WO1996020509A1 - Ensemble collecteur externe integre destine a un empilement de cellules electrochimiques - Google Patents
Ensemble collecteur externe integre destine a un empilement de cellules electrochimiques Download PDFInfo
- Publication number
- WO1996020509A1 WO1996020509A1 PCT/CA1995/000719 CA9500719W WO9620509A1 WO 1996020509 A1 WO1996020509 A1 WO 1996020509A1 CA 9500719 W CA9500719 W CA 9500719W WO 9620509 A1 WO9620509 A1 WO 9620509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- manifold
- stream
- fuel cell
- conduits
- assembly
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
- H01M8/2485—Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
- H01M8/04074—Heat exchange unit structures specially adapted for fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/249—Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to an
- the present invention relates to an integrated external manifold assembly for conducting and introducing the inlet reactant and coolant streams to an array of electrochemical fuel cell stacks and/or for receiving and conducting the outlet reactant and coolant streams from an array of electrochemical fuel cell stacks.
- Solid polymer electrochemical fuel cells convert fuel and oxidant to electricity and reaction product.
- Solid polymer electrochemical fuel cells generally employ a membrane electrode assembly (“MEA") consisting of a solid polymer electrolyte or ion exchange
- the MEA contains a layer of catalyst, typically in the form of finely comminuted platinum, at each membrane/electrode interface to induce the desired electrochemical reaction.
- the electrodes are electrically coupled to provide a path for conducting electrons between the electrodes to an external load.
- the fuel permeates the porous electrode material and reacts at the catalyst layer to form cations, which migrate through the membrane to the cathode.
- the oxygen- containing gas supply reacts at the catalyst layer to form anions.
- the anions formed at the cathode react with the cations to form a reaction product.
- the catalyzed reaction at the anode produces hydrogen cations (protons) from the fuel supply.
- the ion exchange membrane facilitates the migration of hydrogen ions from the anode to the cathode.
- the membrane isolates the hydrogen-containing fuel stream from the oxygen-containing oxidant stream.
- oxygen reacts at the catalyst layer to form anions.
- the anions formed at the cathode react with the hydrogen ions that have crossed the membrane to form liquid water as the reaction product.
- the MEA is disposed between two electrically conductive plates, each of which has at least one flow passage engraved or milled therein.
- These fluid flow field plates are typically formed of graphite.
- the flow passages direct the fuel and oxidant to the respective electrodes, namely, the anode on the fuel side and the cathode on the oxidant side.
- fluid flow field plates are provided on each of the anode and cathode sides. The plates act as current collectors, provide support for the electrodes, provide access channels for the fuel and oxidant to the respective anode and cathode surfaces, and provide channels for the removal of water formed during operation of the cell.
- Two or more fuel cells can be connected together, generally in series but sometimes in parallel, to increase the overall power output of the assembly.
- one side of a given plate serves as an anode plate for one cell and the other side of the plate can serve as the cathode plate for the adjacent cell.
- Such a series connected multiple fuel cell arrangement is
- the stack typically includes manifolds and inlet ports for directing the fuel (substantially pure hydrogen, methanol reformate or natural gas reformate) and the oxidant
- the stack also usually includes a manifold and inlet port for directing the coolant fluid
- the stack also generally includes exhaust manifolds and outlet ports for expelling the
- Multiple stacks can be arranged, either in series or in parallel, in an array to increase the overall power output.
- it is generally convenient to locate all of the inlet ports of the individual stacks at one end of the array and all of the outlet ports of the individual stacks at the other end of the array.
- it is advantageous to orient the array vertically such that the inlet ports of the individual stacks are located at the top of the array and the outlet ports are located at the bottom of the array.
- Such an orientation capitalizes on the effects of gravity in urging water entrained in the outlet reactant streams downwardly through the stack toward the outlet ports of the individual stacks. While the foregoing an orientation is advantageous, other orientations of the fuel cell stack array are possible as well, such as, for example,
- An integrated external manifold assembly conducts at least one fluid stream to or from, and fluidly communicates the at least one fluid stream with, a plurality of electrochemical fuel cell stacks.
- the assembly comprises:
- each of the at least one manifold header conduit fluidly connected to one of an inlet or an outlet fluid stream;
- the at least one fluid stream comprises a plurality of reactant and coolant streams
- the at least one manifold header conduit comprises a plurality of manifold header conduits each of which is fluidly connected to one of the plurality of reactant and coolant streams.
- the plurality of fluid streams more preferably comprises a fuel stream, an oxidant stream, and a coolant stream.
- each of the fuel cells forming the stack comprises a proton exchange membrane and the plurality of fluid streams
- Each of the at least one manifold header conduit can comprise a plurality of conduit
- the at least one manifold header conduit and the manifold branch conduits are preferably formed from an electrically and thermally insulating material, most preferably a moldable thermoplastic or thermoset material.
- An improved electrochemical fuel cell stack array comprises a plurality of electrochemical fuel cell stacks and a manifold assembly for conducting at least one fluid stream to or from, and fluidly communicating the at least one fluid stream with, the plurality of stacks.
- the assembly comprises:
- each of the at least one manifold header conduit fluidly connected to one of an inlet or an outlet fluid stream;
- FIG. 1 is a side elevation view of an
- electrochemical fuel cell stack array having a upper external manifold assembly for conducting and introducing the inlet reactant and coolant streams to an array of electrochemical fuel cell stacks and a lower external manifold assembly for receiving and conducting the outlet reactant and coolant streams from an array of electrochemical fuel cell stacks.
- FIG. 2 is a top view, looking downwardly, of the electrochemical fuel cell stack array
- FIG. 3 is a perspective view of one of the external manifold assemblies illustrated in FIG. 1.
- FIG. 4 is plan view of the external manifold assemblies illustrated in FIG. 3.
- FIG. 5 is a side elevation view of the external manifold assembly illustrated in FIG. 3.
- FIG. 6 is a sectional view of the external manifold assembly taken in the direction of arrows 6-6 in FIG. 4.
- an electrochemical fuel cell stack array 10 includes four fuel cell stacks, two of which are illustrated in FIG. 1 as stacks 12a and 12b. Each stack is in turn composed of a plurality of individual fuel cells, one of which is designated in FIG. 1 as fuel cell 14.
- a fuel cell stack 10 is more completely described in Watkins et al. U.S. Patent No. 5,200,278 (in FIGS. 1-6 and the accompanying text), which is
- the inlet reactant As shown in FIG. 1, the inlet reactant
- each of the outlet reactant and coolant streams are directed from stack array 10 by an external manifold assembly which includes manifold header conduits 16, 18, 20.
- Each of the inlet reactant and coolant streams is in turn directed to the individual stacks by a plurality of manifold branch conduits.
- the manifold branch conduit for directing the inlet reactant stream from manifold header conduit 16 to stack 12a is designated in FIG. 1 as manifold branch conduit 16a.
- the outlet reactant and coolant streams are directed from the individual stacks by a plurality of manifold branch conduits.
- the manifold conduit for directing the outlet reactant stream from stack 12a to manifold header conduit 22 is designated in FIG. 1 as manifold branch conduit 22a.
- Each of the outlet reactant and coolant streams is in turn directed from stack array 10 by an external manifold assembly which includes manifold header conduits 16, 18, 20.
- Each of the inlet reactant and coolant streams is in turn directed to the individual stacks by a plurality of manifold
- FIG. 2 is a top view of stack array 10, showing each of the four fuel cell stacks 12a, 12b, 12c, 12d, as well as the manifold header conduits 16, 18, 20 for directing the inlet reactant and coolant streams to stack array 10.
- Manifold branch conduit 16a directs the reactant stream from.
- FIGS. 3-6 shows one of the external manifold assemblies 100 illustrated in FIG. 1.
- external manifold assembly 100 includes three manifold header conduits 102, 104, 106.
- Manifold header conduit 102 is fluidly connected to the inlet fuel stream, preferably a hydrogen-containing gas stream.
- Manifold header conduit 104 is fluidly connected to the inlet coolant stream, preferably a liquid water stream.
- Manifold header conduit 106 is fluidly connected to the inlet oxidant stream, preferably a oxygen-contanning gas stream.
- Each of manifold header conduits 102, 104, 106 includes a ferrule portion 102a, 104a, 106a, respectively, for fluidly
- Each of the manifold header conduits 102, 104, 106 also includes a terminal cap portion 102b, 104b, 106b,
- terminal cap portions 102b, 104b, 106b could be removable to permit the connection of further header conduit segments, thereby extending the length and accommodating a greater number of branch conduits extending from each manifold header conduit.
- manifold branch conduits 112a, 112b, 112c, 112d extend from manifold header conduit 102.
- the proximal end of each manifold branch conduit 112a, 112b, 112c, 112d is integrally connected to manifold header conduit 102, while the distal end of each manifold branch conduit 112a, 112b, 112c, 112d is fluidly connected to the fuel stream. inlet of the corresponding fuel cell stack (not shown in FIG. 3).
- four manifold branch conduits 114a, 114b, 114c, 114d extend from manifold header conduit 104.
- each manifold branch conduit 114a, 114b, 114c, 114d is integrally connected to manifold header conduit 104, while the distal end of each manifold branch conduit 114a, 114b, 114c, 114d is fluidly connected to the coolant stream inlet of the corresponding fuel cell stack (not shown in FIG. 3).
- four manifold branch conduits 116a, 116b, 116c, 116d extend from manifold header conduit 106.
- the proximal end of each manifold branch conduit 116a, 116b, 116c, 116d is integrally connected to
- each manifold branch conduit 116a, 116b, 116c, 116d is fluidly connected to the oxidant stream inlet of the corresponding fuel cell stack (not shown in FIG. 3).
- Flanges located at the distal end of each of the manifold branch conduits form the fluid connection between the manifold branch conduits and the corresponding inlet of the respective fuel cell stack.
- a fastener (not shown in FIG. 3), such as, for example, a fastening nut, extends through the opening in flange 122 into a corresponding threaded opening in the adjacent fuel cell stack.
- integrally connected means that the walls of the manifold branch conduits are
- connected structures include those in which the manifold header and branch conduits are
- manifold branch conduits formed from bendable hoses which extend from manifold header conduits using valves, nozzles or other readily disconnectable means are not considered to be integrally connected.
- FIG. 6 shows a sectional view of the external manifold assembly 100 taken in the direction of arrows 6-6 in FIG. 4. As best shown in FIG. 6, the manifold header conduits 102, 104, 106 are
- the external manifold assembly of the present invention is preferably formed from an electrically and thermally insulating thermoplastic or thermoset material.
- the preferred material avoids the condensation of humidified reactant streams, provides electrical and thermal isolation, is relatively inexpensive, is readily injection moldable, lightweight, chemically inert and
- the present external manifold assembly simultaneously accommodates multiple fluid streams
- the present external manifold assembly substantially equally distributes the fluid streams to each of the plurality of fuel cell stacks forming the array
- the present external manifold assembly can be readily formed with uniform or non-uniform conduit wall thickness, as desired, so that the temperature remains substantially uniform or otherwise controlled across the entire manifold assembly.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Un ensemble collecteur externe intégré conduit des flux de fluides à l'entrée et depuis la sortie de plusieurs empilements de cellules électrochimiques (12a, 12b). Cet ensemble comprend au moins un conduit récepteur de collecteur (16, 18, 20) et plusieurs conduits d'embranchements de collecteur (16a) raccordés de façon intégrée avec chacun des conduits récepteurs de collecteur et en partant. Chaque conduit récepteur de collecteur est raccordé sur un flux de fluide entrant ou sortant. Chaque conduit d'embranchement de collecteur raccorde le conduit récepteur de collecteur dont il vient avec un des empilements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU42945/96A AU4294596A (en) | 1994-12-27 | 1995-12-22 | Integrated external manifold assembly for an electrochemical fuel cell stack array |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36388894A | 1994-12-27 | 1994-12-27 | |
US363,888 | 1994-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996020509A1 true WO1996020509A1 (fr) | 1996-07-04 |
Family
ID=23432140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA1995/000719 WO1996020509A1 (fr) | 1994-12-27 | 1995-12-22 | Ensemble collecteur externe integre destine a un empilement de cellules electrochimiques |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU4294596A (fr) |
WO (1) | WO1996020509A1 (fr) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6322914B1 (en) | 1997-12-01 | 2001-11-27 | Ballard Power Systems Inc. | Method and apparatus for distributing water in an array of fuel cell stacks |
WO2001082391A3 (fr) * | 2000-04-19 | 2002-02-28 | Millennium Cell Inc | Cellule electrochimique et assemblage pour celle-ci |
EP1309026A1 (fr) * | 2001-10-30 | 2003-05-07 | Ballard Power Systems AG | Pile à combustible et unité d'entrainement intégrées |
WO2002027839A3 (fr) * | 2000-09-26 | 2003-05-08 | Reliant Energy Power Systems I | Amelioration du systeme de pile a combustible a membrane d'echange de protons par un systeme de placement radial et de support de structure integre |
US6613770B1 (en) * | 1998-11-20 | 2003-09-02 | Smithkline Beecham S.P.A. | Quinoline derivatives as NK-2 and NK-3 receptor ligands |
WO2003083982A2 (fr) * | 2002-03-22 | 2003-10-09 | Richards Engineering | Systeme de generation de puissance possedant des modules de piles a combustible |
US6656624B1 (en) | 2000-09-26 | 2003-12-02 | Reliant Energy Power Systems, Inc. | Polarized gas separator and liquid coalescer for fuel cell stack assemblies |
WO2004025769A2 (fr) * | 2002-09-12 | 2004-03-25 | Nuvera Fuel Cells Europe S.R.L. | Generateur electrochimique a membrane |
WO2004077590A2 (fr) * | 2003-02-27 | 2004-09-10 | Protonex Technology Corporation | Piles de cellules electrochimiques a membranes a collecteurs exterieurs |
EP1494306A1 (fr) * | 2003-06-24 | 2005-01-05 | Matsushita Electric Industrial Co., Ltd. | Pile à combustible et batterie de piles à combustible |
US7001687B1 (en) | 2002-10-04 | 2006-02-21 | The Texas A&M University System | Unitized MEA assemblies and methods for making same |
US7005209B1 (en) | 2002-10-04 | 2006-02-28 | The Texas A&M University System | Fuel cell stack assembly |
DE102004047944B4 (de) * | 2003-10-03 | 2009-04-09 | Honda Motor Co., Ltd. | Brennstoffzellensystem |
US7695846B2 (en) | 2002-11-18 | 2010-04-13 | Protonex Technology Corporation | Membrane based electrochemical cell stacks |
US7879507B2 (en) | 2006-04-10 | 2011-02-01 | Protonex Technology Corporation | Insert-molded, externally manifolded, one-shot sealed membrane based electrochemical cell stacks |
US20110091784A1 (en) * | 2009-10-16 | 2011-04-21 | Toyota Boshoku Kabushiki Kaisha | Fuel cell system |
US8124292B2 (en) | 2007-06-28 | 2012-02-28 | Protonex Technology Corporation | Fuel cell stacks and methods |
US8580457B2 (en) | 2007-06-28 | 2013-11-12 | Protonex Technology Corporation | Fuel cell stack sealed with encapsulating material and method of making the same |
US8697298B2 (en) * | 2008-08-01 | 2014-04-15 | Toyota Boshoku Kabushiki Kaisha | Fuel cell system with heater |
CN113036203A (zh) * | 2019-12-24 | 2021-06-25 | 未势能源科技有限公司 | 用于燃料电池的集成式歧管、燃料电池及交通工具 |
US11276872B2 (en) * | 2014-03-28 | 2022-03-15 | Honda Motor Co., Ltd. | Fuel cell stack |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2000626A (en) * | 1977-06-29 | 1979-01-10 | Electrochem Energieconversie | Battery unit containing one or more fuel-cell blocks |
JPS61101966A (ja) * | 1984-10-23 | 1986-05-20 | Toshiba Corp | 燃料電池発電装置 |
JPS61101967A (ja) * | 1984-10-23 | 1986-05-20 | Toshiba Corp | 燃料電池発電装置 |
-
1995
- 1995-12-22 WO PCT/CA1995/000719 patent/WO1996020509A1/fr active Application Filing
- 1995-12-22 AU AU42945/96A patent/AU4294596A/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2000626A (en) * | 1977-06-29 | 1979-01-10 | Electrochem Energieconversie | Battery unit containing one or more fuel-cell blocks |
JPS61101966A (ja) * | 1984-10-23 | 1986-05-20 | Toshiba Corp | 燃料電池発電装置 |
JPS61101967A (ja) * | 1984-10-23 | 1986-05-20 | Toshiba Corp | 燃料電池発電装置 |
Non-Patent Citations (3)
Title |
---|
DE ROBERT L. ROSENFELD ET AL: "FUEL CELL POWER SYSTEM DEVELOPMENT FOR SUBMERSIBLES", PROCEEDINGS OF THE 1992 SYMPOSIUM ON AUTONOMOUS UNDERWATER VEHICLE TECHNOLOGY 2-3 JUNE WASHINGTON USA, pages 184 - 188, XP000344374 * |
KEITH B. PRATER: "Polymer electrolyte fuel cells: a review of recent developments", JOURNAL OF POWER SOURCES, vol. 51, no. 1/2, LAUSANNE CH, pages 129 - 144, XP000532806 * |
PATENT ABSTRACTS OF JAPAN vol. 010, no. 283 (E - 440) 26 September 1986 (1986-09-26) * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6753106B2 (en) | 1997-12-01 | 2004-06-22 | Ballard Power Systems Inc. | Method and apparatus for distributing water in an array of fuel cell stacks |
US6322914B1 (en) | 1997-12-01 | 2001-11-27 | Ballard Power Systems Inc. | Method and apparatus for distributing water in an array of fuel cell stacks |
US6613770B1 (en) * | 1998-11-20 | 2003-09-02 | Smithkline Beecham S.P.A. | Quinoline derivatives as NK-2 and NK-3 receptor ligands |
WO2001082391A3 (fr) * | 2000-04-19 | 2002-02-28 | Millennium Cell Inc | Cellule electrochimique et assemblage pour celle-ci |
US6544679B1 (en) | 2000-04-19 | 2003-04-08 | Millennium Cell, Inc. | Electrochemical cell and assembly for same |
WO2002027839A3 (fr) * | 2000-09-26 | 2003-05-08 | Reliant Energy Power Systems I | Amelioration du systeme de pile a combustible a membrane d'echange de protons par un systeme de placement radial et de support de structure integre |
US6951698B2 (en) | 2000-09-26 | 2005-10-04 | The Texas A&M University System | Fuel cell stack assembly |
US6656624B1 (en) | 2000-09-26 | 2003-12-02 | Reliant Energy Power Systems, Inc. | Polarized gas separator and liquid coalescer for fuel cell stack assemblies |
US7005210B2 (en) | 2000-09-26 | 2006-02-28 | The Texas A&M University System | Flow fields for fuel cells |
EP1309026A1 (fr) * | 2001-10-30 | 2003-05-07 | Ballard Power Systems AG | Pile à combustible et unité d'entrainement intégrées |
WO2003083982A2 (fr) * | 2002-03-22 | 2003-10-09 | Richards Engineering | Systeme de generation de puissance possedant des modules de piles a combustible |
WO2003083982A3 (fr) * | 2002-03-22 | 2003-12-04 | Richards Engineering | Systeme de generation de puissance possedant des modules de piles a combustible |
WO2004025769A2 (fr) * | 2002-09-12 | 2004-03-25 | Nuvera Fuel Cells Europe S.R.L. | Generateur electrochimique a membrane |
WO2004025769A3 (fr) * | 2002-09-12 | 2005-03-24 | Nuvera Fuel Cells Europ Srl | Generateur electrochimique a membrane |
US7005209B1 (en) | 2002-10-04 | 2006-02-28 | The Texas A&M University System | Fuel cell stack assembly |
US7001687B1 (en) | 2002-10-04 | 2006-02-21 | The Texas A&M University System | Unitized MEA assemblies and methods for making same |
US7695846B2 (en) | 2002-11-18 | 2010-04-13 | Protonex Technology Corporation | Membrane based electrochemical cell stacks |
WO2004077590A2 (fr) * | 2003-02-27 | 2004-09-10 | Protonex Technology Corporation | Piles de cellules electrochimiques a membranes a collecteurs exterieurs |
US7052796B2 (en) * | 2003-02-27 | 2006-05-30 | Protonex Technology Corporation | Externally manifolded membrane based electrochemical cell stacks |
AU2004216063B2 (en) * | 2003-02-27 | 2009-02-19 | Protonex Technology Corporation | Externally manifolded membrane based electrochemical cell stacks |
WO2004077590A3 (fr) * | 2003-02-27 | 2005-06-23 | Protonex Technology Corp | Piles de cellules electrochimiques a membranes a collecteurs exterieurs |
EP1494306A1 (fr) * | 2003-06-24 | 2005-01-05 | Matsushita Electric Industrial Co., Ltd. | Pile à combustible et batterie de piles à combustible |
EP1677378A1 (fr) * | 2003-06-24 | 2006-07-05 | Matsushita Electric Industrial Co., Ltd. | Pile à combustible et batterie de piles à combustible |
US8105731B2 (en) | 2003-10-03 | 2012-01-31 | Honda Motor Co., Ltd. | Fuel cell system |
DE102004047944B4 (de) * | 2003-10-03 | 2009-04-09 | Honda Motor Co., Ltd. | Brennstoffzellensystem |
US7648793B2 (en) | 2003-10-03 | 2010-01-19 | Honda Motor Co., Ltd. | Fuel cell system comprising an assembly manifold having a connection block |
US7879507B2 (en) | 2006-04-10 | 2011-02-01 | Protonex Technology Corporation | Insert-molded, externally manifolded, one-shot sealed membrane based electrochemical cell stacks |
US7914947B2 (en) | 2006-04-10 | 2011-03-29 | Protonex Technology Corporation | Insert-molded, externally manifolded, sealed membrane based electrochemical cell stacks |
US7887974B2 (en) | 2006-04-10 | 2011-02-15 | Protonex Technology Corporation | Insert-molded, externally manifolded, sealed membrane based electrochemical cell stacks |
US8124292B2 (en) | 2007-06-28 | 2012-02-28 | Protonex Technology Corporation | Fuel cell stacks and methods |
US8580457B2 (en) | 2007-06-28 | 2013-11-12 | Protonex Technology Corporation | Fuel cell stack sealed with encapsulating material and method of making the same |
US8697298B2 (en) * | 2008-08-01 | 2014-04-15 | Toyota Boshoku Kabushiki Kaisha | Fuel cell system with heater |
US20110091784A1 (en) * | 2009-10-16 | 2011-04-21 | Toyota Boshoku Kabushiki Kaisha | Fuel cell system |
US8835071B2 (en) * | 2009-10-16 | 2014-09-16 | Toyota Boshoku Kabushiki Kaisha | Fuel cell system including oxidation gas supply pipe integrated with coolant supply pipe |
US11276872B2 (en) * | 2014-03-28 | 2022-03-15 | Honda Motor Co., Ltd. | Fuel cell stack |
CN113036203A (zh) * | 2019-12-24 | 2021-06-25 | 未势能源科技有限公司 | 用于燃料电池的集成式歧管、燃料电池及交通工具 |
CN113036203B (zh) * | 2019-12-24 | 2022-11-25 | 未势能源科技有限公司 | 用于燃料电池的集成式歧管、燃料电池及交通工具 |
Also Published As
Publication number | Publication date |
---|---|
AU4294596A (en) | 1996-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5514487A (en) | Edge manifold assembly for an electrochemical fuel cell stack | |
US5382478A (en) | Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section | |
WO1996020509A1 (fr) | Ensemble collecteur externe integre destine a un empilement de cellules electrochimiques | |
EP1070361B1 (fr) | Ensemble pile a combustible du type a membrane d'echange de protons dote de sous-empilages de pile a combustible paralleles multiples utilisant des ensembles de plaques d'ecoulement de fluide partages et des ensembles d'electrodes a membrane partages | |
US5486430A (en) | Internal fluid manifold assembly for an electrochemical fuel cell stack array | |
US5252410A (en) | Lightweight fuel cell membrane electrode assembly with integral reactant flow passages | |
AU773563B2 (en) | Fuel cell and bipolar plate for use with same | |
AU687211B2 (en) | Electrochemical fuel cell stack with concurrently flowing coolant and oxidant streams | |
US5484666A (en) | Electrochemical fuel cell stack with compression mechanism extending through interior manifold headers | |
EP0736226B1 (fr) | Cellule electrochimique dans laquelle l'air ambiant est utilise comme oxydant et refrigerant | |
EP1935046B1 (fr) | Cellule electrochimique modifiee a systemes internes d'humidification et/ou de regulation de temperature | |
WO1995028010A1 (fr) | Empilement de piles a combustible comprenant un mecanisme de compression compact central | |
JPH06338332A (ja) | 固体高分子電解質燃料電池用ガスセパレータ | |
KR20090037671A (ko) | 연료전지 | |
CA2146332C (fr) | Electrode a membrane legere a passages de reactif pour cellule a combustible | |
JPH06338333A (ja) | 固体高分子電解質燃料電池用ガスセパレータ | |
EP1146584A2 (fr) | Ensemble électrodes-membrane pour cellule électrochimique de faible poids, avec passages pour flux de reactifs intégrés |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |