論理素子を利用した遅延回路では入力信号に与 える遅延時間は論理素子の接続段数によって決まるため、 遅延時間を微細に調整 することができない。 従って、 遅延時間を微細な分解能で設定することができな いという不都合がある。 発明の開示  However, in a conventional delay circuit using a large number of logic elements, the delay time given to the input signal is determined by the number of connection stages of the logic elements, so that the delay time cannot be finely adjusted. Therefore, there is a disadvantage that the delay time cannot be set with a fine resolution. Disclosure of the invention
この発明の 1つの目的は、 微細な分解能で遅延時間を設定することができる可 変遅延回路を提供することである。 この発明の他の目的は、 遅延時間を一定値に自動的に維持することができる可 変遅延回路を提供することである。 One object of the present invention is to provide a variable delay circuit capable of setting a delay time with fine resolution. Another object of the present invention is to provide a variable delay circuit capable of automatically maintaining a delay time at a constant value.
この発明の第 1の面によれば、 I Cとして形成された複数個の縦続接続された 論理素子の各段間或いは各出力側から遅延時間力 s異なる信号を取り出すようにし た遅延回路において、 縦続接続された複数個の論理素子の各段間或いは各出力側 と共通電位点との間に、 電界効果トランジスタと容量素子とによって構成された 直列回路を接続し、 遅延時間を連続的に変化させることができるようにした可変 遅延回路が提供される。 According to a first aspect of the present invention, there is provided a delay circuit configured to extract a signal having a different delay time s from each stage or from each output side of a plurality of cascaded logic elements formed as an IC. A series circuit composed of a field-effect transistor and a capacitor is connected between each stage of a plurality of connected logic elements or between each output side and a common potential point to continuously change a delay time. A variable delay circuit is provided.
好ましい実施例においては複数個の縦続接続された論理素子は CMO S . I C として形成され、 縦続接続された論理素子の各段間或いは各出力側と共通電位点 との間に C M 0 S形電界効果トランジスタとコンデンサとによって構成された直 列回路が接続される。  In a preferred embodiment, the plurality of cascaded logic elements are formed as CMO S ICs, and a CM 0 S electric field is applied between each stage of the cascaded logic elements or between each output and a common potential point. A series circuit composed of an effect transistor and a capacitor is connected.
上記第 1の面による可変遅延回路によれば、 容量素子と直列接続された電界効 果トランジスタのゲート電極に順方向バイアスを与え、 この順方向バイアス電圧 を変化させることにより、 この電界効果トランジスタのドレイン一ソース間の抵 抗値を変化させることができる。 従って、 容量素子と直列に可変抵抗器を接続し た回路構成と等価になり、 この可変抵抗器の抵抗値を変化させることにより、 論 理素子による遅延時間を微細に調整することができる。  According to the variable delay circuit according to the first aspect, a forward bias is applied to the gate electrode of the field effect transistor connected in series with the capacitance element, and the forward bias voltage is changed, so that the The resistance value between drain and source can be changed. Therefore, it becomes equivalent to a circuit configuration in which a variable resistor is connected in series with a capacitive element. By changing the resistance value of this variable resistor, the delay time of the logical element can be finely adjusted.
この発明の第 2の面によれば、 p形 (pチャネル) MO S電界効果トランジス タと、 n形 (nチャネル) M O S電界効果トランジスタとをそれらのドレイン電 極同士を共通接続して直列接続すると共に、 これら電界効果トランジスタのゲ一 ト電極を共通接続してその接続点を入力端子とし、 共通接続された両ドレイン電 極の接続点を出力端子として極性反転型の論理回路を構成し、 この論理回路を遅 延素子として用いる遅延回路において、 p形 MO S電界効果トランジスタと、 n 形 M 0 S電界効果トランジスタの各基板電極に与えるバイアス電圧を変化させて 遅延時間を制御する可変遅延回路が提供される。  According to the second aspect of the present invention, a p-type (p-channel) MOS field-effect transistor and an n-type (n-channel) MOS field-effect transistor are connected in series by connecting their drain electrodes in common. At the same time, the gate electrodes of these field effect transistors are connected in common, and the connection point is used as an input terminal, and the connection point of both commonly connected drain electrodes is used as an output terminal to constitute a polarity inversion type logic circuit. In a delay circuit that uses this logic circuit as a delay element, a variable delay circuit that controls the delay time by changing the bias voltage applied to each substrate electrode of the p-type MOS field-effect transistor and the n-type MOS field-effect transistor Is provided.
上記第 2の面による可変遅延回路によれば、 p形 M 0 S電界効果トランジスタ 及び n形 M 0 S電界効果トランジスタの各基板電極に与える電圧を変化させるこ とにより遅延時間を連続的に変化させることができる。 その結果、 遅延時間を微 細に変ィヒさせて設定することができると共に、 自動制御手段の付加により、 遅延 時間を自動的に一定値に維持することができる可変遅延回路を提供することがで O o 図面の簡単な説明 According to the variable delay circuit according to the second aspect, the delay time is continuously changed by changing the voltage applied to each substrate electrode of the p-type MOS field-effect transistor and the n-type MOS field-effect transistor. Can be done. As a result, the delay It is possible to provide a variable delay circuit that can maintain the delay time automatically at a constant value by the addition of automatic control means. Description
図 1はこの発明による可変遅延回路の第 1の実施例を示す回路接続図である。 図 2は図 1に示した可変遅延回路と電気的に等価な回路接続図である。  FIG. 1 is a circuit connection diagram showing a first embodiment of the variable delay circuit according to the present invention. FIG. 2 is a circuit connection diagram electrically equivalent to the variable delay circuit shown in FIG.
図 3はこの発明による可変遅延回路の第 2の実施例を示す回路接続図である。 図 4は図 3に示した可変遅延回路と電気的に等価な回路接続図である。  FIG. 3 is a circuit connection diagram showing a second embodiment of the variable delay circuit according to the present invention. FIG. 4 is a circuit connection diagram that is electrically equivalent to the variable delay circuit shown in FIG.
図 5は図 3に示した可変遅延回路の応用例を示すプロック図である。 発明を実施するための最良の形態  FIG. 5 is a block diagram showing an application example of the variable delay circuit shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
図 1にこの発明による可変遅延回路の第 1の実施例を示す。 全体を参照符号 1 で示す可変遅延回路は、 その入力端子 2と出力端子 3との間に縦続接続された複 数個 (この例では 2個) の、 例えばバッファ増幅器のような論理素子 L Gと、 こ れら論理素子 L Gの段間と共通電位点 (接地点) Gとの間に接続された電界効果 トランジスタ T r とコンデンサ Cとからなる直列回路とを含む。 この可変遅延回 路は C M O S . I Cとして形成されている。 電界効果トランジスタ T r のゲート 電極は C M O S . I Cの外部に設けたコントロール端子 4に接続されており、 こ のコントロール端子 4に制御電圧を与えて電界効果トランジスタ Tr のドレイン -ソース間の抵抗値を任意の抵抗値に設定する。  FIG. 1 shows a first embodiment of the variable delay circuit according to the present invention. The variable delay circuit, generally designated by reference numeral 1, is composed of a plurality (two in this example) of logic elements LG, such as a buffer amplifier, connected in cascade between its input terminal 2 and output terminal 3. And a series circuit composed of a field effect transistor Tr and a capacitor C connected between the stages of the logic elements LG and the common potential point (ground point) G. This variable delay circuit is formed as CMOS.IC. The gate electrode of the field-effect transistor Tr is connected to a control terminal 4 provided outside the CMOS IC, and a control voltage is applied to the control terminal 4 so that the resistance value between the drain and the source of the field-effect transistor Tr is reduced. Set any resistance value.
このように構成すると、 可変遅延回路 1の電界効果トランジスタ T r は、 図 2 に示すように、 可変抵抗器 V Rと等価の回路素子とみなせる。 従って、 電界効果 トランジスタ T r のゲートに印加する制御電圧を変化させて電界効果トランジス タ T r のドレイン一ソース間の抵抗値を変化させることにより、 コンデンサ Cと の時定数を変化させることができるから、 入力端子 2と出力端子 3との間の遅延 時間を連続的に、 かつ微細に変化させることができる。 よって、 図 1に示すよう な構成の可変遅延回路 1を複数縦続接続し、 この縦続接続された複数の可変遅延 回路の任意の段間から遅延信号を取り出す回路構成とすることにより、 遅延時間 が微細に異なる遅延信号を得ることができる。 つまり、 遅延時間を精度よく目標 値に設定することができる。 With this configuration, the field effect transistor Tr of the variable delay circuit 1 can be regarded as a circuit element equivalent to the variable resistor VR as shown in FIG. Accordingly, the time constant of the capacitor C can be changed by changing the control voltage applied to the gate of the field-effect transistor Tr to change the resistance value between the drain and source of the field-effect transistor Tr. Therefore, the delay time between the input terminal 2 and the output terminal 3 can be continuously and finely changed. Therefore, the variable delay circuit 1 having the configuration shown in FIG. 1 is cascaded, and a delay signal is extracted from an arbitrary stage of the cascade-connected variable delay circuits. However, a slightly different delay signal can be obtained. That is, the delay time can be accurately set to the target value.
図 3はこの発明による可変遅延回路の第 2の実施例を示す。 この実施例では、 p形 MO S電界効果トランジスタ PMO Sと、 n形 MO S電界効果トランジスタ NMO Sとを、 それらのドレイン電極 D同士を共通に接続することによつて直列 接続すると共に、 ゲート電極 G同士を共通接続し、 この共通接続したゲート電極 の接続点を入力端子 2に接続し、 共通接続されたドレイン電極 Dの接続点から出 力端子 3を導出する。 この p形 MO S電界効果トランジスタ PMO Sと n形 MO S電界効果トランジスタ NMO Sの直列接続回路はィンバータとも呼ばれる極性 反転増幅器と等価である。 さらに、 共通接続されたドレイン電極 Dの接続点と共 通電位点 (接地点) との間にコンデンサ Cを接続し、 可変遅延回路 1を構成した ものである。 この可変遅延回路 1も CMOS · I Cとして形成されている。 この実施例では p形 M 0 S電界効果トランジスタ P M 0 Sと、 n形 M 0 S電界 効果トランジスタ NMOSの各基板電極 5と 6をソース電極から切離し、 この基 板電極 5と 6に基板バイアス電圧 + VBPと一 VBNとを与える。 ここで基板バイァ ス電圧 + VBPと一 VBNは P形 M 0 S電界効果トランジスタ P M〇 Sのソースに与 える電圧を + VDD、 n形 M 0 S電界効果トランジスタ X M 0 Sのソース電極に与 える電圧を一 Vssとした場合、 FIG. 3 shows a second embodiment of the variable delay circuit according to the present invention. In this embodiment, a p-type MOS field-effect transistor PMOS and an n-type MOS field-effect transistor NMOS are connected in series by connecting their drain electrodes D in common, and a gate electrode is formed. Gs are commonly connected, the connection point of the commonly connected gate electrode is connected to the input terminal 2, and the output terminal 3 is derived from the connection point of the commonly connected drain electrode D. This series connection circuit of the p-type MOS field-effect transistor PMOS and the n-type MOS field-effect transistor NMOS is equivalent to a polarity inversion amplifier, also called an inverter. Further, a variable delay circuit 1 is configured by connecting a capacitor C between a connection point of the commonly connected drain electrode D and a common potential point (ground point). This variable delay circuit 1 is also formed as a CMOS IC. In this embodiment, the substrate electrodes 5 and 6 of the p-type M 0 S field-effect transistor PM 0 S and the n-type M 0 S field-effect transistor NMOS are separated from the source electrode, and the substrate bias voltage is applied to the substrate electrodes 5 and 6. + V BP and one V BN . Here, the substrate bias voltage + V BP and one VBN apply the voltage applied to the source of the P-type M 0 S field-effect transistor PM〇S to + VDD, and the voltage applied to the source electrode of the n-type M 0 S field-effect transistor XM 0 S Voltage is 1 Vss,
VBP=VDD+ β  VBP = VDD + β
VBN=VSS一ひ (1) となる。 VBN = VSS (1).
図 4に図 3の可変遅延回路 1の電気的な等価回路を示す。 共通接続されたゲ— ト電極 Gに供給される入力電圧を一 Vssから + VDDまで大きく励振させるものと すると、 p形 MO S電界効果トランジスタ PMO S及び n形 MO S電界効果トラ ンジスタ NMO Sはそれぞれ図 4に示すようにスィッチ SWと抵抗器 Rとの直列 回路とみなすこと力 ?できる。 基板ノ ィァス電圧 + V BP及び一 V BNを変化させると 、 各電界効果トランジスタ PMOS及び NMOSのしきい値電圧が変化し、 等価 的に抵抗器 Rの抵抗値を変えることができる。 抵抗値は式 (1) において。及び が《 = 0、 =0のとき、 最小値となり、 《及び /3の絶対値を大きくすると、 抵抗値が大きくなる方向に制御することができる。 FIG. 4 shows an electrical equivalent circuit of the variable delay circuit 1 of FIG. Assuming that the input voltage supplied to the commonly connected gate electrode G is greatly excited from 1 Vss to + VDD, the p-type MOS field-effect transistor PMOS and the n-type MOS field-effect transistor NMOS are it force regarded as a series circuit of respectively switch SW as shown in Figure 4 and the resistor R? can. When the substrate noise voltage + V BP and one V BN are changed, the threshold voltages of the field effect transistors PMOS and NMOS are changed, and the resistance value of the resistor R can be equivalently changed. The resistance value is in equation (1). When and are 《= 0, = 0, the minimum value is obtained. When the absolute value of 《and / 3 is increased, Control can be performed in the direction in which the resistance value increases.
この結果、 。 = 0、 /? = 0のとき、 電界効果トランジスタがオン、 オフ動作す るのに伴つて抵抗器 Rと、 出力端子 3に接続されたコンデンサ Cとによる時定数 は最短時間となり、 Ωと/?の絶対値を漸次大きくすると時定数を大きくする方向 に制御することができる。 従って、 時定数の変化から遅延時間を連続的に変化さ せることができる。  As a result, . = 0, /? = 0, the time constant of the resistor R and the capacitor C connected to the output terminal 3 becomes the shortest time as the field-effect transistor turns on and off. Increasing the absolute value of? Gradually increases the time constant. Therefore, the delay time can be continuously changed from the change of the time constant.
図 5は図 3に示した可変遅延回路の応用例を示す。 この例では図 3に示した可 変遅延回路 1の遅延時間力 s '温度変動等により変化するのを防止し、 常に一定の遅 延時間を維持するように自動制御する制御回路を付加したものである。 FIG. 5 shows an application example of the variable delay circuit shown in FIG. In this example, a control circuit that automatically controls the variable delay circuit 1 shown in Fig. 3 to prevent the delay time s ' from changing due to temperature fluctuations and to maintain a constant delay time is added. It is.
図 5において、 参照符号 1 0で示す論理素子は図 3に示した極性反転型可変遅 延回路 1を 2段縦続接続して構成した同相増幅型 (極性非反転型) の可変遅延回 路である。 この同相増幅型可変遅延回路 1 0を N個縦続接続して、 N段可変遅延 回路 1 1を構成する。 この N段可変遅延回路 1 1は C M O S · I Cとして形成さ れている。  In FIG. 5, the logic element denoted by reference numeral 10 is an in-phase amplification type (polarity non-inverting type) variable delay circuit configured by cascading two stages of the polarity inversion type variable delay circuit 1 shown in FIG. is there. N in-phase amplification type variable delay circuits 10 are cascaded to form an N-stage variable delay circuit 11. The N-stage variable delay circuit 11 is formed as CMOS · IC.
N段可変遅延回路 1 1の出力端子 (最終段の同相増幅型可変遅延回路 1 0の出 力端子) を位相比較器 1 3の一方の入力端子に接続する。 また、 N段可変遅延回 路 1 1の入力端子 1 2 (初段の同相増幅型可変遅延回路 1 0の入力端子) にはパ ルス列 C L Kを与える。 ここで入力端子 1 2に与えるパルス列 C L Kの 1パルス の持続時間と N段可変遅延回路 1 1の遅延時間は互いに近い値 (大きく違わない 関係) にあるものとする。 位相比較器 1 3の他方の入力端子は N段可変遅延回路 1 1の入力端子 1 2に接続され、 この入力端子 1 2に供給されるパルス列 C L K を直接位相比較器 1 3に与え、 位相比較器 1 3において N段可変遅延回路 1 1で 遅延されたパルスと遅延されないパルスとの位相を比較する。  Connect the output terminal of the N-stage variable delay circuit 11 (the output terminal of the final-stage in-phase amplification type variable delay circuit 10) to one input terminal of the phase comparator 13. A pulse train CLK is applied to the input terminal 12 of the N-stage variable delay circuit 11 (the input terminal of the first-stage in-phase amplification type variable delay circuit 10). Here, it is assumed that the duration of one pulse of the pulse train CLK given to the input terminal 12 and the delay time of the N-stage variable delay circuit 11 are close to each other (the relationship is not greatly different). The other input terminal of the phase comparator 13 is connected to the input terminal 12 of the N-stage variable delay circuit 11, and the pulse train CLK supplied to this input terminal 12 is directly supplied to the phase comparator 13 to perform phase comparison. The phase of the pulse delayed by the N-stage variable delay circuit 11 is compared with the phase of the pulse that is not delayed in the device 13.
位相比較器 1 3の位相比較結果出力をフィルタ 1 4で平滑化し、 その平滑化し た位相比較結果出力を基板バイアス発生器 1 5に与え、 この基板バイアス発生器 1 5から図 3で説明した基板バイアス電圧 + VBP及び一 V BNを発生させ、 この基 板バイァス電圧 + VBp及び— VBNを各同相増幅型可変遅延回路 1 0から導出した 基板電極 5及び 6にそれぞれ与え、 各同相増幅型可変遅延回路 1 0の遅延時間を 制御するように構成されている。 この構成において、 N段可変遅延回路 1 1の遅延量が例えば温度変ィ匕によって 短くなる方向に変動したとすると、 その遅延量の変動は位相比較器 1 3の位相比 較結果出力に現れ、 その位相比較結果出力によって基板バイアス発生器 1 5から 発生する基板バイアス電圧 + VBP及び一 VBNの絶対値が大きくなる方向に制御さ れる。 基板バイアス電圧 + VBpと一VBNの絶対値が大きくなる方向に制御される ことにより、 各同相増幅型可変遅延回路 1 0の遅延時間は長くなる方向に制御さ れ、 元の遅延時間に戻される。 The phase comparison result output of the phase comparator 13 is smoothed by the filter 14, and the smoothed phase comparison result output is supplied to the substrate bias generator 15. to generate a bias voltage + V BP and single V B N, the board Baiasu voltage + V B p and - giving each VBN to the substrate electrode 5 and 6 were derived from the phase-amplified variable delay circuit 1 0, the phase It is configured to control the delay time of the amplification type variable delay circuit 10. In this configuration, if the delay amount of the N-stage variable delay circuit 11 fluctuates in a direction to be shortened due to, for example, temperature change, the fluctuation of the delay amount appears in the phase comparison result output of the phase comparator 13. The phase comparison result output is controlled so that the absolute values of the substrate bias voltage + V BP and 1 V BN generated from the substrate bias generator 15 increase. By absolute value of the substrate bias voltage + V B p and one V BN is controlled in the direction of increasing, the delay time of each phase amplified variable delay circuit 1 0 is controlled in a direction in which a long, original delay time Is returned to.
N段可変遅延回路 1 1の遅延時間が長くなる方向にずれた場合には、 位相比較 器 1 3の位相比較結果出力は先の場合 (遅延時間が短くなる方向にずれた場合) とは逆極性となるから、 これにより基板バイアス発生器 1 5は基板バイアス電圧 When the delay time of the N-stage variable delay circuit 11 is shifted in the direction of increasing the delay time, the phase comparison result output of the phase comparator 13 is opposite to the previous case (in the case of shifting in the direction of decreasing the delay time). Polarity, so that the substrate bias generator 15
+ VBP及び一 VBNの絶対値を下げる方向に制御される。 よって、 この基板バイァ ス電圧の変化により N段可変遅延回路 1 1の遅延時間は短くなる方向に制御され る。 + V BP and is controlled in a direction to decrease the absolute value of the first VBN. Therefore, the change in the substrate bias voltage controls the delay time of the N-stage variable delay circuit 11 to be shortened.
このように、 図 5に示す実施例では、 位相比較器 1 3の位相比較結果が常に一 定値、 例えば 0となるように自動制御されるから、 N段可変遅延回路 1 1の遅延 時間は常に一定値に維持されることになる。 従って、 図示するように、 N段可変 遅延回路 1 1を構成する N個の同相増幅型可変遅延回路 1 0の各出力側を、 例え ばアンドゲ一ト群 Gの対応するアンドゲートの一方の入力端子に接続し、 アンド ゲ一ト群 Gを通じて N段可変遅延回路 1 1を構成する N個の同相増幅型可変遅延 回路 1 0の何れか 1つの段間或いは出力側から遅延信号を取り出すように構成す ることにより、 任意の遅延量を持つ遅延パルスを得ることができ、 その選択した 遅延時間を一定値に維持することができる。 なお、 図 5ではアンドゲート群 Gの 各アンドゲートの他方の入力端子は制御回路に接続されており、 この制御回路か ら制御信号が印加されたアンドゲートのみが動作可能状態となるように構成され ている。 また、 アンドゲート群 Gの出力は論理和回路を介して外部へ出力される ように構成されている。  As described above, in the embodiment shown in FIG. 5, since the phase comparison result of the phase comparator 13 is automatically controlled to be always a fixed value, for example, 0, the delay time of the N-stage variable delay circuit 11 is always It will be maintained at a constant value. Therefore, as shown in the figure, each output side of the N common-mode amplification type variable delay circuits 10 constituting the N-stage variable delay circuit 11 is connected to, for example, one input of a corresponding AND gate of the AND gate group G. Connected to the terminal, and through an AND gate group G, the N-stage variable delay circuit 11 constitutes an N-stage in-phase amplification type variable delay circuit 10 so that a delayed signal is extracted between any one of the stages or from the output side. With this configuration, a delay pulse having an arbitrary delay amount can be obtained, and the selected delay time can be maintained at a constant value. In FIG. 5, the other input terminal of each AND gate of the AND gate group G is connected to the control circuit, and only the AND gate to which a control signal is applied from this control circuit is in an operable state. It has been. The output of the AND gate group G is configured to be output to the outside via the OR circuit.
上記各実施例では可変遅延回路を 1つの CMO S · I Cとして構成したが、 C MO S . I C以外の他の集積回路により可変遅延回路を構成した場合にもこの発 明が適用でき、 同様の作用効果が得られることは言うまでもない。 以上説明したように、 この発明によれば、 電界効果トランジスタの抵抗変ィ匕を 利用して時定数を変化させることにより遅延回路の遅延時間を変ィ匕させるように 構成したから、 遅延時間を連続的に変化させることができ、 微小な遅延時間を分 解能よく設定することができる。 In each of the above embodiments, the variable delay circuit is configured as one CMOS IC. However, the present invention can be applied to a case where the variable delay circuit is configured by an integrated circuit other than the CMOS IC. Needless to say, an effect can be obtained. As described above, according to the present invention, the delay time of the delay circuit is changed by changing the time constant by using the resistance change of the field effect transistor. It can be changed continuously, and minute delay times can be set with good resolution.
また、 図 5に示した実施例のように、 自動制御ループを付加することにより、 遅延回路の遅延時間が常に一定となるように自動制御することができる。 また、 安定した微細な遅延時間を設定することができる。 よって、 目的とする遅延時間 を精度よく得ることができ、 また、 その遅延時間を長期にわたって一定値に維持 することができるという利点が得られる。  Further, by adding an automatic control loop as in the embodiment shown in FIG. 5, automatic control can be performed so that the delay time of the delay circuit is always constant. In addition, a stable and fine delay time can be set. Therefore, there is obtained an advantage that a desired delay time can be obtained with high accuracy, and the delay time can be maintained at a constant value for a long period of time.

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体集積回路として形成された複数個の論理素子を縦続接続し、 これら論 理素子の縦続接続段数に応じた遅延時間を得るように構成された遅延回路におい て、 1. In a delay circuit configured to cascade a plurality of logic elements formed as a semiconductor integrated circuit and obtain a delay time according to the number of cascade connection stages of these logic elements,
上記縦続接続された論理素子の少なくとも各段間と共通電位点との間にトラン ジスタと容量素子とによって構成される直列回路を接続したことを特徴とする可 変遅延回路。  A variable delay circuit, wherein a series circuit including a transistor and a capacitor is connected between at least each stage of the cascaded logic elements and a common potential point.
2 . 上記半導体集積回路は CMO S . I Cであることを特徴とする請求項 1に記 載の可変遅延回路。 2. The variable delay circuit according to claim 1, wherein the semiconductor integrated circuit is CMO S IC.
3 . 上記トランジスタは MO S電界効果トランジスタであることを特徴とする請 求項 1に記載の可変遅延回路。 3. The variable delay circuit according to claim 1, wherein the transistor is a MOS field-effect transistor.
4 . pチャネル MO S電界効果トランジスタと、 nチャネル MO S電界効果トラ ンジスタとを、 それらのドレイン電極を共通に接続して直列接続すると共に、 そ れらのゲ一ト電極を共通に接続してその接続点を入力端子とし、 上記 pチャネル M 0 S電界効果トランジスタと上記 nチャネル M 0 S電界効果トランジスタのド レイン電極の接続点を出力端子として極性反転型の論理回路を構成し、 この論理 回路を遅延素子として用いる遅延回路において、 4.A p-channel MOS field-effect transistor and an n-channel MOS field-effect transistor are connected in series by connecting their drain electrodes in common, and their gate electrodes are connected in common. The connection point is used as an input terminal, and the connection point between the drain electrode of the p-channel M0S field-effect transistor and the drain electrode of the n-channel M0S field-effect transistor is used as an output terminal to form a polarity-reversed logic circuit. In a delay circuit using a logic circuit as a delay element,
上記 pチャネル MO S電界効果トランジスタと上記 nチャネル MO S電界効果 トランジスタの各基板電極に与える基板バイアス電圧を制御して遅延時間を制御 するようにしたことを特徴とする可変遅延回路。  A variable delay circuit, wherein a delay time is controlled by controlling a substrate bias voltage applied to each substrate electrode of the p-channel MOS field-effect transistor and the n-channel MOS field-effect transistor.
5 . 上記 pチャネル MO S電界効果トランジスタと nチャネル MO S電界効果ト ランジス夕とにより構成された極性反転型の論理回路を複数個縦続接続して遅延 回路を構成し、 各極性反転型の論理回路の pチャネル M 0 S電界効果トランジス タと nチャネル MO S電界効果トランジスタの各基板電極に与える基板ノ ィァス 電圧を制御して遅延時間を制御するようにしたことを特徴とする請求項 4に記載 の可変遅延回路。 5. A delay circuit is formed by cascade-connecting a plurality of polarity-inverted logic circuits each composed of the above-mentioned p-channel MOS field-effect transistor and n-channel MOS field-effect transistor. Substrate noise applied to each substrate electrode of circuit p-channel MOS field-effect transistor and n-channel MOS field-effect transistor 5. The variable delay circuit according to claim 4, wherein the delay time is controlled by controlling a voltage.
6 . 上記 pチャネル M◦ S電界効果トランジスタと nチャネル M 0 S電界効果ト ランジスタとにより構成された極性反転型の論理回路を 2段縦続接続して同相增 幅型の論理回路を構成し、 この同相増幅型論理回路を複数個縦続接続して、 複数 段の遅延回路を構成し、 各同相増幅型論理回路の pチャネル MO S電界効果トラ ンジスタと nチヤネル M 0 S電界効果トランジスタの各基板電極に与える基板バ ィァス電圧を制御して遅延時間を制御するようにしたことを特徴とする請求項 4 に記載の可変遅延回路。 6. A two-stage cascaded polarity-inverted logic circuit composed of the p-channel M◦S field-effect transistor and the n-channel M0S field-effect transistor constitutes a common-mode width logic circuit, A plurality of delay circuits are configured by cascade-connecting a plurality of these in-phase amplification logic circuits, and each substrate of a p-channel MOS field-effect transistor and an n-channel M 0 S field-effect transistor of each in-phase amplification type logic circuit. 5. The variable delay circuit according to claim 4, wherein a delay time is controlled by controlling a substrate bias voltage applied to the electrode.
7 . 上記論理回路の pチャネル MO S電界効果トランジスタと nチャネル MO S 電界効果トランジスタの各基板電極に与える基板バイァス電圧を自動的に制御す る制御回路をさらに含むことを特徴とする請求項 4乃至 6のいずれかに記載の可 変遅延回路。 7. The control circuit for automatically controlling a substrate bias voltage applied to each substrate electrode of the p-channel MOS field-effect transistor and the n-channel MOS field-effect transistor of the logic circuit. 7. The variable delay circuit according to any one of claims 1 to 6.
PCT/JP1996/001482 1995-06-02 1996-05-31 Variable delay circuit WO1996038912A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019970700673A KR970705234A (en) 1995-06-02 1996-05-31 Variable delay circuit
DE19680525T DE19680525T1 (en) 1995-06-02 1996-05-31 Changeable delay circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/136408 1995-06-02
JP7136408A JPH08330921A (en) 1995-06-02 1995-06-02 Variable delay circuit

Publications (1)

Publication Number Publication Date
WO1996038912A1 true WO1996038912A1 (en) 1996-12-05

Family

ID=15174470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001482 WO1996038912A1 (en) 1995-06-02 1996-05-31 Variable delay circuit

Country Status (5)

Country Link
JP (1) JPH08330921A (en)
KR (1) KR970705234A (en)
DE (1) DE19680525T1 (en)
TW (1) TW307955B (en)
WO (1) WO1996038912A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489587B1 (en) * 1997-12-29 2005-08-23 주식회사 하이닉스반도체 Time delay circuit
JP3838655B2 (en) 2003-02-25 2006-10-25 松下電器産業株式会社 Semiconductor integrated circuit
US20050083095A1 (en) * 2003-10-16 2005-04-21 Tsvika Kurts Adaptive input/output buffer and methods thereof
JP4729251B2 (en) * 2003-11-28 2011-07-20 株式会社アドバンテスト High frequency delay circuit and test apparatus
US7382117B2 (en) * 2005-06-17 2008-06-03 Advantest Corporation Delay circuit and test apparatus using delay element and buffer
JP4928097B2 (en) 2005-07-29 2012-05-09 株式会社アドバンテスト Timing generator and semiconductor test apparatus
KR100955682B1 (en) * 2008-04-28 2010-05-03 주식회사 하이닉스반도체 Sensing Delay Circuit and Semiconductor Memory Device Using the Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272619A (en) * 1986-05-21 1987-11-26 Hitachi Ltd delay circuit
JPS63246916A (en) * 1987-04-02 1988-10-13 Mitsubishi Electric Corp Inverter circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352945A (en) * 1993-03-18 1994-10-04 Micron Semiconductor, Inc. Voltage compensating delay element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272619A (en) * 1986-05-21 1987-11-26 Hitachi Ltd delay circuit
JPS63246916A (en) * 1987-04-02 1988-10-13 Mitsubishi Electric Corp Inverter circuit

Also Published As

Publication number Publication date
TW307955B (en) 1997-06-11
DE19680525T1 (en) 1997-07-24
KR970705234A (en) 1997-09-06
JPH08330921A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
US4622480A (en) Switched capacitor circuit with high power supply projection ratio
US7126431B2 (en) Differential delay cell having controllable amplitude output
EP1417752B1 (en) High-bandwidth low-voltage gain cell and voltage follower having an enhanced transconductance
US4394587A (en) CMOS Differential comparator with hysteresis
JP2015049155A (en) Signal generation circuit and temperature sensor
JP3109560B2 (en) Semiconductor integrated circuit using variation compensation technology
US9785177B1 (en) Symmetrical positive and negative reference voltage generation
US6054884A (en) Process-insensitive controllable CMOS delay line
US6388519B1 (en) Multi-input differential amplifier circuit
WO1996038912A1 (en) Variable delay circuit
JP2968826B2 (en) Current mirror type amplifier circuit and driving method thereof
EP1376860A1 (en) Asymmetrical differential amplifier
US6985038B2 (en) Operational amplifier generating desired feedback reference voltage allowing improved output characteristic
US5598118A (en) Driver circuits for switching transistors
KR0163728B1 (en) Constant voltage generating circuit comprising bi-mos
KR100206929B1 (en) Variable delay circuit for semiconductor memory apparatus
US6025747A (en) Logic signal selection circuit
JPH09246885A (en) Input circuit, operational amplifier circuit, and semiconductor integrated circuit device
JP4456737B2 (en) Input circuit
KR100453424B1 (en) Semiconductor integrated circuit
WO2002056474A2 (en) Clock interpolation through capacitive weighting
JP2870464B2 (en) Variable delay circuit
US10784828B2 (en) Methods and apparatus for an operational amplifier with a variable gain-bandwidth product
JPH0645892A (en) Signal delay circuit
JPH09219629A (en) Operational amplifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE KR US

WWE Wipo information: entry into national phase

Ref document number: 1019970700673

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1997 776351

Country of ref document: US

Date of ref document: 19970418

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 19680525

Country of ref document: DE

Date of ref document: 19970724

WWE Wipo information: entry into national phase

Ref document number: 19680525

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1019970700673

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019970700673

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载