+

WO1996020509A1 - Ensemble collecteur externe integre destine a un empilement de cellules electrochimiques - Google Patents

Ensemble collecteur externe integre destine a un empilement de cellules electrochimiques Download PDF

Info

Publication number
WO1996020509A1
WO1996020509A1 PCT/CA1995/000719 CA9500719W WO9620509A1 WO 1996020509 A1 WO1996020509 A1 WO 1996020509A1 CA 9500719 W CA9500719 W CA 9500719W WO 9620509 A1 WO9620509 A1 WO 9620509A1
Authority
WO
WIPO (PCT)
Prior art keywords
manifold
stream
fuel cell
conduits
assembly
Prior art date
Application number
PCT/CA1995/000719
Other languages
English (en)
Inventor
Kirk B. Washington
John T. Kenna
Original Assignee
Ballard Power Systems Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ballard Power Systems Inc. filed Critical Ballard Power Systems Inc.
Priority to AU42945/96A priority Critical patent/AU4294596A/en
Publication of WO1996020509A1 publication Critical patent/WO1996020509A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an
  • the present invention relates to an integrated external manifold assembly for conducting and introducing the inlet reactant and coolant streams to an array of electrochemical fuel cell stacks and/or for receiving and conducting the outlet reactant and coolant streams from an array of electrochemical fuel cell stacks.
  • Solid polymer electrochemical fuel cells convert fuel and oxidant to electricity and reaction product.
  • Solid polymer electrochemical fuel cells generally employ a membrane electrode assembly (“MEA") consisting of a solid polymer electrolyte or ion exchange
  • the MEA contains a layer of catalyst, typically in the form of finely comminuted platinum, at each membrane/electrode interface to induce the desired electrochemical reaction.
  • the electrodes are electrically coupled to provide a path for conducting electrons between the electrodes to an external load.
  • the fuel permeates the porous electrode material and reacts at the catalyst layer to form cations, which migrate through the membrane to the cathode.
  • the oxygen- containing gas supply reacts at the catalyst layer to form anions.
  • the anions formed at the cathode react with the cations to form a reaction product.
  • the catalyzed reaction at the anode produces hydrogen cations (protons) from the fuel supply.
  • the ion exchange membrane facilitates the migration of hydrogen ions from the anode to the cathode.
  • the membrane isolates the hydrogen-containing fuel stream from the oxygen-containing oxidant stream.
  • oxygen reacts at the catalyst layer to form anions.
  • the anions formed at the cathode react with the hydrogen ions that have crossed the membrane to form liquid water as the reaction product.
  • the MEA is disposed between two electrically conductive plates, each of which has at least one flow passage engraved or milled therein.
  • These fluid flow field plates are typically formed of graphite.
  • the flow passages direct the fuel and oxidant to the respective electrodes, namely, the anode on the fuel side and the cathode on the oxidant side.
  • fluid flow field plates are provided on each of the anode and cathode sides. The plates act as current collectors, provide support for the electrodes, provide access channels for the fuel and oxidant to the respective anode and cathode surfaces, and provide channels for the removal of water formed during operation of the cell.
  • Two or more fuel cells can be connected together, generally in series but sometimes in parallel, to increase the overall power output of the assembly.
  • one side of a given plate serves as an anode plate for one cell and the other side of the plate can serve as the cathode plate for the adjacent cell.
  • Such a series connected multiple fuel cell arrangement is
  • the stack typically includes manifolds and inlet ports for directing the fuel (substantially pure hydrogen, methanol reformate or natural gas reformate) and the oxidant
  • the stack also usually includes a manifold and inlet port for directing the coolant fluid
  • the stack also generally includes exhaust manifolds and outlet ports for expelling the
  • Multiple stacks can be arranged, either in series or in parallel, in an array to increase the overall power output.
  • it is generally convenient to locate all of the inlet ports of the individual stacks at one end of the array and all of the outlet ports of the individual stacks at the other end of the array.
  • it is advantageous to orient the array vertically such that the inlet ports of the individual stacks are located at the top of the array and the outlet ports are located at the bottom of the array.
  • Such an orientation capitalizes on the effects of gravity in urging water entrained in the outlet reactant streams downwardly through the stack toward the outlet ports of the individual stacks. While the foregoing an orientation is advantageous, other orientations of the fuel cell stack array are possible as well, such as, for example,
  • An integrated external manifold assembly conducts at least one fluid stream to or from, and fluidly communicates the at least one fluid stream with, a plurality of electrochemical fuel cell stacks.
  • the assembly comprises:
  • each of the at least one manifold header conduit fluidly connected to one of an inlet or an outlet fluid stream;
  • the at least one fluid stream comprises a plurality of reactant and coolant streams
  • the at least one manifold header conduit comprises a plurality of manifold header conduits each of which is fluidly connected to one of the plurality of reactant and coolant streams.
  • the plurality of fluid streams more preferably comprises a fuel stream, an oxidant stream, and a coolant stream.
  • each of the fuel cells forming the stack comprises a proton exchange membrane and the plurality of fluid streams
  • Each of the at least one manifold header conduit can comprise a plurality of conduit
  • the at least one manifold header conduit and the manifold branch conduits are preferably formed from an electrically and thermally insulating material, most preferably a moldable thermoplastic or thermoset material.
  • An improved electrochemical fuel cell stack array comprises a plurality of electrochemical fuel cell stacks and a manifold assembly for conducting at least one fluid stream to or from, and fluidly communicating the at least one fluid stream with, the plurality of stacks.
  • the assembly comprises:
  • each of the at least one manifold header conduit fluidly connected to one of an inlet or an outlet fluid stream;
  • FIG. 1 is a side elevation view of an
  • electrochemical fuel cell stack array having a upper external manifold assembly for conducting and introducing the inlet reactant and coolant streams to an array of electrochemical fuel cell stacks and a lower external manifold assembly for receiving and conducting the outlet reactant and coolant streams from an array of electrochemical fuel cell stacks.
  • FIG. 2 is a top view, looking downwardly, of the electrochemical fuel cell stack array
  • FIG. 3 is a perspective view of one of the external manifold assemblies illustrated in FIG. 1.
  • FIG. 4 is plan view of the external manifold assemblies illustrated in FIG. 3.
  • FIG. 5 is a side elevation view of the external manifold assembly illustrated in FIG. 3.
  • FIG. 6 is a sectional view of the external manifold assembly taken in the direction of arrows 6-6 in FIG. 4.
  • an electrochemical fuel cell stack array 10 includes four fuel cell stacks, two of which are illustrated in FIG. 1 as stacks 12a and 12b. Each stack is in turn composed of a plurality of individual fuel cells, one of which is designated in FIG. 1 as fuel cell 14.
  • a fuel cell stack 10 is more completely described in Watkins et al. U.S. Patent No. 5,200,278 (in FIGS. 1-6 and the accompanying text), which is
  • the inlet reactant As shown in FIG. 1, the inlet reactant
  • each of the outlet reactant and coolant streams are directed from stack array 10 by an external manifold assembly which includes manifold header conduits 16, 18, 20.
  • Each of the inlet reactant and coolant streams is in turn directed to the individual stacks by a plurality of manifold branch conduits.
  • the manifold branch conduit for directing the inlet reactant stream from manifold header conduit 16 to stack 12a is designated in FIG. 1 as manifold branch conduit 16a.
  • the outlet reactant and coolant streams are directed from the individual stacks by a plurality of manifold branch conduits.
  • the manifold conduit for directing the outlet reactant stream from stack 12a to manifold header conduit 22 is designated in FIG. 1 as manifold branch conduit 22a.
  • Each of the outlet reactant and coolant streams is in turn directed from stack array 10 by an external manifold assembly which includes manifold header conduits 16, 18, 20.
  • Each of the inlet reactant and coolant streams is in turn directed to the individual stacks by a plurality of manifold
  • FIG. 2 is a top view of stack array 10, showing each of the four fuel cell stacks 12a, 12b, 12c, 12d, as well as the manifold header conduits 16, 18, 20 for directing the inlet reactant and coolant streams to stack array 10.
  • Manifold branch conduit 16a directs the reactant stream from.
  • FIGS. 3-6 shows one of the external manifold assemblies 100 illustrated in FIG. 1.
  • external manifold assembly 100 includes three manifold header conduits 102, 104, 106.
  • Manifold header conduit 102 is fluidly connected to the inlet fuel stream, preferably a hydrogen-containing gas stream.
  • Manifold header conduit 104 is fluidly connected to the inlet coolant stream, preferably a liquid water stream.
  • Manifold header conduit 106 is fluidly connected to the inlet oxidant stream, preferably a oxygen-contanning gas stream.
  • Each of manifold header conduits 102, 104, 106 includes a ferrule portion 102a, 104a, 106a, respectively, for fluidly
  • Each of the manifold header conduits 102, 104, 106 also includes a terminal cap portion 102b, 104b, 106b,
  • terminal cap portions 102b, 104b, 106b could be removable to permit the connection of further header conduit segments, thereby extending the length and accommodating a greater number of branch conduits extending from each manifold header conduit.
  • manifold branch conduits 112a, 112b, 112c, 112d extend from manifold header conduit 102.
  • the proximal end of each manifold branch conduit 112a, 112b, 112c, 112d is integrally connected to manifold header conduit 102, while the distal end of each manifold branch conduit 112a, 112b, 112c, 112d is fluidly connected to the fuel stream. inlet of the corresponding fuel cell stack (not shown in FIG. 3).
  • four manifold branch conduits 114a, 114b, 114c, 114d extend from manifold header conduit 104.
  • each manifold branch conduit 114a, 114b, 114c, 114d is integrally connected to manifold header conduit 104, while the distal end of each manifold branch conduit 114a, 114b, 114c, 114d is fluidly connected to the coolant stream inlet of the corresponding fuel cell stack (not shown in FIG. 3).
  • four manifold branch conduits 116a, 116b, 116c, 116d extend from manifold header conduit 106.
  • the proximal end of each manifold branch conduit 116a, 116b, 116c, 116d is integrally connected to
  • each manifold branch conduit 116a, 116b, 116c, 116d is fluidly connected to the oxidant stream inlet of the corresponding fuel cell stack (not shown in FIG. 3).
  • Flanges located at the distal end of each of the manifold branch conduits form the fluid connection between the manifold branch conduits and the corresponding inlet of the respective fuel cell stack.
  • a fastener (not shown in FIG. 3), such as, for example, a fastening nut, extends through the opening in flange 122 into a corresponding threaded opening in the adjacent fuel cell stack.
  • integrally connected means that the walls of the manifold branch conduits are
  • connected structures include those in which the manifold header and branch conduits are
  • manifold branch conduits formed from bendable hoses which extend from manifold header conduits using valves, nozzles or other readily disconnectable means are not considered to be integrally connected.
  • FIG. 6 shows a sectional view of the external manifold assembly 100 taken in the direction of arrows 6-6 in FIG. 4. As best shown in FIG. 6, the manifold header conduits 102, 104, 106 are
  • the external manifold assembly of the present invention is preferably formed from an electrically and thermally insulating thermoplastic or thermoset material.
  • the preferred material avoids the condensation of humidified reactant streams, provides electrical and thermal isolation, is relatively inexpensive, is readily injection moldable, lightweight, chemically inert and
  • the present external manifold assembly simultaneously accommodates multiple fluid streams
  • the present external manifold assembly substantially equally distributes the fluid streams to each of the plurality of fuel cell stacks forming the array
  • the present external manifold assembly can be readily formed with uniform or non-uniform conduit wall thickness, as desired, so that the temperature remains substantially uniform or otherwise controlled across the entire manifold assembly.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Un ensemble collecteur externe intégré conduit des flux de fluides à l'entrée et depuis la sortie de plusieurs empilements de cellules électrochimiques (12a, 12b). Cet ensemble comprend au moins un conduit récepteur de collecteur (16, 18, 20) et plusieurs conduits d'embranchements de collecteur (16a) raccordés de façon intégrée avec chacun des conduits récepteurs de collecteur et en partant. Chaque conduit récepteur de collecteur est raccordé sur un flux de fluide entrant ou sortant. Chaque conduit d'embranchement de collecteur raccorde le conduit récepteur de collecteur dont il vient avec un des empilements.
PCT/CA1995/000719 1994-12-27 1995-12-22 Ensemble collecteur externe integre destine a un empilement de cellules electrochimiques WO1996020509A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU42945/96A AU4294596A (en) 1994-12-27 1995-12-22 Integrated external manifold assembly for an electrochemical fuel cell stack array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36388894A 1994-12-27 1994-12-27
US363,888 1994-12-27

Publications (1)

Publication Number Publication Date
WO1996020509A1 true WO1996020509A1 (fr) 1996-07-04

Family

ID=23432140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1995/000719 WO1996020509A1 (fr) 1994-12-27 1995-12-22 Ensemble collecteur externe integre destine a un empilement de cellules electrochimiques

Country Status (2)

Country Link
AU (1) AU4294596A (fr)
WO (1) WO1996020509A1 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322914B1 (en) 1997-12-01 2001-11-27 Ballard Power Systems Inc. Method and apparatus for distributing water in an array of fuel cell stacks
WO2001082391A3 (fr) * 2000-04-19 2002-02-28 Millennium Cell Inc Cellule electrochimique et assemblage pour celle-ci
EP1309026A1 (fr) * 2001-10-30 2003-05-07 Ballard Power Systems AG Pile à combustible et unité d'entrainement intégrées
WO2002027839A3 (fr) * 2000-09-26 2003-05-08 Reliant Energy Power Systems I Amelioration du systeme de pile a combustible a membrane d'echange de protons par un systeme de placement radial et de support de structure integre
US6613770B1 (en) * 1998-11-20 2003-09-02 Smithkline Beecham S.P.A. Quinoline derivatives as NK-2 and NK-3 receptor ligands
WO2003083982A2 (fr) * 2002-03-22 2003-10-09 Richards Engineering Systeme de generation de puissance possedant des modules de piles a combustible
US6656624B1 (en) 2000-09-26 2003-12-02 Reliant Energy Power Systems, Inc. Polarized gas separator and liquid coalescer for fuel cell stack assemblies
WO2004025769A2 (fr) * 2002-09-12 2004-03-25 Nuvera Fuel Cells Europe S.R.L. Generateur electrochimique a membrane
WO2004077590A2 (fr) * 2003-02-27 2004-09-10 Protonex Technology Corporation Piles de cellules electrochimiques a membranes a collecteurs exterieurs
EP1494306A1 (fr) * 2003-06-24 2005-01-05 Matsushita Electric Industrial Co., Ltd. Pile à combustible et batterie de piles à combustible
US7001687B1 (en) 2002-10-04 2006-02-21 The Texas A&M University System Unitized MEA assemblies and methods for making same
US7005209B1 (en) 2002-10-04 2006-02-28 The Texas A&M University System Fuel cell stack assembly
DE102004047944B4 (de) * 2003-10-03 2009-04-09 Honda Motor Co., Ltd. Brennstoffzellensystem
US7695846B2 (en) 2002-11-18 2010-04-13 Protonex Technology Corporation Membrane based electrochemical cell stacks
US7879507B2 (en) 2006-04-10 2011-02-01 Protonex Technology Corporation Insert-molded, externally manifolded, one-shot sealed membrane based electrochemical cell stacks
US20110091784A1 (en) * 2009-10-16 2011-04-21 Toyota Boshoku Kabushiki Kaisha Fuel cell system
US8124292B2 (en) 2007-06-28 2012-02-28 Protonex Technology Corporation Fuel cell stacks and methods
US8580457B2 (en) 2007-06-28 2013-11-12 Protonex Technology Corporation Fuel cell stack sealed with encapsulating material and method of making the same
US8697298B2 (en) * 2008-08-01 2014-04-15 Toyota Boshoku Kabushiki Kaisha Fuel cell system with heater
CN113036203A (zh) * 2019-12-24 2021-06-25 未势能源科技有限公司 用于燃料电池的集成式歧管、燃料电池及交通工具
US11276872B2 (en) * 2014-03-28 2022-03-15 Honda Motor Co., Ltd. Fuel cell stack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2000626A (en) * 1977-06-29 1979-01-10 Electrochem Energieconversie Battery unit containing one or more fuel-cell blocks
JPS61101966A (ja) * 1984-10-23 1986-05-20 Toshiba Corp 燃料電池発電装置
JPS61101967A (ja) * 1984-10-23 1986-05-20 Toshiba Corp 燃料電池発電装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2000626A (en) * 1977-06-29 1979-01-10 Electrochem Energieconversie Battery unit containing one or more fuel-cell blocks
JPS61101966A (ja) * 1984-10-23 1986-05-20 Toshiba Corp 燃料電池発電装置
JPS61101967A (ja) * 1984-10-23 1986-05-20 Toshiba Corp 燃料電池発電装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DE ROBERT L. ROSENFELD ET AL: "FUEL CELL POWER SYSTEM DEVELOPMENT FOR SUBMERSIBLES", PROCEEDINGS OF THE 1992 SYMPOSIUM ON AUTONOMOUS UNDERWATER VEHICLE TECHNOLOGY 2-3 JUNE WASHINGTON USA, pages 184 - 188, XP000344374 *
KEITH B. PRATER: "Polymer electrolyte fuel cells: a review of recent developments", JOURNAL OF POWER SOURCES, vol. 51, no. 1/2, LAUSANNE CH, pages 129 - 144, XP000532806 *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 283 (E - 440) 26 September 1986 (1986-09-26) *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6753106B2 (en) 1997-12-01 2004-06-22 Ballard Power Systems Inc. Method and apparatus for distributing water in an array of fuel cell stacks
US6322914B1 (en) 1997-12-01 2001-11-27 Ballard Power Systems Inc. Method and apparatus for distributing water in an array of fuel cell stacks
US6613770B1 (en) * 1998-11-20 2003-09-02 Smithkline Beecham S.P.A. Quinoline derivatives as NK-2 and NK-3 receptor ligands
WO2001082391A3 (fr) * 2000-04-19 2002-02-28 Millennium Cell Inc Cellule electrochimique et assemblage pour celle-ci
US6544679B1 (en) 2000-04-19 2003-04-08 Millennium Cell, Inc. Electrochemical cell and assembly for same
WO2002027839A3 (fr) * 2000-09-26 2003-05-08 Reliant Energy Power Systems I Amelioration du systeme de pile a combustible a membrane d'echange de protons par un systeme de placement radial et de support de structure integre
US6951698B2 (en) 2000-09-26 2005-10-04 The Texas A&M University System Fuel cell stack assembly
US6656624B1 (en) 2000-09-26 2003-12-02 Reliant Energy Power Systems, Inc. Polarized gas separator and liquid coalescer for fuel cell stack assemblies
US7005210B2 (en) 2000-09-26 2006-02-28 The Texas A&M University System Flow fields for fuel cells
EP1309026A1 (fr) * 2001-10-30 2003-05-07 Ballard Power Systems AG Pile à combustible et unité d'entrainement intégrées
WO2003083982A2 (fr) * 2002-03-22 2003-10-09 Richards Engineering Systeme de generation de puissance possedant des modules de piles a combustible
WO2003083982A3 (fr) * 2002-03-22 2003-12-04 Richards Engineering Systeme de generation de puissance possedant des modules de piles a combustible
WO2004025769A2 (fr) * 2002-09-12 2004-03-25 Nuvera Fuel Cells Europe S.R.L. Generateur electrochimique a membrane
WO2004025769A3 (fr) * 2002-09-12 2005-03-24 Nuvera Fuel Cells Europ Srl Generateur electrochimique a membrane
US7005209B1 (en) 2002-10-04 2006-02-28 The Texas A&M University System Fuel cell stack assembly
US7001687B1 (en) 2002-10-04 2006-02-21 The Texas A&M University System Unitized MEA assemblies and methods for making same
US7695846B2 (en) 2002-11-18 2010-04-13 Protonex Technology Corporation Membrane based electrochemical cell stacks
WO2004077590A2 (fr) * 2003-02-27 2004-09-10 Protonex Technology Corporation Piles de cellules electrochimiques a membranes a collecteurs exterieurs
US7052796B2 (en) * 2003-02-27 2006-05-30 Protonex Technology Corporation Externally manifolded membrane based electrochemical cell stacks
AU2004216063B2 (en) * 2003-02-27 2009-02-19 Protonex Technology Corporation Externally manifolded membrane based electrochemical cell stacks
WO2004077590A3 (fr) * 2003-02-27 2005-06-23 Protonex Technology Corp Piles de cellules electrochimiques a membranes a collecteurs exterieurs
EP1494306A1 (fr) * 2003-06-24 2005-01-05 Matsushita Electric Industrial Co., Ltd. Pile à combustible et batterie de piles à combustible
EP1677378A1 (fr) * 2003-06-24 2006-07-05 Matsushita Electric Industrial Co., Ltd. Pile à combustible et batterie de piles à combustible
US8105731B2 (en) 2003-10-03 2012-01-31 Honda Motor Co., Ltd. Fuel cell system
DE102004047944B4 (de) * 2003-10-03 2009-04-09 Honda Motor Co., Ltd. Brennstoffzellensystem
US7648793B2 (en) 2003-10-03 2010-01-19 Honda Motor Co., Ltd. Fuel cell system comprising an assembly manifold having a connection block
US7879507B2 (en) 2006-04-10 2011-02-01 Protonex Technology Corporation Insert-molded, externally manifolded, one-shot sealed membrane based electrochemical cell stacks
US7914947B2 (en) 2006-04-10 2011-03-29 Protonex Technology Corporation Insert-molded, externally manifolded, sealed membrane based electrochemical cell stacks
US7887974B2 (en) 2006-04-10 2011-02-15 Protonex Technology Corporation Insert-molded, externally manifolded, sealed membrane based electrochemical cell stacks
US8124292B2 (en) 2007-06-28 2012-02-28 Protonex Technology Corporation Fuel cell stacks and methods
US8580457B2 (en) 2007-06-28 2013-11-12 Protonex Technology Corporation Fuel cell stack sealed with encapsulating material and method of making the same
US8697298B2 (en) * 2008-08-01 2014-04-15 Toyota Boshoku Kabushiki Kaisha Fuel cell system with heater
US20110091784A1 (en) * 2009-10-16 2011-04-21 Toyota Boshoku Kabushiki Kaisha Fuel cell system
US8835071B2 (en) * 2009-10-16 2014-09-16 Toyota Boshoku Kabushiki Kaisha Fuel cell system including oxidation gas supply pipe integrated with coolant supply pipe
US11276872B2 (en) * 2014-03-28 2022-03-15 Honda Motor Co., Ltd. Fuel cell stack
CN113036203A (zh) * 2019-12-24 2021-06-25 未势能源科技有限公司 用于燃料电池的集成式歧管、燃料电池及交通工具
CN113036203B (zh) * 2019-12-24 2022-11-25 未势能源科技有限公司 用于燃料电池的集成式歧管、燃料电池及交通工具

Also Published As

Publication number Publication date
AU4294596A (en) 1996-07-19

Similar Documents

Publication Publication Date Title
US5514487A (en) Edge manifold assembly for an electrochemical fuel cell stack
US5382478A (en) Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section
WO1996020509A1 (fr) Ensemble collecteur externe integre destine a un empilement de cellules electrochimiques
EP1070361B1 (fr) Ensemble pile a combustible du type a membrane d'echange de protons dote de sous-empilages de pile a combustible paralleles multiples utilisant des ensembles de plaques d'ecoulement de fluide partages et des ensembles d'electrodes a membrane partages
US5486430A (en) Internal fluid manifold assembly for an electrochemical fuel cell stack array
US5252410A (en) Lightweight fuel cell membrane electrode assembly with integral reactant flow passages
AU773563B2 (en) Fuel cell and bipolar plate for use with same
AU687211B2 (en) Electrochemical fuel cell stack with concurrently flowing coolant and oxidant streams
US5484666A (en) Electrochemical fuel cell stack with compression mechanism extending through interior manifold headers
EP0736226B1 (fr) Cellule electrochimique dans laquelle l'air ambiant est utilise comme oxydant et refrigerant
EP1935046B1 (fr) Cellule electrochimique modifiee a systemes internes d'humidification et/ou de regulation de temperature
WO1995028010A1 (fr) Empilement de piles a combustible comprenant un mecanisme de compression compact central
JPH06338332A (ja) 固体高分子電解質燃料電池用ガスセパレータ
KR20090037671A (ko) 연료전지
CA2146332C (fr) Electrode a membrane legere a passages de reactif pour cellule a combustible
JPH06338333A (ja) 固体高分子電解質燃料電池用ガスセパレータ
EP1146584A2 (fr) Ensemble électrodes-membrane pour cellule électrochimique de faible poids, avec passages pour flux de reactifs intégrés

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载