WO1996020690A2 - 3,3-(disubstituted)cyclohexan-1-ylidine acetate monomers and related compounds - Google Patents
3,3-(disubstituted)cyclohexan-1-ylidine acetate monomers and related compounds Download PDFInfo
- Publication number
- WO1996020690A2 WO1996020690A2 PCT/US1995/016294 US9516294W WO9620690A2 WO 1996020690 A2 WO1996020690 A2 WO 1996020690A2 US 9516294 W US9516294 W US 9516294W WO 9620690 A2 WO9620690 A2 WO 9620690A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substituted
- unsubstituted
- alkyl
- cr4r5
- methyl
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 86
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 title abstract description 4
- 239000000178 monomer Substances 0.000 title abstract description 4
- -1 2-tetrahydropyranyl Chemical group 0.000 claims description 64
- 125000000217 alkyl group Chemical group 0.000 claims description 35
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 22
- 229910052799 carbon Inorganic materials 0.000 claims description 21
- 235000019000 fluorine Nutrition 0.000 claims description 18
- 125000001153 fluoro group Chemical group F* 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 10
- HJSLFCCWAKVHIW-UHFFFAOYSA-N cyclohexane-1,3-dione Chemical compound O=C1CCCC(=O)C1 HJSLFCCWAKVHIW-UHFFFAOYSA-N 0.000 claims description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- 229910052736 halogen Inorganic materials 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 7
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 7
- 125000001072 heteroaryl group Chemical group 0.000 claims description 7
- 125000005842 heteroatom Chemical group 0.000 claims description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 7
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000011737 fluorine Substances 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 125000005843 halogen group Chemical group 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 125000003226 pyrazolyl group Chemical group 0.000 claims description 6
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 6
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 5
- 125000002541 furyl group Chemical group 0.000 claims description 5
- 125000000623 heterocyclic group Chemical group 0.000 claims description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 5
- 125000000168 pyrrolyl group Chemical group 0.000 claims description 5
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 4
- 150000002431 hydrogen Chemical group 0.000 claims description 4
- 125000002883 imidazolyl group Chemical group 0.000 claims description 4
- 125000002757 morpholinyl group Chemical group 0.000 claims description 4
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 4
- 125000004193 piperazinyl group Chemical group 0.000 claims description 4
- 125000005592 polycycloalkyl group Polymers 0.000 claims description 4
- 125000003107 substituted aryl group Chemical group 0.000 claims description 4
- 125000001425 triazolyl group Chemical group 0.000 claims description 4
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 claims description 3
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 claims description 3
- 125000003342 alkenyl group Chemical group 0.000 claims description 3
- 125000001246 bromo group Chemical group Br* 0.000 claims description 3
- 150000001721 carbon Chemical group 0.000 claims description 3
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 3
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 3
- 125000001624 naphthyl group Chemical group 0.000 claims description 3
- 125000002971 oxazolyl group Chemical group 0.000 claims description 3
- 125000003831 tetrazolyl group Chemical group 0.000 claims description 3
- 125000000335 thiazolyl group Chemical group 0.000 claims description 3
- 125000001544 thienyl group Chemical group 0.000 claims description 3
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 claims description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 claims description 2
- 125000001541 3-thienyl group Chemical group S1C([H])=C([*])C([H])=C1[H] 0.000 claims description 2
- 125000000304 alkynyl group Chemical group 0.000 claims description 2
- 125000002632 imidazolidinyl group Chemical group 0.000 claims description 2
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 claims description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 claims description 2
- 125000000842 isoxazolyl group Chemical group 0.000 claims description 2
- 125000001715 oxadiazolyl group Chemical group 0.000 claims description 2
- 125000000160 oxazolidinyl group Chemical group 0.000 claims description 2
- 239000000825 pharmaceutical preparation Substances 0.000 claims description 2
- 125000003386 piperidinyl group Chemical group 0.000 claims description 2
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 claims description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 claims description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 claims description 2
- 125000005958 tetrahydrothienyl group Chemical group 0.000 claims description 2
- 125000004632 tetrahydrothiopyranyl group Chemical group S1C(CCCC1)* 0.000 claims description 2
- 125000001113 thiadiazolyl group Chemical group 0.000 claims description 2
- 125000001984 thiazolidinyl group Chemical group 0.000 claims description 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 abstract description 44
- 230000002401 inhibitory effect Effects 0.000 abstract description 18
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 8
- 230000000172 allergic effect Effects 0.000 abstract description 5
- 208000027866 inflammatory disease Diseases 0.000 abstract description 4
- 208000026935 allergic disease Diseases 0.000 abstract description 3
- 102000003390 tumor necrosis factor Human genes 0.000 abstract 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 42
- 238000000034 method Methods 0.000 description 21
- 201000010099 disease Diseases 0.000 description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 19
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 18
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 16
- 238000011282 treatment Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 241000725303 Human immunodeficiency virus Species 0.000 description 11
- 241000124008 Mammalia Species 0.000 description 11
- 210000001744 T-lymphocyte Anatomy 0.000 description 11
- 210000004027 cell Anatomy 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 11
- 210000001616 monocyte Anatomy 0.000 description 11
- 241000700605 Viruses Species 0.000 description 10
- 230000001404 mediated effect Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 102000004127 Cytokines Human genes 0.000 description 9
- 108090000695 Cytokines Proteins 0.000 description 9
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 206010017533 Fungal infection Diseases 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 230000006433 tumor necrosis factor production Effects 0.000 description 9
- 208000006673 asthma Diseases 0.000 description 8
- 208000015181 infectious disease Diseases 0.000 description 8
- 239000000543 intermediate Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 7
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 241000282412 Homo Species 0.000 description 6
- 108010002352 Interleukin-1 Proteins 0.000 description 6
- 108010044467 Isoenzymes Proteins 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 6
- 206010040070 Septic Shock Diseases 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 239000012300 argon atmosphere Substances 0.000 description 6
- 238000003818 flash chromatography Methods 0.000 description 6
- 150000002576 ketones Chemical class 0.000 description 6
- 210000002540 macrophage Anatomy 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 208000031888 Mycoses Diseases 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 4
- 208000030507 AIDS Diseases 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000006044 T cell activation Effects 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 102000030621 adenylate cyclase Human genes 0.000 description 4
- 108060000200 adenylate cyclase Proteins 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 4
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 239000008024 pharmaceutical diluent Substances 0.000 description 4
- 239000002587 phosphodiesterase IV inhibitor Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- 238000010626 work up procedure Methods 0.000 description 4
- 206010006895 Cachexia Diseases 0.000 description 3
- 206010014824 Endotoxic shock Diseases 0.000 description 3
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 3
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 210000005091 airway smooth muscle Anatomy 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 229940125904 compound 1 Drugs 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 235000019341 magnesium sulphate Nutrition 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 210000000440 neutrophil Anatomy 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000001665 trituration Methods 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- 230000029812 viral genome replication Effects 0.000 description 3
- 230000009385 viral infection Effects 0.000 description 3
- IBXRQSOUSCVURU-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-ethynylcyclohexan-1-one Chemical compound COC1=CC=C(C2(CC(=O)CCC2)C#C)C=C1OC1CCCC1 IBXRQSOUSCVURU-UHFFFAOYSA-N 0.000 description 2
- KDDQRKBRJSGMQE-UHFFFAOYSA-N 4-thiazolyl Chemical group [C]1=CSC=N1 KDDQRKBRJSGMQE-UHFFFAOYSA-N 0.000 description 2
- 206010001513 AIDS related complex Diseases 0.000 description 2
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 2
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 2
- 0 COc1ccc(C(CCC2)(CC2=O)C#C*)cc1OC1CCCC1 Chemical compound COc1ccc(C(CCC2)(CC2=O)C#C*)cc1OC1CCCC1 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000700199 Cavia porcellus Species 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 206010009900 Colitis ulcerative Diseases 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 206010010744 Conjunctivitis allergic Diseases 0.000 description 2
- 208000011231 Crohn disease Diseases 0.000 description 2
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 241000713800 Feline immunodeficiency virus Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 208000031886 HIV Infections Diseases 0.000 description 2
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 2
- 241000282346 Meles meles Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 102000013967 Monokines Human genes 0.000 description 2
- 108010050619 Monokines Proteins 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 101100030361 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pph-3 gene Proteins 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 206010063837 Reperfusion injury Diseases 0.000 description 2
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 2
- 206010040047 Sepsis Diseases 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 2
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 2
- 208000002205 allergic conjunctivitis Diseases 0.000 description 2
- 229960003942 amphotericin b Drugs 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 210000003651 basophil Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000008512 biological response Effects 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229940095074 cyclic amp Drugs 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 2
- 210000003630 histaminocyte Anatomy 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 210000004969 inflammatory cell Anatomy 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 208000030603 inherited susceptibility to asthma Diseases 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000007310 pathophysiology Effects 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- PTMBWNZJOQBTBK-UHFFFAOYSA-N pyridin-4-ylmethanol Chemical compound OCC1=CC=NC=C1 PTMBWNZJOQBTBK-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004648 relaxation of smooth muscle Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 230000036303 septic shock Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- QUZMIAJIRIZFQN-UHFFFAOYSA-N (e)-diazo(dimethoxyphosphoryl)methane Chemical compound COP(=O)(OC)C=[N+]=[N-] QUZMIAJIRIZFQN-UHFFFAOYSA-N 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- LEZWWPYKPKIXLL-UHFFFAOYSA-N 1-{2-(4-chlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound C1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 LEZWWPYKPKIXLL-UHFFFAOYSA-N 0.000 description 1
- RXWOHFUULDINMC-UHFFFAOYSA-N 2-(3-nitrothiophen-2-yl)acetic acid Chemical compound OC(=O)CC=1SC=CC=1[N+]([O-])=O RXWOHFUULDINMC-UHFFFAOYSA-N 0.000 description 1
- CYXIKYKBLDZZNW-UHFFFAOYSA-N 2-Chloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)CCl CYXIKYKBLDZZNW-UHFFFAOYSA-N 0.000 description 1
- DVQMPWOLBFKUMM-UHFFFAOYSA-M 2-diethoxyphosphorylacetate Chemical compound CCOP(=O)(CC([O-])=O)OCC DVQMPWOLBFKUMM-UHFFFAOYSA-M 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- UIJRJYDKPFOAJY-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-methoxyphenyl)cyclohex-2-en-1-one Chemical compound COC1=CC=C(C=2CCCC(=O)C=2)C=C1OC1CCCC1 UIJRJYDKPFOAJY-UHFFFAOYSA-N 0.000 description 1
- CWDWFSXUQODZGW-UHFFFAOYSA-N 5-thiazolyl Chemical group [C]1=CN=CS1 CWDWFSXUQODZGW-UHFFFAOYSA-N 0.000 description 1
- OIRDTQYFTABQOQ-KQYNXXCUSA-N Adenosine Natural products C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010063094 Cerebral malaria Diseases 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000713730 Equine infectious anemia virus Species 0.000 description 1
- 206010018367 Glomerulonephritis chronic Diseases 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 206010018634 Gouty Arthritis Diseases 0.000 description 1
- 206010020164 HIV infection CDC Group III Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 108010081348 HRT1 protein Hairy Proteins 0.000 description 1
- 102100021881 Hairy/enhancer-of-split related with YRPW motif protein 1 Human genes 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical group C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010069698 Langerhans' cell histiocytosis Diseases 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 206010027236 Meningitis fungal Diseases 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- 208000005314 Multi-Infarct Dementia Diseases 0.000 description 1
- 206010028289 Muscle atrophy Diseases 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 101000909851 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) cAMP/cGMP dual specificity phosphodiesterase Rv0805 Proteins 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 208000001388 Opportunistic Infections Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229940123932 Phosphodiesterase 4 inhibitor Drugs 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- 206010039085 Rhinitis allergic Diseases 0.000 description 1
- 238000000297 Sandmeyer reaction Methods 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 201000010001 Silicosis Diseases 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 206010044248 Toxic shock syndrome Diseases 0.000 description 1
- 231100000650 Toxic shock syndrome Toxicity 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 201000004810 Vascular dementia Diseases 0.000 description 1
- 102100026383 Vasopressin-neurophysin 2-copeptin Human genes 0.000 description 1
- 241000713325 Visna/maedi virus Species 0.000 description 1
- UQWDRWCAPZFZCW-UHFFFAOYSA-N [Al+3].[Al+3].[C-]#[C-].[C-]#[C-].[C-]#[C-] Chemical compound [Al+3].[Al+3].[C-]#[C-].[C-]#[C-].[C-]#[C-] UQWDRWCAPZFZCW-UHFFFAOYSA-N 0.000 description 1
- IQHSUQFQDPLQOZ-UHFFFAOYSA-N [cyano(methyl)alumanyl]formonitrile Chemical compound C[Al](C#N)C#N IQHSUQFQDPLQOZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 210000005057 airway smooth muscle cell Anatomy 0.000 description 1
- 201000010105 allergic rhinitis Diseases 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 239000000924 antiasthmatic agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000002917 arthritic effect Effects 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 208000024998 atopic conjunctivitis Diseases 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- AZWXAPCAJCYGIA-UHFFFAOYSA-N bis(2-methylpropyl)alumane Chemical compound CC(C)C[AlH]CC(C)C AZWXAPCAJCYGIA-UHFFFAOYSA-N 0.000 description 1
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 1
- 208000019664 bone resorption disease Diseases 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001733 carboxylic acid esters Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 208000023819 chronic asthma Diseases 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960004022 clotrimazole Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- 239000012230 colorless oil Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010064 diabetes insipidus Diseases 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 238000006193 diazotization reaction Methods 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- JGHYBJVUQGTEEB-UHFFFAOYSA-M dimethylalumanylium;chloride Chemical compound C[Al](C)Cl JGHYBJVUQGTEEB-UHFFFAOYSA-M 0.000 description 1
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 1
- 229960002986 dinoprostone Drugs 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 229960003913 econazole Drugs 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 208000003401 eosinophilic granuloma Diseases 0.000 description 1
- KAQKFAOMNZTLHT-VVUHWYTRSA-N epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 description 1
- 229960001123 epoprostenol Drugs 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 230000003090 exacerbative effect Effects 0.000 description 1
- 229960004884 fluconazole Drugs 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 201000010056 fungal meningitis Diseases 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical group O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 230000035874 hyperreactivity Effects 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 208000011379 keloid formation Diseases 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 210000001865 kupffer cell Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 229940040145 liniment Drugs 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 230000007302 negative regulation of cytokine production Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- BMGNSKKZFQMGDH-FDGPNNRMSA-L nickel(2+);(z)-4-oxopent-2-en-2-olate Chemical compound [Ni+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O BMGNSKKZFQMGDH-FDGPNNRMSA-L 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 238000005832 oxidative carbonylation reaction Methods 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- 150000002941 palladium compounds Chemical class 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- WQVJHHACXVLGBL-GOVYWFKWSA-N polymyxin B1 Polymers N1C(=O)[C@H](CCN)NC(=O)[C@@H](NC(=O)[C@H](CCN)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)CCCC[C@H](C)CC)CCNC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCN)NC(=O)[C@H](CCN)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1CC1=CC=CC=C1 WQVJHHACXVLGBL-GOVYWFKWSA-N 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 201000003651 pulmonary sarcoidosis Diseases 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000012258 stirred mixture Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- CWMFRHBXRUITQE-UHFFFAOYSA-N trimethylsilylacetylene Chemical group C[Si](C)(C)C#C CWMFRHBXRUITQE-UHFFFAOYSA-N 0.000 description 1
- 229940046728 tumor necrosis factor alpha inhibitor Drugs 0.000 description 1
- 239000002451 tumor necrosis factor inhibitor Substances 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 201000005539 vernal conjunctivitis Diseases 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/73—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
- C07C69/734—Ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/02—Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/01—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
- C07C255/31—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing rings other than six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/01—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
- C07C255/32—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
- C07C255/37—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by etherified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/08—Systems containing only non-condensed rings with a five-membered ring the ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- the present invention relates to novel 3,3-(disubstituted)cyclohexan-l-ylidine acetate monomers and related compounds, pharmaceutical compositions containing these compounds, and their use in treating allergic and inflammatory diseases and for inhibiting the production of Tumor Necrosis Factor (TNF).
- TNF Tumor Necrosis Factor
- Bronchial asthma is a complex, multifactorial disease characterized by reversible narrowing of the airway and hyperreactivity of the respiratory tract to external stimuli.
- Cyclic AMP has been shown to be a second messenger mediating the biologic responses to a wide range of hormones, neurotransmitters and drugs; [Krebs Endocrinology Proceedings of the 4th International Congress Excerpta Medica, 17-29, 1973].
- adenylate cyclase is activated, which converts Mg + 2-ATP to cAMP at an accelerated rate.
- Cyclic AMP modulates the activity of most, if not all, of the cells that contribute to the pathophysiology of extrinsic (allergic) asthma.
- cAMP cyclic nucleoude phosphodiesterases
- PDE isozyme
- PDE IV is responsible for cAMP breakdown in airway smooth muscle and inflammatory cells.
- Talphy "Phosphodiesterase Isozymes: Potential Targets for Novel Anti-asthmatic Agents” in New Drugs for Asthma, Barnes, ed. IBC Technical Services Ltd., 1989]. Research indicates that inhibition of this enzyme not only produces airway smooth muscle relaxation, but also suppresses degranulation of mast cells, basophils and neutrophils along with inhibiting the activation of monocytes and neutrophils.
- PDE IV inhibitors are markedly potentiated when adenylate cyclase activity of target cells is elevated by appropriate hormones or autocoids, as would be the case in vivo.
- PDE IV inhibitors would be effective in the asthmatic lung, where levels of prostaglan din E2 and prostacyclin (activators of adenylate cyclase) are elevated.
- Such compounds would offer a unique approach toward the pharmacotherapy of bronchial asthma and possess significant therapeutic advantages over agents currendy on the market.
- TNF Tumor Necrosis Factor
- rheumatoid arthritis rheumatoid spondylitis, osteoaithritis, gouty arthritis and other arthritic conditions
- sepsis septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoidosis, bone resorption diseases, reperfusion injury, graft vs.
- allograft rejections fever and myalgias due to infection, such as influenza, cachexia secondary to infection or malignancy, cachexia secondary to human acquired immune deficiency syndrome (AIDS), AIDS, ARC (AIDS related complex), keloid formation, scar tissue formation, Crohn's disease, ulcerative colitis, or pyresis, in addition to a number of autoimmune diseases, such as multiple sclerosis, autoimmune diabetes and systemic lupus erythematosis.
- AIDS acquired immune deficiency syndrome
- AIDS AIDS
- ARC AIDS related complex
- keloid formation scar tissue formation
- Crohn's disease Crohn's disease
- ulcerative colitis ulcerative colitis
- pyresis in addition to a number of autoimmune diseases, such as multiple sclerosis, autoimmune diabetes and systemic lupus erythematosis.
- HIV Human Immunodeficiency Virus
- Cytokines are implicated in activated T-cell-mediated HTV protein expression and/or virus replication by playing a role in maintaining T lymphocyte activation. Therefore, interference with cytokine activity such as by inhibition of cytokine production, notably TNF, in an HTV-infected individual aids in limiting the maintenance of T cell activation, thereby reducing the progression of HTV infectivity to previously uninfected cells which results in a slowing or elimination of the progression of immune dysfunction caused by HTV infection.
- Monocytes, macrophages, and related cells, such as kupffer and glial cells have also been implicated in maintenance of the HTV infection.
- T cells like T cells, are targets for viral replication and the level of viral replication is dependent upon the activation state of the cells.
- Monokines such as TNF, have been shown to activate HIV replication in monocytes and/or macrophages [See Poli et al, Proc. Nad. Acad. Sci., 87:782-784, 1990], therefore, inhibition of monokine production or activity aids in limiting HIV progression as stated above for T cells.
- TNF has also been implicated in various roles with other viral infections, such as the cytomegalovirus (CMV), influenza virus, adenovirus, and the herpes virus for similar reasons as those noted.
- CMV cytomegalovirus
- influenza virus influenza virus
- adenovirus adenovirus
- herpes virus herpes virus
- TNF is also associated with yeast and fungal infections. Specifically Candida albicans has been shown to induce TNF production in vitro in human monocytes and natural killer cells. [See R ⁇ pi et al. Infection and Immunity, 58(9):2750-54, 1990; and Jafari et al, Journal of Infectious Diseases, 164:389-95, 1991. See also Wasan et al, Antimicrobial Agents and Chemotherapy, 35,(10):2046-48, 1991 ; and Luke et al, Journal of Infectious Diseases, 162:211-214,1990].
- R 2 is -(CR4R5)nC(O)O(CR4R5)mR6, -(CR4R5)nC(O)NR4(CR4R5)m 6, -(CR4R5) n O(CR4R5) m R6, or -(C_-4R5) r R6 wherein the alkyl moieties unsubstituted or substituted with one or more halogens; m is 0 to 2; n is 0 to 4; r is 0 to 6;
- R4 and R5 are independently selected hydrogen or Ci-2 alkyl;
- R6 is hydrogen, methyl, hydroxyl, aryl, halo substituted aryl, aryloxyCi-3 alkyl, halo substituted aryloxyCi-3 alkyl, indanyl, indenyl, C7-11 polycycloalkyl, tetrahydrofuranyl, furanyl, tetrahydropyranyl, pyranyl, tetrahydrothienyl, thienyl, tetrahydrothiopyranyl, thiopyranyl, C3-6 cycloalkyl, or a C4_6 cycloalkyl containing one or two unsaturated bonds, wherein the cycloalkyl or heterocyclic moiety is unsubstituted or substituted by 1 to 3 methyl groups, one ethyl group, or an hydroxyl group; provided that: a) when R6 is hydroxyl, then m is 2
- X is YR2, fluorine, NR4R5, or formyl amine; Y is O or S(O)n ⁇ ; m' is O, l, or 2; X2 is O or NR8; X3 is hydrogen or X;
- X4 is H, R9, OR8, CN, C(O)Rg, C(O)ORs, C(O)NRgR8, or NRgR ⁇ ;
- R2 is independently selected from -CH3 or -CH2CH3 optionally substituted by 1 or more halogens;
- s is 0 to 4;
- W is alkyl of 2 to 6 carbons, alkenyl of 2 to 6 carbon atoms or alkynyl of 2 to 6 carbon atoms;
- R 3 is COOR14, C(O)NR4Rl4 or R7;
- Z is C(-CN)2, CR14CN, CRi4C(O)OR8, CRi4C(O)NR8Rl4, C(-CN)NO2, C(-CN)C(O)OR9, C(-CN)OC(O)R9, C(-CN)OR9, or C(-CN)C(O)NRsRl4;
- Y' is O or S;
- R7 is -(CR4R5)qRl2 or Ci.g alkyl wherein the R12 or Ci.g alkyl group is unsubstituted or substituted one or more times by methyl or ethyl unsubstituted or substituted by 1-3 fluorines, -F, -Br, -Cl, -NO2, -NR 10 R ⁇ l f -C(O)R ⁇ , -CO2R8, -O(CH 2 ) q R8, -CN, -C(O)NRi 0 Rl l, -O(CH 2 ) q C(O)NRi 0 Rl l, -O(CH 2 ) q C(O)R 9) -NRi ⁇ C(O)NRi ⁇ Rn, -NR ⁇ oC(O)Rn, -NRioC(O)OR9, -NR ⁇ oC(O)Ri3, -C(NRi ⁇ )NRl ⁇ Rl -C
- Rl2 is i3, C3-C7 cycloalkyl, or an unsubstituted or substituted aryl or heteroaryl group selected from the group consisting of (2-, 3- or 4-pyridyl), pyrimidyl, pyrazolyl, (1- or 2-imidazolyl), pyrrolyl, piperazinyl, piperidinyl, morpholinyl, furanyl, (2- or 3-thienyl), quinolinyl, naphthyl, and phenyl;
- Rg is hydrogen or R9;
- R9 is C ⁇ _4 alkyl optionally substituted by one to three fluorines;
- RlO is OR ⁇ or Rn;
- Rj 1 is hydrogen, or C 1.4 alkyl unsubstituted or substituted by one to three fluorines; or when Rio and Ri 1 are as NRioRl 1 they may together with the nitrogen form a 5 to 7 membered ring comprised of carbon or carbon and one or more additional heteroatoms selected from O, N, or S;
- Rl3 is a substituted or unsubstituted heteroaryl group selected from the group consisting of oxazolidinyl, oxazolyl, thiazolyl, pyrazolyl, triazolyl, tetrazolyl, imidazolyl, imidazolidinyl, thiazolidinyl, isoxazolyl, oxadiazolyl, and thiadiazolyl, and where R ⁇ 3 is substituted on R J2 or R ⁇ 3 the rings are connected through a carbon atom and each second R
- Rl4 is hydrogen or R7; or when R8 and R 14 are as NR ⁇ Rl4 they may together with the nitrogen form a 5 to 7 membered ring comprised of carbon or carbon and one or more additional heteroatoms selected from O, N, or S; provided that:
- R7 is not C _4 alkyl unsubstituted or substituted by one to three fluorines; or the pharmaceutically acceptable salts thereof.
- This invention also relates to the pharmaceutical compositions comprising a compound of Formula (I) and a pharmaceutically acceptable carrier or diluent.
- the invention also relates to a method of mediation or inhibition of the enzymatic activity (or catalytic activity) of PDE IV in mammals, including humans, which comprises administering to a mammal in need thereof an effective amount of a compound of Formula (I) as shown below.
- the invention further provides a method for the treatment of allergic and inflammatory disease which comprises __iministering to a mammal, including humans, in need thereof, an effective amount of a compound of Formula (I).
- the invention also provides a method for the treatment of asthma which comprises axiministering to a mammal, including humans, in need thereof, an effective amount of a compound of Formula (I).
- This invention also relates to a method of inhibiting TNF production in a mammal, including humans, which method comprises administering to a mammal in need of such treatment, an effective TNF inhibiting amount of a compound of Formula (I).
- This method may be used for the prophylactic treatment or prevention of certain TNF mediated disease states amenable thereto.
- This invention also relates to a method of treating a human afflicted with a human immunodeficiency virus (HIV), which comprises axiministering to such human an effective TNF inhibiting amount of a compound of Formula (I).
- HAV human immunodeficiency virus
- Compounds of Formula (I) are also useful in the treatment of additional viral infections, where such viruses are sensitive to upregulation by TNF or will elicit TNF production in vivo.
- compounds of Formula (I) are also useful in treating yeast and fungal infections, where such yeast and fungi are sensitive to upregulation by TNF or will elicit TNF production in vivo.
- This invention also relates to a method of mediating or inhibiting the enzymatic activity (or catalytic activity) of PDE IV in a mammal in need thereof and to inhibiting the production of TNF in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of Formula (I).
- Phosphodiesterase IV inhibitors are useful in the treatment of a variety of allergic and ir_fl__ ⁇ _rnatory diseases including: asthma, chronic bronchitis, atopic dermatitis, urticaria, allergic rhinitis, allergic conjunctivitis, vernal conjunctivitis, eosinophilic granuloma, psoriasis, rheumatoid arthritis, septic shock, ulcerative colitis, Crohn's disease, reperfusion injury of the myocardium and brain, chronic glomerulonephritis, endotoxic shock and adult respiratory distress syndrome.
- PDE IV inhibitors are useful in the treatment of diabetes insipidus and central nervous system disorders such as depression and multi-infarct dementia.
- viruses contemplated for treatment herein are those that produce TNF as a result of infection, or those which are sensitive to inhibition, such as by decreased replication, directly or indirectly, by the TNF inhibitors of Formula (I).
- viruses include, but are not limited to HTV-1, HTV-2 and HTV-3, cytomegalovirus (CMV), influenza, adenovirus and the Herpes group of viruses, such as, but not limited to, Herpes zoster and Herpes simplex.
- CMV cytomegalovirus
- influenza influenza
- adenovirus adenovirus
- Herpes group of viruses such as, but not limited to, Herpes zoster and Herpes simplex.
- This invention more specifically relates to a method of treating a m___ mal, afflicted with a hiiman immunodeficiency virus (HIV), which comprises administering to such ____mmal an effective TNF inhibiting amount of a compound of Formula (I).
- HAV hii
- TNF mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted above, but in particular viral infections.
- viruses include, but are not limited to feline immunodeficiency virus (FIV) or other retroviral infection such as equine infectious anemia virus, caprine arthritis virus, visna virus, maedi virus and other lentiviruses.
- FMV feline immunodeficiency virus
- retroviral infection such as equine infectious anemia virus, caprine arthritis virus, visna virus, maedi virus and other lentiviruses.
- the compounds of this invention are also useful in treating yeast and fungal infections, where such yeast and fungi are sensitive to upregulation by TNF or will elicit TNF production in vivo.
- a preferred disease state for treatment is fungal meningitis.
- the compounds of Formula (I) may be -administered in conjunction with other drugs of choice for systemic yeast and fungal infections.
- Drugs of choice for fungal infections include but are not limited to the class of compounds called the polymixins, such as Polymycin B, the class of compounds called the imidazoles, such as clotrimazole, econazole, miconazole, and ketoconazole; the class of compounds called the triazoles, such as fluconazole, and itranazole, and the class of compound called the Amphotericins, in particular Amphotericin B and liposomal Amphotericin B.
- the compounds of Formula (I) may also be used for inhibiting and/or reducing the toxicity of an anti-fungal, anti-bacterial or anti-viral agent by administering an effective amount of a compound of Formula (I) to a mammal in need of such treatment.
- a compound of Formula (I) is adir ⁇ nistered for inhibiting or reducing the toxicity of the Amphotericin class of compounds, in particular Amphotericin B.
- Preferred compounds are as follows:
- the halogens are preferably fluorine and chlorine, more preferably a C i _4 alkyl substituted by 1 or more fluorines.
- the preferred halo-substituted alkyl chain length is one or two carbons, and most preferred are the moieties -CF3, -CH2F, - CHF2, -CF2CHF2, -CH2CF3, and -CH2CHF2.
- Preferred Ri substitutents for the compounds of Formula (I) are CH2-cyclopropyl, CH2-C5-6 cycloalkyl, C4.6 cycloalkyl with or without an hydroxyl group on the ring, C7- 11 polycycloalkyl, (3- or 4-cyclopentenyl), phenyl, tetrahydrofuran-3-yl, benzyl or Ci-2 alkyl unsubstituted or substituted by 1 or more fluorines, -(CH2)l-3C(O)O(CH2)0-2CH3, -(CH2)1-3O(CH2)0-2CH3, and -(CH2)2-4OH.
- the Ri term is (CR4R5)
- the R4 and R5 terms are independently hydrogen or alkyl.
- each repeating methylene unit is independent of the other, e.g., (CR4R5)n wherein n is 2 can be -CH2CH(-CH3)-, for instance.
- the individual hydrogen atoms of the repeating methylene unit or the branching hydrocarbon can unsubstituted or be substituted by fluorine independent of each other to yield, for instance, the preferred Ri substitutions, as noted above.
- Ri is a C7_ ⁇ 1 polycycloalkyl
- examples are bicyclo[2.2.1]-heptyl, bicyclo[2.2.2]octyl, bicyclo[3.2.1]octyl, tricyclo[S.2.1.0 2 > 6 ]decy_ > etc. additional examples of which are described in Saccamano et al., WO 87/06576, published 5 November 1987, whose disclosure is incorporated herein by reference in its entirety.
- Preferred Z terms are C(-CN)2, CRi4C(O)OR8, CRi4C(O)NR8Rl4, C(-CN)C(O)OR9, C(-CN)OC(O)R9, C(-CN)OR9, or C(-CN)C(O)NR ⁇ Rl4;
- Preferred X groups for Formula (I) are those wherein X is YR2 and Y is oxygen.
- the preferred X2 group for Formula (I) is that wherein X2 is oxygen.
- the preferred X3 group for Formula (I) is that wherein X3 is hydrogen.
- Preferred R2 groups, where applicable, is a Ci-2 alkyl unsubstituted or substituted by 1 or more halogens.
- the halogen atoms are preferably fluorine and chlorine, more preferably fluorine.
- More preferred R2 groups are those wherein R2 is methyl, or the fluoro- substituted alkyls, specifically a C 1-2 alkyl, such as a -CF3, -CHF2, or -CH2CHF2 moiety. Most preferred are the -CHF2 and -CH3 moieties.
- Preferred R3 moiety is R7.
- R7 moieties include unsubstituted or substituted -(CH2)0-2(2-, 3- or 4-pyridyl), (CH2)l-2(2-imidazolyl), (CH2)2(4-morpholinyl), (CH2)2(4-piperazinyl), (CH2) 1 -2(2-thienyl), (CH2) 1 -2(4-thiazolyl), unsubstituted or substituted pyrimidinyl, and substituted or unsubstituted (CH2)0-2phenyl.
- Preferred rings when Rio and Ri 1 in the moiety -NRioRl 1 together with the nitrogen to which they are attached form a 5 to 7 membered ring comprised of carbon or carbon and at least one heteroatom selected from O, N, or S include, but are not limited to 1 -imidazolyl, 2-(R8)- 1 -imidazolyl, 1 -pyrazolyl, 3-(R8)- 1 -pyrazolyl, 1 - triazolyl, 2-triazolyl, 5-(R8)-l-triazolyl, 5-(R8)-2-triazolyl, 5-(R8)-l-tetr___olyl, 5-(R8)-2-tetrazolyl, 1-tetrazolyl, 2-tetrazloyl, morpholinyl, piperazinyl, 4-(R8)-l- piperazinyl, or pyrrolyl ring.
- Preferred rings when R ⁇ and R 14 in the moiety -NRsRl4 together with the nitrogen to which they are attached may form a 5 to 7 membered ring comprised of carbon or carbon and at least one heteroatom selected from O, N, or S include, but are not limited to 1 -imidazolyl, 1 -pyrazolyl, 1 -triazolyl, 2-triazolyl, 1-tetrazolyl, 2-tetrazolyl, morpholinyl, piperazinyl, and pyrrolyl.
- the respective rings may be additionally substituted, where applicable, on an available nitrogen or carbon by the moiety R7 as described herein for Formula (I).
- Illustrations of such carbon substitutions includes, but is not limited to, 2-(R7)-l -imidazolyl, 4-(R7)-l -imidazolyl, 5-(R7)- 1 -imidazolyl, 3-(R7)- 1 -pyrazolyl, 4-(R7)- 1 -pyrazolyl, 5-(R7)- 1 -pyrazolyl, 4-(R7)-2-triazolyl, 5-(R7)-2-triazolyl, 4-(R7)- 1 -triazolyl, 5-(R7)- 1 -triazolyl,
- R7 includes, but is not limited to, l-(R7)-2-t ⁇ trazolyl, 2-(R7)-l-tetrazolyl, 4-(R7)-l- piperazinyl. Where applicable, the ring may be substituted one or more times by R7.
- Preferred groups for NR ⁇ Rl4 which contain a heterocyclic ring are 5-(Ri4)-l- tetrazolyl, 2-(R 14)- 1 -imidazolyl, 5-(Ri4)-2-tetrazolyl, or 4-(R ⁇ 4)- 1 -piperazinyl.
- Preferred rings for R13 include (2-, 4- or 5-imidazolyl), (3-, 4- or 5-pyrazolyl), (4- or 5-triazolyl[ 1,2,3]), (3- or 5-triazolyl[ 1,2,4]), (5-tetrazolyl), (2-, 4- or 5-oxazolyl), (3-, 4- or 5-isoxazolyl), (3- or 5-oxadiazolyl[ 1,2,4]), (2-oxadiazolyl[ 1,3,4]), (2-thiadiazolyl[ 1,3,4]), (2-, 4-, or 5-thiazolyl), (2-, 4-, or 5-oxazolidinyl), (2-, 4-, or 5-thiazolidinyl), or (2-, 4-, or 5-i ⁇ _ ⁇ d__.olidinyl).
- the heterocyclic ring itself may be unsubstituted or substituted by R ⁇ either on an available nitrogen or carbon atom, such as l-(R ⁇ )-2-imidazolyl, l-(R8)-4-imidazolyl, l-(R8)-5-imidazolyl, l-(R8)-3-pyrazolyl, l-(R8)-4-pyrazolyl, l-(R8)-5-pyrazolyl, l-(R8)-4-triazolyl, or l-(R8)-5-triazolyl.
- the ring may be substituted one or more times by
- R is -CH2- cyclopropyl, -CH2-C5-6 cycloalkyl, -C4.-6 cycloalkyl unsubstituted or substituted by OH, tetrahydrofuran-3-yl, (3- or 4-cyclopentenyl), benzyl or -Ci_2 alkyl unsubstituted or substituted by 1 or more fluorines, and -(CH2)2-4 OH; R2 is methyl or fluoro- substituted alkyl, W is ethynyl or 1,3-butadiynyl; R 3 is R 7 where R is an unsubstituted or substituted aryl or heteroaryl ring, X is YR2, and Z is CRi4C(O)OR ⁇ -
- Ri is -CH2-cyclopropyl, cyclopentyl, 3-hydroxycyclopentyl, methyl or CF2H
- X is YR2; Y is oxygen; X2 is oxygen; X3 is hydrogen; and R2 is CF2H or methyl
- W is ethynyl or 1,3-butadiynyl, and R3 is a substituted or unsubstituted pyrimidinyl ring.
- C ⁇ alkyl C alkyl
- C ⁇ alkyl C ⁇ alkyl or “alkyl” groups as used herein is meant to include both straight or branched chain radicals of 1 to 10, unless the chain length is limited thereto, including, but not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and the like.
- Alkenyl means both straight or branched chain radicals of 1 to 6 carbon lengths, unless the chain length is limited thereto, including but not limited to vinyl, 1- propenyl, 2-propenyl, 2-propynyl, or 3-methyl-2-propenyl.
- cycloalkyl or “cycloalkyl alkyl” means groups of 3-7 carbon atoms, such as cyclopropyl, cyclopropylmethyl, cyclopentyl, or cyclohexyl.
- Aryl or “aralkyl”, unless specified otherwise, means an aromatic ring or ring system of 6-10 carbon atoms, such as phenyl, benzyl, phenethyl, or naphthyl.
- the aryl is monocyclic, i.e, phenyl.
- the alkyl chain is meant to include both straight or branched chain radicals of 1 to 4 carbon atoms.
- Heteroaryl means an aromatic ring system containing one or more heteroatoms, such as imidazolyl, triazolyl, oxazolyl, pyridyl, pyrimidyl, pyrazolyl, pyrrolyl, furanyl, or thienyl.
- Halo means all halogens, i.e., chloro, fluoro, bromo, or iodo.
- “Inhibiting the production of IL- 1 " or “inhibiting the production of TNF” means: a) a decrease of excessive in vivo IL-1 or TNF levels, respectively, in a human to normal levels or below normal levels by inhibition of the in vivo release of IL-1 by all cells, including but not limited to monocytes or macrophages; b) a down regulation, at the translational or transcriptional level, of excessive in vivo IL-1 or TNF levels, respectively, in a human to normal levels or below normal levels; or c) a down regulation, by inhibition of the direct synthesis of IL-1 or TNF levels as a postranslational event.
- TNF mediated disease or disease states means any and all disease states in which TNF plays a role, either by production of TNF itself, or by TNF causing another cytokine to be released, such as but not limited to IL-1 or IL-6.
- TNF- ⁇ also known as lymphotoxin
- TNF- ⁇ also known as cachectin
- TNF- ⁇ is inhibited.
- Cytokine means any secreted polypeptide that affects the functions of cells, and is a molecule which modulates interactions between cells in immune, inflammatory, or hematopoietic responses.
- a cytokine includes, but is not limited to, monokines and lymphokines regardless of which cells produce them.
- the cytokine inhibited by the present invention for use in the treatment of a HTV- infected human must be a cytokine which is implicated in (a) the initiation and/or maintenance of T cell activation and/or activated T cell-mediated HTV gene expression and/or replication, and/or (b) any cytokine-mediated disease associated problem such as cachexia or muscle degeneration.
- his cytokine is TNF- ⁇ .
- All of the compounds of Formula (I) are useful in the method of inhibiting the production of TNF, preferably by macrophages, monocytes or macrophages and monocytes, in a mammal, including humans, in need thereof. All of the compounds of Formula (I) are useful in the method of inhibiting or mediating the enzymatic or catalytic activity of PDE IV and in treatment of disease states mediated thereby.
- Pha_ ⁇ naceutically acceptable salts of the instant compounds, where they can be prepared, are also intended to be covered by this invention. These salts will be ones which are acceptable in their application to a pharmaceutical use. By that it is meant that the salt will retain the biological activity of the parent compound and the salt will not have untoward or deleterious effects in its application and use in treating diseases.
- the parent compound dissolved in a suitable solvent, is treated with an excess of an organic or inorganic acid, in the case of acid addition salts of a base, or an excess of organic or inorganic base where the molecule contains a COOH for example.
- compositions of the present invention comprise a pharmaceutical carrier or diluent and some amount of a compound of the formula (I).
- the compound may be present in an amount to effect a physiological response, or it may be present in a lesser amount such that the user will need to take two or more units of the composition to effect the treatment intended.
- These compositions may be made up as a solid, liquid or in a gaseous form. Or one of these three forms may be transformed to another at the time of being administered such as when a solid is delivered by aerosol means, or when a liquid is delivered as a spray or aerosol.
- compositions and the pharmaceutical carrier or diluent will, of course, depend upon the intended route of administration, for example parenterally, topically, orally or by inhalation.
- topical administration the pharmaceutical composition will be in the form of a cream, ointment, liniment, lotion, pastes, aerosols, and drops suitable for administration to the skin, eye, ear, or nose.
- the pharmaceutical composition will be in the form of a sterile injectable liquid such as an ampule or an aqueous or non-aqueous liquid suspension.
- the pharmaceutical composition will be in the form of a tablet, capsule, powder, pellet, atroche, lozenge, syrup, liquid, or emulsion.
- examples of appropriate pharmaceutical carriers or diluents include: for aqueous systems, water; for non-aqueous systems, ethanol, glycerin, propylene glycol, corn oil, cottonseed oil, peanut oil, sesame oil, liquid parafins and mixtures thereof with water; for solid systems, lactose, kaolin and mannitol; and for aerosol systems, dichlorodifluoromethane, chlorotrifluoroethane and compressed carbon dioxide.
- the instant compositions may include other ingredients such as stabilizers, antioxidants, preservatives, lubricants, suspending agents, viscosity modifiers and the like, provided that the additional ingredients do not have a detrimental effect on the therapeutic action of the instant compositions.
- the pharmaceutical preparations thus described are made following the conventional techniques of the pharmaceutical chemist as appropriate to the desired end product.
- the amount of carrier or diluent will vary but preferably will be the major proportion of a suspension or solution of the active ingredient.
- the diluent is a solid it may be present in lesser, equal or greater amounts than the solid active ingredient.
- a compound of formula I is administered to a subject in a composition comprising a nontoxic amount sufficient to produce an inhibition of the symptoms of a disease in which leukotrienes are a factor.
- Topical formulations will contain between about 0.01 to 5.0% by weight of the active ingredient and will be applied as required as a preventative or curative agent to the affected area.
- the dosage of the composition is selected from the range of from 50 mg to 1000 mg of active ingredient for each adrr ⁇ nistration. For convenience, equal doses will be administered 1 to 5 times daily with the daily dosage regimen being selected from about 50 mg to about 5000 mg.
- Compounds of Formula (I) may be prepared by the processes disclosed herein.
- the process comprises reacting a terminal acetylene, wherein Z isdefined in relation to Formula (I), or a group convertible to Z, as, e.g., compound 1 -Scheme 1. with an appropriate halide, R3X, wherein R3 represents R3 as defined in relation to Formula (I) or a group convertible to R3, in the presence of a suitable catalyst.
- a suitable catalyxt is, for example, copper(I) halide and a bivalent or zero valent palladium compound in the presence of, e.g., triphenylphosphine in a suitable solvent, such as an amine. See for example the procedure of Brandsma et al.
- the intermediate compounds represented by Formula 1 -Scheme 1 may be prepared by the following prodecure: a) For those intermediates wherein X and X3 are other than Br, I, NO2, amine, formyl amine, or S(O)m' when m' is 1 or 2, reacting a compound of Formula (A) wherein Ri represents Ri as defined in relation to Formula (I) or a group convertable to Ri and X represents X as defined in relation to Formula (I) or a group convertable to X and X3 represents X3 as defined in relation to Formula (I) or a group convertable to X3 and X4 is a counter ion (e.g., lithium, magnesium, etc.) with a compound of the Formula (B)
- a counter ion e.g., lithium, magnesium, etc.
- X5 is, e.g., OCH3, OC2H5, OCH(CH3)2, etc., followed by appropriate workup to provide a compound of the Formula (C)
- Ri represents Ri as defined in relation to Formula (I) or a group convertable to Ri
- X represents X as defined in relation to Formula (I) or a group convertable to X
- X3 represents X3 as defined in relation to Formula (I) or a group convertable to X3 (see the patent application WO 9115-451- A published by WIPO).
- Michael-type reaction of such a compound of the Formula (4) with the appropriate precursor of R3 then provides a compound of the Formula ( 1 ); for example, use of methylaluminum cyanide provides a compound of the Formula (1) wherein Ri represents Ri as defined in relation to Formula (I) or a group convertable to Ri and X represents X as defined in relation to Formula (I) or a group convertable to X and X3 represents X3 as defined in relation to Formula (I) or a group convertable to X3 and the 3- position on the cyclohexyl ring is substituted by CN.
- the acetylene group is obtained by protecting the carbonyl group as a ketal by reacting the ketal with a mixture of dimethyl (diazomethyl)phosphonate and potassium t-butoxide or other suitable base, in an inert solvent, such as tetrahydrofuran, at reduced temperature, followed by appropriate workup and ketone deprotection to provide the compounds of Formula (I) wherein R3 is C__CH.
- R3 as defined in relation to Formula (I) or a group convertible to Z or R3, may be prepared from the corresponding ketones as, e.g., compound 1 -Scheme 2, by the synthetic procedures described above.
- an appropriate metal salt such as a copper salt with a catalytic amount of a palladium salt
- a suitable base such as an acid trap, such as sodium acetate
- a suitable alcohol such as methanol
- Example 3 Preparation of 1.4-_>is-( (methyl r3-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-l- ylidine1acetate)-3-yl ⁇ buta- 1.3-diyne
- a solution of methy diethylphosphonoacetate (1.2 mL, 6.68 mmol) in ethylene glycol dimethyl ether (10 mL) is treated with solid sodium hydride (0.22 g, 7.3 mmol, 80% dispersion in mineral oil) at room temperature under an argon atmosphere.
- inhibitory effect of compounds of Formula (I) on in vitro TNF production by human monocytes may be determined by the protocol as described in Badger et al,
- Example 1 demonstrated a positive in vivo response in reducing serum levels of TNF induced by the injection of endotoxin.
- Formula (I) can be determined using a battery of five distinct PDE isozymes.
- the tissues used as sources of the different isozymes are as follows: 1) PDE lb, porcine aorta; 2) PDE Ic, guinea-pig heart; 3) PDE HI, guinea-pig heart; 4) PDE IV, human monocyte; and 5) PDE V (also called "la"), canine trachealis.
- PDEs la, lb, Ic and HI are partially purified using standard chromatographic techniques [Torphy and Cieslinski, Mol. Pharmacol., 37:206-214, 1990].
- PDE IV is purified to kinetic homogeneity by the sequential use of anion-exchange followed by heparin-Sepharose chromatography [Torphy et al, J. Biol. Chem., 267:1798-1804, 1992].
- Phosphodiesterase activity is assayed as described in the protocol of Torphy and Cieslinski, Mol. Pharmacol., 37:206-214, 1990. Positive ICso's in the nanomolar to ⁇ M range for compounds of the workings examples described herein for Formula (I) have been demonstrated.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Rheumatology (AREA)
- Pulmonology (AREA)
- Transplantation (AREA)
- Pain & Pain Management (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present invention relates to novel 3,3-(disubstituted)cyclohexan-1-ylidine acetate monomers and related compounds, pharmaceutical compositions containing these compounds, and their use in treating allergic and inflammatory diseases and for inhibiting the production of Tumor Necrosis Factor (TNF).
Description
3,3-(Disubstituted)cyclohexan-l-ylidine Acetate Monomers and
Related Compounds
Field of Invention
The present invention relates to novel 3,3-(disubstituted)cyclohexan-l-ylidine acetate monomers and related compounds, pharmaceutical compositions containing these compounds, and their use in treating allergic and inflammatory diseases and for inhibiting the production of Tumor Necrosis Factor (TNF).
Background of the Invention
Bronchial asthma is a complex, multifactorial disease characterized by reversible narrowing of the airway and hyperreactivity of the respiratory tract to external stimuli.
Identification of novel therapeutic agents for asthma is made difficult by the fact that multiple mediators are responsible for the development of the disease. Thus, it seems unlikely that eliminating the effects of a single mediator will have a substantial effect on all three components of chronic asthma. An alternative to the "mediator approach" is to regulate the activity of the cells responsible for the pathophysiology of the disease.
One such way is by elevating levels of cAMP (adenosine cyclic 3\5'- monophosphate). Cyclic AMP has been shown to be a second messenger mediating the biologic responses to a wide range of hormones, neurotransmitters and drugs; [Krebs Endocrinology Proceedings of the 4th International Congress Excerpta Medica, 17-29, 1973]. When the appropriate agonist binds to specific cell surface receptors, adenylate cyclase is activated, which converts Mg+2-ATP to cAMP at an accelerated rate. Cyclic AMP modulates the activity of most, if not all, of the cells that contribute to the pathophysiology of extrinsic (allergic) asthma. As such, an elevation of cAMP would produce beneficial effects including: 1 ) airway smooth muscle relaxation, 2) inhibition of mast cell mediator release, 3) suppression of neutrophil degranulation, 4) inhibition of basophil degranulauon, and 5) inhibition of monocyte and macrophage activation. Hence, compounds that activate adenylate cyclase or inhibit phosphodiesterase should be effective in suppressing the inappropriate activation of airway smooth muscle and a wide variety of inflammatory cells. The principal cellular mechanism for the inactivation of cAMP is hydrolysis of the 3 - phosphodiester bond by one or more of a family of isozymes referred to as cyclic nucleoude phosphodiesterases (PDEs). It has now been shown that a distinct cyclic nucleotide phosphodiesterase
(PDE) isozyme, PDE IV, is responsible for cAMP breakdown in airway smooth muscle and inflammatory cells. [Torphy, "Phosphodiesterase Isozymes: Potential
Targets for Novel Anti-asthmatic Agents" in New Drugs for Asthma, Barnes, ed. IBC Technical Services Ltd., 1989]. Research indicates that inhibition of this enzyme not only produces airway smooth muscle relaxation, but also suppresses degranulation of mast cells, basophils and neutrophils along with inhibiting the activation of monocytes and neutrophils. Moreover, the beneficial effects of PDE IV inhibitors are markedly potentiated when adenylate cyclase activity of target cells is elevated by appropriate hormones or autocoids, as would be the case in vivo. Thus PDE IV inhibitors would be effective in the asthmatic lung, where levels of prostaglan din E2 and prostacyclin (activators of adenylate cyclase) are elevated. Such compounds would offer a unique approach toward the pharmacotherapy of bronchial asthma and possess significant therapeutic advantages over agents currendy on the market.
The compounds of this invention also inhibit the production of Tumor Necrosis Factor (TNF), a serum glycoprotein. Excessive or unregulated TNF production has been implicated in mediating or exacerbating a number of diseases including rheumatoid arthritis, rheumatoid spondylitis, osteoaithritis, gouty arthritis and other arthritic conditions; sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary inflammatory disease, silicosis, pulmonary sarcoidosis, bone resorption diseases, reperfusion injury, graft vs. host reaction, allograft rejections, fever and myalgias due to infection, such as influenza, cachexia secondary to infection or malignancy, cachexia secondary to human acquired immune deficiency syndrome (AIDS), AIDS, ARC (AIDS related complex), keloid formation, scar tissue formation, Crohn's disease, ulcerative colitis, or pyresis, in addition to a number of autoimmune diseases, such as multiple sclerosis, autoimmune diabetes and systemic lupus erythematosis.
AIDS results from the infection of T lymphocytes with Human Immunodeficiency Virus (HIV). At least three types or strains of HIV have been identified, i.e., HIV-1, HTV-2 and HIV-3. As a consequence of HIV infection, T-cell- mediated immunity is impaired and infected individuals manifest severe opportunistic infections and/or unusual neoplasms. HIV entry into the T lymphocyte requires T lymphocyte activation. Viruses such as HIV-1 or HIV-2 infect T lymphocytes after T cell activation and such virus protein expression and/or replication is mediated or maintained by such T cell activation. Once an activated T lymphocyte is infected with HIV, the T lymphocyte must continue to be maintained in an activated state to permit HIV gene expression and/or HTV replication.
Cytokines, specifically TNF, are implicated in activated T-cell-mediated HTV protein expression and/or virus replication by playing a role in maintaining T lymphocyte activation. Therefore, interference with cytokine activity such as by
inhibition of cytokine production, notably TNF, in an HTV-infected individual aids in limiting the maintenance of T cell activation, thereby reducing the progression of HTV infectivity to previously uninfected cells which results in a slowing or elimination of the progression of immune dysfunction caused by HTV infection. Monocytes, macrophages, and related cells, such as kupffer and glial cells, have also been implicated in maintenance of the HTV infection. These cells, like T cells, are targets for viral replication and the level of viral replication is dependent upon the activation state of the cells. [See Rosenberg et al. , The Immunopathogenesis of HTV Infection, Advances in Immunology, Vol. 57, 1989]. Monokines, such as TNF, have been shown to activate HIV replication in monocytes and/or macrophages [See Poli et al, Proc. Nad. Acad. Sci., 87:782-784, 1990], therefore, inhibition of monokine production or activity aids in limiting HIV progression as stated above for T cells.
TNF has also been implicated in various roles with other viral infections, such as the cytomegalovirus (CMV), influenza virus, adenovirus, and the herpes virus for similar reasons as those noted.
TNF is also associated with yeast and fungal infections. Specifically Candida albicans has been shown to induce TNF production in vitro in human monocytes and natural killer cells. [See Rϋpi et al. Infection and Immunity, 58(9):2750-54, 1990; and Jafari et al, Journal of Infectious Diseases, 164:389-95, 1991. See also Wasan et al, Antimicrobial Agents and Chemotherapy, 35,(10):2046-48, 1991 ; and Luke et al, Journal of Infectious Diseases, 162:211-214,1990].
The ability to control the adverse effects of TNF is furthered by the use of the compounds which inhibit TNF in rria nmals who are in need of such use. There remains a need for compounds which are useful in treating TNF-mediated disease states which are exacerbated or caused by the excessive and/or unregulated production of TNF. Summary of the Invention
The novel c by formula (I):
R2 is -(CR4R5)nC(O)O(CR4R5)mR6, -(CR4R5)nC(O)NR4(CR4R5)m 6, -(CR4R5)nO(CR4R5)mR6, or -(C_-4R5)rR6 wherein the alkyl moieties unsubstituted or substituted with one or more halogens;
m is 0 to 2; n is 0 to 4; r is 0 to 6;
R4 and R5 are independently selected hydrogen or Ci-2 alkyl; R6 is hydrogen, methyl, hydroxyl, aryl, halo substituted aryl, aryloxyCi-3 alkyl, halo substituted aryloxyCi-3 alkyl, indanyl, indenyl, C7-11 polycycloalkyl, tetrahydrofuranyl, furanyl, tetrahydropyranyl, pyranyl, tetrahydrothienyl, thienyl, tetrahydrothiopyranyl, thiopyranyl, C3-6 cycloalkyl, or a C4_6 cycloalkyl containing one or two unsaturated bonds, wherein the cycloalkyl or heterocyclic moiety is unsubstituted or substituted by 1 to 3 methyl groups, one ethyl group, or an hydroxyl group; provided that: a) when R6 is hydroxyl, then m is 2; or b) when R6 is hydroxyl, then r is 2 to 6; or c) when R6 is 2-tetrahydropyranyl, 2-tetr__ιydrothiopyranyl,
2-tetrahydrofuranyl, or 2-tetrahydrothienyl, then m is 1 or 2; or d) when R6 is 2-tetrahydropyranyl, 2-tetrahydrothiopyranyl, 2-tetrahydrofuranyl,or 2-tetrahydrothienyl, then r is 1 to 6; e) when n is 1 and m is 0, then Rβ is other than H in -(CR4R5)nO(CR4R5)mR6;
X is YR2, fluorine, NR4R5, or formyl amine; Y is O or S(O)nϊ; m' is O, l, or 2; X2 is O or NR8; X3 is hydrogen or X;
X4 is H, R9, OR8, CN, C(O)Rg, C(O)ORs, C(O)NRgR8, or NRgRδ; R2 is independently selected from -CH3 or -CH2CH3 optionally substituted by 1 or more halogens; s is 0 to 4; W is alkyl of 2 to 6 carbons, alkenyl of 2 to 6 carbon atoms or alkynyl of 2 to 6 carbon atoms;
R3 is COOR14, C(O)NR4Rl4 or R7;
Z is C(-CN)2, CR14CN, CRi4C(O)OR8, CRi4C(O)NR8Rl4, C(-CN)NO2, C(-CN)C(O)OR9, C(-CN)OC(O)R9, C(-CN)OR9, or C(-CN)C(O)NRsRl4; Y' is O or S;
R7 is -(CR4R5)qRl2 or Ci.g alkyl wherein the R12 or Ci.g alkyl group is unsubstituted or substituted one or more times by methyl or ethyl unsubstituted or substituted by 1-3 fluorines, -F, -Br, -Cl, -NO2, -NR10Rι l f -C(O)Rδ, -CO2R8,
-O(CH2)qR8, -CN, -C(O)NRi0Rl l, -O(CH2)qC(O)NRi0Rl l, -O(CH2)qC(O)R9) -NRiθC(O)NRiθRn, -NRιoC(O)Rn, -NRioC(O)OR9, -NRιoC(O)Ri3, -C(NRiθ)NRlθRl -C(NCN)NRioRl l, -C(NCN)SR9, -NRioC(NCN)SR9 , -NRιoC(NCN)NRιoRl l, -NRιoS(O)2R9, -S(O)m__9, -NRioC(O)C(O)NRιoRl l, - NRi C(O)C(O)Rio, or R13; q is O, 1, or 2;
Rl2 is i3, C3-C7 cycloalkyl, or an unsubstituted or substituted aryl or heteroaryl group selected from the group consisting of (2-, 3- or 4-pyridyl), pyrimidyl, pyrazolyl, (1- or 2-imidazolyl), pyrrolyl, piperazinyl, piperidinyl, morpholinyl, furanyl, (2- or 3-thienyl), quinolinyl, naphthyl, and phenyl; Rg is hydrogen or R9;
R9 is Cι_4 alkyl optionally substituted by one to three fluorines; RlO is ORδ or Rn;
Rj 1 is hydrogen, or C 1.4 alkyl unsubstituted or substituted by one to three fluorines; or when Rio and Ri 1 are as NRioRl 1 they may together with the nitrogen form a 5 to 7 membered ring comprised of carbon or carbon and one or more additional heteroatoms selected from O, N, or S;
Rl3 is a substituted or unsubstituted heteroaryl group selected from the group consisting of oxazolidinyl, oxazolyl, thiazolyl, pyrazolyl, triazolyl, tetrazolyl, imidazolyl, imidazolidinyl, thiazolidinyl, isoxazolyl, oxadiazolyl, and thiadiazolyl, and where Rι3 is substituted on RJ2 or Rι3 the rings are connected through a carbon atom and each second R|3 ring may be unsubstituted or substituted by one or two C _2 alkyl groups unsubstituted or substituted on the methyl with 1 to 3 fluoro atoms;
Rl4 is hydrogen or R7; or when R8 and R 14 are as NRδRl4 they may together with the nitrogen form a 5 to 7 membered ring comprised of carbon or carbon and one or more additional heteroatoms selected from O, N, or S; provided that:
(f) R7 is not C _4 alkyl unsubstituted or substituted by one to three fluorines; or the pharmaceutically acceptable salts thereof. This invention also relates to the pharmaceutical compositions comprising a compound of Formula (I) and a pharmaceutically acceptable carrier or diluent. The invention also relates to a method of mediation or inhibition of the enzymatic activity (or catalytic activity) of PDE IV in mammals, including humans, which comprises administering to a mammal in need thereof an effective amount of a compound of Formula (I) as shown below.
The invention further provides a method for the treatment of allergic and inflammatory disease which comprises __iministering to a mammal, including humans, in need thereof, an effective amount of a compound of Formula (I).
The invention also provides a method for the treatment of asthma which comprises axiministering to a mammal, including humans, in need thereof, an effective amount of a compound of Formula (I).
This invention also relates to a method of inhibiting TNF production in a mammal, including humans, which method comprises administering to a mammal in need of such treatment, an effective TNF inhibiting amount of a compound of Formula (I). This method may be used for the prophylactic treatment or prevention of certain TNF mediated disease states amenable thereto.
This invention also relates to a method of treating a human afflicted with a human immunodeficiency virus (HIV), which comprises axiministering to such human an effective TNF inhibiting amount of a compound of Formula (I).
Compounds of Formula (I) are also useful in the treatment of additional viral infections, where such viruses are sensitive to upregulation by TNF or will elicit TNF production in vivo. In addition, compounds of Formula (I) are also useful in treating yeast and fungal infections, where such yeast and fungi are sensitive to upregulation by TNF or will elicit TNF production in vivo.
Detailed Description of the Invention
This invention also relates to a method of mediating or inhibiting the enzymatic activity (or catalytic activity) of PDE IV in a mammal in need thereof and to inhibiting the production of TNF in a mammal in need thereof, which comprises administering to said mammal an effective amount of a compound of Formula (I).
Phosphodiesterase IV inhibitors are useful in the treatment of a variety of allergic and ir_fl__τ_rnatory diseases including: asthma, chronic bronchitis, atopic dermatitis, urticaria, allergic rhinitis, allergic conjunctivitis, vernal conjunctivitis, eosinophilic granuloma, psoriasis, rheumatoid arthritis, septic shock, ulcerative colitis, Crohn's disease, reperfusion injury of the myocardium and brain, chronic glomerulonephritis, endotoxic shock and adult respiratory distress syndrome. In addition, PDE IV inhibitors are useful in the treatment of diabetes insipidus and central nervous system disorders such as depression and multi-infarct dementia.
The viruses contemplated for treatment herein are those that produce TNF as a result of infection, or those which are sensitive to inhibition, such as by decreased replication, directly or indirectly, by the TNF inhibitors of Formula (I). Such viruses include, but are not limited to HTV-1, HTV-2 and HTV-3, cytomegalovirus (CMV), influenza, adenovirus and the Herpes group of viruses, such as, but not limited to, Herpes zoster and Herpes simplex.
This invention more specifically relates to a method of treating a m___ mal, afflicted with a hiiman immunodeficiency virus (HIV), which comprises administering to such ____mmal an effective TNF inhibiting amount of a compound of Formula (I). The compounds of this invention may also be used in association with the veterinary treatment of animals, other than in humans, in need of inhibition of TNF production. TNF mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted above, but in particular viral infections. Examples of such viruses include, but are not limited to feline immunodeficiency virus (FIV) or other retroviral infection such as equine infectious anemia virus, caprine arthritis virus, visna virus, maedi virus and other lentiviruses. The compounds of this invention are also useful in treating yeast and fungal infections, where such yeast and fungi are sensitive to upregulation by TNF or will elicit TNF production in vivo. A preferred disease state for treatment is fungal meningitis. Additionally, the compounds of Formula (I) may be -administered in conjunction with other drugs of choice for systemic yeast and fungal infections. Drugs of choice for fungal infections, include but are not limited to the class of compounds called the polymixins, such as Polymycin B, the class of compounds called the imidazoles, such as clotrimazole, econazole, miconazole, and ketoconazole; the class of compounds called the triazoles, such as fluconazole, and itranazole, and the class of compound called the Amphotericins, in particular Amphotericin B and liposomal Amphotericin B.
The compounds of Formula (I) may also be used for inhibiting and/or reducing the toxicity of an anti-fungal, anti-bacterial or anti-viral agent by administering an effective amount of a compound of Formula (I) to a mammal in need of such treatment. Preferably, a compound of Formula (I) is adirύnistered for inhibiting or reducing the toxicity of the Amphotericin class of compounds, in particular Amphotericin B.
Preferred compounds are as follows:
When Ri for the compounds of Formula (I) is an alkyl substituted by 1 or more halogens, the halogens are preferably fluorine and chlorine, more preferably a C i _4 alkyl substituted by 1 or more fluorines. The preferred halo-substituted alkyl chain length is one or two carbons, and most preferred are the moieties -CF3, -CH2F, - CHF2, -CF2CHF2, -CH2CF3, and -CH2CHF2. Preferred Ri substitutents for the compounds of Formula (I) are CH2-cyclopropyl, CH2-C5-6 cycloalkyl, C4.6 cycloalkyl with or without an hydroxyl group on the ring, C7- 11 polycycloalkyl, (3- or 4-cyclopentenyl), phenyl, tetrahydrofuran-3-yl, benzyl or Ci-2 alkyl unsubstituted or substituted by 1 or more fluorines, -(CH2)l-3C(O)O(CH2)0-2CH3, -(CH2)1-3O(CH2)0-2CH3, and -(CH2)2-4OH.
When the Ri term is (CR4R5), the R4 and R5 terms are independently hydrogen or alkyl. This allows for branching of the individual methylene units as (CR4R5)n or (CR4R5)m; each repeating methylene unit is independent of the other, e.g., (CR4R5)n wherein n is 2 can be -CH2CH(-CH3)-, for instance. The individual hydrogen atoms of the repeating methylene unit or the branching hydrocarbon can unsubstituted or be substituted by fluorine independent of each other to yield, for instance, the preferred Ri substitutions, as noted above.
When Ri is a C7_ι 1 polycycloalkyl, examples are bicyclo[2.2.1]-heptyl, bicyclo[2.2.2]octyl, bicyclo[3.2.1]octyl, tricyclo[S.2.1.02>6]decy_> etc. additional examples of which are described in Saccamano et al., WO 87/06576, published 5 November 1987, whose disclosure is incorporated herein by reference in its entirety.
Preferred Z terms are C(-CN)2, CRi4C(O)OR8, CRi4C(O)NR8Rl4, C(-CN)C(O)OR9, C(-CN)OC(O)R9, C(-CN)OR9, or C(-CN)C(O)NRδRl4;
Preferred X groups for Formula (I) are those wherein X is YR2 and Y is oxygen. The preferred X2 group for Formula (I) is that wherein X2 is oxygen. The preferred X3 group for Formula (I) is that wherein X3 is hydrogen. Preferred R2 groups, where applicable, is a Ci-2 alkyl unsubstituted or substituted by 1 or more halogens. The halogen atoms are preferably fluorine and chlorine, more preferably fluorine. More preferred R2 groups are those wherein R2 is methyl, or the fluoro- substituted alkyls, specifically a C 1-2 alkyl, such as a -CF3, -CHF2, or -CH2CHF2 moiety. Most preferred are the -CHF2 and -CH3 moieties. Preferred R3 moiety is R7.
Preferred R7 moieties include unsubstituted or substituted -(CH2)0-2(2-, 3- or 4-pyridyl), (CH2)l-2(2-imidazolyl), (CH2)2(4-morpholinyl), (CH2)2(4-piperazinyl), (CH2) 1 -2(2-thienyl), (CH2) 1 -2(4-thiazolyl), unsubstituted or substituted pyrimidinyl, and substituted or unsubstituted (CH2)0-2phenyl.
Preferred rings when Rio and Ri 1 in the moiety -NRioRl 1 together with the nitrogen to which they are attached form a 5 to 7 membered ring comprised of carbon or carbon and at least one heteroatom selected from O, N, or S include, but are not limited to 1 -imidazolyl, 2-(R8)- 1 -imidazolyl, 1 -pyrazolyl, 3-(R8)- 1 -pyrazolyl, 1 - triazolyl, 2-triazolyl, 5-(R8)-l-triazolyl, 5-(R8)-2-triazolyl, 5-(R8)-l-tetr___olyl, 5-(R8)-2-tetrazolyl, 1-tetrazolyl, 2-tetrazloyl, morpholinyl, piperazinyl, 4-(R8)-l- piperazinyl, or pyrrolyl ring.
Preferred rings when Rδ and R 14 in the moiety -NRsRl4 together with the nitrogen to which they are attached may form a 5 to 7 membered ring comprised of carbon or carbon and at least one heteroatom selected from O, N, or S include, but are not limited to 1 -imidazolyl, 1 -pyrazolyl, 1 -triazolyl, 2-triazolyl, 1-tetrazolyl, 2-tetrazolyl, morpholinyl, piperazinyl, and pyrrolyl. The respective rings may be
additionally substituted, where applicable, on an available nitrogen or carbon by the moiety R7 as described herein for Formula (I). Illustrations of such carbon substitutions includes, but is not limited to, 2-(R7)-l -imidazolyl, 4-(R7)-l -imidazolyl, 5-(R7)- 1 -imidazolyl, 3-(R7)- 1 -pyrazolyl, 4-(R7)- 1 -pyrazolyl, 5-(R7)- 1 -pyrazolyl, 4-(R7)-2-triazolyl, 5-(R7)-2-triazolyl, 4-(R7)- 1 -triazolyl, 5-(R7)- 1 -triazolyl,
5-(R7)-l-tetrazolyl, and 5-(R7)-2-tetrazolyl. Applicable nitrogen substitution by R7 includes, but is not limited to, l-(R7)-2-tεtrazolyl, 2-(R7)-l-tetrazolyl, 4-(R7)-l- piperazinyl. Where applicable, the ring may be substituted one or more times by R7.
Preferred groups for NRδRl4 which contain a heterocyclic ring are 5-(Ri4)-l- tetrazolyl, 2-(R 14)- 1 -imidazolyl, 5-(Ri4)-2-tetrazolyl, or 4-(Rι 4)- 1 -piperazinyl.
Preferred rings for R13 include (2-, 4- or 5-imidazolyl), (3-, 4- or 5-pyrazolyl), (4- or 5-triazolyl[ 1,2,3]), (3- or 5-triazolyl[ 1,2,4]), (5-tetrazolyl), (2-, 4- or 5-oxazolyl), (3-, 4- or 5-isoxazolyl), (3- or 5-oxadiazolyl[ 1,2,4]), (2-oxadiazolyl[ 1,3,4]), (2-thiadiazolyl[ 1,3,4]), (2-, 4-, or 5-thiazolyl), (2-, 4-, or 5-oxazolidinyl), (2-, 4-, or 5-thiazolidinyl), or (2-, 4-, or 5-iι_ύd__.olidinyl).
When the R7 group is unsubstituted or substituted by a heterocyclic ring such as imidazolyl, pyrazolyl, triazolyl, tetrazolyl, or thiazolyl, the heterocyclic ring itself may be unsubstituted or substituted by Rδ either on an available nitrogen or carbon atom, such as l-(Rδ)-2-imidazolyl, l-(R8)-4-imidazolyl, l-(R8)-5-imidazolyl, l-(R8)-3-pyrazolyl, l-(R8)-4-pyrazolyl, l-(R8)-5-pyrazolyl, l-(R8)-4-triazolyl, or l-(R8)-5-triazolyl. Where applicable, the ring may be substituted one or more times by
Rδ-
Preferred are those compounds of Formula (I) wherein R is -CH2- cyclopropyl, -CH2-C5-6 cycloalkyl, -C4.-6 cycloalkyl unsubstituted or substituted by OH, tetrahydrofuran-3-yl, (3- or 4-cyclopentenyl), benzyl or -Ci_2 alkyl unsubstituted or substituted by 1 or more fluorines, and -(CH2)2-4 OH; R2 is methyl or fluoro- substituted alkyl, W is ethynyl or 1,3-butadiynyl; R3 is R7 where R is an unsubstituted or substituted aryl or heteroaryl ring, X is YR2, and Z is CRi4C(O)ORδ-
Most preferred are those compounds wherein Ri is -CH2-cyclopropyl, cyclopentyl, 3-hydroxycyclopentyl, methyl or CF2H; X is YR2; Y is oxygen; X2 is oxygen; X3 is hydrogen; and R2 is CF2H or methyl, W is ethynyl or 1,3-butadiynyl, and R3 is a substituted or unsubstituted pyrimidinyl ring. Exemplified compounds are:
1 ,4-bis- { [3-(3-cyclopentyloxy-4-methoxyphenyl) cyclohexan- 1 -on]-3-yl } buta- 1,3-diyne,
1 ,4-bis- { ([3-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan- 1 - yUdine]malononitrile)-3-yl } buta- 1 ,3-diyne, and
1 ,4-bis- [ (methyl [3-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan- 1 - yUdine]acetate)-3-yl }buta- 1 ,3-diyne.
The term "C^ alkyl", "C alkyl", "C β alkyl" or "alkyl" groups as used herein is meant to include both straight or branched chain radicals of 1 to 10, unless the chain length is limited thereto, including, but not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and the like.
"Alkenyl" means both straight or branched chain radicals of 1 to 6 carbon lengths, unless the chain length is limited thereto, including but not limited to vinyl, 1- propenyl, 2-propenyl, 2-propynyl, or 3-methyl-2-propenyl. The term "cycloalkyl" or "cycloalkyl alkyl" means groups of 3-7 carbon atoms, such as cyclopropyl, cyclopropylmethyl, cyclopentyl, or cyclohexyl.
"Aryl" or "aralkyl", unless specified otherwise, means an aromatic ring or ring system of 6-10 carbon atoms, such as phenyl, benzyl, phenethyl, or naphthyl. Preferably the aryl is monocyclic, i.e, phenyl. The alkyl chain is meant to include both straight or branched chain radicals of 1 to 4 carbon atoms.
"Heteroaryl" means an aromatic ring system containing one or more heteroatoms, such as imidazolyl, triazolyl, oxazolyl, pyridyl, pyrimidyl, pyrazolyl, pyrrolyl, furanyl, or thienyl.
"Halo" means all halogens, i.e., chloro, fluoro, bromo, or iodo. "Inhibiting the production of IL- 1 " or "inhibiting the production of TNF" means: a) a decrease of excessive in vivo IL-1 or TNF levels, respectively, in a human to normal levels or below normal levels by inhibition of the in vivo release of IL-1 by all cells, including but not limited to monocytes or macrophages; b) a down regulation, at the translational or transcriptional level, of excessive in vivo IL-1 or TNF levels, respectively, in a human to normal levels or below normal levels; or c) a down regulation, by inhibition of the direct synthesis of IL-1 or TNF levels as a postranslational event. The phrase "TNF mediated disease or disease states" means any and all disease states in which TNF plays a role, either by production of TNF itself, or by TNF causing another cytokine to be released, such as but not limited to IL-1 or IL-6. A disease state in which IL-1, for instance is a major component, and whose production or action, is exacerbated or secreted in response to TNF, would therefore be considered a disease state mediated by TNF. As TNF-β (also known as lymphotoxin) has close structural homology with TNF-α (also known as cachectin), and since each induces similar biologic responses and binds to the same cellular receptor, both TNF-α and TNF-β are inhibited by the compounds of the present invention and thus are herein
referred to collectively as "TNF" unless specifically delineated otherwise. Preferably
TNF-α is inhibited.
"Cytokine" means any secreted polypeptide that affects the functions of cells, and is a molecule which modulates interactions between cells in immune, inflammatory, or hematopoietic responses. A cytokine includes, but is not limited to, monokines and lymphokines regardless of which cells produce them.
The cytokine inhibited by the present invention for use in the treatment of a HTV- infected human must be a cytokine which is implicated in (a) the initiation and/or maintenance of T cell activation and/or activated T cell-mediated HTV gene expression and/or replication, and/or (b) any cytokine-mediated disease associated problem such as cachexia or muscle degeneration. Preferrably, his cytokine is TNF-α.
All of the compounds of Formula (I) are useful in the method of inhibiting the production of TNF, preferably by macrophages, monocytes or macrophages and monocytes, in a mammal, including humans, in need thereof. All of the compounds of Formula (I) are useful in the method of inhibiting or mediating the enzymatic or catalytic activity of PDE IV and in treatment of disease states mediated thereby. Pha_τnaceutically acceptable salts of the instant compounds, where they can be prepared, are also intended to be covered by this invention. These salts will be ones which are acceptable in their application to a pharmaceutical use. By that it is meant that the salt will retain the biological activity of the parent compound and the salt will not have untoward or deleterious effects in its application and use in treating diseases.
Pharmaceutically acceptable salts are prepared in a standard manner.
The parent compound, dissolved in a suitable solvent, is treated with an excess of an organic or inorganic acid, in the case of acid addition salts of a base, or an excess of organic or inorganic base where the molecule contains a COOH for example.
Pharmaceutical compositions of the present invention comprise a pharmaceutical carrier or diluent and some amount of a compound of the formula (I). The compound may be present in an amount to effect a physiological response, or it may be present in a lesser amount such that the user will need to take two or more units of the composition to effect the treatment intended. These compositions may be made up as a solid, liquid or in a gaseous form. Or one of these three forms may be transformed to another at the time of being administered such as when a solid is delivered by aerosol means, or when a liquid is delivered as a spray or aerosol.
The nature of the composition and the pharmaceutical carrier or diluent will, of course, depend upon the intended route of administration, for example parenterally, topically, orally or by inhalation.
For topical administration the pharmaceutical composition will be in the form of a cream, ointment, liniment, lotion, pastes, aerosols, and drops suitable for administration to the skin, eye, ear, or nose.
For parenteral administration the pharmaceutical composition will be in the form of a sterile injectable liquid such as an ampule or an aqueous or non-aqueous liquid suspension.
For oral axiministration the pharmaceutical composition will be in the form of a tablet, capsule, powder, pellet, atroche, lozenge, syrup, liquid, or emulsion.
When the pharmaceutical composition is employed in the form of a solution or suspension, examples of appropriate pharmaceutical carriers or diluents include: for aqueous systems, water; for non-aqueous systems, ethanol, glycerin, propylene glycol, corn oil, cottonseed oil, peanut oil, sesame oil, liquid parafins and mixtures thereof with water; for solid systems, lactose, kaolin and mannitol; and for aerosol systems, dichlorodifluoromethane, chlorotrifluoroethane and compressed carbon dioxide. Also, in addition to the pharmaceutical carrier or diluent, the instant compositions may include other ingredients such as stabilizers, antioxidants, preservatives, lubricants, suspending agents, viscosity modifiers and the like, provided that the additional ingredients do not have a detrimental effect on the therapeutic action of the instant compositions. The pharmaceutical preparations thus described are made following the conventional techniques of the pharmaceutical chemist as appropriate to the desired end product.
In these compositions, the amount of carrier or diluent will vary but preferably will be the major proportion of a suspension or solution of the active ingredient. When the diluent is a solid it may be present in lesser, equal or greater amounts than the solid active ingredient.
Usually a compound of formula I is administered to a subject in a composition comprising a nontoxic amount sufficient to produce an inhibition of the symptoms of a disease in which leukotrienes are a factor. Topical formulations will contain between about 0.01 to 5.0% by weight of the active ingredient and will be applied as required as a preventative or curative agent to the affected area. When employed as an oral, or other ingested or injected regimen, the dosage of the composition is selected from the range of from 50 mg to 1000 mg of active ingredient for each adrrύnistration. For convenience, equal doses will be administered 1 to 5 times daily with the daily dosage regimen being selected from about 50 mg to about 5000 mg.
No unacceptable toxicological effects are expected when these compounds are administered in accordance with the present invention.
The following examples are given to more fully illustrate the described invention. These examples are intented solely for illustrating the invention and should not be read to limit the invention in any manner. Reference is made to the claims for what is reserved to the inventors hereunder. Methods Of Preparation
Synthetic Scheme(s) With Textual Description
Compounds of Formula (I) may be prepared by the processes disclosed herein. The process comprises reacting a terminal acetylene, wherein Z isdefined in relation to Formula (I), or a group convertible to Z, as, e.g., compound 1 -Scheme 1. with an appropriate halide, R3X, wherein R3 represents R3 as defined in relation to Formula (I) or a group convertible to R3, in the presence of a suitable catalyst. A suitable catalyxt is, for example, copper(I) halide and a bivalent or zero valent palladium compound in the presence of, e.g., triphenylphosphine in a suitable solvent, such as an amine. See for example the procedure of Brandsma et al. (Syn. Comm., 1990, 20, 1889). This provides a compound of the Formula 2-Scheme 1. Compounds of Formula 1 -Scheme 1 may be prepared by procedures analogous to those described in a co-pending U.S. patent application filed on even date herewith and identified as P50284.
Scheme 1
a) Pd(PPh 3)4, PPh 3, Cul, R 3X, piperidine
The intermediate compounds represented by Formula 1 -Scheme 1 may be prepared by the following prodecure: a) For those intermediates wherein X and X3 are other than Br, I, NO2, amine, formyl amine, or S(O)m' when m' is 1 or 2, reacting a compound of Formula (A)
wherein Ri represents Ri as defined in relation to Formula (I) or a group convertable to Ri and X represents X as defined in relation to Formula (I) or a group convertable to X and X3 represents X3 as defined in relation to Formula (I) or a group convertable to X3 and X4 is a counter ion (e.g., lithium, magnesium, etc.) with a compound of the Formula (B)
wherein X5 is, e.g., OCH3, OC2H5, OCH(CH3)2, etc., followed by appropriate workup to provide a compound of the Formula (C)
wherein Ri represents Ri as defined in relation to Formula (I) or a group convertable to Ri and X represents X as defined in relation to Formula (I) or a group convertable to X and X3 represents X3 as defined in relation to Formula (I) or a group convertable to X3 (see the patent application WO 9115-451- A published by WIPO). Michael-type reaction of such a compound of the Formula (4) with the appropriate precursor of R3 then provides a compound of the Formula ( 1 ); for example, use of methylaluminum cyanide provides a compound of the Formula (1) wherein Ri represents Ri as defined in relation to Formula (I) or a group convertable to Ri and X represents X as defined in relation to Formula (I) or a group convertable to X and X3 represents X3 as defined in relation to Formula (I) or a group convertable to X3 and the 3- position on the cyclohexyl ring is substituted by CN.
Compounds of Formula (I) wherein R3 is CHO and Z is O may be prepared from the compounds having the CN at the 3- position and Z is O after appropriate protection of the ketone as, e.g., a ketal, followed by reduction of the CN moiety with,
e.g., di-isobutylaluminum hydride, followed by appropriate workup and kedif Formula (I) wherein R3 is CH2OH and Z is O may be prepared by reduction of the compound of Formula (I) in which R3 is CHO and =Z is a ketal protecting group with, e.g., sodium borohydride, followed by appropriate workup and ketone deprotection. The acetylene group is obtained by protecting the carbonyl group as a ketal by reacting the ketal with a mixture of dimethyl (diazomethyl)phosphonate and potassium t-butoxide or other suitable base, in an inert solvent, such as tetrahydrofuran, at reduced temperature, followed by appropriate workup and ketone deprotection to provide the compounds of Formula (I) wherein R3 is C__CH. b) Intermediates leading to Formula (I) wherein X or X3 is formyl amine and Z is O may be prepared by formylating, at the last step, a compound wherein =Z is a protected ketone and X is NH2, obtained by removal of a protecting group from the amine functionality; such protective groups are well known to those skilled in the art, See Greene, T. and Wuts, P.G.M., Protecting Groups in Organic Synthesis, 2nd Ed., John Wiley and Sons, New York (1991). c) Intermediates leading to Formula (I) wherein X or X3 is Br or I and Z is O may be prepared from a similarly deprotected amine by diazotization of the amine and diazonium displacement via Sandmeyer reaction. d) Intermediates leading to Formula (I) wherein X or X3 is NO2 and Z is O may be prepared from a similarly deprotected amine by oxidation of the amine to the nitro group. e) Intermediates leading to Formula (I) wherein Y is S(O)m' when m' is 1 or 2 and Z is O may be prepared from the compounds of Formula (I) wherein Y is S by oxidation of the SR2 moiety under conditions well known to those skilled in the art. To obtain compounds where Z is defined herein above for Formula I, reference is made to the procedures in co-pending U.S. application 08/130215 and PCT application PCT/US94/10815 filed 23 September 1994 where, by analogy, there are illustrated means for making intermediates leading to the present compounds as regards the definition of Z herein. Alternatively, compounds of the Formula (I), wherein Z and R3 represent Zand
R3 as defined in relation to Formula (I) or a group convertible to Z or R3, may be prepared from the corresponding ketones as, e.g., compound 1 -Scheme 2, by the synthetic procedures described above.
Scheme 2
Alternatively, oxidative carbonylation of a terminal acetylene as, e.g., compound 1 -Scheme 3. using an appropriate metal salt, such as a copper salt with a catalytic amount of a palladium salt, in the presence of a suitable base as an acid trap, such as sodium acetate, in a suitable alcohol, such as methanol, as in the method of Tsuji et al. (Tet. Lett., 1980, 21, 849), then provides the compound of the Formula 2z Scheme 3: such compounds may then be converted to compounds of the Formula (I) by manipulation of the ketone as described above and by independent manipulation of the carboxylic ester moiety using standard transesterification or amidation conditions.
Scheme 3
a) PdCI 2 , CuCI . NaO 2 CCH 3 , CO, CH 3OH; b) as in Scheme 2
Preparation of the remaining compounds of the Formula (I) may be accomplished by procedures analogous to those described above and in the Examples, infra.
It will be recognized that some compounds of the Formula (I) may exist in distinct diastereomeric forms possessing distinct physical and biological properties; such isomers may be separated by standard chromatographic methods. Examples
Example 1 Preparation of 1.4-bis- ( r3-(3-cvclopentyloxy-4-methoxyphenyl)cyclohexan- 1 -onl-3- yl}buta-1.3-diyne la) 3-(3-cyclopentyloxy-4-me oxyphenyl)-3-(trimethylsilylethynyl)cyclohexan- 1 -one n-Butyllithium (2.45 M in hexanes, 5.7 mL, 13.96 mmol) was added dropwise over 5 min to a solution of trimethylsilylacetylene ( 1.97 mL, 13.96 mmol) dissolved in dry ether (30 mL) at -45°C under an argon atmosphere. After 1.5 h, this solution was cannulated into a solution of dimethylaluminum chloride (1.0 M n hexanes, 13.96 mL, 13.96 mmol). After 3.5 h at room temperature, the mixture was filtered through
Celite® under an argon atmosphere. In a separate flask, diisobutylaluminum hydride (1.0 M in toluene, 1.4 mL, 1.4 mmol) was added dropwise to a stirred mixture of nickel acetylacetonate (360 mg, 1.4 mmol) in dry ether (25 mL) at 0°C under an argon atmosphere. After 10 min, the mixture was cooled to -10°C and the solution of the aluminum acetylide was added via cannula over 15 min. A sample of 3-(3- cyclopentyloxy-4-methoxyphenyl)cyclohex-2-en-l-one (2.0 g, 6.98 mmol, prepared by the procedures described in U.S. patent 5362915 ) dissolved in dry ether (70 mL) was added dropwise over 20 min. After 18 h at room temperature, the mixture was poured into a 100 mL saturated aqueous solution of potassium phosphate (monobasic) at 0°C, lOOmL of aqueous 3N HCl solution was added and the aqueous layer was extracted twice with ether. The combined extract was washed with brine, was dried (magnesium sulfate) and was evaporated. Purification by flash chromatography, eluting with 2: 1 hexanes/ether, followed by trituration from ether/hexanes, then furthur purification of the mother liquor by flash chromatography, eluting with 4:1 hexanes/ethyl acetate, followed by trituration from ether/hexanes, provided a white solid, mp 102- 103°C.
1 b) 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-ethynylcyclohexan- 1 -one A mixture of potassium fluoride (900 mg, 15.6 mmol) and 3-(3- cyclopentyloxy-4-memoxyphenyl)-3-(trimethylsilylethynyl)cyclohexan- 1-one (0.3 g, 0.78 mmol) was stirred in dry N.N-dimethylformamide (3 mL) under an argon atmosphere. After 18 h, the solvent was removed in vacuo, the residue was partitioned between water and ethyl acetate, the aqueous layer was extracted twice with ethyl acetate, the combined extract was dried (magnesium sulfate) and was evaporated. Purification by flash chromatography, eluting with 4:1 hexanes/ethyl acetate, provided a clear colorless oil. Anal. (C20H24O3- 1/10 H2O) calcd: C 76.45, H 7.76; found: C 76.32, H 7.60.
1 c) 1 ,4-bis- { [3-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan- 1 -on]-3-yl } buta- 1 ,3- diyne
Copper (II) acetate monohydrate (0.40g, 2.02 mmol) was added to a solution of 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-ethynylcyclohexan- 1 -one (0.30g, 0.96mmol) dissolved in 1 : 1 :4 pyridine methanol/ether (75 mL). The mixture was refluxed under an argon atmosphere. After 30 h, the solvents were evaporated and the residue was partitioned between dichloromethane and aqueous 3N HCl. The aqueous layer was extracted twice with dichloromethane, the combined extract was washed with brine, was dried (magnesium sulfate) and was evaporated. Purification by flash chromatography, eluting with 99: 1 chloroform/methanol, followed by trituration from ether/hexanes, provided a white solid, mp 173-174.5°C.
Example 2 Preparation of 1.4-έ>i -{([3-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-l- yhdinelmalononitrile)-3-yl } buta- 1.3-diyne
A mixture of l,4-_>ι'j-{[3-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-l- on]-3-yl}buta-l,3-diyne (0.2 g, 0.32 mmol, prepared as per Example 1 and malononitrile (0.042 g, 0.64 mmol) is heated to 110°C. To this melt is added water (2 mL) containing a trace of β-alanine and heating is continued for an additional 3 h. The mixture is cooled, is partitioned between water and ethyl acetate, is extracted twice with ethyl acetate, the organic extract is dried (potassium carbonate) and the solvent is removed in vacuo. Purification by flash chromatography provides the title compound.
Example 3 Preparation of 1.4-_>is-( (methyl r3-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan-l- ylidine1acetate)-3-yl }buta- 1.3-diyne A solution of methy diethylphosphonoacetate (1.2 mL, 6.68 mmol) in ethylene glycol dimethyl ether (10 mL) is treated with solid sodium hydride (0.22 g, 7.3 mmol, 80% dispersion in mineral oil) at room temperature under an argon atmosphere. After stirring for 1.5h, a solution of 1 ,4-bis- { [3-(3-cyclopentyloxy-4- methoxyphenyl)cyclohexan-l-on]-3-yl}buta-l,3-diyne (2.08 g, 3.34 mmol) is added and the mixture is allowed to stir for an additional 3 h. The reaction mixture is partitioned between methylene chloride and water, is extracted twice, is dried (potassium carbonate) and is evaporated. Purification by flash column chromatography provides the title compound.
Proceeding in a similar manner, but substituting the appropriate intermediates for those recited above, the other compounds of this invention can be prepared. Utility Examples
EXAMPLE A Inhibitory effect of compounds of Formula (I) on in vitro TNF production by human monocytes
The inhibitory effect of compounds of Formula (I) on in vitro TNF production by human monocytes may be determined by the protocol as described in Badger et al,
EPO published Application 0411 754 A2, February 6, 1991, and in Hanna, WO
90/15534, December 27, 1990.
EXAMPLE B
Two models of endotoxic shock have been utilized to determine in vivo TNF activity for the compounds of Formula (I). The protocol used in these models is described in Badger et al, EPO published Application 0411 754 A2, February 6,
1991, and in Hanna, WO 90/15534, December 27, 1990.
The compound of Example 1 herein demonstrated a positive in vivo response in reducing serum levels of TNF induced by the injection of endotoxin.
EXAMPLE C Isolation of PDE Isozymes
The phosphodiesterase inhibitory activity and selectivity of the compounds of
Formula (I) can be determined using a battery of five distinct PDE isozymes. The tissues used as sources of the different isozymes are as follows: 1) PDE lb, porcine aorta; 2) PDE Ic, guinea-pig heart; 3) PDE HI, guinea-pig heart; 4) PDE IV, human monocyte; and 5) PDE V (also called "la"), canine trachealis. PDEs la, lb, Ic and HI are partially purified using standard chromatographic techniques [Torphy and Cieslinski, Mol. Pharmacol., 37:206-214, 1990]. PDE IV is purified to kinetic homogeneity by the sequential use of anion-exchange followed by heparin-Sepharose chromatography [Torphy et al, J. Biol. Chem., 267:1798-1804, 1992].
Phosphodiesterase activity is assayed as described in the protocol of Torphy and Cieslinski, Mol. Pharmacol., 37:206-214, 1990. Positive ICso's in the nanomolar to μM range for compounds of the workings examples described herein for Formula (I) have been demonstrated.
Claims
1. A compound of formula (I)
R! is -(CR4R5)nC(O)O(CR4R5)mR6, -(CI_4R5)nC(O)NR4(CR4R5)mR6, -(CR4R5)nO(CR4R5)mR6, or -(CR4R5)rR6 herein the alkyl moieties unsubstituted or substituted with one or more halogens; m is 0 to 2; n is 0 to 4; r is 0 to 6;
R4 and R5 are independently selected hydrogen or C 1 -2 alkyl; R6 is hydrogen, methyl, hydroxyl, aryl, halo substituted aryl, aryloxyCi-3 alkyl, halo substituted aιyloxyCi-3 alkyl, indanyl, indenyl, C7-11 polycycloalkyl, tetrahydrofuranyl, furanyl, tetrahydropyranyl, pyranyl, tetrahydrothienyl, thienyl, tetrahydrothiopyranyl, thiopyranyl, C3-6 cycloalkyl, or a C4-6 cycloalkyl containing one or two unsaturated bonds, wherein the cycloalkyl or heterocyclic moiety is unsubstituted or substituted by 1 to 3 methyl groups, one ethyl group, or an hydroxyl group; provided that: a) when R6 is hydroxyl, then m is 2; or b) when R6 is hydroxyl, then r is 2 to 6; or c) when R6 is 2-tetrahydropyranyl, 2-tetrahydrothiopyranyl, 2-tetrahydrofuranyl, or 2-tetrahydrothienyl, then m is 1 or 2; or d) when R6 is 2-tetrahydropyranyl, 2-tetrahydrothiopyranyl,
2-tetr___ydrofuranyl,or 2-tetrahydrothienyl, then r is 1 to 6; e) when n is 1 and m is 0, then R6 is other than H in
-(CR4R5)nO(CR4R5)mR6;
X is YR2» fluorine, NR4R5, or formyl amine; Y is O or S(O)nϊ; m' is O, l, or 2; X2 is O or NRδ; X3 is hydrogen or X; X4 is H, R9, OR8, CN, C(O)R8, C(O)ORδ, C(O)NRgR8, or NRδRδ;
R2 is independently selected from -CH3 or -CH2CH3 optionally substituted by 1 or more halogens; s is 0 to 4; W is alkyl of 2 to 6 carbons, alkenyl of 2 to 6 carbon atoms or alkynyl of 2 to 6 carbon atoms;
R3 is COOR14, C(O)NR4Ri4 or R7;
Z is C(-CN)2, CR14CN, CRi4C(O)OR8, CRi4C(O)NRgRl4. C(-CN)NO2, C(-CN)C(O)OR9, C(-CN)OC(O)R9, C(-CN)OR9, or C(-CN)C(O)NRδRl4; Y* is O or S;
R7 is -(CR4R5)qRi2 or C g alkyl wherein the R12 or C g alkyl group is unsubstituted or substituted one or more times by methyl or ethyl unsubstituted or substituted by 1-3 fluorines, -F, -Br, -Cl, -NO2, -NRioRl b -C(O)Rg, -Cθ2Rδ, -O(CH2)qRδ, -CN, -C(O)NRιoRι ι, -O(CH2)qC(O)NRιoRl l, -O(CH2)qC(O)R9, -NRiθC(O)NRιoRl 1, -NRlθC(O)Rι 1, -NRιoC(O)OR9, -NRιoC(O)Ri3, -C(NRiθ)NRιoRl l, -C(NCN)NRιoRl l, -C(NCN)SR9, -NRιoC(NCN)SR9 , -NRiθC(NCN)NRιoRll, -NRlθS(O)2R9, -S(O)m-R9, -NRiθC(O)C(O)NRκ)Rl l, - NRιoC(O)C(O)Rιo, or R13; q is O, l, or 2; R12 is R 3, C3-C7 cycloalkyl, or an unsubstituted or substituted aryl or heteroaryl group selected from the group consisting of (2-, 3- or 4-pyridyl), pyrimidyl, pyrazolyl, (1- or 2-imidazolyl), pyrrolyl, piperazinyl, piperidinyl, morpholinyl, furanyl, (2- or 3-thienyl), quinolinyl, naphthyl, and phenyl;
Rg is independently selected from hydrogen or R9; R9 is C 1 _4 alkyl optionally substituted by one to three fluorines;
RlO is ORg or Rn;
R is hydrogen, or C .4 alkyl unsubstituted or substituted by one to three fluorines; or when Rio and Ri 1 are as NRioRl 1 they may together with the nitrogen form a 5 to 7 membered ring comprised of carbon or carbon and one or more additional heteroatoms selected from O, N, or S;
R 13 is a substituted or unsubstituted heteroaryl group selected from the group consisting of oxazolidinyl, oxazolyl, thiazolyl, pyrazolyl, triazolyl, tetrazolyl, imidazolyl, imidazolidinyl, thiazolidinyl, isoxazolyl, oxadiazolyl, and thiadiazolyl, and where R|3 is substituted on Rι2 or R1 the rings are connected through a carbon atom and each second Rι3 ring may be unsubstituted or substituted by one or two C _2 alkyl groups unsubstituted or substituted on the methyl with 1 to 3 fluoro atoms; Rl4 is hydrogen or R7; or when Rg and R14 are as NR8R14 they may together with the nitrogen form a 5 to 7 membered ring comprised of carbon or carbon and one or more additional heteroatoms selected from O, N, or S; provided that: (f) R7 is not Cι_4 alkyl unsubstituted or substituted by one to three fluorines; or the pharmaceutically acceptable salts thereof.
2. A compound according to claim 1 wherein R is -CH2-cyclopropyl, -CH2-C5-6 cycloalkyl, -C4-6 cycloalkyl unsubstituted or substituted by OH, te_rahyc_rof__ran-3-yl, (3- or 4-cyclopentenyl), benzyl or -Ci-2 alkyl unsubstituted or substituted by 1 or more fluorines, and -(CH2)2-4 OH; R2 is methyl or fluoro- substituted alkyl, W is ethynyl or 1,3-butadiynyl; R3 is R7 where R7 is an unsubstituted or substituted aryl or heteroaryl ring, X is YR2, and Z is CRi4C(O)OR8-
3. A compound according to claim 2 wherein Ri is -CH2-cyclopropyl, cyclopentyl, 3-hydroxycyclopentyl, methyl or CF2H; X is YR2; Y is oxygen; X2 is oxygen; X3 is hydrogen; and R2 is CF2H or methyl, W is ethynyl or 1,3-butadiynyl, and R3 is a substituted or unsubstituted pyrimidinyl ring.
4. A compound according to claim 1 which is
1 ,4-bis- { [3-(3 -cyclopentyloxy-4-methoxyphenyl)cyclohexan- 1 -on] -3-yl } buta- 1,3-diyne, 1 ,4-bis-{ ([3-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan- 1 - y_idine]malononit_ile)-3-yl Jbuta- 1 ,3-diyne, and
1 ,4-bis- { (methyl [3-(3-cyclopentyloxy-4-methoxyphenyl)cyclohexan- 1 - ylidine]acetate)-3-yl}buta-l,3-diyne.
5. A pharmaceutical preparation comprising a compound of claims 1 in admixture with a pharmaceutically acceptable excipient.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36366594A | 1994-12-23 | 1994-12-23 | |
US08/363,665 | 1994-12-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1996020690A2 true WO1996020690A2 (en) | 1996-07-11 |
WO1996020690A3 WO1996020690A3 (en) | 1996-09-06 |
Family
ID=23431167
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/016293 WO1996020159A1 (en) | 1994-12-23 | 1995-12-14 | 3,3-(disubstituted)cyclohexan-1-ylidine acetate monomers and related compounds |
PCT/US1995/016294 WO1996020690A2 (en) | 1994-12-23 | 1995-12-14 | 3,3-(disubstituted)cyclohexan-1-ylidine acetate monomers and related compounds |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/016293 WO1996020159A1 (en) | 1994-12-23 | 1995-12-14 | 3,3-(disubstituted)cyclohexan-1-ylidine acetate monomers and related compounds |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2002503200A (en) |
HU (1) | HUT77003A (en) |
WO (2) | WO1996020159A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0796092A1 (en) * | 1994-12-23 | 1997-09-24 | Smithkline Beecham Corporation | 3,3-(disubstituted)cyclohexan-1-one dimers and related compounds |
EP0802791A1 (en) * | 1994-12-23 | 1997-10-29 | Smithkline Beecham Corporation | 3,3-(disubstituted)cyclohexan-1-ylidine acetate dimers and related compounds |
-
1995
- 1995-12-14 WO PCT/US1995/016293 patent/WO1996020159A1/en active Application Filing
- 1995-12-14 WO PCT/US1995/016294 patent/WO1996020690A2/en active Application Filing
- 1995-12-14 JP JP52048896A patent/JP2002503200A/en not_active Ceased
- 1995-12-21 HU HU9702075A patent/HUT77003A/en unknown
Non-Patent Citations (2)
Title |
---|
COLLECTION CZECHOSLOVAK CHEM. COMMUN., Volume 51, 1986, KUCHAR et al., "Synthesis of Cyclohexyl Aliphatic Acids and Their Pharmacological Properties", pages 2896-2908. * |
LIEBIGS ANN. CHEM., Volume 8, 1980, ANTUS et al., "Oxadative Rearrangement of -Benzylideneketones with Thallium(III) Nitrate in Methanol", pages 1283-1295. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0796092A1 (en) * | 1994-12-23 | 1997-09-24 | Smithkline Beecham Corporation | 3,3-(disubstituted)cyclohexan-1-one dimers and related compounds |
EP0802791A1 (en) * | 1994-12-23 | 1997-10-29 | Smithkline Beecham Corporation | 3,3-(disubstituted)cyclohexan-1-ylidine acetate dimers and related compounds |
EP0796092A4 (en) * | 1994-12-23 | 1998-03-25 | Smithkline Beecham Corp | 3,3-(disubstituted)cyclohexan-1-one dimers and related compounds |
EP0802791A4 (en) * | 1994-12-23 | 1998-03-25 | Smithkline Beecham Corp | 3,3-(disubstituted)cyclohexan-1-ylidine acetate dimers and related compounds |
Also Published As
Publication number | Publication date |
---|---|
WO1996020159A1 (en) | 1996-07-04 |
HUT77003A (en) | 1998-03-02 |
JP2002503200A (en) | 2002-01-29 |
WO1996020690A3 (en) | 1996-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0796096A1 (en) | 4,4-(disubstituted)cyclohexan-1-carboxylate monomers and related compounds | |
US5723681A (en) | 3,3-(disubstituted)cyclohexan-1-01 dimers and related compounds | |
US5866616A (en) | 3,3-(disubstituted) cyclohexan-1-ol monomers and related compounds | |
US5990119A (en) | 1,4,4-(trisubstituted)cyclohexane monomers and related compounds | |
US5646158A (en) | 1,3,3-(trisubstituted)cyclohex-1-ene monomers and related compounds | |
US5767151A (en) | 3,3-(disubstituted) cyclohexan-1-ylidine acetate dimers and related compounds | |
WO1996020690A2 (en) | 3,3-(disubstituted)cyclohexan-1-ylidine acetate monomers and related compounds | |
EP0799185A1 (en) | 1,3,3-(trisubstituted)cyclohexane dimers and related compounds | |
EP0799205B1 (en) | 1,4,4-(trisubstituted)cyclohex-1-ene derivatives as pde iv- and tnf-inhibitors | |
WO1996019983A1 (en) | 4,4-(disubstituted)cyclohexan-1-ylidine acetate dimers and related compounds | |
US5777176A (en) | 4,4-(disubstituted)cyclohexan-1-ol dimers and related compounds | |
WO1996019985A1 (en) | 3,3-(disubstituted)cyclohexan-1-ylidine acetate dimers and related compounds | |
EP0796097A1 (en) | 3,3-(disubstituted)cyclohexan-1-carboxylate monomers and related compounds | |
EP0794773A1 (en) | 1,4,4-(trisubstituted)cyclohexane monomers and related compounds | |
WO1996020174A1 (en) | 1,3,3-(trisubstituted)cyclohexane monomers and related compounds | |
WO1996020156A1 (en) | 3,3-(disubstituted)cyclohexan-1-carboxylate dimers and related compounds | |
WO1996019979A1 (en) | 1,4,4-(trisubstituted)cyclohexane dimers and related compounds | |
EP0801566A1 (en) | 4,4-(disubstituted)cyclohexan-1-ylidine acetate monomers and related compounds | |
EP0799176A1 (en) | 4,4-(disubstituted)cyclohexan-1-one dimers and related compounds | |
WO1996019980A1 (en) | 3,3-(disubstituted)cyclohexan-1-one dimers and related compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |