WO1996025185A1 - Artificial vessel systems and process for producing them - Google Patents
Artificial vessel systems and process for producing them Download PDFInfo
- Publication number
- WO1996025185A1 WO1996025185A1 PCT/EP1996/000608 EP9600608W WO9625185A1 WO 1996025185 A1 WO1996025185 A1 WO 1996025185A1 EP 9600608 W EP9600608 W EP 9600608W WO 9625185 A1 WO9625185 A1 WO 9625185A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- artificial
- blood vessel
- rgd
- coated
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 210000002889 endothelial cell Anatomy 0.000 claims abstract description 69
- 230000021164 cell adhesion Effects 0.000 claims abstract description 46
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 26
- 239000002473 artificial blood Substances 0.000 claims abstract description 22
- 239000011248 coating agent Substances 0.000 claims abstract description 19
- 238000000576 coating method Methods 0.000 claims abstract description 19
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract description 18
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 15
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 15
- 229920000729 poly(L-lysine) polymer Polymers 0.000 claims abstract description 9
- 125000003172 aldehyde group Chemical group 0.000 claims abstract description 7
- 229960001230 asparagine Drugs 0.000 claims abstract description 6
- 229920001542 oligosaccharide Polymers 0.000 claims abstract description 5
- 150000002482 oligosaccharides Polymers 0.000 claims abstract description 5
- 230000002792 vascular Effects 0.000 claims description 57
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 39
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 39
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 claims description 35
- 210000004027 cell Anatomy 0.000 claims description 35
- 239000000126 substance Substances 0.000 claims description 34
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 20
- 108010039918 Polylysine Proteins 0.000 claims description 13
- 229920000656 polylysine Polymers 0.000 claims description 13
- 102000005962 receptors Human genes 0.000 claims description 13
- 108020003175 receptors Proteins 0.000 claims description 13
- 229920002994 synthetic fiber Polymers 0.000 claims description 9
- 150000001720 carbohydrates Chemical class 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- -1 polytetrafluoroethylene Polymers 0.000 claims description 5
- 229920002635 polyurethane Polymers 0.000 claims description 5
- 239000004814 polyurethane Substances 0.000 claims description 5
- 150000001413 amino acids Chemical group 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 102000019997 adhesion receptor Human genes 0.000 claims description 3
- 108010013985 adhesion receptor Proteins 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 abstract description 28
- 108010038807 Oligopeptides Proteins 0.000 abstract description 2
- 102000015636 Oligopeptides Human genes 0.000 abstract description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 abstract 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 abstract 1
- 239000004471 Glycine Substances 0.000 abstract 1
- 235000009582 asparagine Nutrition 0.000 abstract 1
- 229960000587 glutaral Drugs 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 abstract 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 23
- 230000010412 perfusion Effects 0.000 description 23
- 108010067306 Fibronectins Proteins 0.000 description 10
- 102000016359 Fibronectins Human genes 0.000 description 10
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 102000004196 processed proteins & peptides Human genes 0.000 description 8
- 102000004506 Blood Proteins Human genes 0.000 description 7
- 108010017384 Blood Proteins Proteins 0.000 description 7
- 150000001299 aldehydes Chemical group 0.000 description 6
- 230000002503 metabolic effect Effects 0.000 description 6
- 235000015097 nutrients Nutrition 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 102000007547 Laminin Human genes 0.000 description 4
- 108010085895 Laminin Proteins 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004626 scanning electron microscopy Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 3
- 238000007675 cardiac surgery Methods 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007631 vascular surgery Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 101001027128 Homo sapiens Fibronectin Proteins 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 208000007536 Thrombosis Diseases 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 230000023555 blood coagulation Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 102000006495 integrins Human genes 0.000 description 2
- 108010044426 integrins Proteins 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZRVZOBGMZWVJOS-VMXHOPILSA-N (2s)-6-amino-2-[[(2s)-1-[(2s)-2-[[(2s)-2-[[2-[[(2s)-2-[(2-aminoacetyl)amino]-5-(diaminomethylideneamino)pentanoyl]amino]acetyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]pyrrolidine-2-carbonyl]amino]hexanoic acid Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)NC(=O)CN ZRVZOBGMZWVJOS-VMXHOPILSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- 101000781681 Protobothrops flavoviridis Disintegrin triflavin Proteins 0.000 description 1
- 102000007000 Tenascin Human genes 0.000 description 1
- 108010008125 Tenascin Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013553 cell monolayer Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 108010064365 glycyl- arginyl-glycyl-aspartyl-seryl-prolyl-lysine Proteins 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000002885 thrombogenetic effect Effects 0.000 description 1
- 230000014599 transmission of virus Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/227—Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/507—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
Definitions
- the invention relates to an artificial blood vessel system, on the precoated surfaces of which a substance with cell adhesion is applied.
- the invention further relates to a method for producing the artificial vascular system, in which the inner surface of the vascular system is precoated and, in a further process step, a substance is applied which is bound by certain cell adhesion receptors.
- the inner surface In order to avoid such disturbances in artificial vascular systems, the inner surface must be pretreated accordingly.
- endothelial cells EC
- EC endothelial cells
- a major disadvantage is that the adhesion of cells, in particular endothelial cells, to the inner walls of the synthetic materials is very low. Endothelial cell colonization on the inner walls is promoted, however, if a substance is applied there beforehand which increases the desired cell adhesion. These substances are then recognized and bound by the receptors of the cells that are to be colonized.
- various methods are known which improve this adhesion to the inner walls of the vascular system.
- the inner surface of these synthetic blood vessel systems is e.g. precoated using various matrix proteins.
- Fibronectin which is applied to PTFE surfaces, is considered to be the main success substance for cell adhesion.
- Sank et al. disclose a process in which PTFE grafts are initially either with plasma proteins such as gelatin, laminin, fibronectin and collagen or with peptides that are RGD- Sequence included, coated directly. This is followed by colonization with endothelial cells (Sank et al., Am J Surg 1992, No. 164, pages 199-204).
- European patent application EP 0 531 547 AI describes an artificial blood vessel system which is coated with a plasma protein which has endothelial cell adhesion.
- the proteins used are collagen, gelatin, laminin and fibronectin.
- the plasma protein is covalently bound to the inner walls of the synthetic material of the vascular system via functional hydroxide, carboxyl-epoxy or amino groups.
- Endothelial cells can then be colonized on these inner walls pre-coated in this way.
- a complicated and long-lasting precoating which takes place before cell colonization, stands in the way of a wide range of clinical applications.
- the known methods are mainly used to coat surfaces of polytetrafluoroethylene (PTFE). The Coating of dacron and polyurethane surfaces was also carried out, albeit less frequently.
- RGD arginine-glycine-asparagine
- the RGD-containing substance is brought directly onto the synthetic inner surface of the vessel, the RGD-containing substance is only randomly, unspecifically and incompletely bound to the synthetic material. This has the consequence that the density of the RGD sequences on the inner walls of the vascular system is very low. This low density in turn only results in a low cell population. A trouble-free flow through the artificial vascular system cannot be guaranteed.
- the direct coating of the surface of the vessel with an RGD-containing substance is therefore not to be regarded as optimal, both for cell adhesion and retention and for the resulting metabolic properties of the artificial vascular system.
- the object of the present invention is to provide an artificial blood vessel system in which the Adhesion and retention of cells, in particular of endothelial cells, is increased and improved.
- the use of such artificial blood vessel systems results in an uninterrupted blood flow, which reduces the risk of thrombosis and thus reduces the occlusion rate of the artificial vascular prosthesis.
- the artificial blood vessel system is made of a synthetic material such as polytetrafluoroethylene (PTFE), polyurethane, silicone and the like.
- the artificial blood vessel systems according to the invention contain an inner precoated surface to which a substance with cell adhesion properties is applied.
- the coating of the inner surface comprises two components which are reacted with one another, namely a first macromolecular component with more than one primary amino group, and a second component which has at least two reactive groups, of which at least one aldehyde group.
- a poly-lysine hydrohalide preferably a poly-L-hydrohalide and in particular a poly-L-lysine hydrobromide, is particularly suitable.
- Glutaraldehyde is preferably used as the second component.
- the substance applied to the pre-coated inner surface which promotes cell adhesion is an oligosaccharide, peptide or protein. These substances have at least one RGD Sequence on. Cell receptors, in particular endothelial cell receptors, are bound via this RGD sequence.
- the artificial blood vessels according to the invention bring about an increased cell colonization and retention compared to the artificial blood vessel systems known from the prior art due to the high density of the adhesion-promoting substances. As a result, the blood flow and blood clotting run smoothly. Adverse effects, e.g. occlusion of the artificial blood vessel systems are effectively avoided.
- the artificial blood vessel system according to the invention is particularly suitable as a replacement for natural arterial vascular systems.
- the artificial vascular systems according to the invention are particularly suitable in cardiac and vascular surgery as a replacement for natural vascular systems.
- the artificial vascular system is coated with a macromolecular component which must have more than one primary amino group.
- the primary amino group-containing, macromolecular component with a implemented second component which contains at least two reactive groups, including at least one aldehyde group.
- the artificial vascular system according to the invention mainly consists of a synthetic material, such as polytetrafluoroethylene (PTFE), polyurethane, silicone and the like.
- PTFE polytetrafluoroethylene
- process step a) the inner wall of the artificial vascular system is coated with the first macromolecular component.
- An important aspect of the inventive method is that the primary amino groups of the macromolecular component of process step a) are arranged in side chains.
- Poly-lysine hydrohalide in particular poly-L-lysine hydrohalide, is preferably used as the macromolecular component.
- the use of poly-L-lysine hydrobromide is particularly advantageous.
- this macromolecular component is reacted with a second component, the second component being used in a molar amount which is suitable for functionalizing all the primary amino groups of the first component.
- glutardialdehyde is particularly advantageous here.
- the artificial vascular system is coated on the inside by process steps a) and b). After the inner surface has been precoated, a peptide, saccharide or protein is optionally applied to the coated surface in process step c), which causes cell adhesion and retention of the desired cells.
- This substance can be an oligopeptide, saccharide or protein. It must contain at least one reactive group that can react with the derivatized coating material, e.g. primary amino groups.
- Process steps a) and b) lead to a coating the artificial inner walls of the vessel, which consists of two components.
- the second component of the coating which contains at least two reactive groups and at least one aldehyde group thereof, is particularly important for the invention.
- This component acts as a spacer between the inner surface of the vascular system and the cell receptors of the cells that are located on the surface.
- the two-component coating effects a targeted orientation and binding of the substances that cause cell adhesion; This is because the primary NH 2 groups of the first component, which are regularly spaced from one another and are spaced apart from one another, are used to selectively bind the second component, which is preferably a glutardialdehyde.
- the glutardialdehyde is bound via the first aldehyde functions to the primary amino groups of the artificial vascular system precoated with poly-lysine hydrohalide, in particular with poly-L-lysine hydrobromide.
- the pre-coated vascular system is then reacted with a substance that has specific adhesion to the cells that are to be colonized.
- Oligosaccharides, peptides or proteins, which contain, for example, an RGD sequence are particularly suitable for the adhesion and retention of endothelial cells and other cells.
- the freely available aldehyde functions of the two-component coating which can be provided in particular by a derivatized polyysine, bind, for example, primary amino groups of the substances having specific cell adhesion used.
- the coating mechanism of the method according to the invention is shown in FIGS. 1 a) to c).
- PBS phosphate-buffered saline
- a solution of 0.2% glutardialdehyde (Sigma GmbH, Deisenhofen, FRG) in PBS is instilled into the grafts in process step b) and left to stand for 10 minutes.
- the graft is rinsed again with PBS.
- the graft pre-coated in this way is completely filled with 100 ⁇ g / ml of a synthetic peptide which promotes the adhesion of endothelial cells in PBS (Gly-Arg-Gly-Asp-Ser-Pro-Lys) (Gibco, Life Technologies Inc. , Gaithersburg, USA), which contains the RGD sequence, filled and left for 60 minutes.
- PBS Gly-Arg-Gly-Asp-Ser-Pro-Lys
- a solution with 1% bovine serum albumin (Sigma Chemical Co., St. Louis, USA) in PBS is introduced into the grafts for 30 minutes in order to occupy possible unbound aldehyde sites.
- the graft is then washed with PBS.
- An endothelial cell culture is created on the RGD-peptide-coated vascular system, which is obtained from a surface vein, for example from an adult's saphene (AHSVEC). Endothelial cells from the second to third culture passages are treated with trypsin, centrifuged and resuspended in the complete nutrient medium. An aliquot is used for cell counting in a hemocytometer and the cell suspension is adjusted to a cell density of 1.2 x 10 5 endothelial cells / cm 2 in order to cover the available prosthesis surface of 6.3 cm 2 .
- the graft is filled with the endothelial cell suspension by means of a syringe, closed at both ends and incubated for 30 minutes in a humidified incubator in an atmosphere of 5% carbon dioxide / 95% air at a temperature of 37 ° C. After 15 minutes, the graft segments are rotated once through 180 °. At the end of the colonization process, the grafts are rinsed with the nutrient medium.
- Group 1 represents an uncoated PTFE vascular system.
- a PTFE graft coated with human fibronectin is referred to as Group 2.
- Comparative groups 1 and 2 were produced by the processes known from the prior art.
- Group 3 is a precoated blood vessel system according to the invention, which is produced as described in the exemplary embodiment has been .
- Group 4 is a pre-coated blood vessel system which was produced in accordance with process steps a) and b) according to the invention. However, there is no RGD-containing substance with cell adhesion.
- the Luer connectors were then replaced and the grafts placed in an artificial flow circuit in order to determine the resistance to shear stress and the cell retention of an applied endothelial cell seed on the PTFE surfaces (see FIG. 2).
- a pulsating flow was performed using a roller pump (Medax, Kiel, FRG) of a cardiotomy container, equipped with a perfusion medium filter and an air bubble filter (Sorin Biomedica, Saluggia, Italy) and an extracorporeal standard perfusion tube (Jostra, Hirrlingen, FRG) in one closed, sterile system.
- the PTFE grafts provided with a cell culture, which were enclosed in a specially developed glass tube, were integrated into the circuit via the previously inserted Luer connectors.
- the system was filled with 500 ml of M-199 nutrient medium, 10% human serum and antibiotics. No endothelial cell growth factors were added to the perfusion medium and the temperature was raised to 37 while performing with a water bath
- the samples are fixed in 3.5% glutaraldehyde for at least 4 hours and rinsed with phosphate buffer solution. This is followed by post-fixation for 2 hours in 2% osmium tetroxide in buffer solution. After dehydration using various ethanol solutions, the samples are dried to their critical point with liquid CO 2 , sputter-coated in a vacuum evaporator with gold / palladium, and with a scanning electron microscope (Philips XL 20, Kassel, Germany), which has an acceleration voltage of 25 kV is operated, examined.
- a scanning electron microscope Philips XL 20, Kassel, Germany
- FIGS. 3 to 5 A summary of the results of the scanning electron microscopy is shown in FIGS. 3 to 5.
- the results of the comparative tests for groups 1, 2 and 3 show that the endothelial cell adhesion and retention on PTFE-coated vascular prostheses according to the invention after colonization (FIGS. 3a, 4a, 5a) and perfusion (FIGS. 3b, 4b , 5b) are significantly increased and improved in an artificial flow circuit compared to the uncoated and coated PTFE vascular prostheses known from the prior art.
- Group 1 In uncoated PTFE vascular systems, 30 minutes after cell colonization of 1.2 ⁇ 10 5 AHSVEC / cm 2, 14.9% ⁇ 3.1% of the area was covered with endothelial cells. After the perfusion, the endothelial cell adhesion was 2.0% ⁇ 1.0%. Cell retention was 13.9% ⁇ 7.9% (see Figures 6 and 7).
- Group 2 The pre-coating of PTFE grafts with human fibronectin resulted in endothelial cell adhesion after endothelial cell colonization of 26.0% ⁇ 3.3%. After perfusion in the artificial circuit, the endothelial cell adhesion was 11.8% ⁇ 1.6%. The calculated cell retention was 45.5% ⁇ 2.1%. Both endothelial cell adhesion and retention were considerably higher than in group 1 (see FIGS. 6 and 7).
- Group 3 Endothelial cell adhesion of 30.6% ⁇ 2.1% was observed in the PTFE vascular systems pretreated according to the invention. Perfusion of the PTFE grafts resulted in endothelial cell adhesion of 19.3% ⁇ 2.8%. Endothelial cell retention was 62.9% + 7.5%. Compared to group 1 and group 2 (see FIGS. 6 and 7), there was a further significant increase in endothelial cell adhesion and retention. This better result is primarily due to the precoating technique according to the invention. In the von Sank ' et al. The RGD peptides are applied directly to the PTFE material without pre-coating. Further subordinate differences consist in the fact that Sank et al.
- Group 4 The precoating of PTFE grafts according to the process steps according to the invention with polylysine / glutardialdehyde (however, there is no RGD-containing substance with cell adhesion) resulted in endothelial cell adhesion after endothelial cell colonization of 10.5% ⁇ 1.1%. After perfusion in the artificial circuit, the endothelial cell adhesion was 0.7% ⁇ 0.2%. The calculated cell retention was 6.6% ⁇ 1.5%. Both endothelial cell adhesion and retention were considerably lower compared to group 3 (see FIGS. 6 and 7).
- the improved results with regard to cell adhesion and cell retention of the artificial vascular system according to the invention can be attributed to the precoating method of the invention.
- two intermediate steps are used to connect the cell adhesion-demanding substance to the inner wall of the vascular system surface. This leads to a strong biochemical bond of the adhesion-promoting substance with the graft and an increased resistance to shear stress.
- the substance promoting adhesion is bound to the artificial inner walls via the aldehyde group of the second component that is still available. Proteins and peptides with at least one RGD sequence bound to the second coating component, for example, via primary amino groups.
- group 3 which corresponds to the artificial blood vessel systems according to the invention, has a higher resistance to shear stress.
- This increased resilience was determined based on the extent of endothelial cell adhesion and retention after perfusion in the artificial circuit. While 19.3% ⁇ 2.8% endothelial cell adhesion was found after perfusion on the transplants according to the invention coated with RGD peptides, this was only 11.8% ⁇ 1.6% in the case of fibronectin-coated transplants. .
- the endothelial cell adhesion after perfusion was 2.0% ⁇ 1.0% on uncoated grafts. On grafts coated exclusively with polylysine / glutardialdehyde, the endothelial cell adhesion after perfusion was only 0.7% ⁇ 0.2%.
- the cell adhesion and retention of endothelial cells on vascular systems coated according to the invention is considerably increased. Due to their improved metabolic properties, the coated vascular systems according to the invention reduce or avoid disturbances and side effects which arise, for example, from contact of the circulating blood stream with the plastic material. The improved metabolic properties compared to the prior art are due to an increased density of the biologically active substances that promote cell adhesion.
- the inventive vascular systems replace the natural vessels in the cardiovascular system, particularly in cardiac and vascular surgery.
- FIG. 1 Schematic representation of biochemical reactions in the inventive method.
- Glutardialdehyde binds via aldehyde functions to the primary amino group of polylysine, with which the PTFE material is precoated (a).
- the available aldehyde functions of the derivatized polylysine can bind primary amino groups of the synthetic, adhesion-promoting RGD peptides (b).
- RGD peptides bind primary amino groups of the synthetic, adhesion-promoting RGD peptides
- endothelial cells interact with the RGD sequence bound to the inner wall of the vascular system and adhere to the PTFE graft (c).
- FIG. 2 Schematic representation of the artificial circuit. Cardiotomy container (1) with air bubble filter (2), perfusion medium filter (3), water bath (4), extracorporeal perfusion tube (5), membrane measuring transducer (6), pressure and temperature monitor (7), glass tube holding the graft enclosed, with inlet and outlet for the surrounding medium (8), PTFE-graft (9) populated with cells, temperature transducer (10), roller pump (11), flow nutrient medium (12), inlet for C0 2 setting (13 ), Inlet for nutrient medium (14). The arrows point in the direction of the river.
- FIG. 3 scanning electron micrography of an uncoated PTFE graft after a 30-minute endothelial cell colonization (1.2 ⁇ 10 5 EC / cm 2 ) (FIG. 3 a) and after a one-hour perfusion in a flow circuit (100 ml / min .) (Fig. 3 b). Original magnification x 618.
- FIG. 4 scanning electron micrography of a fibronectin-coated PTFE graft after 30 minutes of endothelial cell colonization (1.2 ⁇ 10 5 EC / cm 2 ) (FIG. 4 a) and after an hour's perfusion in the flow circuit (100 ml / min.) (Fig. 4 b). Original magnification x 618.
- FIG. 5 scanning electron micrography of a PTFE graft which is coated with adhesion-demanding RGD peptide, 30 minutes after endothelial cell colonization (1.2 ⁇ 10 5 EC / cm 2 ) (FIG. 5 a) and after one hour of perfusion in the flow circuit (100 ml / min.) (Fig. 5 b).
- FIG. 6 Comparison of the endothelial cell adhesion on uncoated, coated with fibronectin (HFN), with polylysine / glutardialdehyde (PL / GA; without RGD) and with adhesion-demanding
- RGD peptide (RGD) coated PTFE grafts The area covered with EC (%) 30 minutes after endothelial cell colonization
- FIG. 7 Comparison of the EC retention (adherent cells after per fusion / original adherent cells after colonization) on uncoated, coated with fibronectin (HFN), with polylysine / glutardialdehyde (PL / GA; without RGD) and with adhesion-promoting RGD peptide (RGD) coated PTFE grafts. Calculated standard deviation in brackets.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
The invention relates to an artificial blood vessel system with an internal surface coating. As against prior art systems, the artificial blood vessel system of the invention has increased cell adhesion and retention, especially of endothelial cells. The invention also relates to a process for producing an artificial vessel system in which a two-component coating is applied to the inner surface of the vessels in two steps. The first component is macromolecular and contains more than one primary amino group. The preferred macromolecular component is poly-L-lysine hydrobromide. The second component, which is added in process step b), contains at least two active groups, including at least one aldehyde group. It is of special advantage here to use glutaric dialdehyde. The third component comprises an oligo saccharide, oligo peptide or oligo protein containing an arginine-glycine asparagine (RGD) sequence which especially increases the fixing of endothelial cells.
Description
Künstliche Gefäßsysteme und Verfahren zu ihrer Herstellung Artificial vascular systems and processes for their manufacture
Die Erfindung betrifft ein künstliches Blutgefäßsystem, auf dessen vorbeschichteten Oberflächen eine Substanz mit Zell- adhäsion aufgebracht ist.The invention relates to an artificial blood vessel system, on the precoated surfaces of which a substance with cell adhesion is applied.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung des künstlichen Gefäßsystems, in welchem die innere Oberfläche des Gefäßsystems vorbeschichtet und in einem weiteren Verfah¬ rensschritt eine Substanz aufgebracht wird, die von bestimmten Zelladhäsionsrezeptoren gebunden wird.The invention further relates to a method for producing the artificial vascular system, in which the inner surface of the vascular system is precoated and, in a further process step, a substance is applied which is bound by certain cell adhesion receptors.
Die chemische und physikalische Zusammensetzung von künstlichen Gefäßsystemen wird stetig weiterentwickelt und verbessert, da autologe Gefäßsysteme als Ersatz für natürliche Gefäßsysteme nur beschränkt verfügbar sind. Bei den Gefäßsystemen ist ins- besondere die innere Oberfläche, die zahlreiche mechanische und metabolische Eigenschaften aktiviert, von entscheidender Bedeu¬ tung. Dies gilt ganz besonders für künstliche Blutgefäßsysteme, denn die innere Oberfläche dieser Gefäßsysteme ist entscheidend für den störungsfreien Blutfluß und die Blutgerinnung.The chemical and physical composition of artificial vascular systems is constantly being further developed and improved, since autologous vascular systems as a replacement for natural vascular systems are only available to a limited extent. In the vascular systems, the inner surface, which activates numerous mechanical and metabolic properties, is of particular importance. This is particularly true for artificial blood vessel systems, because the inner surface of these vascular systems is crucial for the trouble-free blood flow and blood clotting.
So kann der Einsatz unbehandelter, synthetischer Gefäßtrans¬ plantate, die insbesondere in der Herz- und Gefäßchirurgie als Blutgefäßersatz verwendet werden, bei den Patienten einen Ver¬ schluß der Gefäßsysteme verursachen, die zu den bekannten, mög-_
licherweise auch letalen Konsequenzen, beispielsweise zu einem Schlaganfall, führen können.For example, the use of untreated, synthetic vascular grafts, which are used as a blood vessel replacement in particular in cardiac and vascular surgery, can cause the vascular systems in patients to become occluded. can also lead to lethal consequences, such as a stroke.
Um derartige Störungen bei künstlichen Gefäßsystemen zu vermei- den, muß die innere Oberfläche entsprechend vorbehandelt wer¬ den. So werden bei künstlichen Gefäßprothesen Endothelzellen (EC) in das Innere des Systems eingebracht. Die Anlagerung einer natürlichen Endothelzellschicht an den Innenwänden der künstlichen Gefäßsysteme verringert die Gefahr einer Thrombose und somit die Verschlußrate der Kunstprothese.In order to avoid such disturbances in artificial vascular systems, the inner surface must be pretreated accordingly. In artificial vascular prostheses, for example, endothelial cells (EC) are introduced into the interior of the system. The accumulation of a natural endothelial cell layer on the inner walls of the artificial vascular systems reduces the risk of thrombosis and thus the rate of occlusion of the artificial prosthesis.
Ein wesentlicher Nachteil besteht jedoch darin, daß die Adhä¬ sion von Zellen, insbesondere von Endothelzellen an die Innen¬ wände der synthetischen Materialien sehr gering ist. Die Endo- thelzellenbesiedlung an den Innenwänden wird jedoch gefördert, wenn dort vorher eine Substanz aufgebracht wird, die die ge¬ wünschte Zelladhäsion erhöht . Diese Substanzen werden dann von den Rezeptoren der Zellen, die angesiedelt werden sollen, er¬ kannt und gebunden. Bezüglich der Endothelzellenadhäsion bei künstlichen Blutgefäßen sind verschiedene Verfahren bekannt, die diese Adhäsion an den Innenwänden des Gefäßsystems ver¬ bessern. Die innere Oberfläche dieser synthetischen Blutgefä߬ systeme wird z.B. unter Verwendung verschiedener Matrixproteine zunächst vorbeschichtet.A major disadvantage, however, is that the adhesion of cells, in particular endothelial cells, to the inner walls of the synthetic materials is very low. Endothelial cell colonization on the inner walls is promoted, however, if a substance is applied there beforehand which increases the desired cell adhesion. These substances are then recognized and bound by the receptors of the cells that are to be colonized. With regard to the endothelial cell adhesion in artificial blood vessels, various methods are known which improve this adhesion to the inner walls of the vascular system. The inner surface of these synthetic blood vessel systems is e.g. precoated using various matrix proteins.
Als Vorbeschichtungssubstanzen sind insbesondere Plasmaproteine wie Collagen und Laminin bekannt, die eine Adhäsion der Endo¬ thelzellen verbessern. Fibronektin, das auf PTFE-Oberflachen aufgebracht wird, gilt als die Haupterfolgssubstanz der Zell- adhäsion.Plasma proteins such as collagen and laminin, which improve adhesion of the endothelial cells, are known in particular as precoating substances. Fibronectin, which is applied to PTFE surfaces, is considered to be the main success substance for cell adhesion.
Sank et al. offenbaren ein Verfahren, in dem PTFE-Transplantate zunächst entweder mit Plasmaproteinen wie Gelatine, Laminin, Fibronektin und Collagen oder mit Peptiden, die eine RGD-
Sequenz enthalten, direkt beschichtet werden. Anschließend er¬ folgt die Besiedelung mit Endothelzellen (Sank et al . , Am J Surg 1992, Nr. 164, Seiten 199-204) .Sank et al. disclose a process in which PTFE grafts are initially either with plasma proteins such as gelatin, laminin, fibronectin and collagen or with peptides that are RGD- Sequence included, coated directly. This is followed by colonization with endothelial cells (Sank et al., Am J Surg 1992, No. 164, pages 199-204).
In der europäischen Patentanmeldung EP 0 531 547 AI wird ein künstliches Blutgefäßsystem beschrieben, das mit einem Plasma¬ protein, das Endothelzellenadhäsion aufweist, beschichtet wird. Die verwendeten Proteine sind Collagen, Gelatin, Laminin und Fibronektin. Das Plasmaprotein wird an die Innenwände des syn- thetischen Materials des Gefäßsystems über funktionelle Hydroxid-, Carboxyl-Epoxy- oder Aminogruppen kovalent gebunden.European patent application EP 0 531 547 AI describes an artificial blood vessel system which is coated with a plasma protein which has endothelial cell adhesion. The proteins used are collagen, gelatin, laminin and fibronectin. The plasma protein is covalently bound to the inner walls of the synthetic material of the vascular system via functional hydroxide, carboxyl-epoxy or amino groups.
Auf diesen derart vorbeschichteten Innenwänden können dann Endothelzellen angesiedelt werden.Endothelial cells can then be colonized on these inner walls pre-coated in this way.
Einige dieser aus dem Stand der Technik bekannten Verfahren weisen jedoch erhebliche Nachteile auf.However, some of these methods known from the prior art have considerable disadvantages.
So steht eine komplizierte und langanhaltende Vorbeschichtung, die vor der Zellbesiedlung stattfindet, einer klinischen An¬ wendung in breitem Umfang entgegen. Eine mögliche Übertragung von Virusinfektionen, die beispielsweise durch eine Vorbe¬ schichtung mit Humanplasmakomponenten, wie Fibrinkleber, er- folgen kann, sollte ebenfalls vermieden werden. Darüber hinaus ist eine intravaskuläre Anwendung der Plasmaproteine Thrombin und Fibrin hochgradig thrombogen und fördert möglicherweise eine Koagulation, sofern eine Endothelzellenmonoschicht nicht sofort nach der Endothelzellenbesiedlung erzielt" werden kann. Die bekannten Verfahren werden hauptsächlich verwendet, um Oberflächen aus Polytetrafluorethylen (PTFE) zu beschichten. Die Beschichtung von Oberflächen aus Dacron und Polyurethan wurde auch, wenn auch seltener, durchgeführt.For example, a complicated and long-lasting precoating, which takes place before cell colonization, stands in the way of a wide range of clinical applications. A possible transmission of virus infections, which can occur, for example, by pre-coating with human plasma components such as fibrin glue, should also be avoided. Can be "Furthermore, an intravascular application of plasma proteins thrombin and fibrin is thrombogenic highly and possibly promotes coagulation, an endothelial cell monolayer not provided immediately after the endothelial colonization obtained. The known methods are mainly used to coat surfaces of polytetrafluoroethylene (PTFE). The Coating of dacron and polyurethane surfaces was also carried out, albeit less frequently.
Die Adhäsion von Endothelzellen an Fibronektin und auch an Laminin und Tenascin ist auf eine Aminosäuresequenz zurückzu-
führen, die in diesen Plasmaproteinen enthalten ist. Diese Sub¬ stanz ist ein Peptid, das eine Arginin-Glycin-Asparagin (RGD) - Aminosäuresequenz enthält. Eine Substanz, die mindestens eine Arginin-Glycin-Asparagin-Aminosäuresequenz enthält, wird im folgenden RGD-enthaltende Substanz genannt. Diese Sequenz wird von Integrinrezeptoren der Endothelzelle und anderen Zellen erkannt (Takemoto et al . , ASAIO Transactions 1989; Nr. 35, Seiten 354-356) .The adhesion of endothelial cells to fibronectin and also to laminin and tenascin is due to an amino acid sequence. lead, which is contained in these plasma proteins. This substance is a peptide which contains an arginine-glycine-asparagine (RGD) amino acid sequence. A substance which contains at least one arginine-glycine-asparagine amino acid sequence is called RGD-containing substance in the following. This sequence is recognized by integrin receptors of the endothelial cell and other cells (Takemoto et al., ASAIO Transactions 1989; No. 35, pages 354-356).
Gegenüber den natürlich vorkommenden Sequenzen in Plasmapro¬ teinen wird jedoch die Zellenhaftung durch synthetische, RGD- enthaltende Peptide erhöht . Dies wird auf die gegenüber den natürlichen Sequenzen unterschiedlichen Strukturen der synthe¬ tischen Peptide zurückgeführt. Darüber hinaus können synthe- tische, RGD-enthaltende Peptide für Zellrezeptoren selektiver sein als Peptide, die den natürlichen Sequenzen extrazellulärer Matrixproteine entsprechen. Substanzen, die eine RGD-Sequenz enthalten, werden von verschiedenen Zellrezeptoren, insbeson¬ dere von Endothelzellrezeptoren, erkannt und gebunden.Compared to the naturally occurring sequences in plasma proteins, however, cell adhesion is increased by synthetic peptides containing RGD. This is attributed to the different structures of the synthetic peptides compared to the natural sequences. In addition, synthetic RGD-containing peptides for cell receptors can be more selective than peptides that correspond to the natural sequences of extracellular matrix proteins. Substances which contain an RGD sequence are recognized and bound by various cell receptors, in particular endothelial cell receptors.
Wird die RGD-enthaltende Substanz direkt auf die synthetische, innere Gefäßoberfläche gebracht, so erfolgt nur eine zufällige, unspezifische und unvollständige Bindung der RGD-enthaltenden Substanz an das synthetische Material. Dies hat zur Folge, daß die Dichte der RGD-Sequenzen an den Innenwänden des Gefäßsy¬ stems sehr gering ist. Diese geringe Dichte hat wiederum nur eine geringe Zellenbesiedlung zur Folge. Ein störungsfreier Durchfluß durch das künstliche Gefäßsystem kann nicht gewähr¬ leistet werden. Die direkte Beschichtung der Gefäßoberfläche mit einer RGD-enthaltenden Substanz ist daher sowohl für die Zellenadhäsion und -retention als auch für die daraus resultie¬ renden metabolischen Eigenschaften des künstlichen Gefäßsystems als nicht optimal anzusehen.If the RGD-containing substance is brought directly onto the synthetic inner surface of the vessel, the RGD-containing substance is only randomly, unspecifically and incompletely bound to the synthetic material. This has the consequence that the density of the RGD sequences on the inner walls of the vascular system is very low. This low density in turn only results in a low cell population. A trouble-free flow through the artificial vascular system cannot be guaranteed. The direct coating of the surface of the vessel with an RGD-containing substance is therefore not to be regarded as optimal, both for cell adhesion and retention and for the resulting metabolic properties of the artificial vascular system.
Aufgabe der vorliegenden Erfindung ist es, ein künstliches Blutgefäßsystem zur Verfügung zu stellen, in welchem die
Adhäsion und Retention von Zellen, insbesondere von Endothel¬ zellen, gesteigert und verbessert wird. Der Einsatz derartiger künstlicher Blutgefäßsysteme bewirkt einen störungsfreien Blut- fluß, wodurch die Thrombosegefahr verringert und somit die Ver- schlußrate der künstlichen Gefäßprothese gesenkt wird.The object of the present invention is to provide an artificial blood vessel system in which the Adhesion and retention of cells, in particular of endothelial cells, is increased and improved. The use of such artificial blood vessel systems results in an uninterrupted blood flow, which reduces the risk of thrombosis and thus reduces the occlusion rate of the artificial vascular prosthesis.
Weiterhin ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung eines künstlichen Gefäßsystems zur Verfügung zu stellen, das zu einer deutlichen Erhöhung der Adhäsion und Retention von Zellen an der Innenwand der Ge¬ fäßsysteme und damit zu einer Verbesserung der metabolischen Eigenschaften der künstlichen Gefäßsysteme führt.It is also an object of the present invention to provide a method for producing an artificial vascular system which leads to a significant increase in the adhesion and retention of cells on the inner wall of the vascular systems and thus to an improvement in the metabolic properties of the artificial vascular systems .
Zur Lösung dieser Aufgabe dienen die Merkmale der unabhängigen Ansprüche.The features of the independent claims serve to solve this problem.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen defi¬ niert.Advantageous configurations are defined in the subclaims.
Das künstliche Blutgefäßsystem besteht aus einem synthetischen Material, wie Polytetrafluorethylen (PTFE) , Polyurethan, Silicon und dergleichen. Die erfindungsgemäßen künstlichen Blutgefäßsysteme enthalten eine innere vorbeschichtete Ober¬ fläche, auf die eine Substanz mit Zellenadhäsionseigenschaften aufgebracht ist. Die Beschichtung der inneren Oberfläche umfaßt zwei miteinander umgesetzte Komponenten, nämlich eine erste makromolekulare Komponente mit mehr als einer primären Amino- gruppe, und eine zweite Komponente, die mindestens zwei reak¬ tive Gruppen, davon mindestens eine Aldehydgruppe aufweist. Besonders geeignet ist die Verwendung eines Poly-lysin-hydro- halogenids, vorzugsweise ein Poly-L-hydrohalogenid und ins¬ besondere ein Poly-L-lysin-hydrobromid. Vorzugsweise wird Glu- tardialdehyd als zweite Komponente eingesetzt. Die auf der vorbeschichteten, inneren Oberfläche aufgebrachte Substanz, die die Zellenadhäsion fördert, ist ein Oligosaccharid, -peptid oder -protein. Diese Substanzen weisen mindestens eine RGD-
Sequenz auf. Über diese RGD-Sequenz werden Zellrezeptoren, insbesondere Endothelzellrezeptoren gebunden.The artificial blood vessel system is made of a synthetic material such as polytetrafluoroethylene (PTFE), polyurethane, silicone and the like. The artificial blood vessel systems according to the invention contain an inner precoated surface to which a substance with cell adhesion properties is applied. The coating of the inner surface comprises two components which are reacted with one another, namely a first macromolecular component with more than one primary amino group, and a second component which has at least two reactive groups, of which at least one aldehyde group. The use of a poly-lysine hydrohalide, preferably a poly-L-hydrohalide and in particular a poly-L-lysine hydrobromide, is particularly suitable. Glutaraldehyde is preferably used as the second component. The substance applied to the pre-coated inner surface which promotes cell adhesion is an oligosaccharide, peptide or protein. These substances have at least one RGD Sequence on. Cell receptors, in particular endothelial cell receptors, are bound via this RGD sequence.
Die erfindungsgemäßen künstlichen Blutgefäße bewirken gegenüber den aus dem Stand der Technik bekannten künstlichen Blutgefä߬ systemen eine erhöhte Zellenbesiedlung und -retention aufgrund der hohen Dichte der adhäsionsfordernden Substanzen. Dadurch verläuft der Blutfluß und die Blutgerinnung störungsfrei . Nach¬ teilige Auswirkungen, z.B. ein Verschluß der künstlichen Blut- gefäßsysteme, werden wirksam vermieden.The artificial blood vessels according to the invention bring about an increased cell colonization and retention compared to the artificial blood vessel systems known from the prior art due to the high density of the adhesion-promoting substances. As a result, the blood flow and blood clotting run smoothly. Adverse effects, e.g. occlusion of the artificial blood vessel systems are effectively avoided.
Aufgrund der erhöhten Zellenadhäsion und -retention eignet sich insbesondere das erfindungsgemäße künstliche Blutgefäßsystem als Ersatz für natürliche arterielle Gefäßsysteme. Die erfin- dungsgemäßen künstlichen Gefäßsysteme eignen sich insbesondere in der Herz- und Gefäßchirurgie als Ersatz für natürliche Ge¬ fäßsysteme.Because of the increased cell adhesion and retention, the artificial blood vessel system according to the invention is particularly suitable as a replacement for natural arterial vascular systems. The artificial vascular systems according to the invention are particularly suitable in cardiac and vascular surgery as a replacement for natural vascular systems.
Diese künstlichen Blutgefäßsysteme können beispielsweise unter Verwendung des erfinderischen Verfahrens - wie im folgenden be¬ schrieben - hergestellt werden.These artificial blood vessel systems can be produced, for example, using the inventive method - as described below.
Das erfindungsgemäße Verfahren zur Herstellung eines künstli¬ chen Gefäßsystems bestehend aus einem synthetischen Material, in dem die innere Oberfläche vorbeschichtet wird und an¬ schließend eine Substanz aufgebracht wird, die von Zeiladhä¬ sionsrezeptoren erkannt und gebunden wird, umfaßt die folgenden Verfahrensschritte:The method according to the invention for producing an artificial vascular system consisting of a synthetic material in which the inner surface is precoated and subsequently a substance is applied which is recognized and bound by cell adhesion receptors comprises the following method steps:
a) Das künstliche Gefäßsystem wird in einem ersten Verfah¬ rensschritt mit einer makromolekularen Komponente be¬ schichtet, die mehr als eine primäre Aminogruppe aufweisen muß.a) In a first process step, the artificial vascular system is coated with a macromolecular component which must have more than one primary amino group.
b) In einem zweiten Verfahrensschritt wird die primäre Amino- gruppen enthaltende, makromolekulare Komponente mit einer
zweiten Komponente umgesetzt, die mindestens zwei reaktive Gruppen, davon mindestens eine Aldehydgruppe, enthält.b) In a second process step, the primary amino group-containing, macromolecular component with a implemented second component, which contains at least two reactive groups, including at least one aldehyde group.
c)' Das durch die Schritte a) und b) vorbeschichtete, künst- liehe Gefäßsystem wird mit einer Substanz umgesetzt, die von bestimmten Zellrezeptoren erkannt und gebunden wird.c) 'The b and by the steps a)) pre-coated, artificial Liehe vascular system is reacted with a substance which is recognized by specific cellular receptors and bound.
Vorwiegend besteht das erfindungsgemäße künstliche Gefäßsystem aus einem synthetischen Material, wie Polytetrafluorethylen (PTFE) , Polyurethan, Silicon und dgl . Im Verfahrensschritt a) wird die Innenwand des künstlichen Gefäßsystems mit der ersten makromolekularen Komponente beschichtet. Ein wesentlicher Aspekt des erfinderischen Verfahrens ist, daß die primären Ami- nogruppen der makromolekularen Komponente des Verfahrensschrit- tes a) in Seitenketten angeordnet sind. Vorzugsweise wird als makromolekulare Komponente Poly-lysin-hydrohalogenid, insbe¬ sondere Poly-L-lysin-hydrohalogenid, verwendet. Besonders vorteilhaft ist die Verwendung von Poly-L-lysin-hydrobromid.The artificial vascular system according to the invention mainly consists of a synthetic material, such as polytetrafluoroethylene (PTFE), polyurethane, silicone and the like. In process step a) the inner wall of the artificial vascular system is coated with the first macromolecular component. An important aspect of the inventive method is that the primary amino groups of the macromolecular component of process step a) are arranged in side chains. Poly-lysine hydrohalide, in particular poly-L-lysine hydrohalide, is preferably used as the macromolecular component. The use of poly-L-lysine hydrobromide is particularly advantageous.
Im Verfahrenssschritt b) wird diese makromolekulare Komponente mit einer zweiten Komponente umgesetzt, wobei die zweite Kompo¬ nente in einer molaren Menge verwendet wird, die geeignet ist, sämtliche primären Aminogruppen der ersten Komponente zu funk- tionalisieren. Besonders vorteilhaft ist hierbei die Verwendung von Glutardialdehyd. Das künstliche Gefäßsystem wird durch die Verfahrensschritte a) und b) innenseitig beschichtet. Nachdem die Vorbeschichtung der inneren Oberfläche erfolgt ist, wird im Verfahrensschritt c) wahlweise ein Peptid, Saccharid oder Pro¬ tein, auf die beschichtete Oberfläche aufgebracht, das die Zelladhäsion und -retention der gewünschten Zellen bewirkt. Diese Substanz kann ein Oligopeptid, -saccharid oder -protein sein. Sie muß wenigstens eine reaktive Gruppe enthalten, die mit dem derivatisierten Beschichtungsmaterial reagieren kann, z.B. primäre Aminogruppen.In process step b), this macromolecular component is reacted with a second component, the second component being used in a molar amount which is suitable for functionalizing all the primary amino groups of the first component. The use of glutardialdehyde is particularly advantageous here. The artificial vascular system is coated on the inside by process steps a) and b). After the inner surface has been precoated, a peptide, saccharide or protein is optionally applied to the coated surface in process step c), which causes cell adhesion and retention of the desired cells. This substance can be an oligopeptide, saccharide or protein. It must contain at least one reactive group that can react with the derivatized coating material, e.g. primary amino groups.
Die Verfahrensschritte a) und b) führen zu einer Beschichtung
der künstlichen Gefäßinnenwände, die aus zwei Komponenten be¬ steht. Hierbei hat sich gezeigt, daß die zweite Komponente der Beschichtung, die mindestens zwei reaktive Gruppen und davon mindestens eine Aldehydgruppe enthält, für die Erfindung be- sonders bedeutungsvoll ist. Diese Komponente wirkt als Ab¬ standshalter (spacer) zwischen der inneren Oberfläche des Gefäßsystems und den Zellrezeptoren der Zellen, die auf der Oberfläche angesiedelt werden. Die Zwei-Komponenten-Beschich¬ tung bewirkt eine gezielte Orientierung und Bindung der die Zelladhäsion bewirkenden Substanzen; denn über die im gleichen Abstand voneinander entfernten, regelmäßig angeordneten primä¬ ren NH2-Gruppen der ersten Komponente erfolgt die gezielte Bin¬ dung der zweiten Komponente, die vorzugsweise ein Glutardialdehyd darstellt. Das Glutardialdehyd wird über die ersten Aldehydfunktionen an die primären Aminogruppen des mit Poly-lysin-hydrohalogenid, insbesondere mit Poly-L-lysin- hydrobromid, vorbeschichteten künstlichen Gefäßsystems gebun¬ den. Anschließend wird das vorbeschichtete Gefäßsystem mit einer Substanz umgesetzt, die eine spezifische Adhäsion gegen- über den Zellen aufweist, die angesiedelt werden sollen. Oligosaccharide, -peptide oder -proteine, die beispielsweise eine RGD-Sequenz enthalten, sind für die Adhäsion und Retention von Endothelzellen und anderen Zellen besonders geeigne . Die frei verfügbaren Aldehydfunktionen der Zwei-Komponenten-Be- Schichtung, die insbesondere von einem derivatisierten Poly- lysin bereitgestellt werden können, binden beispielsweise primäre Aminogruppen der verwendeten spezifische Zelladhäsion aufweisende Substanzen. Der Beschichtungsmechanismus des er¬ findungsgemäßen Verfahrens ist in den Figuren 1 a) bis c) wie- dergegeben.Process steps a) and b) lead to a coating the artificial inner walls of the vessel, which consists of two components. It has been shown here that the second component of the coating, which contains at least two reactive groups and at least one aldehyde group thereof, is particularly important for the invention. This component acts as a spacer between the inner surface of the vascular system and the cell receptors of the cells that are located on the surface. The two-component coating effects a targeted orientation and binding of the substances that cause cell adhesion; This is because the primary NH 2 groups of the first component, which are regularly spaced from one another and are spaced apart from one another, are used to selectively bind the second component, which is preferably a glutardialdehyde. The glutardialdehyde is bound via the first aldehyde functions to the primary amino groups of the artificial vascular system precoated with poly-lysine hydrohalide, in particular with poly-L-lysine hydrobromide. The pre-coated vascular system is then reacted with a substance that has specific adhesion to the cells that are to be colonized. Oligosaccharides, peptides or proteins, which contain, for example, an RGD sequence, are particularly suitable for the adhesion and retention of endothelial cells and other cells. The freely available aldehyde functions of the two-component coating, which can be provided in particular by a derivatized polyysine, bind, for example, primary amino groups of the substances having specific cell adhesion used. The coating mechanism of the method according to the invention is shown in FIGS. 1 a) to c).
Aufgrund des erfinderischen Verfahrens erfolgt keine zufalls¬ mäßige und unkoordinierte Bindung der die Zelladhäsion fördern¬ den Substanzen, insbesondere der RGD-Peptide oder Proteine. Die Bindung dieser Substanzen an die synthetischen Innenwände wird gezielt über die in regelmäßigen Abständen angeordneten
Aldehydfunktionen der zweiten Beschichtungskomponenten er¬ reicht . Die dadurch resultierende größere Dichte und Bestän¬ digkeit der biologisch aktiven Peptide oder Proteine führt gleichzeitig zu einer Steigerung der Zellenbesiedlung und Zellenretention. Die erhöhte Zellenbesiedlung an den Gefä߬ innenwänden wirkt einem Verschluß des Gefäßsystems entgegen. Die metabolischen Eigenschaften der künstlichen Gefäßsysteme werden erheblich verbessert.Because of the method according to the invention, there is no random and uncoordinated binding of the substances promoting cell adhesion, in particular the RGD peptides or proteins. The binding of these substances to the synthetic inner walls is deliberately arranged at regular intervals Aldehyde functions of the second coating components are achieved. The resulting greater density and stability of the biologically active peptides or proteins leads at the same time to an increase in cell colonization and cell retention. The increased cell colonization on the inner walls of the vessel counteracts a closure of the vascular system. The metabolic properties of the artificial vascular systems are significantly improved.
Das folgende Ausführungsbeispiel erläutert die Erfindung, ohne sie jedoch einzuschränken.The following exemplary embodiment explains the invention without, however, restricting it.
AusführungsbeispielEmbodiment
1. Herstellung des künstlichen Gefäßsystems1. Production of the artificial vascular system
Das PTFE-Transplantat (n = 5) wird im Verfahrensschritt a) mit 40 μm/ml Poly-L-lysin-hydrobromid (Sigma GmbH, Deisenhofen, BRD) in PBS (phosphat-gepufferte Salzlösung) gefüllt und bei Raumtemperatur 24 Stunden lang inkubiert, um eine Adsorption des Polypeptids am PTFE-Material zu ermöglichen. Nach dem Spülen des Transplantats mit PBS wird im Verfahrensschritt b) eine Lösung von 0,2 % Glutardialdehyd (Sigma GmbH, Deisenhofen, BRD) in PBS in die Transplantate instilliert und 10 Minuten stehengelassen. Das Transplantat wird erneut mit PBS gespült. Das derartig vorbeschichtete Transplantat wird im Verfahrens- schritt c) vollständig mit 100 μg/ml eines synthetischen, die Adhäsion von Endothelzellen fördernden Peptids in PBS (Gly-Arg- Gly-Asp-Ser-Pro-Lys) (Gibco, Life Technologies Inc., Gaithers- burg, USA) , das die RGD-Sequenz enthält, gefüllt und 60 Minuten lang stehen gelassen. Nach Entfernen der Peptidlösung wird eine Lösung mit 1 % Rinderserumalbumin (Sigma Chemical Co., St. Louis, USA) in PBS in die Transplantate 30 Minuten lang ein¬ gebracht, um mögliche ungebundene Aldehydstellen zu besetzen.
Anschließend wird das Transplantat mit PBS gewaschen.In step a), the PTFE graft (n = 5) is filled with 40 μm / ml poly-L-lysine hydrobromide (Sigma GmbH, Deisenhofen, Germany) in PBS (phosphate-buffered saline) and incubated at room temperature for 24 hours to enable adsorption of the polypeptide on the PTFE material. After rinsing the transplant with PBS, a solution of 0.2% glutardialdehyde (Sigma GmbH, Deisenhofen, FRG) in PBS is instilled into the grafts in process step b) and left to stand for 10 minutes. The graft is rinsed again with PBS. In step c), the graft pre-coated in this way is completely filled with 100 μg / ml of a synthetic peptide which promotes the adhesion of endothelial cells in PBS (Gly-Arg-Gly-Asp-Ser-Pro-Lys) (Gibco, Life Technologies Inc. , Gaithersburg, USA), which contains the RGD sequence, filled and left for 60 minutes. After removal of the peptide solution, a solution with 1% bovine serum albumin (Sigma Chemical Co., St. Louis, USA) in PBS is introduced into the grafts for 30 minutes in order to occupy possible unbound aldehyde sites. The graft is then washed with PBS.
2. Endothelzellenbesiedlung2. Endothelial cell colonization
Auf dem RGD-Peptid-beschichteten Gefäßsystem wird eine En- dothelzellenkultur angelegt, die aus einer Oberflächenvene, z.B. aus der Saphene eines Erwachsenen (AHSVEC) , gewonnen wird. Endothelzellen der zweiten bis dritten Kulturpassage werden mit Trypsin behandelt, zentrifugiert und im vollständigen Nähr- medium resuspendiert. Ein aliquoter Teil wird zur Zellzählung in einem Hemocytometer verwendet und die Zellsuspension auf eine Zelldichte von 1,2 x 105 Endothelzellen/cm2 eingestellt, um die verfügbare Prothesenoberfläche von 6,3 cm2 zu bedecken. Das Transplantat wird mittels einer Spritze mit der Endothel- zellensuspension gefüllt, an beiden Enden verschlossen und 30 Minuten lang in einem befeuchteten Inkubator in einer Atmosphä¬ re aus 5 % Kohlendioxid/95 % Luft bei einer Temperatur von 37 °C inkubiert. Nach 15 Minuten werden die Transplantatsegmente einmal um 180 ° gedreht. Am Ende des Besiedlungsvorgangs werden die Transplantate mit dem Nährmedium gespült.An endothelial cell culture is created on the RGD-peptide-coated vascular system, which is obtained from a surface vein, for example from an adult's saphene (AHSVEC). Endothelial cells from the second to third culture passages are treated with trypsin, centrifuged and resuspended in the complete nutrient medium. An aliquot is used for cell counting in a hemocytometer and the cell suspension is adjusted to a cell density of 1.2 x 10 5 endothelial cells / cm 2 in order to cover the available prosthesis surface of 6.3 cm 2 . The graft is filled with the endothelial cell suspension by means of a syringe, closed at both ends and incubated for 30 minutes in a humidified incubator in an atmosphere of 5% carbon dioxide / 95% air at a temperature of 37 ° C. After 15 minutes, the graft segments are rotated once through 180 °. At the end of the colonization process, the grafts are rinsed with the nutrient medium.
VergleichsversucheComparative tests
Es wurde ein Vergleich der Endothelzellenadhäsion und -reten- tion auf unbeschichteten, mit Plasmaproteinen beschichteten, erfindungsgemäß beschichteten und mit Polylysin/Glutardialdehyd (ohne RGD) beschichteten PTFE-Gefäßsystemen durchgeführt.A comparison of the endothelial cell adhesion and retention on uncoated, vascular systems coated with plasma proteins, coated according to the invention and coated with polylysine / glutardialdehyde (without RGD) was carried out.
Die Gruppe 1 stellt ein unbeschichtetes PTFE-Gefäßsystem dar. Ein mit Humanfibronektin beschichtetes PTFE-Transplantat wird als Gruppe 2 bezeichnet . Die Vergleichsgruppen 1 und 2 sind nach den aus dem Stand der Technik bekannten Verfahren herge¬ stellt worden.Group 1 represents an uncoated PTFE vascular system. A PTFE graft coated with human fibronectin is referred to as Group 2. Comparative groups 1 and 2 were produced by the processes known from the prior art.
Gruppe 3 ist ein erfindungsgemäßes vorbeschichtetes Blutgefä߬ system, das wie im Ausführungsbeispiel beschrieben hergestellt
wurde .Group 3 is a precoated blood vessel system according to the invention, which is produced as described in the exemplary embodiment has been .
Gruppe 4 ist ein vorbeschichtetes Blutgefäßsystem, das gemäß den erfindungsgemäßen Verfahrensschritten a) und b) hergestellt wurde. Eine RGD enthaltende Substanz mit Zelladhäsion ist jedoch nicht vorhanden.Group 4 is a pre-coated blood vessel system which was produced in accordance with process steps a) and b) according to the invention. However, there is no RGD-containing substance with cell adhesion.
Bei den Versuchen zur Bestimmung der Endothelzellenadhäsion und -retention an den Gefäßinnenwänden vor und nach Perfusion der PTFE-Gefäßsysteme der Gruppe 1, 2, 3 und 4 wurden mit Endothel¬ zellen besiedelt . Am Ende des Besiedlungsvorganges wurden die Transplantate der Gruppen 1, 2, 3 und 4 kurz mit Nährmedium gespült. Anschließend wurde jeweils ein Luer-Verbindungsstück entfernt und ein definiertes Segment einer Länge von 1 cm der Gruppen 1, 2, 3 und 4 für eine Untersuchung im Rasterelektro¬ nenmikroskop (REM) präpariert.In the experiments to determine the endothelial cell adhesion and retention on the inner walls of the vessel before and after perfusion of the PTFE vascular systems of groups 1, 2, 3 and 4, endothelial cells were populated. At the end of the colonization process, the grafts of groups 1, 2, 3 and 4 were briefly rinsed with nutrient medium. Then a Luer connector was removed and a defined segment with a length of 1 cm from groups 1, 2, 3 and 4 was prepared for an examination in a scanning electron microscope (SEM).
Dann wurden die Luer-Verbindungsstücke ersetzt, und die Trans¬ plantate in einen künstlichen Strömungskreislauf eingesetzt, um den Widerstand gegen Scherspannung sowie die Zellretention einer angelegten Endothelzellensaat auf den PTFE-Oberflächen zu bestimmen (siehe Figur 2) . Ein pulsierender Fluß wurde unter Verwendung einer Walzenpumpe (Medax, Kiel, BRD) eines Kardiotomiebehälters, ausgestattet mit einem Perfusions- mediumfilter und einem Luftblasenfilter (Sorin Biomedica, Saluggia, Italien) und eines extrakorporalen Standard- Perfusionsschlauches (Jostra, Hirrlingen, BRD) in einem ge¬ schlossenen, sterilen System erzeugt. Die mit einer Zellkultur versehenen PTFE-Transplantate, die in einem speziell ent- wickelten Glasrohr eingeschlossen waren, wurden über die vorher eingefügten Luer-Verbindungsstücke in den Kreislauf integriert . Das System wurde mit 500 ml Nährmedium M-199, 10 % Humanserum und Antibiotika gefüllt. Dem Perfusionsmedium wurden keine Endothelzellenwachstumsfaktoren zugegeben und die Temperatur wurde während der Durchführung mittels eines Wasserbades auf 37The Luer connectors were then replaced and the grafts placed in an artificial flow circuit in order to determine the resistance to shear stress and the cell retention of an applied endothelial cell seed on the PTFE surfaces (see FIG. 2). A pulsating flow was performed using a roller pump (Medax, Kiel, FRG) of a cardiotomy container, equipped with a perfusion medium filter and an air bubble filter (Sorin Biomedica, Saluggia, Italy) and an extracorporeal standard perfusion tube (Jostra, Hirrlingen, FRG) in one closed, sterile system. The PTFE grafts provided with a cell culture, which were enclosed in a specially developed glass tube, were integrated into the circuit via the previously inserted Luer connectors. The system was filled with 500 ml of M-199 nutrient medium, 10% human serum and antibiotics. No endothelial cell growth factors were added to the perfusion medium and the temperature was raised to 37 while performing with a water bath
O'Cf gehalten. Vor der Verwendung des Systems wurde das"
Perfusionsmedium bei 37 "C in einer Atmosphäre von 5 % C02/95 % Raumluft inkubiert. Der Druck wurde eingestellt und konstant auf 35 / 5 mm Quecksilber (Hg) gehalten, was 30 Pulsierungen pro Minute ergab. Gemessen wurde der Druck mit einem Membran- meßwandler und einem Druckmonitor (Hewlett Packard, Andover, USA) . Die Geschwindigkeit des Strömungskreislaufs betrug 100 ml/Minute, die eine Stunde lang beibehalten wurde. Nach der Perfusion wurden beide Luer-Verbindungsstücke aus den je¬ weiligen Transplantaten der Gruppen 1, 2, 3 und 4 entfernt, ein bestimmtes Transplantat-Segment herausgeschnitten und für die Rasterelektronenmikroskopie präpariert .O'Cf kept. Before using the system, the " Perfusion medium incubated at 37 "C in an atmosphere of 5% CO 2 /95% room air. The pressure was adjusted and kept constant at 35/5 mm mercury (Hg), which gave 30 pulsations per minute. The pressure was measured with a membrane The transducer and a pressure monitor (Hewlett Packard, Andover, USA). The speed of the flow circuit was 100 ml / minute, which was maintained for one hour. After perfusion, both Luer connectors were removed from the respective transplants in groups 1 and 2 , 3 and 4 removed, a specific graft segment cut out and prepared for scanning electron microscopy.
Zur Präparierung der entnommenen Transplantat-Segmente für die Rasterelektronenmikroskopie (REM) wurden folgende Schritte unternommen:The following steps were taken to prepare the removed graft segments for scanning electron microscopy (SEM):
1 cm lange Proben von durchströmten Transplantaten enthaltend die Zellsaat werden mittels Rasterelektronenmikroskopie be¬ züglich ihrer Quantifizierung und Morphologie untersucht.1 cm long samples of flowed grafts containing the cell seeds are examined by means of scanning electron microscopy with regard to their quantification and morphology.
Gleich nach der Präparierung aus den künstlichen Gefäßsystemen werden die Proben mindestens 4 Stunden lang in 3,5 % Glutar¬ dialdehyd fixiert und mit Phosphatpufferlösung gespült . An¬ schließend erfolgt eine Nachfixierung von 2 Stunden in 2 % Osmiumtetroxid in Pufferlösung. Nach Dehydratisierung mittels verschiedener Ethanollösungen werden die Proben mit flüssigem C02 bis zu ihrem kritischen Punkt getrocknet, in einem Vakuum¬ verdampfer mit Gold/Palladium sputterbeschichtet und mit einem Rasterelektronenmikroskop (Philips XL 20, Kassel,- BRD) , das bei einer Beschleunigungsspannung von 25 kV betrieben wird, unter¬ sucht.Immediately after preparation from the artificial vascular systems, the samples are fixed in 3.5% glutaraldehyde for at least 4 hours and rinsed with phosphate buffer solution. This is followed by post-fixation for 2 hours in 2% osmium tetroxide in buffer solution. After dehydration using various ethanol solutions, the samples are dried to their critical point with liquid CO 2 , sputter-coated in a vacuum evaporator with gold / palladium, and with a scanning electron microscope (Philips XL 20, Kassel, Germany), which has an acceleration voltage of 25 kV is operated, examined.
Ergebnisse der VerσleichsversucheResults of the comparison tests
Eine Zusammenfassung der Ergebnisse der Rasterelektronenmikro¬ skopie ist in den Figuren 3 bis 5 dargestellt.
Die Ergebnisse der Vergleichsversuche für die Gruppen 1, 2 und 3 zeigen, daß die Endothelzelladhäsion und -retention auf er¬ findungsgemäß vorbeschichteten PTFE-Gefäßprothesen nach erfolg¬ ter Besiedlung (Fig. 3a, 4a, 5a) und Perfusion (Fig. 3b, 4b, 5b) in einem künstlichen Strömungskreislauf gegenüber den aus dem Stand der Technik bekannten unbeschichteten und beschich¬ teten PTFE-Gefäßprothesen erheblich gesteigert und verbessert werden.A summary of the results of the scanning electron microscopy is shown in FIGS. 3 to 5. The results of the comparative tests for groups 1, 2 and 3 show that the endothelial cell adhesion and retention on PTFE-coated vascular prostheses according to the invention after colonization (FIGS. 3a, 4a, 5a) and perfusion (FIGS. 3b, 4b , 5b) are significantly increased and improved in an artificial flow circuit compared to the uncoated and coated PTFE vascular prostheses known from the prior art.
Zelladhäsion und -retention auf den Transplantaten vor und nach der PerfusionCell adhesion and retention on the grafts before and after perfusion
Gruppe 1: In unbeschichteten PTFE-Gefäßsystemen waren 30 Mi¬ nuten nach der Zellbesiedlung von 1,2 x 105 AHSVEC / cm2 14,9 % ± 3,1 % der Fläche mit Endothelzellen bedeckt. Nach der Per¬ fusion betrug die Endothelzelladhäsion 2,0 % ± 1,0 %. Die Zellretention betrug 13,9 % ± 7,9 % (siehe Figuren 6 und 7) .Group 1: In uncoated PTFE vascular systems, 30 minutes after cell colonization of 1.2 × 10 5 AHSVEC / cm 2, 14.9% ± 3.1% of the area was covered with endothelial cells. After the perfusion, the endothelial cell adhesion was 2.0% ± 1.0%. Cell retention was 13.9% ± 7.9% (see Figures 6 and 7).
Gruppe 2 : Durch die Vorbeschichtung von PTFE-Transplantaten mit Humanfibronektin ergab sich eine Endothelzelladhäsion nach der Endothelzellenbesiedlung von 26,0 % ± 3,3 %. Nach der Perfusion im künstlichen Stromkreislauf betrug die Endothelzelladhäsion 11,8 % ± 1,6 %. Die berechnete Zellretention betrug 45,5 % ± 2,1 %. Sowohl die Endothelzelladhäsion als auch die -retention waren im Vergleich zu Gruppe 1 erheblich höher (siehe Figuren 6 und 7) .Group 2: The pre-coating of PTFE grafts with human fibronectin resulted in endothelial cell adhesion after endothelial cell colonization of 26.0% ± 3.3%. After perfusion in the artificial circuit, the endothelial cell adhesion was 11.8% ± 1.6%. The calculated cell retention was 45.5% ± 2.1%. Both endothelial cell adhesion and retention were considerably higher than in group 1 (see FIGS. 6 and 7).
Gruppe 3 : Bei den erfindungsgemäß vorbehandelten PTFE-Gefäß- systemen wurde eine Endothelzelladhäsion von 30,6 % ± 2,1 % beobachtet. Die Perfusion der PTFE-Transplantate führte zu einer Endothelzelladhäsion von 19,3 % ± 2,8 %. Die Endothel- zellretention betrug 62,9 % + 7,5 %. Im Vergleich zu Gruppe 1 und Gruppe 2 (siehe Figuren 6 und 7) ergab sich somit eine weitere erhebliche Steigerung der Endothelzelladhäsion und -re- tention. Primär ist dieses bessere Ergebnis auf die erfindungs¬ gemäße Vorbeschichtungstechnik zurückzuführen. In dem von Sank'
et al . durchgeführten Verfahren werden die RGD-Peptide ohn Vorbeschichtung direkt auf das PTFE-Material aufgebracht. Wei¬ tere untergeordnete Unterschiede bestehen darin, daß Sank e al. ein anderes RGD-Peptid in einer geringeren Konzentratio unter Verwendung von PTFE-Patch anstatt Rohrprothesen einge¬ setzt haben. Die geringere Peptidkonzentration und die Ver¬ wendung eines PTFE-Patch führen auch zu dem von Sank et al. festgestellten Ergebnis, daß eine Endothelzellenadhäsion au RGD-Piptid beschichtetem PTFE geringfügig niedriger ist, al auf Fibronektin-beschichtetem PTFE. Die Ergebnisse bezüglic der Zelladhäsion der Gruppe 1 und 2 der beschriebenen Ver¬ gleichsversuche stehen im Gegensatz dazu.Group 3: Endothelial cell adhesion of 30.6% ± 2.1% was observed in the PTFE vascular systems pretreated according to the invention. Perfusion of the PTFE grafts resulted in endothelial cell adhesion of 19.3% ± 2.8%. Endothelial cell retention was 62.9% + 7.5%. Compared to group 1 and group 2 (see FIGS. 6 and 7), there was a further significant increase in endothelial cell adhesion and retention. This better result is primarily due to the precoating technique according to the invention. In the von Sank ' et al. The RGD peptides are applied directly to the PTFE material without pre-coating. Further subordinate differences consist in the fact that Sank et al. have used another RGD peptide in a lower concentration using PTFE patch instead of tubular prostheses. The lower peptide concentration and the use of a PTFE patch also lead to that of Sank et al. Result found that endothelial cell adhesion on RGD piptide coated PTFE is slightly lower than on fibronectin coated PTFE. The results relating to the cell adhesion of groups 1 and 2 of the comparative experiments described are in contrast to this.
Gruppe 4 : Durch die Vorbeschichtung von PTFE-Transplantate gemäß den erfindungsgemäßen Verfahrensschritten mi Polylysin/Glutardialdehyd (eine RGD enthaltende Substanz mi Zelladhäsion ist jedoch nicht vorhanden) ergab sich ein Endothelzelladhäsion nach der Endothelzellenbesiedlung von 10,5 % ± 1,1 % . Nach der Perfusion im künstlichen Strom- kreislauf betrug die Endothelzelladhäsion 0,7 % ± 0,2 %. Di berechnete Zellretention betrug 6,6 % ± 1,5 %. Sowohl di Endothelzelladhäsion als auch die -retention waren im Vergleic zu Gruppe 3 erheblich niedriger (siehe Figuren 6 und 7) .Group 4: The precoating of PTFE grafts according to the process steps according to the invention with polylysine / glutardialdehyde (however, there is no RGD-containing substance with cell adhesion) resulted in endothelial cell adhesion after endothelial cell colonization of 10.5% ± 1.1%. After perfusion in the artificial circuit, the endothelial cell adhesion was 0.7% ± 0.2%. The calculated cell retention was 6.6% ± 1.5%. Both endothelial cell adhesion and retention were considerably lower compared to group 3 (see FIGS. 6 and 7).
Die verbesserten Ergebnisse bezüglich der Zelladhäsion un Zellretention der erfindungsgemäßen künstlichen Gefäßsystem sind auf das Vorbeschichtungsverfahren der Erfindung zurückzu¬ führen. In dem erfindungsgemäßen Verfahren werden zwei Zwi schenschritte angewandt, um die zelladhäsionsfordernde Substan mit der Innenwand der Gefäßsystemoberfläche zu verbinden. Die führt zu einer starken biochemischen Bindung der adhäsions fördernden Substanz mit dem Transplantat und einer erhöhte Widerstandsfähigkeit gegenüber Scherspannung. Die adhäsionsfor dernde Substanz wird über die noch verfügbare Aldehydgruppe de zweiten Komponente an die künstlichen Innenwände gebunden. Pro teine und Peptide mit mindestens einer RGD-Sequenz werde
beispielsweise über primäre Aminogruppen an die zweite Be- schichtungskomponente gebunden.The improved results with regard to cell adhesion and cell retention of the artificial vascular system according to the invention can be attributed to the precoating method of the invention. In the method according to the invention, two intermediate steps are used to connect the cell adhesion-demanding substance to the inner wall of the vascular system surface. This leads to a strong biochemical bond of the adhesion-promoting substance with the graft and an increased resistance to shear stress. The substance promoting adhesion is bound to the artificial inner walls via the aldehyde group of the second component that is still available. Proteins and peptides with at least one RGD sequence bound to the second coating component, for example, via primary amino groups.
Der Vergleich der Gruppen 1, 2, 3 und 4 zeigt, daß die Gruppe 3, die den erfindungsgemäßen künstlichen Blutgefäßsystemen ent¬ spricht, eine höhere Widerstandsfähigkeit gegenüber Scherspan¬ nung aufweist . Diese erhöhte Widerstandsfähigkeit wurde anhand des Ausmaßes der Endothelzelladhäsion und -retention nach der Perfusion in dem künstlichen Stromkreislauf ermittelt. Während auf den mit RGD-Peptid-beschichteten erfindungsgemäßen Tran¬ splantaten 19,3 % ± 2,8 % Endothelzelladhäsion nach der Perfu¬ sion festgestellt wurde, betrug diese bei Fibronektin-beschich- teten Transplantaten nur 11,8 % ± 1,6 %. Auf unbeschichteten Transplantaten betrug die Endothelzelladhäsion nach der Perfu- sion 2,0 % ± 1,0 %. Auf mit ausschließlich mit Polylysin/- Glutardialdehyd beschichteten Transplantaten betrug die Endo¬ thelzelladhäsion nach der Perfusion lediglich 0,7 % ± 0,2 %.A comparison of groups 1, 2, 3 and 4 shows that group 3, which corresponds to the artificial blood vessel systems according to the invention, has a higher resistance to shear stress. This increased resilience was determined based on the extent of endothelial cell adhesion and retention after perfusion in the artificial circuit. While 19.3% ± 2.8% endothelial cell adhesion was found after perfusion on the transplants according to the invention coated with RGD peptides, this was only 11.8% ± 1.6% in the case of fibronectin-coated transplants. . The endothelial cell adhesion after perfusion was 2.0% ± 1.0% on uncoated grafts. On grafts coated exclusively with polylysine / glutardialdehyde, the endothelial cell adhesion after perfusion was only 0.7% ± 0.2%.
Bei unbeschichteten Transplantaten waren nach einer einstün- digen Scherspannung nur noch 13,9 % ± 7,9 % der ursprünglich anhaftenden Endothelzellen vorhanden. Auf Fibronektin-beschich- teten Transplantaten wurde eine Endothelzellretention von 45,5 % ± 2,1 % gemessen. Auf mit ausschließlich mit Polylysin/- Glutardialdehyd beschichteten Transplantaten betrug die Endo- thelzellretention 6,6 % + 1,5 %. Die bei weitem höchste Endo¬ thelzellretention von 62,9 % ± 7,5 % zeigte sich wiederum bei PTFE-Transplantaten, die erfindungsgemäß vorbeschichtet waren.In the case of uncoated grafts, only 13.9% ± 7.9% of the originally adhering endothelial cells were present after a one-hour shear stress. An endothelial cell retention of 45.5% ± 2.1% was measured on fibronectin-coated grafts. The endothelial cell retention was 6.6% + 1.5% on grafts coated exclusively with polylysine / glutardialdehyde. By far the highest endothelial cell retention of 62.9% ± 7.5% was again found in the case of PTFE grafts which were precoated in accordance with the invention.
Gegenüber dem Stand der Technik ist die Zelladhäsion und -re- tention von Endothelzellen auf erfindungsgemäß beschichteten Gefäßsystemen erheblich erhöht. Die erfindungsgemäßen beschich¬ teten Gefäßsysteme verringern bzw. vermeiden aufgrund ihrer verbesserten metabolischen Eigenschaften Störungen und Neben¬ effekte, die beispielsweise durch Kontakt des zirkulierenden BlutStromes mit dem Kunststoffmaterial entstehen. Die gegenüber dem Stand der Technik verbesserten metabolischen Eigenschaften
sind auf eine erhöhte Dichte der biologisch aktiven Substanzen, die die Zelladhäsion fördern, zurückzuführen. Die erfinderi¬ schen Gefäßsysteme ersetzen insbesondere in der Herz- und Gefäßchirurgie die natürlichen Gefäße im Herz- und Kreislauf- System.Compared to the prior art, the cell adhesion and retention of endothelial cells on vascular systems coated according to the invention is considerably increased. Due to their improved metabolic properties, the coated vascular systems according to the invention reduce or avoid disturbances and side effects which arise, for example, from contact of the circulating blood stream with the plastic material. The improved metabolic properties compared to the prior art are due to an increased density of the biologically active substances that promote cell adhesion. The inventive vascular systems replace the natural vessels in the cardiovascular system, particularly in cardiac and vascular surgery.
Beschreibung der FigurenDescription of the figures
Figur 1 : Schematische Darstellung biochemischer Reaktionen im erfindungsgemäßen Verfahren. Glutardialdehyd bindet sich über Aldehydfunktionen an die primäre Aminogruppe von Polylysin, mit welchem das PTFE-Material vorbeschichtet ist (a) . Die verfügba¬ ren Aldehydfunktionen des derivatisierten Polylysin können pri¬ märe Aminogruppen der synthetischen, adhäsionsfordernden RGD- Peptide (b) binden. Endothelzellen interagieren durch die Inte- grinfamilie von Zeil-Matrix-Rezeptoren mit der an die Innenwand des Gefäßsystems gebundenen RGD-Sequenz und haften an dem PTFE- Transplantat (c) an.Figure 1: Schematic representation of biochemical reactions in the inventive method. Glutardialdehyde binds via aldehyde functions to the primary amino group of polylysine, with which the PTFE material is precoated (a). The available aldehyde functions of the derivatized polylysine can bind primary amino groups of the synthetic, adhesion-promoting RGD peptides (b). Through the integrin family of cell matrix receptors, endothelial cells interact with the RGD sequence bound to the inner wall of the vascular system and adhere to the PTFE graft (c).
Figur 2 : Schematische Darstellung des künstlichen Stromkreis¬ laufs. Kardiotomiebehälter (1) mit Luftblasenfilter (2), Per- fusionsmediumfilter (3) , Wasserbad (4) , extrakorporalem Per¬ fusionsschlauch (5) , Membranmeßwandler (6) , Druck- und Tempe¬ raturmonitor (7) , Glasrohr, welches das Transplantat um- schließt, mit Ein- und Auslaß für das umgebende Medium (8) , mit Zellen besiedeltes PTFE-Transplantat (9) , Temperaturmeßwandler (10) , Walzenpumpe (11) , Durchströmungsnährmedium (12) , Einlaß für C02-Einstellung (13) , Einlaß für Nährmedium (14) . Die Pfeile zeigen in die Flußrichtung.Figure 2: Schematic representation of the artificial circuit. Cardiotomy container (1) with air bubble filter (2), perfusion medium filter (3), water bath (4), extracorporeal perfusion tube (5), membrane measuring transducer (6), pressure and temperature monitor (7), glass tube holding the graft enclosed, with inlet and outlet for the surrounding medium (8), PTFE-graft (9) populated with cells, temperature transducer (10), roller pump (11), flow nutrient medium (12), inlet for C0 2 setting (13 ), Inlet for nutrient medium (14). The arrows point in the direction of the river.
Figur 3 : Rasterelektronenmikrographie eines unbeschichteten PTFE-Transplantats nach einer 30-minütigen Endothelzellenbe- siedlung (1,2 x 105 EC/cm2) (Fig. 3 a) und nach einer einstün¬ digen Perfusion in einem Strömungskreislauf (100 ml/Min.) (Fig. 3 b) . Ursprüngliche Vergrößerung x 618.
Figur 4 : Rasterelektronenmikrographie eines mit Fibronektin-be- schichteten PTFE-Transplantats nach 30 Minuten Endothelzellen¬ besiedlung (1,2 x 105 EC/cm2) (Fig. 4 a) und nach einer ein¬ stündigen Perfusion in dem Strömungskreislauf (100 ml/Min.) (Fig. 4 b) . Ursprüngliche Vergrößerung x 618.FIG. 3: scanning electron micrography of an uncoated PTFE graft after a 30-minute endothelial cell colonization (1.2 × 10 5 EC / cm 2 ) (FIG. 3 a) and after a one-hour perfusion in a flow circuit (100 ml / min .) (Fig. 3 b). Original magnification x 618. FIG. 4: scanning electron micrography of a fibronectin-coated PTFE graft after 30 minutes of endothelial cell colonization (1.2 × 10 5 EC / cm 2 ) (FIG. 4 a) and after an hour's perfusion in the flow circuit (100 ml / min.) (Fig. 4 b). Original magnification x 618.
Figur 5 : Rasterelektronenmikrographie eines PTFE-Transplantats, das mit adhäsionsforderndem RGD-Peptid beschichtet ist, 30 Mi¬ nuten nach Endothelzellenbesiedlung (1,2 x 105 EC/cm2) (Fig. 5 a) und nach einer Stunde Perfusion in dem Strömungskreislauf (100 ml/Min.) (Fig. 5 b) . Ursprüngliche Vergrößerung x 618.FIG. 5: scanning electron micrography of a PTFE graft which is coated with adhesion-demanding RGD peptide, 30 minutes after endothelial cell colonization (1.2 × 10 5 EC / cm 2 ) (FIG. 5 a) and after one hour of perfusion in the flow circuit (100 ml / min.) (Fig. 5 b). Original magnification x 618.
Figur 6 : Vergleich der Endothelzelladhäsion auf unbeschich¬ teten, mit Fibronektin (HFN) beschichteten, mit Polylysin/- Glutardialdehyd (PL/GA; ohne RGD) und mit adhäsionsforderndemFIG. 6: Comparison of the endothelial cell adhesion on uncoated, coated with fibronectin (HFN), with polylysine / glutardialdehyde (PL / GA; without RGD) and with adhesion-demanding
RGD-Peptid (RGD) beschichteten PTFE-Transplantaten. Die mit EC bedeckte Fläche (%) 30 Minuten nach EndothelzellenbesiedlungRGD peptide (RGD) coated PTFE grafts. The area covered with EC (%) 30 minutes after endothelial cell colonization
(1,2 x 105 EC/cm2) und nach Perfusion in einem Flußkreislauf(1.2 x 10 5 EC / cm 2 ) and after perfusion in a flow cycle
(100 ml/Min.) . Berechnete Standardabweichung in Klammern.(100 ml / min.). Calculated standard deviation in brackets.
Figur 7: Vergleich der EC-Retention (adhärente Zellen nach Per¬ fusion / ursprüngliche adhärente Zellen nach der Besiedlung) auf unbeschichteten, mit Fibronektin (HFN) beschichteten, mit Polylysin/Glutardialdehyd (PL/GA; ohne RGD) und mit adhäsions- förderndem RGD-Peptid (RGD) beschichteten PTFE-Transplantaten. Berechnete Standardabweichung in Klammern.
FIG. 7: Comparison of the EC retention (adherent cells after per fusion / original adherent cells after colonization) on uncoated, coated with fibronectin (HFN), with polylysine / glutardialdehyde (PL / GA; without RGD) and with adhesion-promoting RGD peptide (RGD) coated PTFE grafts. Calculated standard deviation in brackets.
Claims
1. Künstliches Blutgefäßsystem umfassend eine innere be¬ schichtete Oberfläche, auf die eine Substanz mit Zell¬ adhäsion aufgebracht ist, dadurch gekennzeichnet, daß die innere vorbeschichtete Oberfläche zwei miteinander um¬ gesetzte Komponenten enthält, nämlich eine makromolekulare Komponente enthaltend mehr als eine primäre Aminogruppe und eine Komponente, die mindestens zwei reaktive Gruppen, davon mindestens eine Aldehydgruppe aufweist und die Sub- stanz mit Zelladhäsion ein Oligosaccharid, -peptid, oder - protein, insbesondere ein Peptid, Saccharid oder Protein mit mindestens einer RGD (Arginin-Glycin-Asparagin) -Amino¬ säuresequenz ist.1. Artificial blood vessel system comprising an inner coated surface to which a substance with cell adhesion is applied, characterized in that the inner pre-coated surface contains two components which have been reacted with one another, namely a macromolecular component containing more than one primary amino group and a component which has at least two reactive groups, including at least one aldehyde group, and the substance with cell adhesion is an oligosaccharide, peptide, or protein, in particular a peptide, saccharide or protein with at least one RGD (arginine-glycine-asparagine) Amino¬ acid sequence.
2. Künstliches Blutgefäßsystem nach Anspruch 1, dadurch gekennzeichnet, daß das künstliche Gefäßsystem aus einem synthetischen Mate¬ rial wie Polytetrafluorethylen (PTFE) , Polyurethan, Silicon und dergleichen besteht.2. Artificial blood vessel system according to claim 1, characterized in that the artificial vascular system consists of a synthetic material such as polytetrafluoroethylene (PTFE), polyurethane, silicone and the like.
3. Künstliches Blutgefäßsystem nach Anspruch 1, dadurch gekennzeichnet, daß das mindestens eine RGD (Arginin-Glycin-Asparagin) -Amino¬ säuresequenz enthaltende Protein, Saccharid oder Peptid von Zellrezeptoren, insbesondere von Endothelzellrezep- toren gebunden wird. 3. Artificial blood vessel system according to claim 1, characterized in that the protein, saccharide or peptide containing at least one RGD (arginine-glycine-asparagine) amino acid sequence is bound by cell receptors, in particular endothelial cell receptors.
4. Künstliches Blutgefäßsystem nach Anspruch 1, dadurch gekennzeichnet, daß die primären Aminogruppen der ersten makromolekularen Kom¬ ponente der beschichteten inneren Oberfläche in Seitenket- ten angeordnet sind.4. Artificial blood vessel system according to claim 1, characterized in that the primary amino groups of the first macromolecular component of the coated inner surface are arranged in side chains.
5. Künstliches Blutgefäßsystem nach einem der Ansprüche 1 und 4, dadurch gekennzeichnet, daß in der Oberflächenbeschichtung die erste makromolekulare Komponente Poly-lysin-hydrohalogenid, vorzugsweise ein Poly-L-lysin-hydrohalogenid und insbesondere Poly-L- hydrobromid, ist.5. Artificial blood vessel system according to one of claims 1 and 4, characterized in that in the surface coating the first macromolecular component is poly-lysine hydrohalide, preferably a poly-L-lysine hydrohalide and in particular poly-L-hydrobromide.
6. Künstliches Blutgefäßsystem nach Anspruch 1, dadurch gekennzeichnet, daß in der Oberflächenbeschichtung die zweite Komponente Glutardialdehyd ist.6. Artificial blood vessel system according to claim 1, characterized in that in the surface coating the second component is glutardialdehyde.
7. Verfahren zur Herstellung eines künstlichen Gefäßsystems, bestehend aus einem synthetischen Material, indem die innere Oberfläche vorbeschichtet wird und anschließend eine Substanz aufgebracht wird, die von Zeiladhäsions¬ rezeptoren erkannt und gebunden wird,7. Process for the production of an artificial vascular system, consisting of a synthetic material, by pre-coating the inner surface and subsequently applying a substance that is recognized and bound by cell adhesion receptors.
gekennzeichnet durch folgende Verfahrensschritte:characterized by the following process steps:
a) das künstliche Gefäßsystem wird mit einer ersten makromolekularen Komponente beschichtet, die mehr als eine primäre Aminogruppe enthälta) the artificial vascular system is coated with a first macromolecular component which contains more than one primary amino group
b) die primäre Aminogruppen enthaltende makromolekulare Komponente wird mit einer zweiten Komponente umge¬ setzt, die mindestens zwei reaktive Gruppen, davon mindestens eine Aldehydgruppe, enthält c) das durch die Schritte a) und b) vorbeschichtete künstliche Gefäßsystem wird mit einem Oligosaccharid, -peptid, oder -protein, insbesondere einem Peptid, Saccharid oder Protein, das mindestens eine RGDb) the primary amino group-containing macromolecular component is reacted with a second component which contains at least two reactive groups, including at least one aldehyde group c) the artificial vascular system precoated by steps a) and b) is coated with an oligosaccharide, peptide or protein, in particular a peptide, saccharide or protein which has at least one RGD
(Arginin-Glycin-Asparagin) -Aminosäuresequenz auf¬ weist, umgesetzt.(Arginine-glycine-asparagine) amino acid sequence has been implemented.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das künstliche Gefäßsystem aus einem synthetischen Mate¬ rial wie Polytetrafluorethylen (PTFE) , Polyurethan, Silicon und dergleichen besteht.8. The method according to claim 7, characterized in that the artificial vascular system consists of a synthetic material such as polytetrafluoroethylene (PTFE), polyurethane, silicone and the like.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die primären Aminogruppen der makromolekularen Komponente des Verfahrensschrittes a) in Seitenketten angeordnet sind.9. The method according to claim 7, characterized in that the primary amino groups of the macromolecular component of step a) are arranged in side chains.
10. Verfahren nach Anspruch 9, dadurch gekennzeichent, daß die makromolekulare Komponente ein Poly-lysin-hydrohalo- genid, vorzugsweise ein Poly-L-lysin-hydrohalogenid und insbesondere Poly-L-lysin-hydrobromid, ist.10. The method according to claim 9, characterized in that the macromolecular component is a poly-lysine hydrohalide, preferably a poly-L-lysine hydrohalide and in particular poly-L-lysine hydrobromide.
11. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die makromolekulare Komponente mit Glutardialdehyd als zweite Komponente im Verfahrensschritt b) umgesetzt wird, wobei die zweite Komponente in einer molaren Menge ein¬ gesetzt wird, die geeignet ist, sämtliche NH2-Gruppen der ersten Komponente zu funktionalisieren.11. The method according to claim 7, characterized in that the macromolecular component is reacted with glutardialdehyde as the second component in process step b), the second component being used in a molar amount which is suitable for all NH 2 groups of the first Functionalize component.
12. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das mindestens eine RGD-Sequenz enthaltende Protein, Saccharid oder Peptid von Zellrezeptoren, insbesondere von Endothelzellrezeptoren gebunden wird. 12. The method according to claim 7, characterized in that the protein, saccharide or peptide containing at least one RGD sequence is bound by cell receptors, in particular by endothelial cell receptors.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1995105070 DE19505070C2 (en) | 1995-02-15 | 1995-02-15 | Artificial vascular systems and processes for their manufacture |
DE19505070.3 | 1995-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996025185A1 true WO1996025185A1 (en) | 1996-08-22 |
Family
ID=7754040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1996/000608 WO1996025185A1 (en) | 1995-02-15 | 1996-02-13 | Artificial vessel systems and process for producing them |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19505070C2 (en) |
WO (1) | WO1996025185A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19950386A1 (en) * | 1999-10-19 | 2001-05-10 | Miladin Lazarov | Biocompatible item |
CN109529118A (en) * | 2018-11-19 | 2019-03-29 | 黄淮学院 | A kind of construction method of original position endothelialization angiocarpy bracket coating and application |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19729279A1 (en) * | 1997-07-09 | 1999-01-14 | Peter Hildebrandt | Urological implant, in particular vascular wall support for the urinal tract |
DE19908318A1 (en) * | 1999-02-26 | 2000-08-31 | Michael Hoffmann | Hemocompatible surfaces and methods of making them |
US20050063937A1 (en) * | 2003-09-16 | 2005-03-24 | Cheng Li | Multiple-arm peptide compounds, methods of manufacture and use in therapy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990011297A1 (en) * | 1989-03-20 | 1990-10-04 | La Jolla Cancer Research Foundation | Hydrophobic attachment site for adhesion peptides |
WO1991003990A1 (en) * | 1989-09-15 | 1991-04-04 | Chiron Ophthalmics, Inc. | Method for achieving epithelialization of synthetic lenses |
WO1991005036A2 (en) * | 1989-09-28 | 1991-04-18 | Board Of Regents, The University Of Texas System | Surfaces having desirable cell adhesive effects |
EP0531547A1 (en) * | 1991-03-29 | 1993-03-17 | Vascular Graft Research Center Co., Ltd. | Composite artificial blood vessel |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3788062D1 (en) * | 1987-05-12 | 1993-12-09 | Christian Dr Med Mittermayer | Process for colonizing a polymer surface with human vascular skin cells. |
JPH0382472A (en) * | 1989-08-28 | 1991-04-08 | Terumo Corp | Long term implantable material in living body and manufacture thereof |
DE4306661C2 (en) * | 1993-03-03 | 1995-04-20 | Michael Dipl Biol Sittinger | Process for producing an implant from cell cultures |
-
1995
- 1995-02-15 DE DE1995105070 patent/DE19505070C2/en not_active Expired - Fee Related
-
1996
- 1996-02-13 WO PCT/EP1996/000608 patent/WO1996025185A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990011297A1 (en) * | 1989-03-20 | 1990-10-04 | La Jolla Cancer Research Foundation | Hydrophobic attachment site for adhesion peptides |
WO1991003990A1 (en) * | 1989-09-15 | 1991-04-04 | Chiron Ophthalmics, Inc. | Method for achieving epithelialization of synthetic lenses |
WO1991005036A2 (en) * | 1989-09-28 | 1991-04-18 | Board Of Regents, The University Of Texas System | Surfaces having desirable cell adhesive effects |
EP0531547A1 (en) * | 1991-03-29 | 1993-03-17 | Vascular Graft Research Center Co., Ltd. | Composite artificial blood vessel |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19950386A1 (en) * | 1999-10-19 | 2001-05-10 | Miladin Lazarov | Biocompatible item |
CN109529118A (en) * | 2018-11-19 | 2019-03-29 | 黄淮学院 | A kind of construction method of original position endothelialization angiocarpy bracket coating and application |
Also Published As
Publication number | Publication date |
---|---|
DE19505070C2 (en) | 1997-03-27 |
DE19505070A1 (en) | 1996-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69506781T2 (en) | Cell culture substrates and methods of using them | |
Nojiri et al. | Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces | |
DE69102062T2 (en) | IMMOBILIZED POLYETHYLENE OXYD STAR MOLECULES FOR ORGANIC APPLICATIONS. | |
DE69525692T2 (en) | Implantable tubular prosthesis made of polytetrafluoroethylene | |
DE69229312T2 (en) | ARTIFICIAL BLOOD VESSEL FROM COMPOSITE MATERIAL | |
EP0248246B1 (en) | Vascular graft wall | |
DE69030730T2 (en) | SURFACES WITH DESIRED CELL LIABILITY EFFECTS | |
DE69307305T2 (en) | POLYMER SURFACE COATED WITH FIBRINE | |
DE69822872T2 (en) | METHOD FOR THE OXIDATIVE BINDING OF GLYCOPROTEINS AND GLYCOPEPTIDES TO SURFACES OF MEDICAL ARTICLES | |
DE69330716T2 (en) | NON-FIBROUS TRANSPLANTS COATED WITH ALGINATE AND MANUFACTURING AND APPLICATION METHODS THEREFOR | |
EP0248247B1 (en) | Vascular graft wall | |
DE69932273T2 (en) | Attachment of biomolecules to surfaces of medical devices | |
DE69121301T2 (en) | Collagen constructions | |
DE69232153T2 (en) | SYNTHETIC SUBSTANCES AND COMPOSITIONS WITH INCREASED CELL-BINDING CAPACITY | |
US20080171070A1 (en) | Polyelectrolyte Multilayer Film, Preparation And Uses Thereof | |
JPS62500706A (en) | Process for producing single-layer or multi-layer prosthetic materials and materials obtained thereby | |
JP2008531125A (en) | Implantable medical device with laminin coating and method of use | |
EP0230635A2 (en) | Tubular prosthesis having a composite structure | |
DE2326863A1 (en) | PROCESS FOR MANUFACTURING BIOCOMPATIBLE AND BIOFUNCTIONAL MATERIALS | |
DE10004884A1 (en) | Immobilization of biomolecules on medical devices included converting surface amide groups to amine groups by treatment with hypohalite and hydroxide ions | |
Sipehia et al. | Enhanced attachment and growth of human endothelial cells derived from umbilical veins on ammonia plasma modified surfaces of PTFE and ePTFE synthetic vascular graft biomaterials | |
DE3850957T2 (en) | NEUTRALIZED PERFLUORO-3,6-DIOXA-4-METHYL-7-OCT SULPHONYL FLUORIDE COPOLYMER AREA FOR FIXING AND BREEDING ANIMAL CELLS. | |
WO2018019879A1 (en) | Device having a structured coating for use as an implant, for the treatment of eardrum perforations, and for cell cultivation | |
WO1996025185A1 (en) | Artificial vessel systems and process for producing them | |
DE69904293T2 (en) | COMPOSITIONS AND METHODS FOR BIO-COMPATIBLE IMPLANTS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |