WO1996020498A1 - Oxide film, formation method thereof, and semiconductor device - Google Patents
Oxide film, formation method thereof, and semiconductor device Download PDFInfo
- Publication number
- WO1996020498A1 WO1996020498A1 PCT/JP1995/002730 JP9502730W WO9620498A1 WO 1996020498 A1 WO1996020498 A1 WO 1996020498A1 JP 9502730 W JP9502730 W JP 9502730W WO 9620498 A1 WO9620498 A1 WO 9620498A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxide film
- substrate
- ultrapure water
- forming
- cleaning
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 230000015572 biosynthetic process Effects 0.000 title abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 239000000126 substance Substances 0.000 claims description 76
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 50
- 239000012498 ultrapure water Substances 0.000 claims description 50
- 239000012535 impurity Substances 0.000 claims description 24
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 20
- 239000011261 inert gas Substances 0.000 claims description 16
- 230000003647 oxidation Effects 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 10
- 239000012298 atmosphere Substances 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 7
- 239000005416 organic matter Substances 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 16
- 229910052710 silicon Inorganic materials 0.000 abstract description 16
- 239000010703 silicon Substances 0.000 abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 abstract description 8
- 238000011109 contamination Methods 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 230000010354 integration Effects 0.000 abstract 1
- 238000004140 cleaning Methods 0.000 description 47
- 239000000243 solution Substances 0.000 description 43
- 235000012431 wafers Nutrition 0.000 description 28
- 239000007788 liquid Substances 0.000 description 19
- 230000000694 effects Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 238000007654 immersion Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000003749 cleanliness Effects 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- -1 argon ion Chemical class 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- SWXQKHHHCFXQJF-UHFFFAOYSA-N azane;hydrogen peroxide Chemical compound [NH4+].[O-]O SWXQKHHHCFXQJF-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- CABDFQZZWFMZOD-UHFFFAOYSA-N hydrogen peroxide;hydrochloride Chemical compound Cl.OO CABDFQZZWFMZOD-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02052—Wet cleaning only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/0223—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
- H01L21/02233—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
Definitions
- the present invention relates to an oxide film, a method for forming the same, and a semiconductor device. More particularly, the present invention relates to a method for removing an organic impurity attached to a semiconductor substrate or the like and forming an oxide film having excellent characteristics such as extremely high withstand voltage. Background art
- Cleaning of silicon wafers in the semiconductor manufacturing process is one of the most important steps in the semiconductor production process. That is, a large number of various impurities are attached to a silicon wafer, and removal of these impurities is indispensable for manufacturing a device having stable characteristics with a high yield. In particular, as semiconductor devices become more highly integrated and have higher performance, the devices are becoming finer and the wafer size is becoming larger.
- the inventor of the present invention has conducted a series of studies on the relationship between the cleaning method and the device manufactured thereafter, and in the course of conducting a series of studies, it has been impossible to completely remove organic impurities on the substrate by the conventional cleaning method. We saw that it had a large effect on the dielectric strength of the oxide film. For example currently commonly used for the removal of organic impurities, H 2 S 0 4 + H 9 0. + Ultra pure water cleaning, NH 4 OH + H n 0 2 + Ultra pure water cleaning, HC 1 + H 2 ⁇ 2 + Ultra pure water cleaning, etc. It has been found that a cleaning method that can completely remove organic substances is necessary for formation.
- the conventional cleaning method a separate cleaning device or cleaning tank is used for each chemical solution, and the silicon wafer is immersed in the cleaning tank in which each chemical solution and ultrapure water are stored sequentially.
- the residual chemical solution is brought into the wafer in the process, and there is a problem that the chemical solution in the cleaning tank is cross-contaminated.
- transporting between cleaning tanks transports them into the atmosphere, which results in organic contamination from the air and formation of natural oxide films.
- the contaminated chemical solution is used more than once and a plurality of silicon wafers are washed at the same time, there is a problem that impurities released from one silicon wafer adhere to other silicon wafers.
- the present invention solves the above problems, and provides an oxide film having excellent performance such as withstand voltage on a clean silicon wafer surface free from organic contamination, and a method for forming the oxide film. It is intended to provide a device. Disclosure of the invention
- the method for forming an oxide film according to the present invention comprises the steps of: removing an organic substance attached to a substrate by supplying ultrapure water containing ozone to the substrate while rotating the substrate in an inert gas atmosphere; An oxide film removing step of contacting the oxide film generated in the organic substance removing step with hydrofluoric acid to remove the oxide film, and then contacting the ozone-containing ultrapure water to form an oxide film. , At least.
- the oxide film forming step it is preferable to supply the ultrapure water containing ozone while rotating the substrate.
- the concentration of ozone in the ultrapure water is preferably 2 ppm to 10 ppm, and the concentration of organic impurities in the inert gas is preferably 1 ppm or less.
- the rotation speed of the substrate is preferably set to 100 to 300 rpm, and the supply amount of the ozone-containing ultrapure water is preferably set to 100 to 500 cc Zmin. No.
- the oxide film of the present invention is an oxide film formed on the surface of a substrate in a liquid phase.
- the interface between the substrate and the oxide film and the organic matter in the oxide film have a number of CH 2 groups of 2 in terms of arachidic acid. X 10 14 cm— 2 or less.
- the semiconductor device of the present invention has an oxide film formed by a thermal oxidation method or an ion-assisted oxidation method after forming an oxide film by the above-described oxide film forming method. I do. Action
- the method of forming an oxide film according to the present invention is performed in an inert gas atmosphere, and includes at least a step of washing and removing organic impurities with ozone-added ultrapure water, a step of removing an oxide film with HF + ultrapure water, and an oxidation with ozone-added ultrapure water.
- a film forming step includes at least a step of washing and removing organic impurities with ozone-added ultrapure water, a step of removing an oxide film with HF + ultrapure water, and an oxidation with ozone-added ultrapure water.
- the ozone-added ultrapure water is supplied to the substrate surface while rotating the substrate, and the organic matter on the surface is oxidized by the ozone-added ultrapure water. At this time, an oxide film is simultaneously formed on the substrate surface. Then rinse with ultrapure water (or ultrapure water with ozone added) to wash away impurities.
- an oxide film is formed by bringing a clean substrate surface from which organic impurities have been removed into contact with ozone-added ultrapure water.
- the thickness of this oxide film is preferably from 0.3 to 1.0 nm.
- the substrate may be immersed in each chemical solution, but it is preferable to perform the treatment by supplying the chemical solution while rotating the substrate. As a result, the substrate is always in contact with a fresh chemical solution, and the processing proceeds uniformly within the surface of the substrate, so that an oxide film having higher insulating properties can be formed. It is preferable that the rotation speed of the substrate is controlled to an optimum rotation speed for each step.
- the substrate is spun dry to complete the process. So far, all steps are preferably performed continuously in a single vessel.
- the inert gas flowing downflow in the closed vessel it is preferable to keep the inert gas flowing downflow in the closed vessel.
- an inert gas atmosphere it is possible to prevent the substrate surface from being exposed to impurity components, and to prevent adhesion of organic substances and formation of a natural oxide film.
- a natural oxide film is formed after the oxide film stripping step, the oxide film formed by the ozone-added ultrapure water and the subsequent heat treatment becomes non-uniform, so that the insulating properties deteriorate.
- minute roughness of the surface increases, and the quality of the oxide film formed by ozone-added ultrapure water and subsequent heat treatment is degraded. Therefore, it is desirable to minimize the formation of a natural oxide film.
- the presence of water alone does not cause the formation of a natural oxide film due to the presence of oxygen alone, and both water and oxygen are generated in parallel. Therefore, if the atmosphere is an inert gas atmosphere, formation of a natural oxide film can be prevented.
- the content of oxygen in the inert gas is preferably 1 O ppb or less, more preferably 10 ppb or less, and most preferably 1 ppb or less.
- the amount of organic impurities in the gas is preferably 1 ppb or less, more preferably 1 O ppt or less, and most preferably 1 ppt or less. Nitrogen gas is preferred as such an inert gas.
- the pressure in the closed vessel becomes higher than the external pressure.
- the pressure in the closed tank is made higher than that of the outside, it is possible to prevent the air from leaking into the closed tank, and it is possible to more effectively prevent the adhesion of organic substances and the formation of a natural oxide film.
- the introduction of the inert gas into the closed tank is preferably performed in a downflow manner.
- the product detached from the surface falls down along the flow of the gas, so that re-adhesion to the substrate can be prevented, so that cleaning with higher cleanliness can be performed.
- the inert gas preferably has a flow rate that does not disturb the chemical solution layer formed on the surface of the substrate.
- the concentration of ozone in the ozone-added ultrapure water is preferably 2 ppm to 10 ppm. If it is less than 2 ppm, the oxidation of organic substances may be insufficient.If it exceeds 1 O ppm, the thickness of the oxide film formed on the substrate surface will be too thick, and it will take time to remove it and increase the surface roughness. This is because in some cases,
- the concentration of ozone in the ozone-added ultrapure water is preferably 2 ppm to 1 O ppm. Within this range, an oxide film with a high withstand voltage can be obtained, and the maximum injected charge Q BD increases even in the TDDB characteristics of the oxide film under constant current stress.
- the ozone-added ultrapure water can be obtained by, for example, electrolyzing ultrapure water. In order to minimize the decrease in concentration due to the decomposition of ozone, it is preferable to manufacture it near the use point.
- the supply of a chemical solution or ultrapure water is not discontinuous in order to supply a chemical solution or the like while rotating the substrate, and to efficiently and uniformly remove organic substances, remove an oxide film, and form an oxide film. It is preferable to perform the operation continuously as a fluid. In other words, it is important to supply the chemical solution or ultrapure water continuously, not absolutely, in a state where it comes out of the water tap.
- a nozzle for producing the above continuous flow it is preferable to use a straight pipe type having a uniform inner diameter up to the liquid outlet. And it is preferable to arrange so that the surface of the liquid outlet is horizontal to the substrate. If such a nozzle is used, the chemical solution or ultrapure water flowing out of the outlet will fall directly below the outlet as a continuous fluid, and the drop point will be the center of rotation of the substrate, The dropped chemical solution spreads uniformly in the plane due to centrifugal force, so it is possible to perform uniform cleaning in the plane. In other words, the outlet is restricted In such a case, the chemical solution discharged from the liquid discharge surface becomes a mist and cannot supply a continuous fluid. In addition, when the liquid discharge surface is not horizontal, the amount of the chemical liquid differs from the liquid discharge port, or the chemical liquid does not drop directly below the liquid discharge port, so that it is impossible to supply the liquid uniformly over the surface.
- the supply position of the chemical solution be the center of rotation of the substrate from the viewpoint of further improving in-plane uniformity.
- a plurality of chemical solution washing steps may be appropriately performed in addition to the above steps.
- the transfer since the transfer can be performed in the same tank, it is possible to prevent the adhesion of organic substances, the formation of a natural oxide film, the adhesion of particles, and the like by contact with the air during the transfer of the substrate.
- the number of rotations of the substrate is an important factor for the degree of cleanliness and the uniformity of the oxide film, and is preferably 100 to 300 rpm, and preferably 250 to 300 rpm. More preferably, it is set to pm.
- the supply amount of the chemical is preferably from 100 m1 / min to 500 m1Zmin, more preferably from 300 ml / min to 500 ml / min. Since the treatment itself is completed in a short time, the amount of chemical used even at a large flow rate is greatly reduced compared to the conventional method.
- the supply amount of ultrapure water varies depending on the surface area of the substrate, in the case of a wafer having a diameter of 3 inches to 8 inches, 2.5 to 10 cc of ultrapure water is applied to the surface of the substrate. Preferably it is supplied.
- pure water cannot be completely covered on the surface if it is less than 2.5 cc, and if it exceeds 10 cc, only a part of ultrapure water flows and one If a channel is formed and the chemical solution is subsequently supplied, the chemical solution will flow preferentially through the flow channel and uniform cleaning will not be possible.
- the rotation speed is less than 100 rpm, it may not be possible to cover the entire surface with water. That is, a drying part may be partially generated.
- the rotation speed exceeds 400 rpm, a part of the water striking layer formed on the surface may be destroyed. May be confused.
- the chemical solution is scattered from the surface by centrifugal force, and the scattered chemical solution adheres to the inner wall of the cleaning tank, and the chemical solution attached to the inner wall may separate from the inner wall and re-attach to the substrate surface. Therefore, during the chemical solution cleaning step and the ultrapure water cleaning step, it is preferable to always wash the inner wall surface of the tank with ultrapure water and to wash out the adhered chemical liquid from the inner wall surface in order to perform highly clean cleaning. As a result, secondary contamination of the substrate by the contaminated chemical solution is prevented, and a clean substrate surface is obtained.
- FIG. 1 is a perspective view of an apparatus suitable for forming an oxide film according to the present invention.
- FIG. 2 is a graph showing the residual amount of organic impurities after washing.
- FIG. 3 is a graph showing the effect of removing the surfactant.
- FIG. 4 is a graph showing the change in the amount of organic impurities attached when left in a clean room.
- a nozzle rack that bundles multiple chemical supply nozzles, 4 Backside cleaning nozzle,
- FIG. 1 shows an oxide film forming apparatus used in this example.
- 1 is a closed tank body
- 2 is a lid
- 3 is a nozzle rack in which a plurality of chemical solution supply nozzles are bundled
- 4 is a back surface cleaning nozzle
- 5 is a rotating wafer holder
- 6 is a rotating motor
- 7 is a non-rotating motor.
- the active gas inlet, 8 is a waste liquid outlet
- 9 is a silicon wafer.
- Nitrogen gas (purity: 99.99999%) is introduced from the inert gas inlet 7 in FIG. 1, a 6-inch silicon wafer 15 is set on the wafer holder 4, and the lid 2 is closed. 2.5 to 10 cc ultrapure water was supplied from the first nozzle of the nozzle rack 3 to the surface of the nozzle, and rotated at 300 rpm to uniformly wet the surface of the nozzle. This improves wettability and smoothes other processes.
- ozone-added ultrapure water (2 ppm) was supplied from the second nozzle at 300 cc / min for 3 minutes to oxidize organic substances on the surface.
- the ozone of the second nozzle was stopped, rinsed with ultrapure water, and ozone-added ultrapure water and impurities were washed and flown.
- a 0.5% aqueous solution of hydrofluoric acid was supplied from the third nozzle at 300 cc Zmin for 2 minutes to remove the oxide film on the surface, and then from the first nozzle. Ultrapure water was supplied, and the chemicals and impurities were washed and flushed.
- the wafer was dried by spinning at 3000 rpm.
- the same chemical solution as for the front surface cleaning was constantly supplied from the back surface cleaning nozzle 3 toward the back surface, and the back surface was also cleaned at the same time.
- the oxide film was peeled off with a 0.5% hydrofluoric acid aqueous solution. At this stage, the amount of organic substances adhering to the silicon surface was measured.
- the cleaning method was as follows: (1) Batch cleaning by immersion using ammonia-hydrogen peroxide ultrapure water (0.05: 1: 5) at 80-90 ° C; (2) 80-90.
- Figure 2 shows the ATR spectrum of the substrate surface after cleaning the silicon wafer by the above-mentioned cleaning method.
- the scale of the vertical axis in FIG. 2 the film Langmuir-Buroje' preparative method Arakijin cadmium or scan Teariruamin, band intensity on a monomolecular film on a silicon wafer obtained by forming various areas, CH 2 stretching vibration And a calibration curve for the amount of adhesion was created, and the amount of organic impurities attached was determined from this.
- the organic substance removal effect of ozone-added ultrapure water has a superior cleaning effect compared to other chemicals, and the effect is further improved by spin cleaning, and the organic matter is completely removed.
- each of the ATRs was immersed in an aqueous solution of (a) a cationic, (b) anionic, and (c) a nonionic surfactant, and washed with each method. It is a spectrum.
- the numbers (4) to (6) in the figure correspond to the numbers of the cleaning method in FIG. As shown in FIG. 3, it can be seen that the cleaning of this example has an excellent effect even on organic impurities such as a surfactant.
- an oxide film was formed in a liquid in the same manner as in Example 1, and then the oxide film was formed at a low substrate temperature of 450 ° C in a plasma of a mixed gas of Ar and oxygen gas (300: 8).
- a gate oxide film (7 nm) was grown by an argon ion-assisted oxidation method for growing a GaN film, and a MOS diode was fabricated in the same manner as in Example 1.
- a bias was applied so that the energy of 7 Lugon ions was 9 eV.
- a conventional MOS diode was fabricated in the same manner.
- Table 2 shows the breakdown voltage of the gate oxide film of the fabricated MOS diode.
- the numbers of the chemicals correspond to those in Table 1, and for reference, the oxide film formed directly by the ion assist acid method without forming an oxide film in the solution is shown as (Reference Example).
- the gate oxide film of this example has a high withstand voltage, despite the growth of the oxide film at a low temperature, and greatly improves the reliability of the ultra-thin oxide film. You. That is, according to the present invention, a low-temperature process of a semiconductor device can be realized.
- the breakdown voltage of the gate oxide film is improved by more than twice by forming the oxide film in the solution before the ion assisted oxidation.
- the wafer was set in the ion-assisted oxidizing apparatus by being transported through the N 2 gas seal. This is to prevent organic impurities from adhering to the surface again by transporting in the air, as organic substances adhere to the surface just by leaving the wafer in the clean room as shown in Fig. 4. .
- the characteristics of an oxide film of a silicon wafer can be significantly improved, and an oxide film with high characteristics can be formed even in a low-temperature process, so that higher performance and higher performance can be achieved.
- An integrated semiconductor device can be realized.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Formation Of Insulating Films (AREA)
Abstract
A method of forming an oxide film having high dielectric strength on a clean silicon wafer surface free from organic contamination. This method is applicable to manufacture of a semiconductor device having high integration density and high performance. The formation method comprises the steps of supplying ozonized ultrahigh-purity water to a rotating substrate so as to remove organic matters from the substrate, bringing the oxide film generated in the preceding step into contact with hydrofluoric acid to separate it, and bringing the substrate into contact with ozonized ultrahigh-purity water to form an oxide film.
Description
明細書 酸化膜及びその形成方法、 並びに半導体装置 技術分野 Description Oxide film and method for forming the same, and semiconductor device
本発明は、 酸化膜及びその形成方法、 並びに半導体装置に係わり、 特に半導体 基板などに付着した有機不純物を除去し、 極めて絶縁耐圧等の特性の優れた酸化 膜を形成する方法に関する。 背景技術 The present invention relates to an oxide film, a method for forming the same, and a semiconductor device. More particularly, the present invention relates to a method for removing an organic impurity attached to a semiconductor substrate or the like and forming an oxide film having excellent characteristics such as extremely high withstand voltage. Background art
背景技術を、 基体としてシリコンウェハを例にとって説明する。 The background art will be described using a silicon wafer as an example of a base.
半導体製造プロセスにおけるシリコンウェハの洗浄は、 半導体の生産工程の中 で最も重要な工程の一つである。 すなわち、 シリコンウェハ上には多数の種々の 不純物が付着しており、 これら不純物の除去は、 安定した特性の素子を歩留まり 良く製造するためには必要不可欠である。 特に、 半導体デバイスの高集積化、 高 性能化にともない、 デバイスの微細化、 ウェハサイズの大口径化が進む中で、 そ の重要性は益々高くなつている。 Cleaning of silicon wafers in the semiconductor manufacturing process is one of the most important steps in the semiconductor production process. That is, a large number of various impurities are attached to a silicon wafer, and removal of these impurities is indispensable for manufacturing a device having stable characteristics with a high yield. In particular, as semiconductor devices become more highly integrated and have higher performance, the devices are becoming finer and the wafer size is becoming larger.
これらの不純物を除去する方法として、 種々の薬液を用 t、た洗浄がある。 As a method for removing these impurities, there are various chemical solutions and washing.
本発明者は、 洗浄方法とその後に作製したデバイスの関係について、 一連の研 究を行う過程で、 従来の洗浄方法では基板上の有機不純物を完全に取り去ること はできず、 残留した有機不純物が酸化膜の絶縁耐圧に大きく影饗することを見 L、 出した。 例えば現在、 有機不純物の除去に一般的に用いられる、 H2 S 04 + H90。 +超純水洗浄、 N H 4 O H + Hn 02 +超純水洗浄、 H C 1 + H2〇2 +超純 水洗浄等では、 洗浄後にも有機物が残留し、 より高耐圧の酸化膜を形成するには 有機物を完全に除去できる洗浄方法が必要であることが分かった。 The inventor of the present invention has conducted a series of studies on the relationship between the cleaning method and the device manufactured thereafter, and in the course of conducting a series of studies, it has been impossible to completely remove organic impurities on the substrate by the conventional cleaning method. We saw that it had a large effect on the dielectric strength of the oxide film. For example currently commonly used for the removal of organic impurities, H 2 S 0 4 + H 9 0. + Ultra pure water cleaning, NH 4 OH + H n 0 2 + Ultra pure water cleaning, HC 1 + H 2 〇 2 + Ultra pure water cleaning, etc. It has been found that a cleaning method that can completely remove organic substances is necessary for formation.
一方、 従来の洗浄方法には、 薬液別に独立した洗浄装置または洗浄槽を用い、 シリコンウェハを、 それぞれの薬液 ·超純水が貯蔵された洗浄槽に順次浸漬する ことによって行われるために、 前工程におけるウェハ上への残存薬液の持ち込み が避けられず、 洗浄槽中の薬液の相互汚染が生じるという問題がある。
また、 洗浄槽間の移送時に大気中を搬送するために、 大気からの有機物汚染や 自然酸化膜の生成を招いてしまう。 さらに、 汚染された薬液を複数回使用するこ とや複数のシリコンゥヱハを同時に洗浄するため、 一つのシリコンウェハから離 脱した不純物が他のシリコンウェハに付着してしまうという問題がある。 On the other hand, in the conventional cleaning method, a separate cleaning device or cleaning tank is used for each chemical solution, and the silicon wafer is immersed in the cleaning tank in which each chemical solution and ultrapure water are stored sequentially. Inevitably, the residual chemical solution is brought into the wafer in the process, and there is a problem that the chemical solution in the cleaning tank is cross-contaminated. In addition, transporting between cleaning tanks transports them into the atmosphere, which results in organic contamination from the air and formation of natural oxide films. Furthermore, since the contaminated chemical solution is used more than once and a plurality of silicon wafers are washed at the same time, there is a problem that impurities released from one silicon wafer adhere to other silicon wafers.
更にこれらの薬液は多量に用いるため廃液処理等の問題があり、 また高温処理 であるため操作性が悪く、 クリーンルームへの負荷が大きくなるという問題があ 。 Furthermore, since these chemicals are used in a large amount, there is a problem of waste liquid treatment and the like, and because of high temperature treatment, operability is poor and a load on a clean room is increased.
本発明は、 上記問題点を解決し、 有機物汚染のない清浄なシリコンウェハ表面 に絶縁耐圧等の性能に優れた酸化膜及びその形成方法を提供し、 さらには、 高集 積、 高性能の半導体装置を提供することを目的とする。 発明の開示 The present invention solves the above problems, and provides an oxide film having excellent performance such as withstand voltage on a clean silicon wafer surface free from organic contamination, and a method for forming the oxide film. It is intended to provide a device. Disclosure of the invention
本発明の酸化膜形成方法は、 不活性ガス雰囲気中で、 基体を回転しながらォゾ ンを含む超純水を基体に供給することにより基体に付着した有機物を除去する有 機物除去工程と、 該有機物除去工程で生成する酸化膜をフッ化水素酸と接触させ て剥離する酸化膜剥離工程と、 その後にオゾンを含む超純水と接触させて酸化膜 を形成する酸化膜形成工程とを、 少なくとも含むことを特徴とする。 The method for forming an oxide film according to the present invention comprises the steps of: removing an organic substance attached to a substrate by supplying ultrapure water containing ozone to the substrate while rotating the substrate in an inert gas atmosphere; An oxide film removing step of contacting the oxide film generated in the organic substance removing step with hydrofluoric acid to remove the oxide film, and then contacting the ozone-containing ultrapure water to form an oxide film. , At least.
前記酸化膜形成工程において、 オゾンを含む超純水を基体を回転させながら供 給するのが好ましい。 In the oxide film forming step, it is preferable to supply the ultrapure water containing ozone while rotating the substrate.
前記超純水中のオゾン濃度は 2 p p m〜l 0 p p mとするのが好ましく、 前記 不活性ガス中の有機不純物濃度は、 1 P P b以下であるのが好ましい。 The concentration of ozone in the ultrapure water is preferably 2 ppm to 10 ppm, and the concentration of organic impurities in the inert gas is preferably 1 ppm or less.
また、 前記基体の回転数を 1 0 0〜3 0 0 0 r p mとするの力好ましく、 前記 オゾンを含む超純水の供給量を 1 0 0〜5 0 0 c c Zm i nとするのが好まし い。 The rotation speed of the substrate is preferably set to 100 to 300 rpm, and the supply amount of the ozone-containing ultrapure water is preferably set to 100 to 500 cc Zmin. No.
本発明の酸化膜は、 液相中で基体表面に形成した酸化膜であって、 該基体と酸 化膜との界面及び酸化膜中の有機物は、 ァラキジン酸換算で C H2基の数が 2 X 1 0 14 c m—2以下であることを特徴とする。 The oxide film of the present invention is an oxide film formed on the surface of a substrate in a liquid phase. The interface between the substrate and the oxide film and the organic matter in the oxide film have a number of CH 2 groups of 2 in terms of arachidic acid. X 10 14 cm— 2 or less.
本発明の半導体装置は、 上記の酸化膜形成方法により酸化膜を形成後、 熱酸化 法あるいはイオンアシスト酸化法により成長させた酸化膜を有することを特徴と
する。 作用 The semiconductor device of the present invention has an oxide film formed by a thermal oxidation method or an ion-assisted oxidation method after forming an oxide film by the above-described oxide film forming method. I do. Action
以下に本発明の作用を実施態様例と共に説明する。 Hereinafter, the operation of the present invention will be described together with embodiments.
本発明の酸化膜形成方法は、 不活性ガス雰囲気中で行われ、 少なくともオゾン 添加超純水による有機不純物洗浄除去工程、 H F +超純水による酸化膜剥離ェ 程、 オゾン添加超純水による酸化膜形成工程、 を含む。 The method of forming an oxide film according to the present invention is performed in an inert gas atmosphere, and includes at least a step of washing and removing organic impurities with ozone-added ultrapure water, a step of removing an oxide film with HF + ultrapure water, and an oxidation with ozone-added ultrapure water. A film forming step.
即ち、 有機不純物除去工程では、 基体を回転させながら基体表面にオゾン添加 超純水を供給し、 表面の有機物をオゾン添加超純水で酸化させる。 この時、 同時 に基体表面に酸化膜力、'形成される。 その後超純水 (あるいはオゾン添加超純水) でリンスし不純物を洗い流す。 That is, in the organic impurity removing step, the ozone-added ultrapure water is supplied to the substrate surface while rotating the substrate, and the organic matter on the surface is oxidized by the ozone-added ultrapure water. At this time, an oxide film is simultaneously formed on the substrate surface. Then rinse with ultrapure water (or ultrapure water with ozone added) to wash away impurities.
酸化膜剥離工程では、 表面に生成した酸化膜をフッ化水素酸の超純水希釈液 In the oxide film stripping process, the oxide film formed on the surface
( 0. 1〜1 %程度) と接触させて剥離し、 超純水でリンスして薬液及び不純物 を洗い流す。 (Approximately 0.1% to 1%), peel off, rinse with ultrapure water and wash away chemicals and impurities.
酸化膜形成工程では、 有機不純物を除去した清浄な基体表面をオゾン添加超純 水と接触させて、 酸化膜を形成する。 この酸化膜の厚さは、 0. 3〜1 . O n m が好ましい。 In the oxide film forming step, an oxide film is formed by bringing a clean substrate surface from which organic impurities have been removed into contact with ozone-added ultrapure water. The thickness of this oxide film is preferably from 0.3 to 1.0 nm.
なお、 酸化膜剥離工程及び酸化膜形成工程では、 それぞれの薬液に浸潰させて も良いが、 基体を回転しながら薬液を供給して処理するのが好ましい。 これによ り、 基体は常にフレツシュな薬液と接触し、 基体面内で均一に処理が進むため、 より絶縁体性の高い酸化膜が形成できる。 なお、 基体回転数は、 各工程に最適の 回転数に制御することが好ましい。 In the oxide film removing step and the oxide film forming step, the substrate may be immersed in each chemical solution, but it is preferable to perform the treatment by supplying the chemical solution while rotating the substrate. As a result, the substrate is always in contact with a fresh chemical solution, and the processing proceeds uniformly within the surface of the substrate, so that an oxide film having higher insulating properties can be formed. It is preferable that the rotation speed of the substrate is controlled to an optimum rotation speed for each step.
最後に、 基体を回転乾燥させて工程を終了する。 ここまで、 全ての工程は単一 槽内で連続して行われるのが好ましい。 Finally, the substrate is spun dry to complete the process. So far, all steps are preferably performed continuously in a single vessel.
以下に酸化膜の膜質に影響する要因を個別に説明する。 The factors affecting the quality of the oxide film will be described below individually.
(不活性ガス雰囲気) (Inert gas atmosphere)
本発明では、 密閉槽内に不活性ガスをダウンフローで流し続けることが好まし い。 不活性ガス雰囲気とすることにより、 基体表面が不純物成分に暴露されるの を防止し、 有機物の付着、 自然酸化膜の形成を防止することができる。
酸化膜剥離工程後に、 自然酸化膜が生成するとオゾン添加超純水およびその後 の熱処理等により形成される酸化膜は不均一となるため絶縁特性が低下する。 ま た、 自然酸化膜が生成すると表面の微小な荒れが増加し、 オゾン添加超純水およ びその後の熱処理等により形成される酸化膜の膜質が劣化する。 従って、 自然酸 化膜の生成を極力防ぐのが望ましい。 In the present invention, it is preferable to keep the inert gas flowing downflow in the closed vessel. By using an inert gas atmosphere, it is possible to prevent the substrate surface from being exposed to impurity components, and to prevent adhesion of organic substances and formation of a natural oxide film. If a natural oxide film is formed after the oxide film stripping step, the oxide film formed by the ozone-added ultrapure water and the subsequent heat treatment becomes non-uniform, so that the insulating properties deteriorate. In addition, when a natural oxide film is formed, minute roughness of the surface increases, and the quality of the oxide film formed by ozone-added ultrapure water and subsequent heat treatment is degraded. Therefore, it is desirable to minimize the formation of a natural oxide film.
自然酸化膜の形成には、 水分単独ある t、は酸素単独の存在によっては自然酸化 膜の形成は生ぜず、 水分と酸素の両者が並存して生成する。 従って、 雰囲気を不 活性ガス雰囲気とすれば自然酸化膜の形成を防止することができる。 かかる観点 から、 不活性ガス中における酸素の含有量は、 1 O O p p b以下とすることが好 ましく、 1 0 p p b以下とすることがより好ましく、 l p p b以下とすることが 最も好ましい。 また、 ガス中の有機不純物量は、 1 p p b以下とすることが好ま しく、 1 O p p t以下とすることがより好ましく、 1 p p t以下とすることが最 も好ましい。 このような、 不活性ガスとしては、 窒素ガスが好ましい。 In the formation of a natural oxide film, the presence of water alone does not cause the formation of a natural oxide film due to the presence of oxygen alone, and both water and oxygen are generated in parallel. Therefore, if the atmosphere is an inert gas atmosphere, formation of a natural oxide film can be prevented. From this viewpoint, the content of oxygen in the inert gas is preferably 1 O ppb or less, more preferably 10 ppb or less, and most preferably 1 ppb or less. Further, the amount of organic impurities in the gas is preferably 1 ppb or less, more preferably 1 O ppt or less, and most preferably 1 ppt or less. Nitrogen gas is preferred as such an inert gas.
また、 密閉槽内の圧力を外部圧力より高めになるように、 気体を導入すること が好ましい。 密閉槽内の圧力を外部より高くなるようにすると、 大気の密閉槽内 への漏れを防止することができ、 有機物付着、 自然酸化膜生成をより一層効果的 に防止することができる。 Further, it is preferable to introduce a gas so that the pressure in the closed vessel becomes higher than the external pressure. When the pressure in the closed tank is made higher than that of the outside, it is possible to prevent the air from leaking into the closed tank, and it is possible to more effectively prevent the adhesion of organic substances and the formation of a natural oxide film.
不活性ガスの密閉槽内への導入は、 ダウンフローとすることが好ましい。 ダウ ンフローとした場合、 表面から離脱した生成物はガスの流れに沿って下方に落下 するため基体への再付着を防止することができ、 より清浄度の高い洗浄を行うこ とができる。 The introduction of the inert gas into the closed tank is preferably performed in a downflow manner. In the case of the down flow, the product detached from the surface falls down along the flow of the gas, so that re-adhesion to the substrate can be prevented, so that cleaning with higher cleanliness can be performed.
なお、 不活性ガスは、 基体表面に形成される薬液層を乱してしまわない程度の 流速とすることが好ましい。 The inert gas preferably has a flow rate that does not disturb the chemical solution layer formed on the surface of the substrate.
(オゾンを含む超純水) (Ultra pure water containing ozone)
有機物除去工程に用いる場合、 オゾン添加超純水中のオゾンの濃度は 2 p p m〜l 0 p p mとすること力く好ましい。 2 p p m未満では有機物の酸化が 不十分となる場合があり、 1 O p p mを超えると、 基体表面に形成される酸化膜 の厚みが厚くなりすぎ、 その除去に時間を要するとともに表面粗度の増加を招 t、 てしまう場合があるからである。
酸化膜形成工程に用いる場合、 オゾン添加超純水中のオゾンの濃度は 2 p p m 〜1 O p p mとすること力好ましい。 この範囲で、 絶縁耐圧の高い酸化膜が得ら れるとともに、 定電流ストレス下における酸化膜の T D D B特性にお t、ても最大 注入電荷量 QBDが増加する。 When used in the organic matter removal step, the concentration of ozone in the ozone-added ultrapure water is preferably 2 ppm to 10 ppm. If it is less than 2 ppm, the oxidation of organic substances may be insufficient.If it exceeds 1 O ppm, the thickness of the oxide film formed on the substrate surface will be too thick, and it will take time to remove it and increase the surface roughness. This is because in some cases, When used in the oxide film forming step, the concentration of ozone in the ozone-added ultrapure water is preferably 2 ppm to 1 O ppm. Within this range, an oxide film with a high withstand voltage can be obtained, and the maximum injected charge Q BD increases even in the TDDB characteristics of the oxide film under constant current stress.
オゾン添加超純水は、 例えば超純水を電気分解して得ることができる。 なお、 オゾンの分解による '濃度低下を最小限に抑えるため、 ユースボイント最近傍で作 製するのが好ましい。 The ozone-added ultrapure water can be obtained by, for example, electrolyzing ultrapure water. In order to minimize the decrease in concentration due to the decomposition of ozone, it is preferable to manufacture it near the use point.
(オゾンを含む超純水等薬液の供給及び基体回転) (Supply of chemical solution such as ultrapure water containing ozone and substrate rotation)
本発明において、 基体を回転しながら薬液等を供給し、 有機物除去、 酸化膜剥 離、 酸化膜形成を効率的且つ均一に行うにためは、 薬液あるいは超純水の供給は 不連続ではなく、 流体として連続して行うこと力好ましい。 即ち、 薬液あるいは 超純水を、 断铳的にではなく、 水道の蛇口から出てくるような状態で連続的に供 給することが重要である。 In the present invention, the supply of a chemical solution or ultrapure water is not discontinuous in order to supply a chemical solution or the like while rotating the substrate, and to efficiently and uniformly remove organic substances, remove an oxide film, and form an oxide film. It is preferable to perform the operation continuously as a fluid. In other words, it is important to supply the chemical solution or ultrapure water continuously, not absolutely, in a state where it comes out of the water tap.
この理由は明かではないが、 例えば有機物除去の場合は次のようなものではな いかと考えられる。 即ち、 連铳的な薬液流の供給により薬液が基体の表面に供給 されると、 薬液は、 遠心力のため半径方向に広がり表面を被覆し、 表面のコンタ ミネーション源と反応して反応生成物を生成する。 この反応生成物は遠心力によ り薬液とともに表面から即座に除去され、 新たな表面が露出する。 一方、 薬液は 連続的に供給されるので、 新たに露出した基体の表面と新鮮な薬液とが反応す る。 このように、 絶えず新たな表面と新鲜な薬液との接触が生じているため優れ た清浄度で洗浄を行うことができると考えられる。 一方、 噴射供給の場合には、 薬液は噴霧状で供給されるため基体の表面を均一には覆わず、 そのため清浄化度 の高 t、洗浄が達成できないものと推測される。 The reason for this is not clear, but for example, in the case of organic matter removal, the following may be considered. That is, when the chemical solution is supplied to the surface of the base by continuous supply of the chemical solution, the chemical solution spreads in the radial direction due to centrifugal force and covers the surface, and reacts with the surface contamination source to form a reaction. Generate things. The reaction product is immediately removed from the surface together with the drug solution by centrifugal force, exposing a new surface. On the other hand, since the chemical is supplied continuously, the freshly exposed substrate surface reacts with the fresh chemical. As described above, it is considered that the cleaning can be performed with excellent cleanliness because the new surface is constantly in contact with the new chemical solution. On the other hand, in the case of injection supply, the chemical is supplied in the form of a spray, so that the surface of the substrate is not evenly covered. Therefore, it is presumed that high cleanliness and cleaning cannot be achieved.
以上の連続流をつくり出すノズルとしては、 内径が出液口まで均一な直管型を 用いること力好ましい。 そして、 出液口の面を基体に対し水平になるように配置 することが好ましい。 かかるノズルを用いた場合、 出液口から流出する薬液ある いは超純水は、 出液口直下にそのまま連铳流体として落下し、 落下点が基体の回 転中心となるようにすれば、 落下した薬液は遠心力により面内均一に広がるため 面内均一な洗浄を行うことが可能となる。 つまり、 出液口が絞られているような
場合は、 出液面から出た薬液は霧状となり連続流体の供給ができなくなる。 ま た、 出液面が水平でない場合には、 出液口から薬液の量が異なったり、 出液口直 下に薬液が落下せず、 面内均一な薬液の供給ができなくなる。 As a nozzle for producing the above continuous flow, it is preferable to use a straight pipe type having a uniform inner diameter up to the liquid outlet. And it is preferable to arrange so that the surface of the liquid outlet is horizontal to the substrate. If such a nozzle is used, the chemical solution or ultrapure water flowing out of the outlet will fall directly below the outlet as a continuous fluid, and the drop point will be the center of rotation of the substrate, The dropped chemical solution spreads uniformly in the plane due to centrifugal force, so it is possible to perform uniform cleaning in the plane. In other words, the outlet is restricted In such a case, the chemical solution discharged from the liquid discharge surface becomes a mist and cannot supply a continuous fluid. In addition, when the liquid discharge surface is not horizontal, the amount of the chemical liquid differs from the liquid discharge port, or the chemical liquid does not drop directly below the liquid discharge port, so that it is impossible to supply the liquid uniformly over the surface.
なお、 薬液の供袷位置は基体の回転中心とすることがより面内均一性を高める 点で好ましい。 In addition, it is preferable that the supply position of the chemical solution be the center of rotation of the substrate from the viewpoint of further improving in-plane uniformity.
また、 本発明では、 上記工程の他に複数の薬液洗浄工程を適宜行っても良い。 この場合、 同一の槽内で行うことができるため、 基体の移送時における大気との 接触により、 有機物の付着、 自然酸化膜の生成、 粒子の付着等を防止できる。 本発明において、 基体の回転数は清浄化度、 酸化膜の均一性にとって重要なフ アクターであり、 1 0 0〜3 0 0 0 r pmとすることが好ましく、 2 5 00〜 3 0 00 r pmとすることがより好ましい。 In the present invention, a plurality of chemical solution washing steps may be appropriately performed in addition to the above steps. In this case, since the transfer can be performed in the same tank, it is possible to prevent the adhesion of organic substances, the formation of a natural oxide film, the adhesion of particles, and the like by contact with the air during the transfer of the substrate. In the present invention, the number of rotations of the substrate is an important factor for the degree of cleanliness and the uniformity of the oxide film, and is preferably 100 to 300 rpm, and preferably 250 to 300 rpm. More preferably, it is set to pm.
1 00 r pm未満では、 薬液の量が少ないと表面全体を薬液で覆うことができ ず、 乾燥部の発生を招いてしまい、 洗浄、 剥離及び酸化膜形成効率の低下を招く ことがある。 また、 薬液量が多いと薬液は遠心力による広がりを起こす前にあふ れる感じで表面から流れてしまうことがある。 従って、 l O O r pm未満では最 適の薬液供給量に制御することが困難となる。 If it is less than 100 rpm, if the amount of the chemical solution is small, the entire surface cannot be covered with the chemical solution, which may result in the generation of a dry portion, which may lead to a decrease in cleaning, peeling and oxide film formation efficiency. In addition, when the amount of the chemical is large, the chemical may overflow from the surface with a feeling of overflow before spreading due to centrifugal force. Therefore, it is difficult to control the supply amount of the chemical solution to an optimum amount below l O O rpm.
3 000 r pmを超えると、 薬液の一部はミス卜状となり、 このミスト状の薬 液は槽の内壁にぶっかり基体の表面に再付着してせっかくきれいに洗浄された表 面を汚染してしまうことがある。 If it exceeds 3 000 rpm, a part of the chemical liquid becomes mist-like, and this mist-like chemical collides with the inner wall of the tank and re-adheres to the surface of the substrate, contaminating the surface that has been thoroughly cleaned. Sometimes.
薬液の供給量は、 1 0 0 m 1 /m i n〜5 0 0 m 1 Zm i nが好ましく、 300m l /m i n〜 500m l /m i nがより好ましい。 処理自体は短時間に 終了するため、 大流量でも使用薬液量は従来の方法と比べても大幅に減少する。 The supply amount of the chemical is preferably from 100 m1 / min to 500 m1Zmin, more preferably from 300 ml / min to 500 ml / min. Since the treatment itself is completed in a short time, the amount of chemical used even at a large flow rate is greatly reduced compared to the conventional method.
(打ち水工程) (Immersion process)
本発明では、 薬液処理を行う前に、 基体の回転数を 1 00〜400 r pmとし て打ち水を行うことが好ましい。 また、 超純水の供給量は、 基体の表面積によつ ても変化はするが、 3インチ〜 8インチ径のウェハの場合は、 2. 5〜1 0 c c の超純水を基体表面に供給することが好ましい。 In the present invention, it is preferable to perform water spraying at a rotation speed of the substrate of 100 to 400 rpm before performing the chemical treatment. Although the supply amount of ultrapure water varies depending on the surface area of the substrate, in the case of a wafer having a diameter of 3 inches to 8 inches, 2.5 to 10 cc of ultrapure water is applied to the surface of the substrate. Preferably it is supplied.
すなわち、 2. 5 c c未満では表面を完全には純水が被覆することができず、 また、 1 0 c cを超えると、 ある一部の超純水のみが流れその流れた跡に一つの
流路が形成されてしまい、 その後薬液供給を行うと、 その流路に優先的に薬液が 流れ均一な洗浄ができなくなつてしまう。 In other words, pure water cannot be completely covered on the surface if it is less than 2.5 cc, and if it exceeds 10 cc, only a part of ultrapure water flows and one If a channel is formed and the chemical solution is subsequently supplied, the chemical solution will flow preferentially through the flow channel and uniform cleaning will not be possible.
一方、 回転数が 1 0 0 r p m未満では、 表面全体を打ち水で覆うことができな い場合が生じる。 すなわち、 乾燥部が一部に生じることがある。 一方、 4 0 0 r p mを超えると、 表面に形成された打ち水層の一部が破壊されてしまう 場合があり、 その破壊された部分に優先的に薬液が流入し面内不均一な洗浄が行 われてしまう場合がある。 On the other hand, if the rotation speed is less than 100 rpm, it may not be possible to cover the entire surface with water. That is, a drying part may be partially generated. On the other hand, if the rotation speed exceeds 400 rpm, a part of the water striking layer formed on the surface may be destroyed. May be confused.
(裏面洗浄) (Backside cleaning)
基体の表面に薬液を供給するとともに、 裏面に薬液を噴射して供給することが 好ましい。 基体表面から薬液が回り込む場合もあり、 裏面の洗浄が不均一となる 場合があるためである。 It is preferable to supply the chemical solution to the front surface of the substrate and to spray and supply the chemical solution to the back surface. This is because the chemical solution may flow around from the surface of the substrate, and the cleaning of the back surface may be uneven.
(内壁面洗浄) (Inner wall cleaning)
回転洗浄の場合、 遠心力により表面から薬液が飛散するが、 この飛散した薬液 は洗浄槽内壁に付着し、 内壁に付着した薬液が内壁から離脱して基体表面に再付 着することがある。 そこで、 薬液洗浄工程中及び超純水洗浄工程中に、 槽の内壁 面を超純水により常時洗浄し、 付着薬液を内壁面から洗い出すことがより高清浄 な洗浄を行う上で好ましい。 これにより、 汚染された薬液による基体への二次汚 染を防止し清浄な基体表面が得られる。 図面の簡単な説明 In the case of rotary cleaning, the chemical solution is scattered from the surface by centrifugal force, and the scattered chemical solution adheres to the inner wall of the cleaning tank, and the chemical solution attached to the inner wall may separate from the inner wall and re-attach to the substrate surface. Therefore, during the chemical solution cleaning step and the ultrapure water cleaning step, it is preferable to always wash the inner wall surface of the tank with ultrapure water and to wash out the adhered chemical liquid from the inner wall surface in order to perform highly clean cleaning. As a result, secondary contamination of the substrate by the contaminated chemical solution is prevented, and a clean substrate surface is obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の酸化膜形成に好適な装置の射視図である。 FIG. 1 is a perspective view of an apparatus suitable for forming an oxide film according to the present invention.
図 2は、 洗浄後の有機不純物の残留量を示すグラフである。 FIG. 2 is a graph showing the residual amount of organic impurities after washing.
図 3は、 界面活性剤の除去効果を示すグラフである。 FIG. 3 is a graph showing the effect of removing the surfactant.
図 4は、 クリーンルーム中に放置した場合の有機不純物の付着量の変化を示す グラフである。 FIG. 4 is a graph showing the change in the amount of organic impurities attached when left in a clean room.
(符号の説明) (Explanation of code)
1 密閉槽本体、 1 Closed tank body,
2 蓋、 2 lids,
3 複数の薬液供給ノズルを束ねたノズルラック、
4 裏面洗浄用ノズル、 3 A nozzle rack that bundles multiple chemical supply nozzles, 4 Backside cleaning nozzle,
5 回転ウェハ保持台、 5 rotating wafer holder,
6 回転モーター、 6 rotating motor,
7 不活性ガス導入口、 7 Inert gas inlet,
8 廃液口、 8 Waste liquid outlet,
9 シリコンウェハ。 発明を実施するための最良の形態 9 Silicon wafer. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.
(実施例 1 ) (Example 1)
本実施例で用いた酸化膜形成装置を図 1に示す。 図 1において、 1は密閉槽本 体、 2は蓋、 3は複数の薬液供給ノズルを束ねたノズルラック、 4は裏面洗浄用 ノズル、 5は回転ウェハ保持台、 6は回転モーター、 7は不活性ガス導入口、 8 は廃液口、 9はシリコンウェハである。 FIG. 1 shows an oxide film forming apparatus used in this example. In FIG. 1, 1 is a closed tank body, 2 is a lid, 3 is a nozzle rack in which a plurality of chemical solution supply nozzles are bundled, 4 is a back surface cleaning nozzle, 5 is a rotating wafer holder, 6 is a rotating motor, and 7 is a non-rotating motor. The active gas inlet, 8 is a waste liquid outlet, and 9 is a silicon wafer.
図 1の不活性ガス導入口 7から窒素ガス (純度 99. 9999%) を導入して おき、 6インチシリコンウェハ 15をウェハ保持台 4にセッ卜して、 蓋 2を閉め る。 ノズルラック 3の第 1ノズルからゥヱハ表面に 2. 5〜1 0 c c超純水を供 給し、 300 r pmで回転させゥヱハ表面を均一に濡らした。 これにより濡れ性 が向上し、 他工程がスムーズになる。 Nitrogen gas (purity: 99.99999%) is introduced from the inert gas inlet 7 in FIG. 1, a 6-inch silicon wafer 15 is set on the wafer holder 4, and the lid 2 is closed. 2.5 to 10 cc ultrapure water was supplied from the first nozzle of the nozzle rack 3 to the surface of the nozzle, and rotated at 300 rpm to uniformly wet the surface of the nozzle. This improves wettability and smoothes other processes.
続いて、 基板回転数 3000 r pmで、 第 2ノズルよりオゾン添加超純水 (2 ppm) を 300 c c/mi nで 3分間供給し表面の有機物を酸化させ、 同 時にウエノ、表面に酸化膜を形成した後、 第 2ノズルのォゾンを止めて超純水でリ ンスし、 オゾン添加超純水及び不純物を洗 t、流した。 Subsequently, at a substrate rotation speed of 3000 rpm, ozone-added ultrapure water (2 ppm) was supplied from the second nozzle at 300 cc / min for 3 minutes to oxidize organic substances on the surface. After the formation of ozone, the ozone of the second nozzle was stopped, rinsed with ultrapure water, and ozone-added ultrapure water and impurities were washed and flown.
次に、 基板回転数 3000 r pmで、 第 3ノズルから 0. 5%フッ化水素酸水 溶液を 300 c c Zm i nで 2分間供給し、 表面の酸化膜を剥離した後、 第 1ノ ズルから超純水を供給し、 薬液及び不純物を洗 L、流した。 Next, at a substrate rotation speed of 3000 rpm, a 0.5% aqueous solution of hydrofluoric acid was supplied from the third nozzle at 300 cc Zmin for 2 minutes to remove the oxide film on the surface, and then from the first nozzle. Ultrapure water was supplied, and the chemicals and impurities were washed and flushed.
次に、 基板回転数 3000 r pmで、 第 2ノズルよりオゾン添加超純水を 500 c c/m i nで 3分間供給し、 ウェハ表面に酸化膜を 0. 6 nm形成し た。
6/20498 Next, at a substrate rotation speed of 3000 rpm, ozone-added ultrapure water was supplied from the second nozzle at 500 cc / min for 3 minutes to form an oxide film of 0.6 nm on the wafer surface. 6/20498
9 9
最後に、 3000 r pmで回転させ、 ウェハを乾燥した。 Finally, the wafer was dried by spinning at 3000 rpm.
これらの工程中は、 表面洗浄と同じ薬液を裏面に向かつて裏面洗浄ノズル 3よ り常時供給し裏面をも同時に洗浄した。 During these steps, the same chemical solution as for the front surface cleaning was constantly supplied from the back surface cleaning nozzle 3 toward the back surface, and the back surface was also cleaned at the same time.
まず、 本発明の洗浄方法及び従来の洗浄方法の有機物除去効果を比較するため に、 種々の方法で有機物除去洗浄を行った後、 0. 5%フッ化水素酸水溶液で酸 化膜を剥離した段階で、 シリコン表面に付着している有機物量を測定した。 なお、 洗浄方法として、 (1) 80〜 90°Cのアンモニア 過酸化水素ノ超純 水 (0. 05 : 1 : 5) を用いて浸演によるバッチ洗浄、 (2) 80〜90。Cの 塩酸 過酸化水素/超純水 ( 1 : 1 : 6) を用いて浸漬によるバッチ洗浄、 (3 ) 80〜90°Cの過酸化水素 (30%) を用いて浸潰によるバッチ洗浄、 (4) 80~90°Cの硫酸 過酸化水素 (4 : 1) を用いて浸潰によるバッチ洗 浄、 (5) オゾン添加超純水 (2 p pm) を用いて浸潰によるバッチ洗浄、 (6) 本実施例のスピンによる洗浄、 について行った。 First, in order to compare the organic substance removing effect of the cleaning method of the present invention and the conventional cleaning method, after performing organic substance removal cleaning by various methods, the oxide film was peeled off with a 0.5% hydrofluoric acid aqueous solution. At this stage, the amount of organic substances adhering to the silicon surface was measured. The cleaning method was as follows: (1) Batch cleaning by immersion using ammonia-hydrogen peroxide ultrapure water (0.05: 1: 5) at 80-90 ° C; (2) 80-90. Batch cleaning by immersion using C hydrochloric acid hydrogen peroxide / ultra pure water (1: 1: 6), (3) Batch cleaning by immersion using hydrogen peroxide (30%) at 80-90 ° C, (4) Batch cleaning by immersion using sulfuric acid and hydrogen peroxide (4: 1) at 80 to 90 ° C, (5) Batch cleaning by immersion using ultrapure water with ozone (2 ppm), (6) Washing by spinning of this example was performed.
シリコンゥェハを上記洗浄方法で洗浄した後の基板表面の A T Rスペクトルを 図 2に示す。 なお、 図 2の縦軸のスケールは、 ァラキジン酸カドミウムまたはス テアリルァミンの膜をラングミュア ·ブロジェッ ト法により、 シリコンウェハ上 に単分子膜を種々の面積形成したものについて、 CH2伸縮振動のバンド強度と 付着量の検量線を作成し、 これから有機不純物の付着量を求めたものである。 図 2から明らかなように、 オゾン添加超純水の有機物除去効果は、 他の薬液に 比べ優れた洗浄効果を有し、 さらにスピン洗浄することによりその効果は一層向 上し、 有機物を完全に除去できることが分かる。 これは、 オゾンが有機物分解除 去に優れていることを示すと共に、 スピン洗浄では、 清浄な窒素雰囲気中で洗浄 が行われること、 常にフレッシュな液が供給されること、 ウェハの高速回転に伴 う遠心力や高速液流等により、 除去効果が向上するものと考えられる。 Figure 2 shows the ATR spectrum of the substrate surface after cleaning the silicon wafer by the above-mentioned cleaning method. Incidentally, the scale of the vertical axis in FIG. 2, the film Langmuir-Buroje' preparative method Arakijin cadmium or scan Teariruamin, band intensity on a monomolecular film on a silicon wafer obtained by forming various areas, CH 2 stretching vibration And a calibration curve for the amount of adhesion was created, and the amount of organic impurities attached was determined from this. As is evident from Fig. 2, the organic substance removal effect of ozone-added ultrapure water has a superior cleaning effect compared to other chemicals, and the effect is further improved by spin cleaning, and the organic matter is completely removed. It can be seen that it can be removed. This indicates that ozone is excellent at removing organic matter, and that spin cleaning is performed in a clean nitrogen atmosphere, a fresh liquid is always supplied, and high-speed rotation of the wafer is required. It is considered that the removal effect is improved by centrifugal force and high-speed liquid flow.
次に、 3種類の界面活性剤をウェハに付着させ故意に汚染したウェハについ て、 同様な試験を行った。 結果を図 3に示す。 図 3において、 それぞれのスぺク トルは、 (a) カチオン性、 (b) ァニオン性、 (c) 非イオン性界面活性剤の 水溶液に浸漬した後、 それぞれの方法で洗浄した後の AT Rスぺク トルである。 なお、 図中の番号 (4) 〜 (6) は図 2の洗浄方法の番号と対応する。
図 3が示すように、 本実施例の洗浄は、 界面活性剤のような有機不純物に対し ても、 優れた効果があることが分かる。 Next, a similar test was performed on a wafer intentionally contaminated by attaching three kinds of surfactants to the wafer. The results are shown in Figure 3. In FIG. 3, each of the ATRs was immersed in an aqueous solution of (a) a cationic, (b) anionic, and (c) a nonionic surfactant, and washed with each method. It is a spectrum. The numbers (4) to (6) in the figure correspond to the numbers of the cleaning method in FIG. As shown in FIG. 3, it can be seen that the cleaning of this example has an excellent effect even on organic impurities such as a surfactant.
続いて、 上記オゾン添加超純水及び従来の薬液 (図 2の (1) 〜 (5) に対応 する薬液) で酸化膜を 0. 5〜0. 7nm形成した後、 1000°Cの酸化炉でド ライ酸化して 4. 8〜5. 3 nmまで酸化膜を成長させた。 その後、 1 x 10— 4 cm2の A 1電極を設けて MOSダイォードを作製し、 それぞれの絶縁耐圧を測 定した。 結果を表 1に示す。 なお、 表 1の平均絶縁耐圧とは、 電流が 1 X 10— 4 A流れる電圧値について、 100個の MOSダイォ一ドの平均値を示すもので あ 00 Then, after forming an oxide film of 0.5 to 0.7 nm using the above ozone-added ultrapure water and a conventional chemical solution (chemical solutions corresponding to (1) to (5) in Fig. 2), an oxidation furnace at 1000 ° C was used. Then, an oxide film was grown to 4.8 to 5.3 nm. Thereafter, to prepare a MOS Daiodo provided 1 x 10- 4 A 1 electrode cm 2, was boss measure the respective withstand voltage. Table 1 shows the results. Incidentally, the average dielectric strength of Table 1, the voltage value in which a current flows 1 X 10- 4 A, 100 pieces of MOS Daio 10 Ah shows the average value of the de-0
(表 1) (table 1)
1平均絶縁耐圧 1 11.3 10.4 12.0 12.2 12.5 14.8 1 Average dielectric strength 1 11.3 10.4 12.0 12.2 12.5 14.8
1 (MV/cm) 表 1が示すように、 本実施例のゲート酸化膜 (6) は極めて高い絶縁耐圧を 示すことが分かる。 また、 図 2との関係から、 ウェハ上の残留有機不純物の汚染 力 \ 後に形成されるゲ一ト酸化膜の絶縁耐圧の劣化に大きく影響していることが 分かる。 1 (MV / cm) As shown in Table 1, it can be seen that the gate oxide film (6) of this example has an extremely high withstand voltage. Also, from the relationship with FIG. 2, it can be seen that the influence of the residual organic impurities on the wafer greatly affects the deterioration of the withstand voltage of the gate oxide film formed after the contamination.
また、 一定ストレス電流下における TDDB特性の測定から、 最大注入電荷量 QBDは、 本実施例のゲート酸化膜 (6) が最も大きな値となることが分かった。 Also, from the measurement of the TDDB characteristics under a constant stress current, it was found that the maximum injected charge Q BD was the largest for the gate oxide film (6) of the present example.
(実施例 2) (Example 2)
本実施例においては、 実施例 1と同様にして液中で酸化膜を形成した後、 Ar と酸素ガス (300 : 8) の混合ガスのプラズマ中で、 基板温度 450°Cの低温 で酸化膜を成長させるアルゴンイオンアシスト酸化法により、 ゲー卜酸化膜 (7 nm) を成長させ、 実施例 1と同様にして MOSダイオードを作製した。 7 ルゴンイオンのエネルギーは 9 e Vとなるようにバイアスを印加した。 また、 従 来の MOSダイォードについても、 同様にして作製した。
作製した M O Sダイォ一ドのゲ一ト酸化膜の絶縁耐圧を表 2に示す。 薬液の番 号は表 1と対応しており、 また参考のため液中で酸化膜を形成しないで直接ィォ ンアシスト酸ィヒ法で酸化膜を形成したものを (参考例) として示した。 In this example, an oxide film was formed in a liquid in the same manner as in Example 1, and then the oxide film was formed at a low substrate temperature of 450 ° C in a plasma of a mixed gas of Ar and oxygen gas (300: 8). A gate oxide film (7 nm) was grown by an argon ion-assisted oxidation method for growing a GaN film, and a MOS diode was fabricated in the same manner as in Example 1. A bias was applied so that the energy of 7 Lugon ions was 9 eV. A conventional MOS diode was fabricated in the same manner. Table 2 shows the breakdown voltage of the gate oxide film of the fabricated MOS diode. The numbers of the chemicals correspond to those in Table 1, and for reference, the oxide film formed directly by the ion assist acid method without forming an oxide film in the solution is shown as (Reference Example).
(表 2 ) (Table 2)
1 1
1 酸化膜形成方法 1 ( 4 ) ( 5 ) ( 6 ) 1参考例 1 1 Oxide film formation method 1 (4) (5) (6) 1 Reference example 1
1 1
1平均絶縁耐圧 1 6. 3 1 8. 1 10. 5 1 4. 9 1 1 Average dielectric strength 1 6. 3 1 8. 1 10. 5 1 4. 9 1
1 (M Y/ c m) 1 (MY / cm)
1 表 2から明らかなように、 本実施例のゲー卜酸化膜は低温での酸化膜成長であ るにもかかわらず、 高い絶縁耐圧が得られ、 極薄酸化膜の信頼性が大きく向上す る。 即ち、 本発明により半導体デバイスの低温プロセスを実現することが可能と なる。 1 As is evident from Table 2, the gate oxide film of this example has a high withstand voltage, despite the growth of the oxide film at a low temperature, and greatly improves the reliability of the ultra-thin oxide film. You. That is, according to the present invention, a low-temperature process of a semiconductor device can be realized.
また、 参考例との比較により、 イオンアシスト酸化前に液中で酸化膜を形成し ておくことにより、 ゲート酸化膜の耐圧は 2倍以上向上することが分かる。 以上の実施例においては、 液中で酸化膜を形成後、 イオンアシスト酸化装置へ のウェハの設置は N2ガスシール中を搬送して行った。 これは、 図 4に示すよう にウェハをクリーンルーム中に放置するだけで表面に有機物が付着するため、 大 気中を搬送することにより、 再び表面に有機不純物等が付着するのを防ぐためで あ 。 産業上の利用可能性 Also, by comparison with the reference example, it is found that the breakdown voltage of the gate oxide film is improved by more than twice by forming the oxide film in the solution before the ion assisted oxidation. In the above example, after the oxide film was formed in the liquid, the wafer was set in the ion-assisted oxidizing apparatus by being transported through the N 2 gas seal. This is to prevent organic impurities from adhering to the surface again by transporting in the air, as organic substances adhere to the surface just by leaving the wafer in the clean room as shown in Fig. 4. . Industrial applicability
本発明によれば、 例えばシリコンウェハの酸化膜を特性を大幅に改善すること が可能となり、 また低温プロセスにおいても高特性の酸化膜を形成することが可 能となるため、 より高性能、 高集積半導体デバイスを実現することができる。 また、 硫酸、 塩酸等を使用しなくて良いため廃液処理等が容易になるととも に、 完全な密閉系での工程であるため、 現場作業員の危険性も減少できる。
According to the present invention, for example, the characteristics of an oxide film of a silicon wafer can be significantly improved, and an oxide film with high characteristics can be formed even in a low-temperature process, so that higher performance and higher performance can be achieved. An integrated semiconductor device can be realized. In addition, since it is not necessary to use sulfuric acid, hydrochloric acid, etc., it is easy to treat waste liquid, etc., and since the process is performed in a completely closed system, the danger of field workers can be reduced.
Claims
1. 不活性ガス雰囲気中で、 基体を回転しながらオゾンを含む超純水を基体に 供給することにより基体に付着した有機物を除去する有機物除去工程と、 該有機 物除去工程で生成する酸化膜をフッ化水素酸と接触させて剥離する酸化膜剥離ェ 程と、 その後にオゾンを含む超純水と接触させて酸化膜を形成する酸化膜形成ェ 程とを、 少なくとも含むことを特徴とする酸化膜形成方法。 1. An organic substance removing step of removing organic substances attached to a substrate by supplying ultrapure water containing ozone to the substrate while rotating the substrate in an inert gas atmosphere; and an oxide film formed in the organic substance removing step. And an oxide film forming step of forming an oxide film by contacting with ultrapure water containing ozone thereafter. An oxide film forming method.
2. 前記酸化膜形成工程において、 オゾンを含む超純水を基体を回転させなが ら供給することを特徴とする請求項 1に記載の酸化膜形成方法。 2. The oxide film forming method according to claim 1, wherein in the oxide film forming step, ultrapure water containing ozone is supplied while rotating the substrate.
3. 前記超純水中のオゾン濃度は 2 p pm〜 1 0 p pmとすることを特徴とす る請求項 1または 2に記載の酸化膜形成方法。 3. The oxide film forming method according to claim 1, wherein the ozone concentration in the ultrapure water is 2 ppm to 10 ppm.
4. 前記基体の回転数を 1 00~3000 r pmとすることを特徴とする請求 項 1 ~ 3の Lヽずれか 1項に記載の酸化膜形成方法。 4. The method for forming an oxide film according to claim 1, wherein the number of rotations of the substrate is 100 to 3000 rpm.
5. 前記オゾンを含む超純水の供給量を 1 00~500 c cZmi nとするこ とを特徴とする請求項 1〜4のいずれか 1項に記載の酸化膜形成方法。 5. The method for forming an oxide film according to claim 1, wherein the supply amount of the ultrapure water containing ozone is 100 to 500 ccZmin.
6. 前記不活性ガス中の有機不純物'濃度は、 1 ppb以下であることを特徴と する請求項 1〜 5の L、ずれか 1項に記載の酸化膜形成方法。 6. The method according to claim 1, wherein the concentration of organic impurities in the inert gas is 1 ppb or less.
7. 前記不活性ガスは、 前記基体の上方からダウンフローで流すことを特徴と する請求項 1〜 6の! <、ずれか 1項に記載の酸化膜形成方法。 7. The method for forming an oxide film according to claim 1, wherein the inert gas is caused to flow in a down flow from above the substrate.
8. 前記酸化膜形成工程で形成される酸化膜の厚さは、 0. 3〜1. O nmで あることを特徴とする請求項 1〜7のいずれか 1項に記載の酸化膜形成方法。 8. The oxide film forming method according to claim 1, wherein the thickness of the oxide film formed in the oxide film forming step is 0.3 to 1. O nm. .
9. 液相中で基体表面に形成した酸化膜であって、 該基体と酸化膜との界面及 び酸化膜中の有機物量は、 ァラキジン酸力 ドミゥム換算で CH2基の数が 2 X 1 014 cm—2以下であることを特徴とする酸化膜。 A 9. oxide film formed on the substrate surface in a liquid phase, organic matter amount of the surface及beauty oxide film between said substrate and the oxide film, number 2 X 1 CH 2 group in Arakijin acid force Domiumu terms 0 14 cm—An oxide film characterized by being 2 or less.
1 0. 請求項 1〜8のいずれか 1項に記載の酸化膜形成方法により酸化膜を形 成後、 熱酸化法あるいはイオンアシスト酸化法により成長させた酸化膜を有する ことを特徴とする半導体装置。 10. A semiconductor having an oxide film formed by a thermal oxidation method or an ion-assisted oxidation method after forming an oxide film by the oxide film forming method according to any one of claims 1 to 8. apparatus.
1 1. 前記イオンアシスト酸化法の基体温度は 400〜450°Cであることを 特徴とする請求項 1 0に記載の半導体装置。
11. The semiconductor device according to claim 10, wherein a substrate temperature in the ion-assisted oxidation method is 400 to 450 ° C.
1 2. 前記成長させた酸化膜の厚さは 3〜1 Onmであることを特徴とする請 求項 1 0または 1 1に記載の半導体装置。
12. The semiconductor device according to claim 10, wherein the grown oxide film has a thickness of 3 to 1 Onm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32577194A JP3669728B2 (en) | 1994-12-27 | 1994-12-27 | Oxide film, method for forming the same, and semiconductor device |
JP6/325771 | 1994-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996020498A1 true WO1996020498A1 (en) | 1996-07-04 |
Family
ID=18180443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/002730 WO1996020498A1 (en) | 1994-12-27 | 1995-12-27 | Oxide film, formation method thereof, and semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3669728B2 (en) |
WO (1) | WO1996020498A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4181171A1 (en) * | 2021-11-12 | 2023-05-17 | Siltronic AG | Method for cleaning a semiconductor wafer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100677965B1 (en) * | 1999-11-01 | 2007-02-01 | 동경 엘렉트론 주식회사 | Substrate Processing Method and Substrate Processing Equipment |
JP4162211B2 (en) * | 2002-09-05 | 2008-10-08 | コバレントマテリアル株式会社 | Method for cleaning silicon wafer and cleaned silicon wafer |
JP4164324B2 (en) * | 2002-09-19 | 2008-10-15 | スパンション エルエルシー | Manufacturing method of semiconductor device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04354334A (en) * | 1991-05-31 | 1992-12-08 | Tadahiro Omi | Method and apparatus for cleaning |
JPH0529307A (en) * | 1991-07-23 | 1993-02-05 | Seiko Epson Corp | Ozone oxidation method |
JPH05283389A (en) * | 1992-03-31 | 1993-10-29 | Nec Corp | Method of cleaning semiconductor wafer |
JPH069300A (en) * | 1992-06-08 | 1994-01-18 | Nec Corp | Method for carrying out pre-treatment of substrate for crystal growth |
JPH06244174A (en) * | 1993-08-04 | 1994-09-02 | Tadahiro Omi | Formation of insulating oxide film |
JPH0714817A (en) * | 1993-06-22 | 1995-01-17 | Tadahiro Omi | Rotary chemical solution cleaning method and device |
-
1994
- 1994-12-27 JP JP32577194A patent/JP3669728B2/en not_active Expired - Fee Related
-
1995
- 1995-12-27 WO PCT/JP1995/002730 patent/WO1996020498A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04354334A (en) * | 1991-05-31 | 1992-12-08 | Tadahiro Omi | Method and apparatus for cleaning |
JPH0529307A (en) * | 1991-07-23 | 1993-02-05 | Seiko Epson Corp | Ozone oxidation method |
JPH05283389A (en) * | 1992-03-31 | 1993-10-29 | Nec Corp | Method of cleaning semiconductor wafer |
JPH069300A (en) * | 1992-06-08 | 1994-01-18 | Nec Corp | Method for carrying out pre-treatment of substrate for crystal growth |
JPH0714817A (en) * | 1993-06-22 | 1995-01-17 | Tadahiro Omi | Rotary chemical solution cleaning method and device |
JPH06244174A (en) * | 1993-08-04 | 1994-09-02 | Tadahiro Omi | Formation of insulating oxide film |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4181171A1 (en) * | 2021-11-12 | 2023-05-17 | Siltronic AG | Method for cleaning a semiconductor wafer |
WO2023083628A1 (en) * | 2021-11-12 | 2023-05-19 | Siltronic Ag | Method for cleaning a semiconductor wafer |
Also Published As
Publication number | Publication date |
---|---|
JP3669728B2 (en) | 2005-07-13 |
JPH08181137A (en) | 1996-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100353488C (en) | Method for producing semiconductor device and cleaning device for resist stripping | |
US6983756B2 (en) | Substrate treatment process and apparatus | |
JP4076365B2 (en) | Semiconductor cleaning equipment | |
JPH0837176A (en) | Hydrogen plasma downflow apparatus cleaning method and semiconductor device manufacturing method | |
KR100332507B1 (en) | Method for manufacturing semiconductor device including substrate processing process and substrate processing apparatus | |
US9230794B2 (en) | Process for cleaning, drying and hydrophilizing a semiconductor wafer | |
JP3535820B2 (en) | Substrate processing method and substrate processing apparatus | |
JP3526284B2 (en) | Substrate surface treatment method | |
WO1996020498A1 (en) | Oxide film, formation method thereof, and semiconductor device | |
JP3445765B2 (en) | Substrate surface treatment method for semiconductor element formation | |
US20020179112A1 (en) | Method of cleaning electronic device | |
JPH09171989A (en) | Wet etching of semiconductor substrate | |
JP2002261068A (en) | Device and method for substrate treatment | |
JP2001044429A (en) | Method and device for pre-process for forming gate insulating film | |
JP3595681B2 (en) | Manufacturing method of epitaxial wafer | |
JP2005252270A (en) | Oxide film, method for forming the same, and semiconductor device | |
JP4357456B2 (en) | Semiconductor substrate cleaning method | |
JPH10256216A (en) | Semiconductor device manufacturing method and semiconductor device manufacturing apparatus | |
JP2004140126A (en) | Method of drying semiconductor substrate after cleaning | |
US20040072707A1 (en) | Semiconductor substrate surface protection method | |
JP2001035824A (en) | Method of cleaning substrate and apparatus for cleaning substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |