+

WO1996030560A1 - Tole d'acier prevenant la corrosion pour citernes a combustible et procede d'elaboration de cette tole - Google Patents

Tole d'acier prevenant la corrosion pour citernes a combustible et procede d'elaboration de cette tole Download PDF

Info

Publication number
WO1996030560A1
WO1996030560A1 PCT/JP1996/000835 JP9600835W WO9630560A1 WO 1996030560 A1 WO1996030560 A1 WO 1996030560A1 JP 9600835 W JP9600835 W JP 9600835W WO 9630560 A1 WO9630560 A1 WO 9630560A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
zinc
tin
alloy
less
Prior art date
Application number
PCT/JP1996/000835
Other languages
English (en)
French (fr)
Inventor
Yashichi Oyagi
Takayuki Omori
Masahiro Fuda
Ken Sawada
Nobuyoshi Okada
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP07069087A external-priority patent/JP3126622B2/ja
Priority claimed from JP07070259A external-priority patent/JP3126623B2/ja
Priority claimed from JP07070260A external-priority patent/JP3129628B2/ja
Priority claimed from JP07073140A external-priority patent/JP3135818B2/ja
Priority claimed from JP7132995A external-priority patent/JP3071667B2/ja
Priority claimed from JP07152846A external-priority patent/JP3133231B2/ja
Priority claimed from JP07224906A external-priority patent/JP3133235B2/ja
Priority claimed from JP22870995A external-priority patent/JP3581451B2/ja
Priority to DE1996637118 priority Critical patent/DE69637118T2/de
Priority to AU51219/96A priority patent/AU686502B2/en
Priority to US08/750,073 priority patent/US5827618A/en
Priority to EP96907700A priority patent/EP0763608B1/en
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Publication of WO1996030560A1 publication Critical patent/WO1996030560A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/026Deposition of sublayers, e.g. adhesion layers or pre-applied alloying elements or corrosion protection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/08Tin or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12722Next to Group VIII metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Definitions

  • the present invention relates to a steel sheet for promotion mainly used for a fuel tank for an automobile or a wiring member of an electric (electronic) device, and a method for producing the same.
  • lead-tin alloy-plated steel sheets excellent in corrosion resistance, workability, solderability (weldability) and the like have been mainly used as fuel tank materials, and have been widely used as fuel tanks for automobiles.
  • zinc-tin alloy-plated steel sheets, which contain tin in addition to zinc have excellent corrosion resistance and solderability (weldability), and have been used as wiring members for electrical (electronic) equipment.
  • the zinc-tin alloy coated steel sheet for example, as disclosed in Japanese Patent Application Laid-Open No. 52-130438, when zinc-tin alloy containing tin: 3 to 20% by weight is applied, It has been produced mainly by the electroplating method in which electrolysis is carried out in an aqueous solution containing tin ion.
  • Japanese Patent Publication No. 52-35016 discloses a hot-dip galvanizing method in which a steel sheet having a tin content of more than 80, 98 weight, and zinc of less than 2 to 20 weight% is coated with a fuel tank for automobiles and an oil tank for oil stove. Examples for use in the work are disclosed.
  • Japanese Unexamined Patent Publication (Kokai) No. 4-214848 discloses that an iron-based material coated with tin 7 () to 98% by weight of a sub-tin alloy and a method for producing the same are disclosed.
  • JP-A-3-229846 and JP-A-5-263208 disclose an iron-based base material containing an alloy layer containing tin as a coating layer for molten zinc or a molten zinc alloy, or containing zinc and aluminum.
  • a zinc-based coating which is successively coated with a chromium plating layer on an alloy layer and a method for producing the same are disclosed.
  • JP-A-5-9786 and JP-A-6-116749 disclose, on nickel, cobalt and a first plating layer containing these, tin, nickel having a lower melting point than the above-mentioned layers, and a second plating layer containing these.
  • a steel sheet, a steel sheet part, and a welded pipe such as a fuel pipe for an automobile, which are obtained by successively coating steel sheets and then performing plastic processing and heat treatment, are disclosed.
  • Japanese Patent Publication No. 63-66916 discloses a steel sheet for an alcohol-containing fuel container in which a tin-zinc alloy coating layer is applied to a low carbon steel to which alloy elements such as chromium, aluminum, titanium, and niobium are added. Have been.
  • lead-tin plated steel sheets ensures corrosion resistance that satisfies the service life of the vehicle, workability that can be processed according to the complex structure of the vehicle bottom, solderability that can join fuel tank parts, and weldability.
  • the use of lead-tin-plated steel sheets contains lead because of environmental regulations such as the regulation of lead elution from industrial waste such as Schletz-Dustust, which is not preferred. No.
  • the chromium coating layer is added to further improve the erosion resistance, but the thickness of the zinc or zinc alloy layer is increased. 5 to 75 zm, preferably 10 to 50 / ⁇ , and more preferably 10 to 30 m, and it is difficult to secure the corrosion resistance of the alloy layer. As it is contained, the hardness increases and the workability significantly decreases, making it unsuitable as a fuel tank material.
  • JP-A-5-9786 and JP-A-6-1-16749 disclose that on a first plating layer composed of Ni, Co and one of these base alloys, a Sn— Disclosed are a steel plate part, a welded pipe, and a method of manufacturing the same, which have a contact portion with a fuel on which a second plating layer such as a Zn alloy is formed.
  • a heat treatment after plating is an essential step. I have.
  • This heat treatment process is to prevent pinholes remaining in the first plating layer and cracks generated by plastic working by melting and flowing the second plating layer. It is in.
  • this heat treatment is performed at a high temperature of 600 to 1200, special components such as zinc may be distorted in the cooling process after melting, and the corrosion resistance may be locally deteriorated. .
  • the present invention will be described in detail later, it is natural that there is no need to perform a heat treatment after plating due to the use of the hot-dip plating method.
  • the products obtained and the manufacturing methods used are also different.
  • the inventors of the present application conducted detailed studies on the relationship between the size of zinc crystals and the erosion properties of the zinc morphology in the Sn-Zn alloy plating layer, and showed excellent characteristics.
  • the present invention clarifies the preferred distribution of zinc crystals required for a fuel tank material having the following and cooling conditions after plating to achieve the same. There are no disclosures or suggestions for these relationships, which are important constituents in.
  • JP-A-3-229846 discloses that a zinc coating or a zinc alloy coating is coated on an iron-based coated object via an alloy layer containing at least iron, zinc and nickel.
  • a woodcutter coating is disclosed.
  • the zinc alloy coating there is a disclosure of a molten Zn-Sn alloy coating layer containing tin in an amount of 30 wt% or more, but aluminum is an essential component system in the zinc alloy coating in this publication.
  • the technical details are added only when the Zn-A1 alloy is used as the zinc alloy. Therefore, there is no technical disclosure regarding the Sn—Zn alloy plating layer that has been noted in the present invention.
  • since there is no description about cooling conditions after plating it is expected that zinc will grow in a giant crystal, and the possibility of deterioration of corrosion resistance is great.
  • the technical problems are different in the case of an object or an iron-based coated object (higher concept such as steel plate and object) and an object.
  • an object Since it is difficult or difficult to form a zinc-tin alloy plating film with high tin content and excellent corrosion resistance, it contains at least iron and zinc and contains nickel. It is specified that it is necessary to form a zinc-tin alloy film through an alloy layer.
  • the publication discloses that the present invention is applied to a case where a ⁇ ⁇ object or a net plate is present.
  • The alloy containing Fe. Zn. Sn, which has the «I composition requirements of the moon, ⁇ is illuminated by the K invention, and was revealed by the K invention of the present invention. There is no description or suggestion about the relationship between the size of lead crystals and corrosion resistance.
  • a characteristic iron-zinc alloy layer such as a shelf-like layer or a columnar layer is formed to be as thick as or more than a zinc-tin alloy plating layer, severe processing conditions are required thereafter. It is considered that there is a problem in the processability and the food quality of processed shochu in the fuel tank material applications exposed below.
  • Japanese Patent Application Laid-Open No. 5-263208 discloses a zinc-based plating coating in which an iron-based substrate is sequentially coated with a molten Zn—Sn alloy plating layer containing at least zinc and tin and a chrome plating layer.
  • a molten Zn—Sn alloy plating layer containing at least zinc and tin and a chrome plating layer.
  • the alloy layer containing Ni, Fe, Zn, and Sn which is a constituent requirement of the present invention, and there is no description about the distribution form of zinc crystals.
  • giant crystal growth of zinc is expected, and the possibility of deterioration of corrosion resistance is great.
  • Japanese Patent Publication No. 52-35016 discloses a Sn—Zn-based melt-coated steel material having an alloy coating having a composition of more than 80 to 98% by weight of tin and 2 to less than 20% by weight of zinc.
  • a technical description is given of a Sn—Zn alloy having a specific composition as a tack layer, there is no description of an alloy layer containing Ni.Fe.Zn.Sn, which is a constituent element of the present invention, and zinc is not included. There is no description about the distribution form of the crystals.
  • JP-A-63-66916 discloses that a diffusion layer of Ni or Co or a Ni—Co alloy and a Sn—Zn alloy are added to a low carbon steel to which alloying elements such as Cr. Al, Ti.
  • a steel plate for a fuel container provided with a plating layer is disclosed.
  • the plating method of the Sn-Zn alloy the specification states that "the plating method and plating conditions are not particularly specified" or are actually disclosed. Since it is an aerial plating method, it may be necessary to perform a heat-melting process (sealing process) on the binhole portion of the alloy-coated layer in some cases. On the other hand, according to the present invention, it is not necessary to perform M-hole treatment after the picking because the picking method is used.
  • the inventors of the present invention have conducted detailed studies on the relationship between the zinc crystal size and the corrosion resistance of the zinc morphology in the Sn-Zn alloy plating layer, and have excellent characteristics. This clarifies the preferred distribution form of zinc crystals required for fuel tank materials and the cooling conditions after plating to achieve this. These prior arts are important in the present invention. There are no disclosures or suggestions about the essential constituents such as the distribution form of zinc crystals and the cooling conditions after plating. Disclosure of the invention
  • the present inventors have studied the structure, surface condition, base metal composition, etc. of the zinc-tin alloy coating layer, further coating conditions for improving corrosion resistance, and the zinc-tin alloy coating layer. As a result of various studies on optimum manufacturing conditions, it was found that the configuration according to the present invention satisfies the optimum performance as a fuel tank material.
  • the present inventors have paid attention to the relationship between the size of zinc crystals and corrosion with respect to the form of zinc in the zinc-tin alloy layer. That is, if the size of the zinc crystal is large, the zinc crystal is preferentially corroded preferentially, and the plating layer is locally corroded and the life until the penetration of the plating layer is shortened. In addition, when processed, the large zinc crystal becomes a crack propagation path, and the crack propagates through the plating layer, causing cracks and accelerating the progress of the corrosion to the steel. For this reason, it has been ascertained that the size of zinc crystals and the number per unit area are important factors.
  • the present inventors have found that, in an optimum combination, the surface condition of the zinc-tin alloy coating layer, in particular, the surface roughness and the corrosion resistance, the workability, and the base metal composition as the base are improved.
  • spangles mainly composed of tin precipitate as primary crystals during the cooling process of the zinc-tin alloy coating layer.
  • a large crystal structure hereinafter referred to as “sbangles”
  • it is rapidly dissolved in corrosive environment mainly with acicular crystals of zinc, and cracks are likely to occur from the acicular crystals as a starting point.
  • extreme rapid cooling will reduce the size of the span, so large strains will be incorporated into the crystal, which may affect corrosion resistance and workability.
  • heat such as baking paint is usually applied, and the strain is expected to be released.
  • the present inventors have found spangles of an optimum size in addition to the optimum manufacturing conditions for the zinc-tin alloy coating layer.
  • the present inventors have also found optimum production conditions for obtaining the zinc-tin alloy coating layer.
  • a first object of the present invention is to provide an alloy layer containing at least one of nickel, iron, zinc and tin on the surface of a steel sheet having a thickness of 2 m or less per side, further comprising tin: 40 to 99% by weight, and the balance zinc and becomes unavoidable impurities, the major diameter of zinc crystals contained therein is not less than 250 zm is 0. 25 mm 2 20 or less, and tin per side thickness 2-50 - zinc alloy plated layer is Provide a fuel tank protection plate.
  • a second object of the present invention is to provide a 13 ⁇ 4 steel plate for a fuel tank having a surface roughness Ra (center line average share) force of the tin-zinc alloy plating layer of 0.2 to 3.0 m. I will provide a.
  • the third object of the present invention is to provide the composition of the base metal K for forming the d ffi -zinc alloy plating layer, or 8% by weight, 0.1 l «t, S i ⁇ 0.1, 0.05 cin ⁇ .
  • Al ⁇ 0.1% contains one or more of Ti and Nb in an amount equal to or more than the atomic equivalent (C + N) content of 1.0% or less and the balance Fe and inevitable Steel containing fuel impurities, and further containing at least one of B: 0.0002 to 0.0030% and Cr: 0.2 to 6% in addition to the above composition.
  • the present invention is the tin - zinc alloy plated layer of chromium equivalent amount of per side 0.2 ⁇ 100 mg / m 2 on the outside black mail preparative treated film and Z or the organic resin of the principal accession Li Le, poly esters, Ri by epoxy resin chromium, shea Li co down, Li down, the fuel data down click for proof with organic one inorganic composite coating adhesion amount 0. 01 ⁇ 2.0 g / m 2 comprising one or more manganese Offer steel plate.
  • the present invention provides a method for obtaining the tin-zinc alloy-coated layer
  • Fig. 1 (a) is a photograph of the structure of the giant zinc crystals deposited in the conventional zinc-tin alloy coating layer
  • Fig. 1 (b) is the appropriateness of the zinc-tin alloy coating layer obtained by the present invention. It is a structure photograph of the precipitation size of a zinc crystal of a size.
  • FIG. 2 is a diagram showing the relationship between the major axis (m) of the zinc crystal of the tin-zinc plated material in the salt spray test (the rate of red promotion of the tin-zinc plated steel sheet after 500 hours of SST).
  • the present invention clarifies the relationship between the size of zinc crystals in the tin-zinc alloy-coated layer and the relationship between the size of zinc crystals and the number per unit area and corrosion. I do.
  • Figure 1 shows a micrograph of the structure of the zinc crystals.
  • Fig. 1 (a) shows a giant zinc crystal coated on a conventional zinc-tin alloy, whose size reaches several hundreds / m, and is a giant sub-product as shown in gii iii.
  • FIG. 1 (b) shows the case where the zinc crystals of a certain specific size exist per unit area when the corrosion resistance is remarkably improved in the present invention.
  • the relationship between zinc crystals of a specific size per unit area and corrosion resistance will be described with reference to FIG.
  • Figure 2 shows the relationship between the major diameter ( ⁇ ⁇ m) of the zinc crystal of the tin-zinc-plated material in the salt spray test (the incidence of reddish tin-zinc plated steel after 500 hours of SST). is there.
  • ⁇ ⁇ m major diameter
  • the plated original sheet used is annealed steel sheet that has been subjected to heat treatment such as hot rolling, pickling, and cold rolling, rolling, etc., from a piece, or rolled material is used as the covering material, and then rolled. After pretreatment such as oil removal, perform plating ⁇
  • alloy ⁇ contains at least one of nickel, iron, zinc, and tin. These alloys deteriorate with respect to fuels such as gasoline::, d- ⁇ ⁇
  • Thickness is advantageous in ensuring long-term corrosion resistance.
  • the hardness of this structure causes cracks in the alloy layer during processing.
  • the thickness of the alloy layer is larger than a certain thickness, cracks propagate in the plating layer above the alloy layer, causing cracks in the plating layer, and there is a concern that corrosion resistance may be degraded due to plating separation or damage to the plating layer. Is done. Therefore, the thickness of this alloy layer was set to 2 / m or less. However, if the specific application site is expected depending on the combination with steel components, etc., the alloy layer thickness of 1.5 / m or less may be preferable.
  • the plating layer is composed of a composition containing tin and zinc, and ensures corrosion resistance inside the tank against fuel such as gasoline and the outside surface against the salt environment caused by running snow-melted salt spray areas. It is necessary to ensure the workability that can be processed according to the requirements, and to secure the solderability necessary for joining fuel pipes and other components.
  • the tin content in the plating layer is less than 40%, the corrosion resistance of the tank inner surface is greatly reduced, the dissolution rate of the plating layer is increased, and the dissolution rate of the plating layer in a salt-damage environment is also increased, so that the corrosion resistance is reduced. It drops significantly.
  • the zinc content increases, the workability of the plating layer also decreases. Further, as the zinc content increases, the solderability decreases significantly.
  • the composition of the plating layer was determined to be tin: 40 to 99% by weight, with the balance being zinc and unavoidable impurities.
  • Tin 80 to 99 Weight may be 96 or the preferred composition range.
  • the thickness of the plating layer affects the corrosion resistance, but if it is too thin, it will corrode to the substrate in a relatively short time for long-term use as a fuel tank material. The substrate is exposed without being covered, and substrate corrosion occurs earlier than the life estimated from the thickness of the plating. If the plating thickness is too thick, the corrosion resistance will be sufficiently ensured, but the performance will be excessive. In addition, the soldering property also depends on the amount of adhesion, and when the amount of adhesion is extremely small, the influence of the undercoat layer is liable to be exerted, and the solderability is also reduced. Therefore, the thickness of the plating is preferably 4 to 50 m per side. However, if attention is paid to surface lubricity and processing methods to minimize the plating damage during processing, sufficient corrosion resistance can be ensured even with a plating thickness of 2 m. Therefore, the plating thickness was set to 2 to 50 zm per side.
  • roughness is related to surface lubricity and has a significant effect on coefficient of friction and oil retention.
  • the steel plate during actual tank pressing is coated with oil from the product at the time of product shipment, and oil retention is important.
  • the higher the roughness Ra the better the oil retention, but if it is too large, the effect will be saturated or, at the same time, the plating thickness will be locally non-uniform after processing, adversely affecting corrosion resistance and the like. Therefore, the upper limit was set to Ra 3.0 m.
  • the roughness Ra was set to 0.2 to 3.0 m.
  • the dynamic friction coefficient is 0.3 or less after the application of oil in the present composition region of the sub-system.
  • the present inventors do not contain lead (the unavoidable impurity is ⁇ ;
  • At least one kind of Ti. Nb is contained in the (C + N) content of the atomic equivalent or more.
  • a steel containing 1.0% or less and one or two types of B with 0.0002 to 0.0030% containing one or more of Ni, Fe. Zn, and Sn has a thickness of 1.5 ⁇ m or less on one side, and tin on it.
  • the major diameter of zinc crystals contained therein is 20 or less Z0.25Mm 2 as viewed from the surface more than 250 m, one surface per Rino For fuel tanks with tin-zinc alloy coatings 2-50 m thick
  • Alloy layer containing at least one of the following, with a thickness of 1.5 or less per side, with tin: 40-99% by weight, with the balance being zinc and unavoidable impurities, with zinc crystals contained therein being at least 250 m long No. 20 or less 0.25 ram 2 as viewed from the surface, and a tin-zinc alloy coated layer with a thickness per side of 2 to 50 / im, characterized in that it is a steel sheet for fuel tanks. .
  • the thickness of the alloy component layer at the tin-plating layer interface be as thin as possible to prevent segregation and that it be a component system that suppresses the progress of corrosion in the internal and external environments of the fuel tank . The details are described below.
  • this plating bath component is an element that lowers workability and corrosion resistance, it acts as an element that suppresses the interfacial reaction of the steel coating layer, and is therefore advantageous in securing the adhesion during plating.
  • the C content was set to C ⁇ 0.1% by weight.
  • this plating bath component tends to remain in the plating bath when immersed in the plating bath, inhibits the plating reaction, and has a large amount of pinholes (unplated portions) that affect corrosion resistance. Easy to produce.
  • a certain amount is necessary from the viewpoint of ensuring strength, it is necessary to adjust the content because it is a strength enhancing element.
  • the plating bath component acts as an element that suppresses the steel-plating layer interface reaction, it is advantageous in ensuring plating adhesion during processing.
  • the Si content was set to Si ⁇ 0.1% by weight.
  • Mn does Mn require a certain amount of content from the viewpoint of ensuring strength, or does it tend to reduce workability because it is a strength-enhancing element, so it is necessary to limit the content?
  • this plating bath tends to improve the reactivity and also promotes the interfacial reaction between the steel and the plating layer, so it is necessary to adjust the content in order to adjust the interfacial reaction.
  • the Mn content is set to 0.05% ⁇ n ⁇ 1.2% by weight.
  • the weight% was set to ⁇ ⁇ 0 ⁇ 0.13 ⁇ 4.
  • Nb and Ti are elements necessary to fix C and N and impart workability to the steel sheet, and C and N can be fixed by containing more than (C + N) atomic equivalents. If the content exceeds 1.0%, the effect is saturated and the steel plating bath tends to promote the interfacial reaction in the present plating bath. Therefore, it is necessary to adjust the content in adjusting the interfacial reaction.
  • Ti and Nb one or more of Ti and Nb are contained in an amount equal to or more than the atomic equivalent of the (C + N) content, and the upper limit is set to 1.0% by weight%.
  • the content was 0.0002 to 0.0030% by weight.
  • Cr tends to increase strength, reduce workability, and reduce adhesion, but has the effect of significantly improving the corrosion resistance of steel.
  • the composition of the coating layer provides a sacrificial corrosion prevention effect even in a relatively small range of Cr addition, and the effect of improving corrosion resistance is greater than that of conventional plain steel. Therefore, it is necessary to adjust the content in consideration of workability, plating property, and corrosion resistance.
  • the Cr content was set to 0.2 Cr ⁇ 6% by weight.
  • the present inventors studied variously the plating composition, the film structure, the structure, and the like, and determined that the weight was 40%. % To 99% by weight of tin-zinc alloy with a thickness of 2.0 m or less through a layer of alloy with a thickness of 2.0 m or less. fuel data down click excellent sex and ⁇ resistance R] c that developed F3 ⁇ 4 steel plate
  • a small crystal structure (hereinafter referred to as a spangle) appears when extremely rapid cooling is performed, but it is expected that corrosion resistance and workability may be inferior because large strains are incorporated in the structure. Is done.
  • large spangles mainly composed of tin are formed and the problem of thermal distortion is eliminated, but it is not preferable because large crystals become a starting point of cracking during processing.
  • the present invention further specifies the size of the spangle.
  • the size of the spangle can be defined by the length of the major axis of the crystal.
  • a round spangle is often formed, but the major axis length and the minor axis length of the crystal are not always equal. Therefore, in the present invention, the crystal is defined by the major axis length of the crystal.
  • the spangle after plating is preferably a spangle having a crystal major axis length of 20 mm or less, more preferably 10 mm or less. It is desirable to do so. As described above, coarse crystals with a major diameter of 20 mm or more are not preferable because they serve as starting points for cracking during processing.
  • Fine crystals with a major axis length of less than 1.0 mm are concerned because they contain large thermal strains in the structure, and heat generated during baking such as painting in the process of processing as a normal fuel tank. Is added and distortion is expected to be released, so there is no practical problem.
  • the lower ffi tt for improving the Si corrosion is 0.2 mg / m : in terms of chromium.
  • this processing ⁇ ⁇ 1 ⁇ 2 ⁇ top.
  • Ffi frt has 6 properties ⁇ 1 ⁇ 2 ⁇ ⁇ The upper limit was set to 100 g / m 2 in terms of chromium.
  • the amount is 100 mg / m 2 or more, the effect is saturated, and the color is reduced to cause a reduction in appearance.
  • the amount is 25 mgZm 2 or less in terms of chromium.
  • the present invention is organic the chromate Ichito instead treatment film adheres to the surface of the Sn-based alloy plated layer weight 0.01 ⁇ 2.0 g / m 2 - workability, corrosion resistance and weldability that having a inorganic composite coating film Developed excellent steel plates for fuel tanks.
  • the weight of the above-mentioned Sn-based alloy coating layer is Zn: 20% or less, Cr: 5% or less, Mn: 5% or less, Ti: 5% or less, A1: 5% or less, Cd: 5% or less, Mg : One or more of 5% or less may be contained in a total of 20% or less, and the balance may be Sn and inevitable impurities.
  • the above-mentioned organic-inorganic composite film contains at least 20% by weight in total of one or more of chromium, silicon, phosphorus, and manganese compounds, or
  • the organic resin of the film may be one or more of an acrylic, a polyester, and an epoxy resin.
  • the outermost layer plays an important role in determining the corrosion resistance, weldability, solderability, and brazeability. Therefore, it is important to further improve these performances.
  • Spot welding and seam welding are electric resistance welding using a copper-based alloy as an electrode, and the tin-based alloy, which is the plated metal of the present invention, is combined with an anode copper-based alloy by heat during welding. It is considered that the reaction is slow and the electrode life is deteriorated.
  • the plated steel sheet of the present invention can be regarded as a tank material that has both excellent workability and Si corrosion resistance.
  • Organic coating weight 0.01 to 2.0 g / m 2 comprising one or more of manganese - by the this the presence of a non-machine composite film is intended to improve the spot welding Shea one beam weldability.
  • an acrylic resin, a polyester resin, or an epoxy resin having excellent adhesion to a metal is used as a desirable base resin.
  • These resins are used as an organic-inorganic composite resin containing one or more compounds of chromium, silicone, phosphorus, and manganese as a solvent type or water-soluble.
  • chromium compound As a chromium compound, it is added as chromic acid or chromate to improve the protective effect. As a silicon compound, it is added as an oxide / fluoride to improve film properties.
  • the phosphorus compound is added as organic or inorganic phosphoric acid or a phosphoric acid compound to improve the adhesion, corrosion resistance, and weldability of the film.
  • the manganese compound is added mainly for the purpose of improving the protection effect.
  • the mixing ratio between these compounds and the resin is not particularly limited. However, if the main purpose is to improve the weldability, the mixing ratio of the organic resin is preferably 80% or less (by weight). It is better to be 50% or less.
  • the adhesion amount is preferably in the range of 0.01 to 2.0 g / m 2 in total weight, more preferably in the range of 0.02 to 0.50 g Zm 2 .
  • the lower limit of 0.01 g / m 2 is the limit at which improvement in corrosion resistance and weldability is recognized, and the upper limit of 2.0 g Zm 2 is the limit of spatter generation due to local abnormal heating during welding.
  • hot-dip soldering There are two main methods of manufacturing hot-dip soldering: flux plating and hot-dip soldering.
  • the hot-dip soldering method is further classified into three-way oxidation and all-five-way heading. You. Any O method is suitable for the alloying system of the present invention to activate the surface before plating W
  • Process according to the invention is first the steel sheet annealing already, 0.1 to 3.0 g / m 2 performed per side with nickel content of nickel or nickel iron-based preplating,.
  • tin a bath consisting of 40 to 99 wt% balance of zinc and unavoidable impurities, at a bath temperature of (melting point + 20 ° C) to (melting point + 300 ° C) for 15 seconds in the bath
  • tin a bath consisting of 40 to 99 wt% balance of zinc and unavoidable impurities, at a bath temperature of (melting point + 20 ° C) to (melting point + 300 ° C) for 15 seconds in the bath
  • Nickel or nickel-iron pre-plating is applied to the annealed steel sheet at a nickel content of 0.1 to 3.0 g / m per side, the maximum sheet temperature in a non-oxidizing furnace is 350 to 650, the air ratio is 0.85 to 1.30, and the reduction is Pre-plating with the maximum plate temperature in the furnace of 600 to 770, non-oxidizing furnace holding time, reducing furnace holding time ratio of 1 to 1 Z3, and reducing furnace outlet dew point of 120 ° C or less, immediately before plating After adjusting the sheet temperature of the plating bath to almost the plating bath temperature, tin: 40 to 99% by weight balance The plating bath composed of zinc and unavoidable impurities.
  • the melting bath metal (melting point + 20'C) ⁇ (melting point + Dipping in a bath at a bath temperature of less than 6 seconds at a bath temperature of less than 6 seconds, and cooling at a cooling rate of 10 ° CZ seconds or more.
  • Cold-rolled steel sheet is heated up to 450 ⁇ 750'C in non-oxidizing furnace, air ratio 0.85-1.30, maximum sheet temperature in reducing furnace 680 ⁇ 850 '( What is the ratio of non-oxidizing furnace residence time / reducing furnace residence time? ⁇ 1 Z3, reduction furnace outlet dew point is less than 25'C.
  • the plating metal K (melting point + 20 te) ⁇ (melting point + 300 te) Sub-tin alloy plating for less than 6 seconds and cooling at a cooling rate of 10'CZ & 'or more.
  • the pre-plating amount was set to 0.1 to 3.0 g Z m 2 in terms of nickel content.
  • the full rack scan was effective full rack scan or get wet been improving containing chlorine ions such as ZnC l 2, HC 1. If the equivalent of chlorine in the flux is less than 2% by weight, the solubility of the oxide film on the surface of the covering material is low and the effect of improving the wettability is small. If the concentration is higher than 45% by weight, the effect is saturated and the amount of chemicals used is too large, which is uneconomical. At this time, if ⁇ is added in an amount of 0.1% or more, the oxide film on the surface of the material to be adhered is easily dissolved and the wettability is further improved. Therefore, 2 to 5% by weight of flux containing hydrochloric acid containing hydrochloric acid in the flux was used as the paint.
  • the bath temperature is fairly suitable. 6 Ambient, wide, or high wettability is better.-Melting point + less than 2o'c is anti-cr. Or low;
  • the immersion time in the bath is related to the degree of plating reaction between the plating bath and the steel, and a longer immersion time is advantageous in terms of forming a thicker alloy layer and ensuring corrosion resistance. Therefore, the fuel tank needs to be as thin as possible. Therefore, it is desirable that the alloy layer be thin enough to ensure plating adhesion, and the upper limit of the immersion time is set to less than 15 seconds.
  • bath components considering the corrosion resistance inside and outside the fuel tank, plating adhesion during processing, solderability, and weldability, if the zinc content is more than 60% by weight, deteriorated gasoline or other fuel tanks Corrosion resistance and solderability are concerned. If the zinc content is less than 1% by weight, the corrosion resistance of the tank outer surface is a concern because the zinc content is low. Therefore, a bath consisting of tin: 40-99% by weight balance zinc and unavoidable impurities was used.
  • Fig. 1 (a) if the zinc content in the plating bath is more than 8.8% by weight, coarse zinc crystals will precipitate during the cooling process after the plating at less than 10 ° CZ seconds. Therefore, there is a concern about localized corrosion of the inside and outside of the tank due to cracking of the plating layer during processing and preferential corrosion of coarse zinc crystals.
  • spangles mainly composed of tin will grow, If the spangle length is longer than 20 mm, it will be a starting point for cracking during processing, so it is necessary to keep the length to 20 mm or less. For that purpose, the cooling rate needs to be more than l O'C Z seconds.
  • the zinc content is 8.8% by weight or more, preferably, it is 20 seconds or more.
  • the plating bath is composed of zinc and unavoidable impurities, and the bath of the plating bath metal (melting point + 20 ° C) to (melting point + 300 ° C)
  • a method for producing a zinc-tin alloy-plated steel sheet comprising immersing in a bath at a low temperature for less than 6 seconds, cooling at a cooling rate of 10 times / second or more.
  • Pre-plating and furnace operating conditions affect the pretreatment method.
  • pre-plating it is easy to produce an alloy mainly composed of iron, nickel, tin, and zinc in combination with nickel or a nickel-iron-based or zinc-tin alloy plating bath. .
  • the amount of adhesion is less than O.lg Zm 2 in the nigel content, the effect of improving wettability is small because the S-coatability is not sufficient. If it adheres beyond 3.0g Zm 2 , it will be resilient and will be attached. ?
  • the adhesion to the plating when formed and formed on the kink is reduced. Therefore, the blur amount is two, '' L
  • the pre-plated material passes through the high temperature and diffuses into the steel in a large amount, and the pre-coating amount on the outermost surface is extremely reduced, and the wettability with the original target bath is reduced. It is necessary to prevent it. Therefore, it is necessary to set the furnace operation conditions so as to suppress the diffusion of the pre-plated metal in the steel and to secure the reactivity in the zinc-tin bath.
  • the non-oxidizing furnace temperature, air ratio, reducing furnace temperature, non-oxidizing furnace holding time, reducing furnace holding time ratio, and dew point are highly correlated, and the surface condition of the original plate when entering the plating bath is Optimally set conditions to partially leave the oxide film or even if the oxide film remains, keep the oxide film surface active and partially free of oxide film, and extremely low reactivity zinc-tin It is necessary to improve the wettability with a plating bath.
  • the temperature of the non-oxidizing furnace affects the thickness of the oxide film formed in the furnace and the maximum temperature. If the temperature is lower than 350 ° C, the thickness of the oxide film is small, but the maximum plate temperature is also low and the reduction is insufficient and the bath is insufficient. And the reactivity with is reduced. If the temperature exceeds 650 ° C, the maximum plate temperature increases, and diffusion of the pre-plated metal into the steel is concerned. Therefore, the maximum temperature of the non-oxidizing furnace was set at 350 to 650 ° C.
  • the air ratio is the ratio of the amount of air used and the theoretical amount of combustion air, which affects the thickness and quality of the oxide film. In this case, special steel such as stainless steel containing a large amount of chromium etc.
  • the thickness of the iron and nickel-based oxide films generated in the non-oxidizing furnace is mainly adjusted.
  • the following reduction furnace conditions are in harmony with the following reduction furnace conditions, and the condition is optimal for ensuring the consistency between the original plating surface and the plating bath after passing through the reduction furnace.
  • the temperature of the reduction furnace affects the wettability and the quality of the material due to the reduction of the oxide film generated in the non-oxidizing furnace, or the material is secured because the annealed material is used. If the required c is less than 600'C, ⁇ ⁇ is insufficient and the oxide film remains considerably.
  • the maximum plate temperature of the reduction furnace was set at 600 to 770 ° C.
  • Non-oxidizing furnace residence time determines whether the oxide film generated in the non-oxidizing furnace can be sufficiently reduced in the reducing furnace.If it is smaller than 1/3, the reduction time is too long. This is good in that the iron and nickel-based oxides on the surface of the original plate are sufficiently reduced and the surface is activated, but the residence time in the reduction furnace is prolonged, and there is concern that the pre-plated metal may diffuse into the steel. You. If it is larger than 1, the oxide film formed in the non-oxidizing furnace cannot be sufficiently reduced and activated, and there is a concern that the wettability may decrease. Therefore, the ratio of the non-oxidizing furnace residence time to the reduction furnace residence time was set to 1 Z 3-1.
  • the dew point inside the reduction furnace is important in terms of the atmosphere in which the oxide film can be reduced, and it is necessary to set the atmosphere in which iron and nickel-based oxides can be reduced. Iron and nickel-based oxide films are more easily reduced than iron-based oxide films.However, if the dew point at the outlet of the reduction furnace is higher than -20 ° C, it is not enough to consider it in combination with the specified furnace operating conditions. The film cannot be reduced and a large amount of oxide film remains, making it impossible to ensure wettability. Therefore, the dew point at the outlet of the reduction furnace was set to the following value by -20. It is to be noted that hydrogen in the reduction furnace is indispensable for the reduction or does not need to be introduced in a large amount, and the concentration at the outlet of the reduction furnace is desirably about 5 to 20%.
  • the cold rolled sheet must be able to be processed by annealing and have good wettability in the plating bath. If the temperature of the non-oxidizing furnace is less than 150 ⁇ : If the temperature of the original furnace is lower than ft, the temperature of the plate reached a high ft will also be low, and it will not be sufficiently recrystallized. If the temperature exceeds 750, the maximum sheet temperature of the JS source furnace is also A, No gap, deterioration of W quality due to coarsening of crystal grains and deterioration of wettability due to oxides in the network O i 5 55 Is done. Also during the passage
  • the maximum temperature of the non-oxidizing furnace was set at 450 to 750 ° C. Reducing furnace temperature causes and a oxidation film is fairly residual activity is insufficient child is less than 680 e C, when is not ensured reactive not both fully recrystallized material of the bath defective.
  • the maximum plate temperature of the reduction furnace was set to 680-850. Since the dew point inside the reduction furnace is set to an atmosphere that can reduce iron-based oxides generated in a non-oxidizing furnace, it is necessary to lower the dew point even more than iron or nickel-based oxide films with good reducibility. The dew point was -25 ° C or less.
  • the zinc content is more than 60% by weight. In such a case, there is concern about the corrosion resistance and solderability of the fuel tank such as deteriorated gasoline. If the zinc content is less than 1% by weight, the corrosion resistance of the outer surface of the tank is concerned due to the low zinc content. Therefore, the bath was composed of tin: 40-99% by weight, with the balance being zinc and unavoidable impurities.
  • the bath temperature has a fairly wide range but the wettability is higher or more advantageous. If the melting point of the metal in the plating bath is less than +20, the reactivity is low, so that the plating is not easily performed, the adhesion is poor, and the fluidity of the bath is low, and the appearance is poor. If the temperature exceeds (melting point + 300 eC ), the wettability will be saturated, and the alloy layer formed in the bath will become thicker, plating will easily flow, and the appearance will be poor. Therefore, the plating bath temperature was set to (melting point + 20 ° C) ⁇ (melting point + 300'C) of the metal in the plating bath.
  • the erosion time in the bath is the same as the plating reversal between the plating bath and the original plate.
  • This K construction method fits bathing bather
  • the surface of the plating plate in front of fi is ⁇ ⁇ 3 ⁇ 4 ⁇ » ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 3 ⁇ 4 3 ⁇ 4 3 ⁇ 4 3 ⁇ 4 3 ⁇ 4 3 ⁇ 4 3 ⁇ 4 E E
  • BAD ORlGiNA BAD ORlGiNA ,. Is considered to be partially uncoated, which has an effect on the reactivity with tin-zinc.
  • a longer immersion time is advantageous in terms of forming a thicker alloy layer and ensuring corrosion resistance.However, it will reduce plating adhesion during processing, so it is necessary to make it as thin as possible for fuel tanks. . Therefore, it is desirable that the alloy layer be thin enough to secure the adhesion by plating, and the upper limit of the immersion time is set to less than 6 seconds in consideration of the surface condition of the active plating base sheet.
  • the cooling rate when the zinc content in the plating bath is more than 8.8% by weight, if the zinc content is less than 10 ns, coarse zinc crystals are precipitated in the cooling process after plating. Local corrosion on the inner and outer surfaces of the tank is feared due to glazing cracks and preferential corrosion of coarse zinc crystals.
  • spangles mainly composed of tin grow.However, if the spangle length is more than 20 bands, it will be the starting point of cracking during processing, so it is necessary to limit the length to 20 mm or less. . Therefore, it is necessary to set the cooling rate to 10 seconds or more. If the zinc content is 8.8% by weight or more, it is desirably 20 ° C Z seconds or more.
  • Table 1 shows the inner surface corrosion resistance, outer surface corrosion resistance, and solderability of the obtained material.
  • the material of the present invention was good without corrosion from the substrate.
  • the comparative material red discoloration from the substrate, red discoloration, and large discoloration due to the effect of the melting of the plating layer were significant, and the corrosion resistance was not good.
  • Corrosion test solution Degraded gasoline 100 times diluted solution 4.5cc + distilled water 0.5
  • the external corrosion resistance was determined.
  • the material of the present invention was good without corrosion from the substrate.
  • red discoloration from the substrate, red discoloration, and large discoloration due to the influence of the melting of the plating layer were significant, and the corrosion resistance was not good.
  • Cup drawing was performed, and the sample was placed horizontally so that salt spray would hit the outer surface.
  • Cup drawing conditions Bunch diameter 30mm ⁇ , blank diameter 60mm ⁇ , drawing depth 15mm
  • solder spreadability was determined based on the test conditions shown below. As a result, the material of the present invention showed the same or better results as the current lead-tin plated steel sheet. On the other hand, the comparative material did not have good solderability, such as a sample with a high zinc content.
  • the inner surface corrosion resistance was ascertained by using the following sample shape and test conditions. As a result, the material of the present invention was good without corrosion from the substrate. On the other hand, in the case of the comparative material, the corrosion resistance was not good due to the red discoloration and red discoloration from the substrate and the large discoloration due to the significant dissolution of the plating layer.
  • the corrosion resistance of the outer surface was determined by using the following sample shape and test conditions. As a result, the material of the present invention was good without corrosion from the substrate. On the other hand, the comparative material did not show good corrosion resistance due to red discoloration from the substrate, red discoloration, and large discoloration due to the effect of significant dissolution of the plating layer.
  • solder spreadability was ascertained.
  • the material of the present invention showed the same or better results as the current lead-tin plated sheet.
  • the comparative materials were not good in solderability in samples having a high zinc content and samples having a large amount of chromate film. (3 ⁇ 4 ⁇ Example 2)
  • the material was manufactured by performing a heat treatment in a furnace having a non-oxidizing furnace, a reducing furnace, etc., and then performing melting plating to adjust the amount of adhesion and further cooling.
  • Table 3 shows the inner surface corrosion resistance, outer surface corrosion resistance, and solderability of the obtained material (each test condition is the same as in Example 1).
  • the inner surface corrosion resistance was evaluated using a sample having the following shape and test conditions. As a result, the material of the present invention was good without corrosion from the substrate. On the other hand, in the comparison material, red discoloration from the substrate, red discoloration, and large discoloration due to the effect of the melting of the plating layer were significant, and the corrosion resistance was not good.
  • the corrosion resistance of the outer surface was determined by using the following sample shape and test conditions. As a result, the material of the present invention was good without corrosion from the substrate. On the other hand, the comparative material did not have good corrosion resistance due to red discoloration from the substrate, red discoloration, and large discoloration due to the effect of significant dissolution of the plating layer.
  • solder spreadability was ascertained.
  • the material of the present invention showed the same or better results as the current lead-tin tin-plated steel sheet.
  • the comparative material was a sample with a high zinc content and had good solderability.
  • the material was manufactured by performing heat treatment in a furnace having a non-oxidizing furnace, reduction furnace, etc., performing melting plating to adjust the amount of adhesion, cooling, and then performing chromate treatment. The results are shown in Table 4
  • the inner surface corrosion resistance was determined using the sample having the following shape and test conditions. As a result, the material of the present invention was good without corrosion from the substrate. On the other hand, the comparative material did not show good corrosion resistance due to red discoloration from the substrate, red discoloration, and large discoloration due to the effect of the melting of the plating layer.
  • the outer surface corrosion resistance was determined using the sample having the shape shown below and the test conditions. As a result, the material of the present invention was good without corrosion from the substrate. On the other hand, the comparative material did not show good corrosion resistance due to red discoloration from the substrate, red discoloration, and large discoloration due to the effect of the melting of the plating layer.
  • the solder spreadability was determined based on the test conditions shown below. As a result, the material of the present invention showed the same or better results as the current lead-tin plated steel sheet. On the other hand, the comparative material was a sample with a high zinc content and a material with a large amount of chromate film, and the solderability was not good.
  • the inner surface corrosion resistance was ascertained by using the following sample shape and test conditions. As a result, there was no corrosion of the base material in the present invention village (excellent bonding 3). On the other hand, in the case of comparison W, red 1 ⁇ 2, red 3 ⁇ 4 and ⁇ ⁇
  • the inner surface corrosion resistance was determined using the sample having the following shape and test conditions. As a result, in the present invention, good results were obtained without corrosion from the substrate. On the other hand, in the case of the comparative material, redness, red discoloration from the substrate and discoloration due to the significant dissolution of the plating layer were observed, and the corrosion resistance was not good.
  • Table 7 shows the inner surface corrosion resistance, outer surface corrosion resistance, solderability, and workability of the obtained material.
  • the inner surface corrosion resistance was determined using the sample having the following shape and test conditions. As a result, the material of the present invention was good without corrosion from the substrate. On the other hand, the comparative material did not have good corrosion resistance due to red discoloration from the substrate, red discoloration, and significant discoloration due to the effect of the melting of the plating layer.
  • Corrosion test solution Degraded gasoline 100 times diluted solution 4.5cc + distilled water 0.5
  • the corrosion resistance of the outer surface was determined using the sample having the following shape and the test conditions. As a result, the material of the present invention was excellent without corrosion from the substrate. On the other hand, the comparative material did not have good Si properties because there was red discoloration, red discoloration from the base material, and large discoloration due to the effect of significant dissolution of the plating layer.
  • the solder spreadability was determined based on the test conditions shown below. As a result, the present invention showed the same or better results as the current lead-tin plated steel sheet. On the other hand, the comparative material was a material having a high zinc content and the like, and the solderability was not good.
  • Test conditions Solder / lead 40% tin (250mg), flux Z 13% rosin-isopropyl alcohol, lead bath No. Float for 30 seconds at 280 ° C, then raise.
  • hot-dip plating was performed, the amount of coating was adjusted, and cooling was performed to produce the material. Further, some materials were subjected to a chromate treatment.
  • Table 8 shows the inner surface corrosion resistance, outer surface corrosion resistance, solderability, and workability of the obtained material (test conditions are the same as in Example 7).
  • the inner surface corrosion resistance was determined using the sample having the following shape and test conditions. As a result, the material of the present invention was good without corrosion from the substrate. On the other hand, the comparative material did not show good corrosion resistance due to red discoloration from the substrate, red discoloration, and large discoloration due to the effect of the melting of the plating layer.
  • the external corrosion resistance was determined.
  • the material of the present invention was good without corrosion from the substrate.
  • the comparative material did not have good corrosion resistance due to red discoloration, red discoloration from the substrate, and large discoloration due to the effect of the melting of the plating layer.
  • solder spreadability was determined based on the test conditions shown below. As a result, the present invention obtained the same or better results as the current lead-tin plated netting. On the other hand, the comparative material was a material with a high zinc content and did not have good solderability.
  • Breath forming was performed under the test conditions shown below, and the workability and plating adhesion after working were ascertained. As a result, the present invention showed a spinning process that is as good or good as the current ⁇ -tin-plated steel plate.
  • the comparative material cracked during processing and caused plating plating depending on the steel composition, alloy layer, plating layer thickness, and plating composition.
  • Table 9 shows the inner surface corrosion resistance, outer surface corrosion resistance, solderability, and workability of the obtained material.
  • the inner surface corrosion resistance was ascertained by using the following sample shape and test conditions. As a result, the material of the present invention was good without corrosion from the substrate. On the other hand, in the comparative materials, red discoloration from the substrate, red discoloration, and significant discoloration due to the effect of substantial dissolution of the plating layer, and corrosion resistance was not good in many cases.
  • Corrosion test solution Degraded gasoline 100 times diluted solution 4.5 cc + distilled water 0.5
  • the corrosion resistance of the outer surface was determined by using the following sample shape and test conditions. As a result, the material of the present invention did not corrode from the substrate (excellent. On the other hand, in the comparative village, there was a large discoloration due to the effect of the red, red discoloration, and the thickening layer from the substrate significantly dissolving. The properties were not good.
  • Diaphragm conditions Bunch diameter 28.5 ⁇ ⁇ , blank diameter 60 ⁇ , drawing depth 18mm
  • solder spreadability was determined based on the test conditions shown below. As a result, the material of the present invention obtained the same or better results as the current lead-tin tin plated steel sheet. On the other hand, many of the comparative materials had high zinc content and had poor solderability.
  • the present invention showed the same or better results as the current lead-tin plated steel sheet.
  • the comparative material cracked or peeled off during processing depending on the steel composition, alloy layer, plating layer thickness, and plating composition.
  • Test conditions ⁇ Breathing conditions: Punch diameter 25mm, wrinkle holding force 500kg • Plating separation: Tabbing the outer side wall after processing and visually observe the presence or absence of plating peeling.
  • Nickel pre-plated or iron-nickel pre-plated steel plates shown in Table 10 or pickled hot rolled or cold rolled plates are used in an oxidation furnace, non-oxidizing furnace, reduction furnace, etc. After performing heat treatment in a furnace having the same, hot-dip plating was performed, the amount of coating was adjusted, and cooling was performed to produce this material. Note that some materials were subjected to chromate treatment.
  • Table 10 shows the inner surface corrosion resistance, outer surface corrosion resistance, solderability, and workability of the obtained material (test conditions are the same as in Example 9).
  • the inner surface corrosion resistance was determined using the sample having the following shape and test conditions. As a result, the material of the present invention was good without corrosion from the substrate. On the other hand, the comparative material did not show good corrosion resistance due to red discoloration, red discoloration from the substrate, and large discoloration due to the effect of the melting of the plating layer.
  • the external corrosion resistance was determined.
  • the material of the present invention was good without corrosion from the substrate.
  • the comparative material did not have good corrosion resistance due to red discoloration from the substrate, red discoloration, and large discoloration due to the effect of the melting of the coating layer.
  • solder spreadability was determined based on the test conditions shown below. As a result, the material of the present invention obtained the same or better results as the current lead-tin tin plated steel sheet. On the other hand, many of the comparative materials had a high zinc content and did not have good solderability.
  • the annealed and pressure-regulated steel plate with a thickness of 0.8 h was coated with a plating flux containing zinc chloride and hydrochloric acid, and then introduced into a tin plating bath (temperature: 380 ° C) containing 8% by weight of zinc. After sufficient reaction between the plating bath and the steel sheet surface, the steel sheet was drawn out from the plating bath, the amount of coating was adjusted by the gas wiping method, and rapid cooling was performed.
  • the plated steel sheet had an Fe / Sn-based alloy layer of 0.7 / m and a coating layer with a coating weight (total Sn + Zn coating weight) of 32 g Zm 2 (per side). And a product plate performs click b menu over preparative process 15MgZm 2 adhesion amount of the chromium on the surface.
  • a corrosion liquid was prepared by adding forcedly degraded gasoline l (hol% water) left at 100 ° C in a pressure vessel for one day and night. Corrosion at 45 ° C for 3 weeks in this corrosive liquid When the test was performed, the eluted metal ions were mainly zinc, and an elution of 3, OOO ppm was observed.
  • Example 2 In the same manner as in Example 2 was subjected to electric nickel plating 0.8 g / m 2 of coating weight on annealing-pressure regulating already steel sheet having a thickness of 0.8 mm, coated with a plating hula Tsu box containing zinc chloride and hydrochloric acid After that, it was introduced into a tin plating bath (temperature 350) containing 15% zinc. After sufficient reaction between the plating bath and the steel sheet surface, the steel sheet was drawn out of the plating bath, the amount of coating was adjusted by the gas wiping method, and then cooled.
  • a tin plating bath temperature 350
  • the steel sheet after plating had an alloy layer mainly composed of 0.5 urn FeSn: and a plating layer having an adhesion amount (total adhesion amount of Sn + Zn) of 33 g Zm 2 (per one side). This surface was subjected to an additional D-chromate treatment of 12 mgZm 2 as chromium to obtain a product plate.
  • the coated steel sheet was annealed with a thickness of 0.8 mm.
  • the plating steel sheet containing zinc chloride and hydrochloric acid was used.
  • the lacquer was applied and introduced into the tin-based alloy plating bath shown in Table 11.
  • the steel sheet was drawn out, the adhesion was adjusted by a gas wiping method, and the steel sheet was quickly joined.
  • the thickness of the alloy layer was adjusted by the reaction time between the plating bath and the steel sheet surface.
  • an organic-inorganic composite film was formed under the conditions shown in Table 11.
  • the alloy layer was mainly composed of iron-tin tin.
  • the coated steel sheet obtained as above was left in a pressure vessel at 100 ° C for a day and night, and 10% by volume of water was added to the forcedly deteriorated gasoline to simulate corrosion inside the tank. A liquid was made. This from corrosive liquid, subjected to 45 e CX 3-week corrosion test, Table 1 3 metal ion elution results. The metal ion elution amount of the present invention was small and excellent.
  • the processing method and joinability were determined by trial production of an actual tank, and the results shown in Table 13 were obtained. Here, the workability was evaluated by the press workability.
  • a cylindrical deep drawing test was performed. A blank of 200 ⁇ was squeezed out with a punch of 100 ⁇ , and the plating separation state on the cup side wall was observed. The die shoulder radius was set to 2.5 mm to make a strict determination of the workability, and more strict machining conditions were used than usual.
  • seam weldability was evaluated by seam weldability and spot weldability.
  • Seam weldability Continuous seam welding is performed using a constant current control method of a 60 Hz single-layer alternating current (disc: 300 mm ⁇ , electrode electrode 6 R), and the weldability is determined by observing the cross section of the welded part and the surface. Was determined.
  • the annealed material was used as the covering material. Some were pre-plated after annealing and used as a covering material. Thereafter, the flux was applied, and the flux was applied to a tin-zinc bath to adjust the amount of adhesion, and the film was wound up.
  • Table 14 shows the various operating conditions, the unplated state after plating, and the plating adhesion. Cooling after tacking is performed in SiTC Z seconds or more.
  • Table 15 shows the condition of each gouge, 1 condition, and ⁇ D sub-form.
  • Zn crystal with a length of 250 m, below 200/0.
  • annealed low carbon steel was pre-plated with nickel at 0.5 gZm 2 to form a base plate. After that, the molten plating line with a non-oxidizing furnace and a reducing furnace was passed through the plate.
  • the bath temperature was 295 at 10% by weight of zinc and 90% by weight of tin in 5 seconds in the plating bath. and strip passing, and cooled to produce at 30 ° CZ seconds while adjusting the deposition amount on one surface 40GZm 2 where rises from the bath.
  • the adhesion amount is 25 Te seconds at a cooling rate in the plated layer of zinc content on one side 40gZ m 2 is 8.8 wt% or more, is less than 8.8 wt% were prepared in 10 ° CZ seconds.
  • Tables 16 and 17 show the basic manufacturing conditions such as various furnace operating conditions, and Table 16 shows the unplated state after plating and the adhesion.
  • Table 17 shows the crystalline state of zinc in the plating layer under the manufacturing conditions. Observation of the distribution of zinc on the surface of the plating layer of the samples manufactured with Not 1 to ⁇ 16 as shown in Table 17 showed that no more than 20 zinc crystals with a major diameter of 250 m or more that affected plating adhesion and corrosion resistance. .25 mm 2, which was very small and the plating adhesion was good. The samples manufactured from ⁇ 17 to ⁇ 20 had a high zinc crystal density with a long length, and caused problems in plating adhesion.
  • Nickel ⁇ bleed plating is indicated by Nickel ⁇ 3 ⁇ 4 (»'[ «.
  • N0F is « ⁇ /, RTF (Tsiy.
  • the pre-plating amount is Nikkeno's amount (g / m 2 ), which is ⁇ ⁇ .
  • the present invention has an extremely excellent effect of being able to obtain a fuel tank steel sheet having excellent characteristics as a fuel tank material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

明 細 書 燃料タ ンク用防錡鋼板およびその製造方法 技術分野
本発明は、 主として自動車用燃料タ ン ク、 あるいは電気 (電子) 機器配線部材に使用される防銷鋼板とその製造方法に関するもので ある。 背景技術
従来、 燃料タンク材料としてはこれまで耐食性 · 加工性 · ハンダ 性 (溶接性) 等の優れた鉛—錫合金めつき鋼板が主と して用いられ 、 自動車用燃料タンクとして幅広く使用されている。 また、 亜鉛一 錫合金めつき鋼板は、 亜鉛以外に錫を含むため耐食性 · ハンダ性 ( 溶接性) に優れており電気 (電子) 機器配線部材等に使用されてき た。 この亜鉛一錫合金めつき鋼板に関しては、 例えば特開昭 52 - 13 0438号公報に開示されているように、 錫 : 3〜20重量%を含む亜鉛 -錫合金めつきを行うに際し、 亜鉛 -錫イ オ ンを含む水溶液中で電 解する電気めつき法で主として製造されてきた。
一方、 亜鉛 -錫合金めつき鋼板に関しては、 更に溶融めつき法か ありめつき付着量を比較的容易に厚くするこ とか出来るため、 製品 は燃料タンク、 屋外用途等厳しい環境下で使用されている。 上記溶 融めっき法については、 例えば特公昭 52_35016号公報には、 錫 80超 、98重量 、 亜鉛 2〜20重量%未満を溶融めつき した鋼板を自動車 用燃料タン ク、 石油ス トーブのオイルタ ン クに使用する例か開示さ れている。 また、 特開平 4 - 214848号公報には、 鉄系被めつき物に 錫 7()〜 98重量%の亜^ -錫合金めつき した被 If物やその製造法か開
BAD ORIGINAL
し 示されている。 更に、 特開平 3 - 229846号公報および特開平 5 — 26 3208号公報では、 鉄系基材に溶融亜鉛または溶融亜鉛合金めつき層 と して錫を含む合金層、 または亜鉛とアル ミニゥムを含む合金層の 上に、 クロムめつ き層で順次被覆された亜鉛系めつき被覆物および その製造法が開示されている。 特開平 5 — 9786号公報および特開平 6 — 1 16749号公報では、 ニッケル、 コバル トおよびこれらを含む第 1 めっき層の上に前記層より融点の低い錫、 ニッケルおよびこれら を含む第 2めっき層を順次被覆した後、 塑性加工後加熱処理して得 た鋼板、 鋼板製部品および自動車用燃料配管等の溶接管が開示され ている。
更に、 特公昭 63- 6691 6号公報では、 クロム、 アル ミ ニウム、 チタ ン、 ニオブ等の合金元素を添加した低炭素鋼に錫 -亜鉛合金被覆層 を施したアルコール含有燃料容器用鋼板が開示されている。
しかしながら、 上述したような従来の技術はそれぞれ以下に述べ るような様々な問題点を有している。
先ず、 鉛 -錫めつき鋼板の使用によって車の寿命を満足する耐蝕 性、 車底部の複雑な構造に合った加工のできる加工性、 燃料タ ン ク 部品を接合できるハンダ性、 溶接性が確保された ものの、 シュ レ ツ ダーダス ト等の産業廃棄物からの鉛溶出規制等の環境規制に対 して は鉛—錫めつき鋼板には鉛か含まれるこ とから使用は好ま し く はな い。
—方、 上述のような電気めつき法による錫一亜鉛めつ き鋼板の使 用によってハン ダ性ゃ耐蝕性は改善されたものの、 燃料タ ン クの樣 な長期耐蝕性の要求される環境には付着量を厚 く しためつ き綱板か 必要であるか、 ¾気めっき法における付着量の制御は時間と ^流の 大きさに依存するため、 付着 fiは厚 く てき るか処理時間を £ ; した り、 をた さん流す必要かあり、 生 ¾性ゃ½济63に大き な ¾3
BAD ORIGINAL S を生ずる。
更に鉄系基材が亜鉛または亜鉛合金層とクロムめつき層で順次被 覆された場合についてはクロム被覆層も加わり酎蝕性等がさ らに向 上するが、 亜鉛または亜鉛合金層の厚みが 5 〜75 z m、 好ま しく は 10〜50 /ζ πι、 さらに好ま しく は 10〜30 mと非常に厚く、 合金層に よる耐蝕性の確保が困難で、 また、 素地鉄が合金層中に含有される ため硬度が上昇し加工性が大幅に低下し燃料タンク材料としては不 向きである。
次に、 前述の各先行技術における問題点を更に詳細に説明する。 特開平 5 - 9786号公報及び特開平 6 - 1 1 6749号公報には、 N i , Co 及びこれら基合金のうち 1 種類からなる第一めつき層上に、 前記層 より融点の低い Sn— Zn合金等の第二めつき層が形成された燃料との 接触部を有する鋼板製部品、 溶接管及びその製造方法が開示されて いる。 しかしながら、 これらの技術は、 第一めつき層及び第二めつ き層共に電気的あるいは化学的めつき法にて形成される為に、 めつ き後の加熱処理が必須の工程となっている。 この加熱処理工程の主 たる目的は、 第一めっき層に残存する ピンホールゃ塑性加工に伴つ て発生するクラ ッ クを、 第二めつき層を溶融、 流動させる事によつ てふせぐ事にある。 また、 この熱処理は 600〜 1200ての高温下で行 う為に、 溶融後の冷却過程において、 亜鉛等の特殊な成分の偏折か 生じ、 局部的に耐食性が劣化する可能性が大である。
これに対して、 本願発明は、 後で詳細に説明するが、 溶融めつき 法を用いる為に、 めっき後に加熱処理を行う必要性がないのは当然 の事であるか、 そもそも技術的バッ クグラン ドが全く異なる ものて あり、 得られる製品及び用いる製法も異なっている。 更には、 本願 発明者らは、 Sn - Zn合金めつき層中の亜鉛の形態について、 亜鉛晶 の大きさと ίί食性との閱係について詳細な検討を行い、 優れた特性
BAD ORIGINAL
し を有する燃料タ ンク用材料に要求される好ま しい亜鉛晶の分布形態 及びこれを実現する為のメ ツキ処理後の冷却条件等を明確に したも のであり、 上述の先行技術には、 本願発明における重要な構成要件 であるこれらの関係に対して何ら開示も示唆もない。
特開平 3 - 229846号公報には、 鉄系被メ ッキ物に少な く と も鉄、 亜鉛及びニッケルを含む合金層を介して、 亜鉛皮膜又は亜鉛合金皮 膜が被覆されている溶融亜鉛メ ツキ被覆物が開示されている。 亜鉛 合金被膜に関しては、 一部、 錫を 30wt %以上含む溶融 Zn - Sn合金め つき層についての開示があるが、 該公報における亜鉛合金皮膜では アル ミ ニウムが必須の成分系となっている為に、 技術的な詳細説明 が加えられているのは亜鉛合金と して Zn— A 1合金を用いた場合のみ である。 従って、 本願発明で注目 した Sn - Zn合金めつ き層に関する 技術的開示は皆無に等しいものである。 更に、 メ ツキ後の冷却条件 についての記載が無いために、 亜鉛の巨大晶成長か予想され、 耐食 性劣化の可能性も大である。
特開平 4 - 214848号公報には、 铸物からなる被メ ッ キ物に少な く と も鉄、 亜鉛及びニッケルを含む合金層を介して、 溶融 Ζπ - Sn合金 めっき層 (亜鉛 : 錫 = 2 〜30wt % : 98〜70wt % ) か被覆されている 溶融亜鉛メ ツキ被覆物が開示されている。 該公報中には、 対象物か 鉄系被メ ツキ物 (鋼板及び铸物等の上位概念) と铸物の場合ては技 術上の問題点が異なり、 特に、 铸物の場合には、 錫含有量か高 く 、 Βί食性に優れた亜鉛一錫合金メ ツキ皮膜を形成する こ とか困難てあ る為に、 少な く と も鉄及ひ亜鉛を含み、 かつ、 ニッ ケルか存&する 合金層を介して、 亜鉛一錫合金被膜を形成する必要かある と明^さ れている c つま り、 該公報には、 ツキ ίτί象物か網板てある場合に 、 本願!^月の «I成要件てある Νし Fe. Zn. Snを含 合金^に Wする 明 Kな紀敏か無いし、 本 K発明によ て ^めて明らかにされた、 # 鉛晶の大きさと耐食性の関係についての記載も示唆も無い。 また、 該公報では、 棚状層や柱状層といつた特徴のある鉄-亜鉛合金層が 、 亜鉛—錫合金めつき被覆層と同等以上に厚く形成される為に、 そ の後厳しい加工条件下にさらされる燃料タンク材用途では、 加工性 及び加工部酎食性の点で問題があると考えられる。
特開平 5— 263208号公報には、 鉄系基材に少なく とも亜鉛と錫を 含む溶融 Zn— Sn合金めつき層及びクロムメ ツキ層とで順次被覆され ている亜鉛系メ ツキ被覆物が開示されているが、 本願発明の構成要 件である Ni . Fe, Zn, Snを含む合金層に関する明確な記載が無いし 、 亜鉛結晶の分布形態に関する記載も全く ない。 更に、 めっき後の 冷却条件についての記載が無いために、 亜鉛の巨大晶成長が予想さ れ、 耐食性劣化の可能性も大である。
特公昭 52-35016号公報には、 錫 80超〜 98重量%、 亜鉛 2 〜20重量 %未満の組成よりなる合金被膜を有する Sn— Zn系溶融メ ツキ被覆鋼 材が開示されており、 メ ツキ層として特定組成の Sn— Zn合金につい て技術的説明がなされているが、 本願発明の構成要件である N i . Fe . Zn. Snを含む合金層についての記載は全く なく、 かつ、 亜鉛結晶 の分布形態に関する記載もない。
特開昭 63-66916号公報には、 Cr. A l , Ti . Nb等の合金元素を添加 した低炭素鋼に、 N i又は Coあるいは N i— Co合金の拡散層と Sn - Zn合 金メ ツキ被覆層を施した燃料容器用鋼板が開示されている。 Sn - Zn 合金のメ ツキ方法に関して、 明細書中には、 "メ ツキ方法及ひ メ ッ キ条件等は特に規定されるものではない" と記載されているか、 実 際に開示されているのは鼋気メ ツキ方法てある為に、 その後、 場合 によっては合金メ ッキ層のビンホール部の加熱溶融処理 =封孔処 理) を行う必要性かある。 これに対して、 本睇発明ては、 ツ キ法を用いる為に、 ツキ後に M孔処理する必要性か無い ^は ; う
'BAD ORIGI A! 、 し— 一 ^ までもない。 また、 本願発明によって初めて明らかにされた、 亜鉛 晶の大きさ と酎食性の関係についての開示も示唆も無い。
以上説明した通り、 本願発明者らは、 Sn - Z n合金めつ き層中の亜 鉛の形態について、 亜鉛晶の大きさ と耐食性との関係について詳細 な検討を行い、 優れた特性を有する燃料タ ンク用材料に要求される 好ま しい亜鉛晶の分布形態及びこれを実現する為のメ ツキ処理後の 冷却条件等を明確にしたものであり、 これらの先行技術には、 本願 発明における重要な構成要件である亜鉛晶の分布形態及びメ ッキ後 の冷却条件等に関して何ら開示も示唆もない。 発明の開示
本発明者等は、 上記問題点を解決すべく 亜鉛 -錫合金被覆層の組 織、 表面状態およびベース金属組成等、 また耐食性向上のための更 なる被膜条件ならびに前記亜鉛 -錫合金被覆層の最適製造条件につ いて種々検討した結果、 本発明による構成をとるこ とによって燃料 タ ン ク用材料と して最適な性能を満足する こ とを発見した。
特に、 本発明者等が注目 したのは亜鉛 -錫合金層中の亜鉛の形態 について亜鉛晶の大きさ と腐食との関係が明らかになった。 すなわ ち、 亜鉛晶の大きさが大きいと亜鉛晶か優先的に腐食しやす く なり 、 めっき層が局部的に腐食してめっき層の貫通までの寿命が短く な る。 また、 加工した場合には大きな亜鉛晶はク ラ ッ クの伝播の経路 となり クラ ッ クがめっき層を伝播しめっ き剝雜を生じたり、 腐食の 鋼までの進行を早める。 このため亜鉛晶の折出サイズと単位面 ¾当 りの個数が重要な因子であるこ とを突き止めたものである。
また、 本発明者らは、 前記亜鉛 -錫合金被覆層の表面状態、 特に 表面粗度と耐蝕性、 加工性の改善およひ基盤となるベース金 ¾組成 によっても最適な組み合わせにおいて 記 S 蝕性、 加工性か ¾ し :
• BAD ORIGINAL g 改善されることを見いだしたものである。
更に、 亜鉛 -錫合金被覆層の冷却過程で初晶として錫を主体とす るスパングルが析出するが、 緩冷却では大きな結晶組織 (以下、 ス バングルと称す) が形成される為に、 発達した針状結晶の亜鉛を主 体に腐食環境中で急速に溶解されると共に、 この針状結晶を起点に クラ ッ クが発生しやすく なる。 一方、 極度の急速冷却を行う とスパ ングルが微細化する為に、 大きな歪を結晶中に内蔵して、 耐食性と 加工性に影響を及ぼす事が予想される。 しかしながら、 通常、 燃料 タンク として加工される過程において、 塗装焼き付け等の熱が加え られ、 歪の解放が期待される為、 実用的には問題ない。 そこで、 本 発明者らは、 前記亜鉛 -錫合金被覆層の最適製造条件に併せ、 最適 サイズのスパングルをも見いだしたものである。
加えて、 前記亜鉛 -錫合金被覆層上に更に耐蝕性を向上させるた めの追加的被覆処理をも見いだしたものである。
また、 本発明者等は、 上記亜鉛 -錫合金被覆層を得るための最適 製造条件をも見い出したものである。
本発明の第一の目的は、 鋼板表面にニッケル、 鉄、 亜鉛、 錫の 1 種以上を含む合金層が片面当たり 2 m以下であり、 更にその上に 錫 : 40〜99重量%、 残部亜鉛および不可避的不純物からなり、 その 中に含まれる亜鉛晶の長径が 250 z m以上のものが 20個以下 0. 25 mm2 であり、 かつ片面当たり厚み 2〜 50 の錫-亜鉛合金めつき 層がある燃料タンク用防锖鐧板を提供する。
本発明の第二の目的は、 前記錫 -亜鉛合金めつき層の表面粗度 Ra (中心線平均担さ) 力、 0. 2〜3. 0 mてある燃料タ ン ク用 1¾ ½綱板 を提供する。
本発明の第三の目的は、 前 d ffi -亜鉛合金め き層を施すペース 金 Kの組成か、 8量%て、 0. l «t、 S i ^ 0. 1 、 0. 05 c i n ^
BAD 0BIG . 1.2%、 P≤ 0.04%, S≤ 0.04%. Al≤ 0.1%で、 Ti, Nbの 1 種以 上を ( C +N) 含有量の原子当量以上 1.0%以下含有し、 残部 Feお よび不可避的不純物からなる鋼であり、 更に、 前記組成に加えて B : 0.0002〜0.0030%、 Cr : 0.2〜 6 %の少な く と も 1 種以上を添加 した鋼である燃料タ ンク用防锖鋼板を提供する。
更に、 本発明は前記錫 -亜鉛合金めつき層の外側にクロム換算量 で片面当たり 0.2〜 100 mg/ m 2 のクロ メー ト処理被膜および Zま たは有機樹脂の主体がアク リ ル、 ポリ エステル、 エポキシ樹脂よ り なる クロム、 シ リ コ ン、 リ ン、 マ ンガンの 1 種以上を含む付着量 0. 01〜2.0 g /m 2 の有機一無機複合被膜を有する燃料タ ン ク用防銷 鋼板を提供する。
更に、 本発明は、 上記錫 -亜鉛合金めつき層を得るための方法と して、
( 1 ) 焼鈍済の鋼板を脱脂、 酸洗した後、 ニッケルまたはニッケ ルー鉄系プレめっきをニッケル含有量で片面あたり 0.1〜3.0 g / m 2 行い、 塩酸を含有した塩素換算量で 2〜 45重量%のフ ラ ッ ク ス を塗布し、 錫 : 40〜99重量%残部亜鉛および不可避的不純物からな る浴で (融点 + 20°C) 〜 (融点 + 300°C) の浴温で 15秒未満浸漬し 、 めっきする こ とを特徴とする亜鉛一錫合金めつき鋼板の製造法。 また本材料をさ らに付着量の調整とと もに冷却速度 10て 秒以上の 冷却速度で冷却する こ と。
( 2 ) 焼鈍済の鋼板にニッケル またはニッケル一鉄系ブレめっ き をニッケル含有量で片面当たり 0.1〜3.0 g /m 2 行い、 無酸化炉 最高板温 350〜650 て、 空気比 0.85〜 1.30、 還元炉最高板温 600〜 770 て、 無酸化炉滞炉時間 元炉滞炉時間の比率か 1 〜 1 3、 S元炉出口 S点 - 20'C以下のめ き fHi¾ f.を行い、 め き I&: k 温をほほ ¾温に調整した後、 ί¾ : 40、 99 ¾ fi'i ¾ S $ίおよひ不 "I 避的不純物からなる浴で、 (融点 + 20'C ) 〜 (融点 + 300°C ) の浴 温で浴中に 6秒未満浸漬しめつきを行い、 冷却速度 10てノ秒以上の 冷却速度で冷却すること。
( 3 ) 冷延済の鋼板を無酸化炉最高板温 450〜750 。C、 空気比 0. 85〜1. 30、 還元炉最高板温 680〜850 て、 無酸化炉滞炉時間 Z還元 炉滞炉時間の比率が 1 〜 1 Z 3、 還元炉出口露点一 25°C以下のめつ き前処理を行い、 めっき直前の板温をほぼ浴温に調整した後、 錫 : 40〜 99重量%残部亜鉛および不可避的不純物からなる浴で、 (融点 + 20°C ) 〜 (融点 + 300°C ) の浴温で浴中に 6秒未満浸漬しめつき を行い、 冷却速度 10°C Z秒以上の冷却速度で冷却する亜 , -錫合金 めっき鋼板の製造法を提供することを目的とするものである。 図面の簡単な説明
図 1 ( a ) は、 従来の亜鉛 -錫合金被覆層で見られる巨大亜鉛晶 の析出サイズの組織写真で、 図 1 ( b ) は本発明により得られた亜 鉛 -錫合金被覆層の適正サイズの亜鉛晶の析出サイズの組織写真で ある。
図 2は、 塩水噴霧試験(SST 500時間後の錫-亜鉛めつき鋼板の赤 銷発生率) における錫-亜鉛めつき材の亜鉛晶の長径 ( m ) の関 係を示した図である。
発明を実施するための最良な形態
本発明は、 前述したように錫 -亜鉛合金めつき層において適切な 範囲の亜鉛晶の折出サイズと単位面積当たりの個数と腐食との関係 を明らかにしたものであり、 以下に詳細に説明する。
図 1 に亜鉛晶の折出サイズに関する組織写真を示した。 図 1 ( a ) は、 従来の亜鉛 -錫合金被 ¾て昆られる巨大亜鉛晶て、 その折 出サイズは数百// mに達し、 gii iiiしたように巨大な亜 ½品か fi 5t的
BAD ORIGli ^ に腐食し、 クラ ッ クの伝播を引き起こす。 一方、 図 1 ( b ) は、 本 発明で耐腐食性が著しく 改善された際の亜鉛晶の析出サイズが単位 面積当たりに或る特定サイズの亜鉛晶が存在した場合を示すもので ある。 この単位面積当たりに或る特定サイズの亜鉛晶と耐蝕性との 関係について図 2を以て説明する。 図 2 は、 塩水噴霧試験(S ST 500 時間後の錫 -亜鉛めつき鋼板の赤锖発生率) における錫 -亜鉛めつ き材の亜鉛晶の長径 (〃 m ) の関係を示したものである。 図 2から 明らかなように、 亜鉛晶の個数が 20〜21 0 個/ 0. 25mm 2 の範囲内で 亜鉛晶長径が 250 mを越える と急激に赤锖発生率が増加し、 従来 のような巨大亜鉛晶の場合には非常に高い頻度で赤锖発生が起こ つ ている。 一方、 この範囲以外の場合には赤锖発生率は 40 %以下と極 めて低い頻度でしか発生していない。 このように、 錫 -亜鉛合金め つ き層においては、 単位面積当たりに適切なサイズの亜鉛晶かある こ とが重要である。 その亜鉛晶の析出は、 長径か 250 m以上のも のが 20個以下/ 0. 25mm 2 である こ とが必須の要件である こ とか判明 した。
上記知見を元に錫 -亜鉛合金めつ き層を得るための最適条件を見 ϋιし 7こ。
使用されるめつき原板は铸片から熱間圧延、 酸洗、 冷間圧延等の 熱処理、 圧延等を行った焼鈍済の鋼板、 または圧延材を被めつ き材 と して使用 し、 圧延油の除去等の前処理を行った後、 めっ きを行う ο
鋼近傍の合金組織については、 溶融めつき、 あるいは電気めつ き 後、 加熱して封孔処理等を行う と鋼との界面に鋼成分 -めつ き成分 を含む組雄を生ずる。 本組辙を以後、 合金^と称する。 本合金餍に はニッケル、 鉄、 亜 、 錫の 1 種以上を含んているかこれ ら ο組铋 はガソ リ ン等の燃料に対しては腐贪は進行しに : : 、 d - ι η ^
Figure imgf000012_0001
が厚い方が長期耐蝕性を確保する点で有利である。 しかしながら自 動車下部の複雑な形状に適した厳しい加工性を確保する点からは、 本組織の硬度は高いため加工時に合金層にクラッ クを生じる。 更に 、 合金層厚みがある厚みより も厚い場合、 合金層上部のめっき層に クラ ッ クが伝播しめっき層中に割れを生ずることとなり、 めっき剝 離やめつき層のダメージによる耐蝕性劣化が懸念される。 従って本 合金層厚みを 2 / m以下とした。 ただし、 鋼成分等との組み合わせ により、 具体的適用部位が予想されるものについては、 合金層厚み 1 . 5 / m以下が好ま しい場合がある。
めっき層については、 錫、 亜鉛を含む組成からなりガソ リ ン等の 燃料に対するタンク内面耐蝕性や融雪塩散布地域走行時に生ずる塩 害環境に対する外面耐蝕性の確保、 さ らには自動車下部の構造に合 わせて加工できる加工性の確保、 燃料パイプ等の部品の接合に必要 なハンダ性の確保等が必要である。 めっき層中の錫含有量が 40 %よ り少ない場合、 タンク内面耐蝕性が大幅に低下しめっき層の溶解速 度が大き くなると共に塩害環境におけるめっき層の溶解速度も大き くなり耐蝕性が大幅に低下する。 また亜鉛含有量が多く なるこ とに よってめつき層の加工性も低下する。 さらに亜鉛含有量が多く なつ てハンダ性が大幅に低下する。 めっき層中錫含有量が 99 %より多く なると特に性能が低下するわけではないが塩害環境におけるめっき 層による犠牲防食効果が小さ く なり、 疵等が入った場合、 素地から 鉄耩を生じやすい。 従ってめつき層組成として錫 : 40〜99重量%、 残部亜鉛および不可避的不純物からなるとした。 ただし、 鋼成分等 との組み合わせにより、 具体的適用部位が限定される場合、 例えは 厳しい加工性が要求されるような場合には、 錫含有量を増加させる 必要かあり、 錫 : 80〜 99重量 96か好ま しい組成範囲となるこ と あ る。
1 1 ■BAD ORIGII し (i^ めっき層の厚みは耐蝕性に影響するが、 あま り薄すぎる と燃料夕 ンク材と して長期使用に対し、 比較的短時間で素地まで腐食が進行 しゃすいと共にめつき時に生じた微小ピンホールが被覆されず露出 するためめつき厚みより推定した寿命よ り もさ らに早く 素地腐食が 起る。 めっき厚みが厚すぎる と耐蝕性は充分に確保されるが性能過 剰となる。 なおハンダ性は付着量にも依存し付着量が極めて少ない 場合、 下地の影響をう けやすく なりハンダ性も低下する。 従ってめ つき厚みは片面当たり 4 〜50 mが好ま しい。 ただし、 表面潤滑性 や加工方法に留意して加工におけるめっ き損傷を最小限にするよう に考慮すれば、 めっき厚み 2 mでも十分に耐蝕性を確保できる。 したがって、 めっ き厚みは片面あたり 2〜50 z mと した。
次に、 粗度は表面潤滑性に関連し、 摩擦係数や油の保持性に大き な影響を及ぼす。 実タ ンクプレス時の鋼板には少な く ても製品出荷 時の防錡油が塗布されており油の保持性が重要となる。 粗度 Raは大 きい程、 油の保持性は良く なるが余り多すぎる と効果か飽和すると 共に、 加工後に局部的にめっき厚みが不均一となり耐蝕性等にかえ つて悪影響を与える。 従って上限を Ra 3. 0 mと した。 一方、 0. 2 m未満の場合、 本めつき組成では油保持性か大幅に低下し表面潤 滑性が悪化する。 従って、 以上を考慮して粗度 Ra 0. 2〜3. 0 mと した。
尚、 加工性を摩擦係数で見ると、 めっき層組成、 耐蝕性等の諸性 能向上のための後処理、 塗油を含む表面皮膜の種類、 表面凹凸か 響し、 摩擦係数によってはめつ き層に割れを生じたり、 めっ き層に クラ ッ クを生じめつき層の損耗か大き く なり耐蝕性に影鏨するよ う な問題を生ずる。 このこ とを考 .し亜 - 系の本組成域ては動^ 擦係數は塗油後、 0. 3以下か望ま しい。
更に、 本発明者らは鉛か含まれていない (不可避的不純物は^ ;
BAD ORIGINAL ) 燃料タンク防銷鋼板を提供するこ とを目的に、 鋼成分、 被覆層組 織、 構成等を種々検討したところ本構成の材料が燃料タンク材料と して必要な性能を満たすことを知見したものである。
( 1 ) 重量%で C ≤ 0.1%、 Si≤ 0.1%、 0.05%≤Un≤ 1.2%、 P ≤ 0.04%, M≤ 0.1%を含む鋼であるか、 または ( 2 ) 重量%で C ≤ 0.1%、 Si≤ 0.1%、 0.05%≤ Mn≤ 1.2%、 P ≤ 0.04%. Al≤ 0.1%更に Ti. Nbの 1 種以上を ( C + N) 含有量の原子当量以上含 有し、 上限を 1.0%以下、 Bを 0.0002〜0.0030%の 1 種又は 2種を 含有する鋼に Ni, Fe. Zn, Snの 1 種以上を含む合金層が片面当たり 厚み 1.5〃 m以下ありその上に錫 : 40〜99重量%、 残部亜鉛および 不可避的不純物からなり、 その中に含まれる亜鉛晶の長径が 250 m以上のものが表面から見て 20個以下 Z0.25mm2 であり、 片面当た りの厚みが 2〜50 mの錫—亜鉛合金めつき層がある燃料タ ンク用 防耩鋼 ΪΚο
( 3 ) 重量%で C ≤ 0.08%、 Si≤ 0.1%、 0.05%≤Un≤ 1· 5%、 Ρ ≤ 0.035%、 Al≤ 0.1%. 0.2≤Cr≤ 6 を含む鋼である力、、 ま たは ( 4 ) 重量%で C ≤ 0.08%、 Si≤ 0.1%, 0.05%≤ Mn≤ 1.5% 、 P ≤ 0.035%、 Al≤ 0.1%、 0.2≤ Cr≤ 6 % . 更に Bを 0.0002〜 0.0030%、 Ti. Nbの 1 種以上を ( C + N) 含有量の原子量以上を含 有し上限を 1.0%、 の 1 種又は 2種を含有する鋼に、 ニッケル、 鉄 、 クロ厶、 亜鉛、 錫の 1 種以上を含む合金層が片面当たり厚み 1.5 以下あり、 その上に錫 : 40〜99重量%、 残部亜鉛および不可避 的不純物からなり、 その中に含まれる亜鉛晶の長怪か 250 m以上 のものが表面から見て 20個以下 0.25ram2 であり、 片面当たりの厚 みが 2〜50/i mの錫一亜鉛合金めつき層かあるこ とを特徴とする燃 料タン ク用防銪鋼板。
網成分については、 燃料タ ン クの ffi雉な形状に加工てきる成分系 であることと、 錫—めっき層界面の合金成分層の厚みを極力薄く め つき剝離を防止できるこ と、 燃料タンク内部環境および外部環境に おける腐食の進展を抑制する成分系である必要がある。 以下にその 詳細を説明する。
Cは強度確保の点からある程度の含有量は必要である。 しかし本 めっき浴成分では加工性および耐蝕性を低下させる元素であるが、 鋼一めつき層界面反応を抑制する元素として働く ため加工時のめつ き密着性を確保する点では有利である。 以上を考慮して C含有量は 重量%で C ≤ 0. 1 %とした。
S iは鋼表面酸化皮膜を安定化させるため、 本めつき浴成分ではめ つき浴へ浸漬時残存しやすく めつき反応を阻害し、 耐蝕性に影響す るピンホール (不めっき部分) を多量に生成しやすい。 また強度確 保の点からある程度の含有は必要であるが、 強度強化元素であるた め含有量を調整する必要がある。 また本めつき浴成分では鋼 -めつ き層界面反応を抑制する元素と して働く ため加工時のめっき密着性 を確保する点では有利となる。 以上を考慮して S i含有量は重量%で S i≤ 0. 1 %とした。
Mnは強度確保の点からある程度の含有量は必要であるか、 強度強 化元素なため加工性を低下させる傾向にあり含有量を制限する必要 かある。 また本めつき浴では反応性を向上させる方向にあり、 鋼一 めっき層界面反応も促進させる方向にあり界面反応を調整する上で 含有量を調整する必要かある。 以上を考慮して Mn含有量は重量%で 0. 05 % ^ n ^ 1 . 2 %とした。
Pは本めつき浴て反応を抑制させる効果かあり鐧-めっき層界面 反 を抑制させるのに必要な成分てある。 含有量か多すぎると ビン ホールか多量に ¾生するため、 以上を考 «して重量%て Ρ ^ 0 · 0·1 ¾ と した。
1 Alは本めつき浴で反応を抑制させる効果があり鋼一めつき層界面 反応を抑制させるのに必要な成分である。 但し多すぎるとめつき性 を大幅に低下させるためにピンホールが発生しやすく含有量の上限 を制限する必要がある。 従って上限を重量%で 0.1%とした。
Nb, Tiは C, Nを固定して鋼板に加工性を付与するために必要な 元素で ( C +N) の原子当量以上含有することによって C, Nを固 定可能である。 また 1.0%を越えると効果は飽和すると共に本めつ き浴では鋼 -めつき層界面反応も促進させる方向にあり界面反応を 調整する上でも含有量を調整する必要がある。 以上考慮して Ti, Nb については Ti, Nbの 1 種以上を ( C +N) 含有量の原子当量以上含 有し上限を重量%で 1.0%とした。
Bは結晶粒界に析出して粒界の強度を高め、 2次加工割れを防止 して加工性を向上させるのに必要である。 多すぎるとその効果か飽 和し、 かつ熱間強度が高く なりすぎ熱間圧延性が低下し好ま しく な い。 従って含有量は重量%で 0.0002〜0.0030%とした。
Crは強度を高め加工性を低下させめつき性を低下させる傾向にあ るが、 鋼の耐蝕性を大幅に向上させる効果がある。 また本めつき層 組成に対しては比較的微量の Cr添加範囲に対しても犠牲防食効果か 得られ、 従来の普通鋼に対してより も耐蝕性向上効果が大きい。 従 つて加工性、 めっき性、 耐蝕性を考慮して含有量を調整するこ とか 必要で、 Cr含有量は重量%で 0.2 Cr≤ 6 %とした。
次に、 本発明者らは、 鉛を含まない (不可避的不純物は除く ) 燃 料タンク用防锖鋼板を提供することを目的に、 めっき組成 · 皮膜構 造 · 構成等を種々検討し 40重量%〜 99重量 の錫を含む錫 -亜鉛合 金めつき綱扳において、 2.0 m以下の厚みの合金層を介して、 最 表面におけるスパングルの長怪寸法か 20.0關以下のめっき組繳を する加工性 · 酎食性に優れた燃料タ ン ク R]F¾ 綱板を開発した c
1 ■ 一般的には小さな結晶組織 (結晶組織を以下スパングルと称す) は、 極度の急速冷却を行った場合に出現するが、 大きな歪を組織中 に内蔵するため耐食性と加工性の劣る可能性が予想される。 一方、 めっき後緩やかに冷却すると、 錫主体の大きなスパングルが形成さ れ、 熱歪の問題はな く なるが、 加工時に、 大きな結晶がク ラ ッ ク発 生の起点となるため好ま しく ない。
このような理由から、 本発明では更にスパングルの大きさをも規 定する ものである。
スパングルの大きさは、 結晶の長径長さによ り定義する こ とがで きる。 通常、 丸いスパングルが形成される こ とが多いが、 必ずしも 結晶の長径長さ と短径長さは等し く ないため、 本発明では結晶の長 径長さにより定義するこ とと した。
そこで、 本発明では、 更に、 耐食性 · 加工性の観点よ り、 めっき 後のスパングルと して、 好ま し く は結晶の長径長さが 20mm以下、 更 に好ま し く は 10難以下のスパングルとする こ とが望まれる。 結晶の 長径長さが 20mm以上の粗大結晶では、 前述せるごと く 加工時のク ラ ッ ク発生の起点となるため好ま し く ない。
結晶の長径長さが 1. 0mm以下の微紬結晶は大きな熱歪を組織中に 内蔵するため心配される力、、 通常燃料タ ン ク と して加工される過程 にて塗装焼付け等の熱が加えられ、 歪の開放が期待されるため実用 的には問題ない。
さ らにめつき層の上にク ロ メ ー ト処理皮膜を有する。 この処理皮 膜は本組成のめっき層とは非常に馴染みが良 く 、 微小ピンホール等 の欠 ½ を被 したり、 めっ き層を溶解させビンホールを if¾復する 効果かあり ίί蝕性を大輻に向上させる。 従って Si蝕性を向上させる 下 ffi ttと して クロム換算量て 0. 2mg / m : と した。 また、 本処理 ΙΪ齄 Ο上. ffi frtは、 6性ゃ坻½ ¾ ½性を 【き.する と ¾めの 、 Wま しく、 その上限値をクロム換算量で 100 g/m 2 とした。 付着量 10 0 mg/m 2 以上では効果が飽和し、 また着色して外観の低下を招く 。 ただし、 はんだ接合を使用する場合には、 付着量が多く なるとは んだ性を低下させるため、 クロム換算量で 25mgZm 2 以下が望ま し い。
また、 本発明は上記クロメ一ト処理皮膜に替えて Sn基合金めつき 層の表面に付着量 0.01〜2.0 g /m 2 の有機 -無機複合皮膜を有す る加工性 · 耐食性 · 溶接性に優れた燃料タ ンク用防锖鋼板を開発し ナ:。
前述の Sn基合金めつき層が重量 で、 Zn : 20%以下、 Cr: 5 %以 下、 Mn : 5 %以下、 Ti : 5 %以下、 A1 : 5 %以下、 Cd : 5 %以下、 Mg: 5 %以下の 1 種または 2種以上を合計で 20%以下含有し、 残部 が Snおよび不可避的不純物であってもよい。
上述の有機一無機複合皮膜が、 クロム、 シ リ コ ン、 リ ン、 マ ンガ ン系の各化合物の 1 種または 2種以上を合計で 20重量%以上含有す るか、 または有機一無機複合皮膜の有機樹脂がアク リ ル系、 ボリエ ステル系、 エポキシ系の 1 種または 2種以上であってもよい。
本発明では、 最表層の皮膜か耐食性 · 溶接性 , ハ ンダ性 · ロウ付 け性を左右する重要な役割を有する。 したがって、 これらの諸性能 をさらに向上させることが重要である。
スボッ ト溶接 · シー厶溶接は、 銅基合金を電極と して使用する電 気抵抗溶接であり、 本発明のめっき金属である錫基合金は、 溶接時 の熱により ¾極の銅基合金と反応しゃすく 、 電極寿命を劣化させる こ とか問題視される。 こ の問題を解决てきれは、 本発明のめっき鋼 板は、 タ ン ク材料として、 優れた加工性 · Si食性 接性を兼備し た材料とみなすこ とかてきる。
本 ては、 前 iiした金 Κめ き上に、 ク ロ ム、 シ リ コ ン 、 リ ン 、 マンガンの 1 種以上を含む付着量 0.01〜2.0 g /m 2 の有機—無 機複合皮膜を存在させるこ とにより、 スポッ ト溶接 · シ一ム溶接性 の改善をはかる ものである。
有機樹脂皮膜と しては、 金属との密着性に優れるアク リ ル系、 ポ リエステル系、 エポキシ系樹脂が望ま しいベース樹脂と して使用さ れる。 これらの樹脂は、 溶剤型あるいは水溶性と して、 ク ロム、 シ リ コ ン、 リ ン、 マンガンの 1 種又は 2種以上の化合物を含む有機一 無機複合樹脂として使用される。
ク ロム化合物と しては、 ク ロム酸あるいはクロム酸塩と して、 防 锖作用を向上させるために添加される。 シ リ コ ン化合物と しては、 酸化物 · フ ッ化物と して皮膜特性向上のために添加される。 リ ン化 合物は、 有機 ' 無機のリ ン酸あるいはリ ン酸化合物と して、 皮膜の 密着性 · 耐食性 , 溶接性向上のため添加される。 マンガン化合物は クロム化合物と同様に、 防锖作用の向上を主目的に添加される。 これらの化合物と樹脂との混合比率は、 特に限定する ものではな いが、 溶接性の改善を主眼とする場合、 有機樹脂の混合比率を 80% 以下 (重量比にて) 、 好ま し く は 50%以下とするほうが良い。
付着量と しては、 トータル重量で 0.01〜2· 0 g /m 2 の範囲、 更 に望ま し く は 0.02〜0.50g Zm 2 の範囲か良好である。 下限値 0.01 g/m 2 は、 耐食性 · 溶接性の改善が認められる限界であり、 上限 値 2.0g Zm 2 は、 溶接時に局部的な異常発熱によるスパッ ター発 生の限界である。
次に、 本発明の目的とする亜鉛一錫系合金めつ き層を得るための 製造条件について述べる。 溶融めつ きの製造法には、 大き く 分けて フラ ッ クスめっき法と焼鈍によるめつ き法かあり、 焼鈍によるめ き法はさ らに酸化 3元法と全 5元法に分類される。 いずれ O方法 もめつ き前の表面を活性にするために本 ¾明の合金め き系に適 W
BAD ORIGINAL
し. . 可能である。 ここでは、 以下にフラッ クス法と酸化 Z還元法につい て詳細に述べる。 本発明による製造方法は先ず、 焼鈍済の鋼板に、 ニッケルまたはニッケル一鉄系プレめっきをニッケル含有量で片面 当たり 0.1〜3.0 g /m2 行い、 塩酸を含有した塩素換算量で 2〜 45wt%0フラ ッ クスを塗布し、 錫 : 40〜99wt%残部亜鉛および不可 避的不純物からなる浴で、 (融点 + 20°C) 〜 (融点 + 300°C) の浴 温で浴中に 15秒未満浸漬しめつきするこ とであり、 更に冷却速度 10 °CZ秒以上の冷却速度で冷却するこ とを特徴とする亜鉛一錫合金め つき鋼板の製造法である。
また、 焼鈍済の鋼板にニッケル又はニッケル—鉄系プレめっきを ニッケル含有量で片面当たり 0.1〜3.0 g /m 行い、 無酸化炉で の最高板温 350〜650 て、 空気比0.85〜1.30、 還元炉での最高板温 600〜770 て、 無酸化炉滞炉時間 還元炉滞炉時間の比率が 1 〜 1 Z 3、 還元炉出口露点を一 20°C以下のめっき前処理を行い、 めっき 直前の板温をほぼめつき浴温に調整した後、 錫 : 40〜99重量%残部 亜鉛および不可避的不純物からなるめっき浴で、 前記めつき浴金属 の (融点 + 20'C) 〜 (融点 + 300て) の浴温で浴中に 6秒未満浸漬 しめつきを行い、 冷却速度 10°CZ秒以上の冷却速度で、 冷却する亜 鉛一錫合金めつき綱板の製造法であり、 または、 冷延済の鋼板を、 無酸化炉での最高板温 450〜750 'C、 空気比0.85〜 1.30、 還元炉で の最高板温 680〜850 ' (:、 無酸化炉滞炉時間/還元炉滞炉時間の比 率か 】 〜 1 Z 3、 還元炉出口露点一 25'C以下のめつき前処理を行い めっき直前の扳温をほぼめつき浴温に調整した後、 錫 : 40〜99重量 %残部亜鉛および不可避的不純物からなるめっき浴て、 前記めつき 金 Kの (融点 + 20て) 〜 (融点 + 300て) の浴温て浴中に 6秒未満 漫液してめっきを行い、 冷却速度 10'CZ&'以上の冶却速度て、 冷却 する亜 -錫合金め き »板の製1&法にある。
1 ('
BAD ORIGINAL 亜鉛一錫めつきでは錫中の亜鉛含有量が増加するこ とによって濡 れ性が低下し、 特に亜鉛が 8. 8重量%の共晶点近傍では濡れにく い 為、 亜鉛一錫合金めつき浴と鋼板の濡れ性を向上させる必要がある 。 濡れ性を向上させるためには浴温を高めること、 通板速度を遅く するこ と、 鋼板表面を活性にする前処理をするこ とが挙げられる。 この中では鋼板表面を活性化するための前処理が特に重要である。 前処理法としてプレめっき及びフ ラ ッ クス種類、 条件が影響する 。 プレめっきでは、 ニッケルまたはニッケル—鉄系が亜鉛一錫合金 めっき浴との組み合わせにおいて濡れ性効果が極めて大きい。 ただ し、 フラ ッ クスの種類、 条件等を制御すれば、 プレめっきがなく と もめつきは可能である。 付着量はニッケル含有量で O . l g Z m 2 未 満では被覆性が十分でないために濡れ性向上効果が小さい。 3· O g / m 2 を越えて付着と濡れ性が飽和するとともに、 めっき層と鋼界 面に合金層が厚く生成しタ ン クに成形したときのめっき密着性か低 下する。 したがって、 プレめっき量はニッケル含有量で 0. 1〜3. 0 g Z m 2 とした。
フ ラ ッ ク スでは ZnC l 2 , HC 1等の塩素イオンを含むフ ラ ッ ク スか濡 れ性向上に効果的であった。 フ ラ ッ ク ス中の塩素換算量か 2重量% 未満では被めつき材表面の酸化皮膜溶解性が低く濡れ性の向上効果 は小さい。 45重量%を超えて濃度が高いと効果が飽和すると共に使 用薬品量が多く なりすぎ不経済である。 この時望ま しく は ΗΠを 0 . 1 %以上添加すると被めつき材表面の酸化皮膜か溶解しやす く濡れ 性か更に向上する。 従ってフ ラ ッ ク ス中に塩酸を含有した塩素換算 量て 2 〜·Ι5重量%のフ ラ ッ ク スを塗市と した。
浴温についてはかなり適正 6 囲か広いか濡れ性は高い方か有利て ある- 融点 + 2o'c未満ては反 cr.性か低 ; 、 不めっきゃ密 -性不良か
¾生しゃすい。 融点 + 300'c eては^ f は 和すると共に、 め D ORIGINAL きが流れやすく外観不良を起こ しやすい。 従って浴温は (融点 + 20 °C ) 〜 (融点 + 300°C ) とした。
浴中浸漬時間はめつき浴と鋼とのめっき反応程度と関連し、 浸漬 時間が長い方が合金層が厚く生成し耐蝕性確保の点では有利である 力 加工時のめっき密着性を逆に低下させる原因となるため、 燃料 タンク用には極力薄くする必要がある。 したがってめっき密着性を 確保する程度の薄い合金層であるこ とが望ま しく、 浸漬時間の上限 を定め 1 5秒未満とした。
浴成分に関しては、 燃料タ ン ク内外面耐蝕性、 加工時のめっき密 着性、 ハンダ性、 溶接性を考慮すると、 亜鉛含有量が 60重量%より 多い場合、 劣化ガソ リ ン等燃料タンク内の耐蝕性およびハンダ性が 懸念される。 亜鉛含有量が 1 重量%未満では亜鉛含有量が少ないた めタンク外面の耐蝕性が懸念される。 従って錫 : 40〜99重量%残部 亜鉛および不可避的不純物からなる浴とした。
冷却速度については、 図 1 ( a ) の様にめっき浴中亜鉛含有量か 8. 8重量%より多い場合、 1 0°C Z秒未満ではめつき後の冷却過程で 粗大な亜鉛晶が折出するため、 加工時のめっき層の割れや粗大な亜 鉛晶の優先腐食によってタンク内外面の局部的に腐食が懸念される さらに、 冷却速度によっては錫を主体とするスパングルか成長す るが、 スパングル長径が 20隨超では加工時のクラ ッ ク発生の起点と なるため、 長径を 20mm以下に抑える必要かある。 そのためには冷却 速度を l O'C Z秒以上にする必要がある。
また、 亜鉛含有量が 8. 8 重量%以上では、 望ま し く は 20て 秒以 上とする。
更に、 本発明においては前処理法と してのブレめっき ¾ひ操炉条 件を特定する。 その ¾体的方法と して、 ORIG AL
Figure imgf000023_0001
( 1 ) 焼鈍済の鋼板にニッゲル又はニッケル—鉄系プレめっきを ニッケル含有量で片面当たり 0.1〜3.0 g /m 2 行い、 無酸化炉で の最高板温 350〜650 で、 空気比0.85〜1.30、 還元炉での最高扳温
600〜770 て、 無酸化炉滞炉時間 Z還元炉滞炉時間の比率が 1 〜 1 3、 還元炉出口露点を - 20eC以下のめっき前処理を行い、 めっき 直前の扳温をほぼめつき浴温に調整した後、 錫 : 40〜99重量%残部 亜鉛および不可避的不純物からなるめっき浴で、 前記めつき浴金属 の (融点 + 20°C) 〜 (融点 + 300°C) の浴温で浴中に 6秒未満浸漬 しめつきを行い、 冷却速度 10て /秒以上の冷却速度で、 冷却するこ とを特徴とする亜鉛-錫合金めつき鋼板の製造法。
( 2 ) 冷延済の鋼板を、 無酸化炉での最高板温 450〜750 て、 空 気比0.85〜1.30、 還元炉での最高板温 680〜850 て、 無酸化炉滞炉 時間ノ還元炉滞炉時間の比率が 1 〜 1 ノ 3、 還元炉出口露点 _ 25°C 以下のめっき前処理を行いめつき直前の板温をほぼめつき浴温に調 整した後、 錫 : 40〜99重量%残部亜鉛および不可避的不純物からな るめつき浴で、 前記めつき金属の (融点 + 20°C) 〜 (融点 + 300°C ) の浴温で浴中に 6秒未満浸漬してめつきを行い、 冷却速度 10°CZ 秒以上の冷却速度で、 冷却するこ とを特徴とする亜鉛一錫合金めつ き鋼板の製造法である。
前処理法としてプレめっきおよび操炉条件が影響する。 プレめつ きではニッケルまたはニッケル—鉄系か亜鉛一錫合金めつき浴との 組み合わせにおいて鉄、 ニッケル、 錫、 亜鉛を主体とする合金を容 易に生成するために濡れ性向上効果か極めて大きい。 付着量はニッ ゲル含有量で O. l g Zm 2 未満ては被 S性か充分てないために濡れ 性向上効果が小さい。 3.0g Zm 2 を越えて付着すると ^れ性か 和すると共にめつき疆と期界面に合金 ISか!? ; 生成し ク ン クに成开'; した時のめっき密着性か低下する。 従ってブレめ き量は二 ,' ' L
jBAD ORIGI AL £ 含有量で 0 , 1〜3. 0 g / m 2 とした。
操炉条件ではプレめっき材はプレめっき金属が高温中を通過して 鋼内部に多量に拡散して最表面のプレめつき量が極端に減少し、 本 来の目的浴との濡れ性を低下させないようにする必要がある。 従つ て操炉条件はプレめつき金属の鋼中拡散量を抑制し亜鉛 -錫系浴で の反応性を確保できるように設定する必要がある。 無酸化炉温度、 空気比、 還元炉温度、 無酸化炉滞炉時間 還元炉滞炉時間の比率、 露点は相互関連性が大き く、 めっき浴へ進入する時のめっき原板表 面状態をこれらの条件を最適設定して酸化皮膜を部分的に残存させ た状態または酸化皮膜が残存していても酸化皮膜表面が活性な状態 で一部酸化皮膜のない状態にし、 反応性の極めて低い亜鉛 -錫めつ き浴で濡れ性を向上させるこ とが必要である。
無酸化炉温度は炉中で生成する酸化膜厚み、 最高到達温度に影響 し、 350°C未満では酸化膜生成厚みは薄いが、 最高板温度も低く な り、 還元が不十分となって浴との反応性が低下する。 650°Cを越え る温度では最高板温度も高く なりプレめっき金属の鋼への拡散が懸 念される。 従って無酸化炉最高板温は 350〜650 °Cとした。 空気比 は使用空気量 理論燃焼空気量の比率で酸化皮膜の厚みおよび質に 影響する。 この場合クロム等が多量にはいったステ ン レ ス等の特殊 鋼を考慮していないので主と して無酸化炉で生成する鉄、 ニッケル 系酸化膜の厚みを調節するこ ととなる。 0. 85〜し 30の範囲では次の 還元炉条件とも調和がとれて還元炉を通過後のめっき原板表面か本 めっき浴との钃れ性確保に最適な状態となる。
還元炉温度は無酸化炉て生成した酸化皮膜の還元による濡れ性碓 保と材質確保に影響するか、 焼鈍済材料を使用の為、 材質は確保さ れているのて i れ性の確保のみか必要てある c 600'C未満ては遝 τ か不十分て酸化皮膜かかなり残存しま面か不活性て ¾との反 tt:性か
BAD ORIGINAL 充分に確保されない。 770°Cを越える温度ではプレめっき金属の鋼 中への拡散が起こ りやすく、 プレめっき金属による過大反応が懸念 される。 従って還元炉最高板温は 600〜770 °Cと した。
無酸化炉滞炉時間 還元炉滞炉時間の時間比率は無酸化炉で生成 した酸化膜を還元炉で充分に還元できるかどうかを左右し、 1 / 3 より小さい場合、 還元時間が長すぎてめっき原板表面の鉄、 ニッケ ル系酸化物が充分に還元され表面が活性化される点では良いが、 還 元炉での滞炉時間が長く なりプレめっき金属の鋼中への拡散が懸念 される。 1 より大きい場合、 無酸化炉で生成した酸化皮膜が充分に 還元、 活性化できず濡れ性の低下が懸念される。 従って無酸化炉滞 炉時間ノ還元炉滞炉時間の比率を 1 Z 3 〜 1 と した。
還元炉内部の露点は酸化皮膜が還元できる雰囲気かどうかの点で 重要であり、 鉄、 ニッケル系酸化物を還元可能な雰囲気に設定する 必要がある。 鉄、 ニッケル系酸化皮膜は鉄系酸化皮膜よ り も還元さ れやすいが、 還元炉出口の露点が - 20°Cよ り高い場合、 標記操炉条 件と組み合わせて検討しても充分には皮膜は還元できず酸化膜が多 量に残存し濡れ性が確保できない。 よって還元炉出口の露点を - 20 て以下と した。 なお還元炉中の水素は還元に必須であるか特に大量 に導入する必要はな く 、 還元炉出口濃度で望ま し く は 5 〜20 %程度 あればよい。
次に冷延板をめつき原板とする場合の操炉条件を記す。 冷延板は 焼鈍して加工可能な材質を確保すると共に、 めっ き浴ての良好な濡 れ性を確保しなけれはならない。 無酸化炉温度か ·150Χ:未満ては § 元炉ての ft高到達板温も低 く なり充分に再結晶せずに忖質確 ί、かお 念される。 750てを越える温度ては JS元炉ての最高板温も A、 ' な すき、 結晶粒粗大化による W質劣化や網中 酸化物 O i ώϊ «5化によ る ¾れ性低下か 念される。 また無 «化ね;を通過中にめ - き
,5 面に多量の酸化皮膜が生成し濡れ性に影響を及ぼす。 従って無酸化 炉最高板温は 450〜750 °Cとした。 還元炉温度は 680eC未満では酸 化皮膜がかなり残存し活性度が不足するこ とから、 浴との反応性が 確保されないと共に充分に再結晶されず材質不良を引き起こす。
850°Cを越える温度では、 結晶粒粗大化による材質劣化や鋼中易 酸化物の表面濃化による濡れ性低下が懸念される。 従って還元炉最 高板温は 680〜850 でとした。 還元炉内部の露点は無酸化炉で生成 した鉄系酸化物を還元できる雰囲気にするこ とから、 還元性の良い 鉄、 ニッケル系酸化皮膜より もさらに露点をさげる必要があり、 還 元炉出口露点を- 25°C以下とした。
浴成分に関しては、 燃料タンク内外面耐蝕性、 加工性のめっき密 着性、 ハンダ性、 溶接性等のガソ リ ンタ ンクに必要な基本性能を考 慮すると、 亜鉛含有量が 60重量%より多い場合、 劣化ガソ リ ン等の 燃料タンク内の耐蝕性およびハンダ性が懸念される。 亜鉛含有量が 1 重量%未満では亜鉛含有量が少ないためにタン ク外面耐蝕性が懸 念される。 従って錫 : 40〜99重量%残部亜鉛および不可避的不純物 からなる浴とした。
浴温についてはかなり適正範囲が広いが濡れ性は高い方か有利で ある。 めっき浴中金属の融点 + 20て未満では反応性が低く 不めっき やめつき密着性不良が発生しやすいと共に浴の流動性が低く 外観不 良が発生しやすい。 (融点 + 300eC ) を越える温度では濡れ性は飽 和すると共に、 浴内で生成する合金層か厚く なつたり、 めっきか流 れやすく外観不良を引き起こ しゃすい。 従ってめつき浴温はめつき 浴中金属の (融点 + 20て) 〜 (融点 + 300'C ) と した。
浴中浸浪時間はめつき浴とめっき原板とのめっき反 程度と閟迚 する。 本 K造法てはめつき浴進人 fi前のめっき原板の表面には 化 ¾睽かほとんとない伏 ©または非常に活 t な »化¾膜かこ : ' E ¾
BAD ORlGiNA,. 存し、 部分的に皮膜のない状態になっていると考えられこれが錫一 亜鉛との反応性に効果をもたらす。 浸漬時間が長い方が合金層が厚 く 生成し耐蝕性確保の点では有利であるが、 加工時のめっ き密着性 を低下させる原因となるため、 燃料タ ンク用には極力薄く する必要 がある。 従ってめつき密着性を確保する程度の薄い合金層であるこ とが望ま しく、 活性なめっき原板の表面状態を考慮して浸漬時間の 上限を 6秒未満と した。
冷却速度に関しては、 めっき浴中亜鉛量が 8. 8重量%よ り多い場 合、 1 0 ノ秒未満ではめつ き後の冷却過程で粗大な亜鉛晶が折出す るために、 加工時のめつき割れや粗大な亜鉛晶の優先腐食によつて タ ン ク内外面の局部腐食が懸念される。 さ らに冷却速度によっては 錫を主体とするスパン グルが成長するが、 スパン グル長径が 20匪超 では加工時のクラ ッ ク発生の起点となるため、 長径を 20mm以下に抑 える必要がある。 その為には冷却速度を 1 0て 秒以上にする必要か ある。 また、 亜鉛含有量が 8. 8 重量%以上では、 望ま し く は 20 °C Z 秒以上とする。
実施例
本発明の燃料タ ン ク用防錡鋼板の品質特性を実施例で示す。
A
(実施例 1 )
焼鈍済の低炭素鋼を脱脂、 酸洗した後、 ニッケルプレめっ き、 鉄 一ニッケルブレめっきを行うかまたはプレめっ きを行わずに、 フ ラ ッ ク ス法による連梡溶融めつきを行い付着量を調整し、 更に冶却し 本材料を製造した。 得られた本材料の内面耐蝕性、 外面耐蝕性、 ンダ性を表 1 に示す。
( 1 ) 内面 fii蝕性
下記に示す 状 o試料と試験条件を使 ffl し内面 fii蝕性を把握した
2 f,
BAD ORIGINAL c 。 その結果本発明材は素地からの腐食もなく良好であった。 一方比 較材では素地からの赤靖、 赤変およびめつき層が大幅に溶解した影 響による大きな変色があり耐蝕性は良好でなかった。
(内面評価法)
• 力 ップ絞り加工を行い中に燃料を封入して 45てで 1 力月試験を行 レ、、 試料内面の外観および素地腐食状況を評価した。
• 力 ップ絞り条件 : ポンチ径 3Omm 0、 ブランク径 6Omm 0、 絞り深さ 15匪
• 腐食試験溶液 : 劣化ガソ リ ン 100倍希釈溶液 4. 5cc +蒸留水 0. 5
C C
( 2 ) 外面耐蝕性
下記に示す形状の試料と試験条件を使用し外面耐蝕性を把握した 。 その結果本発明材は素地からの腐食もなく良好であった。 一方比 較材では素地からの赤锖、 赤変およびめつき層が大幅に溶解した影 響による大きな変色があり耐蝕性は良好でなかつた。
(外面評価法)
• カ ップ絞り加工を行い外面に塩水噴霧が当たるように水平に試料 を設置し、 1 力月試験後の外観および素地腐食状況を評価した。 • カ ップ絞り条件 : ボンチ径 30mm φ、 ブラ ン ク径 60mm φ、 絞り深さ 15mm
• 塩水噴霧条件 : 5 %塩化ナ ト リ ウム溶液、 50eC
( 3 ) ハンダ性
下記に示す試験条件を基にハンダ広かり性を把握した。 その結果 本発明材は現行鉛 -錫めつき鋼板と同等も し く は良好な結果を示し た。 一方比較材は亜鉛含有量の多い試料等てハン ダ性は良好てなか つた。
(ハン ダ性評価法)
BAD ' 平板の試料を ト ルエンで脱脂した後、 フ ラ ッ ク スを少量塗った後 、 ハンダを一定量付け、 その後も、 鉛浴に一定時間浮かべ、 引き上 げた後広がり面積を測定した。
' 試験条件 : ハンダ ZPb- 40% Sn (250mg) 、 フ ラ ッ ク ス/ 3%口 ジン—イソプロピルアルコール、 鉛浴 Z 280°Cに 30秒浮かべ、 その 後引き上げる。
2 H 'BAD ORIGINAL i cmm l )
Figure imgf000031_0002
*1: Νほた liFe— Niめっき C Ni含有量 (g/m2)
*2:めっき屑中に含まれる長怪 250 /m以上の亜鉛晶の 0.25nm2表面積当たりの個数
*3: mm^→ ◎:外観に大きな変化なし、 △:大きな外職化あり、 χ ヽら あり
: Pb- 8 %Snめっき と I f して、
Figure imgf000031_0001
厶: 50〜80%の り 、 y: 50%未満の り賺
(実施例 2 )
焼鈍済の低炭素鋼を脱脂、 酸洗した後、 ニッケルプレめっ き、 鉄 一ニッケルプレめっきを行うかまたはプレめっきを行わずに、 フラ ッ クス法による連続溶融めつきを行い付着量を調整し、 更に冷却し た後クロメ一ト処理を行い本材料を製造した。 得られた本材料の内 面耐蝕性、 外面耐蝕性、 ハンダ性 (各試験条件は実施例 1 と同様) を表 2に示す。
( 1 ) 内面耐蝕性
下記に示す形状の試料と試験条件を使用 し内面耐蝕性を把握した 。 その結果本発明材では素地からの腐食もな く 良好であった。 一方 比較材では素地からの赤靖、 赤変色およびめつ き層が大幅に溶解し た影響による大きな変色があり耐蝕性は良好でなかつた。
( 2 ) 外面耐蝕性
下記に示す形状の試料と試験条件を使用 し外面耐蝕性を把握した 。 その結果本発明材では素地からの腐食もな く 良好であった。 一方 比較材では素地からの赤銪、 赤変色およびめつ き層か大幅に溶解し た影響による大きな変色があり耐蝕性は良好でなかった。
( 3 ) ハンダ性
下記に示す試験条件を基にハ ン ダ広かり性を把握した。 その結果 、 本発明材は現行鉛 -錫めつ き鐧板と同等も し く は良好な結果を示 した。 一方比較材は亜鉛含有量の多い試料、 ク ロ メー ト皮膜量の多 い試料等でハ ン ダ性は良好てなかった。 (¾ϋ例 2)
Figure imgf000033_0001
*Ι: Νほた (iFe— Niめっき ( i含有量 (g/m2)
韋 2:めっき暦中に含まれる長径 250 x/m以上の亜鉛晶の 0.25豳2表面積当たりの
*3: 1掘 f価結 ◎:外観に大きな変化なし、 △:大きな外麟化あり、 χ :^¾Λヽらの锖あり *4: Pb- 8 %Snめつき纖と して、◎:同等またはそ l hの広がり賺、 Δ: 50〜80%の I ^り赚、 : 50%未満の広がり隨
(実施例 3 )
酸洗済の熱延板や冷延板を脱脂、 酸洗した後、 ニッケルプレめつ き、 鉄 -ニッケルプレめっきを行うかまたは酸洗済の熱延板ゃ冷延 板をそのまま、 酸化炉または無酸化炉、 還元炉等を有する炉で加熱 処理を行った後、 溶融めつきを行い付着量を調整して更に冷却して 本材料を製造した。
得られた本材料の内面耐蝕性、 外面耐蝕性、 ハンダ性 (各試験条 件は実施例 1 と同様) を表 3 に示す。
( 1 ) 内面耐蝕性
下記に示す形状の試料と試験条件を使用 し内面耐蝕性を評価した 。 その結果本発明材は素地からの腐食もな く 良好であった。 一方比 較材では素地からの赤锖、 赤変およびめつき層が大幅に溶解した影 響による大きな変色があり耐蝕性は良好でなかった。
( 2 ) 外面耐蝕性
下記に示す形状の試料と試験条件を使用 し外面耐蝕性を把握した 。 その結果本発明材では素地からの腐食もな く 良好であった。 一方 比較材では素地からの赤銪、 赤変色およびめつ き層か大幅に溶解し た影響による大きな変色があり耐蝕性は良好でなかった。
( 3 ) ハンダ性
下記に示す試験条件を基にハン ダ広かり性を把握した。 その結果 本発明材は現行鉛一錫めつ き鋼板と同等も し く は良好な結果を示し た。 一方比較材は亜鉛含有量の多い試料でハン ダ性は良好てなか
ORIGINAL c mz)
Figure imgf000035_0001
*1: Νほた e— Niめっき ©Ni含有量 (g/V)
*2:めっき 10屮に含まれる長 ί圣 250 zm以上の 晶の 0.25nra2表面積当たりの麵
*3: ^m ^^◎:外観に大きな変化なし、 △:大きな外麟化あり、 χ :^¾τ¾、らの锖あり
*4: Pb- 8 ?6Snめっき鋼板と i嫩して、◎:同等またはそれ以上の広がり面擯、 △: 50〜80%の広がり赚、 X : 50%未満の り隨
(実施例 4 )
酸洗済の熱延板や冷延板を脱脂、 酸洗した後、 ニッケルプレめつ き、 鉄一ニッケルプレめっきを行うかまたは酸洗済の熱延板ゃ冷延 板をそのまま、 酸化炉または無酸化炉、 還元炉等を有する炉で加熱 処理を行った後、 溶融めつきを行い付着量を調整し、 更に冷却した 後クロメー ト処理を行い本材料を製造した。 その結果を表 4 に示す
( 1 ) 内面耐蝕性
下記に示す形状の試料と試験条件を使用し内面耐蝕性を把握した 。 その結果本発明材では素地からの腐食もなく 良好であった。 一方 比較材では素地からの赤锖、 赤変色およびめつき層が大幅に溶解し た影響による大きな変色があり耐蝕性は良好でなかった。
( 2 ) 外面耐蝕性
下記に示す形伏の試料と試験条件を使用し外面耐蝕性を把握した 。 その結果本発明材では素地からの腐食もなく良好であった。 一方 比較材では素地からの赤耩、 赤変色およびめつき層が大幅に溶解し た影響による大きな変色があり耐蝕性は良好でなかった。
( 3 ) ハンダ性
下記に示す試験条件を基にハ ンダ広かり性を把握した。 その結果 本発明材は現行鉛—錫めつき鋼板と同等も しく は良好な結果を示し た。 一方比較材は亜鉛含有量の多い試料、 クロ メー ト皮膜量の多い 材料でハンダ性は良好でなかった。
£ C¾WJ4)
Figure imgf000037_0001
*i: Νはた liFe-Niめっき 0Ni含有量 (gZm2)
*2:めつき^巾に含まれる長怪 250 /m以上の 晶の 0.25mn2表 当たりの
*3: r f → ◎:外観に大きな変化なし、 △:大きな外酸化あり、 Χ : ^½Λヽらの锖あり
* :Pb- 896Snめつき謹と赚して、◎:同等またはそれ以上の広がり面積、 △: 50〜80%の! 2¾り賺、 X : 50%未満の広がり賺
(実施例 5 )
焼鈍済の低炭素鋼を脱脂、 酸洗した後、 ニッケルあるいは鉄一 二 ッケルプレめっきを行うかまたはプレめっきを行わずにフラ ッ クス 法による連続めつきを行い浴温、 ライ ンスピー ド、 フラ ッ クス条件 を種々調整し、 さ らに付着量を調整し冷却して本材料を製造した。 さ らに製造材の表面粗度を調圧時のロール粗度および圧下力で調整 した。 得られた本材料の加工特性および加工材の内面耐蝕性を表 5 に示す。
( 1 ) 加工特性
下記に示す試験条件の基にプレス成形を行い、 加工性および加工 後のめつ き密着性を把握した。 その結果本発明は現行鉛 -錫めつ き 鋼板と同等も し く は良好な結果が得られた。 一方比較では合金層、 めっき層の加工性や潤滑性能によっては加工時に割れたり、 めっ き 剝離を生じた。
• 平板試料に防锖油を塗油した後、 加工深さを変えてク ラ ン クプレ スを行い、 その時の加工可能でめっき剝離のない最大加工深さを求 めた。
• 試験条件 : ダイス肩半径ノ3. 5mm 、 ダイ スコーナ一半 ii Z l O關、 ボンチ肩半径 Z S mnu ボンチサイズ/ 70 x 70隱、 プレ ス力 1 1 0ト ン
• めっ き剝離評価 : 加工後のコーナー側壁外側および内側を丁寧に テーピングしめつき剥離有無を肉眼観察する。
• 判定法 : 加工可能でめっ き剝雜のない限界加工深さ
© 30mm以上、 △ 30mm未満〜 25關以上、 ' 25mm未満
( 2 ) 加工材の内面耐蝕性
下記に示す形状の試料と試験条件を使用 し内面耐蝕性を把握した 。 その結果本発明村ては素地か の腐食も無 ( 良好な結 3【てあ た c 一方比較 Wては素地からの赤 ½、 赤 ¾およひめ き ¾ に
BAD ORIGINAL き 解した影響による変色があり耐蝕性は良好でなかった。
(内面耐蝕性評価法)
• カ ップ絞り加工を行い、 中に燃料を封入して 45°Cで 1 力月試験を 行い、 試料内面側壁部の外観および素地腐食状況を評価した。 但し カ ップ絞り時には防锖油を使用し、 耐蝕性試験前に充分 トルェンで 脱脂した。
• 力 ップ絞り条件 : ボンチ径 28. 5mm ø、 ブランク径 6Omm 0、 絞り深 さ 22mm
• 腐食試験溶液 : 劣化ガソ リ ン 10倍希釈溶液 6. 3cc +蒸留水 0. 7cc • 判定法 :
◎外観に大きな変化なし、 △大きな外観変化あり、 X素地からの 锖あり
表 5 (雄例 5)
Figure imgf000040_0001
*1: Nほた (iFe- Niめっき 0Ni含有量 (gZm2)
*2:めっき屑中に含まれる長怪 250 /m tU:の 晶の 0.25nm2表 ®«当たりの «
(実施例 6 ) '
酸洗済の低炭素鋼を脱脂、 酸洗した後、 ニッケルあるいは鉄一二 ッケルプレめつきを行うかまたは酸洗済の熱延板、 冷延板をそのま ま酸化炉または無酸化炉、 還元炉等を有する炉で加熱処理を行った 後、 溶融めつきを行い付着量を調整し、 さらに冷却した後、 調圧時 のロール粗度および圧下率で表面粗さを調整し、 更にクロメー ト処 理を行い本材料を製造した。 得られた本材料の加工特性及び加工材 の内面耐蝕性を表 6 に示す。 各試験条件は実施例 5 と同様である。
( 1 ) 加工特性
下記に示す試験条件の基にプレス成形を行い、 加工性および加工 後のめっき密着性を把握した。 その結果本発明は現行鉛 -錫めつき 鋼板と同等も しく は良好な結果が得られた。 一方比較では合金層、 めっき層の加工性や潤滑性能によっては加工時に割れたり、 めっき 剝離を生じた。
( 2 ) 加工材の内面耐蝕性
下記に示す形状の試料と試験条件を使用し内面耐蝕性を把握した 。 その結果本発明では素地からの腐食も無く 良好な結果であった。 一方比較材では素地からの赤镜、 赤変およびめつき層か大幅に溶解 した影響による変色があり耐蝕性か良好でなかった。
.1 (' λ6 (篇 6)
Figure imgf000042_0001
*1: Nほた (iFe—Niめっき c¾ i含冇量 (g/m2)
*2:めっき層中に含まれる長径 250〃m以上の 晶の 0.25mn2表 当たりの W
(実施例 7 )
焼鈍済の表 7に示す鋼を脱脂、 酸洗した後、 ニッケルプレめっき 、 鉄一ニッケルプレめっきを行うかまたはプレめっきを行わずに、 フ ラ ッ ク ス法による連続溶融めつきを行い付着量を調整し、 さ らに 冷却し本材料を作成した。 更に、 一部の材料にはクロメー ト処理を 行った。
得られた本材料の内面耐蝕性、 外面耐蝕性、 ハンダ性、 加工性を 表 7に示す。
( 1 ) 内面耐蝕性
下記に示す形状の試料と試験条件を使用し内面耐蝕性を把握した 。 その結果本発明材は素地からの腐食もなく 良好であった。 一方、 比較材では素地からの赤镜、 赤変およびめつき層が大幅に溶解した 影響による大きな変色があり耐蝕性は良好でなかつた。
(内面評価法)
• カ ップ絞り加工を行い中に燃料を封入して 45°Cで 1 力月試験を行 い、 試験内面の外観および素地腐食状況を評価した。
• 力 ップ絞り条件 : ボンチ怪 28. 5mm ø , ブラ ンク径 60mm ø、 絞り深 さ 18mm
• 腐食試験溶液 : 劣化ガソ リ ン 100倍希釈溶液 4. 5cc +蒸留水 0. 5
C C
( 2 ) 外面耐蝕性
下記に示す形状の試料と試験条件を使用し外面耐蝕性を把握した その結果本発明材は素地からの腐食もなく 良好であった。 一方、 比較材では素地からの赤鲭、 赤変およびめつき層か大幅に溶解した 影響による大きな変色かあり Si姓性は良好てなかった。
(外面評価法)
• カ ップ校り加工を行い中に外面に塩水喷 かあたるように水 に
BAO 0 NAL
し 試料を設置し 1 力月後の外観および素地腐食状況を評価した。
• カ ップ絞り条件 : ボンチ径 28. 5mm ø、 ブラ ンク径 60匪 ø、 絞り深 さ 1 8mm
• 塩水噴霧条件 : 5 %塩化ナ ト リ ゥム溶液、 50°C
( 3 ) ハンダ性
下記に示す試験条件を基にハ ンダ広がり性を把握した。 その結果 本発明は現行鉛 -錫めつ き鋼板と同等も しく は良好な結果を示した 。 一方比較材は亜鉛含有量の多い材料等でハ ンダ性は良好でなかつ た。
(ハンダ性評価法)
• 平板の試料を ト ルエンで脱脂した後、 フ ラ ッ タ スを少量塗った後 、 ハンダを一定量付け、 その後、 鉛浴に一定時間浮かべ、 引き上げ た後の広がり面積を測定した。
• 試験条件 : ハンダ /鉛一 40 %錫(250mg ) 、 フ ラ ッ クス Z 1 3 %ロ ジ ンーイ ソプロ ピルアルコール、 鉛浴ノ 280 °Cに 30秒浮かべ、 その後 引き上げる。
( 4 ) プレス成形性
下記に示す試験条件を基にプレ ス成形を行い、 加工性および加工 後のめつき密着性を把握した。 その結果本発明は現行鉛 -錫めつ き 鋼板と同等も し く は良好な結果を示した。 一方比較材は鋼成分系、 合金層、 めっき層の厚み、 めっ き組成によっては加工時に割れたり 、 めっき剝離を生じた。
(ブレ ス加工性)
• 平板の試料に潤滑油を塗布した後、 ブラ ン ク を種々 変えて ¾り 込みを行い、 そのときの校り込み可能てめっき剝離のない最大直 ί圣 を求めた。
• 試験条件 :
BAD ORIGINAL 6. ■ プレス条件 : ボンチ径 25關、 皺押さえ力 500kg
' めっき剝雜 : 加工後の側面外壁をテービングしてめっき剝離有 無を肉眼観察する
l. ORNAIGI
Figure imgf000046_0001
·.'' 、 W'I'I r Ml••-Ιίίί Γ! I ('、'! i'iiW,',',' " 人囊' た ') 韓
l h.HA'r,','!' - リに Λ.''ΛιΙ. '(し. Λ■ ,. (し り、 、 ; ί; i,W
I ir 3 '.SnY'、. 1«1 と II して . 〇 たけ-: 1Η·-ΛΙλ り ιιΜ. △: M、80。。の かり ifiiffi, .Wiiの かり ίίίίΜ '■ rW:.l(A I '>il.-''"l(itて SKtXiい n'W. 卜- ·'"■ 2 m I . Δ: 2.3-»-r«-2.15I I-. : 2. IG.I K
(実施例 8 )
酸洗済の表 8に示す鋼板にニッケルプレめっき、 鉄一ニッケルプ レめっきを行うかまたは酸洗済の熱延板や冷延板をそのまま、 酸化 炉または無酸化炉、 還元炉等を有する炉で加熱処理を行った後、 溶 融めっきを行い付着量を調整して冷却して本材料を製造した。 更に 、 一部の材料にはクロメー ト処理を行った。
得られた本材料の内面耐蝕性、 外面耐蝕性、 ハ ンダ性、 加工性 ( 試験条件は実施例 7 と同様) を表 8 に示す。
( 1 ) 内面耐蝕性
下記に示す形状の試料と試験条件を使用し内面耐蝕性を把握した 。 その結果本発明材では素地からの腐食もな く 良好であった。 一方 比較材では素地からの赤锖、 赤変色およびめつき層が大幅に溶解し た影響による大きな変色があり耐蝕性は良好でなかった。
( 2 ) 外面耐蝕性
下記に示す形状の試料と試験条件を使用し外面耐蝕性を把握した 。 その結果本発明材では素地からの腐食もなく 良好であった。 一方 比較材では素地からの赤錡、 赤変およびめつき層が大幅に溶解した 影響による大きな変色があり耐蝕性は良好でなかった。
( 3 ) ハ ンダ性
下記に示す試験条件を基にハ ンダ広がり性を把握した。 その結果 本発明は現行鉛 -錫めつき網板と同等も しく は良好な結果が得られ た。 一方比較材は亜鉛含有量の多い材料等でハ ンダ性は良好でなか つた。
( 4 ) ブレス成形性
下記に示す試験条件の基にブレス成形を行い、 加工性およひ加工 後のめっき密着性を把握した。 その結果本発明は現行^ -錫めっ き 鋼板と もし く は良 4ίな紡 ¾を示した。
BAD ORIGINAL 一方比較材は鋼成分系、 合金層、 めっき層厚み、 めっき組成によ つて加工時に割れたり、 めっき剝雜を生じた。
4 (' ブレめつ am めっき めっき 中 ffl めっき 内面
Π4 iV 分 HI l>V ti) ill 1'/み 中 Sn¾ t
(ケ / 性.'
f Si P S Ti w Nb B N { m) (wt?i5) 0.25rmi!),:! (mg/m:)
0 O i 078 0020 0.011 0.029 0.0039 なし 1.25 98 0 49 ◎ ◎ ◎ ◎
0 0 OIS o yt 0037 0.019 0.007 0.0027 0.0054 Ni/2.8 0.85 99 0 47 ◎ ◎ ◎ ◎
1 n (>"M 00| | 0 LI 18 00 ' 0. ( 00','J 0.0000 0. !.50 70 ■1 7.9 © ◎ ©
4 o mrj 00J8 0.15 o. or¾) 0.017 0.07T> 0.032 0.014 0.0003 0.0019 なし 1.40 99 0 4.2 25.0 ◎ ◎ ◎ ® f, 00"',, 0 ϋί3 I) 00!8 0.019 0 0.089 0.032 0.003> Ni/2.9 0.55 99 9 7.7 0.2 ◎ ® ◎ ©
', 0,9 0 o 0021 0019 0.015 0.073 Ni/2.9 1.25 38 36 12 X X X X
7 fl "'1 Π (ΐΤλ 1 00: 0019 0.07 n.077 0.0046 なし 2.90 23 •15 3.8 15.3 X X X X
I '.' ! , (!!" Ni ·'. '"·.", - m')
■ <- ■ " Ι':·Λ m-r 'ΛΗΒΙ W.l ("'\'Ά:, '< ( im',i fiiW:V.:りの IW
'." 化あり, ' , fe の あり
ilU〖の fi:がり ffiM, Δ :M〜80 の (T,かり而 ffi, : M?6 ,' «の li:がり iiiiM
'': 1ヒ) -· : 2 ¾;iL. Λ 2.3 «、2.15W丄、 : 2.15末«
ヽョ
Figure imgf000049_0001
(実施例 9 )
焼鈍済の表 9 に示す鋼を脱脂、 酸洗した後、 ニッケルプレめっき 、 鉄一ニッケルプレめっきを行うかまたはプレめっきを行わずに、 フラ ッ クス法による連続溶融めつきを行い付着量を調整しさ らに冷 却し本材料を作成した。 なお、 一部の材料にはク ロ メ ー ト処理を行 つた o
得られた本材料の内面耐蝕性、 外面耐蝕性、 ハンダ性、 加工性を 表 9 に示す。
( 】 ) 内面耐蝕性
下記に示す形状の試料と試験条件を使用 し内面耐蝕性を把握した 。 その結果本発明材は素地からの腐食もな く 良好であった。 一方、 比較材では素地からの赤鑌、 赤変およびめつ き層か大幅に溶解した 影響による大きな変色があり耐蝕性は良好でないものが多かった。
(内面評価法)
• カ ップ絞り加工を行い中に燃料を封入して 45°Cで 1 力月試験を行 い、 試料内面の外観および素地腐食状況を評価した。
• カ ップ絞り条件 : ボンチ 28. 5mm ø、 ブラ ン ク径 60mm φ、 絞り深 さ 18mm
• 腐食試験溶液 : 劣化ガソ リ ン 100倍希釈溶液 4. 5c c +蒸留水 0. 5
CC
( 2 ) 外面酎蝕性
下記に示す形状の試料と試験条件を使用 し外面耐蝕性を把握した 。 その結果本発明材は素地からの腐食もな ( 良好てあった。 一方、 比較村ては素地からの赤 、 赤変およひめつ き層か大幅に溶解した 影響による大きな変色かあり Ιίί蝕性は良好てなかった。
(外面 ΙΨ価法)
• 力 'ブ¾り加工を行い外面に 水 ¾ か ^たるよ う に水 に *ί
'BAD ORIGINAL を設置し 1 力月後の外観および素地腐食状況を評価した。
• 力 ッブ絞り条件 : ボンチ径 28. 5圆 ø、 ブラ ンク径 60薩 ø、 絞り深 さ 1 8mm
• 塩水噴霧条件 : 5 %塩化ナ ト リ ウム溶液、 50°C
( 3 ) ハンダ性
下記に示す試験条件の基にハンダ広がり性を把握した。 その結果 本発明材は現行鉛一錫めつき鋼板と同等も しく は良好な結果が得ら れた。 一方、 比較材は亜鉛含有量の多い材料等でハンダ性は良好で ないものが多かった。
( 4 ) プレス成形性
下記に示す試験条件の基にプレス成形を行い、 加工性および加工 後のめつき密着性を把握した。 その結果本発明は現行鉛 -錫めつき 鋼板と同等も しく は良好な結果を示した。 一方比較材は鋼成分系、 合金層、 めっき層厚み、 めっき組成によって加工時に割れたり、 め つき剝離を生じた。
(ブレ ス成形性)
• 平板の試料に潤滑油を塗布した後、 ブラ ンク怪を種々変えて絞り 込みを行い、 その時の絞り込み可能でめっき剥離のない最大直径を 求めた。
• 試験条件 : · ブレス条件 : ボンチ径 25mm、 皺押さえ力 500 k g • めつき剝離 : 加工後の側面外壁をテービングしてめつき剥離有 無を肉眼観察する。
ブレめつ めリ W めつさ 1冲 めっき ハン プレス
(W 。、 fi 分 HI ,'み 'I'Sn.V tlLA7.n„,([il ダ性 纖よ
ίί (ケ /
Un 1' s Τι Al Nh B N Cr (g V) " (ί/m) (wt%) 0.25™')·' (mg/iti!)
1 10 0.028 0.019 0.005 0.0012 0.0039 1.9 l. lfi 99 0 ◎ ◎ ◎
0034 0032 0.097 0.0015 5.8 Ni/3.0 1.50 82 0 ◎ ◎ ◎ ◎
0 It 0018 0.0?) 0 032 0 0»)l 0.027 D.0003 0.003fi 0.3 Fe- i/0. し 15 80 20 50 ◎ © ◎ ©
1 O 0.0 o. mi (1.0 0.0010 Ni/0.1 I.M 98 0 1.2 9.5 © © ©
0 0.012 0.012 0.079 0.0Π5 0.0078 0.8 し に 99 0 4.0 0.2 ◎ © ◎ ◎
0 7-1 n o:i 0.031 0.08») 0.0038 5.5 Ni/0.1 LOG 72 38 3.2 Δ Δ 厶 X
(t r , 0019 0.0^0 o. 、 tm 0.0010 0.1 なし l.Ofl 93 0 1 3 1.2 X X 厶 X
1 00: n, 023 0 077 0.0 1 o. mrj 0.0037 1 70 82 0 2.0
Figure imgf000052_0001
0.1 Δ Δ 厶 X
I ·ί · ":'.! ·■
' ■ ■、 :十 i : f,i,' ' :/m
Figure imgf000052_0002
,人 ifihTi (、の iw :
'ノ に人 化なし. 人^な'li!K化あり、 .· : らの ί あり
o
I I', y .,, ,m fWi';.i I ';して, (}; Ι 'ίίたは-し tU义 I: - かり而 Μ Δ: の I かり ifii : M?0':t¾の かり iffim
: ί'Λ ';' •'•Wetて 、 ίΦβθな I m\'iV)ll) - O: 2.MI-. Δ : 2.3ΜΪ-2. : 2. IS iS
?s (実施例 10 )
酸洗済の表 10に示す鋼板に、 ニッケルプレめっき、 鉄一ニッケル プレめっきを行うかまたは酸洗済の熱延板や冷延板をそのまま、 酸 化炉または無酸化炉、 還元炉等を有する炉で加熱処理を行った後溶 融めっきを行い付着量を調整して冷却して本材料を作成した。 なお 、 一部の材料にはクロメー ト処理を行った。
得られた本材料の内面耐蝕性、 外面耐蝕性、 ハンダ性、 加工性 ( 試験条件は実施例 9 と同様) を表 10に示す。
( 1 ) 内面耐蝕性
下記に示す形状の試料と試験条件を使用し内面耐蝕性を把握した 。 その結果本発明材は素地からの腐食もなく 良好であった。 一方、 比較材では素地からの赤錡、 赤変およびめつき層か大幅に溶解した 影響による大きな変色があり耐蝕性は良好でなかった。
( 2 ) 外面耐蝕性
下記に示す形状の試料と試験条件を使用し外面耐蝕性を把握した 。 その結果本発明材は素地からの腐食もなく良好であった。 一方、 比較材では素地からの赤銷、 赤変およびめつき層か大幅に溶解した 影響による大きな変色かあり耐蝕性は良好でなかった。
( 3 ) ハンダ性
下記に示す試験条件の基にハ ンダ広がり性を把握した。 その結果 本発明材は現行鉛一錫めつき鋼板と同等も しく は良好な結果か得ら れた。 一方、 比較材は亜鉛含有量の多い材料等でハ ンダ性は良好て ないものが多かった。
( 4 ) ブレス成形性
下記に示す試験条件の基にブレス成形を行い、 加工性およひ加工 後のめっ き密着性を把握した。 その結果本 ¾明は現行 -錫めつき 鋼板と同等も し く は良好な結果を示した c —方、 比 « Wは綱成分系
BAD ORIGINAL
し―. — 、 合金層、 めっき層厚み、 めっき組成によって加工時に割れたり めっき剝離を生じた。
AI.N GI一 ORAD B
Figure imgf000055_0001
:'に ft t I' ., ^)„m 1:ひ. (Γ,'Ί!' , Λ ( T*m: ifiifUiたりの (W»
' t1t «;rl.,,, - . き 0に人き Ϊ化なし. Λ■ 、き ¾¾化あり、 ·'■: : ¾1Λ、らの f,あり
I Γ', , け;して, < に またけそ allト—の り ίίάΜ, Δ: 50〜!! 0%の ίίΐかり iffiM、 : M? , の広がり而 M
'■ H¾ .,' A ',:'),' ,."1 て ,.、 ΛΜΛΙΛ ( Ι,,'Λ'ί ')比 > ('·"
Figure imgf000055_0002
Λ: 2 : 2.15 f;r«
(実施例 11)
板厚 0.8隱の焼鈍 · 調圧済みの鋼板を、 塩化亜鉛及び塩酸を含む めっき用フラ ッ クスを塗布したのち、 亜鉛を 8重量%含む錫めつき 浴 (温度 380°C) に導入した。 めっき浴と鋼板表面を十分に反応さ せた後めつき浴より鋼板を引出し、 ガスワイ ビング法によ り付着量 調整を行い急速冷却した。
めっ き後の鋼板は、 0.7 / mの Fe— Sn系の合金層と付着量 (Sn + Znの全付着量) 32g Zm 2 (片面当り) のめつき層を有する ものであ つた。 この表面上にク ロムと して 15mgZm 2 の付着量のク ロ メ ー ト 処理を行い製品板と した。
この鋼板の結晶組織を調べるため、 1 %塩酸で表面を軽く 腐食し た所肉眼で認められる結晶組織 (スパングル) が現れ、 その長軸寸 法の平均値は 6.5關であった。 断面研磨後、 錫と亜鉛の分布状態を EP A (電子プローブマイ ク ロアナライザー) にて分析した所、 均一 な分布状態が確認された。
圧力容器中にて、 100°Cで 1 昼夜放置した強制劣化ガソ リ ンに 1 Ovol%の水を添加し腐食液を作成した。 この腐食液中にて、 45 °C X 3週間の腐食試験を行った所、 溶出した金属イオンは亜鉛か主体で あり、 2. OOOppmの溶出が認められたか、 良好な耐食性を示すものと 判断された。
(実施例 12)
板厚 0.8 の焼純 · 調圧済みの鋼板に 0.8g /m 2 の付着量の電 気ニッケルめっ きを施し、 塩化亜鉛及ひ塩酸を含むめっ き用フラ ッ クスを塗布したのち、 亜鉛を 15重量%含む錫めつき浴 (温度 350で ) に導入した。 めっき浴と綱板表面を十分に反応させた後め き浴 より鋼板を引出 し、 ガスワ イ ビン グ法によ り付着量調整を行い 逨 冶却した。
BAD ORIGINAL めっき後の鋼板は、 0.5 / mの Fe— Sn系の合金層 (17%の Ni含有 ) と付着量 (Sn + Znの全付着量) 33gZm2 (片面当り) のめつき層 を有するものであった。 この表面上にクロムとして 12mgZm 2 の付 着量のクロメー ト処理を行い製品板とした。
この鋼板の結晶組織を調べるため、 1 %塩酸で表面を軽く腐食し た所肉眼で認められる結晶組織が現れ、 その長軸寸法の平均値は 12 .0關であった。 断面研磨後、 錫と亜鉛の分布状態を EPMA (電子プロ ーブマイクロアナライザー) にて分析した所、 実施例 11に比べ針状 の亜鉛結晶が多少観察されたが、 ほぼ良好な分布状態が確認された o
圧力容器中にて、 100°Cで 1 昼夜放置した強制劣化ガソ リ ン l(h ol%の水を添加し腐食液を作成した。 この腐食液中にて、 45°C x 3 週間の腐食試験を行った所、 溶出した金属イオンは亜鉛が主体であ り、 3, OOOppmの溶出が認められたが、 良好な耐食性を示すものと判 断された。
比較例 1
実施例 2 と同様の手順で、 板厚 0.8 mmの焼鈍 · 調圧済みの鋼板に 0.8 g /m 2 の付着量の電気ニッケルめっきを施し、 塩化亜鉛及び 塩酸を含むめっき用フラ ッ クスを塗布したのち、 亜鉛を 15%含む錫 めっ き浴 (温度 350 て) に導入した。 めっき浴と鋼板表面を十分に 反応させた後めつき浴より鋼板を引出し、 ガスワイ ビング法により 付着量調整を行い、 锾冷却した。
めっき後の鋼板は、 0.5 u rnの FeSn: を主体とする合金層と付着 量 (Sn + Znの全付着量) 33g Zm 2 (片面当り) のめつき層を有す るものてあった。 この表面上にクロムと して 12mgZm 2 の付笤置 D クロ メー ト処理を行い製品板と した。
この網板の結晶粗繳を調べるため、 1 cc ¾ittて ¾面を f£ : ¾6し
BAD ORIGINAL た所、 緩冷却により大きな結晶が成長し、 その長軸寸法の平均値は
30. 0隱であった。 断面研磨後、 錫と亜鉛の分布状態を EPMA (電子プ ロープマイクロアナライザ一) にて分析した所、 実施例 12に比べ針 状の巨大な亜鉛結晶が多数観察され、 錫と亜鉛の偏折状態が確認さ れた。
実施例 12と同様の腐食試験の結果、 5, 200ppmの亜鉛溶出が認めら れ、 巨大な亜鉛結晶による耐食性劣化が認められた。
(実施例 13)
本発明、 比較例のいずれも、 被めつき鋼板は、 板厚 0. 8mmの焼鈍 • 調圧済鋼板に、 表 Πの下地めつきを行った後、 塩化亜鉛および塩 酸を含むめっき用フ ラ ッ ク スを塗布し、 表 1 1の錫基合金めつき浴に 導入した。 めっき浴と鋼板表面を十分に反応させた後、 鋼板を引出 し、 ガスワイ ビング法によってめつき付着量調整を行い、 急?合した 。 なお、 合金層の厚みは、 めっき浴と鋼板表面との反応時間で調整 した。 めっき後、 有機 -無機複合皮膜を表 1 1の条件で行った。
この結果、 表 12の合金層、 めっき層、 有機-無機複合皮膜を形成 した。 合金層は鉄一錫系を主体とするものであった。
表 11 めっき条件と無機 -有機複合皮膜処理液条件
Να 下地めつき 溶融めつき 無機 -有機複合皮膜処理液
Zn: 8 %、 残部が Sn アクリル樹脂 5 g £, および不可避的不純 クロム酸 20g 、
A 下地めつきなし 物の Snめつき ンリカ 10 g/^ 、
温度 300。C 有機リン酸 3 g/
を含有する水 §液
Zn: 12%、 g: 1 %、 ァクリル変成エポキシ榭脂 付着量 残部が Snおよび不可 20gZ 、
B m2 の電気 Niめ 避的不純物の Snめつ クロム酸バリゥム 10gZ 、 つさ き浴 シリカ 10gZ
温度 320°C を含有する水溶液
Zn: 9.2%、 A1 : 1.2 ポリエステル樹脂 20 、 付看量 1. bg/ %、 残部か Snおよひ シリカ 5 g / 、
C m2 の電気 め 不可避的不純物の Sn 過マンガン酸力リ 5 g/^ つさ めっき浴 を含有する水溶液
温度 280°C
Zn: 15%、 残部が Sn
D 付着量 0.8g/ およひ不 Bj避的不純 無機一有機複合皮膜処理なし m2 の電気 Niめ 物の Snめっき浴
つさ 温度 350°C
Zn: 15%、 残部が Sn ァクリル樹脂 5 g J2, 付着量 0.8gZ および不可避的不純 クロム酸 20gZ 、
E m2 の電気 Niめ 物の Snめっき浴 シリカ 10 / 、
つき 温度 50°C 有機リン §3 / ί
を含有する水 §液
¾ !2 合 ¾ めっ き )!、 無機 -有機衩合皮膜条件
Figure imgf000060_0002
Figure imgf000060_0001
以上のようにして得られためっき鋼板を、 圧力容器中にて 1 00°C で一昼夜放置した強制劣化ガソ リ ンに 1 0容量%の水を添加し、 タ ン ク内面腐食を模擬する腐食液を作成した。 この腐食液中にて、 45eC X 3週間の腐食試験を行い、 表 1 3の金属イオン溶出結果が得られた 。 本発明の金属イオン溶出量は少なく優れていた。 加工法、 接合性 については、 実タンクを試作するこ とにより判断し、 表 1 3の結果を 得た。 こ こで、 加工性はプレス加工性で評価した。
プレス加工性の判定法と して、 円筒深絞り試験を行った。 200隱 øのブランクを径 1 00隱 øのポンチにて絞り抜き、 カ ップ側壁での めっき剝離状態を観察した。 加工性の厳密な判定を行うため、 ダイ スの肩半径は 2. 5mmに設定し、 通常より厳しい加工条件を採用 した
表 13 耐食性、 加工性、 溶接性
Figure imgf000062_0001
また、 接合性はシーム溶接性およびスボッ ト溶接性で評価した。 シー厶溶接性 : 60Hzの単層交流の定電流制御方式 (円盤 ^ 300mm Φ、 電極怪 6 R ) にて、 連^シー厶 ¾接を行い、 溶接部の断面 ¾ ひ表面観察よ り溶接性を判定した。
スボッ ト溶接性 : 定置スボ 卜 ¾½機にて、 先端^ S mmoni ^を 用い、 60Hzの 翳交流の 流制御 にて、 を行 つ 7—
BAD ORIGINAL
I. 20打点毎に断面観察を行い、 ナゲッ ト径が一定値を切るまでの打 点数を求め、 溶接性を判定した。
また、 評価の記号は、 ◎ : 優れる、 〇 : 良好、 X : 不良である。 (実施例 1 4)
以下に本発明法により製造される亜鉛 -錫合金めつき鋼板の実施 例を述べる。
铸片から熱間圧延、 酸洗、 冷間圧延した後、 焼鈍した材料を被め つき材とした。 また一部は焼鈍後、 プレめっき した材料を被めつき 材とした。 その後、 フラ ッ クスを塗布し錫一亜鉛浴に通じ付着量を 調整し、 巻き取った。
表 1 4に各種操業条件とめっき後の不めっき状態、 めっき密着性を 示す。 なおめつき後の冷却は SiTC Z秒以上で行っている。
表 1 4に示す様な 1 〜Να 1 5の操業条件の基に製造した試料は不め つき、 めっき剝離も無く良好な結果であった。 一方、 Να 1 6〜Να 1 9の 操業条件で製造した試料は不めっき、 めっき密着性に何らかの問題 があった。
• 不めつき評点 肉眼観察
◎ 不めっきなし
Δ 徹小不めっきあり
小さな不めっきあり
• めっき密着性評点 Ζ円筒プレス (ブラ ン ク系 70mm、 絞り深さ 1 5mm ) の外側面のテー ピング
© めっ き剝離なし
△ f»小めつ き刹離あり
X 小さなめつき剝離あり
*ブレめっ き量はニッ ケル含存量て示した。
表 1 5に各》抉 1 条件とめつ き曆中 <D亜 品状 を示す。
BAD ORIGINAL
, 『— ―. _ 表 15に示す様な Να 1 〜Nal5の操業条件の基に製造した試料はめつ き層表面の亜鉛分布状況を観察したところ、 めっき密着性、 耐蝕性 に影響を及ぼす長さ 250 m以上の亜鉛晶が 20個以下 Z0.25隨 2 と 非常に少なかつた。 Nal6〜Ncil9の操業条件で造られた試料は長さの 長い亜鉛結晶の密度が高かった。
表 i4 iu)
Figure imgf000065_0002
ク'
Figure imgf000065_0001
|BAD ORIGINAL き 表 15 (^»J14)
Figure imgf000066_0001
*1:ブレめっき量 (S i含有量て示した
*2:めっき層中 Zn分布 ¾¾¾の評点ノ SBIによるめつき層表面観察による粗^ Zn晶 の賺率
→ ©:長さ 250〃m以上の Zn晶カ^ 0顯下 /0.25mn2
△:長さ 250 m の Zn晶カ、 20 0 下 /0.
:長さ 250 m hの Zn晶カ 0個より多し、 (実施例 15)
铸片から熱間圧延、 酸洗、 冷間圧延した後、 焼鈍した低炭素鋼に ニッケルプレめっき 0.5gZm2 した材料をめつき原板とした。 そ の後、 無酸化炉ー還元炉を有する溶融めつきライ ンを通板させた。 無酸化炉最高板温 500°C、 空気比 0.95、 還元炉最高板温 760て、 無 酸化炉滞炉時間/還元炉滞炉時間の比率が 0.9、 還元炉出口露点 - 45°C、 還元炉出口水素濃度 12容量%のめつき前処理を行い、 浴進入 部板温を 300°Cに調整し、 浴温 295ての亜鉛 10重量% -錫 90重量% のめつき浴中を 5秒で通板し、 浴から立ち上がった所で付着量を片 面 40gZm2 に調整するとともに 30°CZ秒で冷却し製造した。
その結果、 肉眼観察で不めっきは無く、 ボールイ ンパク トによる めっき剝離もなく良好な基本性能を有しているこ とが確認された。 まためつき層中に長径が 250 m以上の巨大亜鉛晶の発生もな く 良 好なめつき組織であった。
(実施例 16)
铸片から熱間圧延、 酸洗、 冷間圧延した後、 焼鈍した低炭素鋼に プレめっきした材料、 またはプレめっきのない冷延板をめつき原板 とした。 その後、 無酸化炉ー還元炉を有する溶融めつきラ イ ンを通 板させ、 亜鉛-錫めつき鐧扳を製造した。 尚、 付着量は片面 40gZ m2 に冷却速度はめつき層中亜鉛量が 8.8重量%以上では25て 秒 で、 8.8重量%未満では 10°CZ秒で製造している。 表 16, 17に各種 操炉条件等の基本製造条件を表 16にめつき後の不めっき状態、 めつ き密着性を示す。
表 16. 17に示すように NOL 1 〜Να 16の条件のもとで製造した鋼板は 、 不めっき、 加工試験によるめつき剁離も発生せず良好な結果てあ つた。 一方、 NOL17〜NOL20の条件のもとて製造した綱板は不め き ま たはめつき密着性といった基本性能に何らかの 1 ¾Sか ¾生した c
し BAD ORIGINAL ^ 表 17に製造条件時のめっき層中、 亜鉛の結晶状態を示す。 表 17に 示す様な Not 1 〜Να 16で製造した試料はめつき層表面の亜鉛分布状況 を観察したところ、 めっき密着性、 耐蝕性に影響を及ぼす長径 250 m以上の亜鉛晶が 20個以下 Ζ0.25mm2 と非常に少なく めっき密着 性も良好であった。 Νιχ17〜Να20の製造された試料は長さの長い亜鉛 結晶の密度が高く めっき密着性に問題を発生した。
0 (,
Figure imgf000069_0002
二ッケルー ίλブレめっきは二ッケル 冇¾(»'【« で示す。
ブレめっき m(iニ ケ^ smn (E/m?) て示す。
N0F は «ίϋ/つ、 RTF (tsiyをいう。
ΪΙΙιίΰ添 に ilfる i — 浴の Π1 を示す のて、 この に示厂
*5:不めっき . >ίΙ Ι¾ϊ51ϋί?— ◎:不めっきなし、 Δ: ¾ 、不めっきあり、
:小さな不めっきあり
Figure imgf000069_0001
*(3:めっき密? ノ円 Ώブレス (ブランク {i70rm_ »2り さに の外 (ttl
テーピンク'によるめつき の ilt
― ◎:めつき-ι ! I し. 厶: fti (小めつさ 1¾Πあり、
:小さなめつき WIあり
BAD ORIGINAL d 表 i7 (
Figure imgf000070_0001
*1:ニッケル—鉄プレめっきはニッケル含有量 (wt¾) i to
*2:プレめっき量は二ッケノ 有量 (g/m2)で^ Τ。
*3:めっき層中 Ζπ分布 TOの評点ノ SEMによるめつき層表面!^による粗 n晶 の醜率と
→ ◎:長さ 250 m bの Zn晶か 25nm2
Δ:長さ 250 m hの Zn晶カ、 20 0籠下 /0. ' :長さ 250 m JiLLの Ζπ晶カ 50個より多い /0. 産業上の利用可能性
以上に述べた様に、 本発明は燃料タンク材としての諸特性に優れ た燃料タンク用防锖鋼板を得るこ とができる極めて優れた効果を奏 するものである。
6 ('

Claims

請 求 の 範 囲
1 . 鋼板表面に、 ニッケル、 鉄、 亜鉛、 錫の 1 種以上を含む合金 層が片面当たり厚み 2 〃 m以下にあり、 その上に錫 : 40〜99重量% 、 残部亜鉛からなり、 その中に含まれる亜鉛晶の長径が 250〃 m以 上のものが 20個以下/ ^O.25mm2 であり、 片面当たり厚みが 2〜 50 mの錫一亜鉛合金めつき層があるこ とを特徵とする燃料タ ンク用防 靖鋼 AX。
2. Claim 1において、 錫一亜鉛合金めつき層の表面粗度 が 0 .2〜3.0 mであるこ とを特徴とする燃料タ ン ク用防锖鋼板。
3. 重量%で、
C ≤ 0.1%、 Si≤ 0. 1%、 0.05≤ Mn≤ 1.2 %、 P ≤ 0.04% , A1≤ 0 . 1%残部鉄および不可避的不純物からなる鋼板表面に、 ニッ ケル、 鉄、 亜鉛、 錫の 1 種以上を含む合金層か片面当たり厚み 1.5 m以 下にあり、 その上に錫 : 40〜99重量%、 残部亜鉛からなり、 その中 に含まれる亜鉛晶の長径が 250〃 m以上のものが 20個以下 Z0.25mm 2 であり、 片面当たり厚みが 2〜50〃 mの錫一亜鉛合金めつ き層が あるこ とを特徴とする燃料タ ン ク用防銷鋼板。
4. Claim 3において、 錫一亜鉛合金めつき層か付与される被め つき鋼板の成分組成に加えて、 重量 で、
B , Ti. Nb. Crの少な く と も 1 種以上を B : 0.0002- 0.0030%、 Ti andXor Nb ≤ 1.0%、 Cr : 0.2— 6.0 %添加する こ とを特徴とす る燃料夕 ン ク用防銪鋼板。
5. 重量 96て、
C ≤ 0. o、 Si≤ 0. 1 > , 0.05≤ Mn≤ 1.2 ¾、 P ≤ 0.04¾ , A I 0 . 1 、 B : 0.0002- 0.0030%、 Ti and/or Nb 1.0¾ , ¾部鉄お よひ不可 δ的不純物からなる網板表面に、 ニ ッ ケ ル 、 鉄、 亜^、 &
BAD ORIGINAL ffl の 1 種以上を含む合金層が片面当たり厚み 1.5 m以下にあり、 そ の上に錫 : 40〜99wt%、 残部亜鉛からなり、 その中に含まれる亜鉛 晶の長径が 250 m以上のものが 20個以下 ZO.25mm2 であり、 片面 当たり厚みが 2〜50 / mの錫-亜鉛合金めつき層があるこ とを特徴 とする燃料タンク用防銷鋼板。
6. 鋼板表面に、 ニッケル、 鉄、 亜鉛、 錫の 1 種以上を含む合金 層が片面当たり厚み 2 m以下にあり、 その上に錫 : 40〜99wt%、 残部亜鉛からなり、 その中に含まれる亜鉛晶の長径が 250 m以上 のものが 20個以下 /0.25匪2 であり、 片面当たり厚みが 2〜50 m の錫一亜鉛合金めつき層を有し、 かつ前記合金めつき最表面におけ るめつき金属結晶 (スパングル) の長径寸法が 20mm以下のめっき層 を有するこ とを特徴とする燃料タンク用防錡鋼板。
7. Claim 1〜6 において、 合金めつき層の更にその外側にクロ 厶換算量で片面当たり 0.2〜100 mgZm 2 のクロメー ト被膜を有す ることを特徴とする燃料タンク用防錡鋼板。
8. Claim 1〜6 において、 合金めつき層の更にその外側に 0.01 〜2.0 g/m 2 の有機一無機複合被膜を有するこ とを特徴とする燃 料夕ンク用防锖鋼板。
9. Claim 8の有機一無機複合被膜が、 クロム、 ゲイ素、 リ ン、 マンガン系の化合物で合計 20%以下含有することを特徴とする燃料 夕ンク用防靖鋼板。
10. Claim 8の有機—無機複合被膜が、 ア ク リ ル系、 ボリエステ ル系および Zまたはエポキシ系であるこ とを特徴とする燃料タ ン ク 用防銷鋼 tR。
11. 焼纯済鋼板にニッケル、 ニッケ -鉄系ブレ メ ツキをニッ ル含有量で 0.1〜3.0 g /m 行い、 塩酸を含有した塩素換^量て 2〜"15wt¾>のフ ラ ッ ク スを塗布し、 fg : 40〜99重鱼 、 ¾ ^亜鉛か
BAD ORIGINAL
1 一」 らなる浴で、 (融点 + 20°C) 〜 (融点 + 300eC) の浴温で浴中に 15 秒未満浸潰し、 めっきを行い、 冷却速度 10°CZ秒以上で冷却するこ とを特徴とする燃料夕ンク用防鑌鋼板の製造方法。
12. 焼鈍済鋼板にニッケル、 ニッケル一鉄系プレメ ツキをニッケ ル含有量で 0.1〜3.0 g/ 2 行い、 無酸化炉での最高板温 350〜 650 て、 空気比0.85〜1.30、 還元炉での最高板温 600〜770 て、 無 酸化炉滞炉時間ノ還元炉滞炉時間の比率が 1 〜 1 ノ 3、 還元炉出口 露点を一 20°C以下のめつき前処理を行い、 めっき直前の板温をほぼ めっき浴温に調整した後、 錫 : 40〜99重量%、 残部亜鉛および不可 避的不純物からなるめっき浴で、 前記めつき浴金属の融点が (融点 + 20°C) 〜 (融点 + 300°C) の浴温で浴中に 6秒未満浸漬し、 めつ きを行い、 冷却速度 10°CZ秒以上の冷却速度で、 冷却するこ とを特 徵とする燃料タンク用防锖鋼板の製造方法。
13. 冷延済の鋼板を、 無酸化炉での最高板温 450〜750 °C、 空気 比0.85〜1.30、 還元炉での最高板温 680〜850 'C、 無酸化炉滞炉時 間 Z還元垆滞炉時間の比率が 1 〜 1 3、 還元炉出口露点を - 25°C 以下のめっき前処理を行い、 めっき直前の板温をほぼめつき浴温に 調整した後、 錫 : 40〜99重量%、 残部亜鉛および不可避的不純物か らなるめっき浴で、 前記めつき浴金属の融点が (融点 + 20°C) 〜 ( 融点 + 300°C) の浴温で浴中に 6秒未満浸潰し、 めっきを行い、 冷 却速度 10'C/秒以上の冷却速度で、 冷却するこ とを特徴とする燃料 タン ク用防铕鋼板の製造方法。
PCT/JP1996/000835 1995-03-28 1996-03-28 Tole d'acier prevenant la corrosion pour citernes a combustible et procede d'elaboration de cette tole WO1996030560A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP96907700A EP0763608B1 (en) 1995-03-28 1996-03-28 Rust-preventive steel sheet for fuel tank and process for producing the sheet
US08/750,073 US5827618A (en) 1995-03-28 1996-03-28 Rust-proofing steel sheet for fuel tanks and production method thereof
AU51219/96A AU686502B2 (en) 1995-03-28 1996-03-28 Rust-preventive steel sheet for fuel tank and process for producing the sheet
DE1996637118 DE69637118T2 (de) 1995-03-28 1996-03-28 Korrosionsbeständiges stahlblech für treibstofftank und verfahren zur herstellung des bleches

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP7/69087 1995-03-28
JP07069087A JP3126622B2 (ja) 1995-03-28 1995-03-28 燃料タンク用防錆鋼板
JP7/70259 1995-03-29
JP7/70260 1995-03-29
JP07070260A JP3129628B2 (ja) 1995-03-29 1995-03-29 燃料タンク用防錆鋼板
JP07070259A JP3126623B2 (ja) 1995-03-29 1995-03-29 燃料タンク用防錆鋼板
JP07073140A JP3135818B2 (ja) 1995-03-30 1995-03-30 亜鉛−錫合金めっき鋼板の製造法
JP7/73140 1995-03-30
JP7/132995 1995-05-31
JP7132995A JP3071667B2 (ja) 1995-05-31 1995-05-31 加工性・耐食性に優れた燃料タンク用防錆鋼板
JP07152846A JP3133231B2 (ja) 1995-06-20 1995-06-20 加工性・耐食性・溶接性に優れた燃料タンク用防錆鋼板
JP7/152846 1995-06-20
JP07224906A JP3133235B2 (ja) 1995-09-01 1995-09-01 加工性に優れた燃料タンク用鋼板
JP7/224906 1995-09-01
JP22870995A JP3581451B2 (ja) 1995-09-06 1995-09-06 亜鉛−錫合金めっき鋼板の製造法
JP7/228709 1995-09-06

Publications (1)

Publication Number Publication Date
WO1996030560A1 true WO1996030560A1 (fr) 1996-10-03

Family

ID=27572604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000835 WO1996030560A1 (fr) 1995-03-28 1996-03-28 Tole d'acier prevenant la corrosion pour citernes a combustible et procede d'elaboration de cette tole

Country Status (5)

Country Link
US (1) US5827618A (ja)
EP (2) EP0763608B1 (ja)
AU (1) AU686502B2 (ja)
DE (1) DE69637118T2 (ja)
WO (1) WO1996030560A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033745A1 (ja) * 2002-10-11 2004-04-22 Nippon Steel Corporation 耐食性および加工性に優れた溶融Sn−Zn系めっき鋼板
US6858322B2 (en) 1992-03-27 2005-02-22 The Louis Berkman Company Corrosion-resistant fuel tank
US6861159B2 (en) 1992-03-27 2005-03-01 The Louis Berkman Company Corrosion-resistant coated copper and method for making the same
WO2005080635A1 (en) * 2004-02-25 2005-09-01 Corus Uk Limited Sn-zn alloy hot dip plated steel sheet
WO2008126945A1 (ja) * 2007-04-11 2008-10-23 Nippon Steel Corporation 低温靱性に優れたプレス加工用溶融めっき高強度鋼板およびその製造方法
US7981463B2 (en) 2005-07-05 2011-07-19 Nippon Steel Corporation Hot-dip Sn-Zn coated steel sheet having excellent corrosion resistance
CN111989419A (zh) * 2018-04-26 2020-11-24 日本制铁株式会社 热浸镀Sn-Zn系合金镀层钢板及其制造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794060B2 (en) 1992-03-27 2004-09-21 The Louis Berkman Company Corrosion-resistant coated metal and method for making the same
EP0844316B1 (en) * 1996-06-06 2002-12-11 Sumitomo Metal Industries, Ltd. Surface-treated steel sheet excellent in corrosion resistance after working
CN1161229C (zh) * 1997-04-09 2004-08-11 川崎制铁株式会社 用于燃烧罐的具有改进耐腐蚀性的钢板
JP3311282B2 (ja) * 1997-10-13 2002-08-05 株式会社東芝 金属部材の接合方法及び接合体
US6284122B1 (en) * 1998-06-09 2001-09-04 International Lead Zinc Research Organization, Inc. Production of a zinc-aluminum alloy coating by immersion into molten metal baths
KR100446788B1 (ko) * 1999-03-19 2004-09-08 신닛뽄세이테쯔 카부시키카이샤 내식성이 우수한 주석 도금계 또는 알루미늄 도금계 표면처리 강재
JP4072304B2 (ja) * 2000-05-12 2008-04-09 新日本製鐵株式会社 環境適合性に優れた自動車用燃料容器材料および自動車用燃料容器
JP3908912B2 (ja) * 2001-02-22 2007-04-25 新日本製鐵株式会社 半田濡れ性、耐錆性、耐ホイスカー性に優れた環境対応型電子部品用表面処理鋼板
DE60321011D1 (de) * 2002-09-10 2008-06-26 Nippon Steel Corp Mit auf sn basierendem metall beschichtetes stahlband mit hervorragendem aussehen und herstellungsverfahren dafür
FR2849620A1 (fr) * 2003-01-07 2004-07-09 Metatherm Sa Revetement multicouche pour proteger une piece contre la corrosion, procede pour la realisation d'un tel revetement et piece comportant un tel revetement
JP5258253B2 (ja) * 2006-11-21 2013-08-07 新日鐵住金ステンレス株式会社 塩害耐食性および溶接部信頼性に優れた自動車用燃料タンク用および自動車燃料パイプ用表面処理ステンレス鋼板および拡管加工性に優れた自動車給油管用表面処理ステンレス鋼溶接管
JP5816703B2 (ja) * 2011-01-20 2015-11-18 ポスコ 深絞り性及び極低温耐接合脆性に優れた溶融亜鉛めっき鋼板及びその製造方法
WO2014087452A1 (ja) * 2012-12-04 2014-06-12 Jfeスチール株式会社 連続溶融亜鉛めっき鋼板の製造設備及び製造方法
KR20150071947A (ko) * 2013-12-19 2015-06-29 현대자동차주식회사 표면처리층을 포함하는 어스볼트 및 어스볼트의 표면처리방법
TWI558994B (zh) * 2015-02-10 2016-11-21 China Steel Corp Standard Test Method for Powder Coating of Coated Electromagnetic Steel Sheet
US10266934B1 (en) * 2016-06-03 2019-04-23 Sabre Communications Corporation Selective coating to inhibit cracking from galvanizing
WO2019122959A1 (en) * 2017-12-19 2019-06-27 Arcelormittal A hot-dip coated steel substrate
KR102043529B1 (ko) * 2017-12-28 2019-11-11 현대제철 주식회사 코일 폭 제어 방법 및 장치
CN110724899A (zh) * 2019-11-27 2020-01-24 云南电网有限责任公司电力科学研究院 一种电力金具的防腐蚀方法
EP3872231A1 (de) * 2020-02-28 2021-09-01 voestalpine Stahl GmbH Verfahren zum konditionieren der oberfläche eines mit einer zinklegierungs-korrosionsschutzschicht beschichteten metallbandes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270391A (ja) * 1985-05-27 1986-11-29 Nippon Steel Corp 燃料容器用鋼板
JPS62230987A (ja) * 1986-03-31 1987-10-09 Nisshin Steel Co Ltd 燃料タンク用防錆鋼板
JPH01177387A (ja) * 1987-12-29 1989-07-13 Nkk Corp アルコール燃熱料タンク用表面処理鋼板
JPH04214848A (ja) * 1990-12-14 1992-08-05 Kowa Kogyosho:Kk 溶融亜鉛メッキ被覆物及び溶融亜鉛メッキ方法
JPH05106058A (ja) * 1991-10-18 1993-04-27 Kawasaki Steel Corp 燃料容器用高耐食性表面処理鋼板
JPH0688183A (ja) * 1992-09-09 1994-03-29 Nippon Steel Corp 溶融めっき鋼板の製造方法
JPH06173086A (ja) * 1992-12-08 1994-06-21 Nippon Steel Corp 高速シーム溶接性、耐食性、耐熱性および塗料密着性に優れた溶接缶用素材
JPH06306637A (ja) * 1993-04-20 1994-11-01 Nippon Steel Corp 高耐食性燃料タンク用防錆鋼板

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2703766A (en) * 1951-01-25 1955-03-08 Armco Steel Corp Process of continuously galvanizing with control of spangle and corrosion
BE708005A (ja) * 1967-12-14 1968-04-16
JPS5130539B1 (ja) * 1971-05-10 1976-09-01
US3962501A (en) * 1972-12-15 1976-06-08 Nippon Steel Corporation Method for coating of corrosion-resistant molten alloy
SE378118B (ja) * 1974-03-14 1975-08-18 Nordstjernan Rederi Ab
US4151015A (en) * 1977-12-02 1979-04-24 Lake Chemical Company Flux for use in soldering
JPS5647554A (en) * 1979-09-26 1981-04-30 Nisshin Steel Co Ltd Melt-galvanizing
US4461679A (en) * 1979-10-02 1984-07-24 Nippon Steel Corporation Method of making steel sheet plated with Pb-Sn alloy for automotive fuel tank
AU565129B2 (en) * 1985-07-23 1987-09-03 Nippon Steel Corporation Steel sheet with ni and sn coatings for improved corrosion protection
JPS6233793A (ja) * 1985-08-05 1987-02-13 Usui Internatl Ind Co Ltd 耐食性重合被覆鋼材
JPH01247529A (ja) * 1988-03-30 1989-10-03 Sumitomo Metal Ind Ltd 直火式無酸化炉の制御方法
JPH02285057A (ja) * 1989-04-27 1990-11-22 Sumitomo Metal Ind Ltd 溶融亜鉛めっき用鋼板の連続焼鈍方法
US5422192A (en) * 1989-10-06 1995-06-06 Usui Kokusai Sangyo Kaisha Ltd. Steel product with heat-resistant, corrosion-resistant plating layers
JPH05106001A (ja) * 1991-10-15 1993-04-27 Sumitomo Metal Ind Ltd 珪素含有鋼板の溶融亜鉛めつき方法
US5455122A (en) * 1993-04-05 1995-10-03 The Louis Berkman Company Environmental gasoline tank
GB2276887B (en) * 1993-04-05 1997-12-10 Berkman Louis Co Coated metal
GB2289691B (en) * 1994-03-14 1999-09-29 Berkman Louis Co Coated metal
JP3002379B2 (ja) * 1994-04-08 2000-01-24 新日本製鐵株式会社 成形加工性に優れ、塗装焼付け硬化性を有し、かつ塗装焼付け硬化性の変動の少ない自動車用合金化溶融亜鉛めっき高強度冷延鋼板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270391A (ja) * 1985-05-27 1986-11-29 Nippon Steel Corp 燃料容器用鋼板
JPS62230987A (ja) * 1986-03-31 1987-10-09 Nisshin Steel Co Ltd 燃料タンク用防錆鋼板
JPH01177387A (ja) * 1987-12-29 1989-07-13 Nkk Corp アルコール燃熱料タンク用表面処理鋼板
JPH04214848A (ja) * 1990-12-14 1992-08-05 Kowa Kogyosho:Kk 溶融亜鉛メッキ被覆物及び溶融亜鉛メッキ方法
JPH05106058A (ja) * 1991-10-18 1993-04-27 Kawasaki Steel Corp 燃料容器用高耐食性表面処理鋼板
JPH0688183A (ja) * 1992-09-09 1994-03-29 Nippon Steel Corp 溶融めっき鋼板の製造方法
JPH06173086A (ja) * 1992-12-08 1994-06-21 Nippon Steel Corp 高速シーム溶接性、耐食性、耐熱性および塗料密着性に優れた溶接缶用素材
JPH06306637A (ja) * 1993-04-20 1994-11-01 Nippon Steel Corp 高耐食性燃料タンク用防錆鋼板

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858322B2 (en) 1992-03-27 2005-02-22 The Louis Berkman Company Corrosion-resistant fuel tank
US6861159B2 (en) 1992-03-27 2005-03-01 The Louis Berkman Company Corrosion-resistant coated copper and method for making the same
US7575647B2 (en) 1992-03-27 2009-08-18 The Louis Berkman Co. Corrosion-resistant fuel tank
US7045221B2 (en) 1992-03-27 2006-05-16 The Louis Berkman Company Corrosion-resistant coated copper and method for making the same
WO2004033745A1 (ja) * 2002-10-11 2004-04-22 Nippon Steel Corporation 耐食性および加工性に優れた溶融Sn−Zn系めっき鋼板
AU2003271161B2 (en) * 2002-10-11 2006-10-12 Nippon Steel Corporation Hot-dipped Sn-Zn plating provided steel plate or sheet excelling in corrosion resistance and workability
US7135237B2 (en) 2002-10-11 2006-11-14 Nippon Steel Corporation Hot-dipped Sn—Zn plating provided steel plate or sheet excelling in corrosion resistance and workability
GB2426766B (en) * 2004-02-25 2007-08-29 Corus Uk Ltd Sn-zn alloy hot dip plated steel sheet
GB2426766A (en) * 2004-02-25 2006-12-06 Corus Uk Ltd Sn-zn alloy hot dip plated steel sheet
WO2005080635A1 (en) * 2004-02-25 2005-09-01 Corus Uk Limited Sn-zn alloy hot dip plated steel sheet
US7981463B2 (en) 2005-07-05 2011-07-19 Nippon Steel Corporation Hot-dip Sn-Zn coated steel sheet having excellent corrosion resistance
WO2008126945A1 (ja) * 2007-04-11 2008-10-23 Nippon Steel Corporation 低温靱性に優れたプレス加工用溶融めっき高強度鋼板およびその製造方法
JPWO2008126945A1 (ja) * 2007-04-11 2010-07-22 新日本製鐵株式会社 低温靭性に優れたプレス加工用溶融めっき高強度鋼板およびその製造方法
AU2008238998B2 (en) * 2007-04-11 2011-02-24 Nippon Steel Corporation Hot-dip metal coated high-strength steel sheet for press working excellent in low-temperature toughness and process for production thereof
US8889264B2 (en) 2007-04-11 2014-11-18 Nippon Steel & Sumitomo Metal Corporation Hot dip plated high strength steel sheet for press forming use superior in low temperature toughness
CN111989419A (zh) * 2018-04-26 2020-11-24 日本制铁株式会社 热浸镀Sn-Zn系合金镀层钢板及其制造方法

Also Published As

Publication number Publication date
AU686502B2 (en) 1998-02-05
DE69637118D1 (de) 2007-07-19
EP0763608B1 (en) 2007-06-06
US5827618A (en) 1998-10-27
DE69637118T2 (de) 2008-01-31
EP1477582A2 (en) 2004-11-17
EP0763608A4 (en) 1998-10-07
EP0763608A1 (en) 1997-03-19
EP1477582A3 (en) 2005-05-18
AU5121996A (en) 1996-10-16

Similar Documents

Publication Publication Date Title
WO1996030560A1 (fr) Tole d&#39;acier prevenant la corrosion pour citernes a combustible et procede d&#39;elaboration de cette tole
EP1184478B1 (en) Surface treated steel product prepared by tin-based plating or aluminum-based plating
JP4644314B2 (ja) 耐食性に優れる溶融Zn−Al−Mg−Si−Cr合金めっき鋼材
KR101242859B1 (ko) 도금성 및 도금밀착성이 우수한 고망간 용융아연도금강판 및 그 제조방법
KR101115741B1 (ko) 도금성이 우수한 고망간강 용융아연도금강판의 제조방법
JP2004131818A (ja) 加工性と耐食性に優れた溶融Sn−Zn系めっき鋼板
JP3126622B2 (ja) 燃料タンク用防錆鋼板
JP3126623B2 (ja) 燃料タンク用防錆鋼板
JP3129628B2 (ja) 燃料タンク用防錆鋼板
WO2004033745A1 (ja) 耐食性および加工性に優れた溶融Sn−Zn系めっき鋼板
JP2000336467A (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP3135818B2 (ja) 亜鉛−錫合金めっき鋼板の製造法
KR101188065B1 (ko) 도금 밀착성과 스폿 용접성이 우수한 용융아연도금강판 및 그 제조방법
JP2004360019A (ja) 接合特性に優れた溶融Sn−Zn系めっき鋼板
JP3071667B2 (ja) 加工性・耐食性に優れた燃料タンク用防錆鋼板
JP2938449B1 (ja) 溶融Sn−Zn系めっき鋼板
JP3717114B2 (ja) 溶融Sn−Zn系めっき鋼板
JP2004131819A (ja) 良好な耐食性を有する溶融Sn−Zn系めっき鋼板
JP2002105615A (ja) 溶融Sn−Mg系めっき鋼板
KR102175731B1 (ko) 용접성 및 인산염처리성이 우수한 합금화 알루미늄도금강판 및 그 제조방법
JPS6217199A (ja) 塗装性と耐食性にすぐれた容器用Sn被覆鋼板とその製造法
JPH0971851A (ja) 亜鉛−錫合金めっき鋼板の製造法
JP2002146505A (ja) 溶融Sn−Mg系めっき鋼板
JP2005320554A (ja) 溶融Sn−Zn系めっき塗装鋼板
JPH1018054A (ja) ガソリンタンク用表面処理鋼板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 08750073

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1996907700

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996907700

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996907700

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载