+

WO1996025792A1 - Elastic surface wave functional device and electronic circuit using the element - Google Patents

Elastic surface wave functional device and electronic circuit using the element Download PDF

Info

Publication number
WO1996025792A1
WO1996025792A1 PCT/JP1996/000339 JP9600339W WO9625792A1 WO 1996025792 A1 WO1996025792 A1 WO 1996025792A1 JP 9600339 W JP9600339 W JP 9600339W WO 9625792 A1 WO9625792 A1 WO 9625792A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
surface acoustic
layer
active layer
amplifier
Prior art date
Application number
PCT/JP1996/000339
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Yamanouchi
Naohiro Kuze
Yoshihiko Shibata
Yasuhito Kanno
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to EP96902454A priority Critical patent/EP0810726B1/en
Priority to US08/894,321 priority patent/US6046524A/en
Priority to DE69634949T priority patent/DE69634949T2/en
Priority to JP52483396A priority patent/JP3936394B2/en
Publication of WO1996025792A1 publication Critical patent/WO1996025792A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02566Characteristics of substrate, e.g. cutting angles of semiconductor substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • the present invention relates to the interaction between a surface acoustic wave propagating through a piezoelectric substrate and a carrier in a semiconductor.
  • the present invention relates to a surface acoustic wave functional element such as a surface acoustic wave amplifier and a surface acoustic wave convolver, and an electronic circuit such as a transmission / reception circuit of a mobile communication device using the functional element.
  • a surface acoustic wave can be amplified by propagating the surface acoustic wave on a piezoelectric surface and coupling an electric field generated by the wave with a carrier in a semiconductor.
  • Actual surface acoustic wave amplifiers are classified into three types: direct amplifiers (Fig. 3), separated amplifiers (Fig. 4), and monolithic amplifiers (Fig. 5), based on the combination of piezoelectric materials and semiconductors that transmit surface acoustic waves.
  • the first direct-type amplifier is provided with input / output electrodes 4 and 5 on a substrate 7 having both piezoelectricity and semiconductivity, such as CdS and GaAs.
  • the second separation type amplifier has a semiconductor layer 3 ′ having a high mobility disposed on a piezoelectric substrate 1 having a large piezoelectric property via a gap 8.
  • This type of amplifier greatly affects the flatness of the surface of the semiconductor and the piezoelectric substrate, the size of the gap, and the degree of amplification.
  • the air gap In order to obtain a practically usable amplification degree, the air gap must be kept as small as possible, and it must be kept constant over the entire operating range, which makes industrial production extremely difficult.
  • a semiconductor layer 3 ′ is formed on the piezoelectric substrate 1 via the dielectric film 9 without any gap, and the semiconductor layer 3 ′ is formed on the piezoelectric substrate 1.
  • the amplifier has a structure in which input / output electrodes 4 and 5 are provided, and DC electric field application electrodes 6 are provided on both side surfaces of the semiconductor layer 3 ′. It is said that monolithic amplifiers can achieve high gain, can operate at high frequencies, and are suitable for mass production. However, there is no example of studying the application of these surface acoustic wave amplifiers to mobile communication devices such as mobile phones.
  • a dielectric film such as S I_ ⁇ was required explosion Gutame deterioration of degradation and L i Nb0 3 substrate surface I NSB by oxygen diffusion from the L iNb0 3 substrate.
  • a surface acoustic wave amplifier is used as the function of the amplifier and the bandpass filter in the high-frequency part of a portable device, it cannot be used unless the drive voltage of 3 to 6 V has an amplification effect.
  • Conventional monolithic amplifiers require large voltages, and no surface acoustic wave amplifiers capable of low-voltage driving existed.
  • the surface acoustic wave convolver using the interaction between surface acoustic waves and electrons also has a problem that the gain force s ' is insufficient.
  • the gain G of a surface acoustic wave amplifier is given by the following equation.
  • A constant
  • k 2 electromechanical coupling constant of the piezoelectric substrate
  • ⁇ ⁇ equivalent dielectric constant of the piezoelectric substrate
  • conductivity
  • h film thickness of the active layer
  • electron mobility
  • Applied electric field
  • v The velocity of the surface wave.
  • an active layer having a thin film and excellent electric characteristics can be obtained by inserting a buffer layer between the piezoelectric substrate and the active layer.
  • a buffer layer between the piezoelectric substrate and the active layer.
  • k 2 which is much larger than that of bulk.
  • a surface acoustic wave amplifier was manufactured using the semiconductor layer and the piezoelectric thin film substrate, and it was confirmed that a good amplification factor could be obtained at a practically low voltage.
  • the present invention was completed.
  • the semiconductor layer having a buffer layer interposed between the piezoelectric substrate and the active layer of the present invention achieves an electron mobility of 500 cm 2 ZVs or more in the active layer. That is, the present invention provides an input electrode, an output electrode, and a semiconductor layer between the input and output electrodes on a piezoelectric substrate, wherein the semiconductor layer lattice-matches the active layer with the active layer.
  • This is a surface acoustic wave functional element characterized by comprising a layer.
  • the active layer is a layer that excites the propagated surface acoustic wave by the energy of a carrier in a semiconductor.
  • the very good electrical characteristics of the active layer were realized in the thin film because the crystallinity of the active layer could be improved by inserting a buffer layer between the piezoelectric substrate and the active layer. by. Furthermore, the crystallinity of the active layer can be further improved by making the lattice constant of the crystal constituting the active layer coincide with or close to the lattice constant of the crystal constituting the buffer layer.
  • the electrical characteristics of the active layer are dramatically improved even with a thin film. Furthermore, it has been found that even better electrical characteristics can be obtained by using a compound semiconductor containing Sb as the buffer layer of the present invention.
  • the buffer layer of the present invention is characterized in that it has a high resistance and the attenuation of surface acoustic waves in the buffer layer is small.
  • the buffer layer of the present invention can be activated by oxygen from the piezoelectric substrate even if there is no dielectric film such as SiO on the piezoelectric substrate. It has an excellent feature that it can prevent the deterioration of the conductive layer and can be grown at a low temperature, so that the piezoelectric substrate does not deteriorate.
  • the piezoelectric thin film substrate of the present invention is composed of three or more multilayer piezoelectric materials having at least two or more different electromechanical coupling constants on the piezoelectric substrate, and a piezoelectric film at the center of the multilayer of the multilayer piezoelectric material.
  • * Having the largest electromechanical coupling constant makes it easier to efficiently concentrate surface acoustic wave energy s on the surface, far exceeding the electromechanical coupling constant of the piezoelectric material that constitutes each layer.
  • a large electromechanical coupling constant can be realized.
  • the interaction between the electrons and the convolved surface wave was enhanced by increasing the electron mobility of the semiconductor layer, and a larger gain was obtained than in the conventional structure.
  • the surface acoustic wave functional element having a large amplification degree at a practical low voltage may be used as a band-pass filter and a low-noise amplifier for a mobile communication device, or a band-pass filter and a power amplifier, or a band-pass filter and an amplifier and If it is used as a device for transmission / reception duplexers, it can exert a tremendous effect on miniaturization, thickness reduction, and weight reduction of mobile communication equipment. Therefore, in such transmission and reception circuits of mobile communication devices such as mobile phones and cordless phones, high-amplification elasticity is used as an amplifier and a bandpass filter, or as an amplifier and a bandpass filter and a transmission / reception duplexer.
  • a transmission or reception circuit for a mobile communication device, which is configured by a surface acoustic wave functional element, is also included in the scope of the present invention.
  • FIG. 1 shows a surface acoustic wave functional element that is the basis of the present invention.
  • Figure 1A is a cross-sectional view of a surface acoustic wave functional element
  • Figure 1B It is a perspective view of a surface acoustic wave functional element.
  • 1 power s piezoelectric substrate 2 is a buffer layer, 3 an active layer, 4 is an input electrode, 5 is an output electrode.
  • the input electrode 4 and the output electrode 5 are arranged on the piezoelectric substrate 1 at intervals, and the active layer 3 is provided between the input / output electrodes 4 and 5 via the buffer layer 2.
  • the piezoelectric body 1 according to the present invention may be a piezoelectric single crystal or a piezoelectric thin film substrate.
  • Piezoelectric single crystal substrate is preferably an oxide-based piezoelectric substrate, for example, L iNb0 3, L i Ta0 3 or L i 2 B 4 ⁇ 7 Hitoshiryoku 5 is preferably used.
  • Piezoelectric thin film substrate which piezoelectric film is formed on a single crystal substrate such as sapphire or S i, for example as a pressure-collecting thin film, ZnO, L i NbO 3, L i Ta0 3, PZT, such PbT i 0 3, BaT i 0 3 or L i 2 B 4 0 7 is preferably thin Takenawa charges used.
  • the dielectric film such as S i 0 and S i 0 2 may be ⁇ enter between the S i substrate and the piezoelectric thin film.
  • a multilayer laminated film in which thin films of different types of the above piezoelectric thin films are alternately stacked may be formed on a single crystal substrate such as sapphire or Si.
  • the piezoelectric substrate 1 of the present invention is composed of three or more multilayer piezoelectric materials having at least two or more kinds of different electromechanical coupling constants, and the piezoelectric film at the center of the multilayer of the multilayer piezoelectric material has the largest electrical conductivity.
  • An extremely large electromechanical coupling constant can be realized by using a piezoelectric substrate characterized by being a piezoelectric film having a mechanical coupling constant.
  • the multilayer piezoelectric substrate 20 of the present invention has a structure in which a first piezoelectric film 22 is provided on a piezoelectric substrate 21 and a second piezoelectric film 23 is provided thereon.
  • the piezoelectric substrate 21 the same substrate as the above-mentioned piezoelectric substrate 1 can be used. However, the following conditions Needs to be satisfied.
  • k 1 needs to be larger than k and k 2 , preferably 1.2 times or more, and more preferably 2 times or more.
  • V ;! Is preferably larger than V and V 2 by 10 OmZs or more, more preferably 25 OmZs or more.
  • Hi is usually in the range of 30 nm or more and 2 O / m or less, more preferably 80 nm or more and 5 or less, and even more preferably 100 nm or more and 2 or less.
  • h2 is 0.1 or more and 500 or less, preferably 0.15 or more and 50 or less, and more preferably 0.5 or more and 21 or less.
  • the wavelength of the surface acoustic wave is s, usually h is less than 1 and h 2 / ska? 1 or less, preferably, h is 0.5 or less and h 2 is 0.4 or less, and more preferably, hj / zl is 0.25 or less and h 2 is 0.25 or less.
  • the multilayer piezoelectric substrate 20 having a large electromechanical coupling constant according to the present invention can be used not only for a surface acoustic wave amplifier and a surface acoustic wave convolver but also for improving the characteristics of surface acoustic wave devices such as a surface acoustic wave filter and a surface acoustic wave resonator. Is also very preferably used.
  • the active layer constituting the semiconductor layer of the present invention one having high electron mobility is preferably used.
  • Preferred examples of the active layer include GaAs, InSb, InAs, and PbTe.
  • binary systems not only binary systems but also ternary mixed crystals / quaternary mixed crystals combining these binary systems are preferably used.
  • I n X G a ⁇ - x A s, I nAs y Sb i_y> I nzGa i- z Sb such force ternary mixed crystal, I njjGa i-xA s y S b E _ y like are quaternary mixed crystal This is an example.
  • the active layer may be formed as a multilayer laminated film in which semiconductor films having different compositions are laminated.
  • the electron mobility of the active layer is preferably 5000 cm 2 ZVs or more in order to increase the amplification of the surface acoustic wave amplifier.To obtain an extremely good amplification, the electron mobility of 10,000 cm 2 ZVs or more is preferable. It is more preferred to have.
  • X of In X Gas can be 0 ⁇ ⁇ 1.0, but 0.5 ⁇ x 1.0 is preferable, and 0.8 ⁇ x ⁇ 1.0 is more preferable. This is a preferred range.
  • Y of I nA s yS b can have high electron mobility in the range of 0 ⁇ y ⁇ 1.0, and more preferably 0.5 ⁇ y ⁇ 1.0.
  • Z of InzG a —z S b is preferably 0.5 ⁇ z ⁇ 1.0, and more preferably 0.8 ⁇ z ⁇ 1.0.
  • the thickness h of the active layer When the thickness h of the active layer is 5 nm or less, the crystallinity of the active layer s is deteriorated, and high electron mobility cannot be obtained. On the other hand, when h exceeds 500 nm, the active layer has a low resistance, and the interaction efficiency between the surface acoustic wave and the carrier decreases. That is, in order to realize high electron mobility and efficiently perform the interaction between the surface acoustic wave and the carrier, the thickness h of the active layer needs to be 5 nm ⁇ h ⁇ 500 nm, which is preferable. Is in the range of 10 nm ⁇ h ⁇ 350 nm, and more preferably in the range of 12 nm ⁇ h ⁇ 200 nm. Further, the surface resistance of the active layer, or the force 5 'preferably 1 0 .OMEGA, more preferably not less than 50 Omega, more preferably Ah least 1 00 ⁇ .
  • the buffer layer formed on the piezoelectric substrate in the present invention is preferably insulative or semi-insulating, but any material having a high plate value according to these may be used.
  • the resistance value of the buffer layer may be at least 5 to 10 times higher than that of the active layer, preferably 100 times or more, more preferably 1000 times or more.
  • G a S b, A l S b, Z nTe or C dT e Ternary system such as AIG a Sb, AlAs Sb, GaAs Sb, Alln Sb, etc., AIG aAs Sb, A1 InGaSb, A1 InAs S b, quaternary systems such as A1InPSb and A1GaPSb are preferred examples.
  • a larger electron mobility of the active layer can be obtained. Can be realized.
  • the close lattice constant means that the difference between the lattice constant of the crystal forming the active layer and the lattice constant of the crystal forming the buffer layer is 7% or less, preferably 5% or less, more preferably ⁇ 5%. It means 2% or less.
  • the buffer layer 2 containing Sb has a very fast lattice relaxation, so that even if the lattice irregularity with the piezoelectric substrate 1 is large, the buffer layer can be buffered.
  • Lattice disorder is alleviated only by growing an ultra-thin film of layer 2, and growth begins with the unique lattice constant of the crystal constituting buffer layer 2.
  • the surface condition of the buffer layer 2 becomes extremely good, and the crystallinity of the active layer 3 formed thereon can be greatly improved. Therefore, a compound semiconductor containing Sb is particularly preferably used as the buffer layer 2.
  • the thickness of the buffer layer 2 is better as it is thicker from the viewpoint of crystallinity, but is more preferable as it is thinner from the viewpoint of the interaction between the surface acoustic wave and the carrier. That is, the film thickness h 3 of the buffer layer 2 is preferably 1 0 nm ⁇ h 3 ⁇ 1 000 nm , a more preferable range is 20 nm ⁇ h 3 500 nm.
  • the buffer layer 2 of the present invention can be grown at a low temperature, the piezoelectric substrate 1 does not deteriorate due to oxygen bleeding and the like, and the active layer 3 formed on the buffer layer 2 also has a piezoelectric property. It is also a great feature that deterioration due to oxygen escaping from the substrate 1 can be prevented, and that it functions as a protective layer for the piezoelectric substrate 1 and the active layer 3. Therefore, the protective layer force s ′ using a dielectric film such as S i 0 or S i 0 2 which has been conventionally used becomes unnecessary. However, there is no problem even if a dielectric film is inserted between the piezoelectric substrate 1 and the buffer layer 2.
  • the dielectric film for example, S i 0, S i 0 2, silicon nitride, C e 0 2, CaF 2 , BaF 2, S rF 2, T i O 2, Y 2 0 3, Z r 0 2> MgO, A12 ⁇ 3 etc. are used.
  • the thickness of the dielectric film is preferably thin, but is preferably 100 nm or less, more preferably 50 nm or less.
  • the buffer layer 2 of the present invention is compared with a dielectric film 9 such as Si0 inserted between the piezoelectric substrate 1 and the active layer 3 'of the conventional monolithic amplifier as shown in FIG.
  • the attenuation of the electric field of the surface acoustic wave in the buffer layer 2 of the present invention is small, and the interaction between the electric field of the surface acoustic wave and the carrier in the active layer 3 is more likely to occur more efficiently. It can be thicker than the body membrane 9.
  • a dielectric film or a semiconductor film may be laminated as a protective film on the active layer for the purpose of protecting the active layer 3. Is it necessary to use a dielectric film with the above composition? it can. A semiconductor film having the same composition as the buffer layer can be used.
  • the buffer layer 2 and the active layer 3 can be generally formed by any method that can grow a thin film, such as a molecular beam epitaxy (MBE) method, an organometallic molecular beam epitaxy (MOMBE) method, and an organometallic chemical vapor deposition method.
  • MBE molecular beam epitaxy
  • MOMBE organometallic molecular beam epitaxy
  • ALE atomic layer epitaxy
  • the input / output electrodes 4 and 5 on the piezoelectric substrate 1 of the present invention have an interdigital structure, and are used for a normal surface acoustic wave filter, such as an apodized electrode, a thinned electrode, a unidirectional electrode, a regular electrode, and the like. Is preferably used. Above all, the unidirectional electrode is particularly preferably used because the loss due to the bidirectionality of the surface acoustic wave can be reduced.
  • the material of the input / output electrodes 4 and 5 for example, A and Au, Pt, Cu, A1-Ti alloy, A1-Cu alloy, multilayer electrodes of A1 and Ti, etc. Is preferably used.
  • the buffer layer 2 is formed so as to cover the input / output electrodes 4 and 5 of the present invention, since the input / output electrodes 4 and 5 are formed first, there is no need to consider the unevenness of the semiconductor thin film. Contact exposure enables submicron electrode microfabrication.
  • the input / output electrodes 4 and 5 are embedded in the buffer layer 2, it is necessary to select an electrode material that is as small as possible such as deformation, melting, and diffusion while forming the buffer layer 2.
  • an electrode material that is as small as possible such as deformation, melting, and diffusion while forming the buffer layer 2.
  • Pt, Au, Cu, A and Cr, Mo, Ni, Ta, Ti, W and the like are preferable.
  • multilayer electrodes such as Ti-Pt :, Ti-Al, Ti-Au, Cr-Au, and Cr-Pt are also preferably used.
  • the material used for the electrode 6 for applying a DC electric field to the semiconductor layer is not particularly limited.
  • Al, Au, Ni / Au, Ti / AuCuZNiZAu, AuGeZNiZAu and the like are preferably used.
  • the input electrode 4 and the output electrode 5 are electrodes capable of withstanding high power, for example, power of about several W.
  • Materials must be used.
  • a high power electrode material such as a film is preferably used.
  • the semiconductor layer between the input / output electrodes 4 and 5 has two or more forces, and further has a structure for removing carriers moving in the direction opposite to the surface acoustic wave propagation direction.
  • a structure that removes the active layer 3 between the semiconductor layers high amplification can be realized at low voltage.
  • the semiconductor layer is separated by mesa etching, or a dielectric (not shown) is buried between the semiconductor layers after the mesa etching, so that carriers moving in the opposite direction due to a reverse electric field are removed. Can remove power s.
  • the surface acoustic wave convolver of the present invention is formed on the piezoelectric substrate.
  • the electrodes are used as two input electrodes, and the convolved surface waves are extracted from extraction electrodes formed above the semiconductor layer and below the piezoelectric substrate.
  • the electrode material of the extraction electrode is not particularly limited. For example, A, Au, Pt, and Cu are preferably used.
  • a transmission / reception splitter 11 is connected to an antenna 10, and a reception amplifier 12 and a transmission amplifier 13 are connected to the transmission / reception splitter 11.
  • the transmission and reception amplifiers 12 and 13 are connected to a bandpass filter 14 power, respectively.
  • the receiving surface acoustic wave amplifier 15 and the transmitting surface acoustic wave amplifier 16 are connected to the antenna 10 as shown in FIG. Is only connected. Therefore, according to the present invention, the number of components in the RF section can be reduced, and further, each component can be reduced in size, weight, and thickness.
  • FIG. 1A is a cross-sectional view of a surface acoustic wave device according to one embodiment of the present invention.
  • FIG. 1B is a perspective view of a surface acoustic wave device according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a multilayer piezoelectric substrate of the present invention.
  • FIG. 3 is a cross-sectional view of a conventional direct amplifier.
  • FIG. 4 is a cross-sectional view of a conventional separated amplifier.
  • FIG. 5 is a cross-sectional view of a conventional monolithic amplifier.
  • FIG. 6 is a sectional view of a semiconductor layer-separated surface acoustic wave amplifier according to one embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the RF section of a mobile phone.
  • FIG. 8 is a schematic diagram of a transmission and reception circuit formed without using a transmission / reception splitter or a transmission / reception amplifier according to the present invention.
  • Figure 9 is a cross-sectional view of a surface acoustic wave amplifier with input and output electrodes embedded in a buffer layer.
  • FIG. 10 is a cross-sectional view of a surface acoustic wave amplifier using a multilayer piezoelectric substrate.
  • FIG. 11 is a sectional view of a surface acoustic wave convolver according to an embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below by way of specific examples.
  • the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate.
  • Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process.
  • the electrodes were regular electrodes with a pitch of 0.75 m, and the propagation length was 3 O O ⁇ m.
  • an electrode for applying a DC electric field was formed on the active layer.
  • the propagation length of the surface acoustic wave is preferably formed to be an integral multiple of the wavelength of the surface acoustic wave.
  • the characteristics of the surface acoustic wave amplifier were measured.
  • the amplification was evaluated using a network analyzer (Yokokawa Hewlett Packard, 8510B) based on the difference between the gain (or insertion loss) after applying the electric field and the insertion loss before applying the electric field.
  • Surface acoustic wave enhancement of Example 1 As a result of evaluating the width gauge, the amplification degree was 22 dB at a DC applied voltage of 3 V and a center frequency of 150 MHz. This value is a good amplification factor when used in the low-noise amplifier and band-pass filter of the high-frequency part of a portable device, and because it is formed of a monolithic single element, the size of the portable device is small.
  • Example 2 Using the sample of Example 1, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed as input and output electrodes on the surface of the piezoelectric substrate by a lithography process. The electrodes were regular electrodes with a pitch of 1.4 m, and the propagation length was 280; / m. Subsequently, an electrode for applying a DC electric field was formed on the active layer.
  • the characteristics of the surface acoustic wave amplifier were measured.
  • the evaluation of the amplification degree was performed in the same manner as in Example I.
  • the amplification was 12 dB at a DC applied voltage of 3 V and a center frequency of 80 OMHz. This value is a good amplification factor when used in the low-noise amplifier and band-pass filter of the high-frequency part of portable equipment.
  • Comparative Example 1 is shown as a comparison with Example 2.
  • Example 2 Was deposited S i 0 2 1 0 nm on a 6 4 ° Y cut L i N b 0 3 single crystal substrate having a diameter of 3 Inchi.
  • InSb was grown as an active layer by 5 O nm by MBE, and then GaSb was grown by 2 nm as a protective layer. Then, the electrical characteristics of the laminated film were measured.
  • the active layer In Sb was formed directly on the piezoelectric substrate, so that the crystallinity of the active layer was poor and the electron mobility was low. It was only 1700 cm 2 ZVs.
  • the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate.
  • Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process.
  • the electrodes were regular electrodes with a pitch of 1.4 / m, and the propagation length was 28 Om.
  • the force was measured surface acoustic wave amplifier characteristics in the same manner as in Example 2 s, amplification was not observed.
  • the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate.
  • Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process.
  • the electrodes were regular electrodes with a pitch of 0.6 / m, and the propagation length was 240 / zm.
  • an electrode for applying a DC electric field was formed on the active layer.
  • the characteristics of the surface acoustic wave amplifier were measured.
  • the evaluation of the degree of amplification was performed in the same manner as in Example 1.
  • the amplification was 26 dB at a DC applied voltage of 3 V and a center frequency of 190 OMHz. This value is an extremely good amplification when used in the low-noise amplifier and band-pass filter of the high-frequency part of portable equipment.
  • the A 1 0. 5 Ga 0. 5 Sb as the buffer layer After growing it to 150 nm, and then growing InAs0.5Sb0.5 to 50 nm as an active layer, 2 nm of GaSb was grown as a protective layer to obtain a semiconductor layer.
  • the electron mobility was 20900 cm 2 ZVs.
  • the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate.
  • Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process.
  • the electrodes were regular electrodes with a pitch of 0.75, and the propagation length was 300 m.
  • an electrode for applying a DC electric field was formed on the active layer.
  • the characteristics of the surface acoustic wave amplifier were measured.
  • the evaluation of the amplification degree was performed in the same manner as in Example 1.
  • the amplification was 13 dB at a DC applied voltage of 3 V and a center frequency of 1530 MHz. This value is a good amplification factor when used for the low-noise amplifier and band-pass filter of the high-frequency part of portable equipment.
  • the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate.
  • Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process.
  • the electrodes were regular electrodes with a pitch of 0.75 m, and the propagation length was 300; m.
  • an electrode for applying a DC electric field was formed on the active layer.
  • the characteristics of the surface acoustic wave amplifier were measured.
  • the evaluation of the amplification degree was performed in the same manner as in Example 1.
  • the amplification was 6 dB at a DC applied voltage of 6 V and a center frequency of 1505 MHz. An amplification effect was obtained at a low voltage of 6V.
  • Comparative Example 2 is shown as a comparison with Example 4. After deposition of S i 0 2 10 nm on the 64 ° Y cutlet preparative L i Nb0 3 single crystal substrate having a diameter of 3 inches by MB E method, the I n A s 0.5 S b 0.5 as the active layer 5 0 nm After the growth, G 351) was grown 211111 as a protective layer. The electrical characteristics of this laminated film were measured. In this comparative example, the active layer InAs 0.5 Sb 0.5 was formed directly on the piezoelectric substrate, so the crystallinity of the active layer was poor and the electron transfer The degree was only 1200 cm 2 ZVs.
  • the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate.
  • Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process.
  • the electrodes were regular electrodes with a pitch of 0.75 m, and the propagation length was 300 / m.
  • the surface acoustic wave amplification characteristics were measured, but no amplification was observed.
  • the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate.
  • Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process.
  • the electrodes were regular electrodes with a pitch of 0.6, and the propagation length was 240 / m.
  • an electrode for applying a DC electric field was formed on the active layer.
  • Example 7 the characteristics of the surface acoustic wave amplifier were measured.
  • the evaluation of the amplification degree was performed in the same manner as in Example 1.
  • the amplification was 2 dB at a DC applied voltage of 6 V and a center frequency of 150 OMHz. An amplification effect was obtained at a low voltage of 6 V.
  • the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate.
  • Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process.
  • the electrodes were regular electrodes having a pitch of 1.4 / m, and the propagation length was 560 m.
  • an electrode for applying a DC electric field was formed on the active layer.
  • the characteristics of the surface acoustic wave amplifier were measured.
  • the evaluation of the amplification degree was performed in the same manner as in Example 1.
  • the amplification was 6 dB at a DC applied voltage of 5 V and a center frequency of 810 MHz. An amplification effect was obtained at a low voltage of 5 V.
  • the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate.
  • Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process.
  • the electrodes were regular electrodes with a pitch of 1.4 / m, and the propagation length was 560 / m.
  • an electrode for applying a DC electric field was formed on the active layer.
  • the characteristics of the surface acoustic wave amplifier were measured.
  • the evaluation of the amplification degree was the same as in Example 1. Was performed in the same manner.
  • the amplification was 3 dB at a DC applied voltage of 6 V and a center frequency of 835 MHz. An amplification effect was obtained at a low voltage of 6 V.
  • the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate.
  • Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process.
  • the electrodes were regular electrodes with a pitch of 0.75 / m, and the propagation length was 300 m.
  • an electrode for applying a DC electric field was formed on the active layer.
  • the characteristics of the surface acoustic wave amplifier were measured.
  • the evaluation of the amplification degree was performed in the same manner as in Example 1.
  • the amplification was 4 dB at a DC applied voltage of 6 V and a center frequency of 1560 MHz. An amplification effect was obtained at a low voltage of 6 V.
  • Comparative Example 3 is shown as a comparison with Example 7. After deposition of S i 0 2 10 nm on the 64 ° Y cut L i Nb 0 3 single crystal substrate having a diameter of 3 Inchi, by MB E method, after the I n A s as the active layer was 50 nm grown As a protective layer, 2 nm of GaSb was grown to obtain a semiconductor layer. The electrical characteristics of this semiconductor layer were measured. In this comparative example, the active layer InAs was formed directly on the piezoelectric substrate, so the crystallinity of the active layer was poor and the electron mobility was 900 cm 2 ZV s.
  • the semiconductor layer at a predetermined position is removed by etching to expose the piezoelectric substrate.
  • Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process.
  • the electrodes were regular electrodes with a pitch of 1.4, and the propagation length was 56 Om.
  • the semiconductor layer had an electron mobility of 700 cm 2 / Vs and a carrier concentration of 1 XI 0 16 cm ⁇ 3 .
  • Example 2 a surface acoustic wave amplifier was manufactured in the same manner as in Example 1.
  • the electrodes were regular electrodes with a pitch of 0.75, and the propagation length was 300 ⁇ m.
  • the amplification was 3 d 3 at a DC applied voltage of 5 V and a center frequency of 1500 1.
  • An amplification effect was obtained at a low voltage of 5 V.
  • the dielectric film such as S i 0, degradation of L i N b 0 3 degradation of the substrate and L i Nb 0 3 I n S b 3 ⁇ 414 layer due to oxygen diffusion from the substrate has failed observed. From the above results, it was confirmed that functions as a protective film of A 1 0.5 G a 0. 5 A s oj S b 0.9 buffer layer forces the piezoelectric substrate contact and the semiconductor active layer.
  • a surface acoustic wave amplifier whose sectional structure is shown in FIG. 9 was manufactured.
  • ID-Pt electrodes which are ID-shaped, are used as input / output electrodes 4 and 5 at regular positions on a 128-degree Y-cut L i NbO 3 single-crystal substrate 1 with a 3-inch diameter. Formed by a lithodaraphy process by light exposure. Electrodes 4 and -5 were regular electrodes with a pitch of 1.4 m, and the propagation length was 364. Then, the MB E method, A 10.38 I n 0 as a buffer layer 2 in a manner to embed the input and output interdigital transducers on said substrate. 6 2 S b was 0.99 nm growth, further I n S as an active layer 3 b was grown to 50 nm to obtain a semiconductor layer. The electron mobility of this semiconductor layer is 34000 cm 2 ZVs.
  • FIG. 9 shows a cross-sectional structure
  • a surface acoustic wave amplifier whose sectional structure is shown in FIG. 10 was manufactured.
  • an A1 comb-shaped electrode was formed by a normal lithography process so that the wavelength of the surface acoustic wave was 8 m. Then, when the electromechanical coupling constant was measured with a network analyzer, it showed a very large value of 20.0%.
  • a surface acoustic wave amplifier as shown in FIG. 10 was produced in the same manner as in Example 10.
  • an increase of 12 dB was confirmed at a DC applied voltage of 5 V and a center frequency of 1500 MHz. It was confirmed that the multi-layer piezoelectric substrate having an extremely large electromechanical coupling constant of this embodiment has an effect of improving the amplification degree by about four times in the surface acoustic wave amplifier as compared with the tenth embodiment.
  • the electromechanical coupling constant of the multilayer piezoelectric substrate of Example 12 was compared with the electromechanical coupling constant of the material constituting each layer and the two-layer piezoelectric substrate. Measurement of the electromechanical coupling constant of the material itself constituting the layers in the same manner as in Example 12, a single crystal (110) L i N b 0 3 is 4.7%, the single crystal (1 10) L i T a 0 3 was 0.68%.
  • the electromechanical coupling constant is significantly improved only when the multilayer piezoelectric substrate of the present invention has a three-layer structure.
  • the improvement is about four times, which leads to an improvement in the amplification of the surface acoustic wave amplifier.
  • Example 13 And growing a semiconductor layer in Example 1 0 the same manner as in 1 28 ° Y cutlet preparative L i Nb0 3 substrate. Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. On the surface of the piezoelectric substrate, an interdigitated A1-Cu / Cu / A1-1Cu laminated film electrode was formed by a lithography process as an input / output power-resistant electrode. The electrodes were regular electrodes with a pitch of 0.75 m, and the propagation length was 300 m. Subsequently, an electrode for applying a DC electric field was formed on the active layer.
  • the characteristics of the surface acoustic wave amplifier were evaluated by applying an RF signal from a signal generator (Anritsu MG3670A) and measuring the amplification and transmission power using a power meter and a power sensor (Yokokawa Hewlett Packard, 437B, 8481H).
  • the amplification factor is 22 dB at a DC applied voltage of 3 V and a center frequency of 152 OMHz, and the transmission power is 2.2 W.
  • the surface acoustic wave amplifier of this embodiment has good power for high-frequency parts such as mobile communication equipment. It can be used as an amplifier, and can greatly contribute to downsizing of equipment.
  • Example 1 0 similarly to 1 28 ° Y cutlet preparative L i Nb 0 3 substrate.
  • a force for processing the semiconductor layer so as to be between input / output electrodes to be formed later was simultaneously etched so as to separate the semiconductor layer into three as shown in FIG.
  • interdigital A1 electrodes were formed as input / output electrodes on the exposed surface of the piezoelectric substrate.
  • the electrode pitch and the propagation length are the same as in the tenth embodiment.
  • an electrode for applying a DC electric field was formed on each of the separated active layers.
  • the characteristics of the surface acoustic wave amplifier of this example were evaluated by applying a DC electric field to each active layer in parallel. As a result, the amplification was 8 dB at a DC applied voltage of 5 V and a center frequency of 1,500 MHz. It was confirmed that the amplification degree was improved about three times as compared with Example 10.
  • a surface acoustic wave convolver having a cross-sectional structure shown in FIG. 11 was manufactured.
  • the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate.
  • two input electrodes 4, 4 were formed by a lithography process.
  • extraction electrodes 19 were formed on the upper surface of the semiconductor layer and the lower surface of the piezoelectric substrate, respectively, to produce a surface acoustic wave convolver.
  • the amplification characteristics at a frequency of 1000 MHz were measured by a frequency analyzer, and a convolution output as a non-linear signal was obtained from the output electrode 19.
  • a frequency analyzer a frequency analyzer
  • a receiving circuit of an RF unit of a mobile phone was manufactured. No special circuit is provided between the surface acoustic wave amplifier and the mixer for impedance matching. Normally, only the surface acoustic wave amplifier was used in the part composed of the low-noise amplifier and the high-frequency bandpass filter.
  • the ⁇ / 4 QP SK modulated RF signal is supplied from the signal generator to the RF receiver circuit of the mobile phone fabricated as described above, and the IQ output signal after reception is received by a vector signal analyzer (Yokokawa Hewlett The demodulation error was measured using Parckard 89441 A).
  • the maximum error vector was 16% rms when the input signal strength was -10 to 102 dBm.
  • the noise figure and amplification of the surface acoustic wave amplifier were measured using a noise figure meter (Yokokawa Hewlett Parckard 8970B) and a noise source (Yokokawa Hewlett Packard 346B).
  • the noise figure is 2.5 dB and the amplification is 14 dB at 810 MHz, and the noise figure is 3 dB, the amplification is 12 dB at 826 MHz, and the noise figure is 1.8 dB at 815 MHz.
  • the degree was 16 dB. Also. Network attenuation characteristics outside the passband It was measured using an analyzer. The insertion loss was 35 dB at 94 OMHz and 40 dB at 956 MHz. From the above, it was confirmed that a receiving circuit using a surface acoustic wave amplifier instead of the low-noise amplifier and bandpass filter was possible. Further, by using the surface acoustic wave amplifier of the present embodiment, the high-frequency low-noise amplifier can be made monolithic, and the number of components of the receiving circuit can be reduced.
  • a transmitter circuit for the RF section of a mobile phone was fabricated.
  • the surface acoustic wave amplifier of the present invention is used for a component constituted by a power amplifier.
  • an RF signal subjected to rZ4 QP SK modulation was supplied from a signal generator, and the output signal was measured for demodulation error using a vector signal analyzer.
  • the magnitude of the error vector at a center frequency of 948 MHz was 5.5% rms.
  • the transmission power at this time was 2.2 W.
  • a transmission circuit of the RF section of the mobile phone similar to that in Example 17 was manufactured without using a bandpass filter.
  • the magnitude of the error vector at a center frequency of 948 MHz was 4.0% rms.
  • the transmission power at this time was 3.2 W, and it was confirmed that the transmission spectrum satisfied RCR STD-27. From the above results, a transmission circuit can be fabricated using a surface acoustic wave amplifier instead of the power amplifier module and bandpass filter of ⁇ ⁇ , and the power amplifier and bandpass filter can be made monolithic. That power was confirmed. [Example 19]
  • a surface acoustic wave amplifier with a pass band of 810 to 826 MHz is used in place of the low noise amplifier and bandpass filter in the receiving circuit, and a surface acoustic wave amplifier with a pass band of 940 to 956 MHz is used as the power amplifier in the transmitting circuit.
  • a transmission / reception circuit was fabricated using the filter instead of the bandpass filter.
  • the same surface acoustic wave amplifier as that of the embodiment 16 was used for the receiving unit, and the same surface acoustic wave amplifier as that of the embodiment 17 was used for the transmitting unit.
  • the antenna terminal and the transmission and reception circuits were connected by a microstrip line adjusted to have a characteristic impedance of 50 ohms without using a transmission / reception splitter.
  • the reception characteristics and transmission characteristics of the transmission / reception circuit thus manufactured were measured in the same manner as in Examples 16 and 17.
  • the maximum error vector was 18% rms when the input signal strength was 110 to 102 dBm. Also, there was no error in the demodulated data at this time.
  • the magnitude of the error vector at a center frequency of 948 MHz was 5.4% rms. At this time, the transmission power was 3.0 W, and it was confirmed that the transmission spectrum s' satisfied the RCR STD-27.
  • the surface acoustic wave was used as a substitute for the low noise amplifier and bandpass filter, as a substitute for the power amplifier module and bandpass filter, and as a substitute for the transmit / receive duplexer. It was confirmed that the circuit using the amplifier was usable. Therefore, the use of the transmission / reception circuit of the present embodiment enables a drastic reduction in the number of components in the RF section of conventional mobile communication devices, and dramatically reduces the size, weight, and cost of mobile device terminals. it can.
  • a typical size of a power amplifier module formed from a conventional GaAs FET or a capacitor is 2511111 1 2111111 3.7111111.
  • the surface acoustic wave amplifier of Example 17 has a size of 5 mm ⁇ 5 mm ⁇ 2 mm. As a result, the size of the conventional power amplifier can be significantly reduced.
  • the surface acoustic wave function element of the present invention By using the surface acoustic wave function element of the present invention, a significant improvement in the gain of the surface acoustic wave amplifier or an improvement in the efficiency of the surface acoustic wave convolver can be realized. Further, since the surface acoustic wave amplifier of the present invention can obtain a large amplification factor at a practically low voltage, it can be applied to a high-frequency unit such as a mobile communication device. Moreover,-amplifiers, bandpass filters, and transmission / reception duplexers, which have been used as discrete elements and were large in size, can be replaced with a single component. It can greatly contribute to weight reduction, thinning, and cost reduction.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

An elastic surface wave functional device comprises a piezoelectric substrate or a multi-layered piezoelectric substrate (1) having a large electromechanical coupling factor, an active layer (3) of a semiconductor layer having large mobility and formed on the substrate (1), and a buffer layer (2) lattice matching the active layer. Futher, an input electrode (4) and an output electrode (5) are formed on both sides of the semiconductor layer. This elastic surface wave functional device generates a large degree of amplification at a low voltage. A transmission reception circuit of a high-frequency unit of a mobile communication equipment using this elastic surface wave functional device is obtained, too.

Description

明 細 , 書 発 明 の 名 称 弾性表面波機能素子及びそれを用いた電子 II]路 技 術 分 野 本発明は、 圧電体基板を伝搬する弾性表面波と半導体中のキャリアとの相互 作用を行わせた弾性表面波増幅器および弾性表面波コンボルバ等の弾性表面波機 能素子およびこの機能素子を用いた移動体通信機器の送受信回路等の電子回路に 関するものである。 背 景 技 術 近年、 携帯電話等の移動体通信機器の小型化、 低電圧化、 低消費電力化に伴 い、 携帯機器内部に搭載される素子のモノリシック化が活発に検討されてきた。 ところ力、 高周波部分の素子のうち、 バンドパスフィルタや送受信分波器はその サイズが大きいために他の素子とのモノリシック化の効果はほとんどない。 また、 パワーアンプは、 モノリシック化することがきわめて難しい。 それ故、 送受信分 波器やパワーアンプ、 そしてバンドパスフィルタおよびそれより前に配置されて いる低雑音増幅器などはそれぞれ別々のディスクリート素子として開発され、 モ ジュール化されてきた。 これらのディスクリ一ト素子をモジュール化する際には、 複数部品を接続する配線やインピーダンスマッチングを取るための回路が形成さ れており、 ユニッ トとしても非常に大きなサイズになっていた。 一方、 弾性表面波を増幅させる研究はこれまでに様々な試みがなされてきた。 弾性表面波を増幅するためには、 圧電性のある 表面に弾性表面波を伝搬させ、 この波によって生じる電界と半導体中のキャリアを結合させればよいことが知ら れている。 実際の弾性表面波増幅器は、 弾性表面波を伝える圧電材料と半導体の 組み合わせによって直接型増幅器 (図 3 ) 、 分離型増幅器 (図 4 ) 、 モノリシッ ク型増幅器 (図 5 ) の 3つに分類される。 図 3に示すように、 第 1の直接型増幅 器は、 C d Sや G a A sのような圧電性と半導体性を同時にもつ基板 7の上に入 出力電極 4、 5を設け、 基板 7の両側に直流電界印加用電極 6を設けた構成を用 いて弾性表面波を增幅させる構造の増幅器である。 しかし、 大きな圧電性と大き な移動度を同時にもった圧電性半導体は現在のところ見つかっていない。 図 4に 示すように、 第 2の分離型増幅器は、 大きな圧電性をもった圧電体基板 1の上に、 移動度の大きな半導体層 3 'が空隙 8を介して配置し、 該圧電体基板 1の上に入出 力電極 4、 5を設け、 該半導体層 3 'の両側に直流電界印加用電極 6を設けた構造 の増幅器である。 この型の増幅器は、 半導体と圧電体基板の表面の平坦性と空隙 の大きさ力、'増幅度に大きく影響する。 実用に耐える増幅度を得るためには、 空隙 をできるだけ小さく し、 しかも動作領域にわたって一定に保つ必要があり、 工業 的な生産は極めて難しい。 一方、 図 5に示す第 3のモノリシック型増幅器は、 圧 電体基板 1の上に半導体層 3 'を誘電体膜 9を介して空隙を持たずに形成し、 該圧 電体基板 1上に入出力電極 4、 5を設け、 該半導体層 3 'の両側面に直流電界印加 用電極 6を設けた構造の増幅器である。 モノリシック型増幅器は高利得が得られ、 高周波化も可能であり、 大量生産にも向いていると言われている。 ただし、 これ らの弾性表面波増幅器を携帯電話などの移動体通信機器への応用を検討した例は ない。 Name of specification and invention Surface acoustic wave functional element and electronic device using the same II] Technical field The present invention relates to the interaction between a surface acoustic wave propagating through a piezoelectric substrate and a carrier in a semiconductor. The present invention relates to a surface acoustic wave functional element such as a surface acoustic wave amplifier and a surface acoustic wave convolver, and an electronic circuit such as a transmission / reception circuit of a mobile communication device using the functional element. 2. Description of the Related Art In recent years, as mobile communication devices such as mobile phones have become smaller, lower in voltage and lower in power consumption, monolithic devices mounted inside the mobile devices have been actively studied. However, among the high-frequency components, band-pass filters and transmission / reception duplexers have a large size, so there is almost no effect of monolithic integration with other components. Also, it is extremely difficult to make a power amplifier monolithic. Therefore, transmission / reception duplexers, power amplifiers, bandpass filters, and low-noise amplifiers placed before them have been developed and modularized as separate discrete elements. When these discrete elements are modularized, wiring for connecting a plurality of components and circuits for impedance matching are formed, and the unit has a very large size. On the other hand, there have been various attempts to amplify surface acoustic waves. It is known that a surface acoustic wave can be amplified by propagating the surface acoustic wave on a piezoelectric surface and coupling an electric field generated by the wave with a carrier in a semiconductor. Actual surface acoustic wave amplifiers are classified into three types: direct amplifiers (Fig. 3), separated amplifiers (Fig. 4), and monolithic amplifiers (Fig. 5), based on the combination of piezoelectric materials and semiconductors that transmit surface acoustic waves. You. As shown in FIG. 3, the first direct-type amplifier is provided with input / output electrodes 4 and 5 on a substrate 7 having both piezoelectricity and semiconductivity, such as CdS and GaAs. This is an amplifier having a structure in which a surface acoustic wave is amplified by using a configuration in which DC electric field application electrodes 6 are provided on both sides of 7. However, a piezoelectric semiconductor having both large piezoelectricity and large mobility has not been found so far. As shown in FIG. 4, the second separation type amplifier has a semiconductor layer 3 ′ having a high mobility disposed on a piezoelectric substrate 1 having a large piezoelectric property via a gap 8. This is an amplifier having a structure in which input / output electrodes 4 and 5 are provided on 1 and DC electric field application electrodes 6 are provided on both sides of the semiconductor layer 3 ′. This type of amplifier greatly affects the flatness of the surface of the semiconductor and the piezoelectric substrate, the size of the gap, and the degree of amplification. In order to obtain a practically usable amplification degree, the air gap must be kept as small as possible, and it must be kept constant over the entire operating range, which makes industrial production extremely difficult. On the other hand, in the third monolithic amplifier shown in FIG. 5, a semiconductor layer 3 ′ is formed on the piezoelectric substrate 1 via the dielectric film 9 without any gap, and the semiconductor layer 3 ′ is formed on the piezoelectric substrate 1. The amplifier has a structure in which input / output electrodes 4 and 5 are provided, and DC electric field application electrodes 6 are provided on both side surfaces of the semiconductor layer 3 ′. It is said that monolithic amplifiers can achieve high gain, can operate at high frequencies, and are suitable for mass production. However, there is no example of studying the application of these surface acoustic wave amplifiers to mobile communication devices such as mobile phones.
しかしな力 sら、 モノリシック型増幅器を実現するためには、 圧電体基板の上 に良好な電気特性を有する半導^ ^を形成させ、 しかも弾性表面波と半導体のキヤ リアとの相互作用を効率よく行わせるために、 該半導体膜を薄膜化させる必要が ある。 1970年代の東北大 ·山之内らの研究 (Yamanouchi K:., et. al., Proceedings of the ffiEE, 75, P726 (1975 )) によれば、 L i N b 03基板上に S i 0を 30 n m コートし、 その上に I n S b薄膜 50 nmを蒸着した構造で、 I n S bの電子移 動度として 1600 cm2ZV sが得られ、 この膜を使った弾性表面波の増幅器 では 1100 Vの直流電圧を印加し、 中心周波数 195MH zで正味利得 40 d Bの増幅度が得られた。 また、 彼らは理論的計算から、 50nmという薄い I n S b薄膜においては、 キャリアの表面散乱により電子移動度は 3000 cm2/ V sが最大であると予測していた (山之内ら、 信学技報、 US 78— 17、 CP M78— 26, P 19 (1978) ) 。 即ち、 モノリシック型増幅器には、 圧電 体基板の上に良好な電気特性を持った薄膜の半導体層を形成することが極めて困 難であるという問題点があった。 また、 これまでの構造では、 L iNb03基板 からの酸素の拡散による I nSbの劣化および L i Nb03基板表面の劣化を防 ぐために S i〇などの誘電体膜が必要であった。 さらに、 携帯機器の高周波部の 増幅器とバンドバスフィルタの機能として弾性表面波増幅器を用いる場合には、 3〜 6 Vの駆動電圧で増幅効果がなければ使用できない。 従来のモノリシック型 増幅器では、 大電圧が必要であり、 低電圧駆動が可能な弾性表面波増幅器は存在 していなかった。 また、 弾性表面波増幅器と同様に弾性表面波と電子の相互作用 を利用した弾性表面波コンボルバについても利得力 s '不十分という問題があった。 However, in order to realize a monolithic amplifier, a semiconductor with good electrical characteristics is formed on a piezoelectric substrate, and furthermore, a surface acoustic wave and a semiconductor carrier are formed. In order to efficiently interact with the rear, it is necessary to reduce the thickness of the semiconductor film. A study in the 1970s of Tohoku University Yamanouchi et al. (Yamanouchi K:..., Et al, Proceedings of the ffiEE, 75, P726 (1975)) According to the, the L i N b 0 3 S i 0 on the substrate A structure in which an InSb thin film of 50 nm is deposited on top of a 30 nm coating, and a 1600 cm 2 ZVs electron mobility of InSb is obtained. In the test, a DC voltage of 1100 V was applied, and a gain of 40 dB was obtained at a center frequency of 195 MHz. They also predicted from theoretical calculations that in a thin InSb thin film of 50 nm, the electron mobility was 3000 cm 2 / Vs due to carrier surface scattering (Yamanouchi et al., IEICE Technical Report, US 78-17, CP M78-26, P19 (1978)). That is, the monolithic amplifier has a problem that it is extremely difficult to form a thin-film semiconductor layer having good electric characteristics on a piezoelectric substrate. Further, in the structure so far, a dielectric film such as S I_〇 was required explosion Gutame deterioration of degradation and L i Nb0 3 substrate surface I NSB by oxygen diffusion from the L iNb0 3 substrate. Furthermore, when a surface acoustic wave amplifier is used as the function of the amplifier and the bandpass filter in the high-frequency part of a portable device, it cannot be used unless the drive voltage of 3 to 6 V has an amplification effect. Conventional monolithic amplifiers require large voltages, and no surface acoustic wave amplifiers capable of low-voltage driving existed. In addition, similarly to the surface acoustic wave amplifier, the surface acoustic wave convolver using the interaction between surface acoustic waves and electrons also has a problem that the gain force s ' is insufficient.
一般に弾性表面波増幅器の増幅度 Gは次式で与えられる。  Generally, the gain G of a surface acoustic wave amplifier is given by the following equation.
G = AJC2^-( B-V) G = AJC 2 ^-(BV)
ah  ah
ここで、 A:定数、 k 2 :圧電体基板の電気機械結合定数、 ε ρ :圧電体基板の 等価誘電率、 σ :導電率、 h :活性層の膜厚、 μ :電子移動度、 Ε :印加電界、 v :表面波の速度、 である。 実用レベルの低電圧で大きな増幅度を得るためには、 1 ) できるだけ薄い膜厚で高い電子移動度の半導体層を形成する、 2 ) k 2ので きるだけ大きな圧電体基板を用いる、 ことである。 Here, A: constant, k 2 : electromechanical coupling constant of the piezoelectric substrate, ε ρ: equivalent dielectric constant of the piezoelectric substrate, σ: conductivity, h: film thickness of the active layer, μ: electron mobility, Ε : Applied electric field, v: The velocity of the surface wave. In order to obtain a large amplification degree at a practical level of low voltage, 1) is formed as thin as possible semiconductor layer of high electron mobility in thickness, 2) k 2 using only the large piezoelectric substrate possible to the is that .
そこで、 発明者らが鋭意検討を行った結果、 圧電体基板と活性層の間に緩衝 層をはさむことにより、 薄膜でしかも電気特性の良好な活性層が得られることを 見いだした。 また、 圧電体基板として 3層以上の多層圧電体薄膜基板を用いるこ とにより、 バルクよりはるかに大きな k 2が実現できることを見いだした。 さら に該半導体層や該圧電体薄膜基板を用いて弾性表面波増幅器を作製し、 実用的な 低電圧で良好な増幅度が得られることを確認し、 本発明を完成した。 しかも、 本 発明の圧電体基板と活性層の間に緩衝層をはさんだ半導体層により、 活性層の電 子移動度として 5 0 0 0 c m 2 ZV s以上を実現した。 即ち、 本発明は、 圧電体 基板の上に、 入力用電極と出力用電極と、 該入出力電極の間に半導体層を有し、 前記半導体層が活性層と該活性層に格子整合する緩衝層より成ることを特徴とす る弾性表面波機能素子である。 ここで、 活性層というのは、 伝搬してきた弾性表 面波を半導体中のキヤリァのエネルギーによって励振させる層をいう。 Therefore, as a result of diligent studies, the inventors have found that an active layer having a thin film and excellent electric characteristics can be obtained by inserting a buffer layer between the piezoelectric substrate and the active layer. In addition, we have found that by using a multilayer piezoelectric thin film substrate with three or more layers as the piezoelectric substrate, it is possible to realize k 2 which is much larger than that of bulk. Furthermore, a surface acoustic wave amplifier was manufactured using the semiconductor layer and the piezoelectric thin film substrate, and it was confirmed that a good amplification factor could be obtained at a practically low voltage. Thus, the present invention was completed. Moreover, the semiconductor layer having a buffer layer interposed between the piezoelectric substrate and the active layer of the present invention achieves an electron mobility of 500 cm 2 ZVs or more in the active layer. That is, the present invention provides an input electrode, an output electrode, and a semiconductor layer between the input and output electrodes on a piezoelectric substrate, wherein the semiconductor layer lattice-matches the active layer with the active layer. This is a surface acoustic wave functional element characterized by comprising a layer. Here, the active layer is a layer that excites the propagated surface acoustic wave by the energy of a carrier in a semiconductor.
本発明において活性層のきわめて良好な電気特性を薄膜において実現できた のは、 圧電体基板と活性層の間に緩衝層を挿入することにより、 活性層の結晶性 を向上させることができたことによる。 さらに、 活性層を構成している結晶の格 子定数と緩衝層を構成している結晶の格子定数を一致、 もしくは近い値とするこ とにより、 活性層の結晶性はさらに向上させることができ、 薄膜でも該活性層の 電気特性が飛躍的に向上することを見い出した。 さらに、 本発明の緩衝層として、 S bを含有する化合物半導体を用いることにより、 さらに良好な電気特性が得ら れることを見い出した。 また、 本発明の緩衝層は、 高抵抗でかつ該緩衝層の中で の弾性表面波の減衰が小さいという特徴がある。 そして、 本発明の緩衝層は、 圧 電体基板上に S i 0などの誘電体膜がなくても、 圧電体基板からの酸素による活 性層の劣化を防止でき、 また低温で成長できるため、 圧電体基板も劣化させない という優れた特徴を有している。 In the present invention, the very good electrical characteristics of the active layer were realized in the thin film because the crystallinity of the active layer could be improved by inserting a buffer layer between the piezoelectric substrate and the active layer. by. Furthermore, the crystallinity of the active layer can be further improved by making the lattice constant of the crystal constituting the active layer coincide with or close to the lattice constant of the crystal constituting the buffer layer. However, it has been found that the electrical characteristics of the active layer are dramatically improved even with a thin film. Furthermore, it has been found that even better electrical characteristics can be obtained by using a compound semiconductor containing Sb as the buffer layer of the present invention. Further, the buffer layer of the present invention is characterized in that it has a high resistance and the attenuation of surface acoustic waves in the buffer layer is small. The buffer layer of the present invention can be activated by oxygen from the piezoelectric substrate even if there is no dielectric film such as SiO on the piezoelectric substrate. It has an excellent feature that it can prevent the deterioration of the conductive layer and can be grown at a low temperature, so that the piezoelectric substrate does not deteriorate.
本発明の圧電体薄膜基板は、 圧電体基板上に少なくとも 2種以上の異なった 電気機械結合定数を有する 3層以上の多層圧電体より成り、 該多層圧電体の多層 の中心部の圧電体膜か *最も大きい電気機械結合定数を有して ることにより、 効 率的に表面に弾性表面波のエネルギー力 s集中しやすくなり、 それぞれの層を構成 する圧電体単独の電気機械結合定数よりはるかに大きな電気機械結合定数を実現 できる。  The piezoelectric thin film substrate of the present invention is composed of three or more multilayer piezoelectric materials having at least two or more different electromechanical coupling constants on the piezoelectric substrate, and a piezoelectric film at the center of the multilayer of the multilayer piezoelectric material. Or * Having the largest electromechanical coupling constant makes it easier to efficiently concentrate surface acoustic wave energy s on the surface, far exceeding the electromechanical coupling constant of the piezoelectric material that constitutes each layer. A large electromechanical coupling constant can be realized.
本発明の半導体層を用いた弾性表面波増幅器において、 携帯機器などに使用 できる実用的な低電圧ではじめて増幅効果を得ることができた。 また、 本発明の 多層圧電体により、 さらに大きな増幅度が実現できた。  In the surface acoustic wave amplifier using the semiconductor layer of the present invention, an amplification effect was obtained only at a practically low voltage that can be used for portable equipment and the like. Further, with the multilayer piezoelectric body of the present invention, a higher amplification degree was realized.
さらに、 本発明の弾性表面波コンボルバについても、 半導体層の高電子移動 度化により、 電子とコンボリューシヨンされた表面波の相互作用が強くなり、 従 来構造より大きな利得が得られた。  Further, in the surface acoustic wave convolver of the present invention, the interaction between the electrons and the convolved surface wave was enhanced by increasing the electron mobility of the semiconductor layer, and a larger gain was obtained than in the conventional structure.
さらに本発明の実用的な低電圧で大きな増幅度を有する弾性表面波機能素子 を移動体通信機器等のバンドバスフィルタおよび低雑音増幅器、 あるいはバンド パスフィルタおよびパワーアンプ、 あるいはバンドパスフィルタおよび増幅器お よび送受信分波器のデバイスとして用いれば、 移動体通信機器の小型化、 薄型化、 軽量化に絶大な効果を発揮できる。 故に、 このような携帯電話、 およびコ一ドレ ス電話等の移動体通信機器の送受信回路において、 増幅器およびバンドバスフィ ルタ、 または増幅器およびバンドパスフィルタおよび送受信分波器として、 高増 幅度の弾性表面波機能素子が構成されていることを特徴とする移動体通信機器送 信または受信回路も本発明の範囲内である。  Further, the surface acoustic wave functional element having a large amplification degree at a practical low voltage according to the present invention may be used as a band-pass filter and a low-noise amplifier for a mobile communication device, or a band-pass filter and a power amplifier, or a band-pass filter and an amplifier and If it is used as a device for transmission / reception duplexers, it can exert a tremendous effect on miniaturization, thickness reduction, and weight reduction of mobile communication equipment. Therefore, in such transmission and reception circuits of mobile communication devices such as mobile phones and cordless phones, high-amplification elasticity is used as an amplifier and a bandpass filter, or as an amplifier and a bandpass filter and a transmission / reception duplexer. A transmission or reception circuit for a mobile communication device, which is configured by a surface acoustic wave functional element, is also included in the scope of the present invention.
以下に本発明をさらに詳細に説明する。 図 1が本発明の基本となる弾性表面 波機能素子である。 図 1 Aが弾性表面波機能素子の断面図であり、 図 1 B力弾性 表面波機能素子の斜視図である。 1力 s圧電体基板、 2が緩衝層、 3が活性層、 4 が入力用電極、 5が出力用電極である。 Hereinafter, the present invention will be described in more detail. FIG. 1 shows a surface acoustic wave functional element that is the basis of the present invention. Figure 1A is a cross-sectional view of a surface acoustic wave functional element, and Figure 1B It is a perspective view of a surface acoustic wave functional element. 1 power s piezoelectric substrate, 2 is a buffer layer, 3 an active layer, 4 is an input electrode, 5 is an output electrode.
本発明によれば、 圧電体基板 1上に間隔をあけて入力電極 4と出力電極 5が 配置され、 これら入出力電極 4、 5の間に緩衝層 2を介して活性層 3が設けられ ている。 - 本発明における圧電体 ¾¾1は、 圧電体単結晶でも圧電体薄膜基板でもよレ、。 圧電体単結晶基板は酸化物系圧電体基板が好ましく、 例えば、 L iNb03、 L i Ta03や L i 2 B 47等力 5好ましく用いられる。 また、 64° Yカッ ト、 4 1° Yカット、 128° Yカッ ト、 Yカッ トの L i Nb03や 36° Yカッ トの L i Ta03などの基板カツ ト面を用いることも好ましい。 圧電体薄膜基板は、 サファイアや S i等の単結晶基板の上に圧電体薄膜が形成されたものであり、 圧 電体薄膜として例えば、 ZnO、 L i NbO3、 L i Ta03、 PZT、 PbT i 03、 BaT i 03や L i 2 B 407などは好ましく用いられる薄酣料である。 また、 S i基板と上記圧電体薄膜との間に S i 0や S i 02などの誘電体膜が揷 入されていてもよい。 さらに圧電体薄膜基板として、 サファイアや S i等の単結 晶基板の上に、 上記圧電体薄膜の異なる種類の薄膜が交互に積み重ねられたよう な多層積層膜を形成していてもよい。 According to the present invention, the input electrode 4 and the output electrode 5 are arranged on the piezoelectric substrate 1 at intervals, and the active layer 3 is provided between the input / output electrodes 4 and 5 via the buffer layer 2. I have. -The piezoelectric body 1 according to the present invention may be a piezoelectric single crystal or a piezoelectric thin film substrate. Piezoelectric single crystal substrate is preferably an oxide-based piezoelectric substrate, for example, L iNb0 3, L i Ta0 3 or L i 2 B 47 Hitoshiryoku 5 is preferably used. Further, 64 ° Y cut, 4 1 ° Y-cut, 128 ° Y cut, it is also preferable to use a substrate cutlet up surface such as a Y cut of L i Nb0 3 and 36 ° Y cut of L i Ta0 3 . Piezoelectric thin film substrate, which piezoelectric film is formed on a single crystal substrate such as sapphire or S i, for example as a pressure-collecting thin film, ZnO, L i NbO 3, L i Ta0 3, PZT, such PbT i 0 3, BaT i 0 3 or L i 2 B 4 0 7 is preferably thin Takenawa charges used. The dielectric film such as S i 0 and S i 0 2 may be揷enter between the S i substrate and the piezoelectric thin film. Further, as the piezoelectric thin film substrate, a multilayer laminated film in which thin films of different types of the above piezoelectric thin films are alternately stacked may be formed on a single crystal substrate such as sapphire or Si.
本発明の圧電体基板 1として、 少なくとも 2種以上の異なった電気機械結合 定数を有する 3層以上の多層圧電体より成り、 該多層圧電体の多層の中心部の圧 電体膜が最も大きな電気機械結合定数の圧電体膜であることを特徵とする圧電体 基板を用いれば、 きわめて大きな電気機械結合定数を実現できる。  The piezoelectric substrate 1 of the present invention is composed of three or more multilayer piezoelectric materials having at least two or more kinds of different electromechanical coupling constants, and the piezoelectric film at the center of the multilayer of the multilayer piezoelectric material has the largest electrical conductivity. An extremely large electromechanical coupling constant can be realized by using a piezoelectric substrate characterized by being a piezoelectric film having a mechanical coupling constant.
前記多層圧電体基板について、 図 2を参照して、 3層構造の例を以下に詳細 に説明する。 本発明の多層圧電体基板 20は、 圧電体基板 21の上に第 1圧電体 膜 22があり、 さらにその上に第 2圧電体膜 23がある構造である。 圧電体基板 21は上述の圧電体基板 1と同じものを用いることができる。 ただし、 次の条件 を満たす必要がある。 それぞれ圧電体基板 21、 第 1圧電体膜 22および第 2圧 電体膜 23の電気機械結合定数を順に、 1^、 1^ 1ぉょび1?2とし、 さらに圧電体 基板 21、 第 1圧電体膜 22および第 2圧電体膜 23のレーリ ー波の速度を順に V, Viおよび V2とする。 さらに該第 1圧電体膜 22の膜厚を h i、 該第 2圧電 体膜 23の膜厚を h 2とする。 ここで、 k 1は kおよび k 2よ-り大きいことが必要 であり、 好ましくは 1.2倍以上であり、 より好ましくは 2倍以上である。 さらに、 k が kおよび k 2より大きく、 かつ、 V iが Vおよび V 2より大きいとき、 より 大きな電気機械結合定数が得られる。 V;!が Vおよび V2より、 l O OmZs以 上大きいことが好ましく、 25 OmZs以上大きいとさらに好ましい。 また、 h iは通常、 30 nm以上 2 O/ m以下の範囲であり、 より好ましくは、 80nm 以上 5 以下であり、 さらに好ましくは、 100 nm以上 2 以下である。 通常、 h 2は 0.1以上 500以下であり、 好ましくは 0.15以上 50以下 であり、 さらに好ましくは 0.5以上 21以下である。 また、 弾性表面波の波長を スとしたとき、 通常は、 h スが 1以下かつ h 2 /スカ? 1以下であり、 好まし くは、 h スが 0.5以下かつ h 2 スが 0.4以下、 より好ましくは、 h j/zl が 0.25以下かつ h 2 スが 0.25以下である。 An example of a three-layer structure of the multilayer piezoelectric substrate will be described below in detail with reference to FIG. The multilayer piezoelectric substrate 20 of the present invention has a structure in which a first piezoelectric film 22 is provided on a piezoelectric substrate 21 and a second piezoelectric film 23 is provided thereon. As the piezoelectric substrate 21, the same substrate as the above-mentioned piezoelectric substrate 1 can be used. However, the following conditions Needs to be satisfied. Each piezoelectric substrate 21, the electromechanical coupling constant of the first piezoelectric film 22 and the second pressure collector layer 23 in order, 1 ^, 1 ^ 1 Oyobi 1? 2, and further the piezoelectric substrate 21, a first turn V, and Vi and V 2 the speed of the Rayleigh over wave of the piezoelectric film 22 and the second piezoelectric film 23. Further hi the thickness of the first piezoelectric film 22, the thickness of the second piezoelectric film 23 and h 2. Here, k 1 needs to be larger than k and k 2 , preferably 1.2 times or more, and more preferably 2 times or more. Furthermore, when k is greater than k and k 2 and V i is greater than V and V 2, a larger electromechanical coupling constant is obtained. V ;! Is preferably larger than V and V 2 by 10 OmZs or more, more preferably 25 OmZs or more. Hi is usually in the range of 30 nm or more and 2 O / m or less, more preferably 80 nm or more and 5 or less, and even more preferably 100 nm or more and 2 or less. Usually, h2 is 0.1 or more and 500 or less, preferably 0.15 or more and 50 or less, and more preferably 0.5 or more and 21 or less. Also, if the wavelength of the surface acoustic wave is s, usually h is less than 1 and h 2 / ska? 1 or less, preferably, h is 0.5 or less and h 2 is 0.4 or less, and more preferably, hj / zl is 0.25 or less and h 2 is 0.25 or less.
本発明の電気機械結合定数の大きな多層圧電体基板 20は、 弾性表面波増幅 器や弾性表面波コンボルバだけではなく、 弾性表面波フィルタゃ弾性表面波共振 器などの弾性表面波素子の特性向上にも極めて好ましく用いられる。  The multilayer piezoelectric substrate 20 having a large electromechanical coupling constant according to the present invention can be used not only for a surface acoustic wave amplifier and a surface acoustic wave convolver but also for improving the characteristics of surface acoustic wave devices such as a surface acoustic wave filter and a surface acoustic wave resonator. Is also very preferably used.
本発明の半導体層を構成している活性層は、 電子移動度が大きいものが好ま しく用いられる。 活性層として、 例えば、 GaAs、 I nSb、 I nAs、 P b T eなどが好ましい例である。 また 2元系だけでなく、 これら 2元系を組み合わ せた 3元混晶ゃ 4元混晶も好ましく用いられる。 例えば、 I n XG a丄 — x A s、 I nAs ySb i_y> I nzGa i— zSbなど力 3元混晶、 I njjGa i-xA s y S bェ _yなどが 4元混晶の例である。 これらの活性層の中でも、 I nを含ん だ I nAsや I n S b、 I nAs S b、 I nGa S b、 I nG aAs S bなど力 s 非常に高い電子移動度を有しているため、 より好ましく用いられる。 また、 活性 層は、 異なる組成の半導体膜が積層された多層積層膜が形成されていてもよい。 活性層の電子移動度は弾性表面波増幅器の増幅度を大きくするために 5000 c m2ZV s以上が好ましく、 極めて良好な増幅度を得るためには 1 0000 cm 2ZV s以上の電子移動度を有していることがより好ましい。 この高電子移動度 を得るために、 活性層の組成として、 I n XG a sの Xは、 0≤χ^ 1. 0が可能だが、 0.5≤x 1.0が好ましく、 0.8≤x≤ 1.0がより好ましい範 囲である。 I nA s yS b の yは、 0≤ y≤ 1.0の範囲で高電子移動度が 可能であり、 0.5≤ y≤ 1.0がより好ましい。 I n z G a — z S bの zは、 0. 5≤z≤ 1.0が好ましく、 0.8≤z≤ 1.0がより好ましい範囲である。 As the active layer constituting the semiconductor layer of the present invention, one having high electron mobility is preferably used. Preferred examples of the active layer include GaAs, InSb, InAs, and PbTe. Further, not only binary systems but also ternary mixed crystals / quaternary mixed crystals combining these binary systems are preferably used. For example, I n X G a丄 - x A s, I nAs y Sb i_y> I nzGa i- z Sb such force ternary mixed crystal, I njjGa i-xA s y S b E _ y like are quaternary mixed crystal This is an example. Among these active layers, including In I I NAS and I n S b, because it has I nAs S b, I nGa S b, I nG aAs S b such force s very high electron mobility, is more preferably used. Further, the active layer may be formed as a multilayer laminated film in which semiconductor films having different compositions are laminated. The electron mobility of the active layer is preferably 5000 cm 2 ZVs or more in order to increase the amplification of the surface acoustic wave amplifier.To obtain an extremely good amplification, the electron mobility of 10,000 cm 2 ZVs or more is preferable. It is more preferred to have. In order to obtain this high electron mobility, as the composition of the active layer, X of In X Gas can be 0≤χ ^ 1.0, but 0.5≤x 1.0 is preferable, and 0.8≤x≤1.0 is more preferable. This is a preferred range. Y of I nA s yS b can have high electron mobility in the range of 0≤y≤1.0, and more preferably 0.5≤y≤1.0. Z of InzG a —z S b is preferably 0.5 ≦ z ≦ 1.0, and more preferably 0.8 ≦ z ≦ 1.0.
また、 活性層の膜厚 hについては、 hが 5 nm以下になると活性層の結晶性 力 s悪くなり、 高い電子移動度が得られない。 また、 逆に hが 500 nm以上にな ると活性層が低抵抗化すると同時に、 弾性表面波とキヤリァの相互作用効率が低 下してしまう。 即ち、 高電子移動度を実現し、 弾性表面波とキャリアとの相互作 用を効率よく行うために、 活性層の膜厚 hは、 5 nm≤h≤ 500 nmである必 要があり、 好ましくは、 10 nm≤h≤ 350 nmであり、 より好ましくは 1 2 nm≤h≤200 nmの範囲である。 さらに、 活性層の面抵抗値は、 1 0Ω以上 力5'好ましく、 より好ましくは 50 Ω以上であり、 さらに好ましくは 1 00Ω以上 あ 。 When the thickness h of the active layer is 5 nm or less, the crystallinity of the active layer s is deteriorated, and high electron mobility cannot be obtained. On the other hand, when h exceeds 500 nm, the active layer has a low resistance, and the interaction efficiency between the surface acoustic wave and the carrier decreases. That is, in order to realize high electron mobility and efficiently perform the interaction between the surface acoustic wave and the carrier, the thickness h of the active layer needs to be 5 nm≤h≤500 nm, which is preferable. Is in the range of 10 nm≤h≤350 nm, and more preferably in the range of 12 nm≤h≤200 nm. Further, the surface resistance of the active layer, or the force 5 'preferably 1 0 .OMEGA, more preferably not less than 50 Omega, more preferably Ah least 1 00Ω.
本発明における圧電体基板の上に形成される緩衝層は絶縁性もしくは半絶縁 性であるのが好ましいが、 これらに準じた高い皿値を有するものであればよい。 例えば、 緩衝層の抵抗値が活性層の少なく とも 5〜10倍以上高く、 好ましくは 1 00倍以上、 より好ましくは 1000倍以上高いものであればよい。  The buffer layer formed on the piezoelectric substrate in the present invention is preferably insulative or semi-insulating, but any material having a high plate value according to these may be used. For example, the resistance value of the buffer layer may be at least 5 to 10 times higher than that of the active layer, preferably 100 times or more, more preferably 1000 times or more.
高抵抗な緩衝層として、 例えば、 G a S b、 A l S b、 Z nTeや C dT e などの 2元系、 A I G a S b、 A l A s S b、 G aAs S b、 A l l n S bなど の 3元系、 A I G aAs Sb、 A 1 I nG a S b、 A 1 I nAs S b、 A 1 I n P S bや A 1 G a P S bなどの 4元系が好ましい例である。 また、 これらの緩衝 層の組成を決める際に、 活性層を構成している結晶の格子定数と同じか、 もしく は近い値を有する組成に調整することで、 活性層のより大きな電子移動度を実現 できる。 ここで格子定数が近いというのは、 活性層を構成する結晶の格子定数と 緩衝層を構成する結晶の格子定数との違いが土 7 %以下、 より好ましくは士 5 % 以下、 さらに好ましくは ±2%以下をいう。 As a high resistance buffer layer, for example, G a S b, A l S b, Z nTe or C dT e Ternary system such as AIG a Sb, AlAs Sb, GaAs Sb, Alln Sb, etc., AIG aAs Sb, A1 InGaSb, A1 InAs S b, quaternary systems such as A1InPSb and A1GaPSb are preferred examples. Also, when determining the composition of these buffer layers, by adjusting the composition to have a value equal to or close to the lattice constant of the crystal constituting the active layer, a larger electron mobility of the active layer can be obtained. Can be realized. Here, the close lattice constant means that the difference between the lattice constant of the crystal forming the active layer and the lattice constant of the crystal forming the buffer layer is 7% or less, preferably 5% or less, more preferably ± 5%. It means 2% or less.
また、 実際に圧電体基板 1の上に、 緩衝層 2を形成する工程において、 特に S b含有の緩衝層 2は格子緩和がきわめて速く、 圧電体基板 1との格子不整が大 きくても緩衝層 2の超薄膜を成長するだけで格子乱れは緩和し、 緩衝層 2を構成 している結晶独自の格子定数で成長をはじめる。 そして活性層 3を成長する直前 には、 緩衝層 2の表面状態はきわめて良好となり、 その上に形成される活性層 3 の結晶性を大きく向上させることができる。 故に S bを含んだ化合物半導体は、 緩衝層 2として特に好ましく用いられる。  In addition, in the step of actually forming the buffer layer 2 on the piezoelectric substrate 1, particularly, the buffer layer 2 containing Sb has a very fast lattice relaxation, so that even if the lattice irregularity with the piezoelectric substrate 1 is large, the buffer layer can be buffered. Lattice disorder is alleviated only by growing an ultra-thin film of layer 2, and growth begins with the unique lattice constant of the crystal constituting buffer layer 2. Immediately before the growth of the active layer 3, the surface condition of the buffer layer 2 becomes extremely good, and the crystallinity of the active layer 3 formed thereon can be greatly improved. Therefore, a compound semiconductor containing Sb is particularly preferably used as the buffer layer 2.
緩衝層 2の膜厚は、 結晶性の面から見れば厚いほど良いが、 弾性表面波とキヤ リアの相互作用のしゃすさの面から見ると薄いほど好ましい。 即ち、 緩衝層 2の 膜厚 h3は、 1 0 nm≤h 3≤ 1 000 nmが好ましく、 20 nm≤h 3 500 nmがより好ましい範囲である。 The thickness of the buffer layer 2 is better as it is thicker from the viewpoint of crystallinity, but is more preferable as it is thinner from the viewpoint of the interaction between the surface acoustic wave and the carrier. That is, the film thickness h 3 of the buffer layer 2 is preferably 1 0 nm≤h 3 ≤ 1 000 nm , a more preferable range is 20 nm≤h 3 500 nm.
さらに、 本発明の緩衝層 2は、 低温で成長できるため、 圧電体基板 1が酸素 抜けなどによって劣化することもなく、 また、 緩衝層 2の上に形成される活性層 3に対しても圧電体基板 1からの酸素抜けなどによる劣化を防止でき、 圧電体基 板 1および活性層 3の保護層として機能させることも大きな特徵である。 よって 従来から用いられてきた S i 0や S i 02などの誘電体膜による保護層力 s '不要に なる。 しかし、 圧電体基板 1と緩衝層 2との間に誘電体膜が挿入されていても問題 はない。 誘電体膜としては、 例えば、 S i 0、 S i 02、 窒化シリコン、 C e 0 2、 CaF2、 BaF2、 S rF2、 T i O2、 Y203, Z r 02> MgO、 A 12〇3など力用いられる。 誘電体膜の膜厚は薄いほうがよいが、 1 OO nm以 下が好ましく、 50 n m以下がより好ましい。 - また、 本発明の緩衝層 2は、 図 5に示すような従来のモノリシック型増幅器 の圧電体基板 1と活性層 3'の中間に挿入されている S i 0などの誘電体膜 9と比 ベて、 活性層に格子整合していると同時に半導体でありながら、 大きな誘電率を 示し、 かつ高い抵抗値を有している。 よって、 本癸明の緩衝層 2中での弾性表面 波の電界の減衰は小さく、 弾性表面波の電界と活性層 3中のキャリアとの相互作 用力 より効率的に生じ易く、 また従来の誘電体膜 9より厚くすることも可能で ある。 Further, since the buffer layer 2 of the present invention can be grown at a low temperature, the piezoelectric substrate 1 does not deteriorate due to oxygen bleeding and the like, and the active layer 3 formed on the buffer layer 2 also has a piezoelectric property. It is also a great feature that deterioration due to oxygen escaping from the substrate 1 can be prevented, and that it functions as a protective layer for the piezoelectric substrate 1 and the active layer 3. Therefore, the protective layer force s ′ using a dielectric film such as S i 0 or S i 0 2 which has been conventionally used becomes unnecessary. However, there is no problem even if a dielectric film is inserted between the piezoelectric substrate 1 and the buffer layer 2. The dielectric film, for example, S i 0, S i 0 2, silicon nitride, C e 0 2, CaF 2 , BaF 2, S rF 2, T i O 2, Y 2 0 3, Z r 0 2> MgO, A12〇3 etc. are used. The thickness of the dielectric film is preferably thin, but is preferably 100 nm or less, more preferably 50 nm or less. -Further, the buffer layer 2 of the present invention is compared with a dielectric film 9 such as Si0 inserted between the piezoelectric substrate 1 and the active layer 3 'of the conventional monolithic amplifier as shown in FIG. In addition, while being lattice-matched to the active layer and being a semiconductor, it has a large dielectric constant and a high resistance value. Therefore, the attenuation of the electric field of the surface acoustic wave in the buffer layer 2 of the present invention is small, and the interaction between the electric field of the surface acoustic wave and the carrier in the active layer 3 is more likely to occur more efficiently. It can be thicker than the body membrane 9.
さらに活性層 3の保護の目的で活性層の上に保護膜として誘電体膜や半導体 膜が積層されていてもよい。 誘電体膜としては前記の組成のものを用いること力? できる。 半導体膜としては、 前記緩衝層と同じ組成のもの力 吏用できる。  Further, a dielectric film or a semiconductor film may be laminated as a protective film on the active layer for the purpose of protecting the active layer 3. Is it necessary to use a dielectric film with the above composition? it can. A semiconductor film having the same composition as the buffer layer can be used.
緩衝層 2や活性層 3などの成膜は、 一般に薄膜が成長できる方法であれば何 でもよいが、 分子線エピタキシー (MBE) 法や、 有機金属分子線エピタキシー (MOMBE) 法、 有機金属化学気相成長 (MOCVD) 法や原子層ェピタキシ ― (ALE) 法は特に好ましい方法である。  The buffer layer 2 and the active layer 3 can be generally formed by any method that can grow a thin film, such as a molecular beam epitaxy (MBE) method, an organometallic molecular beam epitaxy (MOMBE) method, and an organometallic chemical vapor deposition method. Phase growth (MOCVD) and atomic layer epitaxy (ALE) are particularly preferred methods.
また、 本発明の圧電体基板 1上の入出力電極 4、 5はすだれ状構造であり、 通常の弾性表面波フィルタに使用される、 アポダイズ電極、 間引き電極、 一方向 性電極、 正規型電極等が好ましく用いられる。 中でも一方向性電極は、 弾性表面 波の双方向性による損失分を軽減できるため、 特に好ましく用いられる。 入出力 電極 4、 5の材質には特に制限はないが、 例えば、 Aし Au、 P t、 Cu、 A 1 -T i合金、 A 1一 C u合金、 A 1と T iの多層電極等が好ましく用いられる。 本発明の入出力電極 4、 5を覆う形で緩衝層 2が形成される場合には、 まず 始めに入出力電極 4、 5を形成するので、 半導体薄膜の凹凸を考慮する必要もな く、 コンタク ト露光でサブミクロン以下の電極微細加工が可能になる。 Further, the input / output electrodes 4 and 5 on the piezoelectric substrate 1 of the present invention have an interdigital structure, and are used for a normal surface acoustic wave filter, such as an apodized electrode, a thinned electrode, a unidirectional electrode, a regular electrode, and the like. Is preferably used. Above all, the unidirectional electrode is particularly preferably used because the loss due to the bidirectionality of the surface acoustic wave can be reduced. There is no particular limitation on the material of the input / output electrodes 4 and 5, for example, A and Au, Pt, Cu, A1-Ti alloy, A1-Cu alloy, multilayer electrodes of A1 and Ti, etc. Is preferably used. When the buffer layer 2 is formed so as to cover the input / output electrodes 4 and 5 of the present invention, since the input / output electrodes 4 and 5 are formed first, there is no need to consider the unevenness of the semiconductor thin film. Contact exposure enables submicron electrode microfabrication.
ただし、 入出力電極 4、 5は緩衝層 2に埋め込まれるため、 該緩衝層 2を形 成中に、 変形、 溶融、 拡散などのできるだけ小さな電極材料を選ぶ必要がある。 例えば、 P t、 A u、 C u、 Aし C r、 M o、 N i、 T a、 T i、 Wなどが好 ましい。 また、 T i一 P t:、 T i一 A l、 T i一 Au、 C r一 Au、 C r一 P t などの多層電極も好ましく用いられる。  However, since the input / output electrodes 4 and 5 are embedded in the buffer layer 2, it is necessary to select an electrode material that is as small as possible such as deformation, melting, and diffusion while forming the buffer layer 2. For example, Pt, Au, Cu, A and Cr, Mo, Ni, Ta, Ti, W and the like are preferable. Further, multilayer electrodes such as Ti-Pt :, Ti-Al, Ti-Au, Cr-Au, and Cr-Pt are also preferably used.
本発明の弾性表面波増幅器において、 前記半導体層に直流電界を印加するた めの電極 6に使用される材料については、 特に制限はないが、 例えば、 A l、 A u、 N i/Au、 T i /Au CuZN iZAu、 A u G e ZN i ZA uなどが 好ましく用いられる。  In the surface acoustic wave amplifier of the present invention, the material used for the electrode 6 for applying a DC electric field to the semiconductor layer is not particularly limited. For example, Al, Au, Ni / Au, Ti / AuCuZNiZAu, AuGeZNiZAu and the like are preferably used.
本発明の弾性表面波機能素子をパワーアンプなどの高耐電力性が要求される 部分に用いる場合には、 入力用電極 4および出力用電極 5は大電力、 例えば数 W 程度の電力に耐える電極材料を用いる必要がある。 例えば、 ェピタキシャル A 1 膜、 A 1一 C u膜、 A 1 -C xx/C M/k 1一 C u積層膜、 T i添加 A 1膜、 C u添加 A 1膜、 P d添加 A 1膜などの高耐電力電極材料が好ましく用いられる。  When the surface acoustic wave function element of the present invention is used in a part requiring high power durability such as a power amplifier, the input electrode 4 and the output electrode 5 are electrodes capable of withstanding high power, for example, power of about several W. Materials must be used. For example, epitaxial A 1 film, A 1-Cu film, A 1 -C xx / CM / k 1-Cu laminated film, Ti added A 1 film, Cu added A 1 film, Pd added A 1 A high power electrode material such as a film is preferably used.
本発明の弾性表面波増幅器において、 前記入出力電極 4、 5の間の半導体層 力 2つ以上連なっており、 しかも弾性表面波の伝搬方向とは逆方向に移動する キャリアを取り除くような構造、 あるいは半導体層間の活性層 3を取り除くよう な構造を形成することにより、 低電圧で高増幅度が実現できる。 例えば、 図 6に 示すように、 半導体層をメサエッチングにより分離したり、 またメサエッチング した後に半導体層間に誘電体 (図示しない) を埋め込むことによって逆電界によつ て逆方向に移動するキャリアを取り除くこと力 sできる。  In the surface acoustic wave amplifier according to the present invention, the semiconductor layer between the input / output electrodes 4 and 5 has two or more forces, and further has a structure for removing carriers moving in the direction opposite to the surface acoustic wave propagation direction. Alternatively, by forming a structure that removes the active layer 3 between the semiconductor layers, high amplification can be realized at low voltage. For example, as shown in FIG. 6, the semiconductor layer is separated by mesa etching, or a dielectric (not shown) is buried between the semiconductor layers after the mesa etching, so that carriers moving in the opposite direction due to a reverse electric field are removed. Can remove power s.
本究明の弾性表面波コンボルバにおいては、 前記圧電体基板上に形成された 電極は 2つの入力電極として使用され、 さらにコンボリューシヨンされた表面波 は、 半導体層の上部および圧電体基板の下部に形成された取り出し電極から取り 出される。 取り出し電極の電極材料は、 特に制限はない。 例えば、 Aし A u、 P t、 C uなどが好ましく用いられる。 In the surface acoustic wave convolver of the present invention, the surface acoustic wave convolver is formed on the piezoelectric substrate. The electrodes are used as two input electrodes, and the convolved surface waves are extracted from extraction electrodes formed above the semiconductor layer and below the piezoelectric substrate. The electrode material of the extraction electrode is not particularly limited. For example, A, Au, Pt, and Cu are preferably used.
図 7に模式図を示す従来の携帯電話の R F部では、 アンテナ 1 0に送受分波 器 1 1が接続され、 この送受分波器 1 1に受信用アンプ 1 2、 送信用アンプ 1 3 が接続され、 これら送受信アンプ 1 2、 1 3にはそれぞれバンドパスフィルタ 1 4力、'接続されている。 これに対して、 本発明の高増幅度の弾性表面波機能素子を 用いれば、 図 8に示すように、 アンテナ 1 0に受信用弾性表面波増幅器 1 5と送 信用弾性表面波増幅器 1 6とが接続されるだけである。 従って、 本発明では、 R F部の部品点数が減少でき、 しかも各部品の小型化、 軽量化、 薄型化が達成でき る。 即ち本発明によって、 携帯機器端末の小型化、 軽量化、 そして低価格化が可 能になる。 図 面 の 簡 単 な 説 明 図 1 Aは、 本発明の一実施例に従う弾性表面波機能素子の断面図である。 図 1 Bは、 本発明の一実施例に従う弾性表面波機能素子の斜視図である 図 2は、 本発明の多層圧電体基板の断面図である。  In the RF section of a conventional mobile phone whose schematic diagram is shown in Fig. 7, a transmission / reception splitter 11 is connected to an antenna 10, and a reception amplifier 12 and a transmission amplifier 13 are connected to the transmission / reception splitter 11. The transmission and reception amplifiers 12 and 13 are connected to a bandpass filter 14 power, respectively. On the other hand, if the high-amplification surface acoustic wave functional element of the present invention is used, the receiving surface acoustic wave amplifier 15 and the transmitting surface acoustic wave amplifier 16 are connected to the antenna 10 as shown in FIG. Is only connected. Therefore, according to the present invention, the number of components in the RF section can be reduced, and further, each component can be reduced in size, weight, and thickness. That is, according to the present invention, it is possible to reduce the size, weight, and cost of a portable device terminal. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a cross-sectional view of a surface acoustic wave device according to one embodiment of the present invention. FIG. 1B is a perspective view of a surface acoustic wave device according to one embodiment of the present invention. FIG. 2 is a cross-sectional view of a multilayer piezoelectric substrate of the present invention.
図 3は、 従来の直接型増幅器の断面図である。  FIG. 3 is a cross-sectional view of a conventional direct amplifier.
図 4は、 従来の分離型増幅器の断面図である。  FIG. 4 is a cross-sectional view of a conventional separated amplifier.
図 5は、 従来のモノリシック型増幅器の断面図である。  FIG. 5 is a cross-sectional view of a conventional monolithic amplifier.
図 6は、 本発明の一実施例に従う半導体層分離型弾性表面波増幅器の断面図 である。  FIG. 6 is a sectional view of a semiconductor layer-separated surface acoustic wave amplifier according to one embodiment of the present invention.
図 7は、 携帯電話の R F部の模式図である。 図 8は、 本発明による送受信分波器や送受信アンプを用いずに形成された送 信および受信回路の模式図である。 Figure 7 is a schematic diagram of the RF section of a mobile phone. FIG. 8 is a schematic diagram of a transmission and reception circuit formed without using a transmission / reception splitter or a transmission / reception amplifier according to the present invention.
図 9は、 入出力電極が緩衝層に埋め込まれた形の弾性表面波増幅器の断面図 Figure 9 is a cross-sectional view of a surface acoustic wave amplifier with input and output electrodes embedded in a buffer layer.
^あ o ^ A o
図 1 0は、 多層圧電体基板を用いた弾性表面波増幅器の断面図である。  FIG. 10 is a cross-sectional view of a surface acoustic wave amplifier using a multilayer piezoelectric substrate.
図 11は、 本発明の一実施例に従う弾性表面波コンボルバの断面図である。 発明を実施するための最良の形態 以下に本発明を具体的な実施例により述べる。  FIG. 11 is a sectional view of a surface acoustic wave convolver according to an embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below by way of specific examples.
【実施例 1】  [Example 1]
直径 3ィンチの 64度 Yカッ ト L i Nb 03単結晶基板の上に S i 02 10 nmを蒸着したのち、 MBE法により、 緩衝層として、 A 1 0.3 8 I n 0.62 S b を 1 50 nm成長させ、 次に活性層として I n S bを 50 nm成長させたのち、 保護層として G a S bを 2 nm成長させ半導体層を得た。 この半導体層の電子移 動度は、 32000 cm2/V sであった。 なお、 半導体層の電子移動度は、 V a n d e r P a u w法により測定した。 After deposition of S i 0 2 10 nm on the 64 ° Y cut L i Nb 0 3 single crystal substrate having a diameter of 3 Inchi, by MBE, as a buffer layer, A 1 0. 3 8 I n 0. 62 After growing Sb by 150 nm and then growing InSb as an active layer by 50 nm, GaSb was grown by 2 nm as a protective layer to obtain a semiconductor layer. The electron mobility of this semiconductor layer was 32000 cm 2 / Vs. Note that the electron mobility of the semiconductor layer was measured by the Vaner Pauw method.
次に所定の位置の半導体層をエッチングにより除き、 圧電体基板を露出させ た。 その圧電体基板表面に入出力電極としてすだれ状の A 1電極をリソグラフィ プロセスによって形成した。 電極はピッチが 0.75 mの正規型電極とし、 伝搬 長は 3 O O^mとした。 引き続き活性層に直流電界印加用の電極を形成した。 弾 性表面波の伝搬長は、 弾性表面波の波長の整数倍に形成することが好ましい。  Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process. The electrodes were regular electrodes with a pitch of 0.75 m, and the propagation length was 3 O O ^ m. Subsequently, an electrode for applying a DC electric field was formed on the active layer. The propagation length of the surface acoustic wave is preferably formed to be an integral multiple of the wavelength of the surface acoustic wave.
次に、 弾性表面波増幅器の特性を測定した。 増幅度の評価は、 ネッ トワーク アナライザー (Yokokawa Hewlett Packard, 8510B) で、 電界印加後の利得 (または 挿入損失) と電界印加前の挿入損失の差から求めた。 本実施例 1の弾性表面波増 幅器を評価した結果、 その増幅度は、 直流印加電圧 3 V、 中心周波数 1 5 2 0 M H zで 2 2 d Bであった。 この値は、 携帯機器の高周波部の低雑音増幅器とバン ドパスフィルタの部分に用いる場合に良好な増幅度であり、 しかもモノリシック 化された単一素子で形成されているため、 携帯機器の小型化や配線によるリタ一 ンロスの低減化が実現できる。 以上の結果から、 緩衝層は、 1 5 O n mの膜厚で 活性層と圧電体基板の間に存在するが、 弾性表面波の電界強度の緩衝層中での減 衰は、 実用レベルで問題のない程度であること力 s確認できた。 Next, the characteristics of the surface acoustic wave amplifier were measured. The amplification was evaluated using a network analyzer (Yokokawa Hewlett Packard, 8510B) based on the difference between the gain (or insertion loss) after applying the electric field and the insertion loss before applying the electric field. Surface acoustic wave enhancement of Example 1 As a result of evaluating the width gauge, the amplification degree was 22 dB at a DC applied voltage of 3 V and a center frequency of 150 MHz. This value is a good amplification factor when used in the low-noise amplifier and band-pass filter of the high-frequency part of a portable device, and because it is formed of a monolithic single element, the size of the portable device is small. And reduction of return loss due to wiring. From the above results, although the buffer layer exists between the active layer and the piezoelectric substrate with a thickness of 15 O nm, the attenuation of the electric field strength of the surface acoustic wave in the buffer layer is a problem on a practical level. There was no power s could be confirmed.
【実施例 2】  [Example 2]
実施例 1のサンプルを用いて、 所定の位置の半導体層をエッチングにより除 き、 圧電体基板を露出させた。 その圧電体基板表面に入出力電極としてすだれ状 の A 1電極をリソグラフィプロセスによつて形成した。 電極はピッチが 1 .4 m の正規型電極とし、 伝搬長は、 2 8 0;/ mとした。 引き続き活性層に直流電界印 加用の電極を形成した。  Using the sample of Example 1, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed as input and output electrodes on the surface of the piezoelectric substrate by a lithography process. The electrodes were regular electrodes with a pitch of 1.4 m, and the propagation length was 280; / m. Subsequently, an electrode for applying a DC electric field was formed on the active layer.
次に、 弾性表面波増幅器の特性を測定した。 増幅度の評価は、 実施例〗 と同 様の方法で行った。 実施例 2の弾性表面波増幅器を評価した結果、 その増幅度は、 直流印加電圧 3 V、 中心周波数 8 0 O MH zで 1 2 d Bであった。 この値は、 携 帯機器の高周波部の低雑音増幅器とバンドバスフィルタの部分に用いる場合に良 好な増幅度である。  Next, the characteristics of the surface acoustic wave amplifier were measured. The evaluation of the amplification degree was performed in the same manner as in Example I. As a result of evaluating the surface acoustic wave amplifier of Example 2, the amplification was 12 dB at a DC applied voltage of 3 V and a center frequency of 80 OMHz. This value is a good amplification factor when used in the low-noise amplifier and band-pass filter of the high-frequency part of portable equipment.
【比較例 1】  [Comparative Example 1]
実施例 2の比較として、 比較例 1を示す。 直径 3ィンチの 6 4度 Yカッ ト L i N b 0 3単結晶基板の上に S i 0 2 1 0 n mを蒸着した。 さらに MB E法によ り、 活性層として I n S bを 5 O n m成長させたのち、 保護層として G a S bを 2 n m成長させた。 そしてこの積層膜の電気特性を測定したが、 本比較例では活 性層である I n S bを直接、 圧電体基板の上に形成したために、 活性層の結晶性 が悪く、 電子移動度は 1 7 0 0 c m 2 ZV sにすぎなかった。 次に所定の位置の半導体層をエッチングにより除き、 圧電体基板を露出させ た。 その圧電体基板表面に入出力電極としてすだれ状の A 1電極をリソグラフィ プロセスによって形成した。 電極はピッチが 1.4 / mの正規型電極とし、 伝搬長 は、 28 O mとした。 引き続き活性層に直流電界印加用の電極を形成した後、 弾性表面波増幅特性を実施例 2と同様に測定した力 s、 増幅はみられなかった。 Comparative Example 1 is shown as a comparison with Example 2. Was deposited S i 0 2 1 0 nm on a 6 4 ° Y cut L i N b 0 3 single crystal substrate having a diameter of 3 Inchi. Further, InSb was grown as an active layer by 5 O nm by MBE, and then GaSb was grown by 2 nm as a protective layer. Then, the electrical characteristics of the laminated film were measured. In this comparative example, the active layer In Sb was formed directly on the piezoelectric substrate, so that the crystallinity of the active layer was poor and the electron mobility was low. It was only 1700 cm 2 ZVs. Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process. The electrodes were regular electrodes with a pitch of 1.4 / m, and the propagation length was 28 Om. Continued after forming the electrode for DC electric field applied to the active layer, the force was measured surface acoustic wave amplifier characteristics in the same manner as in Example 2 s, amplification was not observed.
【実施例 3】  [Embodiment 3]
直径 3ィンチの 64度 Y力ッ ト L i Nb 03単結晶基板の上に S i 0210 n mを蒸着したのち、 MB E法により、 緩衝層として A l o.5Gao.5Sbを 20 0 nm成長させ、 次に活性層として I n A s 0.5 S b 0.5を 60 nm成長させた のち、 保護層として G a Sbを 2 nm成長させ半導体層を得た。 この半導体層の 電子移動度は、 30000 cm2ノ V sであった。 After deposition of S i 0 2 10 nm on the 64 ° Y Chikara' preparative L i Nb 0 3 single crystal substrate having a diameter of 3 Inchi, by MB E method, the A l o. 5 Gao. 5 Sb as the buffer layer After growing 200 nm, and then growing InAs0.5Sb0.5 as an active layer to 60 nm, GaSb was grown to 2 nm as a protective layer to obtain a semiconductor layer. The electron mobility of this semiconductor layer was 30,000 cm 2 Vs.
次に所定の位置の半導体層をエッチングにより除き、 圧電体基板を露出させ た。 その圧電体基板表面に入出力電極としてすだれ状の A 1電極をリソグラフィ プロセスによって形成した。 電極はピッチが 0.6 / mの正規型電極とし、 伝搬長 は、 240 /zmとした。 引き続き活性層に直流電界印加用の電極を形成した。  Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process. The electrodes were regular electrodes with a pitch of 0.6 / m, and the propagation length was 240 / zm. Subsequently, an electrode for applying a DC electric field was formed on the active layer.
次に弾性表面波増幅器の特性を測定した。 増幅度の評価は、 実施例 1と同様 の方法で行った。 実施例 3の弾性表面波増幅器を評価した結果、 その増幅度は直 流印加電圧 3 V、 中心周波数 190 OMH zで 26 d Bであった。 この値は、 携 帯機器の高周波部の低雑音増幅器とバンドバスフィルタの部分に用いる場合に極 めて良好な増幅度である。  Next, the characteristics of the surface acoustic wave amplifier were measured. The evaluation of the degree of amplification was performed in the same manner as in Example 1. As a result of evaluation of the surface acoustic wave amplifier of Example 3, the amplification was 26 dB at a DC applied voltage of 3 V and a center frequency of 190 OMHz. This value is an extremely good amplification when used in the low-noise amplifier and band-pass filter of the high-frequency part of portable equipment.
【実施例 4】  [Example 4]
直径 3ィンチの 64度 Yカッ ト L i Nb 03単結晶基板の上に S i 0210 n mを蒸着したのち、 MB E法により、 緩衝層として A 10.5Ga0.5Sbを 15 0 nm成長させ、 次に活性層として I n A s 0.5 S b 0.5を 50 nm成長させた のち、 保護層として G a Sbを 2 nm成長させ半導体層を得た。 この半導体層の 電子移動度は、 20900 cm2ZV sであった。 After deposition of S i 0 2 10 nm on the 64 ° Y cut L i Nb 0 3 single crystal substrate having a diameter of 3 Inchi, by MB E method, the A 1 0. 5 Ga 0. 5 Sb as the buffer layer After growing it to 150 nm, and then growing InAs0.5Sb0.5 to 50 nm as an active layer, 2 nm of GaSb was grown as a protective layer to obtain a semiconductor layer. Of this semiconductor layer The electron mobility was 20900 cm 2 ZVs.
次に所定の位置の半導体層をエッチングにより除き、 圧電体基板を露出させ た。 その圧電体基板表面に入出力電極としてすだれ状の A 1電極をリソグラフィ プロセスによって形成した。 電極はピッチが 0.75 の正規型電極とし、 伝搬 長は、 300 mとした。 引き続き活性層に直流電界印加用の電極を形成した。  Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process. The electrodes were regular electrodes with a pitch of 0.75, and the propagation length was 300 m. Subsequently, an electrode for applying a DC electric field was formed on the active layer.
次に、 弾性表面波増幅器の特性を測定した。 増幅度の評価は、 実施例 1と同 様の方法で行った。 実施例 4の弾性表面波増幅器を評価した結果、 その増幅度は、 直流印加電圧 3 V、 中心周波数 1530MHzで 13 dBであった。 この値は、 携帯機器の高周波部の低雑音増幅器とバンドバスフィルタの部分に用いる場合に 良好な増幅度である。  Next, the characteristics of the surface acoustic wave amplifier were measured. The evaluation of the amplification degree was performed in the same manner as in Example 1. As a result of evaluating the surface acoustic wave amplifier of Example 4, the amplification was 13 dB at a DC applied voltage of 3 V and a center frequency of 1530 MHz. This value is a good amplification factor when used for the low-noise amplifier and band-pass filter of the high-frequency part of portable equipment.
【実施例 5】  [Example 5]
直径 3インチの 64度 Yカツ ト L i Nb03単結晶基板の上に S i 0210 n mを蒸着したのち、 MB E法により、 緩衝層として A l o.5Gao.5Sbを 10 0 nm成長させ、 次に活性層として I n A s 0.5 S b 0.5を 200 nm成長させ たのち、 保護層として G a Sbを 2 nm成長させ半導体層を得た。 この半導体層 の電子移動度は、 32000 cm2/V sであった。 After deposition of S i 0 2 10 nm on the 64 ° Y cutlet preparative L i Nb0 3 single crystal substrate having a diameter of 3 inches by MB E method, A l o. 5 Gao. 5 Sb 10 0 as a buffer layer After growing 200 nm of InAs0.5Sb0.5 as an active layer, 200 nm of GaSb was grown as a protective layer to obtain a semiconductor layer. The electron mobility of this semiconductor layer was 32000 cm 2 / Vs.
次に所定の位置の半導体層をエッチングにより除き、 圧電体基板を露出させ た。 その圧電体基板表面に入出力電極としてすだれ状の A 1電極をリソグラフィ プロセスによって形成した。 電極はピッチが 0.75 mの正規型電極とし、 伝搬 長は、 300 ; mとした。 引き続き活性層に直流電界印加用の電極を形成した。  Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process. The electrodes were regular electrodes with a pitch of 0.75 m, and the propagation length was 300; m. Subsequently, an electrode for applying a DC electric field was formed on the active layer.
次に、 弾性表面波増幅器の特性を測定した。 増幅度の評価は、 実施例 1と同 様の方法で行った。 実施例 5の弾性表面波増幅器を評価した結果、 その増幅度は、 直流印加電圧 6 V、 中心周波数 1505MHzで 6 dBであった。 6Vという低 電圧で増幅効果が得られた。  Next, the characteristics of the surface acoustic wave amplifier were measured. The evaluation of the amplification degree was performed in the same manner as in Example 1. As a result of evaluating the surface acoustic wave amplifier of Example 5, the amplification was 6 dB at a DC applied voltage of 6 V and a center frequency of 1505 MHz. An amplification effect was obtained at a low voltage of 6V.
【比較例 2】 実施例 4の比較として、 比較例 2を示す。 直径 3インチの 64度 Yカツ ト L i Nb03単結晶基板の上に S i 0210 nmを蒸着したのち、 MB E法により、 活性層として I n A s 0.5 S b 0.5を 5 0 nm成長させたのち、 保護層として G 351)を211111成長させた。 この積層膜の電気特性を測定したが、 本比較例では 活性層である I n A s 0.5 S b 0.5を直接、 圧電体基板の上に形成したために、 活性層の結晶性が悪く、 電子移動度は、 1200 cm2ZV sにすぎなかった。 [Comparative Example 2] Comparative Example 2 is shown as a comparison with Example 4. After deposition of S i 0 2 10 nm on the 64 ° Y cutlet preparative L i Nb0 3 single crystal substrate having a diameter of 3 inches by MB E method, the I n A s 0.5 S b 0.5 as the active layer 5 0 nm After the growth, G 351) was grown 211111 as a protective layer. The electrical characteristics of this laminated film were measured. In this comparative example, the active layer InAs 0.5 Sb 0.5 was formed directly on the piezoelectric substrate, so the crystallinity of the active layer was poor and the electron transfer The degree was only 1200 cm 2 ZVs.
次に所定の位置の半導体層をエッチングにより除き、 圧電体基板を露出させ た。 その圧電体基板表面に入出力電極としてすだれ状の A 1電極をリソグラフィ プロセスによって形成した。 電極はピッチが 0.75 mの正規型電極とし、 伝搬 長は、 300 / mとした。 弓 Iき続き活性層に直流電界印加用の^を形成した後、 弾性表面波増幅特性を測定したが、 増幅はみられなかった。  Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process. The electrodes were regular electrodes with a pitch of 0.75 m, and the propagation length was 300 / m. After the formation of ^ for applying a DC electric field to the active layer, the surface acoustic wave amplification characteristics were measured, but no amplification was observed.
【実施例 6】  [Example 6]
直径 3ィンチの 64度 Yカッ ト L i Nb 03単結晶基板の上に S i 021 0 n mを蒸着したのち、 MB E法により、 緩衝層として A l o.5G a o.5 S bを 1 5 0 nm成長させ、 次に活性層として I n A sを 350 nm成長させたのち、 保護 層として G a S bを 2 nm成長させ半導体層を得た。 この半導体層の電子移動度 は、 22000 c n^ZV sであった。 After deposition of S i 0 2 1 0 nm on a 64 degree Y-cut L i Nb 0 3 single crystal substrate having a diameter of 3 Inchi, by MB E method, A l o as a buffer layer. 5 G a o. 5 After growing Sb to 150 nm, and then growing InAs as an active layer to 350 nm, GaSb was grown to 2 nm as a protective layer to obtain a semiconductor layer. The electron mobility of this semiconductor layer was 22000 cn ^ ZVs.
次に所定の位置の半導体層をエッチングにより除き、 圧電体基板を露出させ た。 その圧電体基板表面に入出力電極としてすだれ状の A 1電極をリソグラフィ プロセスによって形成した。 電極はピッチが 0.6 の正規型電極とし、 伝搬長 は、 240 / mとした。 引き続き活性層に直流電界印加用の電極を形成した。  Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process. The electrodes were regular electrodes with a pitch of 0.6, and the propagation length was 240 / m. Subsequently, an electrode for applying a DC electric field was formed on the active layer.
次に、 弾性表面波増幅器の特性を測定した。 増幅度の評価は、 実施例 1と同 様の方法で行った。 実施例 6の弾性表面波増幅器を評価した結果、 その増幅度は、 直流印加電圧 6 V、 中心周波数 1 50 OMH zで 2 dBであった。 6 Vとレゝぅ低 電圧で増幅効果が得られた。 【実施例 7】 Next, the characteristics of the surface acoustic wave amplifier were measured. The evaluation of the amplification degree was performed in the same manner as in Example 1. As a result of evaluating the surface acoustic wave amplifier of Example 6, the amplification was 2 dB at a DC applied voltage of 6 V and a center frequency of 150 OMHz. An amplification effect was obtained at a low voltage of 6 V. [Example 7]
直径 3インチの 64度 Yカツト L i Nb03単結晶基板の上に S i 0210 nm を蒸着したのち、 MB E法により、 緩衝層として A 10.5 G a 0.5 A s ο.ι 2 S b 0.88を 150 nm成長させ、 次に活性層として I n A sを 50 nm成長させた のち、 保護層として G a S bを 2 nm成長させ半導体層を得た。 この半導体層の 電子移動度は、 13000
Figure imgf000020_0001
sであった。
After deposition of S i 0 2 10 nm on the 64 ° Y Katsuhito L i Nb0 3 single crystal substrate having a diameter of 3 inches by MB E method, A 10.5 G a 0 .5 A s ο.ι 2 as a buffer layer After growing Sb 0.88 to 150 nm and then growing InAs as an active layer to 50 nm, GaAs was grown to 2 nm as a protective layer to obtain a semiconductor layer. The electron mobility of this semiconductor layer is 13000
Figure imgf000020_0001
s.
次に所定の位置の半導体層をエッチングにより除き、 圧電体基板を露出させ た。 その圧電体基板表面に入出力電極としてすだれ状の A 1電極をリソグラフィ プロセスによって形成した。 電極はピッチが 1.4 / mの正規型電極とし、 伝搬長 は、 560 ; mとした。 引き続き活性層に直流電界印加用の電極を形成した。  Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process. The electrodes were regular electrodes having a pitch of 1.4 / m, and the propagation length was 560 m. Subsequently, an electrode for applying a DC electric field was formed on the active layer.
次に、 弾性表面波増幅器の特性を測定した。 増幅度の評価は、 実施例 1 と同 様の方法で行った。 実施例 7の弾性表面波増幅器を評価した結果、 その増幅度は、 直流印加電圧 5 V、 中心周波数 810 MH zで 6 d Bであった。 5 Vという低電 圧で増幅効果が得られた。  Next, the characteristics of the surface acoustic wave amplifier were measured. The evaluation of the amplification degree was performed in the same manner as in Example 1. As a result of evaluating the surface acoustic wave amplifier of Example 7, the amplification was 6 dB at a DC applied voltage of 5 V and a center frequency of 810 MHz. An amplification effect was obtained at a low voltage of 5 V.
【実施例 8】  [Embodiment 8]
直径 3インチの 64度 Yカツト L i Nb 03単結晶基板の上に S i 02 1 0 nm を蒸着したのち、 MB E法により、 緩衝層として A 1 0.5 G a 0.5 A s 0- 1 2 S b 0.8 8を 150 nm成長させ、 次に活性層として I n A sを 20 nm成長させた のち、 保護層として G a S bを 2 nm成長させ半導体層を得た。 この半導体層の 電子移動度は、 8000 cm2ZV sであった。 After deposition of S i 0 2 1 0 nm on a 64 ° Y Katsuhito L i Nb 0 3 single crystal substrate having a diameter of 3 inches by MB E method, A 1 0.5 G a 0.5 A s 0- 1 as a buffer layer the 2 S b 0. 8 8 grown 0.99 nm, then mixture was allowed I n a s is a 20 nm grown as the active layer, to obtain a semiconductor layer was G a S b is a 2 nm growth as a protective layer. The electron mobility of this semiconductor layer was 8000 cm 2 ZVs.
次に所定の位置の半導体層をエッチングにより除き、 圧電体基板を露出させ た。 その圧電体基板表面に入出力電極としてすだれ状の A 1電極をリソグラフィ プロセスによって形成した。 電極はピッチが 1.4 / mの正規型電極とし、 伝搬長 は、 560 / mとした。 引き続き活性層に直流電界印加用の電極を形成した。  Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process. The electrodes were regular electrodes with a pitch of 1.4 / m, and the propagation length was 560 / m. Subsequently, an electrode for applying a DC electric field was formed on the active layer.
次に、 弾性表面波増幅器の特性を測定した。 増幅度の評価は、 実施例 1 と同 様の方法で行った。 実施例 8の弾性表面波増幅器を評価した結果、 その増幅度は、 直流印加電圧 6 V、 中心周波数 835MH zで 3 dBであった。 6 Vという低電 圧で増幅効果が得られた。 Next, the characteristics of the surface acoustic wave amplifier were measured. The evaluation of the amplification degree was the same as in Example 1. Was performed in the same manner. As a result of evaluating the surface acoustic wave amplifier of Example 8, the amplification was 3 dB at a DC applied voltage of 6 V and a center frequency of 835 MHz. An amplification effect was obtained at a low voltage of 6 V.
【実施例 9】  [Embodiment 9]
直径 3ィンチの 64度 Yカット L i Nb 03単結晶基板の上に S i 0210 nm を蒸着したのち、 MB E法により、 緩衝層として A 1 o,5G a 0.5 A s o.l 2 S b 0.88を 150 nm成長させ、 次に活性層として I n A sを 10 nm成長させた のち、 保護層として G a Sbを 2 nm成長させ半導体層を得た。 この半導体層の 電子移動度は、 5000 cm2ZV sであった。 After deposition of S i 0 2 10 nm over the 64-degree Y-cut L i Nb 0 3 single crystal substrate having a diameter of 3 Inchi, by MB E method, A 1 o, 5 G a 0 .5 A s As buffer layer ol 2 S b 0.8 8 was 0.99 nm growth, then mixture was allowed I n a s a is 10 nm grown as the active layer, to obtain a semiconductor layer is 2 nm grow G a Sb as a protective layer. The electron mobility of this semiconductor layer was 5000 cm 2 ZVs.
次に所定の位置の半導体層をエッチングにより除き、 圧電体基板を露出させ た。 その圧電体基板表面に入出力電極としてすだれ状の A 1電極をリソグラフィ プロセスによって形成した。 電極はピッチが 0.75 / mの正規型電極とし、 伝搬 長は、 300 mとした。 引き続き活性層に直流電界印加用の電極を形成した。  Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process. The electrodes were regular electrodes with a pitch of 0.75 / m, and the propagation length was 300 m. Subsequently, an electrode for applying a DC electric field was formed on the active layer.
次に、 弾性表面波増幅器の特性を測定した。 増幅度の評価は、 実施例 1と同 様の方法で行った。 実施例 9の弾性表面波増幅器を評価した結果、 その増幅度は、 直流印加電圧 6 V、 中心周波数 1560 MH zで 4 d Bであった。 6 Vという低 電圧で増幅効果が得られた。  Next, the characteristics of the surface acoustic wave amplifier were measured. The evaluation of the amplification degree was performed in the same manner as in Example 1. As a result of evaluating the surface acoustic wave amplifier of Example 9, the amplification was 4 dB at a DC applied voltage of 6 V and a center frequency of 1560 MHz. An amplification effect was obtained at a low voltage of 6 V.
【比較例 3】  [Comparative Example 3]
実施例 7の比較として、 比較例 3を示す。 直径 3ィンチの 64度 Yカッ ト L i Nb 03単結晶基板の上に S i 0210 nmを蒸着したのち、 MB E法により、 活性層として I n A sを 50 nm成長させたのち、 保護層として G a S bを 2 n m成長させ半導体層を得た。 そしてこの半導体層の電気特性を測定したが、 本比 較例では活性層である I nAsを直接、 圧電体基板の上に形成したために、 活性 層の結晶性が悪く、 電子移動度は、 900 cm2ZV sにすぎなかった。 Comparative Example 3 is shown as a comparison with Example 7. After deposition of S i 0 2 10 nm on the 64 ° Y cut L i Nb 0 3 single crystal substrate having a diameter of 3 Inchi, by MB E method, after the I n A s as the active layer was 50 nm grown As a protective layer, 2 nm of GaSb was grown to obtain a semiconductor layer. The electrical characteristics of this semiconductor layer were measured. In this comparative example, the active layer InAs was formed directly on the piezoelectric substrate, so the crystallinity of the active layer was poor and the electron mobility was 900 cm 2 ZV s.
次に所定の位置の半導体層をエッチングにより除き、 圧電体基板を露出させ た。 その圧電体基板表面に入出力電極としてすだれ状の A 1電極をリソグラフィ プロセスによって形成した。 電極はピッチが 1.4 の正規型電極とし、 伝搬長 は、 56 O mとした。 引き続き活性層に直流電界印加用の電極を形成した後、 弾性表面波増幅特性を測定した力 s、 増幅はみられなかった。 Next, the semiconductor layer at a predetermined position is removed by etching to expose the piezoelectric substrate. Was. Interdigital A1 electrodes were formed on the surface of the piezoelectric substrate as input and output electrodes by a lithography process. The electrodes were regular electrodes with a pitch of 1.4, and the propagation length was 56 Om. After successively forming an electrode for applying a DC electric field to the active layer, the force s for measuring the surface acoustic wave amplification characteristics, and no amplification was observed.
【実施例 1 0】 - 直径 3インチの 1 2 8度 Yカツ ト L i Nb 03単結晶基板の上に、 MB E法に より、 緩衝層として A 1 0.5 G a 0.5 A s n S b 0.9を 50 nm成長させ、 次 に活性層として I n S bを 4 0 0 nm成長させ半導体層を得た。 この半導体層の 電子移動度は、 7 0 0 0 cm2/Vs、 キャリア濃度が 1 X I 0 1 6 cm—3であつ た。 EXAMPLE 1 0] - on the 1 2 8 degrees Y cutlet preparative L i Nb 0 3 single crystal substrate having a diameter of 3 inches and more MB E method, A 1 0.5 G a 0.5 A sn S b 0.9 a buffer layer Was grown to 50 nm, and then InSb was grown to 400 nm as an active layer to obtain a semiconductor layer. The semiconductor layer had an electron mobility of 700 cm 2 / Vs and a carrier concentration of 1 XI 0 16 cm −3 .
次に、 実施例 1と同様の方法で弾性表面波増幅器を作製した。 電極はピッチ が 0.7 5 の正規型電極とし、 伝搬長は 3 0 0 μとした。  Next, a surface acoustic wave amplifier was manufactured in the same manner as in Example 1. The electrodes were regular electrodes with a pitch of 0.75, and the propagation length was 300 μm.
そして、 弾性表面波増幅器の特性を測定した結果、 増幅度は、 直流印加電圧 5 V、 中心周波数 1 50 0 ΜΗ ζで 3 d Βであった。 5 Vとレゝぅ低電圧で増幅効 果が得られた。 しかも S i 0などの誘電体膜がなくても、 L i N b 03基板の劣 化や L i Nb 03基板からの酸素拡散による I n S b ¾14層の劣化は見られなかつ た。 以上の結果から、 A 1 0.5 G a 0.5 A s oj S b 0.9緩衝層力圧電体基板お よび半導体活性層の保護膜として機能していることが確認できた。 As a result of measuring the characteristics of the surface acoustic wave amplifier, the amplification was 3 d 3 at a DC applied voltage of 5 V and a center frequency of 1500 1. An amplification effect was obtained at a low voltage of 5 V. Moreover even without the dielectric film, such as S i 0, degradation of L i N b 0 3 degradation of the substrate and L i Nb 0 3 I n S b ¾14 layer due to oxygen diffusion from the substrate has failed observed. From the above results, it was confirmed that functions as a protective film of A 1 0.5 G a 0. 5 A s oj S b 0.9 buffer layer forces the piezoelectric substrate contact and the semiconductor active layer.
【比較例 4】  [Comparative Example 4]
直径 3インチの 6 4度 Yカツト L i Nb 03単結晶基板の上に、 MB E法に より、 直接、 活性層の I n S bを 5 0 nm成長させ半導体層を得た。 そしてこの 半導体層の電気特性を測定したが、 本比較例では L i Nb 03基板上に誘電体膜 などの保護層を形成せずに、 直接 I n S bを成長したため、 L i Nb 03からの 酸素抜けにより、 活性層の I n Sbの膜質が劣化し、 電子移動度は測定できなかつ た。 難例 1 1】 On the 6 4 ° Y Katsuhito L i Nb 0 3 single crystal substrate having a diameter of 3 inches and more MB E, direct, to obtain a semiconductor layer is 5 0 nm grow I n S b of the active layer. And since has been measured electrical characteristics of the semiconductor layer, which without forming a protective layer such as a dielectric film to L i Nb 0 3 on the substrate in this comparative example, the growth of the direct I n S b, L i Nb 0 Oxygen elimination from 3 deteriorated the quality of the InSb film in the active layer, and the electron mobility could not be measured. Difficult case 1 1】
図 9に断面構造を示す弾性表面波増幅器を作製した。  A surface acoustic wave amplifier whose sectional structure is shown in FIG. 9 was manufactured.
まず、 直径 3ィンチの 128度 Yカツ ト L i Nb O3単結晶基板 1の上の所 定の位置に入出力用電極 4、 5としてすだれ状の T i一 P t電極を通常のコンタ ク ト露光によるリソダラフィプロセスで形成した。 電極 4、 -5はピッチが 1.4 mの正規型電極とし、 伝搬長は、 364 とした。 次に、 MB E法により、 該 基板上に入出力用すだれ状電極を埋め込む形で緩衝層 2として A 10.38 I n 0. 62 S bを 150 nm成長させ、 さらに活性層 3として I n S bを 50 nm成長 させ半導体層を得た。 この半導体層の電子移動度は、 34000 cm2ZV sで あつ 7こ。 First, ID-Pt electrodes, which are ID-shaped, are used as input / output electrodes 4 and 5 at regular positions on a 128-degree Y-cut L i NbO 3 single-crystal substrate 1 with a 3-inch diameter. Formed by a lithodaraphy process by light exposure. Electrodes 4 and -5 were regular electrodes with a pitch of 1.4 m, and the propagation length was 364. Then, the MB E method, A 10.38 I n 0 as a buffer layer 2 in a manner to embed the input and output interdigital transducers on said substrate. 6 2 S b was 0.99 nm growth, further I n S as an active layer 3 b was grown to 50 nm to obtain a semiconductor layer. The electron mobility of this semiconductor layer is 34000 cm 2 ZVs.
次に所定の位置の活性層をイオンミリング法により除いた後、 活性層 3に直 流電界印加用の電極 6を形成した (図 9に断面構造を示す) 。 その後、 パッシベ —シヨン用窒化シリコン膜を蒸着し、 窓開けを行い、 弾性表面波増幅器の特性を 測定した。 その結果、 直流印加電圧 6 V、 中心周波数 809MHzで 17 dBと いう大きな増幅度が得られた。  Next, after removing the active layer at a predetermined position by an ion milling method, an electrode 6 for applying a DC electric field was formed on the active layer 3 (FIG. 9 shows a cross-sectional structure). After that, a silicon nitride film for passivation was deposited, a window was opened, and the characteristics of the surface acoustic wave amplifier were measured. As a result, a large amplification of 17 dB was obtained at a DC applied voltage of 6 V and a center frequency of 809 MHz.
【実施例 12】  [Example 12]
図 10に断面構造を示す弾性表面波増幅器を作製した。  A surface acoustic wave amplifier whose sectional structure is shown in FIG. 10 was manufactured.
レーザアブレーション法により、 Yカッ ト L i T a 03単結晶基板 1上に、 膜厚 2.0 mの L i Nb03層 17を成長し、 さらにその上に 0.1 の L i T 303層18を成長し、 3層構造の多層圧電体基板を形成した。 成長した薄膜を ォ一ジェ電子分光法により解析した結果、 ストイキオメ トリーに狂いのない L i Nb03層 17、 L i T a 03層 18が得られていることが確認できた。 また、 X線回析により、 (110) L i Nb03層 17、 および (1 10) L i TaO 3層 18がツイン、 ドメインフリーでヘテロェピタキシャル成長していること力? この多層圧電体基板の電気機械結合定数を測定するため、 通常のリソグラフィ プロセスによって、 弾性表面波の波長が、 8 mになるように A 1櫛形電極を形 成した。 そして、 ネッ トワークアナライザ一で、 電気機械結合定数を測定したと ころ、 20.0%というきわめて大きな値を示した。 By laser ablation method, on the Y cut L i T a 0 3 single crystal substrate 1, to grow L i Nb0 3 layer 17 having a thickness of 2.0 m, further L i T 30 3-layer 18 of 0.1 thereon After growth, a multilayer piezoelectric substrate having a three-layer structure was formed. Results The grown thin film was analyzed by O one oxygenate electron spectroscopy, it was confirmed that L i Nb0 3 layer 17 with no deviation in Sutoikiome tree, L i T a 0 3 layer 18 is obtained. Also, by X-ray diffraction, (110) Li Nb0 3 layer 17 and (1 10) Li TaO 3 layer 18 are twin, domain-free and heteroepitaxially grown? In order to measure the electromechanical coupling constant of this multilayer piezoelectric substrate, an A1 comb-shaped electrode was formed by a normal lithography process so that the wavelength of the surface acoustic wave was 8 m. Then, when the electromechanical coupling constant was measured with a network analyzer, it showed a very large value of 20.0%.
さらに、 該多層圧電体基板を用いて、 図 10に示すような弾性表面波増幅器 を実施例 10と同様の方法で作製した。 そして、 その弾性表面波増幅器の特性を 測定したところ、 直流印加電圧 5 V、 中心周波数 1500 MH zで 12 d Bの増 幅が確認できた。 本実施例のきわめて大きな電気機械結合定数を有する多層圧電 体基板は、 実施例 10と比較すると、 弾性表面波増幅器において約 4倍の増幅度 向上の効果があることが確認できた。  Further, using the multilayer piezoelectric substrate, a surface acoustic wave amplifier as shown in FIG. 10 was produced in the same manner as in Example 10. When the characteristics of the surface acoustic wave amplifier were measured, an increase of 12 dB was confirmed at a DC applied voltage of 5 V and a center frequency of 1500 MHz. It was confirmed that the multi-layer piezoelectric substrate having an extremely large electromechanical coupling constant of this embodiment has an effect of improving the amplification degree by about four times in the surface acoustic wave amplifier as compared with the tenth embodiment.
【比較例 5】  [Comparative Example 5]
実施例 12の多層圧電体基板の電気機械結合定数と、 各層を構成する材料単 体、 および 2層圧電体基板の電気機械結合定数とを比較した。 実施例 12と同様 の方法で各層を構成する材料単体の電気機械結合定数を測定したところ、 単結晶 (110) L i N b 03は 4.7 %、 単結晶 (1 10) L i T a 03は 0.68 %で あった。 The electromechanical coupling constant of the multilayer piezoelectric substrate of Example 12 was compared with the electromechanical coupling constant of the material constituting each layer and the two-layer piezoelectric substrate. Measurement of the electromechanical coupling constant of the material itself constituting the layers in the same manner as in Example 12, a single crystal (110) L i N b 0 3 is 4.7%, the single crystal (1 10) L i T a 0 3 was 0.68%.
また、 各構成材料を 2層構造にした場合の電気機械結合定数も測定した。 即 ち、 Yカッ ト L i Ta03基板上に実施例 12と同様にレーザアブレ一シヨン法 でし i Nb03膜を成長し、 その電気機械結合定数を測定した。 その結果、 L i Nb03ZL i Ta03の 2層構造では、 3 · 0 %となり、 単結晶 (110) L i Nb 03より低くなった。 In addition, the electromechanical coupling constant when each constituent material had a two-layer structure was also measured. Immediate Chi, similarly grown Rezaabure one Chillon method was i Nb0 3 film and Y cut L i Ta0 3 Example 12 onto the substrate to measure the electromechanical coupling constant. As a result, the two-layer structure of L i Nb0 3 ZL i Ta03, 3 · 0%, is lower than the single crystal (110) L i Nb 0 3 .
よって、 本発明の多層圧電体基板は 3層構造とすることによってはじめて電 気機械結合定数が大きく向上することがわかる。 実施例 12では約 4倍に向上し ており、 これが弾性表面波増幅器の増幅度向上につながつている。  Therefore, it can be seen that the electromechanical coupling constant is significantly improved only when the multilayer piezoelectric substrate of the present invention has a three-layer structure. In the twelfth embodiment, the improvement is about four times, which leads to an improvement in the amplification of the surface acoustic wave amplifier.
【実施例 13】 実施例 1 0と同様の方法 1 28度 Yカツ ト L i Nb03基板上に半導体層を 成長した。 次に、 所定の位置の半導体層をエッチングにより除き、 圧電体基板を 露出させた。 その圧電体基板表面に、 入出力用髙耐電力性電極として、 すだれ状 の A 1 -C u/C u/A 1一 C u積層膜電極をリソグラフィプロセスによって形 成した。 電極はピッチが 0.75 mの正規型電極とし、 伝搬長は、 3 00 mと した。 引き続き活性層に直流電界印加用の電極を形成した。 [Example 13] And growing a semiconductor layer in Example 1 0 the same manner as in 1 28 ° Y cutlet preparative L i Nb0 3 substrate. Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. On the surface of the piezoelectric substrate, an interdigitated A1-Cu / Cu / A1-1Cu laminated film electrode was formed by a lithography process as an input / output power-resistant electrode. The electrodes were regular electrodes with a pitch of 0.75 m, and the propagation length was 300 m. Subsequently, an electrode for applying a DC electric field was formed on the active layer.
弾性表面波増幅器の特性評価は RF信号を信号発生器 (AnritsuMG3670A) か ら与え、 増幅度と送信電力をパワーメーターおよびパワーセンサ (YokokawaHew lett Packard, 437B, 8481H) を用いて測定した。 増幅度は直流印加電圧 3 V、 中心 周波数 1 52 OMH zにおいて 22 dBで、 送信電力は 2.2 Wであり、 本実施例 の弾性表面波増幅器は、 移動体通信機器等の高周波部に良好なパワーアンプとし て使用でき、 しかも機器の小型化に大きく寄与できる。  The characteristics of the surface acoustic wave amplifier were evaluated by applying an RF signal from a signal generator (Anritsu MG3670A) and measuring the amplification and transmission power using a power meter and a power sensor (Yokokawa Hewlett Packard, 437B, 8481H). The amplification factor is 22 dB at a DC applied voltage of 3 V and a center frequency of 152 OMHz, and the transmission power is 2.2 W. The surface acoustic wave amplifier of this embodiment has good power for high-frequency parts such as mobile communication equipment. It can be used as an amplifier, and can greatly contribute to downsizing of equipment.
【実施例 1 4】  [Example 14]
実施例 1 0と同様に 1 28度 Yカツ ト L i Nb 03基板上に半導体層を成長 した。 次に、 半導体層を、 後から形成する入出力用電極の間にくるように加工す る力 同時に図 6に示したように該半導体層を 3つに分離するようにエッチング を行った。 そして、 露出された圧電体基板表面に入出力電極としてすだれ状の A 1電極を形成した。 電極ピッチと伝搬長は実施例 1 0と同様である。 引き続き分 離された活性層のそれぞれに直流電界印加用の電極を形成した。 And growing a semiconductor layer in Example 1 0 similarly to 1 28 ° Y cutlet preparative L i Nb 0 3 substrate. Next, a force for processing the semiconductor layer so as to be between input / output electrodes to be formed later was simultaneously etched so as to separate the semiconductor layer into three as shown in FIG. Then, interdigital A1 electrodes were formed as input / output electrodes on the exposed surface of the piezoelectric substrate. The electrode pitch and the propagation length are the same as in the tenth embodiment. Subsequently, an electrode for applying a DC electric field was formed on each of the separated active layers.
本実施例の弾性表面波増幅器では、 直流電界を各活性層に並列に印加するよ うにして特性評価を行った。 その結果、 増幅度は、 直流印加電圧 5V、 中心周波 数 1 500MHzで 8 dBであった。 実施例 1 0と比較して約 3倍近い増幅度の 向上が確認できた。  The characteristics of the surface acoustic wave amplifier of this example were evaluated by applying a DC electric field to each active layer in parallel. As a result, the amplification was 8 dB at a DC applied voltage of 5 V and a center frequency of 1,500 MHz. It was confirmed that the amplification degree was improved about three times as compared with Example 10.
【実施例 1 5】  [Example 15]
図 1 1に断面構造を示す弾性表面波コンボルバを作製した。 実施例 1 0と同様に 1 28度 Yカッ ト L i Nb03基板 1上に緩衝層 2とな る半導体層を成長した。 次に所定の位置の半導体層をエツチングによって取り除 き、 圧電体基板を露出させた。 その圧電体基板 1の表面に、 2つの入力用電極 4、 4をリソグラフィプロセスによって形成した。 引き続き、 図 1 1に示すように半 導体層の上面と圧電体基板の下面にそれぞれ取り出し電極 19を形成し、 弾性表 面波コンボルバを作製した。 A surface acoustic wave convolver having a cross-sectional structure shown in FIG. 11 was manufactured. Was grown buffer layer 2 and the Do that semiconductor layer on Example 1 0 Similarly 1 28 ° Y cut and L i Nb0 3 substrate 1. Next, the semiconductor layer at a predetermined position was removed by etching to expose the piezoelectric substrate. On the surface of the piezoelectric substrate 1, two input electrodes 4, 4 were formed by a lithography process. Subsequently, as shown in FIG. 11, extraction electrodes 19 were formed on the upper surface of the semiconductor layer and the lower surface of the piezoelectric substrate, respectively, to produce a surface acoustic wave convolver.
次に、 本実施例の弾性表面波コンボルバを用いて、 周波数 1 000MH zの 増幅特性を周波数アナライザ一により測定したところ、 取り出し電極 1 9力、ら非 線形信号であるコンボリューシヨン出力が得られた。  Next, using the surface acoustic wave convolver of the present embodiment, the amplification characteristics at a frequency of 1000 MHz were measured by a frequency analyzer, and a convolution output as a non-linear signal was obtained from the output electrode 19. Was.
【実施例 1 6】  [Example 16]
実施例 1で作製した弾性表面波増幅器とミクサおよび直交復調器を用いて携 帯電話の RF部の受信回路を作製した。 弾性表面波増幅器とミクサの間にはィン ピ一ダンス整合を取るための特別の回路は設けていない。 また、 通常、 低雑音増 幅器と高周波バンドバスフィルタによって構成される部分には、 弾性表面波増幅 器のみを用いた。 以上のようにして作製した携帯電話の RF部の受信回路に、 π /4 QP SK変調のかかった RF信号を信号発生器から与え、 受信後の I Q出力 信号をべク トルシグナルアナライザ (Yokokawa Hewlett Parckard 89441 A) を用レ、 て復調誤差を測定した。 その結果、 入力信号の強度が— 1 0〜一 1 02 dBmの とき最大のエラ一ベク トルの大きさは 1 6% rmsであった。 また、 入力データ と復調後のデータを比較した結果、 復調されたデータに誤りはなかった。 また、 弾性表面波増幅器の雑音指数および増幅度を雑音指数計 (Yokokawa Hewlett Parckard 8970B) および雑音源 (Yokokawa Hewlett Packard 346B) を用いて測定し た。 その結果、 8 1 0MH zでは雑音指数 2.5 dB、 増幅度 1 4 dBであり、 8 2 6MH zでは雑音指数 3 dB、 増幅度 1 2 dB、 8 1 5MH zでは雑音指数 1. 8 dB、 増幅度 1 6 dBであった。 また。 通過帯域外の減衰特性をネットワーク アナライザを用いて測定した。 94 OMH zでは挿入損失 35 dB、 956MH zでは挿入損失 40 dBであった。 以上より、 低雑音増幅器とバンドパスフィル 夕の代わりに弾性表面波増幅器を用いた受信回路が可能であることが確認できた。 さらに本実施例の弾性表面波増幅器を用いれば、 高周波低雑音増幅部をモノリシッ ク化することができ、 受信回路の部品点数の削減が可能となる。 Using the surface acoustic wave amplifier, the mixer, and the quadrature demodulator manufactured in Example 1, a receiving circuit of an RF unit of a mobile phone was manufactured. No special circuit is provided between the surface acoustic wave amplifier and the mixer for impedance matching. Normally, only the surface acoustic wave amplifier was used in the part composed of the low-noise amplifier and the high-frequency bandpass filter. The π / 4 QP SK modulated RF signal is supplied from the signal generator to the RF receiver circuit of the mobile phone fabricated as described above, and the IQ output signal after reception is received by a vector signal analyzer (Yokokawa Hewlett The demodulation error was measured using Parckard 89441 A). The maximum error vector was 16% rms when the input signal strength was -10 to 102 dBm. As a result of comparing the input data with the demodulated data, there was no error in the demodulated data. The noise figure and amplification of the surface acoustic wave amplifier were measured using a noise figure meter (Yokokawa Hewlett Parckard 8970B) and a noise source (Yokokawa Hewlett Packard 346B). As a result, the noise figure is 2.5 dB and the amplification is 14 dB at 810 MHz, and the noise figure is 3 dB, the amplification is 12 dB at 826 MHz, and the noise figure is 1.8 dB at 815 MHz. The degree was 16 dB. Also. Network attenuation characteristics outside the passband It was measured using an analyzer. The insertion loss was 35 dB at 94 OMHz and 40 dB at 956 MHz. From the above, it was confirmed that a receiving circuit using a surface acoustic wave amplifier instead of the low-noise amplifier and bandpass filter was possible. Further, by using the surface acoustic wave amplifier of the present embodiment, the high-frequency low-noise amplifier can be made monolithic, and the number of components of the receiving circuit can be reduced.
【実施例 17】  [Example 17]
直交変調器、 ミクサ、 バンドパスフィルタおよび 性表面波増幅器を用いて 携帯電話の RF部の送信回路を作製した。 通常、 パワーアンプによって構成され る部品に本発明の弾性表面波増幅器を用いている。 これに; rZ4 QP SK変調の かかった RF信号を信号発生器から与え、 出力信号をべク トルシグナルアナライ ザを用いて復調誤差を測定した。 その結果、 中心周波数 948MH zにおけるェ ラーベク トルの大きさは 5.5% rmsであった。 また、 このときの送信電力は 2. 2Wであった。 出力信号のスぺクトルをスぺクトラムアナライザで測定したとこ ろ、 日本デジタル方式自動車電話システム標準規格 (RCR STD-27) を 満足していることを確認した。 以上の結果から、 従来のパワーアンプの代わりに 弾性表面波増幅器を用いて送信回路を作製でき、 パワーアンブ部の小型化が可能 であることが確認できた。  Using a quadrature modulator, a mixer, a bandpass filter, and a surface acoustic wave amplifier, a transmitter circuit for the RF section of a mobile phone was fabricated. Usually, the surface acoustic wave amplifier of the present invention is used for a component constituted by a power amplifier. To this, an RF signal subjected to rZ4 QP SK modulation was supplied from a signal generator, and the output signal was measured for demodulation error using a vector signal analyzer. As a result, the magnitude of the error vector at a center frequency of 948 MHz was 5.5% rms. The transmission power at this time was 2.2 W. When the spectrum of the output signal was measured with a spectrum analyzer, it was confirmed that the system satisfies the Japanese digital car telephone system standard (RCR STD-27). From the above results, it was confirmed that the transmission circuit could be manufactured using a surface acoustic wave amplifier instead of the conventional power amplifier, and that the power embed unit could be reduced in size.
【実施例 18】  [Example 18]
実施例 17と同様な携帯電話の RF部の送信回路をバンドバスフィルタを用 いないで作製した。 その結果、 中心周波数 948 MH zにおけるエラーべク トル の大きさは、 4.0%rmsであった。 また、 このときの送信電力は 3.2 Wであ り、 送信スぺクトルは RCR STD— 27を満足していることを確認した。 以 上の結果から、 ί ^のパワーアンプモジュールとバン ドパスフィルタの代わりに、 弾性表面波増幅器を用いて送信回路を作製することができ、 パワーアンプおよび バンドパスフィルタのモノリシック化が可能であること力 ?確認できた。 【実施例 19】 A transmission circuit of the RF section of the mobile phone similar to that in Example 17 was manufactured without using a bandpass filter. As a result, the magnitude of the error vector at a center frequency of 948 MHz was 4.0% rms. The transmission power at this time was 3.2 W, and it was confirmed that the transmission spectrum satisfied RCR STD-27. From the above results, a transmission circuit can be fabricated using a surface acoustic wave amplifier instead of the power amplifier module and bandpass filter of ί ^, and the power amplifier and bandpass filter can be made monolithic. That power was confirmed. [Example 19]
通過帯域が 8 10〜 826 MH zの弾性表面波増幅器を受信回路の低雑音増 幅器およびバンドパスフィルタの代わりに用い、 通過帯域が 940〜 956MH zの弾性表面波増幅器を送信回路のパワーアンプおよびバンドバスフィルタの代 わりに用いて送受信回路を作製した。 受信部の弾性表面波増幅器は実施例 1 6と 同じものを、 送信部の弾性表面波増幅器には、 実施例 1 7と同じものを用いた。 アンテナ端子と送信回路および受信回路の間は、 送受信分波器を用いないで、 特 性インピーダンスが 50オームになるように調整したマイクロストリップライン で接続した。 この様にして作製した送受信回路の受信特性および送信特性を実施 例 16および 1 7と同様に測定した。 受信特性を測定した結果、 入力信号の強度 が、 一 1 0〜一 1 02 d Bmのとき最大のエラーべクトルの大きさは 18 % r m sであった。 また、 この時の復調されたデータに誤りはなかった。 また、 送信特 性を測定した結果、 中心周波数 948MH zにおけるエラ一べク トルの大きさは 5.4% rmsであった。 また、 このときの送信電力は 3.0 Wであり、 送信スぺ ク トルは、 RCR STD— 27を満足していること力 s '確認できた。 以上の結果 から、 携帯電話の RF部の送受信回路において、 低雑音増幅器とバンドパスフィ ルタの代わり、 およびパワーアンプモジュールとバンドパスフィルタの代わりに、 および送受信分波器の代わりとして、 弾性表面波増幅器を用いた回路が使用可能 であること力、'確認できた。 故に、 本実施例の送受信回路を用いれば、 従来の移動 体通信機器の R F部の部品点数を大幅に減少可能となり、 携帯機器端末の劇的な 小型化、 軽量化、 および低価格化が実現できる。  A surface acoustic wave amplifier with a pass band of 810 to 826 MHz is used in place of the low noise amplifier and bandpass filter in the receiving circuit, and a surface acoustic wave amplifier with a pass band of 940 to 956 MHz is used as the power amplifier in the transmitting circuit. A transmission / reception circuit was fabricated using the filter instead of the bandpass filter. The same surface acoustic wave amplifier as that of the embodiment 16 was used for the receiving unit, and the same surface acoustic wave amplifier as that of the embodiment 17 was used for the transmitting unit. The antenna terminal and the transmission and reception circuits were connected by a microstrip line adjusted to have a characteristic impedance of 50 ohms without using a transmission / reception splitter. The reception characteristics and transmission characteristics of the transmission / reception circuit thus manufactured were measured in the same manner as in Examples 16 and 17. As a result of measuring the reception characteristics, the maximum error vector was 18% rms when the input signal strength was 110 to 102 dBm. Also, there was no error in the demodulated data at this time. As a result of measuring the transmission characteristics, the magnitude of the error vector at a center frequency of 948 MHz was 5.4% rms. At this time, the transmission power was 3.0 W, and it was confirmed that the transmission spectrum s' satisfied the RCR STD-27. From the above results, in the transmitting and receiving circuit of the RF section of the mobile phone, the surface acoustic wave was used as a substitute for the low noise amplifier and bandpass filter, as a substitute for the power amplifier module and bandpass filter, and as a substitute for the transmit / receive duplexer. It was confirmed that the circuit using the amplifier was usable. Therefore, the use of the transmission / reception circuit of the present embodiment enables a drastic reduction in the number of components in the RF section of conventional mobile communication devices, and dramatically reduces the size, weight, and cost of mobile device terminals. it can.
【比較例 6】  [Comparative Example 6]
従来の G a A s FETやコンデンサ一などから形成されているパワーアンプ モジュールの典型的な大きさは、 2 5111111 1 2111111 3.7111111でぁる。 それに 対して実施例 17の弾性表面波増幅器は、 5mmX 5mmX 2 mmであり、 本発 明により、 従来のパワーアンプの大きさを著しく小型化できる。 A typical size of a power amplifier module formed from a conventional GaAs FET or a capacitor is 2511111 1 2111111 3.7111111. On the other hand, the surface acoustic wave amplifier of Example 17 has a size of 5 mm × 5 mm × 2 mm. As a result, the size of the conventional power amplifier can be significantly reduced.
本発明の弾性表面波機能素子を用いることにより、 弾性表面波増幅器の大幅 な利得の改善、 あるいは弾性表面波コンボルバの効率改善が実現できる。 また、 本発明の弾性表面波増幅器は、 実用的な低電圧で大きな増幅度が得られるため、 移動体通信機器などの高周波部に応用が可能となる。 しかも、-これまでディスク リート素子として使用され、 そのサイズも大きかった増幅器やバンドパスフィル 夕、 あるいは送受信分波器を単一部品で置き換えることも可能になるので、 移動 体通信機器の小型化、 軽量化、 薄型化、 そして低価格化に大きく貢献できる。  By using the surface acoustic wave function element of the present invention, a significant improvement in the gain of the surface acoustic wave amplifier or an improvement in the efficiency of the surface acoustic wave convolver can be realized. Further, since the surface acoustic wave amplifier of the present invention can obtain a large amplification factor at a practically low voltage, it can be applied to a high-frequency unit such as a mobile communication device. Moreover,-amplifiers, bandpass filters, and transmission / reception duplexers, which have been used as discrete elements and were large in size, can be replaced with a single component. It can greatly contribute to weight reduction, thinning, and cost reduction.

Claims

請 求 の 範 囲 The scope of the claims
1 . 圧電体基板と、 該圧電体基板上の入力電極と出力電極と、 該入力電極と該 出力電極との間に設けられた半導体層とを有し、 前記半導体層が活性層と該活性 層に格子整合する緩衝層より成ることを特徴とする弾性表面波機能素子。 1. A piezoelectric substrate, comprising: an input electrode and an output electrode on the piezoelectric substrate; and a semiconductor layer provided between the input electrode and the output electrode, wherein the semiconductor layer is an active layer and the active layer. A surface acoustic wave device comprising a buffer layer lattice-matched to the layer.
2 . 前記緩衝層が少なくともアンチモンを含む化合物であることを特徴とする 請求項 1に記載の弾性表面波機能素子。 2. The surface acoustic wave device according to claim 1, wherein the buffer layer is a compound containing at least antimony.
3 . 前記活性層が少なくともインジウムを含む化合物であることを特徴とする 請求項 1または請求項 2に記載の弾性表面波機能素子。 3. The surface acoustic wave device according to claim 1, wherein the active layer is a compound containing at least indium.
4 . 前記活性層の膜厚が 5 n m以上、 5 0 0 n m以下であることを特徴とする 請求項 1から請求項 3に記載の弾性表面波機能素子。 4. The surface acoustic wave device according to claim 1, wherein the thickness of the active layer is 5 nm or more and 500 nm or less.
5 . 圧電体基板と、 該圧電体基板上に入力電極と出力電極があり、 前記圧電体 基板が少なくとも 2種以上の異なった電気機械結合定数を有する 3層以上の多層 圧電体より成り、 前記多層圧電体の多層の中心部の圧電体膜が最も大きい電気機 械結合定数を有していることを特徵とする弾性表面波機能素子。 5. a piezoelectric substrate, comprising an input electrode and an output electrode on the piezoelectric substrate, wherein the piezoelectric substrate comprises at least two or more types of multilayer piezoelectric materials having three or more different electromechanical coupling constants; A surface acoustic wave functional element characterized in that a piezoelectric film at the center of a multilayer of a multilayer piezoelectric body has the largest electrical mechanical coupling constant.
6 . 前記多層圧電体が 3層より成り、 前記中心部の圧電体膜が L i N b 0 3膜 で、 他の圧電体が L i T a 0 3であることを特徴とする請求項 5に記載の弾性表 面波機能素子。 6. The multilayer piezoelectric body consists of three layers, the piezoelectric film of the central portion is at L i N b 0 3 film, according to claim 5, wherein the other of the piezoelectric body is L i T a 0 3 An elastic surface wave functional element according to item 1.
7 . 入出力変換として、 一方向性変換器を用いることを特徴とする請求項 5ま たは請求項 6に記載の弾性表面波機能素子。 7. The method according to claim 5, wherein a unidirectional converter is used as the input / output conversion. 7. A surface acoustic wave device according to claim 6.
8 . 前記入出力電極の間に半導体層があることを特徴とする請求項 5または請 求項 6に記載の弾性表面波機能素子。 8. The surface acoustic wave device according to claim 5, wherein a semiconductor layer is provided between the input / output electrodes.
9 . 前記半導体層が、 活性層と該活性層に格子整合する緩衝層より成ることを 特徴とする請求項 8に記載の弾性表面波機能素子。 9. The surface acoustic wave device according to claim 8, wherein the semiconductor layer comprises an active layer and a buffer layer lattice-matched to the active layer.
1 0 . 入出力変換として、 一方向性変換器を用いていることを特徴とする請求 項 1から請求項 4および請求項 8から請求項 9に記載の弾性表面波機能素子。 10. The surface acoustic wave function device according to claim 1, wherein a unidirectional converter is used as input / output conversion. 10.
1 1 . 請求項 1から請求項 4および請求項 8から請求項 1 0において前記半導 ^に直流電界を印加する電極を有していることを特徴とする弾性表面波増幅器。 11. The surface acoustic wave amplifier according to any one of claims 1 to 4, and 8 to 10, further comprising an electrode for applying a DC electric field to the semiconductor.
1 2 . 前記入出力電極の間で、 前記半導体層が 2つ以上連なっており、 しかも 逆方向に移動するキャリアを取り除いた構造、 あるいは半導体層間に活性層の無 い構造を有していることを特徴とする請求項 1 1に記載の弾性表面波増幅器。 1 2. Between the input / output electrodes, two or more of the semiconductor layers are connected, and a structure in which carriers moving in the opposite direction are removed or a structure without an active layer between the semiconductor layers is provided. The surface acoustic wave amplifier according to claim 11, wherein:
1 3 . 前記入出力電極が埋め込まれた形で緩衝層が形成され、 該緩衝層の上に 層力 ?形成されていることを とする請求項 1 1に記載の弾性表面波増幅器。 1 3. The buffer layer in the form of input and output electrodes are embedded is formed, according to claim 1 1 surface acoustic wave amplifier as claimed in to that it is the layer forces? Formed on the buffer layer.
1 4 . 前記入出力電極が高耐電力構造であることを特徴とする請求項 1 1に記 載の弾性表面波増幅器。 14. The surface acoustic wave amplifier according to claim 11, wherein the input / output electrode has a high power withstanding structure.
1 5 . 請求項 1から請求項 4および請求項 8から請求項 1 0において前記圧電 体基板上に形成された 2つの電極をともに入力電極とし、 前記半導体層の上部お よび前記圧電体基板の下部に一様な取り出し電極を有することを特徴とする弾性 表面波コンボルバ。 15. The piezoelectric device according to claim 1 to claim 4 and claim 8 to claim 10. A surface acoustic wave convolver, characterized in that two electrodes formed on a body substrate are both input electrodes, and uniform extraction electrodes are provided above the semiconductor layer and below the piezoelectric substrate.
1 6 . 送信または受信回路において、 増幅器およびバンドパスフィルタまたは 増幅器およびバンドパスフィルタおよび送受信分波器として、 請求項 1 1から請 求項 1 5までの弾性表面波機能素子が構成されていることを特徴とする送信また は受信回路。 16. The surface acoustic wave functional element according to claim 11 to claim 15 is configured as an amplifier and a bandpass filter or an amplifier and a bandpass filter and a transmission / reception duplexer in a transmission or reception circuit. A transmitting or receiving circuit.
1 7 . 前記送信または受信回路が移動体通信機器の送信または受信回路である ことを特徵とする請求項 1 6記載の移動体通信機器の送信または受信回路。 17. The transmission or reception circuit of a mobile communication device according to claim 16, wherein the transmission or reception circuit is a transmission or reception circuit of a mobile communication device.
PCT/JP1996/000339 1995-02-16 1996-02-16 Elastic surface wave functional device and electronic circuit using the element WO1996025792A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP96902454A EP0810726B1 (en) 1995-02-16 1996-02-16 Elastic surface wave functional device and electronic circuit using the element
US08/894,321 US6046524A (en) 1995-02-16 1996-02-16 Elastic surface wave functional device and electronic circuit using the element
DE69634949T DE69634949T2 (en) 1995-02-16 1996-02-16 DEVICE FOR ELASTIC SURFACE WAVES AND ELECTRONIC SWITCHING WITH SUCH A DEVICE
JP52483396A JP3936394B2 (en) 1996-02-16 1996-02-16 Surface acoustic wave functional element and electronic circuit using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/028261 1995-02-16
JP2826195 1995-02-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/499,467 Division US6198197B1 (en) 1995-02-16 2000-02-07 Surface acoustic wave element and electronic circuit using the same

Publications (1)

Publication Number Publication Date
WO1996025792A1 true WO1996025792A1 (en) 1996-08-22

Family

ID=12243639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000339 WO1996025792A1 (en) 1995-02-16 1996-02-16 Elastic surface wave functional device and electronic circuit using the element

Country Status (1)

Country Link
WO (1) WO1996025792A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI604643B (en) * 2016-09-21 2017-11-01 中華學校財團法人中華科技大學 Surface acoustic wave element and its making method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323992B2 (en) * 1972-05-22 1978-07-18
JPS5631213A (en) * 1979-08-24 1981-03-30 Matsushita Electric Ind Co Ltd Surface elastic wave element
JPS5652347U (en) * 1979-09-29 1981-05-08
JPS63206017A (en) * 1987-02-23 1988-08-25 Hitachi Ltd surface acoustic wave convolver
JPS63314906A (en) * 1987-06-18 1988-12-22 Matsushita Electric Ind Co Ltd Manufacture of surface acoustic wave device
JPS6464382A (en) * 1987-09-04 1989-03-10 Canon Kk Surface acoustic wave convolver
JPH0213008A (en) * 1988-06-30 1990-01-17 Toshiba Corp Frequency variable oscillator
JPH02214209A (en) * 1989-02-15 1990-08-27 Canon Inc Surface acoustic wave element
JPH04286170A (en) * 1991-03-14 1992-10-12 Matsushita Electric Ind Co Ltd Manufacture of semiconductor thin-film magnetoresistive element
JPH05129879A (en) * 1991-11-01 1993-05-25 Murata Mfg Co Ltd Surface acoustic wave amplifier

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323992B2 (en) * 1972-05-22 1978-07-18
JPS5631213A (en) * 1979-08-24 1981-03-30 Matsushita Electric Ind Co Ltd Surface elastic wave element
JPS5652347U (en) * 1979-09-29 1981-05-08
JPS63206017A (en) * 1987-02-23 1988-08-25 Hitachi Ltd surface acoustic wave convolver
JPS63314906A (en) * 1987-06-18 1988-12-22 Matsushita Electric Ind Co Ltd Manufacture of surface acoustic wave device
JPS6464382A (en) * 1987-09-04 1989-03-10 Canon Kk Surface acoustic wave convolver
JPH0213008A (en) * 1988-06-30 1990-01-17 Toshiba Corp Frequency variable oscillator
JPH02214209A (en) * 1989-02-15 1990-08-27 Canon Inc Surface acoustic wave element
JPH04286170A (en) * 1991-03-14 1992-10-12 Matsushita Electric Ind Co Ltd Manufacture of semiconductor thin-film magnetoresistive element
JPH05129879A (en) * 1991-11-01 1993-05-25 Murata Mfg Co Ltd Surface acoustic wave amplifier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0810726A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI604643B (en) * 2016-09-21 2017-11-01 中華學校財團法人中華科技大學 Surface acoustic wave element and its making method

Similar Documents

Publication Publication Date Title
EP0810726B1 (en) Elastic surface wave functional device and electronic circuit using the element
US6927651B2 (en) Acoustic resonator devices having multiple resonant frequencies and methods of making the same
EP0609555B1 (en) Frequency selective component and method
US20250070746A1 (en) Acoustic wave devices and methods for radio-frequency applications
US7187253B2 (en) Film bulk acoustic-wave resonator and method for manufacturing the same
KR100804407B1 (en) Manufacturing method of boundary acoustic wave device
EP0920129A1 (en) Elastic boundary wave device and method of its manufacture
EP2936680B1 (en) Mems component comprising aln and sc and method for manufacturing a mems component
US6737941B1 (en) Interface acoustic waves filter, especially for wireless connections
GB2479240A (en) A coupled resonator filter having a relatively low insertion loss
US20010035695A1 (en) Surface acoustic wave device, shear bulk wave transducer, and longitudinal bulk wave transducer
CN110912529A (en) Monolithic filter ladder network and method of making same
Kochhar et al. X-band bulk acoustic wave resonator (XBAW) using periodically polarized piezoelectric films (P3F)
US7148604B2 (en) Piezoelectric resonator and electronic component provided therewith
CN110995199B (en) Duplexer
TW432783B (en) Surface acoustic wave device
WO1996025792A1 (en) Elastic surface wave functional device and electronic circuit using the element
US8950057B2 (en) Parallel-plate structure fabrication method
US20220094326A1 (en) Piezoelectric element, method of manufacturing the same, surface acoustic wave element, and piezoelectric thin film resonance element
JP3936394B2 (en) Surface acoustic wave functional element and electronic circuit using the same
JPH10126207A (en) Surface acoustic wave device
Lakin et al. Thin film bulk acoustic wave resonator and filter technology
US20250088166A1 (en) Bulk acoustic wave resonator, manufacturing method thereof and electronic device
JPH1056354A (en) Surface acoustic wave filter and method of manufacturing the same
CN119154831A (en) Surface acoustic wave resonator, filter, multiplexer and radio frequency front-end circuit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96192474.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970705637

Country of ref document: KR

Ref document number: 1996902454

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996902454

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970705637

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08894321

Country of ref document: US

WWR Wipo information: refused in national office

Ref document number: 1019970705637

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996902454

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载