+

WO1996032634A1 - Moisture sensor for wooden material and automatic moisture content measuring device - Google Patents

Moisture sensor for wooden material and automatic moisture content measuring device Download PDF

Info

Publication number
WO1996032634A1
WO1996032634A1 PCT/JP1996/000936 JP9600936W WO9632634A1 WO 1996032634 A1 WO1996032634 A1 WO 1996032634A1 JP 9600936 W JP9600936 W JP 9600936W WO 9632634 A1 WO9632634 A1 WO 9632634A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture content
measured
moisture
electrode
measuring device
Prior art date
Application number
PCT/JP1996/000936
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Minoura
Hironori Watanabe
Masayuki Moriyama
Michio Noda
Original Assignee
Sumitomo Forestry Co., Ltd.
Kett Electric Laboratory
Iida Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Forestry Co., Ltd., Kett Electric Laboratory, Iida Kogyo Co., Ltd. filed Critical Sumitomo Forestry Co., Ltd.
Priority to JP1996530866A priority Critical patent/JP3686981B6/en
Publication of WO1996032634A1 publication Critical patent/WO1996032634A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity

Definitions

  • the present invention relates to an apparatus for continuously measuring the moisture content of wood products produced at a wood processing plant or the like for solid wood, glued lumber, etc., and appropriately selecting the wood products.
  • Conventional wood moisture sensors are classified into high-frequency resistance type, high-frequency capacity type, DC resistance type, etc. when classified by measurement method. Since the high-frequency resistance method and high-frequency capacitance method are non-broken, measurement can be performed without damaging the surface of the material, and since the depth of the electric field is deeper than that of the DC resistance method, moisture at a certain depth in the material is detected. It is possible to In many cases, the AC power supply is used as the power supply, and there are also types that are suitable for online measurement (continuous-type automatic moisture measurement device, Forestry Experiment Station Vol. 7, No. 5, 1993, etc.).
  • the method of arranging the anode and the cathode on the same plane, such as wood (hereinafter referred to as "material") the method of making the cathode and the cathode face each other is the mainstream.
  • material such as wood
  • the high-frequency method is influenced by the shape of the surface of the material, and it is necessary that the tip of the electrode and the surface of the material adhere to each other. If there is a gap, the apparent moisture value will be reduced due to the air gap. Tends to be too small. In addition, it is easily affected by the specific gravity, and the variation in the specific gravity of the measurement material tends to appear as the variation in the indicated value.
  • the DC resistance method is relatively unaffected by the specific gravity and is not easily affected by the surface shape of the material, but most of it is of the destructive type using needle electrodes, etc. Limited to some extent, so continuous measurement is not suitable. Due to the shallow force and depth of the electric field, the measurement material is limited to relatively thin ones.
  • the present invention illuminates the above circumstances, and the present invention adheres to a deformed material without damaging the material, and has an electrode structure that increases the measurement depth.
  • An object of the present invention is to provide an automatic moisture content measuring device and a sorting device having high measurement accuracy.
  • the mainstream method is to arrange the anode and cathode on the same plane for both high-frequency and DC systems, and to oppose the anode and cathode.
  • the depth of the electric field is generally shallow, only water in the surface layer can be detected relatively.
  • the depth of the electric field is sufficient. If the distance between the electrodes and the size of the measurement material are not constant, the output signal will be unstable, and the dimensions and shape will be unstable or deformed.
  • the measurement accuracy for the material, ie, the desiccant is reduced.
  • the adhesion method it is necessary to prevent the surface of the material from being damaged in order to perform continuous measurement, and it is necessary to position the material in the center of the material for accurate measurement. Furthermore, durability is required.
  • the high-frequency resistance method and the high-frequency capacitance method are non-destructive, measurement can be performed without damaging the material surface.
  • the material in the drying process is deformed due to various stresses caused by fluctuations in moisture in the material, and changes in shape such as torsion occur, so conventional sensors follow the deformation and are located at the center of the material. It will be very difficult to do.
  • the materials in the drying process have different moisture distributions in the length direction, and the state of the moisture distribution is different for each side surface. For this reason, the measurement accuracy decreases with a single sensor fixed type, and it becomes difficult to estimate the moisture state of the entire material.
  • the column material (105 cm (Angle to 12 O cm square) has a large distribution of moisture, and the resulting distribution of stress causes shape changes such as width, warp, and torsion. I know different things.
  • the moisture sensor and the automatic moisture content measuring device of the present invention solve the above-mentioned drawbacks of the conventional moisture sensor, and accurately measure the moisture content (or moisture value) of a pillar material having a different dry state on each surface of the material. To be able to do so, a high-frequency capacitance method is used as the measurement method.
  • electrode 1 side in contact with the material
  • electrode 2 ground side
  • the shape of electrode 1 is a roller type with R processing as shown in the figure. did.
  • an air cylinder and a rack and pinion were used for horizontal movement in order to move the material to be measured stably.
  • the sensors of this type were arranged on three opposite sides, that is, on the opposite side of the back-slit face of the material to be measured and on both sides perpendicular to the face.
  • a synchronization signal was obtained using an encoder built into one end of the above-described clamping device as shown in Fig. 5A and 5B, 15, 16, and 17.
  • the signal from each moisture sensor was synchronized by the measurement control unit 41 in the controller in FIG.
  • a comparison means for comparing the obtained moisture content with a predetermined value is provided, and the output of the comparison means is used to sort the material to be measured or to mark the material to be measured. I did it.
  • the sensor of the present invention uses a high-frequency measurement method for nondestructive, wide-range moisture measurement and continuous measurement.
  • high-frequency methods There are two types of high-frequency methods: resistance type and capacitance type.
  • the high-frequency resistance type has a moisture measurement range that can be measured accurately regardless of the operating frequency range up to the maintenance saturation point. Therefore, a capacitance type that uses a frequency range that allows a wide range of moisture measurement was adopted.
  • the following measures were taken to improve the electric field depth and measurement accuracy.
  • the depth of the electric field becomes deeper, It has become possible to detect.
  • the electric field emitted from the anode 1 has the highest electric field density between the negative electrode 2 on the opposite side, and the electric field on the opposite side has a slightly smaller electric field, but there is also an electric field flying at infinity. That is, as the thickness of the object to be measured is larger, the electric field passing through the object to be measured increases proportionately, and the effect becomes larger.
  • the moisture measurement electrode was subjected to R processing so that it traveled in contact with the amount of cup (pillar in cross section in Fig. 3) such as a pillar.
  • the contact method for following wood is not limited to this method, and a plate-panel brush-like electrode, a roller using conductive rubber, or the like may be used.
  • the material to be measured moving in the length direction uses an air cylinder and a rack and pinion, so that there is no wobble between the measurement sensor and the indicator roller, enabling stable moisture measurement.
  • a close contact method using a hydraulic pressure or a motor may be used as a means for enabling the above measurement.
  • the measurement accuracy is considerably reduced in practical use.
  • the sensors are arranged on two sides, the measurement accuracy is significantly improved.
  • the measurement accuracy can be further improved.
  • moisture measurement can be continuously and accurately performed for the entire material, and conventional moisture quality control and sorting operations can be performed at high speed and accurately.
  • automation is possible, resulting in significant labor savings.
  • FIG. 1 is a diagram showing an electrode configuration of a moisture sensor according to the present invention.
  • FIG. 2 is a circuit diagram of the moisture sensor of the present invention.
  • FIG. 3 is a diagram showing an example of the arrangement of a moisture sensor according to the present invention.
  • FIG. 4 is an A view of FIG.
  • FIG. 5A is a plan view of the automatic moisture content measuring device of the present invention.
  • FIG. 5B is a side view of the automatic moisture content analyzer of the present invention.
  • FIG. 6 is a system block diagram of the automatic moisture content measuring device of the present invention.
  • FIG. 7 is a view for explaining a method for determining the moisture content of a raw material using the automatic moisture content measuring device of the present invention.
  • FIGS. 8A to 8F show examples of the arrangement of a moisture sensor.
  • FIG. 8G is a plan view of the moisture sensor in the case of FIG. 8F.
  • FIG. 9A shows the measurement accuracy of the automatic moisture content measuring device of the present invention when three moisture sensors are used.
  • FIG. 9B shows the measurement accuracy of the automatic moisture content measuring device of the present invention when one moisture sensor is used.
  • FIG. 10 is a view showing actual measurement results by the automatic moisture content measuring device of the present invention.
  • FIG. 11A is a diagram showing an example when the moisture content of a column material is measured by one moisture sensor.
  • FIG. 11B is a diagram showing an example in which the moisture content of a pillar is measured by two moisture sensors.
  • FIG. 11C is a diagram showing an example in which the moisture content of a pillar is measured by three moisture sensors.
  • FIGS. 12A and 12B are diagrams showing an example of arrangement when two moisture sensors are provided.
  • FIG. 13 is a diagram showing a relationship between an electrode of a conventional moisture sensor and a material to be measured.
  • FIG. 14 is a diagram showing the relationship between the electrode of the conventional moisture sensor and the material to be measured.
  • Fig. 1 shows the configuration of the electrodes of the moisture content measuring device (referred to as moisture sensor) for woody material of the present invention.
  • 1 is the electrode (first electrode) that contacts the material. It has a cylindrical shape that rotates around a rotation axis. The diameter of the first electrode is formed so that the diameter gradually increases toward the center from the end. In other words, it has an outer shape that is R-shaped into a shape ( ⁇ ⁇ ⁇ shape) like the outer shape of a beat, so that it can cope with the warpage of the material.
  • Reference numeral 2 denotes another electrode (second electrode), which is provided so as to be opposed to the electrode 1 by a support column 3 at a fixed distance. The second electrode may be flat or curved.
  • Reference numeral 4 denotes an electric wire, which connects the output terminal of one third of the oscillating section 5 to the electrode I.c
  • the oscillating section 5 is incorporated in the electrode 2, and the other end of the output of the oscillating section 5 is Connect to electrode 2 C / 96/936
  • the second electrode is grounded.
  • the electric field emitted from the electrode 1 has the highest electric field density between the electrode 2 on the opposite side and the opposite surface, that is, the side in contact with the material, although the electric field density is low, it flies indefinitely An electric field also exists.
  • the electric field distribution is greatly widened, and as the thickness of the object under test becomes thicker, the electric field passing through the object under test increases, and by arranging the electrodes 1 and 2 three-dimensionally as shown in FIG. The depth can be made deeper, and it is now possible to detect moisture in the deep part of the material.
  • FIG. 2 is a circuit diagram of the moisture sensor of the present invention.
  • the moisture measurement method of the present invention is a high-frequency capacitance type in order to realize non-destructive, continuous measurement, a wide measurement range, and to enable measurement of undried material.
  • Oscillator 5 oscillates at an oscillation frequency of 0.1 MHz to 20 MHz.
  • the oscillation frequency has a desirable range depending on the species of the material to be measured.
  • the oscillation frequency is preferably 0.3 MHz to 2 MHz. More desirably, the frequency is 1.0 MHz ⁇ 0.2 MHz for cedar wood and 0.5 MHz ⁇ 0.2 Hz for hinoki wood.
  • the electrodes 1 and 2 are connected to the oscillation unit 5.
  • the oscillation frequency changes depending on the capacitance between the two electrodes.
  • the oscillating unit 5 has an oscillating circuit unit composed of a ladder C or C and R, and the electrode 2 is connected in parallel with the capacitor C.
  • the oscillation frequency shifts when a dielectric material such as wood is brought close to or in contact with the electrode 1. Therefore, the amount of frequency shift is detected by the comparison circuit 6, and the output is sent to the measurement control unit as a detection signal.
  • the detection signal is processed by the measurement control unit (Fig. 6) consisting of CPU54, ROM55, RAM56, etc., to determine the water content (moisture value) of the wood.
  • the obtained moisture value is used for the control signal of the material sorting device and marking device, and is displayed as necessary.
  • FIG. 3 shows the arrangement of the electrodes of the moisture sensor of the present invention.
  • Fig. 4 is a view from A in Fig. 3.
  • c8 is a pillar, and the electrodes 1 of the three moisture sensors 20, 21 and 22 are pressed against three surfaces except the back split surface of the material 8.
  • the electrode 1 is formed in a rectangular shape, even if the pillar 8 has a warp, it follows the shape of the warp. , Generated from electrode 1 and pillar The distribution of the electric field passing through the material 8 can be kept uniform, and the measurement accuracy can be improved.
  • each moisture sensor is arranged at a predetermined distance so that electric fields generated by the respective electrodes do not affect each other.
  • the electrode 1 rotates and the column 8 is moved in a certain direction, the electrode 1 rotates, so that each surface of the column 8 can be continuously measured.
  • FIG. 5A is a plan view of one embodiment of an automatic moisture content measuring device for continuously measuring the moisture content of a column using the moisture sensor of the present invention.
  • FIG. 5B is a side view of FIG. 5A. The configuration and operation of the automatic moisture content measuring device of FIG.
  • the elevator 9 moves down the drive motor 10 controlled by the inverter.
  • the column 8 is sandwiched vertically and transported to the left at a constant speed.
  • 101, 102, and 103 are one sensor unit that combines a sensor and an encoder.
  • 11-1 to 14 are photoelectric switches
  • 15 to 17 are encoders 1 (rotary encoders)
  • 20 to 22 are moisture sensors.
  • Fig. 4 shows the positional relationship between the moisture sensor-20-22 and the material to be measured.
  • the photoelectric switch 11 When the material 8 is sent and the optical axis of the photoelectric switch 11 is interrupted, the photoelectric switch 11 is turned ON, pressure is applied to the air cylinder 18 and the measuring unit equipped with the first moisture sensor 20 is mounted. Insert the material 8 in the horizontal direction with the indicating roller 31.
  • the encoder 15 incorporated in the support roller 31 rotates in synchronization with the rotation of the support roller, and the position of the detection signal from the moisture sensor 20 is synchronized. Sent as a signal. (Refer to Fig. 6.) Further, the column member 8 is sent to the left, and when the optical axis of the photoelectric switch 12 is interrupted, the photoelectric switch 12 is turned ON.
  • the photoelectric switch 12 When the photoelectric switch 12 is turned on, pressure is applied to the air cylinder 19, and the measuring section equipped with the second moisture sensor 21 is lowered, and the column member 8 is pressed downward. At this time, the support roller 32 provided below the moisture sensor 21 comes into contact with the lower surface of the metal member 8, and the encoder 16 incorporated in the support roller 32 rotates, and Sent as a position synchronization signal of the detection signal. Further, the column member 8 is sent to the left, and when the optical axis of the photoelectric switch 13 is blocked, the photoelectric switch 13 is turned on. When the photoelectric switch 13 is turned on, the air cylinder 23 is operated to move the measuring section equipped with the third moisture sensor 22 and to horizontally move the column member 8 together with the support roller 33 disposed opposite. In the direction. The support roller 33 comes into contact with the side surface of the column 8, and the encoder 17 incorporated in the support roller 33 rotates and is sent as a position synchronization signal of the detection signal from the moisture sensor 22.
  • the signal from the moisture sensor 20 is output at an appropriate position in synchronization with the photoelectric switches 11 to 14.
  • the signal of the moisture sensor 20 is output.
  • the photoelectric switches 12 and 13 are in the ON state
  • the signal of the moisture sensor 21 is outputted.
  • the photoelectric switches 13 and 14 are ON, the signal of the moisture sensor 22 is output.
  • the signals of the moisture sensors 120, 21 and 22 are output after a predetermined time has elapsed since each of the photoelectric switches 11 to 13 is turned on. Is also good.
  • the photoelectric switch 13 becomes OFF.
  • the air cylinder 23 is returned, and the measuring unit equipped with the third moisture sensor 22 pressing the column is released.
  • the photoelectric switch 14 is turned on, and the elevator 24 lowers the drive motor 25 controlled by the inverter, and digs up and down the material. , Discharge.
  • Each of the moisture sensors and support rollers described above have a mechanism that sandwiches the material to be measured between the air cylinder and the rack and pinion.
  • the la is in contact with the center of each side surface of the material to be measured.
  • the magnitude of the pinching pressure depends on the air pressure supplied to the air cylinder by the pressure adjustment regulator.
  • the electrode of the moisture sensor of the present invention has a structure capable of deepening the electric field depth. For this reason, if the moisture sensors on each measurement surface are arranged at the same position, interference occurs between each moisture sensor and a large error occurs in the measured value. Therefore, these moisture sensors are arranged at a distance of about 5 Ocm where mutual interference does not occur, and the position of the detection signal from each moisture sensor is synchronized by the encoder. With such a configuration, a detection signal with a deep electric field depth independent of each surface can be obtained without being affected by drought, and the moisture content of the entire material to be measured can be measured with high accuracy.
  • FIG. 6 shows a system block diagram of the automatic moisture content measuring device of the present invention.
  • the signals from the photoelectric switches 11, 12, 13, and 14 are input to the transport control unit 42 and output to the drive unit 43.
  • the drive section 43 is composed of a conveyor mechanism section including a transport device 7 for transporting the material to be measured, and an electrode mechanism section for pressing an electrode against the material to be measured.
  • the transport speed is variable so as to be compatible with workability, and the conveyor mechanism and the electrode mechanism are driven by control signals from the transport controller 42.
  • Encoders 15, 16, and 17 generate a number of pulses proportional to the amount of movement of the material to be measured, and these signals are used as position synchronization signals to control the measurement of the moisture sensor.
  • the signals from the moisture sensors 20, 21, 22 are stored in the memories 51, 52, 53 of the measurement controller 41, respectively.
  • the moisture sensor 20, 21, 22 receives the output signal of the photoelectric switch 11, 1, 2, 13, 14 and the signal that combines the encoders 15, 16, 17 with human input and measures It is controlled so that the moisture sensor 1 is activated when the material comes to a position suitable for starting, or the output of the moisture sensor is sent to the measurement control unit 41.
  • the detection signal when the measurement of one pillar is completed, the detection signal is converted into a moisture value by a detection signal-to-moisture ratio conversion table registered in the ROM 55 in advance.
  • Equation 1 the moisture content Y of wood is represented by Equation 1 where the detected value is X.
  • Y ax a + bx '+ cx + d (1)
  • Coefficients a, b. C, d differ depending on the type of wood, and each coefficient is determined in advance by the least squares method. Therefore, part or all of the relationship between the coefficients a, b, c, and d, which differ depending on the type of wood, and the detection value x expressed by Equation 1 is registered in the ROM 55 as a detection signal-to-moisture conversion table. In advance, select the coefficients a, b, c, and d according to the type of wood to be measured, and determine the moisture value Y. This control is all performed by the CPU 54.
  • the position-synchronized detection signal sent from each moisture sensor is stored in the RAM 56 as needed.
  • the memory of the measurement controller 41 and the CPU 54 are connected by a bus 57.
  • the moisture content of the material to be measured calculated by the measurement control unit 41 is determined based on a predetermined threshold value, converted into a classification signal indicating the degree of the moisture content, and input to the transport control unit 42.
  • the transport control unit 42 receives the sorting signal and outputs a control signal to a sorting device 44 that sorts the material to be measured and a marking device 45 that marks the surface of the material to be measured according to the grade. I do.
  • the moisture sensor is placed at an appropriate interval so as to press different places on the plate material, that is, at a level that does not cause electric field interference that affects the measured value. By arranging them at intervals, the moisture content can be accurately measured even for a plate material.
  • the interval is 10 cm or more on the same plane. It is preferably at least 15 cm.
  • 8A to 8F show examples of the arrangement of the moisture sensor in this case.
  • the sensor units 101 and 103 of Fig. 5 are installed in the same direction as the sensor unit 102, and the planar arrangement is as shown in Fig. 8G. Configure to measure the part.
  • the measurement of Figs. 8A-8E becomes possible by changing the positions of the sensor units 101-103 according to the position of each sensor. Further, in another embodiment of the present invention, the moisture content at the same cross-sectional position of the material to be measured is calculated in real time while the material to be measured is being conveyed, and the moisture content as a final value is calculated by performing statistical processing. It may be.
  • FIGS. 9A and 9B show the measurement accuracy of the automatic moisture content measuring device of the present invention when three moisture sensors and two moisture sensors are used, respectively.
  • the horizontal axis indicates the total moisture content by dry method obtained according to the JIS standard
  • the vertical axis indicates the value obtained by converting the detection signal of this device into a moisture display.
  • the X mark is the measurement data for one pillar.
  • FIG. 10 shows an example of the measurement results of the automatic moisture content measuring device of the present invention.
  • the vertical axis indicates the level of the detection signal, and the horizontal axis indicates the measurement position.
  • Figures 11A, 11B, and 11C show the difference between the case where the moisture content of the column material was measured with one moisture sensor and the case where it was measured with two or three moisture sensors.
  • the vertical axis shows the frequency (data number), and the horizontal axis shows the difference from the total dry method in%.
  • the drying condition on each side of the pillars varies depending on the state of stacking in the drying room, wind speed, ventilation, etc., and the water content varies. Therefore, when the material to be measured is a pillar, the data of one moisture sensor set on one side is as shown in Fig. 11A, and the moisture content cannot be measured with high accuracy. However, when two or more moisture sensors are used and the measurement results of at least two sides of the column are used, the moisture content can be determined almost exactly as shown in Figs. 11B and 11C. Even with two moisture sensors, the accuracy is much better than with one and is practical. When two moisture sensors are used, arrange the sensors as shown in Figs. 12A and 12B.
  • Wood cut wood for laminated wood (cut s tock for or lamined lumber) or thick like wood
  • cut s tock for or lamined lumber
  • thick like wood In the case of a plate having a thickness of not more than 50 mZm, there is little variation in the water content if the dry state is good. Therefore, in that case, measurement with practical accuracy is possible even with one moisture sensor.
  • measurement can be performed using only the sensor units 102 of FIGS. 5A and 5B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A high-frequency capacitive moisture sensor comprises a first electrode in the form of a circular column adapted to rotate about an axis of rotation and having its diameter increasing gradually toward the center, and a second electrode provided opposed to the first electrode with a distance. An object to be measured is moved in contact with the first electrode for continuous measurement. In the case of a columnar object, the first electrodes of at least two moisture sensors are brought into contact with different sides of the object to continuously perform measurement so that a moisture content is found from measurements for the same cross section of the columnar object. At least one moisture sensor is disposed on the same plane of a relatively thin object, such as a cut stock for laminated lumber, sawing lumber products and the like.

Description

明 細 書 木質材料の水分センサー及び自動水分率測定装置 [技術分野]  Description Moisture sensor for wood materials and automatic moisture content measuring device [Technical field]
無垢、 集成材等の木質材料加工工場などにおいて、 生産する木製品の含水率を 連続的に測定し、 適切に選別する装置に関する発明である。  The present invention relates to an apparatus for continuously measuring the moisture content of wood products produced at a wood processing plant or the like for solid wood, glued lumber, etc., and appropriately selecting the wood products.
[背景技術]  [Background technology]
従来の木材水分センサーは測定方式から分類すると、 高周波抵抗方式、 高周波 容量方式、 直流抵抗方式等が有る。 高周波抵抗方式、 高周波容量方式は非破壌で あるため、 材料の表面を傷つけずに測定が可能であり、 かつ電界深度が直流抵抗 式に比べて深いため、 材料のある程度の深部の水分を検知することが可能である。 また、 電源を A C電源としたものが多く、 オンライン測定に適した器種 (連続型 自動水分測定装置 林産試場報第 7巻第 5号 1 9 9 3年等) もある。  Conventional wood moisture sensors are classified into high-frequency resistance type, high-frequency capacity type, DC resistance type, etc. when classified by measurement method. Since the high-frequency resistance method and high-frequency capacitance method are non-broken, measurement can be performed without damaging the surface of the material, and since the depth of the electric field is deeper than that of the DC resistance method, moisture at a certain depth in the material is detected. It is possible to In many cases, the AC power supply is used as the power supply, and there are also types that are suitable for online measurement (continuous-type automatic moisture measurement device, Forestry Experiment Station Vol. 7, No. 5, 1993, etc.).
又、 電極の構造から観ると、 図 1 3のように、 木材 (以下材という) のように 同一平面上に陽極及び陰極を配置する方法と、 図 1 4のように材をはさんで陽極 と陰極を対向させる方法が主流である。 前者の場合は、 一般的に電界深度は浅い ので、 比較的表面層の水分しか検出出来ない。 後者の場合は電極間距離が一定で ないと、 出力される信号は不安定なものとなり、 測定精度は落ちる。  Also, from the viewpoint of the structure of the electrodes, as shown in Fig. 13, the method of arranging the anode and the cathode on the same plane, such as wood (hereinafter referred to as "material"), The method of making the cathode and the cathode face each other is the mainstream. In the former case, since the depth of the electric field is generally shallow, only water in the surface layer can be detected relatively. In the latter case, if the distance between the electrodes is not constant, the output signal will be unstable and the measurement accuracy will decrease.
又、 測定の際、 高周波式は、 材の表面の形状に影饗され、 電極の先端部と材料 の表面が密着することが必要で、 隙間があると、 エアギャップにより、 見かけの 水分値が過小となる傾向がある。 また、 比重の影響を受けやすく、 測定材料の比 重のバラツキが指示値のバラツキとして、 出やすい傾向がある。  Also, when measuring, the high-frequency method is influenced by the shape of the surface of the material, and it is necessary that the tip of the electrode and the surface of the material adhere to each other. If there is a gap, the apparent moisture value will be reduced due to the air gap. Tends to be too small. In addition, it is easily affected by the specific gravity, and the variation in the specific gravity of the measurement material tends to appear as the variation in the indicated value.
直流抵抗方式は比較的比重の影響を受けがたく、 材の表面形状の影響を受けが たいものの、 大半が針電極等を用いる破壊式であるため、 材の表面を傷つけるた め、 測定部位がある程度限定される、 従って、 連続測定は不向きである。 力、つ、 電界深度が浅いため、 測定材料の比較的薄いものに限定される。  The DC resistance method is relatively unaffected by the specific gravity and is not easily affected by the surface shape of the material, but most of it is of the destructive type using needle electrodes, etc. Limited to some extent, so continuous measurement is not suitable. Due to the shallow force and depth of the electric field, the measurement material is limited to relatively thin ones.
本願発明では上記の事情を燈み、 本発明は材料を傷付けることなく変形した材 料にも密着させ、 測定深度が深くなるような電極構造を持つ、 材料全体に対して 測定精度の良 、自動水分率測定装置および選別装置を提供することを目的とする。 電極の構造から観ると、 高周波方式、 直流方式とも同一平面上に陽極及び陰極 を配置する方法と、 陽極と陰極を対向する方法が主流である。 前者の場合は、 一 般的に電界深度は浅いので、 比較的表面層の水分しか検出できない。 後者の場合 は電界深度については十分である力 電極間距離および測定材料のサイズが一定 でないと、 出力される信号は不安定なものとなり、 寸法や形状が不安定な材料や 変形を起こしている材料、 すなわち乾燥材に対して測定精度が落ちる。 The present invention illuminates the above circumstances, and the present invention adheres to a deformed material without damaging the material, and has an electrode structure that increases the measurement depth. An object of the present invention is to provide an automatic moisture content measuring device and a sorting device having high measurement accuracy. From the viewpoint of the electrode structure, the mainstream method is to arrange the anode and cathode on the same plane for both high-frequency and DC systems, and to oppose the anode and cathode. In the former case, since the depth of the electric field is generally shallow, only water in the surface layer can be detected relatively. In the latter case, the depth of the electric field is sufficient.If the distance between the electrodes and the size of the measurement material are not constant, the output signal will be unstable, and the dimensions and shape will be unstable or deformed. The measurement accuracy for the material, ie, the desiccant, is reduced.
上記で述べたような乾燥材を測定する場合には、 センサ一位置が固定状態での 測定が困難であり、 電極の先端部と材料の表面が密着することが必要となる。 す なわち隙間があると、 エアギャップにより、 見かけの水分値が過小となったり、 測定材料の比重が影響を及ぼし始め指示値のバラツキとして出やすくなる。  When measuring a desiccant as described above, it is difficult to measure with the sensor at a fixed position, and it is necessary that the tip of the electrode and the surface of the material be in close contact. In other words, if there is a gap, the apparent moisture value becomes too small due to the air gap, or the specific gravity of the measurement material starts to affect, which tends to cause a variation in the indicated value.
密着方法は、 連統測定を行うためには材の表面を傷つけないようにすることが 必要で、 かつ正確に測定するために材の中央部に位置させることが必要となる。 さらには耐久性も必要となる。  As for the adhesion method, it is necessary to prevent the surface of the material from being damaged in order to perform continuous measurement, and it is necessary to position the material in the center of the material for accurate measurement. Furthermore, durability is required.
高周波抵抗方式、 高周波容量方式は非破壊であるため、 材料の表面を傷つけず に測定が可能である。 しかし乾燥過程での材料は材内水分の変動によつてもたら される各種応力によってそり、 ねじれ等の形状の変化生じているため従来のセン サーではその変形に追従し材の中央部に位置することが非常に困難となる。  Since the high-frequency resistance method and the high-frequency capacitance method are non-destructive, measurement can be performed without damaging the material surface. However, the material in the drying process is deformed due to various stresses caused by fluctuations in moisture in the material, and changes in shape such as torsion occur, so conventional sensors follow the deformation and are located at the center of the material. It will be very difficult to do.
また連続測定を行う場合、 出力信号を安定させるためにはその走行している被 測定材を上下、 左右方向にふらつかせないようにすることが必要となる。  In addition, when performing continuous measurement, it is necessary to prevent the moving workpiece from fluctuating vertically and horizontally to stabilize the output signal.
乾燥過程での材料は、 材内の水分分布が長さ方向で異なっており、 かつ各側面 毎に水分分布の状態が異なっている。 このため単一センサーの固定式では測定精 度が落ち、 材料全体の水分状態を推定することが困難となる。  The materials in the drying process have different moisture distributions in the length direction, and the state of the moisture distribution is different for each side surface. For this reason, the measurement accuracy decreases with a single sensor fixed type, and it becomes difficult to estimate the moisture state of the entire material.
また複数のセンサーで連続測定する際、 各センサー間で相互干渉を生じ、 水分 測定に大きな誤差が生じる。  In addition, when performing continuous measurement with multiple sensors, mutual interference occurs between the sensors, causing a large error in moisture measurement.
このため各面の水分センサーを相互干渉が生じないように考盧することが必要 となる。 各センサ一位置をずらすことは各センサ一の測定開始時期のずれを生じ せしめ、 被測定材の各部位の水分値を推測することが困難となる。  For this reason, it is necessary to consider the moisture sensors on each side so that mutual interference does not occur. Shifting the position of each sensor causes a shift in the measurement start time of each sensor, which makes it difficult to estimate the moisture value of each part of the material to be measured.
更に、 乾燥設備を持った製材工場に於いて、 乾燥過程における柱材 ( 1 0 5 cm 角〜 1 2 O cm角) は水分の分布が大きく、 それに起因する応力の分布等により、 幅そり、 縦そり、 ねじれ等の形状の変化をもたらし克っ、 各面毎に含まれる水分 量が異なる事が判つている。 In addition, in a sawmill with drying equipment, the column material (105 cm (Angle to 12 O cm square) has a large distribution of moisture, and the resulting distribution of stress causes shape changes such as width, warp, and torsion. I know different things.
このような柱材の含有水分率を正確に測定する装置はまだ開発されていない。  An apparatus for accurately measuring the moisture content of such a pillar has not yet been developed.
[発明の開示]  [Disclosure of the Invention]
本発明の水分センサー及び自動水分率測定装置は、 前述した従来の水分センサ 一の欠点を解決し、 材の各面で乾燥状態の異なる柱材の含有水分率 (又は水分値) を正確に測定できるようにするため、 測定方法として、 高周波容量式を用いてい る。  The moisture sensor and the automatic moisture content measuring device of the present invention solve the above-mentioned drawbacks of the conventional moisture sensor, and accurately measure the moisture content (or moisture value) of a pillar material having a different dry state on each surface of the material. To be able to do so, a high-frequency capacitance method is used as the measurement method.
更に、 図 1に示すように電極 1 (材料に接する側) と電極 2 (接地側) を立体 的に配した構造とし、 電極 1の形状は図に示すように R加工を施したローラ型と した。 次に被測定材を安定して移動させるためにエアーシリンダー及び水平方向 の移動にはラック&ピニォンを採用した。  Furthermore, as shown in Fig. 1, electrode 1 (side in contact with the material) and electrode 2 (ground side) are three-dimensionally arranged. The shape of electrode 1 is a roller type with R processing as shown in the figure. did. Next, an air cylinder and a rack and pinion were used for horizontal movement in order to move the material to be measured stably.
更に、 この方式のセンサ一を被測定材の背割面の反対面及びその面と直角の両 側面の 3側面に位置をずらして配した。 次に各センサーからの検出信号を同期化 するために図 5 A · 5 Bの 1 5、 1 6、 1 7のような上記挟圧装置の片端に組み 込んだエンコーダーを用い同期信号を得た後、 さらに材料の長さ方向に位置を合 わせるために、 各水分センサーからの信号を図 6のコントローラ内の計測制御部 4 1で同期させた。  Further, the sensors of this type were arranged on three opposite sides, that is, on the opposite side of the back-slit face of the material to be measured and on both sides perpendicular to the face. Next, in order to synchronize the detection signal from each sensor, a synchronization signal was obtained using an encoder built into one end of the above-described clamping device as shown in Fig. 5A and 5B, 15, 16, and 17. Thereafter, in order to further position the material in the longitudinal direction, the signal from each moisture sensor was synchronized by the measurement control unit 41 in the controller in FIG.
そして、 得られた水分率と所定の闕値とを比較する比較手段を備え、 該比較手 段の出力により、 被測定材枓の選別を行なったり、 被測定材料に対するマーキン グを ί亍なうようにした。  A comparison means for comparing the obtained moisture content with a predetermined value is provided, and the output of the comparison means is used to sort the material to be measured or to mark the material to be measured. I did it.
本願発明のセンサーは、 非破壊、 広範な水分測定、 連続測定を目指して、 測定 方式は高周波方式とした。 高周波方式には抵抗式と容量式とがあるが、 高周波抵 抗式は使用周波数域によらず精度よく測れる水分測定範囲が維持飽和点程度まで で、 高含水率材の場合には誤差が大きくなるため、 広範な水分測定が可能な周波 数域をもちいた容量式を採用した。  The sensor of the present invention uses a high-frequency measurement method for nondestructive, wide-range moisture measurement and continuous measurement. There are two types of high-frequency methods: resistance type and capacitance type.The high-frequency resistance type has a moisture measurement range that can be measured accurately regardless of the operating frequency range up to the maintenance saturation point. Therefore, a capacitance type that uses a frequency range that allows a wide range of moisture measurement was adopted.
電界深度と、 測定精度の向上を図るため以下の手段を施した。 図 1に示すよう に陽極と陰極を立体的に配することにより、 電界深度は深くなり、 深部の水分を 検知することが可能となった。 陽極 1から発せられる電界は、 その対面にある陰 極 2との間が最も電界密度が大で、 その反対面に於いては、 若干電界度が小さい ものの、 無限遠に飛ぶ電界も存在する。 即ち、 被測定物の厚みが厚ければ厚いほ ど被測定物を通過する電界も比率的に多くなりその効果は大となる。 The following measures were taken to improve the electric field depth and measurement accuracy. By arranging the anode and cathode three-dimensionally as shown in Fig. 1, the depth of the electric field becomes deeper, It has become possible to detect. The electric field emitted from the anode 1 has the highest electric field density between the negative electrode 2 on the opposite side, and the electric field on the opposite side has a slightly smaller electric field, but there is also an electric field flying at infinity. That is, as the thickness of the object to be measured is larger, the electric field passing through the object to be measured increases proportionately, and the effect becomes larger.
乾燥過程でのそり、 ねじれ等の形状の変化に追従すべく、 柱等のカップ量 (図 3参照の断面のそり) に合わせて接触して走行するように水分測定電極に R加工 を施した。 しかしながら木材に追従するための接触方式はこの方式に限らず板バ ネゃ刷毛状の電極、 導電性ゴム等を用いたローラーでも構わない。  In order to follow the change in shape such as warpage and torsion during the drying process, the moisture measurement electrode was subjected to R processing so that it traveled in contact with the amount of cup (pillar in cross section in Fig. 3) such as a pillar. . However, the contact method for following wood is not limited to this method, and a plate-panel brush-like electrode, a roller using conductive rubber, or the like may be used.
次に長さ方向に移動する被測定材は、 エアシリンダ一及びラック &ピニオンを 採用することで測定センサーと指示ローラー間でふらつきがなくなり、 安定した 水分測定が可能となった。 しかしながら上記測定を可能とする手段として、 油圧 やモーターを用いた密着方式を用いても構わない。  Next, the material to be measured moving in the length direction uses an air cylinder and a rack and pinion, so that there is no wobble between the measurement sensor and the indicator roller, enabling stable moisture measurement. However, a close contact method using a hydraulic pressure or a motor may be used as a means for enabling the above measurement.
また単一のセンサ一では 1側面のみのデータとなり実用上かなり、 測定精度が 落ちる。 2側面に対してセンサーを配した場合、 かなりの測定精度の向上が見ら れる。 また 3側面に対してセンサーを配することにより、 さらに測定精度を向上 させることができる。  In addition, with a single sensor, only one side of the data is used, and the measurement accuracy is considerably reduced in practical use. When the sensors are arranged on two sides, the measurement accuracy is significantly improved. By arranging sensors on the three sides, the measurement accuracy can be further improved.
各水分センサー間の相互千渉が生じないようにする手段として各センサー位置 をずらして配置する事により対処したが、 同一位置で発振部を 1つとし、 各セン サ一の電極をスイツチで瞬時に切り替える方法でも構わな 、。  As a means to prevent mutual interference between the moisture sensors, this was dealt with by displacing the positions of the sensors, but by using one oscillating unit at the same position, the electrodes of each sensor were instantaneously switched by a switch. It doesn't matter if you switch to.
本発明により、 水分測定が材料全体に対して連続的に精度良く測定可能となり、 従来の水分品質管理及び仕分け作業が高速でかつ正確に行えることになる。 また 自動化も可能であるため大幅な省力化となる。  According to the present invention, moisture measurement can be continuously and accurately performed for the entire material, and conventional moisture quality control and sorting operations can be performed at high speed and accurately. In addition, automation is possible, resulting in significant labor savings.
[図面の簡単な説明]  [Brief description of drawings]
図 1は本発明の水分センサーの電極構成図。  FIG. 1 is a diagram showing an electrode configuration of a moisture sensor according to the present invention.
図 2は本発明の水分センサーの回路図。  FIG. 2 is a circuit diagram of the moisture sensor of the present invention.
図 3は本発明の水分センサ一の配置例を示す図。  FIG. 3 is a diagram showing an example of the arrangement of a moisture sensor according to the present invention.
図 4は図 3の A視図。  FIG. 4 is an A view of FIG.
図 5 Aは本発明の自動水分率測定装置の平面図。  FIG. 5A is a plan view of the automatic moisture content measuring device of the present invention.
図 5 Bは本発明の自動水分率測定装置の側面図。 図 6は本発明の自動水分率測定装置のシステムプロック図。 FIG. 5B is a side view of the automatic moisture content analyzer of the present invention. FIG. 6 is a system block diagram of the automatic moisture content measuring device of the present invention.
図 7は本発明の自動水分率測定装置により、 拄材の水分率を求める方法を説明 する図。  FIG. 7 is a view for explaining a method for determining the moisture content of a raw material using the automatic moisture content measuring device of the present invention.
図 8 A— 8 Fは水分センサ一の配置例を示す図。  FIGS. 8A to 8F show examples of the arrangement of a moisture sensor.
図 8 Gは図 8 Fの場合の水分センサーの平面配置図。  FIG. 8G is a plan view of the moisture sensor in the case of FIG. 8F.
図 9 Aは水分センサー 3個使用時の本発明の自動水分率測定装置の測定精度を 示す図。  FIG. 9A shows the measurement accuracy of the automatic moisture content measuring device of the present invention when three moisture sensors are used.
図 9 Bは水分センサー 1個使用時の本発明の自動水分率測定装置の測定精度を 示す図。  FIG. 9B shows the measurement accuracy of the automatic moisture content measuring device of the present invention when one moisture sensor is used.
図 1 0は本発明の自動水分率測定装置による実際の測定結果を示す図。  FIG. 10 is a view showing actual measurement results by the automatic moisture content measuring device of the present invention.
図 1 1 Aは、 柱材の水分率を 1個の水分センサーで測定した際の実施例を示す 図。  FIG. 11A is a diagram showing an example when the moisture content of a column material is measured by one moisture sensor.
図 1 1 Bは、 柱材の水分率を 2個の水分センサーで測定した際の実施例を示す 図。  FIG. 11B is a diagram showing an example in which the moisture content of a pillar is measured by two moisture sensors.
図 1 1 Cは、 柱材の水分率を 3個の水分センサーで測定した際の実施例を示す 図。  FIG. 11C is a diagram showing an example in which the moisture content of a pillar is measured by three moisture sensors.
図 1 2 A, 1 2 Bは水分センサー 2個の場合の配置例を示す図。  FIGS. 12A and 12B are diagrams showing an example of arrangement when two moisture sensors are provided.
図 1 3は従来の水分センサーの電極と被測定材との関係を示す図。  FIG. 13 is a diagram showing a relationship between an electrode of a conventional moisture sensor and a material to be measured.
図 1 4は従来の水分センサーの電極と被測定材との関係を示す図。  FIG. 14 is a diagram showing the relationship between the electrode of the conventional moisture sensor and the material to be measured.
[発明を実施するための最良の形態]  [Best Mode for Carrying Out the Invention]
図 1に本発明の木質材料の水分率測定装置 (水分センサーという) の電極の構 成を示す。 1は材に接触する電極 (第 1電極) である。 回転軸を中心に回転する 円柱状形態を有している。 この第 1電極の径は、 端部より中央にゆくにしたがい その直径が徐々に大きくなるように形成されている。 即ち、 搏の外形のような形 状 (撙状) に R加工された外形を有しており、 材のそりに対応できるようになつ ている。 2は他の電極 (第 2電極) であり、 支柱 3により電極 1と一定の距離を 隔てて対向するように設けられる。 第 2電極は平面であつても曲面であつてもよ い。 4は電線であり、 発振部 5の一^ 3の出力端と電極 Iとを接続するものである c 発振部 5は電極 2の中に組み込まれており、 発振部 5の出力の他端は電極 2に接 C / 96/ 936 Fig. 1 shows the configuration of the electrodes of the moisture content measuring device (referred to as moisture sensor) for woody material of the present invention. 1 is the electrode (first electrode) that contacts the material. It has a cylindrical shape that rotates around a rotation axis. The diameter of the first electrode is formed so that the diameter gradually increases toward the center from the end. In other words, it has an outer shape that is R-shaped into a shape (よ う な shape) like the outer shape of a beat, so that it can cope with the warpage of the material. Reference numeral 2 denotes another electrode (second electrode), which is provided so as to be opposed to the electrode 1 by a support column 3 at a fixed distance. The second electrode may be flat or curved. Reference numeral 4 denotes an electric wire, which connects the output terminal of one third of the oscillating section 5 to the electrode I.c The oscillating section 5 is incorporated in the electrode 2, and the other end of the output of the oscillating section 5 is Connect to electrode 2 C / 96/936
6 铳されている。 第 2電極は接地されている。  6 铳The second electrode is grounded.
電極 1から発せられる電界は、 その対面にある電極 2との間が最も電界密度が 大で、 その反対面、 即ち材に接する側に於いては、 電界密度が小さいものの、 無 限遠に飛ぶ電界も存在する。 即ち、 電界分布が大幅に広くなり、 被測定物の厚み 力《厚い程、 被測定物を通過する電界も多くなり、 図 1のように電極 1, 2を立体 的に配置することで、 電界深度をより深くすることができ、 材の深部の水分を検 出できるようになった。  The electric field emitted from the electrode 1 has the highest electric field density between the electrode 2 on the opposite side and the opposite surface, that is, the side in contact with the material, although the electric field density is low, it flies indefinitely An electric field also exists. In other words, the electric field distribution is greatly widened, and as the thickness of the object under test becomes thicker, the electric field passing through the object under test increases, and by arranging the electrodes 1 and 2 three-dimensionally as shown in FIG. The depth can be made deeper, and it is now possible to detect moisture in the deep part of the material.
図 2は本発明の水分センサーの回路図である。 本発明の水分測定方法は、 非破 壊、 連続測定、 広い測定範囲を実現し、 更に未乾燥材の測定をも可能とするため 高周波容量式とした。 発振部 5は 0. 1MHz 〜2 0MHz の発振周波数で発振する。 該発振周波数は被測定材の樹種により望ましい範囲があり、 杉ゃ栓のような針葉 樹では 0. 3MHz 〜し 2 MHz が望ましい。 さらに望ましくは杉材では 1. 0 MHz ±0. 2 MHz であり桧材では 0. 5 MHz ±0. 2 Hz である。 これらの周波 数は樹種に応じて自動的に又はオペレーターにより例えばスィッチなどにより発 振回路が切替えられ、 それにより選択される。 電極 1 , 2は発振部 5に接続され ている。 電極し 2間の静電容量により発振周波数は変化する。 発振部 5はしと C又は Cと Rからなる発振回路部を有し、 電極し 2は容量 Cと並列に接続され ている。  FIG. 2 is a circuit diagram of the moisture sensor of the present invention. The moisture measurement method of the present invention is a high-frequency capacitance type in order to realize non-destructive, continuous measurement, a wide measurement range, and to enable measurement of undried material. Oscillator 5 oscillates at an oscillation frequency of 0.1 MHz to 20 MHz. The oscillation frequency has a desirable range depending on the species of the material to be measured. For softwoods such as cedar plugs, the oscillation frequency is preferably 0.3 MHz to 2 MHz. More desirably, the frequency is 1.0 MHz ± 0.2 MHz for cedar wood and 0.5 MHz ± 0.2 Hz for hinoki wood. These frequencies are selected automatically according to the tree species or by the operator by switching the oscillation circuit by, for example, a switch. The electrodes 1 and 2 are connected to the oscillation unit 5. The oscillation frequency changes depending on the capacitance between the two electrodes. The oscillating unit 5 has an oscillating circuit unit composed of a ladder C or C and R, and the electrode 2 is connected in parallel with the capacitor C.
電極 1に木材等の誘電材料を近づけたり、 接触させたりすると発振周波数がず れる。 そこで、 周波数の変移量を比較回路 6で検出し、 その出力が検出信号とし て計測制御部へ送られる。 検出信号は C PU 5 4、 ROM5 5、 RAM5 6等か らなる計測制御部 (図 6) で処理し、 木材の含水率 (水分値) を求める。  The oscillation frequency shifts when a dielectric material such as wood is brought close to or in contact with the electrode 1. Therefore, the amount of frequency shift is detected by the comparison circuit 6, and the output is sent to the measurement control unit as a detection signal. The detection signal is processed by the measurement control unit (Fig. 6) consisting of CPU54, ROM55, RAM56, etc., to determine the water content (moisture value) of the wood.
求められた水分値は材の選別装置やマーキング装置の制御信号に使用され、 必 要に応じて表示もされる。  The obtained moisture value is used for the control signal of the material sorting device and marking device, and is displayed as necessary.
図 3に本発明の水分センサーの電極の配置を示す。 図 4は図 3の A視図である c 8は柱材であり、 3つの水分センサー 2 0, 2 1 , 2 2の電極 1が拄材 8の背割 り面を除く 3つの面に押し当てられるようにセッ 卜される。 電極 1は撙状に形成 されているので、 柱材 8にそりがあっても、 そりの形状に沿うようになっている c 従って、 拄材 8の表面と電極 1間の距離が小さく保たれ、 電極 1から発生し、 柱 材 8を通過する電界の分布を一様に保つことができ、 測定精度の向上を図ること ができる。 FIG. 3 shows the arrangement of the electrodes of the moisture sensor of the present invention. Fig. 4 is a view from A in Fig. 3. c8 is a pillar, and the electrodes 1 of the three moisture sensors 20, 21 and 22 are pressed against three surfaces except the back split surface of the material 8. Set to be applied. Since the electrode 1 is formed in a rectangular shape, even if the pillar 8 has a warp, it follows the shape of the warp. , Generated from electrode 1 and pillar The distribution of the electric field passing through the material 8 can be kept uniform, and the measurement accuracy can be improved.
各水分センサーは、 図 4に示すように、 それぞれの電極が発生する電界が互い に影響を及ぼさないように所定の距離を隔てて配置される。  As shown in FIG. 4, each moisture sensor is arranged at a predetermined distance so that electric fields generated by the respective electrodes do not affect each other.
電極 1が回転するようになっていて、 柱材 8を一定方向に移動させると、 電極 1が回転するので、 柱材 8の各面を連続的に測定できる。  When the electrode 1 rotates and the column 8 is moved in a certain direction, the electrode 1 rotates, so that each surface of the column 8 can be continuously measured.
図 5 Aは本発明の水分センサーを使用して柱材の含有水分率を連続的に測定す る自動水分率測定装置の一実施例の平面図である。 図 5 Bは図 5 Aの側面図であ 図 5 Αの自動水分率測定装置の構成と動作を説明する。  FIG. 5A is a plan view of one embodiment of an automatic moisture content measuring device for continuously measuring the moisture content of a column using the moisture sensor of the present invention. FIG. 5B is a side view of FIG. 5A. The configuration and operation of the automatic moisture content measuring device of FIG.
拄材の背割り面を下にして被測定材料である拄材 8を搬送装置 7により自動水 分率測定装置の入口まで移動すると、 昇降機 9がインバーター制御された駆動モ 一夕 1 0を下降し、 柱材 8を上下に挟み、 一定速度で左方向に搬送する。  When the material 8 to be measured is moved to the entrance of the automatic water content measuring device by the transfer device 7 with the spine of the material facing down, the elevator 9 moves down the drive motor 10 controlled by the inverter. The column 8 is sandwiched vertically and transported to the left at a constant speed.
図中 1 0 1, 1 0 2, 1 0 3はセンサーとエンコーダーを組み合わせたセンサ 一ユニットである。 1 1— 1 4は光電スィッチであり、 1 5— 1 7はエンコーダ 一(ロータリーエンコーダー) 、 2 0— 2 2は水分センサーを示す。 水分センサ - 2 0 - 2 2の被測定材と、 相互の位置関係は図 4に対応している。  In the figure, 101, 102, and 103 are one sensor unit that combines a sensor and an encoder. 11-1 to 14 are photoelectric switches, 15 to 17 are encoders 1 (rotary encoders), and 20 to 22 are moisture sensors. Fig. 4 shows the positional relationship between the moisture sensor-20-22 and the material to be measured.
拄材 8が送られ、 光電スィッチ 1 1の光軸を遮ると光電スィッチ 1 1が O N状 態になり、 エアシリンダー 1 8に圧力がかかり、 第 1の水分センサー 2 0を搭載 した計測部と指示ローラ 3 1で拄材 8を水平方向に挟み込む。  When the material 8 is sent and the optical axis of the photoelectric switch 11 is interrupted, the photoelectric switch 11 is turned ON, pressure is applied to the air cylinder 18 and the measuring unit equipped with the first moisture sensor 20 is mounted. Insert the material 8 in the horizontal direction with the indicating roller 31.
柱材 8が支持ローラ 3 1に接触することで支持ローラ 3 1内に組み込まれたェ ンコーダ一 1 5が支持ローラの回転に同期して回転し、 水分センサー 2 0からの 検出信号の位置同期信号として送られる。 (図 6参照) 更に柱材 8が左に送られ、 光電スィッチ 1 2の光軸を遮ると光電スィッチ 1 2が O N状態になる。  When the column member 8 comes into contact with the support roller 31, the encoder 15 incorporated in the support roller 31 rotates in synchronization with the rotation of the support roller, and the position of the detection signal from the moisture sensor 20 is synchronized. Sent as a signal. (Refer to Fig. 6.) Further, the column member 8 is sent to the left, and when the optical axis of the photoelectric switch 12 is interrupted, the photoelectric switch 12 is turned ON.
光電スィッチ 1 2が O N状態になると、 エアシリンダー 1 9に圧力がかかり、 第 2の水分センサー 2 1を搭載した計測部を下降させ、 柱材 8を下方に押しつけ る。 この時、 水分センサー 2 1の下方に設けられた支持ローラ 3 2が拄材 8の下 面に接触し、 支持ローラ 3 2内に組み込まれたエンコーダー 1 6が回転し、 水分 センサー 2 1からの検出信号の位置同期信号として送られる。 更に柱材 8が左に送られ、 光電スィッチ 1 3の光軸を遮ると光電スィッチ 1 3 が O N状態になる。 光電スィッチ 1 3が O N状態になると、 エアシリンダー 2 3 が作動し、 第 3の水分センサー 2 2を搭載した計測部を移動させ、 対向して配置 された支持ローラ 3 3と共に柱材 8を水平方向に挟み込む。 支持ローラ 3 3が柱 材 8の側面に接触し、 支持ローラ 3 3内に組み込まれたエンコーダ一 1 7が回転 し、 水分センサー 2 2からの検出信号の位置同期信号として送られる。 When the photoelectric switch 12 is turned on, pressure is applied to the air cylinder 19, and the measuring section equipped with the second moisture sensor 21 is lowered, and the column member 8 is pressed downward. At this time, the support roller 32 provided below the moisture sensor 21 comes into contact with the lower surface of the metal member 8, and the encoder 16 incorporated in the support roller 32 rotates, and Sent as a position synchronization signal of the detection signal. Further, the column member 8 is sent to the left, and when the optical axis of the photoelectric switch 13 is blocked, the photoelectric switch 13 is turned on. When the photoelectric switch 13 is turned on, the air cylinder 23 is operated to move the measuring section equipped with the third moisture sensor 22 and to horizontally move the column member 8 together with the support roller 33 disposed opposite. In the direction. The support roller 33 comes into contact with the side surface of the column 8, and the encoder 17 incorporated in the support roller 33 rotates and is sent as a position synchronization signal of the detection signal from the moisture sensor 22.
水分センサー 2 0からの信号は、 光電スィッチ 1 1 — 1 4に同期して適当な位 置で出力されるようになっている。 この実施例では、 光電スィッチ 1 1 , 1 2が O N状態にある時、 水分センサー 2 0の信号が出力され、 光電スィッチ 1 2, 1 3が O N状態にある時、 水分センサー 2 1の信号が出力され、 光電スィッチ 1 3, 1 4が O N状態にある時、 水分センサー 2 2の信号が出力される。  The signal from the moisture sensor 20 is output at an appropriate position in synchronization with the photoelectric switches 11 to 14. In this embodiment, when the photoelectric switches 11 and 12 are in the ON state, the signal of the moisture sensor 20 is output. When the photoelectric switches 12 and 13 are in the ON state, the signal of the moisture sensor 21 is outputted. When the photoelectric switches 13 and 14 are ON, the signal of the moisture sensor 22 is output.
他の実施例として、 光電スィッチ 1 1 , 1 2, 1 3のそれぞれが O N状態にな つてから所定の時間経過後に水分センサ一 2 0 , 2 1 , 2 2の信号が出力される ようにしてもよい。  In another embodiment, the signals of the moisture sensors 120, 21 and 22 are output after a predetermined time has elapsed since each of the photoelectric switches 11 to 13 is turned on. Is also good.
柱材 8の終端部が光電スィッチ 1 2の光軸部を通過し、 光が通過するようにな ると光電スィッチ 1 1が O F Fになる。 この時、 エアシリンダー 1 8力く戻り、 柱 材を押しつけている第 1の水分センサー 2 0を搭載した計測部を解放状態にする。 同様に、 柱材 8の終端部が光電スィッチ 1 2の光軸部を通過し、 光が通過する ようになると光電スィッチ 1 2が O F Fになる。 この時、 エアシリンダー 1 9が 上昇し、 拄材を押しつけている第 2の水分センサ一 2 1を搭載した計測部を解放 状態にする。  When the end of the column member 8 passes through the optical axis of the photoelectric switch 12 and the light passes through, the photoelectric switch 11 becomes OFF. At this time, the air cylinder is returned by 18 force, and the measuring unit equipped with the first moisture sensor 20 pressing the column is released. Similarly, the end of the column member 8 passes through the optical axis of the photoelectric switch 12, and when the light passes through, the photoelectric switch 12 becomes OFF. At this time, the air cylinder 19 is lifted, and the measuring unit equipped with the second moisture sensor 121 pressing the material is released.
更に、 柱材 8の終端部が光電スィッチ 1 3の光軸部を通過し、 光が通過するよ うになると光電スィッチ 1 3が O F Fになる。 この時、 エアシリンダー 2 3が戻 り、 柱材を押しつけている第 3の水分センサー 2 2を搭載した計測部を解放状態 にする。 柱の先端部が光電スィツチ 1 4の光軸を通過したら、 光電スィツチ 1 4 が O N状態になり、 昇降機 2 4がインバーター制御された駆動モータ 2 5を下降 させ、 拄材を上下に抉み込み、 排出する。  Further, when the terminal end of the column member 8 passes through the optical axis of the photoelectric switch 13 and the light passes therethrough, the photoelectric switch 13 becomes OFF. At this time, the air cylinder 23 is returned, and the measuring unit equipped with the third moisture sensor 22 pressing the column is released. When the tip of the column passes through the optical axis of the photoelectric switch 14, the photoelectric switch 14 is turned on, and the elevator 24 lowers the drive motor 25 controlled by the inverter, and digs up and down the material. , Discharge.
上記の各水分センサーと支持ローラは、 エアシリンダ一とラック &ピニオンに より被測定材を挟み込む機構になっており、 水分センサーの第 1電極と支持口一 ラは、 被測定材の各側面の中央部に接触するようになっている。 挟み込む圧力の 大きさは、 エアシリンダ一に供給する空気圧を圧力調整用レギユレ一夕により任Each of the moisture sensors and support rollers described above have a mechanism that sandwiches the material to be measured between the air cylinder and the rack and pinion. The la is in contact with the center of each side surface of the material to be measured. The magnitude of the pinching pressure depends on the air pressure supplied to the air cylinder by the pressure adjustment regulator.
¾、| ^調整 き 。 ¾ 、 | ^ Adjustable.
本発明の水分センサ一の電極は電界深度を深くとることのできる構造となって いる。 この為、 各測定面の水分センサーを同一位置に配置すると、 各水分センサ 一間で干渉が生じ、 測定値に大きな誤差が生じる。 そこで、 相互干渉が生じない 距離、 約 5 Ocm間隔にそれらの水分センサーを配置し、 エンコーダ一により、 各 水分センサーからの検出信号の位置同期をとつている。 このような構成により、 干涉を受けないで、 各面の独立した電界深度の深い検出信号が得られ、 高精度に 被測定材全体の水分率を測定できる。  The electrode of the moisture sensor of the present invention has a structure capable of deepening the electric field depth. For this reason, if the moisture sensors on each measurement surface are arranged at the same position, interference occurs between each moisture sensor and a large error occurs in the measured value. Therefore, these moisture sensors are arranged at a distance of about 5 Ocm where mutual interference does not occur, and the position of the detection signal from each moisture sensor is synchronized by the encoder. With such a configuration, a detection signal with a deep electric field depth independent of each surface can be obtained without being affected by drought, and the moisture content of the entire material to be measured can be measured with high accuracy.
図 6に本発明の自動水分率測定装置のシステムプロック図を示す。  FIG. 6 shows a system block diagram of the automatic moisture content measuring device of the present invention.
光電スィッチ 1 1, 1 2, 1 3, 1 4からの信号は搬送制御部 4 2に入力され、 駆動部 4 3への信号を出力する。  The signals from the photoelectric switches 11, 12, 13, and 14 are input to the transport control unit 42 and output to the drive unit 43.
駆動部 4 3は、 被測定材を搬送する搬送装置 7を含むコンベア機構部と、 被測 定材に電極を押しつける電極機構部で構成されている。 搬送速度は作業性に対応 できるよう可変式となっており、 コンベア機構部と、 電極機構部は搬送制御部 4 2からの制御信号により駆動される。  The drive section 43 is composed of a conveyor mechanism section including a transport device 7 for transporting the material to be measured, and an electrode mechanism section for pressing an electrode against the material to be measured. The transport speed is variable so as to be compatible with workability, and the conveyor mechanism and the electrode mechanism are driven by control signals from the transport controller 42.
エンコーダー 1 5, 1 6, 1 7は被測定材の移動量に比例したパルス数を発生 させ、 それらの信号は位置同期信号として水分センサーの測定の制御を行なう。 水分センサー 2 0, 2 1 , 2 2からの信号は計測制御部 4 1のメモリ 5 1, 5 2, 5 3にそれぞれ格納される。  Encoders 15, 16, and 17 generate a number of pulses proportional to the amount of movement of the material to be measured, and these signals are used as position synchronization signals to control the measurement of the moisture sensor. The signals from the moisture sensors 20, 21, 22 are stored in the memories 51, 52, 53 of the measurement controller 41, respectively.
水分センサー 2 0, 2 1, 2 2には光電スィッチ 1 1, 1 2, 1 3, 1 4の出 力信号とエンコーダー 1 5, 1 6, 1 7を組み合わせた信号が人力されており、 計測開始にふさわしい位置に材が来た時から水分センサ一を動作させたり、 ある いは、 水分センサーの出力を計測制御部 4 1に送るように制御されている。  The moisture sensor 20, 21, 22 receives the output signal of the photoelectric switch 11, 1, 2, 13, 14 and the signal that combines the encoders 15, 16, 17 with human input and measures It is controlled so that the moisture sensor 1 is activated when the material comes to a position suitable for starting, or the output of the moisture sensor is sent to the measurement control unit 41.
本発明の一実施例に於いては、 柱材 1本分の測定が終了すると、 予め ROM 5 5に登録されている検出信号一水分率変換テーブルにより検出信号を水分値に変 換する。  In one embodiment of the present invention, when the measurement of one pillar is completed, the detection signal is converted into a moisture value by a detection signal-to-moisture ratio conversion table registered in the ROM 55 in advance.
一般に、 木材の含有水分値 Yは、 検出値を Xとすると、 式 1で表される。 Y=a xa +bx' +c x + d (1) In general, the moisture content Y of wood is represented by Equation 1 where the detected value is X. Y = ax a + bx '+ cx + d (1)
係数 a, b. c, dは木材の種類によって異なり、 事前に最小自乗法等により 各係数を求めておく。 そこで、 木材の種類によって異なる係数 a, b, c, dと、 数 1によって表されている検出値 xとの関係の一部または全部を検出信号一水分 率変換テーブルとして ROM 5 5に登録しておき、 測定する木材の種類に応じて 係数 a, b, c, dを選択し、 水分値 Yを求める。 この制御はすべて CPU 5 4 により行う。  Coefficients a, b. C, d differ depending on the type of wood, and each coefficient is determined in advance by the least squares method. Therefore, part or all of the relationship between the coefficients a, b, c, and d, which differ depending on the type of wood, and the detection value x expressed by Equation 1 is registered in the ROM 55 as a detection signal-to-moisture conversion table. In advance, select the coefficients a, b, c, and d according to the type of wood to be measured, and determine the moisture value Y. This control is all performed by the CPU 54.
本発明に於いては、 図 7に示すように、 柱材の同じ断面位置 (S 1 1, S 2 1, S 3 1 ) , (S 1 2, S 22, S 3 2) , …… (S i n, S 2 n, S 3 n) での 各水分センサ一 2 0, 2 1, 2 2の出力の平均値 Ml, M2, M3, 〜Mnを求 め、 更に各平均値 Ml, M2, M3, 〜Mnの平均値を求めて被測定材の水分率 とする。  In the present invention, as shown in FIG. 7, the same cross-sectional positions (S 11, S 21, S 31), (S 12, S 22, S 32),… ( Sin, S2n, S3n), the average value Ml, M2, M3, ... Mn of the output of each moisture sensor 2 0, 2 1, 22 is calculated, and the average value Ml, M2, The average value of M3 to Mn is determined and used as the moisture content of the material to be measured.
各水分センサーから送られる位置同期された検出信号は RAM 5 6に随時格納 される。 計測制御部 4 1のメモリと CPU 54はバス 57で接続されている。 計測制御部 4 1で算出された被測定材の水分率は、 予め設定された閾値により 等級を判別し、 水分率の程度を示す区分信号に変換して搬送制御部 4 2に入力す る。 搬送制御部 4 2では、 この区分信号を受けて被測定材の振り分けを行う選別 装置 4 4や等級に応じて被測定材の表面にマ一キングを行うマーキング装置 4 5 への制御信号を出力する。  The position-synchronized detection signal sent from each moisture sensor is stored in the RAM 56 as needed. The memory of the measurement controller 41 and the CPU 54 are connected by a bus 57. The moisture content of the material to be measured calculated by the measurement control unit 41 is determined based on a predetermined threshold value, converted into a classification signal indicating the degree of the moisture content, and input to the transport control unit 42. The transport control unit 42 receives the sorting signal and outputs a control signal to a sorting device 44 that sorts the material to be measured and a marking device 45 that marks the surface of the material to be measured according to the grade. I do.
また、 本発明の自動水分率測定装置の他の実施例では、 水分センサーを、 板材 の異なる場所を押さえるように適当な間隔即ち、 測定値に影響を及ぼすような電 界の干渉を生じなレ、間隔で配置することで、 板材であつても精度良く含有水分率 を測定できる。 その間隔は同一平面上では 1 0cm以上である。 好ましくは 1 5cm 以上である。 この場合の水分センサーの配置例を図 8 A〜 8 Fに示す。 図 8 Fの 場合図 5のセンサ一ュニッ 卜 1 0 1と 1 03をセンサーュニッ ト 1 0 2と同じ向 きに設置し、 その平面的配置を図 8 Gのようにし、 搬送される板材の異なる部分 を測定するように構成する。 図 8 A— 8 Eの場合も同様に、 それぞれのセンサー 位置に応じてセンサーュニッ ト 1 0 1〜 1 0 3の位置を変更することで、 図 8 A - 8 Eの計測も可能となる。 また、 本発明の他の実施例においては、 被測定材が搬送中にリアルタイムで被 測定材の同一断面位置での水分率を求め、 統計処理して最終的な値である水分率 を求めるようにしてもよい。 In another embodiment of the automatic moisture content measuring apparatus of the present invention, the moisture sensor is placed at an appropriate interval so as to press different places on the plate material, that is, at a level that does not cause electric field interference that affects the measured value. By arranging them at intervals, the moisture content can be accurately measured even for a plate material. The interval is 10 cm or more on the same plane. It is preferably at least 15 cm. 8A to 8F show examples of the arrangement of the moisture sensor in this case. In the case of Fig. 8F, the sensor units 101 and 103 of Fig. 5 are installed in the same direction as the sensor unit 102, and the planar arrangement is as shown in Fig. 8G. Configure to measure the part. Similarly, in the case of Figs. 8A-8E, the measurement of Figs. 8A-8E becomes possible by changing the positions of the sensor units 101-103 according to the position of each sensor. Further, in another embodiment of the present invention, the moisture content at the same cross-sectional position of the material to be measured is calculated in real time while the material to be measured is being conveyed, and the moisture content as a final value is calculated by performing statistical processing. It may be.
図 9 A, 9 Bは、 それぞれ水分センサーを 3個使用した場合と 2個使用した場 合の本発明の自動水分率測定装置の測定精度を示す。  FIGS. 9A and 9B show the measurement accuracy of the automatic moisture content measuring device of the present invention when three moisture sensors and two moisture sensors are used, respectively.
横軸 (X軸) は J I S規格に準じて求めた全乾法水分%を示し、 縦軸 (Y軸) は本装置の検出信号を水分表示に変換した値を示す。 X印は柱材 1本の測定デー タである。  The horizontal axis (X-axis) indicates the total moisture content by dry method obtained according to the JIS standard, and the vertical axis (Y-axis) indicates the value obtained by converting the detection signal of this device into a moisture display. The X mark is the measurement data for one pillar.
後述する図 1 1 A, 1 1 B , 1 1 Cの比較において、 3センサーを実装する場 合は 1センサー実装する場合のバラツキの約 1 / 4となり、 2センサーを実装す る場合はバラツキは 1センサーの場合と 3センサーの中間となり、 水分センサー の複数化の顕著な効果がみられ、 図 9 Aに示す通り、 3センサーを使用した場合、 全乾法水分%に対する標準偏差はし 6 %となり、 実用精度を満たす。 2センサ 一の場合の標準偏差は図 9 Bに示すように 1 . 8 %であり、 この場合も実用精度 を満たす。  In the comparison of Figures 11A, 11B, and 11C described later, when 3 sensors are mounted, the fluctuation is about 1/4 of the fluctuation when 1 sensor is mounted, and when 2 sensors are mounted, the fluctuation is There is a remarkable effect of using multiple moisture sensors between 1 sensor and 3 sensors. As shown in Fig. 9A, when 3 sensors are used, the standard deviation of the total dry moisture percentage is 6%. And satisfies practical accuracy. The standard deviation in the case of two sensors is 1.8% as shown in FIG. 9B, which also satisfies the practical accuracy.
図 1 0に本発明の自動水分率測定装置の測定結果の一例を示す。 縦軸が検出信 号のレベルであり、 横軸は測定位置を示す。  FIG. 10 shows an example of the measurement results of the automatic moisture content measuring device of the present invention. The vertical axis indicates the level of the detection signal, and the horizontal axis indicates the measurement position.
図 1 1 A, 1 1 B, 1 1 Cは柱材の含有水分率を水分センサー 1個で測定した 場合と、 2個及び 3個で測定した場合の違いを示す。 縦軸は度数 (データ数) を 示し、 横軸は全乾法との差を%で示す。  Figures 11A, 11B, and 11C show the difference between the case where the moisture content of the column material was measured with one moisture sensor and the case where it was measured with two or three moisture sensors. The vertical axis shows the frequency (data number), and the horizontal axis shows the difference from the total dry method in%.
柱材の場合、 乾燥室中の桟積み状態や、 風速、 換気状態等により柱材の各側面 の乾燥状態が異なり、 含有水分量にばらつきが生じる。 従って、 被測定材が柱材 の場合、 一側面に設定された水分センサー 1個のデータは図 1 1 Aのようになり、 含有水分率を高い精度で測定できない。 しかし、 水分センサーを 2個以上用い、 柱材の少なくとも 2つの側面の測定結果を用いると、 図 1 1 B, 1 1 Cのように、 含有水分率をほぼ正確に求めることができる。 水分センサー 2個の場合であって も、 精度は、 1個の場合よりはかなり良くなり、 実用に堪える。 水分センサーを 2個用いた場合は、 図 1 2 A, 1 2 Bのようにセンサーを配置する。  In the case of pillars, the drying condition on each side of the pillars varies depending on the state of stacking in the drying room, wind speed, ventilation, etc., and the water content varies. Therefore, when the material to be measured is a pillar, the data of one moisture sensor set on one side is as shown in Fig. 11A, and the moisture content cannot be measured with high accuracy. However, when two or more moisture sensors are used and the measurement results of at least two sides of the column are used, the moisture content can be determined almost exactly as shown in Figs. 11B and 11C. Even with two moisture sensors, the accuracy is much better than with one and is practical. When two moisture sensors are used, arrange the sensors as shown in Figs. 12A and 12B.
集成材用の木取材 (cut s tock f or l ami nated l umber) 又は間拄材のように厚 みが 5 0 mZm以下の板材の場合では、 乾燥状態が良好であれば含有水分量のば らつきは少ない。 従って、 その場合は、 水分センサー 1個であっても実用的な精 度での測定が可能である。 Wood cut wood for laminated wood (cut s tock for or lamined lumber) or thick like wood In the case of a plate having a thickness of not more than 50 mZm, there is little variation in the water content if the dry state is good. Therefore, in that case, measurement with practical accuracy is possible even with one moisture sensor.
この場合は、 F i g s . 5 A, 5 Bのセンサーユニット 1 0 2のみを使用して 測定することができる。  In this case, measurement can be performed using only the sensor units 102 of FIGS. 5A and 5B.
本発明は上記実施例に限らず、 特許請求の範囲の記載に含まれるいかなる実施 例をも含むものである。  The present invention is not limited to the above embodiments, but includes any embodiments included in the claims.

Claims

請求の範囲 The scope of the claims
1 . 高周波発振回路の容量 Cに並列に設けられた第 1 , 第 2の電極間の静電 容量による発振周波数の変移から被測定材の含有水分率を求める高周波容量式の 水分センサーに於いて、 第 1電極は材料に接触するようになっており、 第 2電極 は接地電極で、 第 1電極を保持すベく構成され、 両電極が対向して一対に設けら れていることを特徴とした木質材料の水分センサ一。 1. In a high-frequency capacitance-type moisture sensor that determines the moisture content of the material to be measured from the change in oscillation frequency due to the capacitance between the first and second electrodes provided in parallel with the capacitance C of the high-frequency oscillation circuit The first electrode is in contact with the material, the second electrode is a ground electrode, is configured to hold the first electrode, and both electrodes are provided in a pair facing each other. Wood material moisture sensor.
2 . 請求項 1の水分センサーに於いて、 第 1電極は回転軸を中心に回転する 円柱状形態を有し、 該第 1電極の径は、 端部より中央にゆくにしたがい直径が徐 徐に大きくなるように形成されていることを特徴とした木質材料の水分センサー。  2. The moisture sensor according to claim 1, wherein the first electrode has a cylindrical shape that rotates about a rotation axis, and the diameter of the first electrode gradually decreases as going from the end toward the center. A wood-based moisture sensor characterized by being formed so as to be large.
3 . 請求項 1の水分センサーに於いて、 前記高周波発振回路は被測定材の種 類に応じて発振周波数が設定される周波数設定手段を含む。  3. The moisture sensor according to claim 1, wherein the high-frequency oscillation circuit includes frequency setting means for setting an oscillation frequency according to a type of the material to be measured.
4 . 請求項 3の水分センサーに於いて、 前記周波数設定手段は、 被測定材が 針葉樹の場合は 0 . 3 MHz — 1 . 2 MHz の範囲に周波数を設定する手段を含む。  4. The moisture sensor according to claim 3, wherein the frequency setting means includes means for setting a frequency in a range of 0.3 MHz to 1.2 MHz when the material to be measured is a softwood.
5 . 請求項 4の水分センサーに於いて、 前記周波数設定手段は、 被測定材が 杉材の場合は 1 . 0 MHz ± 0 . 2 MHz , 桧材の場合は 0 . 5 MHz ± 0 . 2 MHz の 周波数に設定する手段を含む。  5. The moisture sensor according to claim 4, wherein the frequency setting means is 1.0 MHz ± 0.2 MHz when the material to be measured is cedar wood, and 0.5 MHz ± 0.2 MHz when the material to be measured is cypress wood. Includes means to set the frequency to MHz.
6 . 高周波発振回路の容量 Cに並列に設けられた第 1, 第 2の電極間の静電 容量による発振周波数の変移から被測定材の含有水分率を求める高周波容量式の 水分センサーと、 被測定材を所定の速度で搬送する搬送装置とを含む自動水分率 測定装置に於いて、 第 1電極は材料に接触するようになっており、 第 2電極は接 地電極で、 第 1電極を保持すべく構成され、 両電極が対向して一対に設けられて いることを特徴とした木質材料の自動水分率測定装置。  6. A high-frequency capacitance-type moisture sensor that determines the moisture content of the material to be measured from a change in the oscillation frequency due to the capacitance between the first and second electrodes provided in parallel with the capacitance C of the high-frequency oscillation circuit; In an automatic moisture content measuring device including a transport device for transporting a measurement material at a predetermined speed, a first electrode is configured to contact a material, a second electrode is a ground electrode, and a first electrode is connected to a material. An automatic moisture content measuring device for woody material, characterized in that it is configured to hold and that a pair of electrodes are provided facing each other.
7 . 請求項 6の自動水分率測定装置に於いて、 第 1電極は回転軸を中心に回 転する円柱状形態を有し、 該第 1電極の径は、 端部より中央にゆくにしたがい直 径が徐々に大きくなるように形成されていることを特徴とした木質材料の自動水 分率測定装置。  7. The automatic moisture content measuring device according to claim 6, wherein the first electrode has a columnar shape rotating around a rotation axis, and the diameter of the first electrode is set to be more toward the center than the end. An automatic moisture content measuring device for woody materials, characterized in that the diameter is gradually increased.
8 . 請求項 6の自動水分率測定装置に於いて、 該自動水分率測定装置は互い に電界が相互干渉をしないように所定の距離に配置された複数の水分センサーを 含み、 被測定材の表面にそれぞれの第 1電極を接触するように構成し、 該被測定 材を移動させながら連铳的に測定する手段、 前記被測定材の複数の同一断面位置 に於けるそれぞれの測定値から前記被測定材の水分率を求める手段とを含む木質 材料の自動水分率測定装置。 8. The automatic moisture content measuring device according to claim 6, wherein the automatic moisture content measuring device includes a plurality of moisture sensors arranged at a predetermined distance so that electric fields do not interfere with each other. Means for contacting the respective first electrodes with the surface of the material to be measured, and means for continuously measuring the material to be measured while moving the material to be measured, at a plurality of the same cross-sectional positions of the material to be measured Means for determining the moisture content of the material to be measured from each measurement value.
9 . 請求項 8の自動水分率測定装置に於いて、 前記水分センサ一は前記被測 定材の同一面にそれぞれの第 1電極を接触するように構成したことを特徴とした 木質材料の自動水分率測定装置。  9. The automatic moisture content measuring apparatus according to claim 8, wherein the moisture sensor is configured to contact each of the first electrodes with the same surface of the material to be measured. Moisture measurement device.
10. 請求項 8の自動水分率測定装置に於いて、 水分センサーは 2個であり、 柱材の背割りの反対面及びその面と直角方向の 1側面の 2面にそれぞれの第 1電 極を接触するように構成したことを特徴とした木質材料の自動水分率測定装置。  10. In the automatic moisture content measuring device according to claim 8, the number of moisture sensors is two, and the first electrode is provided on each of two surfaces of the column, namely, the opposite surface of the spine split and the one side surface perpendicular to the surface. An automatic moisture content measuring device for woody material, characterized in that it is configured to be in contact.
11. 請求項 8の自動水分率測定装置に於いて、 水分センサーは 3個であり、 柱材の背割りの反対面及びその面と直角方向の両側面の 3面にそれぞれの第 1電 極を接触するように構成したことを特徴とした木質材料の自動水分率測定装置。  11. In the automatic moisture content measuring device according to claim 8, the number of moisture sensors is three, and the first electrodes are respectively provided on the three surfaces of the column opposite to the spine and on both sides in a direction perpendicular to the surface. An automatic moisture content measuring device for woody material, characterized in that it is configured to be in contact.
12. 請求項 8の自動水分率測定装置に於いて、 水分率を求める手段は、 拄材 の同一断面位置に於けるそれぞれの水分センサーの測定値の平均値を求める手段 と複数の断面位置での該平均値の平均を求める手段とを含む。  12. In the automatic moisture content measuring apparatus according to claim 8, the means for determining the moisture content is a means for determining the average value of the measured values of the respective moisture sensors at the same cross-sectional position of the material and a plurality of cross-sectional positions. Means for calculating the average of the average values of
13. 請求項 8の自動水分率測定装置に於いて、 該自動水分率測定装置は各水 分センサ一と対向する位置にローラを含み、 更に該ローラの回転に同期してパル スを出力するエンコーダーを含み、 各水分センサーの第 1電極とローラによって 柱材の側面を押さえるように構成され、 水分センサーの配置関係と、 各ェンコ一 グーの出力から柱材の前記同一断面位置を求める手段を含む。  13. The automatic moisture content measuring device according to claim 8, wherein the automatic moisture content measuring device includes a roller at a position facing each moisture sensor, and further outputs a pulse in synchronization with the rotation of the roller. A first electrode of each moisture sensor and a roller configured to press the side surface of the pillar by means of a roller; and a means for determining the same cross-sectional position of the pillar from the arrangement relationship of the moisture sensors and the output of each encoder. Including.
14. 請求項 8の自動水分率測定装置に於いて、 各水分センサーの第 1電極は、 柱材の中央部に接触するように構成されたことを特徴とした木質材料の自動水分 率測定装置。  14. The automatic moisture content measuring device according to claim 8, wherein the first electrode of each moisture sensor is configured to contact a central portion of the pillar. .
15. 請求項 8の自動水分率測定装置は更に、 得られた水分率と所定の閛値と を比較する比絞手段、 該比較手段の出力により、 被測定材の選別を行う手段とを 含む。  15. The automatic moisture content measuring device according to claim 8 further includes a ratio reducing means for comparing the obtained moisture content with a predetermined 閛 value, and a means for selecting a material to be measured based on an output of the comparing means. .
16. 請求項 8の自動水分率測定装置は更に、 得られた水分率と所定の閾値と を比較する比較手段、 該比較手段の出力により、 被測定材にマーキングを行う手 段とを含む。 16. The automatic moisture content measuring device according to claim 8, further comprising: comparing means for comparing the obtained moisture content with a predetermined threshold value; and a means for marking the material to be measured by the output of the comparing means. Including steps.
17. 請求項 8の自動水分率測定装置に於いて、 前記高周波発振回路は被測定 材の種類に応じて発振周波数が設定される周波数設定手段を含む。  17. In the automatic moisture content measuring device according to claim 8, the high-frequency oscillation circuit includes frequency setting means for setting an oscillation frequency according to the type of the material to be measured.
18. 請求項 1 7の自動水分率測定装置に於いて、 前記周波数設定手段は、 被 測定材が針葉樹の場合は 0 . 3 MHz - 1 . 2 MHz の範囲に周波数を設定する手段 を含む。  18. The automatic moisture content measuring apparatus according to claim 17, wherein the frequency setting means includes means for setting a frequency in a range of 0.3 MHz to 1.2 MHz when the material to be measured is a softwood.
19. 請求項 1 8の自動水分率測定装置に於いて、 前記周波数設定手段は、 被 測定材が杉材の場合は 1 . 0 MHz ± 0 . 2 MHz , 桧材の場合は 0 . 5 MHz ± 0 . 19. The automatic moisture content measuring apparatus according to claim 18, wherein the frequency setting means is 1.0 MHz ± 0.2 MHz when the material to be measured is cedar wood, and 0.5 MHz when the material to be measured is cypress wood. ± 0.
2 MHz の周波数に設定する手段を含む。 Includes means to set the frequency to 2 MHz.
PCT/JP1996/000936 1995-04-13 1996-04-05 Moisture sensor for wooden material and automatic moisture content measuring device WO1996032634A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1996530866A JP3686981B6 (en) 1995-04-13 1996-04-05 Wood material moisture sensor and automatic moisture content measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/88265 1995-04-13
JP8826595 1995-04-13

Publications (1)

Publication Number Publication Date
WO1996032634A1 true WO1996032634A1 (en) 1996-10-17

Family

ID=13938068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000936 WO1996032634A1 (en) 1995-04-13 1996-04-05 Moisture sensor for wooden material and automatic moisture content measuring device

Country Status (2)

Country Link
TW (1) TW297092B (en)
WO (1) WO1996032634A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103661A1 (en) * 2004-04-22 2005-11-03 Damsten Leif Daniel Method and apparatus for measuring the moisture content of a block of timber
JP2006153781A (en) * 2004-11-30 2006-06-15 Kett Electric Laboratory Moisture measuring equipment for concrete, mortar, wood, etc.
JP2007192571A (en) * 2006-01-17 2007-08-02 Kett Electric Laboratory Flaw detecting and filling degree measuring instrument and method of concrete during casting
CN111189885A (en) * 2020-01-08 2020-05-22 天津农学院 A method and device for measuring the moisture content of a tree trunk based on the internal resistance of an equivalent power supply

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833197B1 (en) * 1964-07-03 1973-10-12
JPH04198847A (en) * 1990-11-29 1992-07-20 Oyama Kogyo Koutou Senmon Gatsukouchiyou Measuring method for moisture content

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833197B1 (en) * 1964-07-03 1973-10-12
JPH04198847A (en) * 1990-11-29 1992-07-20 Oyama Kogyo Koutou Senmon Gatsukouchiyou Measuring method for moisture content

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103661A1 (en) * 2004-04-22 2005-11-03 Damsten Leif Daniel Method and apparatus for measuring the moisture content of a block of timber
JP2006153781A (en) * 2004-11-30 2006-06-15 Kett Electric Laboratory Moisture measuring equipment for concrete, mortar, wood, etc.
JP4652788B2 (en) * 2004-11-30 2011-03-16 株式会社ケット科学研究所 Moisture measuring equipment for concrete, mortar, wood, etc.
JP2007192571A (en) * 2006-01-17 2007-08-02 Kett Electric Laboratory Flaw detecting and filling degree measuring instrument and method of concrete during casting
CN111189885A (en) * 2020-01-08 2020-05-22 天津农学院 A method and device for measuring the moisture content of a tree trunk based on the internal resistance of an equivalent power supply

Also Published As

Publication number Publication date
TW297092B (en) 1997-02-01
JP3686981B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
US5585732A (en) Detector for heterogeneous materials
CN102645379B (en) A kind of machinery of structural timber mechanical property grades method and apparatus
US4991432A (en) Sensor and system for continuous determination of sheet characteristics
ATE91776T1 (en) DEVICE FOR DRYING LUMBER.
US5804738A (en) Method and apparatus for on-line testing of the stiffness or strength of panels and especially of wood panels
CN108543718B (en) Intelligent grading system for mechanical stress of laminated plate
US4943328A (en) Method and apparatus for selecting wood stock to form panels of predetermined size
US6619137B2 (en) Plate thickness inspecting apparatus
JP2013036768A (en) Apparatus for inspecting electrode sheet
WO1996032634A1 (en) Moisture sensor for wooden material and automatic moisture content measuring device
US7017413B2 (en) Methods for quantitatively determining lengthwise shrinkage in wood products
JP3686981B6 (en) Wood material moisture sensor and automatic moisture content measuring device
CN113203365B (en) Online detection method for plate warping deformation
CN113758435A (en) Bearing plate detection method and device
FI127964B (en) Method for quick sampling to determine crack formation in wood on a production line using contactless ultrasound
KR200421376Y1 (en) Noodle thickness control device
CA1326908C (en) Method and apparatus for detecting humidity in cut lumber
JP5288873B2 (en) Method for measuring moisture in wood
Rice et al. Detecting knots and voids in lumber with dielectric sensors
TWM619427U (en) Resin content testing equipment
CN202522485U (en) Mechanical grading device for mechanical property of structural lumber
CN207007843U (en) A kind of moisture content automatic testing equipment
JPS6379061A (en) Apparatus for detecting adhesion-inferior laminated plate
JP2002214098A (en) Grading machine for wood
CN117943306B (en) Wood beam laminate grade detection and classification system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载