+

WO1996032525A1 - Dispositif de chauffage sans contact pour un fil metallique - Google Patents

Dispositif de chauffage sans contact pour un fil metallique Download PDF

Info

Publication number
WO1996032525A1
WO1996032525A1 PCT/JP1996/001016 JP9601016W WO9632525A1 WO 1996032525 A1 WO1996032525 A1 WO 1996032525A1 JP 9601016 W JP9601016 W JP 9601016W WO 9632525 A1 WO9632525 A1 WO 9632525A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating tube
heating
wire
heated
tube
Prior art date
Application number
PCT/JP1996/001016
Other languages
English (en)
French (fr)
Inventor
Michito Miyahara
Masahiro Okesaku
Masaharu Shiroyama
Masamitsu Egashira
Shizuki Koga
Original Assignee
Nippon Tungsten Co., Ltd.
Hokuriku Seikei Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP08979995A external-priority patent/JP3420379B2/ja
Priority claimed from JP8041949A external-priority patent/JPH09237674A/ja
Application filed by Nippon Tungsten Co., Ltd., Hokuriku Seikei Industrial Co., Ltd. filed Critical Nippon Tungsten Co., Ltd.
Priority to EP96909360A priority Critical patent/EP0770720A1/en
Priority to KR1019960707130A priority patent/KR100212641B1/ko
Publication of WO1996032525A1 publication Critical patent/WO1996032525A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/001Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass in a tube or vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/001Drying and oxidising yarns, ribbons or the like

Definitions

  • the present invention relates to a device S for heating a linear, rod-like, or thread-like linear material formed of a metal-based material, a glass-based material, a synthetic resin-based material, or a synthetic fiber in a non-contact state.
  • a false twisting method in which the fibers are heated in a non-contact state in contrast to a method in which the fibers are heated in a contact manner by a hot plate, is disclosed in Japanese Patent Publication No. 2-67069.
  • a sheathed heater is fitted into the body with a U-shaped groove, and an arrow blade-shaped guide with a slit is set in this groove so that the thread runs on the bottom of the slit. It was made.
  • This non-contact type heating device is superior to a device that heats in a state of contact with a hot plate in that the heater length can be shortened without deteriorating the surface condition of the wire to be heated.
  • the energy is large because the sheathed heater indirectly heats the U-grooved body.
  • Japanese Patent Publication No. 4-66963 that in order to increase the thermal efficiency of this non-contact type heating device, a conductive ceramic ceramic tube along the passage of the passing yarn is used.
  • a direct heating type in which a compact is disposed is disclosed.
  • the heating device fi disclosed in Japanese Patent Publication No. 4-66963 has a problem that it lacks versatility when used under heating at or above the melting point of the filament.
  • a heating device with a tubular heating element is installed inside a tube of a heating element in which a filament, which is a material to be heated, and in particular, a thin, non-rigid filament such as fiber is set at a temperature below the melting point.
  • the temperature is set to a temperature higher than the melting point, f
  • the thread can be pulled out by pulling the yarn by vacuum suction from the opposite side of the tubular heating element (hereinafter referred to as the heating tube).
  • the fiber when the fiber is a synthetic fiber, its melting point is about 250.
  • the yarn comes into contact with the inner wall of the heating tube heated above its melting point, the yarn is delicate and adheres, making it difficult to thread the thread. For this reason, it is necessary to cool the heating tube below the melting point of the yarn in advance, perform the yarn hooking operation, and then raise the temperature to the set temperature again.
  • the fiber is allowed to cool or set below the melting point of the fiber. Threading work such as vacuum suction of the fiber by lowering the temperature takes about 5 minutes / cone, and then the temperature is raised again to the set temperature, and from the point when the temperature reaches the constant temperature state, the product is started. Is obtained.
  • the non-contact type heating device equipped with a heating tube consumes extra time for cooling, heating, and reheating until reaching a constant temperature state.
  • false twisted yarn from the time of threading until reaching the constant temperature state becomes defective.
  • thermocouple In addition, if a temperature sensor including a thermocouple is installed outside the heating tube, there is a temperature difference between the outside and inside of the heating tube. There is.
  • a main object of the present invention is to solve the above-mentioned drawbacks in a non-contact type heating apparatus having a heating pipe having a passage inside which a wire to be heated travels, and to improve the temperature measurement accuracy. , Improvement in ease of use, operability and versatility.
  • Another object of the present invention is to complete a temperature control means for reducing a large temperature difference inside and outside a pipe in the case of a tubular heating tube.
  • Another object is to achieve uniform heating temperature in the longitudinal direction when the heat generating portion of the tubular resistance heating element is lengthened.
  • Another purpose is to extend the life of the heating element itself.
  • Still another object is to prevent a change in the resistance value of the heating element due to contamination of the inner diameter of the self-heating heater and to establish means for maintaining a heating atmosphere.
  • a temperature sensor for detecting a temperature for temperature control is provided at a heating portion of the heating tube at the heating tube itself or at a position where the filament material passes to improve measurement accuracy and control for temperature management. Make sure it is done exactly:
  • a linear long heating device can be formed by dividing the tubular resistance heating element into a plurality of pieces in the length direction, or by connecting the divided ends with joints made of an insulating material.
  • the general bending amount of such combustion tube Ya of A 1 2 0 3 system commercially available protective tube in (Seo Li tolerance) is 2 for the length - as a three dimensional variation within mm, ceramic
  • the slack of the lock-type pive is an inevitable phenomenon in the manufacturing method.
  • the same warpage occurs in the case of a tubular resistance heating element with a length of 1 m, and since there is a warp of up to 3 mm, the traveling speed tension of the heated object and the type of the heated object Due to vibrations and loosening phenomena, etc., depending on the conditions, the object to be heated cannot go straight and slides in contact with the heater. As a result, good products cannot be obtained. Therefore, by assembling three heaters with a length of 330 mm and the same sled tolerance (3I100) in series, a sled with a total length of 1 m can be reduced to approximately 1/3 of 1/3. Can be made smaller.
  • the specific resistance value is preferably within the range of 1.0 X 10 " 3 ⁇ -cm to 9 ⁇ 10 3 ⁇ ⁇ cm, more preferably 1 ⁇ 10 3 ⁇ ⁇ cm. . 0 X preferably adjusted to 1 0 one 2 Omega ⁇ cm from 9 chi range of 1 0 * " ⁇ ⁇ cm.
  • the specific resistance value is less than 1.0 X 10 _3 ⁇ .cm, the thickness of the tubular resistance heating element may be 0.5 mm or less due to the relationship between the diameter and the length. Manufacturing may become difficult, or even if the applied voltage is as low as about 10 V, a current value of 20 amperes or more may flow, so the lead wire capacity S must be increased. And the like.
  • a ceramic material or a conductive ceramic that generates at least any one of near infrared rays and far infrared rays Use a base material.
  • an insulating tubular ceramic is inserted into the inside diameter of a tubular resistance heating element, or an insulation film formed on the inside diameter of the resistance heating element is used as a tubular heating tube. it can.
  • a heating tube in which a conductive compressive coating capable of generating heat is formed on the outer peripheral surface of a tubular insulating ceramic material.
  • a sheet on which a conductive pattern is printed or a laminate with another sheet may be formed into a circular tube and used as a heating tube.
  • the specific resistance value of the heating tube on which these conductive films are formed is preferably adjusted within the above-mentioned range by calculating from the total resistance value and the cross-sectional area of the heating tube.
  • a tubular heating element in which a coating that generates at least far-infrared rays among infrared rays is formed on the inner surface of a metal pipe may be used. it can.
  • the slit-shaped opening was used to stretch the entire length of the heating tube outside the heating tube.
  • the wire can be easily introduced into the heating tube by sliding the wire into the heating tube along the guide.
  • the structure is such that the terminal portion of the heating tube can be inserted from both sides and has an opening corresponding to the slit.
  • the versatility can be improved by incorporating a guide for suppressing the occurrence in the heating tube as necessary. Furthermore, by attaching a temperature sensor to the side surface of this guide, or by attaching a temperature sensor in direct contact with the heat-generating portion of the heating tube, the accuracy of the temperature control can be improved.
  • 1 to 4 show an embodiment of a method of directly attaching a temperature sensor to a heating tube as a first embodiment of the present invention.
  • FIG. 5 shows another embodiment of the present invention, in which an insulating protective tube 8 is inserted into the inner surface of the heating tube 1.
  • FIG. 6 and FIG. 7 show an embodiment in which divided heating tubes are connected to increase the length of a heated portion.
  • FIGS. 8 and 9 show an example of the present invention in which an atmospheric gas can be introduced.
  • Figures 10 to 15 show heating tubes that form a linear slit extending from the outer diameter to the inner diameter surface in the longitudinal direction so that the heated wire can be inserted from the side of the resistance heating element.
  • Heating tubes that form a linear slit extending from the outer diameter to the inner diameter surface in the longitudinal direction so that the heated wire can be inserted from the side of the resistance heating element.
  • FIGS. 16 to 18 show an embodiment of a heating device in which two heating tubes each having a slit are mounted in parallel.
  • FIGS. 19 to 23 show embodiments of the guide to be attached to the slit.
  • FIGS. 28 to 30 show connection terminal members to be attached to metallized terminal portions formed at the front and rear ends of the heating tube 1.
  • FIG. 1 shows an example in which a temperature sensor is attached to a heating tube in the non-contact heating device according to the present invention.
  • reference numeral 1 denotes a heating tube made of a resistance heating element material having a resistance value of 9 ⁇ 10 _3 to 9 ⁇ 10 3 ohm * cm arranged in a heater case 2.
  • the inner surface of the heating tube 1 exposes the resistance heating element itself to serve as a passage for a heated filament.
  • conductive ceramic materials include conductive oxide or non-oxide ceramic materials, or insulating ceramics and carbides, nitrides, and oxides belonging to IVa, Va, and VIa groups.
  • M o S i metal silicide such as 2 Wakashi Ku is the metal-based material or the like
  • a heating tube in which a conductive layer that generates resistance heat is formed on the middle layer or the outer peripheral surface of the thick insulating ceramic material can be used.
  • a silicon carbide-based resistance heating element can be preferably used.
  • the heating device of the present invention incorporating a tubular heating element or a heating element that generates at least far infrared rays out of infrared rays or infrared rays can be applied to many types of filaments, particularly synthetic resins, synthetic fibers, and the like.
  • these objects absorb far-infrared rays and self-heat, making it possible to perform heat treatment in a lower temperature range than conventional devices.
  • energy-saving textile products with a better texture can be obtained.
  • the thermal expansion coefficient of the resistance heating element material or the heating tube is 9.5 X 10 " 6 / CC or less. The smaller the force, the better 5 ', and the temperature of the furnace case is 50 ° C.
  • the heating element may be heated to the extent that the resistance heating element
  • Reference numeral 3 denotes a heat insulating material layer provided over the entire length (heat generating portion) of the outer peripheral surface of the heating tube 1, whereby the heat retention and the uniform heat state in the heating tube 1 can be maintained.
  • Reference numeral 4 denotes a resistance heating element itself or a terminal portion made of a good conductor having a lower resistance value than the resistance heating section. The terminal portion 4 is preferably formed by metalizing the outer peripheral surface of the end portion.
  • the terminal portion 4 is exposed to the outside of the heat insulating material 3 and is provided with an air cooling mechanism through a ventilation hole 5 provided in the heater case 2. This prevents the temperature rise, prevents deterioration of the metallized layer due to high temperature, and prevents cracks and peeling phenomena caused by the difference in the coefficient of thermal expansion between the matrix and the metallized layer at the time of heating and cooling.
  • the heating device is used while the metallized portion of the heating tube 1 and the connection terminal members are wrapped in the heat insulating material 3, the high temperature becomes 500 °.
  • the service life is about 3 to 12 months due to oxidation and cracking or peeling phenomena. Does not occur at all.
  • a ceramic guide 6 is fitted and attached to the end face of the metalized terminal portion 4 at the end of the heating tube 1.
  • the guide ⁇ is made of a material having abrasion resistance, heat resistance, heat insulation, and insulation, which has reduced inner surface roughness and improved slipperiness even though the inner diameter is small. Even if the wire to be heated vibrates or slightly loosens, the wire has a function of preventing the surface of the wire from being damaged.
  • a flange 63 for locking to the outer surface of the heater case 2.
  • Reference numeral 7 denotes a temperature sensor mounting portion which is mounted in contact with the outer surface at substantially the center of the heating tube 1. The mounting position can be adjusted to an optimal position according to the temperature distribution inside the heating tube.
  • FIG. 2 and 3 show a first mounting state of the temperature sensor mounting portion 7.
  • FIG. FIG. 2 shows a state of the heating tube 1 viewed from a cross section
  • FIG. 3 shows a state of the mounting tube viewed from a side.
  • 7 1 is for attaching thermocouple protection tube 7 2
  • FIG. 4 shows another embodiment of the mounting method of the temperature sensor mounting portion 7, in which a blind hole 74 or a through hole is provided in the tube wall of the heating tube or the heating tube 1, and the thermocouple protection tube 7 is provided.
  • Mount 2 directly.
  • the sensor power is built into the thick portion of the heating tube or the heating tube, and a temperature intermediate between the outer surface temperature and the inner temperature of the heating tube can be detected.
  • the tip of the sensor is inserted up to the inner diameter surface into a hole formed by penetrating the thickness of the heating tube, a value substantially corresponding to the internal temperature of the heating tube can be detected.
  • FIG. 5 shows a second embodiment of the present invention in which an insulated protective tube 8 is inserted into the inner surface of the heating tube 1 to form a heating tube.
  • the protective tube 8 is a thin-walled, for example, alumina-based insulating material, and is inserted so as to be exchangeable as needed.
  • the protective tube 8 made of the insulative ceramic extends from the heat insulating partition 3, which is insulated from the heat insulating material 3 and the heating tube 1, from the metalized terminal portion 4 to the outside of the heater case 2. It protrudes and also serves as a tubular guide.
  • this contaminant is, for example, an organic substance, it can be burned and removed by increasing the set temperature of the heating device. Effects such as smaller values appear. In such a case, the deterioration and consumption of the heating element can be reduced by inserting the insulating ceramic tube 8.
  • the change in resistance value due to contamination of the inner surface of the heating tube can also be prevented by forming an insulative coating on the inner diameter surface to form the heating tube.
  • FIG. 6 shows an embodiment in which the divided heating tubes are connected to form a heating portion having a length of about 500 to 200 mm in a straight line.
  • the heating tube 1 is divided into two or more, a heating main tube portion 101 at a center and heating tube portions 102, 103 at both ends.
  • Metalized terminal portions 4 are formed at both ends of each of the divided heating tubes 101, 102, and 103.
  • a tubular guide made of a heat-resistant and abrasion-resistant insulating material for introducing a heated striated body is connected to one end of the tubular resistance heating element having the metallized terminal portion, and the wire into the heating conduit is connected. The introduction of the strip material can be performed smoothly, the damage to the heating tube and the end can be reduced, and the metallized terminal and the tubular guide can be exposed outside the heat insulating material.
  • each of the divided heating tubes is provided with the temperature sensor mounting portion 7 described in the first embodiment, whereby an arbitrary temperature gradient can be formed in the heating area of each heating tube.
  • FIG. 7 is a view showing a connected state of each divided pipe.
  • the connecting member 9 is made of an electrically insulating ceramic material, and has the same inner diameter as the diameter of the end of the heating element or the heating tube or the inner diameter of the tubular guide on which the metalized terminal portion 4 is formed.
  • the connecting member 9 has a ring-shaped outer peripheral surface portion 92.
  • the connecting member 9 is attached between the terminal portions 4 of the divided heating tubes to connect the respective divided heating tubes.
  • the heating pipe having a passage for the wire to be heated inside is made of a ceramic-based resistance heating element itself, or an insulated ceramic pipe or an inner diameter surface inserted inside the resistance heating element.
  • Fig. 8 shows a heating device suitable for applying water vapor, a gas for forming a surface layer, or a non-oxidizing or reducing gas for preventing surface oxidation to the object to be heated traveling in the heating tube.
  • 3 shows another embodiment.
  • reference numerals 10 and 11 are provided near the inlet 12 and the outlet 13 of the wire to be heated of the heating tube 1 inserted into the inner diameter of the resistance heating element or the heating element.
  • a gas inlet pipe and a discharge pipe for discharging a part of the introduced gas are shown, each of which has a metalized terminal portion 4 near each end.
  • the discharge pipe 11 for the introduced gas does not take the form shown in the figure, but is formed by metallizing the discharge port 13 to form a terminal portion, and the end of this terminal portion is used as a gas discharge port. You can also.
  • the crossing angle ⁇ of the gas introduction pipe 10 with respect to the heating pipe 1 is 90.
  • FIG. 9 shows that, as shown in FIG. 8, instead of the gas introduction pipe 10 branched from the heating pipe 1, the gas introduction member 14 Is shown in the figure.
  • the gas introduction member 14 is formed also as a guide, and is provided with an inlet 15 for the material to be heated and a gas inlet 16.
  • the power consumption of the heating device of the present invention was as follows: in the configuration shown in FIG. 1 of the embodiment, the inner diameter of the resistance heating element was 100 mm, the length was 500 mm, and the thickness of the heat insulating material was 70 mm. 500 in mm. When the temperature was maintained at C, the result was 70 W / H, which was very energy saving.
  • FIG. 10 shows the basic structure of the heating tube 1
  • FIG. 11 shows a cross section taken along line AA of FIG.
  • reference numeral 4 denotes a terminal portion formed by metalization at both ends.
  • a slit-like opening 17 is formed on one side surface of the heating tube 1 over its entire length, and a passage 18 through which a linear material travels is formed therein.
  • FIGS. 13 and 13 showing cross sections taken along the line B-B of FIGS. 12 and 12 show the inner surface of the heating tube 1 composed of the tubular resistance heating element shown in FIGS. 10 and 11 made of an insulating material.
  • An example of a heating tube provided with a coating or a refractory tube 8 is shown.
  • FIG. 14 and FIG. 15 showing a cross section taken along the line C-C in FIG. 14 show a slit-like opening 17 formed in a straight tubular heating tube 1 and terminal portions 4 near both ends. Are connected to form a gate-shaped structure.
  • FIG. 16 shows the non-contact type wire heating device with two heating tubes 1 shown in Figs. 10 and 11 arranged in parallel in a heater case 2 and the heating tube slit.
  • FIG. FIG. 17 shows a state in which the lid is attached to FIG. 16 as viewed from the line DD.
  • the heating device consists of one or more heating tubes 1 arranged in parallel in a heater case 2 with an openable lid 21 provided on the lower surface as necessary. It has the following structure.
  • the heater fi may be installed so that the slit 17 of the heating tube 1 is oriented upward or downward in the horizontal direction. Alternatively, it can be mounted in an inclined direction.
  • the slit-shaped openings 17 of the respective heating tubes 1 are both arranged so as to face the opening direction of the lid 21 of the heater case 2.
  • the lid 21 has a trapezoidal shape, and the lid 21 is downwardly slid by a lid closing / closing slide plate 20 as shown by a dotted arrow so that the lower surface of the heater case 2 is closed. Then, the wire passages in the heating tubes 1 and the slit-like openings 17 of the respective heating tubes 1 and the openings on the lower surface of the heater case 2 are opened outward. In a state
  • the lid 21 of the heater case 2 may be of any other form besides this slide type.
  • Fig. 18 shows the lower case of the heater 1 case 2 divided into 2 1 1 and 2 1 2 and rotating around hinges 2 1 3 and 2 1 provided on the side of the heater 1 case 2.
  • a lid structure can be used. Also, open the entire lid and open it,
  • the wire passage 18 in the heating pipe 1 is heated through the slit-shaped opening 17. Since it is in a state facing the opening on the lower surface of the heater case 2, it is possible to slide the linear material into the heating pipe along the path shown by the dashed line in Fig. 17 and introduce the threading work. Can be completed in a short time.
  • the linear material introduction guide set before and after in the longitudinal direction of the heater case It is convenient to slide along the opening path with the lid opened as shown by the dashed line in FIG.
  • the guide for guiding the linear material from the slit-shaped opening to the inside of the heating pipe is provided when the linear material travels inside the heating pipe with the slit, such as vibration, runout, slack, or the like.
  • a fibrous material it has a function of preventing the filament material from coming into contact with the inner surface of the heating tube due to a balloon phenomenon or the like.
  • Outer diameter X inner diameter X length 95 l 5 x 95 9 x 500 mm (heating section length 450 mm)
  • Width x height x length 1 26 x l 26 x 580 mm (insulation material length 450 mm)
  • Apparatus of the present invention 400 ° C 401 ° C 40W Note)
  • Conventional commercial equipment is a device with a heating section length of 2000 mm.
  • the apparatus of the present invention has no temperature difference between the inside and outside of the heating tube, allows precise temperature control, and has a shorter heating tube length than conventional commercial equipment. Despite the fact that it has the same or better performance, the holding power at the set temperature needs to be extremely small, and the heat-treated yarn has a glossy surface without impairing the intrinsic properties such as the inherent strength of the fiber. But it was very good.
  • This embodiment shows an example in which a guide for introducing a filament material to be heated into a heating tube is incorporated in the heating tube.
  • FIG. 19 to FIG. 21 show a first example of the guide 22.
  • FIG. 19 shows a view from above
  • FIG. 20 shows a view from the side
  • FIG. 21 shows a front view.
  • This Guy Replacement Form (Rule 261)
  • the guide 22 has a body portion 21 located inside the heating tube and a guide blade portion 22 having a tapered or rounded tip at an end located outward from the slit opening of the heating tube. 2, and a deep groove 2 23 is formed from the tip of the guide blade portion 222 to the body portion 221.
  • the guide 22 is attached by inserting it from the end face of the heating tube in which the slit is formed, and the width of the guide blade 22 is larger than the slit width of the heating tube.
  • Reference numeral 2 2 3 denotes a guide groove formed from the guide blade portion 2 2 2 for introducing the wire and a groove through which the wire runs.
  • Reference numeral 224 denotes a mounting groove formed on a side surface of the guide 22 for mounting a temperature sensor (hereinafter, including a thermocouple).
  • the guide 22 functions as a guide for introducing the wire into the heating tube, a guide for attaching the temperature sensor to the heating tube, and a It combines the functions of the traveling guide and the three functions.
  • FIG. 22 and FIG. 23 show other examples of the guide 22.
  • the temperature sensor mounting groove 2 2 4 on the side surface is formed linearly from the guide blade section 2 2 2 to the body section 2 2 1, eliminating the disadvantage of breaking in the extension direction of the deep groove section 2 2 3 effective.
  • FIG. 23 shows a structure in which the side R portion of the body portion 221 is reinforced.
  • FIGS. 24 and 25 show a state in which the guide 22 is inserted into the heating tube 1 and the temperature sensor 23 is mounted in the temperature sensor mounting groove 22 4 of the guide 22.
  • a diagram as viewed from the end face direction of the heating tube 1 and a diagram as viewed from the slit direction of the heating tube are shown, respectively.
  • the temperature sensor 23 is mounted in the mounting groove 2 24 of the guide 22, and furthermore, reaches the inside of the heating tube 1, so that the temperature inside the heating tube 1 can be accurately detected.
  • the guide 22 has the temperature sensor 13 as a stopper, which is located outside the opening 17 1 of the slit opening 17 formed by the upper cut.
  • a heat-resistant pin can be attached instead of the temperature sensor 23 to prevent the guide from shifting. can do.
  • a heat-resistant pin can be attached instead of the temperature sensor 23 to prevent the guide from shifting. can do.
  • An enlarged portion 17 1 is formed locally in the tongue opening 17, and a detent jig such as a pin is attached to the enlarged portion 17 1 and the groove on the side surface of the guide 22.
  • the guide can be prevented from shifting (moving) in the vertical direction or the front-back direction.
  • the horizontal insertion method of the linear material is the manufacturing method of the heating device. Costs are higher. Therefore, the slit opening can be increased by increasing the inner diameter of the heating tube rather than the amplitude of the filament material, particularly the fiber balloon phenomenon, and drawing in the filament material with a heat-resistant insulating material inserted into the heating tube. Formation and guide installation can be omitted.
  • FIG. 28 shows a view of the connection terminal member 24 attached to the metallized terminal portion 4 formed at the front and rear ends of the heating tube 1 as viewed from the direction of the slit opening 17 of the heating tube 1.
  • FIG. 29 shows a view of the heating tube 1 seen from the end face direction.
  • This connecting terminal member 24 is composed of divided members 24 1 and 24 2 having openings corresponding to the slits 17 of the heating tube 1, and is used to introduce the filament material into the heating tube 1. The structure is such that it does not get in the way.
  • the respective divided members 24 1 and 24 2 are tightened to the pressing portion 24 3 via the fulcrum portion 24 4. By applying a force, the terminal can be pressed strongly with the terminal part sandwiched from both sides.
  • connection terminal member 24 has a wire member 245 made of silver or other conductive paste or a good conductor interposed between the division members 241, 242 and the terminal surface of the resistance heating element. By pressing the pressing portions 243, the structure can be pressed strongly.
  • a, b, c, and d in FIG. 30 show modified examples of the connection terminal member 24.
  • the terminal portion and the connection terminal member can be strongly tightened. Even if the power is turned on and off more than once, heating and cooling can provide the result that the contact resistance does not change at all.
  • the temperature of the heating tube can be detected accurately, and the temperature control accuracy is excellent.
  • a non-contact heating device can be used for multiple purposes.
  • connection terminal member of the present invention can also be applied to a heating tube having no slit-like closure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)

Description

明 細 害 非接触型の線条材加熱装置 技術分野
本発明は、 金属系材料、 ガラス系材料、 合成樹脂系材料あるいは合成繊 維から形成された線状、 棒状、 糸状の線条材を非接触状態で加熱するため の装 Sに関する。 背景技術
繊維を加熱するために、 熱板で接触加熱する方式に対して、 非接触状態 で加熱する仮撚加工方法が特公平 2 - 6 0 7 6 9号公報において開示され ている。 その装置は、 U字型溝を形成した本体にシーズヒーターを嵌入 し、 この溝部にスリ ッ ト付きの矢羽根形ガイ ドをセッ ト し、 そのスリ ッ ト の底部に糸条が走行するようにしたものである。
この非接触型の加熱装置は、 熱板と接触状態で加熱する装置と比較し て、 被加熱線条材の表面状態を悪くすることがなく ヒーター長を短くでき る等の点で優れているが、 シーズヒータ一で U溝付本体を間接的に加熱す る方式であるために消费ェネルギ—が大きい問題があつた。
本願の出願人は、 特公平 4 - 6 6 9 3 6号公報において、 この非接触型 の加熱装置における熱効率を上げるために、 通過糸条の通路に沿って円管 状の導電性セラ ミ ック成形体を配した直接加熱方式のものを開示した。
しかしながら、 熱電対または測温抵抗体からなる温度検出用の温度セン サーを組み付けた場合、 温度センサ一の組み付け方式あるいは組み付け方 法の微妙な差異によ り、 バラツキのない正確な温度を検出するのが困難で あった。
差替 え 用紙(規則 26〉 また、 線条材が金属系等の導電性材料である場合は、 円管状の導簏性セ ラ ミ ック成形体の内径に接触してショー ト したり感電したりする恐れが めつ
さらには、 特公平 4 - 6 6 9 3 6号公報の加熱装 fiは、 線条材の融点以 上または融点以下で加熱使用する場合の汎用性に欠ける問題があった。 例えば、 管状加熱体を内装した加熱装置は、 被加熱材である線条材、 と く に、 繊維のような細く剛性のない線条材を融点以下の温度に設定した加 熱体の管内へ通すためには管状加熱体(以下、 加熱管と称す )の反対側か ら真空吸引して糸を引き出して糸掛け操作を行うことが可能である力 f、 融 点以上の温度に設定した場合は下記の問題が生じる。
と く に、 繊維が合成繊維の場合には、 その融点が約 2 5 0 。 C程度と低 く、 その融点以上に加熱された加熱管の内壁に糸が接触すると糸が溶敏し て付着し、 糸掛け作業が手間取ったり、 不可能になる。 そのため、 あらか じめ加熱管を糸の融点以下に冷却した後、 糸掛け作業を行い、 その後、 再 度設定温度まで昇温する必要がある。
繊維の仮撚加工を行う場合を例にとると、 加熱管が設定温度に達し、 な おかつ、 加熱装置全体が恒温状態になるまで温度保持した後に、 繊維の融 点以下に放冷あるいは設定温度を低下させて繊維を真空吸引する等の糸掛 け作業に約 5分 /錐の時間を要し、 次いで再度設定温度まで昇温し、 更に 恒温状態になつた時点から始めて製品と しての仮撚加工糸が得られる。
このよ う に、 加熱管を内装した非接触型加熱装置は、 放冷、 昇温から恒 温状態に達するまでのロスタイムと恒温状態に達するまでの再加熱用のェ ネルギーを余分に消费することになり、 更には糸掛け時点から恒温状態に 達するまでの仮撚加工糸が不良品となる。
さらには、 加熱管の外部に熱電対を含む温度センサーを取り付けた場合 には、 加熱管の外部と内部との間には温度差があるため、 検知温度に対し て設定温度の補正を行う必要がある。
差替 え 用紙(規則 26) 発明の開示
この発明の主な目的は、 被加熱物である線条材が走行する通路を内部に 有する加熱管を内装した非接触型加熱装置における上記の欠点を解消する もので、 測温精度の向上と、 使い易さ、 操作性及び汎用性の改善にある。 本発明の他の目的は、 円管状加熱管の場合のパイブの内外の大き く異な る温度差を少なくする温度制御手段を完成することにある。
他の目的は、 管状抵抗加熱体の発熱部分を長く した場合の長さ方向の加 熱温度の均一化の達成である。
さらに、 他の目的は、 発熱体そのものの延命化の達成である。
また、 さらに、 他の目的は、 自己発熱ヒーターの内径汚塗に伴なう発熱 体の抵抗値変化の防止や、 加熱雰囲気の維持手段の確立にある。
この発明は、 加熱管の発熱部分に温度コントロール用の温度を検出する 温度センサーを加熱管そのもの、 あるいは、 線条材の通過位置に設けて、 その測定精度を上げ、 温度管理のための制御が正確に行われるよ う にし す:。
さらに、 管状の抵抗発熱体を長さ方向に複数に分割した構造、 または、 その分割端部を絶緣材料からなる継手によって連結した構造と して直線状 の長尺加熱装置とするこ とができる。 例えば、 一般に市販されている A 1 203系の燃焼管ゃ保護管等の曲がり量( ソ リ公差) は長さに対して 2 — 3 m m以内の寸法バラツキとなっているように、 セラミ ック系パイブ のソリは、 製法上避けられない現象である。 例えば 1 m長さの管状抵抗発 熱体の場合にも同様のソリが発生し、 最大 3 m mのソリがあるために、 被 加熱物の走行スピ— ドゃテンショ ン及び被加熱物の種類等の条件に応じた 振動、 弛み現象等によつて被加熱物が直進できずヒータ—内部に接触摺動 する結果、 良好な製品が得られなくなる。 したがって 3 3 0 m m長さで同 じソ リ公差( 3 I 1 0 0 0 ) のヒーターを 3本直列状に組付けることによ り全長 1 mのソリは 1 / 3の約 1 m m程度に小さ くすることができる。
差替 え 用紙(規則 26) この分割した各分割発熱管部分に少なく とも 1個の温度センサーを取り 付けることによって、 各分割管毎の温度を個々に制御することができ、 力 Π 熱装置全長にわたつての温度をよ り正確に管理できる。
なお、 加熱管を構成す る 抵抗発熱体については、 比抵抗値が 1 . 0 X 1 0 "3 Ω - c mから 9 Χ 1 0 3 Ω · c mの範囲内で、 よ り好ま し く は 1 . 0 X 1 0一2 Ω · c mから 9 Χ 1 0 *" Ω · c mの範囲内に調整する のがよい。 比抵抗値が 1 . 0 X 1 0 _3 Ω . c m未満では、 管状抵抗発熱体 直径と長さの関係からその肉厚が 0 . 5 m m以下になる場合があり、 材料 強度面で発熱体の製造が困難になること、 あるいは印加 ¾圧を 1 0 V程度 の低電圧にしても 2 0ァンペア以上の電流値が流れる場合があるため、 リ一ド線の容 Sを大き くする必要がある等の問題が生じる。
また、 本発明の加熱装置では、 管状の加熱体又は管状の抵抗発熱体とし て近赤外線または遠赤外線のうち少なく ともいずれかの赤外線を発生する セラ ミ ック材料または導電性のセラ ミ ック系材料を用いる。 さらには、 管 状の抵抗発熱体の内径に、 絶縁性の管状セラミ ッ クスを挿着し、 または抵 抗発熱体の内径に絶緣性の被膜を形成したものを管状の加熱管と して使用 できる。 あるいはまた、 管状の絶緣性セラ ミ ッ ク材料の外周面に、 抵抗発 熱可能な導罨性被膜を形成した加熱管を使用することもできる。 また更に は、 導電性のバタ一ンを印刷したシー トあるいは他のシー ト との積層体を 円管状に形成して加熱管と して利用することもできる。 ただしこれらの導 電性の被膜を形成した加熱管の比抵抗値は、 その全抵抗値と加熱管の断面 積から計算して前述の範囲内に調整するのが良い。 その他、 セラ ミ ッ ク材 料または導電性セラ ミ ック材料の代わりに、 金属製パイブの内面に赤外線 のうち少なく と も遠赤外線を発生する皮膜を形成した管状の加熱体を使用 すること もできる。
次に、 本発明の加熱装置を線条材の融点以上の温度で使用する場合は、 内装した加熱管の全長にわたって線条材を加熱管の側面方向から導入する ためのスリ ツ ト状の開口を設けることによ り、 操作性が改善される c
差替 え 用紙( M26j W09632S25
5 加熱処理に際して被加熱体である線条材を加熱管内部に導入する場合に は、 このスリ ッ ト状の開口を利用して、 加熱管の外側でその全長にわたつ て張り渡された線条材をガイ ドに沿って加熱管内部にスライ ドさせること によって、 線条材を加熱管内部に簡単に導入できる。
さらに、 加熱管の接続端子部材と して、 加熱管の端子部を両側から挟み 込み可能でしかもスリ ッ トと対応した開口を有する構造と し、 また、 走行 する線条材の振動や弛み現象を抑制するためのガイ ドを必要に応じて加熱 管内に組み込むことによ り汎用性が向上できる。 さらには、 このガイ ドの 側面に温度センサーを装着するか、 または加熱管の発熱部分に直接接触状 態で温度センサーを取り付けることによ り、 その温度制御の精度を高める こともできる。 図面の簡単な説明
図 1から図 4は、 本発明の第 1の実施例として、 温度センサーを加熱管 に直接取り付ける方法の態様を示す。
図 5は本発明の他の実施例と して、 加熱管 1の内面に絶縁性の保護管 8 を挿着した例を示す。
図 6および図 7は、 分割した加熱管を連結して加熱部分の長さを長く し た実施例を示す。
図 8および図 9は、 本発明の実施例と して、 雰囲気ガスを導入可能と し た例を示す。
図 1 0から図 1 5は、 長手方向に外径から内径面までの貫通した直線状 のスリ ッ トを形成して、 被加熱線条材を抵抗発熱体の側面から挿入可能と した加熱管の例を示す。
図 1 6から図 1 8は、 スリ ッ トを形成した加熱管を並列に 2本装着した 加熱装置の実施例を示す。
図 1 9から図 2 3は、 スリ ッ トに取り付けるガイ ドの実施例を示す。
差替 え 用紙(規則 26) 図 2 4から 2 7は、 スリ ッ トにガイ ドを取り付けた状態及びスリ ッ トの 構造例を示す。
また、 図 2 8から図 3 0は、 加熱管 1の前後端部に形成したメ タライズ 端子部に取り付ける接続端子部材を示す。 発明を実施するための最良の形態
実施例 1
図 1は、 本発明に係る非接触型加熱装置において温度センサーを加熱管 に取り付けた例を示す。 同図において、 1は、 ヒーターケース 2内に配置 された抵抗値が 9 X 1 0 _3 ~ 9 X 1 0 3オーム * c mの抵抗発熱体材料か らなる加熱管を示す。 この加熱管 1の内面は抵抗発熱体そのものを露出状 態にして被加熱線条の通路と している。 導電性のセラミ ック系材料として は、 導 性の酸化物系又は非酸化物系セラ ミ ッ ク材料、 あるいは絶縁性の セラミ ックスと I V a、 V a、 V I a属の炭化物、 窒化物、 硼化物や炭窒 化物、 炭硼化物、 窒硼化物又は炭窒硼化物およびこれらの物質が酸素を含 有する化合物、 更には M o S i 2等の金属珪化物若しく は金属系材料等の 導電性成分等々 とを組み合わせた複合材料を用いる。 また、 絶緣性セラ ミ ック材料の肉厚の中層または外周面に、 抵抗発熱する導電層を形成した 加熱管が使用できる。 さらには炭化珪素系の抵抗発熱体が好適に使用でき る。 赤外線または赤外線のうち少な く とも遠赤外線を発生する管状の発熱 体または加熱体を組み込んだ本発明の加熱装置は、 多種類の線条材に適用 することができ、 特に合成樹脂や合成繊維や天然繊維あるいは織布その他 の高分子化合物系材料に対しては、 これらの被加熱物が遠赤外線を吸収し て自己発熱する結果、 旧来の装置よ り も低温域での加熱処理が可能とな り、 省エネルギーはも とよ り風合いのよい繊維製品が得られる。 なお、 抵 抗発熱体材料または加熱管の熱膨張係数は 9 . 5 X 1 0 "6 / 。 C以下で、 できるだけ小さい方がよい力5'、 炉体ケ—スの温度が 5 0 。 C程度まで加熱 される場合があるので、 装置全体の熱膨張代も考慮に入れて、 抵抗発熱体
差替 え 用紙(規則 26) または加熱管あるいはセラ ミ ック製のチューブを挿着した加熱管に、 過大 な引張応力や圧縮応力が加わらないように適切な材料を選定し、 あるいは 調整するのがよい。 3は加熱管 1の外周面の全長(発熱部分)にわたつて 設けられた断熱材層であって、 これによつて加熱管 1内の保温と均熱状態 を維持するこ とができる。 4は抵抗発熱体そのものあるいは抵抗発熱部よ りは抵抗値の低い良導体からなる端子部を示す。 この端子部 4は、 端部の 外周面をメ タラィズして形成したものが好ま しく、 断熱保温材 3の外に露 出させると共にヒータ一ケース 2に設けた換気孔 5からの空冷機構によ り、 昇温を防ぎ、 メ タライズ層の高温による変質を防止し、 かつ昇温冷却 時に生じる基地とメ タライズ層との熱膨張率の差に伴なうクラックゃ剥離 現象を防止している。 加熱管 1のメ タライズ部分及び接続端子部材を断熱 保温材 3の中に包込んだ状態で加熱装置を使用する と、 嬝高温度を 5 0 0 。 Cに設定した場合で、 酸化ゃクラックあるいは剥離現象等によ り 寿命は、 約 3ヶ月〜 1 2ヶ月であるのに対して、 この空冷機構にすること によって 3年間使用してもメ タライズ部の変化は全く発生しない。 また、 加熱管 1の两端のメ タラィズした端子部 4の端面にはセラミ ックス製のガ イ ド 6を嵌合し取付けている。 このガイ ド βは、 内径寸法が小さくてしか も、 内面の面粗度を小さ く して滑り性を良く した耐摩耗性、 耐熱性、 断熱 性及び絶緣性を有する材料で形成されたもので、 被加熱材である線条材が 振動しても、 また、 若干の弛みを生じても、 線条材表面が疵を生じない機 能を有するもので、 端子部 4内に挿入する円筒状の嵌合部 6 1 と本体 6 2 とヒーターケース 2の外面に係止するためのフラ ンジ 6 3 とからなる。 7 は加熱管 1の略中央部の外面に接触して取付けられた温度センサー取付部 を示す。 その取付け位置は加熱管内部の温度分布に応じて最適な位置に適 宜調整する こ と もできる。
図 2および図 3は温度センサー取付部 7の第 1の取付け状態を示す。 図 2は加熱管 1の断面から見た状態を示しており、 図 3はこの取付け状態を 側面から見た図である。 図中、 7 1は熱電対保護管 7 2を装着するための
差替 え 用紙(規則 26) 取付け具であって、 頂部に突部 7 3を有する鞍形をなす。 この鞍形の取付 け具 7 1を加熱管 1の周り に挟み込んで固着する。 この鞍形取付け治具 7 1は、 治具そのものが加熱材の外面と面接触している部分が多くあり、 センサ一への伝熱接触部面積が大き く、 よ り正確な表面温度が検出でき る。 また温度センサー保護管 7 2の先端を耐熱性でしかも断熱保温性のよ いセラ ミ ックス製の紐で隙間なく卷付けることによつても、 内部はほぼ ヒーター外面温度に加熱保持されるので同様に正確な温度が検出できる。 図 4は、 温度センサー取付部 7の取付け方の他の態様を示すもので、 加 熱管または加熱管 1の管壁に盲孔 7 4あるいは貫通孔を設け、 これに、 熱 電対保護管 7 2を直接装着する。 これによ り、 盲孔の場合は、 センサー力 ί 発熱管または加熱管の肉厚部分に内蔵された状態となり、 加熱管の外面温 度と内部温度との中間的な温度を検出できる。 なお、 加熱管の肉厚を貫通 状に穿設した穴にセンサーの先端を内径面まで挿入した場合は、 ほぽ加熱 管の内部温度に相当する値を検出できる。
実施例 2
図 5は本発明の第 2の実施例と して、 加熱管 1の内面に絶緣性の保護管 8を挿着して加熱管と した例を示す。 この保護管 8は、 薄肉の例えばアル ミナ系の絶縁性のもので、 必要に応じて交換可能に挿入されている。 この 絶緣性セラ ミ ックからなる保護管 8は、 断熱材 3および加熱管 1とは絶縁 された断熱材仕切板 3 1からメ タライズした端子部 4を超えて、 ヒーター ケース 2の外方まで突出して管状ガイ ドを兼用している。 この絶緣性セラ ミ ック管 8を挿着することによって、 加熱管 1の内面が被処理物から発生 した汚染物質による発熱体の劣化消耗を少なくするこ とができる。 この汚 染物質が、 例えば有機系物質のような場合は、 加熱装置の設定温度を高く して燃焼除去できるが、 無機物の場合には燃焼除去できずに抵抗発熱体と 反応して、 ヒーター抵抗値が小さ くなる等の影響が現れる。 このような場 合には、 この絶縁性セラ ミ ック管 8を挿着することによ り発熱体の劣化消 耗を少なくすることができる。
差替 え用紙(規則 26) なお、 加熱管の内面汚染による抵抗値の変化は、 内径面に絶緣性の被膜 を形成して加熱管とすることによっても防止できる。
実施例 3
図 6 は 、 分割 し た 加 熱 管 を 連結 し て 加 熱 部 分 の 長 さ を 5 0 0 - 2 0 0 0 m m程度の直線状に形成した実施例を示す。
同図において、 加熱管 1は、 中央の加熱主管部 1 0 1 と両端加熱管部 1 0 2、 1 0 3の 2本以上に分割されている。 それぞれの分割加熱管 1 0 1、 1 0 2、 1 0 3の両端にはメ タライズした端子部 4が形成されて いる。 このメ タライズ端子部を形成した管状抵抗発熱体の两端部に被加熱 線条体導入のための耐熱耐摩耗性の絶緣材料からなる管状ガイ ドを連結し て、 加熱管路内への線条材の導入をスムーズに行う ことができ、 加熱管お よび端部の損傷を少なくすることができると共に、 メタライズ端子部と管 状ガイ ド部を、 断熱保温材の外方に露出せしめて、 空冷可能とすることに よ りメ タライズ部の劣化を防止できる。 さらに、 その端子部 4は連結部材 9を介して連結するのが好ま しい。 それぞれの分割加熱管には、 実施例 1 で説明した温度センサー取付部 7が設けられ、 これによつて、 各加熱管に おける加熱域に任意の温度勾配を形成することができる。
図 7は各分割管の連結状態を示す図である。 連結部材 9は電気的絶緣性 のセラ ミ ックス系材料からなり、 メ タライズした端子部 4を形成した発熱 体または加熱管の管端の径と同一の内径も しくは管状ガイ ドと同一の内径 を有する連結部 9 1 と環状の外周面部 9 2からなり、 この連結部材 9を分 割加熱管の端子部 4の間に装着してそれぞれの分割加熱管を連結してい る。 通常、 被加熱線条材の通過路を内部に有する加熱管は、 セラ ミ ッ クス 系の抵抗発熱体そのものまたは抵抗発熱体の内部に挿着された絶緣性のセ ラ ミ ツク管あるいは内径面が絶緣性材料からなる管状の抵抗発熱体から作 られており、 これを曲がりなく真直状に形成するのは非常に困難であり、 また、 長さ寸法が大き く なる程製造原価が割高なものとなる。 また、 一体 物によつて製造された管状加熱体の長さ方向の温度は、 パイブ内外ともに
差替 え 用紙(規則 26) 中央付近の温度が高く、 ヒータ—の両端は熱ロスが大きいため温度が低く 山形の温度分布となる。 しかしながら、 2本以上のヒータ一を直列状に組 付けた分割形ヒーターとすることによ り、 また、 温度サンサーをそれぞれ の分割管の最適の位置に設けることによ り、 ヒーター 1本のみの場合よ り も好みの温度勾配を設けたり、 あるいは均熱ゾーンの長い温度分布の装置 とすることができる。
実施例 4
図 8は、 加熱管内を走行する被加熱物に対して、 水蒸気や表面層形成の ためのガスあるいは表面酸化防止のための非酸化性または還元性のガス等 を作用させるのに適した加熱装置の他の実施例を示す。
同図において、 1 0と 1 1は、 抵抗発熱体または発熱体の内径に挿着さ れた加熱管 1の被加熱線条材の導入口 1 2 と排出口 1 3の近く に設けら れ、 また、 それぞれの端部近くにメ タライズした端子部 4を形成したガス の導入管と導入ガスの一部を排出する排出管を示す。 この導入ガスの排出 管 1 1は、 図示するような形態を採らず、 排出口 1 3の部分にメ タライズ 処理して端子部を形成して、 この端子部の端部をガス排出口とすることも できる。 このガスの導入管 1 0は加熱管 1に対する交差角度 αが 9 0 。以 上になるように一体構造と してあるいは適宜な連結手段で加熱管 1 と連結 して、 導入したガスがスムーズに流れるよ う にしている c 加熱管 1 に対 し、 導入管 1 0から導入されたガスは、 その大部分が矢印の方向に所定温 度に加熱された加熱管 1内の加熱ゾーンを流れ、 被加熱線条材に適した加 熱雰囲気を形成したのち排出管 1 1から排出される。 なお、 導入管 1 0か ら導入されたガスは、 その一部が被加熱線条材の導入口方向に流れること があり、 またガス排出管 1 1を設けた装置においても導入ガスの一部が排 出□ 1 3から放出される。 したがって、 管状ガイ ドを導入口 1 2と排出口 1 3に取り付ける場合は、 その内径はできるだけ小さ く してお く のがよ い
実施例 5
差替 え 用 (規則 26) 図 9は、 図 8に示すように、 加熱管 1 と分岐して設けたガス導入管 1 0 に代えて、 加熱管 1の被加熱材の導入口 1 2の部分に、 ガス導入部材 1 4 を嵌着して設けた例を示す。 この場合、 ガス導入部材 1 4はガイ ドと兼ね て形成されており、 被加熱材の導入口 1 5とガス導入口 1 6が設けられて いる。
このよう に、 加熱管の内部に水蒸気や各種のガスを導入することによ り、 被処理物を加熱する際に種々の効果が得られる。 例えば、 繊維材料の 場合、 合成繊維のみならず動植物性の糸状を管状抵抗発熱体内部で加熱す る際に水蒸気を加熱管内に供給することによ り温度単独の作用に湿潤作用 も加味されるために、 延伸性や仮撚性ゃ圧空加工時の風合いを向上させる ことができる。 また、 金属線等の加熱処理に使用する際には、 非酸化性の ガスまたは還元性のガスを導入することによ り、 電力消费!:が少なく、 し かも棰めて少量のガス消費量で優れた線材を得ることができる。
なお、 本発明の加熱装置の消费電力は、 実施例の図 1に示した構成にお いて、 抵抗発熱体の内径が 1 0 mmで長さが 5 0 0 mm, 断熱材の厚みが 7 0 mmで 5 0 0 。 Cに温度を保持した場合、 7 0 W / Hであり、 非常に 省ェネルギー性である結果を得た。
実施例 6
この実施例は、 長手方向に外径から内径面までの貫通した直線状のス リ ッ トを形成して、 被加熱線条材を管状の抵抗発熱体の側面から挿入する 加熱管の例を示す。
図 1 0はその加熱管 1の基本構造を示すもので、 図 1 1は図 1 0の A— A線から見た断面を示す。 図中、 4はその両端にメ タライズして形成され た端子部を示す。 その加熱管 1の一側面には、 その全長にわたってスリ ツ ト状の開口 1 7が形成されており、 その内部には線状材が走行する通路 1 8が形成されている。
^替 え用紙(規則 26) 図 1 2および図 1 2の B - B線から見た断面を示す図 1 3は、 図 1 0お よび図 1 1に示す管状の抵抗発熱体からなる加熱管 1の内面に絶縁性材料 からなる被膜または耐火管 8を設けた加熱管の例を示す。
図 1 4および図 1 4の C - C線から見た断面を示す図 1 5は、 直管状の 加熱管 1にスリ ッ ト状の開口 1 7を形成し、 これに両端付近に端子部 4を 有する導電経路 1 9を接合して門型構造を形成している。
図 1 6は、 図 1 0 と図 1 1に示す加熱管 1をヒーターケース 2内に 2本 並列に配置した非接触型の線条材加熱装置の蓋を取り外して、 加熱管のス リ ッ ト方向から見た平面図を示す。 図 1 7は、 図 1 6に蓋を取り付けた状 態を D - D線から見た図を示す。
図 1 6および図 1 7において、 加熱装置は、 開放可能な蓋 2 1をその下 面に設けたヒーターケース 2内に加熱管 1を必要に応じて 1本又は 2本以 上を並列に配置した構造を有する。 なお、 この加熱装 fiは、 加熱管 1のス リ ッ ト状の開口 1 7が水平方向で上向きまたは下向きになるようにヒー ターケース 2を取り付ける場合があり、 また水平に限らず、 垂直方向ある いは傾斜方向に取り付けることもできる。 それぞれの加熱管 1のスリ ッ ト 状閉口 1 7は、 共に、 ヒーターケース 2の蓋 2 1の開放方向を向く ように 配置されている。 蓋 2 1は台形状をなし、 この蓋部 2 1を蓋閉閉用スライ ド板 2 0によって、 点線の矢印で示すように、 下方にスラィ ドさせること によ り ヒーターケース 2の下面は閉口し、 加熱管 1内の線条材通路と、 そ れぞれの加熱管 1 のス リ ッ ト状開口 1 7及びヒ—ターケース 2の下面の開 口とが外方に向かって開放された状態となる
このヒーターケース 2の蓋 2 1 は、 このスライ ド方式の他に、 他の形態 のものを任意採用するこ とができる。
図 1 8は、 ヒータ一ケース 2の下面を 2 1 1 と 2 1 2に分割して、 ヒー タ一ケース 2の側面に設けたヒ ンジ 2 1 3、 2 1 を中心に回転する観音 閉き構造にした蓋構造とすることができる。 また、 蓋全体を開き戸式に、
差替 え用紙(規則 26) さらには、 蓋全体をスリ ッ ト状の開口部から離反させることによ り、 左右 方向に開口させる構造とすることもできる。
このように、 蓋 2 1または 2 1 1 と 2 1 2あるいは蓋全体の開放によつ て、 加熱管 1内の線条材通路 1 8がス リ ッ ト状の閉口 1 7を介してヒー ターケース 2の下面の開口に相対した状態となるので、 図 1 7の 1点鎖線 で示すような経路で線状材を加熱管内にスラィ ドして導入可能となり、 こ れによって糸掛け作業を短時間で完了できる。
この線状材を加熱管内に導入しセッ トするためには、 図 1 6から図 1 8 には図示していないが、 ヒーターケ一スの長手方向の前後にセッ ト した線 状材導入ガイ ドを利用して蓋を開放した開口経路に沿って図 1 7の 1点鎖 線で示すようにスライ ドさせるのが都合がよい。 また、 線状材をスリ ッ ト 状の開口から加熱管の内部に案内するためのガイ ドは、 線状材がスリ ツ ト 付きの加熱管内部を走行する際に、 振動、 振れ、 弛みや繊維材料の場合は バルーン現象等によ り加熱管内面に線条材が接触するのを防止する機能を 有する。
図 1 6と図 1 7に示す装置において温度保持電力及び合成繊維を非接触 状態で加熱テス ト した結果を以下に示す。
( 1 )線条材加熱装置の温度保持電力
a . 本発明の装置の仕様
· 加熱管(抵抗発熱体)の寸法
外径 X内径 X長さ = 95 l 5 X 95 9 X 5 0 0mm (発熱部長さ 4 5 0 mm )
. 断熱材を充填したヒ一タ一ケースの寸法
幅 X 高 さ X 長 さ = 1 2 6 X l 2 6 X 5 8 0mm ( 断 熱 材 部 長 さ 4 5 0 mm )
b . テス ト条件
• 印加電圧 = 2 0 0 V
' 装置の設置方向 =長手方向を垂直に設置
c .温度変更時の装置性能
差替 え 用紙(規則 26) 装置の種類 設定温度 加熱管内部温度 温度保持電力 従来の市販設備 250。C 150W 特願平 7-89799号 400。C 410°C 39W
本発明の装置 250°C 250°C 22W
本発明の装置 400°C 401°C 40W 注)従来の市販設備は加熱部長さが 2 0 0 0 mmの装置である。
( 2 )合成繊維( ナイ ロ ン ) の加熱テス ト結果
表 2
Figure imgf000016_0001
上記テス ト結果で示したように、 本発明の装置は加熱管内外の温度差が なく、 精密に温度コ ン ト ロールができること、 従来の市販設備よ り も加熱 管の長さを短く しているにもかかわらず、 同等以上の性能を発揮するこ と、 設定温度での保持電力が非常に小さ く て済むこと、 加熱処理した加工 糸は繊維本来の強度等の特性が損なわれず光沢の面でも非常に優れたもの であった。
実施例 7
この実施例は被加熱材である線条材を加熱管に導入するためのガイ ドを 加熱管内に組み込んだ例を示す。
図 1 9から図 2 1は、 そのガイ ド 2 2の第 1の例を示す。 図 1 9は上方 から見た図、 図 2 0は側面から見た図、 図 2 1は正面図を示す。 このガイ 差替 え用紙(規則 261 ド 2 2は、 前述の加熱管の内部に位置する胴体部 2 2 1 と加熱管のスリ ッ ト開口から外方に位置する先端の内方がテーパーあるいは Rが形成された 案内羽根部分 2 2 2とからなり、 深溝 2 2 3が案内羽根部分 2 2 2の先端 から胴体部 2 2 1まで形成されている。 このガイ ド 2 2は、 スリ ッ トを形 成した加熱管の端面部から挿入して装着するもので、 案内羽根 2 2 2の部 分の幅寸法が加熱管のスリ ッ ト幅寸法よ り もわずかに小さ く 、 しかも胴体 部 2 2 1の幅寸法を加熱管のス リ ッ ト幅寸法よ り も大き く した構造を有す る。 2 2 3は線条材を導入するために案内羽根部分 2 2 2から形成された ガイ ド溝および線条材が走行する溝を示す。 また、 2 2 4は、 ガイ ド 2 2 の側面に形成された、 温度センサ— ( 以下熱電対を含む ) を装着するため の装着溝を示す。 これによつて、 このガイ ド 2 2は線状材を加熱管内部に 導入するためのガイ ドの機能と、 温度センサーを加熱管内に装着するため のガイ ドの機能、 さらには、 線状材の走行ガイ ドの機能と、 3つの機能を 兼ねたものとなる。
実施例 8
図 2 2および図 2 3は、 そのガイ ド 2 2の他の例を示す。 何れも、 側面 の温度センサー装着溝 2 2 4を案内羽根部分 2 2 2から胴体部 2 2 1まで 直線的に形成したものであり、 深溝部 2 2 3の延長方向に割れる欠点をな くする効果がある。 図 2 3は、 胴体部 2 2 1の側面 R部分を力ッ ト した構 造を示す。
図 2 4 と図 2 5は、 このガイ ド 2 2を加熱管 1に挿入し、 且つ温度セン サ一 2 3をガイ ド 2 2の温度センサー装着溝 2 2 4に装着した状態を示す もので、 それぞれ、 加熱管 1の端面方向から見た図と、 加熱管のス リ ッ ト の方向から見た図を示す。 温度センサー 2 3はガイ ド 2 2の装着溝 2 2 4 に装着され、 しかも、 加熱管 1の内部に及ぶために、 加熱管 1の内部温度 を正確に検知できる。 さらに、 ガイ ド 2 2は温度センサ一 2 3がス ト ツ パーとなって、 上面カ ツ トによ り形成されたス リ ッ ト閉口 1 7の拡開部 1 7 1 よ り も外に移動せず、 しかも加熱管 1の内部に位置するガイ ド 2 2 差替 え用紙(規則 26) の胴体部 2 2 1がス リ ッ ト開口 1 7の幅よ り大きいため脱落することはな い。 また、 温度センサー 2 3がガイ ド 2 2を利用して加熱管 1の内部に取 り付けられるため線条材の加熱温度そのものを測定することができる。
なお、 温度センサー 2 3を取り付ける必要のない部分にガイ ド 2 2を組 み込む場合は、 温度センサー 2 3の代わり に耐熱性のピンを装着すること によ り、 ガイ ドの位置ズレを防止することができる。 また、 温度センサー を組み込む必要のない位置にガイ ド 2 2をセッ トする場合は、 上面力ッ ト 溝加工を省略して、 図 2 6および図 2 7に示すように、 加熱管 1のスリ ツ ト開口 1 7に局部的に拡開部 1 7 1を形成し、 この拡開部 1 7 1 とガイ ド 2 2の側面の溝部とにピン等の移動止め用治具を装着することによ り、 ガ ィ ドの上下方向あるいは前後方向へのズレ (移動) を防止できる。
ここで、 スリ ッ ト状の開口 1 7の形成やガイ ド 2 2の製作及び装着费用 さらにはヒーターケースの複雑さ等によ り、 一般的に線条材の横入れ方式 は加熱装置の製造原価が割高となる。 したがって、 線条材特に繊維のバ ルーン現象による振幅よ り も加熱管の内径を大き く して、 しかも加熱管内 に挿入した耐熱絶緣材料で線条材を引き入れることによ り、 スリ ツ ト開口 の形成及びガイ ドの装着等が省略できる。
実施例 9
図 2 8は、 加熱管 1の前後端部に形成したメ タライズ端子部 4に取り付 けた接続端子部材 2 4を加熱管 1のス リ ッ ト状開口 1 7の方向から見た図 を示す。 図 2 9はその加熱管 1の端面方向から見た図を示す。 この接続端 子部材 2 4は、 加熱管 1のスリ ッ ト 1 7 と対応する開口を形成した分割部 材 2 4 1 と 2 4 2からなり、 線条材を加熱管 1内に導入するのに邪魔にな らない構造と している。 この接続端子部材 2 4を加熱管 1の端子部に取り 付けるためには、 それぞれの分割部材 2 4 1 と 2 4 2を支点部 2 4 4を介 して押圧部 2 4 3に締付力を作用させることによ り、 端子部を両側から挾 みこむ状態で強力に圧接できる。
差替 え用紙(規則 26) この接続端子部材 2 4は、 分割部材 2 4 1と 2 4 2及び抵抗発熱体の端 子面との間に銀その他の導電性のペース ト塗料あるいは良導体からなる網 導線等 2 4 5を介在させ、 押圧部 2 4 3を締めつけることによ り強力に圧 接可能な構造と している。
また、 図 3 0の a、 b、 c、 dは、 この接続端子部材 2 4の変更例を示 す。 この例に示すように、 加熱管の端子部に、 その両側から挟み込み可能 な端子部材を形成することによって、 端子部と接続端子部材とを強力に締 めつけることができるので、 1 0 0 0回以上の電力のオン、 オフ時の加熱 冷却によっても接触抵抗は全く変化しない結果を得ることができる。 産業上の利用可能性
本発明の非接触型の加熱装置は、
( 1 )加熱装置全体の長さや奥行きを短く して非常にコンパク トな設備に することができる。
( 2 )消费罨カがきわめて少ない優れた省エネルギー性が発揮できる。
( 3 )装置の昇温速度及び冷却速度が非常に速く、 手待ち時間が短い。
( 4 )加熱管の温度を正確に検知することができ、 温度調節の精度が優れ ている
( 5 )スリ ッ ト開口の形成によ り、 線条材の加熱管内への導入が簡単で短 時間で作業できる。
( 6 )線条材ガイ ドまたは温度センサー保持兼線条材ガイ ドの、 位置ずれ や移動及び脱落が防止できる。
( 7 )加熱管内に水蒸気による加湿空気や非酸化性のガスを導入できるの で、 非接触型の加熱装置を多目的に使用することができる。
( 8 )加熱管を直線状に維持した状態で、 長尺装置とすることができる c ( 9 )被加工物が振動状態で送入されても、 両端のガイ ドの小径部で保持 されるので、 加熱管の内壁に接触することがない。
差替 え 用紙(規則 26) ( 1 0 )本発明の接続端子部材は、 スリ ッ ト状閉口のない加熱管にも適用 できる。
( 1 1 )線条材、 特に繊維の劣化が少なく、 光沢に優れしかも風合の良い 製品が得られる。
したがって、 非接触型の加熱装置の多目的化と実用化が達成できる。
差替 え 用紙(規則 26)

Claims

請 求 の 範 囲 1 .被加熱材である線条材の通路を内部に形成した加熱管を有する非接触 型の線条材加熱装置において、 温度センサーを前記加熱管の発熱部分に直 接接触する状態で取り付けたことを特徴とする。
2 .被加熱材である線条材の通路を内部に形成した加熱管を有する非接触 型の線条材加熱装置において、 加熱管内に温度センサーを挿入したことを 特徴とする。
3 .被加熱材である線条材の通路を内部に形成した加熱管を有する非接触 型の線条材加熱装置において、 加熱管の内面に耐熱性の絶緣保護層を設け たことを特徴とする。
4 .被加熱材である線条材の通路を内部に形成した加熱管を有する非接触 型の線条材加熱装置において、 加熱管をその長さ方向に複数に分割し、 そ れぞれの分割加熱管を個別に温度調節できるよ う にしたこと を特徴とす る。
5 .被加熱材である線条材の通路を内部に形成した加熱管を有する非接触 型の線条材加熱装置において、 加熱管の一方の端子付近または管状ガイ ド に加熱管体内に雰囲気制御のためのガス体を導入する導入口を形成したこ とを特徴とする。
6 .被加熱材である線条材の通路を内部に形成した加熱管を有する非接触 型の線条材加熱装置において、 加熱管の全長にわたって線条材を加熱管の 側面方向から導入するためのス リ ッ ト状の開口を設けたこ とを特徴とす る。
7 . 請求項 6に記載の非接触型の線条材加熱装置において、 ス リ ッ ト状の 開口の少な く と もいずれか一方側に角状溝または R溝を設けるこ とによ り、 スリ ツ ト幅寸法を局部的に拡開したことを特徴とする。
8 .被加熱材である線条材の通路を内部に形成した加熱管を包むヒータ— ケースからなる非接触型の線条材加熱装置において、 加熱管の全長にわ
差替 え 用紙(規則 26) たつて線条材を加熱管の側面方向から導入するためのスリ ッ ト状の開口を 設けると と もに、 この加熱管に設けられたスリ ツ ト状の開口に対向して ヒーターケースに閉閉可能な蓋を設けたことを特徴とする。
9 . 請求項 6から請求項 8の中の何れかに記載の非接触型の線条材加熱装 置において、 加熱管に設けたスリ ッ ト状の開口よ り も大きな胴体寸法を有 し、 且つ、 側面に温度センサー又は移動防止用のピンを装着するための溝 を有する被加熱材である線条材を加熱管に導入するためのガイ ドを加熱管 内に組み込んだことを特徴とする。
1 0 .被加熱材である線条材の通路を内部に形成した加熱管を有する非接 触型の線条材加熱装置において, その加熱管の端子部に、 その両側から挟 み込み可能な接続端子部材を接続したことを特徴とする。
差替 え 用紙(規則 26)
PCT/JP1996/001016 1995-04-14 1996-04-12 Dispositif de chauffage sans contact pour un fil metallique WO1996032525A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP96909360A EP0770720A1 (en) 1995-04-14 1996-04-12 Noncontact heater for wire material
KR1019960707130A KR100212641B1 (ko) 1995-04-14 1996-04-12 비접촉형 선조재 가열 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7/89799 1995-04-14
JP08979995A JP3420379B2 (ja) 1995-04-14 1995-04-14 非接触型の線条材加熱装置
JP8041949A JPH09237674A (ja) 1996-02-28 1996-02-28 非接触型の線条材加熱装置
JP8/41949 1996-02-28

Publications (1)

Publication Number Publication Date
WO1996032525A1 true WO1996032525A1 (fr) 1996-10-17

Family

ID=26381599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001016 WO1996032525A1 (fr) 1995-04-14 1996-04-12 Dispositif de chauffage sans contact pour un fil metallique

Country Status (4)

Country Link
EP (1) EP0770720A1 (ja)
KR (1) KR100212641B1 (ja)
TW (1) TW438189U (ja)
WO (1) WO1996032525A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100203231A1 (en) * 2007-03-30 2010-08-12 Hiroyuki Kusaka Method and apparatus for producing insulated wire
US20140216340A1 (en) * 2010-04-08 2014-08-07 Furukawa Electric Co., Ltd. Method and apparatus for producing insulated wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306086C (zh) * 2004-01-17 2007-03-21 江苏宏源纺机股份有限公司 高温加热装置中的热轨

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143700U (ja) * 1974-09-20 1976-03-31
JPS5255718A (en) * 1975-10-31 1977-05-07 Toyobo Co Ltd Apparatus for heat-treating of filament yarns
JPS5241370B2 (ja) * 1973-09-14 1977-10-18
JPS5516936A (en) * 1978-07-20 1980-02-06 Teijin Ltd Yarn heat treating method
JPS5918319Y2 (ja) * 1977-10-05 1984-05-26 富士電機株式会社 不活性ガス雰囲気中で行う黒鉛繊維加熱装置
JPH04308240A (ja) * 1990-12-21 1992-10-30 Icbt Roanne 移動する糸の熱処理のための装置
JPH06272124A (ja) * 1993-01-19 1994-09-27 Teijin Seiki Co Ltd 合成繊維糸条の加熱装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5241370B2 (ja) * 1973-09-14 1977-10-18
JPS5143700U (ja) * 1974-09-20 1976-03-31
JPS5255718A (en) * 1975-10-31 1977-05-07 Toyobo Co Ltd Apparatus for heat-treating of filament yarns
JPS5918319Y2 (ja) * 1977-10-05 1984-05-26 富士電機株式会社 不活性ガス雰囲気中で行う黒鉛繊維加熱装置
JPS5516936A (en) * 1978-07-20 1980-02-06 Teijin Ltd Yarn heat treating method
JPH04308240A (ja) * 1990-12-21 1992-10-30 Icbt Roanne 移動する糸の熱処理のための装置
JPH06272124A (ja) * 1993-01-19 1994-09-27 Teijin Seiki Co Ltd 合成繊維糸条の加熱装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100203231A1 (en) * 2007-03-30 2010-08-12 Hiroyuki Kusaka Method and apparatus for producing insulated wire
US8790747B2 (en) * 2007-03-30 2014-07-29 Furukawa Electric Co., Ltd. Method and apparatus for producing insulated wire
US20140216340A1 (en) * 2010-04-08 2014-08-07 Furukawa Electric Co., Ltd. Method and apparatus for producing insulated wire

Also Published As

Publication number Publication date
KR100212641B1 (ko) 1999-08-02
EP0770720A1 (en) 1997-05-02
TW438189U (en) 2001-05-28

Similar Documents

Publication Publication Date Title
KR19990037013A (ko) 워터 젯 룸의 직물 건조 장치
WO1996032525A1 (fr) Dispositif de chauffage sans contact pour un fil metallique
US4820905A (en) Carbonizing furnace
EP0167402B1 (en) Forehearths
GB2273302A (en) Heating means for false-twister
JP4495594B2 (ja) 糸を加熱するための加熱装置
CN208166581U (zh) 一种多温区连续式超高温石墨化炉
US4330312A (en) Apparatus for flowing streams of fiber-forming material for attenuation to fibers or filaments
US3589879A (en) Device for supplying glass melt from the feeder of a glass furnace into the glass fiber formation zone
JP2000211939A (ja) 光ファイバプリフォ―ム加熱およびファイバ線引きのためのプログラム可能論理制御装置を特徴とする光ファイバ線引き炉
JP3420379B2 (ja) 非接触型の線条材加熱装置
JP4394345B2 (ja) 非酸化物セラミックス焼結用焼成炉と非酸化物セラミックス焼結体の製造方法
JP3358511B2 (ja) 糸用加熱装置
US4185980A (en) Manufacturing glass with improved silicon carbide bushing operation
CN109772659A (zh) 一种用于亲水铝箔固化的固化炉
EP0903431A3 (en) Textile machine arrangement
JP7172221B2 (ja) 発熱体の温度調整方法及びガラス物品の製造方法
CN216360458U (zh) 双热区玻璃拉丝炉
JP2002212853A (ja) 糸条熱処理装置
EP1629693B1 (en) Infrared radiating panel
JPH09229779A (ja) 半導体素子製造装置の熱電対
SU1689313A1 (ru) Индукционна печь дл получени оптического волокна
KR20240146149A (ko) 열확산을 돕는 복합체를 포함한 면상 발열체
SU1708947A1 (ru) Устройство дл высокотемпературной обработки волокнистых материалов
JPH0371811A (ja) 加熱装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 750786

Date of ref document: 19961210

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996909360

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996909360

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996909360

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载