+

WO1996030383A1 - Nukleinsäure-polyester-polyamide - Google Patents

Nukleinsäure-polyester-polyamide Download PDF

Info

Publication number
WO1996030383A1
WO1996030383A1 PCT/AT1996/000056 AT9600056W WO9630383A1 WO 1996030383 A1 WO1996030383 A1 WO 1996030383A1 AT 9600056 W AT9600056 W AT 9600056W WO 9630383 A1 WO9630383 A1 WO 9630383A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleotide
carboxylic acid
formula
chlorine
hydroxyl
Prior art date
Application number
PCT/AT1996/000056
Other languages
English (en)
French (fr)
Inventor
Christian Noe
Georg Haberhauer
Lucius Kaufhold
Original Assignee
Christian Noe
Georg Haberhauer
Lucius Kaufhold
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Christian Noe, Georg Haberhauer, Lucius Kaufhold filed Critical Christian Noe
Priority to AU49311/96A priority Critical patent/AU4931196A/en
Publication of WO1996030383A1 publication Critical patent/WO1996030383A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids

Definitions

  • Natural nucleic acids have a 3 '-5' linkage, which is the basis for the formation of the double helix and thus for the biological function of nucleic acids. Such nucleic acids are easily cleaved by hydrolysis of the phosphoric ester bond. When using nucleotides for molecular biological, diagnostic and therapeutic purposes, the production of nuclease-resistant compounds is therefore always an important goal.
  • oligonucleotide analogs which are not linked by 3 '-5'- but 2' -5-'- are also able to pair with natural RNA or DNA, especially if the The number of atoms between the two sugar rings of the nucleosides is 3, but special attention is paid to the type of linking elements. Too great flexibility of such a link between two nucleoside units can lead to a severe restriction or even to the loss of the binding ability. On the other hand, rigidization that is too rigid or too sterically demanding can have the same negative effect.
  • the present invention relates to nucleotide carboxylic acid esters and amides of the general formula I
  • R 5 is a hydrogen, chlorine or bromine atom, a hydroxyl, amino, monomethoxytritylamino, mercapto, methylamino, dimethylamino, phenylamino or hydroxylamino group
  • R 9 hydrogen, fluorine, chlorine, or bromine or iodine atom, a methyl, trifluoro, ethyl, ethyl or hydroxymethyl group, and the salts of compounds of general form I with acids or bases.
  • the invention includes Nukleotidoligoester and -oligoamide with the above St ⁇ * ⁇ jJ structure with a number of from 2 to 200 nucleotide units.
  • oligonucleotide analogs of the subject invention can be prepared from the suitably protected monomers by conventional condensation processes after the carboxylic acid has been activated beforehand.
  • Binding experiments with natural nucleic acids show that oligonucleotides of the present invention are suitable for pairing with natural nucleic acids.
  • Molecular dynamics Studies show that esters and amide bonds are superior to other bridging compounds.
  • the invention includes the use of such nucleotide oligoesters and oligoamides as therapeutic agents, for diagnostic purposes and as research reagents.
  • the best way to investigate the binding behavior of a short Watson-Crick complementary strand is with the additional cooperative "support" of a third polymer strand that forms the pair of Hoogsteen.
  • the artificial dinucleotide 4 was thus examined under salt and buffer conditions that allow triplex formation.
  • the transformation temperature of the 2Poly-U / artificial dinucleotide system was 15 ° C. It could thus be shown that such 2'-5 'ester-linked artificial nucleotides recognize natural 3'-5'-phosphate-linked oligonucleotides and can interact with them.
  • ester modification showed the highest affinity for the complementary RNA strand. More flexible linking systems such as ether modification did not show a high affinity for the counterpart, but the hybrid double strand dissolved after a short time and the strands became entangled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung beinhaltet neue Struktur-modifizierte Oligonukleotide, ein Verfahren zu deren Herstellung und ihre Verwendung. Diese Oligonukleotidanaloga sind nicht wie natürliche Oligonukleotide 3'-5'- sondern 2'-5'- verknüpft. Die Zahl der Atome zwischen den beiden Zuckerringen beträgt 3, und die Verknüpfung besteht entweder aus einem Carbonsäureester oder Carbonsäureamid. Derartig modifizierte Oligonukleotide können mit natürlicher Nukleinsäure interagieren. Daher können Oligomere dieser Erfindung als potentielle Arzneistoffe Verwendung finden.

Description

Nukleinsäure-Polyester-Polyamide
Natürliche Nukleinsäuren weisen eine 3 '-5 '-Verknüpfung auf, welche die Basis für die Ausformung der Doppelhelix und somit für die biologische Funktion von Nukleinsäuren ist. Solche Nukleinsäuren werden leicht durch eine Hydrolyse der Phosphorester-Bindung gespalten. Bei der Anwendung von Nucleotiden für molekularbiologische, diagnostische und therapeutische Zwecke ist daher die Herstellung nukleaseresistenter Verbindungen stets ein wichtiges Ziel.
Wir konnten mittels Molecular Modeling Studien zeigen (Figur 1), daß Oligonucleotidanaloga, welche nicht 3 '-5'- sondern 2 '-5 -'-verknüpft sind, auch mit natürlicher RNA bzw. DNA grundsätzlich paaningsfahig sind, vor allem, wenn die Anzahl der Atome zwischen den beiden Zuckerringen der Nukleoside die Zahl 3 beträgt, wobei aber besonderes Augenmerk der Art der Verknüpfungselemente -αikommt. So kann eine zu große Flexibilität einer solchen Verknüpfung zwischen zwei Nukleosideinheiten zu einer starken Einschränkung oder gar zum Verlust der Bindungsfähigkeit fuhren. Anderseits kann eine zu starre oder sterisch zu anspruchsvolle Rigidisierung den gleiche negativen Effekt ausüben.
Gegenstand der vorliegenden Erfindung sind Nukleotidcarbonsäureester und -amide der allgemeinen Formel I
Figure imgf000003_0001
bei welchen die Zuckerringe der Nukleoside mit mindestens einer Brücke verknüpft sind, welche aus 3 Atomen besteht und entweder eine Carbonsäureester oder Carbonsäureamid Gruppe beinhaltet und welcher A = -0-C(=0)-, -N(-Rι)-C(=0)-, wobei R,= H, oder unverzweigtes oder verzweigtes unsubstituiertes oder entständig mit Säure- oder Basenfunktion substituiertes Alkyl mit einer Kettenlänge von 1 bis 6 C-Atomen bedeutet, in welcher R2 und R3=H oder Niederalkyl in beliebiger Kombination bedeutet und R4=H, OH oder unverzweigtes oder verzweigtes unsubstituiertes oder endständig mit Säure¬ oder Basenfunktion substituiertes O-Alkyl mit einer Kettenlänge von 1 bis 6 C-Atomen
ERSATM.ATT (REGEL 26) bedeutet und in welcher B den N-glykosidisch gebundenen Rest einer Purin- oder Pyrimidinbase der allgemeinen Formel II oder III
Figure imgf000004_0001
II m
bedeutet, wobei R5 ein Wasserstoff-, Chlor- oder Bromatom, eine Hydroxyl-, Amino-, Monomethoxytritylamino, Mercapto-, Methylamino-, Dimethylamino-, Phenylamino- oder Hydroxylaminogruppe, R* ein Wasserstoff-, Chlor- oder Bromatom, eine Hydroxyl-, Amino-, Mercaptogruppe, R eine Hydroxyl- oder Aminogruppe, Rg ein Sauerstoffatom (=0), und R9 Wasserstoff-, Fluor-, Chlor-, oder Brom- oder Jodatom, eine Methyl-, Trifluor, ethyl-, Ethyl oder Hydroxymethylgruppe bedeutet, sowie die Salze von Verbindungen der allgemeinen Form I mit Säuren oder Basen.
Die Erfindung beinhaltet Nukleotidoligoester und -oligoamide mit der oben angeführten Stι*τjJ tur mit einer Anzahl von Nucleotideinheiten von 2 bis 200.
Die Oligonucleotidanaloga der gegenständlichen Erfingdung können durch übliche Kondensationsverfahren nach vorhergehender Aktivierung der Carbonsäure aus den geeignet geschützten Monomeren hergestellt werden.
Bindungsexperimente mit natürlichen Nukleinsäuren zeigen, daß Oligonukleotide der gegenständlichen Erfindung zur Paarung mit Natürlichen Nukleinsäuren geeignet sind. Molekül Dynamik Studien zeigen, daß Ester und Amid-Bindungen anderen Brückenverknüpfungen überlegen sind.
Die Erfindung beinhaltet die Anwendung derartiger Nukleotidoligoester und -oligoamide als Therapeu ika, für diagnostische Zwecke und als Forschungsreagenzien.
ERSÄΓZBLAΪT (REGEL 26) Beispiele:
5'-Deoxy-6N-monomethoxytrityl-2,-3'isopropylidenadenosiιι-carboιιsäure-2'-0(3'-0- methy l-5'-O-monomethoxytrityI)-uridinyl-ester ( 1 )
590 mg (0.96 mmol) 5,-Deoxy-6-N-[4-(methoxyphenyl)-diphenyl-methyl]-2',3,-0- isopropyliden-adenosin-5 '-carbonsäure wurden in wasserfreiem Dichlormethan gelöst und mit 590 mg (1.2 mmol) 3'-0-Methyl-5'-0-momomeώoxytrityl-uridin, 300 mg (1.45 mmol) DCC und 10 mg Dimemylammopyridin versetzt. Die Lösimg wurde 24 Stunden bei Raumtemperatur gerührt und dann eingedampft. Nach Reinigung mittels Säulenchromatographie (80 g Kieselgel, Eluens: Dichlormethan/Aceton 9/1) wurde 670 mg (65 % der Theorie) 1 erhalten. DC: Dichlormethan/Aceton=9/l, Rf.: 0.46 1: weißer Schaum
-H-NMR (CDC13) (300 MHz): δ= 8.05 (s, IH, 2-H); 7.9 (s, IH, 8-H); 7.8 (d, IH, 6-H Uridin); 7.4-7.2 ( , 24H, MMT); 6.85 (d, 2H, MMT); 6.75 (d, 2H, MMT); 6.1 (d, IH, 1'- H-A); 6.04 (d, IH, l'-H-U); 5.5 (m, IH, 2'-H-U); 5.45 (m, IH, 2'-H-A); 5.38 (d, IH, 5-H Uridin); 5.09 (m, IH, 3'-H-A); 4.65 (m, IH, 4'-H-A); 4.2-4.1 (m, 2H, 3',4'-H-U); 3.85 (s, 3H, OCH3-MMT); 3.8 (s, 3H, OCH3-MMT); 3.55 (d, IH, 5'-H'-U); 3.4 (d, IH, 5'-H"-U); 3.3 (s, 3H, OCH3); 3.0-2.9 (m, 2H, 5'-CH2-A); 1.6 (s, 3H, CH3); 1 4 (s, 3H, CH3).
5'-Deso_y-adenosin-5,-carboιιsäure-2,-0-(3'-0-methyl)-uridinyI-ester 2
300 mg (0.28 mmol) 1 wurden in 3 ml Dichlormethan/Wasser 1/1 gelöst und mit 300 mg Trichloressigsäure versetzt. Nach 30 Minuten wurde die Lösung zwischen Diethylether und Wasser verteilt, die wäßrige Phase mit Diethylether extrahiert und eingedampft. Der Rückstand wurde in wenig Dichlormethan aufgenommen und in Diethylether digeriert. Der Niederschlag wurde abzentrifugiert und getrocknet. Ausbeute: 110 mg (80 % der Theorie) 2.
DC: Dichlormethan Methanol=8/2, Rf.: 0.45 2: weiße Kristalle
ERSATZBLÄTT (REGEL 26) iH-NMR (D2θ) (300 MHz): d= 8.39 (s, 2H, 8-H und 2-H Adenosin); 7.65 (d, IH, 6-H Uridin); 6.10 (d, IH, l'-H-A); 5.93 (d, IH, l'-H-U); 5.71 (d, IH, 5-H Uridin); 5.45 (m, IH, 2'-H-U); 4.85 (m, IH, 2 -H-U); 4.5 (m, IH, 4'-H-A); 4.35 (m, IH, 3'-H-A); 4.1 (m, 2H, 3'und 4Η-U); 3.85 (m, IH, 5'-H*U); 3.96 (m, IH, 5'-H-"U); 3.25 (s, 3H, O-CH3); 3.0 (m, 2H, 5'- CH2-A).
5'-Deo-_y-6-N-[4-(methoxyphenyl)-diphenyl-metlιyI]-2' '-0-isopropy-iden-adenosin- 5'-carbonsäure-2,-[3'-deox -6-N-5'-0-(Di-(4-(methoxyphenyl)-diphenyl-methyI))- adenyl]-ester 3
120 mg (0.19 mmol) 5,-Deoxy-6-N-[4-(methoxyphenyl)-diρhenyl-methyl]-2',3'-0- isopropyliden-adenosin-5'-carbonsäure wurden in wasserfreiem Dichlormethan gelöst und mit 200 mg (0.25 mmol) 3'-Deoxy-6-N-5'-0-di[4-(methoxyphenyl)-diphenyl- methylj-adenosin , 60 mg (0.27 mmol) DCC und 5 mg Dimemylaminopyridin versetzt. Die Lösung wurde 24 Stunden bei Raumtemperatur gerührt und dann eingedampft. Nach Reinigung mittels Säulenchromatographie (20 g Kieselgel, Eluens: Dichlormethan/Aceton 9/1) wurden 60 mg (23 % der Theorie) 3 erhalten. DC: Dichlormethan/Aceton=9/l, Rf.: 0.56 3: weißer Schaum
-H-NMR (CDCI3) (300 MHz): δ= 8.09 (s, IH, 2-H); 7.98 (s, IH, 2-H); 7.93 (s, IH, 8- H); 7.85 (s, IH, 8-H); 7.50-7.16 (m, 36H, MMT); 6.85-6.75 (m, 6H, MMT); 6.10 (d, IH, l'-H-A"); 6.02 (d, IH, l'-H-A'); 5.73 (m, IH, 2'-H-A'); 5.45 (m, IH, 2'-H-A"); 5.05 (m, IH, 3'-H-A"); 4.40 (in, IH, 4'-H-A"); 4.10 (m, IH, 4'-H-A'); 3.81, 3.80, 3.79 (3s, 9H, CH3-O-MMT); 3.36 (m, 2H, 5'-CH2-A'); 2.90 (m, 2H, 5'-CH2-A"); 2.59 (m, IH, 3'-H'- A'); 2.10 (m, IH, 3'-H"-A'); 1.6 (s, 3H, CH3); 1.38 (s, 3H, CH3).
5'-Deoxy-5'-carbonsäure-2'-[3'-deo--y-adenyl]-ester 4
60 mg (0.04 mmol) 3 wurden in 3 ml Dichlormethan gelöst und mit 30 mg Trichloressigsäure versetzt. Nach 30 Minuten wurde die Lösung zwischen Diethylether und Wasser verteilt, die wäßrige Phase mit Diethylether extrahiert und eingedampft. Der Rückstand wurde in wenig Dichlormethan aufgenommen und in Diethylether digeriert. Der Niederschlag wurde abzentrifiigiert, mehrmals mit Diethylether gewaschen und getrocknet. Ausbeute: 8 mg (38 % der Theorie) 4. DC: Dichlormethan/Methanol-=8/2, Rf.: 0.42
ERSATZBLATΓ (REGEL 26) 4: weiße Kristalle iH-NMR (D20) (300 MHz): δ= 8.56 (s, IH, 2-H); 8.41 (s, 2H, 2-H, 8-H); 8.35 (s, IH, 8- H); 6.20 (d, IH, l'-H-A"); 6.12 (d, IH, l'-H-A'); 5.65 (m, IH, 2'-H-A'); 5.57 (m, IH, 2'- H-A"); 5.09 (m, IH, 3'-H-A"); 4.68 (m, IH, 4'-H-A"); 4.30 (m, IH, 4'-H-A"); 3.86 (m, IH, 5'-H'-A'); 3.66 (m, IH, 5*-H"-A'); 2.92 (m, IH, 5'-H'-A"); 2.78 (m, IH, 5'-H"-A"); 2.40 (3'- H'-A'); 2.10 (m, IH, 3*-H"-A'); 1.66 (s, 3H, CH3); 1.44 (s, 3H, CH3).
Formelschema I:
Figure imgf000007_0001
12
ERSATZBLÄTT (REGEL 26) Biopysikalische Bindungsstudien zur Interaktion vom Dinukleotidester 4 mit Polyuridinylsäure (Poly-U)
Poly-U bildet unter bestimmten Bedingungen - in Anwesenheit von Magnesiumsalzen - mit Mono, Di- und Oligonukleotiden Komplexe1. Von Th. Ackermann et al. wurde IR- spektroskopisch2 nachgewiesen, daß es dabei zur Bildung von Tripelhelices kommt.
Zum Nachweis von Duplex- oder Triplexaggregaten bietet sich der starke Hypochrome Effekt der Basenstapelung, besonders wegen seines geringen Substanzbedarfs, an.
Je höher die Umwandlungstemperatur bei gleicher Konzentration, desto stabiler ist die Paarung. Bereits eine zusätzliche Phosphatverknüpfung etwa vom Dimer zum Trimer führt zu einer Stabilisierung der Tripelhelix und zu einem Anstieg der Umwandlungstemperatur um 12.2°C von 13.5°C (ApA) auf 25.7°C (ApApA) 1.
Somit untersucht man das Bindungsverhalten eines kurzen Watson-Crick- Komplementärstrangs am besten mit der zusätzlichen kooperativen "Unterstützung" eines dritten Polymerstrangs, der das Hoogsteenpaar ausbildet. Das artifizielle Dinukleotid 4 wurde somit unter Salz- und Puffer- Konditionen untersucht, die Triplexbildung zulassen.
Hierzu wurde 4 im Verhältnis 1/2 mit Poly-U im Puffer gemischt. Die Lösung wurde auf 90°C erwärmt und wieder auf 5°C abgekühlt. Die Temperatur wurde dann stufenweise auf 40°C erhöht. Deutlich konnte eine Veränderung der Absorbtion mit der Temperatur beobachtet werden. Eine Hyperchromizität von 36% wurde gemessen.
Die Umwandlungstemperatur des Sytems 2Poly-U/artifizielles Dinukleotid lag bei 15°C. Somit konnte gezeigt werden, daß derartige 2'-5 '-esterverknüpfte artifizielle Nukleotide natürliche 3'-5'-phosphatverknüpfte Oligonukleotide erkennen und mit ihnen wechselwirken können.
1 A. M. Michelson C. Monny, Biochim. Biophys. Ada 149 (1967) 107
2 U. Schemau, S. Marcino ski und Th. Ackermann Zeitschrift für Physikalische Chemie 117 (1979) 11- 18 Moleküldynamik Simulationen derartiger Oligonukleotidester - a ide
Mole^-Dynamik (MD) Simulationen von Duplexen aus einem modifizierten Strang und einem natürlichen komplementären RNA-Strang wurden durchgeführt (Figur 1). Auftretende Konformationsänderungen, Bewegung und Stabilität der modifizierten Oligonukleotide konnten beobachtet werden. Das Verhalten der in dieser Erfindung genannten OUgonukleotidanaloga wurde sowohl mit natürlicher RNA als auch mit anderen flexibleren Verknüpfungstypen verglichen.
2'-5'-OligonucleotidanalogonRNA-Doppelstrang
G G A A G G A G C U 0 ?
1 1 1 1 1 1 1 1 1 1
C C U U C C U C G A r C rX pXpXpXpXp λpλpλpλpλP P
X= 2'-5'-Ester-, Ether- bzw. Amidverknüpfiing
Die Estermodifikation zeigte die höchste A-ffinität zum komplementären RNA-Strang. Flexiblere Verknüpfungssysteme wie die Ethermodifikation zeigten keine hohe Affinität zum Gegenstrag, sondern der Hybrid - Doppelstrang löste sich bereits nach kurzer Zeit auf, und die Stränge verknäulten sich ineinander.
f SATZBLATT (REGEL 26)

Claims

Patentansprüche:
1. Nukleotidcarbonsäureester und -amide der allgemeinen Formel I wobei:
Figure imgf000010_0001
die Zuckerringe der Nucleotide mit mindestens einer Brücke verknüpft sind, welche aus 3
Atomen besteht und entweder eine Carbonsäureester- oder Carbonsäureamidgruppe beinhaltet und in welcher
A0 -0-C(=O=-, -N(-Rι)-C(=0)- wobei Rι=H, oder unverzweigtes oder verzweigtes unsubstituiertes oder endständig mit Säure oder Basenfunktion substituiertes Alkyl mit einer Kettenlänge von 1 bis 6C-Atomen bedeutet, in welcher R2 und R3=H oder
Niederalkyl in beUebiger Kombination bedeutet und R}=H, OH oder unverzweigtes oder verzweigtes unsubstituiertes oder endständig mit Säure- oder Basenfunktion substituiertes
O- Alkyl mit einer Kettenlänge von n =1-6 C-Atomen bedeutet und in welcher
B den N-glykosidisch gebunden Rest einer Purin- oder Pyrimidinbase der aUgemeinen
Form II oder III bedeutet, wobei
Figure imgf000010_0002
π
R5 ein Wasserstoff-, Chlor- oder Bromatom, eine Hydroxyl-, Amino-, Monomemoxytritylamino-, Mercapto-, Methylamino-, Dimeraylamino-, Phenylamino-, oder Hydroxylamino, Röβin Wasserstoff-, Chlor- oder Bromatom, eine Hydroxyl-, Amino-, Mercaptogruppe, R7 eine Hydroxyl- oder Aminogruppe,
Rg ein Sauerstoffatom (=0), und
R9 Wasserstoff-, Fluor-, Chlor-, Brom- oder Jodatom, eine Methyl-, Trifluormethyl-,
Ethyl- oder Hydroxymethyl bedeutet, sowie die Salze von Verbindungen der allgemeinen
Formel I mit Säuren oder Basen.
2. Nukleotidoligoester und -oligoamide nach Anspruch 1, dadurch gekennzeichnet, daß die Anzahl von Nukleotideinheiten 2 bis 200 beträgt.
3. Verfahren zur Herstellung
Nukleotidester und oligoamide der Formel I dadurch gekennzeichnet, daß nach vorhergehender Aktivierung der Carbonsäure die Monomere nach üblichen Methoden kondensiert werden.
4. Verwendung der Verbindungen der Formel I zur Herstellung von Therapeutika und für diagnostische Zwecke
5. Verwendung der Nukleotidoligoester und -oligoamide der Formel I zum Einbau in natürliche und anders modifizierte Oligonucleotide.
PCT/AT1996/000056 1995-03-24 1996-03-25 Nukleinsäure-polyester-polyamide WO1996030383A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU49311/96A AU4931196A (en) 1995-03-24 1996-03-25 Nucleic acid polyester polyamides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA538/95 1995-03-24
AT53895 1995-03-24

Publications (1)

Publication Number Publication Date
WO1996030383A1 true WO1996030383A1 (de) 1996-10-03

Family

ID=3493275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT1996/000056 WO1996030383A1 (de) 1995-03-24 1996-03-25 Nukleinsäure-polyester-polyamide

Country Status (2)

Country Link
AU (1) AU4931196A (de)
WO (1) WO1996030383A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871737B2 (en) 2010-09-22 2014-10-28 Alios Biopharma, Inc. Substituted nucleotide analogs
US8916538B2 (en) 2012-03-21 2014-12-23 Vertex Pharmaceuticals Incorporated Solid forms of a thiophosphoramidate nucleotide prodrug
US8980865B2 (en) 2011-12-22 2015-03-17 Alios Biopharma, Inc. Substituted nucleotide analogs
US9012427B2 (en) 2012-03-22 2015-04-21 Alios Biopharma, Inc. Pharmaceutical combinations comprising a thionucleotide analog

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024508A1 (en) * 1992-06-01 1993-12-09 Gilead Sciences, Inc. Binding competent oligomers containing 2', 5' linkages
WO1994022891A1 (en) * 1993-03-31 1994-10-13 Sterling Winthrop Inc. Oligonucleotides with amide linkages replacing phosphodiester linkages

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024508A1 (en) * 1992-06-01 1993-12-09 Gilead Sciences, Inc. Binding competent oligomers containing 2', 5' linkages
WO1994022891A1 (en) * 1993-03-31 1994-10-13 Sterling Winthrop Inc. Oligonucleotides with amide linkages replacing phosphodiester linkages

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.D. MESMAEKER ET AL.: "Synthetic Modifications of Antisense Oligonucleotides: Novel Backbone Replacements with Improved Properties", BULL. SOC. CHIM. BELG., vol. 103, 1994, pages 705 - 17, XP002008196 *
C.R. NOE ET AL.: "Novel Three-Atom 2'-5' Linkages in Antisense Nucleotides: Synthesis and Pairing Properties of Dinucleotides with a Carboxylic Ester Linkage", ARCH. PHARM., vol. 328, 1995, pages 743 - 4, XP002008198 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871737B2 (en) 2010-09-22 2014-10-28 Alios Biopharma, Inc. Substituted nucleotide analogs
US9278990B2 (en) 2010-09-22 2016-03-08 Alios Biopharma, Inc. Substituted nucleotide analogs
US8980865B2 (en) 2011-12-22 2015-03-17 Alios Biopharma, Inc. Substituted nucleotide analogs
US9605018B2 (en) 2011-12-22 2017-03-28 Alios Biopharma, Inc. Substituted nucleotide analogs
US8916538B2 (en) 2012-03-21 2014-12-23 Vertex Pharmaceuticals Incorporated Solid forms of a thiophosphoramidate nucleotide prodrug
US9394330B2 (en) 2012-03-21 2016-07-19 Alios Biopharma, Inc. Solid forms of a thiophosphoramidate nucleotide prodrug
US9856284B2 (en) 2012-03-21 2018-01-02 Alios Biopharma, Inc. Solid forms of a thiophosphoramidate nucleotide prodrug
US9012427B2 (en) 2012-03-22 2015-04-21 Alios Biopharma, Inc. Pharmaceutical combinations comprising a thionucleotide analog

Also Published As

Publication number Publication date
AU4931196A (en) 1996-10-16

Similar Documents

Publication Publication Date Title
DE69027431T2 (de) Kumarinderivate zur verwendung als nukleotidvernetzungsreagenzien
EP0524997B1 (de) 2'-o-alkylnukleotide sowie polymere, die solche nukleotide enthalten
EP0399330B1 (de) Modifiziertes Phosphoramidit-Verfahren zur Herstellung von modifizierten Nukleinsäuren
DE3855055T2 (de) Chemische Blockierung durch Phosphithylierung während der Oligonukleotid-Synthese
DE69033495T2 (de) 2'-modifizierte nukleotide
DE69032167T2 (de) Ungeladene polymere mit morpholino-einheiten und mit achiralen bindungen zwischen diesen einheiten
DE69719220T2 (de) Neue nucleotidanaloga
DE3689715T2 (de) Verfahren und Reagenzien für die In-vitro-Synthese von Oligonukleotiden.
DE3855275T4 (de) Nichtnukleotides Bindungsreagenz für nukleotide Proben
DE69635744T2 (de) Modifizierte Nukleinsäuresonden
DE69637256T2 (de) Synthese von Methoxynukleoside und enzymatische Nukleisäure Moleküle
DE69432315T2 (de) ANTISENSE NUKLEINSÄUREN ZUR VORBEUGUNG UND BEHANDLUNG VON BESCHWERDEN IN WELCHEN DIE EXPRIMIERUNG VON C-erbB-2 EINE ROLLE SPIELT
DE69632456T2 (de) Nukleinsäuresynthese unter verwendung von mittels licht abspaltbaren schutzgruppen
DE69724218T2 (de) Universale feste träger und verfahren zu ihrer verwendung
EP0593901B1 (de) Oligoribonucleotid- und Ribozym-Analoga mit terminalen 3'-3'-bzw.5'-5'-Verknüpfungen
EP0600965B1 (de) Primer für matrizenabhängige enzymatische nukleinsäuresynthesen
EP0818460B1 (de) Festphasensynthese von Oligonucleotiden
DE69828076T3 (de) Synthese von sulfurierten oligonukleotiden
DE69405396T2 (de) Verfahren zur synthese von nukleinsäuren auf einem festträger und verbindungen verwendbar als festträger in diesem verfahren
DE69725440T2 (de) 2-substituierte nukleosid- und oligonukleotid- derivate
DE69824843T2 (de) Verfahren zur herstellung von modifizierten p-chiralen nucleotid-analoga
DE69733150T2 (de) Verfahren zur herstellung von nukleotiden oder oligonukleotiden phosphoramitiden
DD141836A5 (de) Verfahren zur herstellung von polynucleotiden mit bestimmter sequenz
WO1996030383A1 (de) Nukleinsäure-polyester-polyamide
DE69402177T2 (de) Synthese von dimer-blöcken und ihre verwendung bei der zusammensetzung von oligonukleotiden

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ EE HU JP LT LV MX NZ TR US AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载