+

WO1996017121A1 - Non-tisse en fibres longues etirees constituees de differents types de polymeres, et son procede de fabrication - Google Patents

Non-tisse en fibres longues etirees constituees de differents types de polymeres, et son procede de fabrication Download PDF

Info

Publication number
WO1996017121A1
WO1996017121A1 PCT/JP1995/002376 JP9502376W WO9617121A1 WO 1996017121 A1 WO1996017121 A1 WO 1996017121A1 JP 9502376 W JP9502376 W JP 9502376W WO 9617121 A1 WO9617121 A1 WO 9617121A1
Authority
WO
WIPO (PCT)
Prior art keywords
web
fiber
long
nonwoven fabric
filament
Prior art date
Application number
PCT/JP1995/002376
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Kurihara
Hiroshi Yazawa
Toshikazu Ohishi
Yoichi Mazawa
Yuki Kuroiwa
Shuichi Murakami
Sadayuki Ishiyama
Jun Yamada
Original Assignee
Polymer Processing Research Inst., Ltd.
Nippon Petrochemicals Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymer Processing Research Inst., Ltd., Nippon Petrochemicals Company, Limited filed Critical Polymer Processing Research Inst., Ltd.
Priority to EP95937161A priority Critical patent/EP0757127A4/en
Priority to US08/682,535 priority patent/US5840633A/en
Publication of WO1996017121A1 publication Critical patent/WO1996017121A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/018Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the shape
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3146Strand material is composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3146Strand material is composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/3154Sheath-core multicomponent strand material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/444Strand is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material

Definitions

  • the present invention relates to a nonwoven fabric comprising a drawn long fiber web in which a group of long fiber filaments formed of a plurality of polymers having different properties is drawn in a negative direction and arranged in one direction, and has strength, elongation, and adhesion.
  • the present invention relates to a nonwoven fabric capable of imparting various properties such as properties, bulkiness and the like, and a method for producing the same.
  • the present invention particularly relates to a stretched nonwoven fabric excellent in strength and bulkiness and a method for producing the same.
  • a stretched long-fiber web is combined with a stretched long-fiber web and a web having a different shrinkage and joined, and then the strength and bulkiness obtained by shrinking are increased. It relates to nonwoven fabrics and their manufacturing methods. Background art
  • bulky composite filaments are disclosed in Japanese Unexamined Patent Application Publication No. Heisei 4-24216 (short-fiber nonwoven fabric), Japanese Unexamined Patent Publication No. Heisei 2-182629 (spunbond nonwoven fabric), Japanese Unexamined Patent Application Publication No. H4-141762 (spun-bonded nonwoven fabric) and adhesive conjugate filaments are described in Japanese Unexamined Patent Application Publication No. 2-61156 (spunbond nonwoven fabric) and Japanese Unexamined Patent Publication No. H4-13.
  • Japanese Patent Publication No. 16608 spunbond nonwoven fabric
  • mixed filaments are disclosed in Japanese Patent Laid-Open No. 3-269154 (spunbond nonwoven fabric).
  • Japanese Patent Application Laid-Open No. Hei 4-316680 spunbond nonwoven fabric
  • Some of the above-mentioned conventional nonwoven fabrics include a mixture of a conjugation filament and a heterogeneous polymer filament. These are short-fiber nonwoven fabrics obtained by cutting conjugate filaments or different kinds of polymer filaments, and have excellent bulkiness but poor strength and dimensional stability. Conventionally, there are also long-fiber nonwoven fabrics such as spunbonded nonwoven fabrics and melt-blown nonwoven fabrics by conjugate spinning, but since they are not stretched, no shrinkage effect is exhibited, bulkiness is insufficient, and strength is low. Also, the dimensional stability is poor.
  • these conventional nonwoven fabrics lack a balance between bulkiness and strength as a single fiber (single filament) ⁇ strength as a whole nonwoven fabric, and have physical properties as an alternative to woven fabric. Not something.
  • conventional nonwoven fabrics generally have a low basis weight (for example, 20 g / m 2 or less), have poor uniformity, and have insufficient strength as described above, and are therefore equivalent to woven fabrics. It could not be used in fields where dimensional stability was required.
  • the feeling and softness of the nonwoven fabric may be insufficient.
  • the present inventors have invented a nonwoven fabric which is obtained by stretching a nonwoven fabric and appropriately laminating the same in order to improve the above-mentioned various drawbacks of the conventional nonwoven fabric (Japanese Patent Publication No. 3-369498, Japanese Patent Laid-Open No. — No. 269859, Japanese Unexamined Patent Application Publication No. 2-269980 / etc.).
  • Japanese Patent Publication No. 3-369498 Japanese Patent Laid-Open No. — No. 269859
  • Japanese Unexamined Patent Application Publication No. 2-269980 / etc. Japanese Unexamined Patent Application Publication No.
  • the present invention has such features as uniformity, texture, bulkiness, and thinness (thinness), as well as strength, so that it can not be developed with a conventional nonwoven fabric.
  • the objective is to develop nonwoven fabrics suitable for disposable clothing, base fabrics of synthetic leather and artificial leather.
  • Another object of the present invention is to provide a nonwoven fabric that has a large biaxial breaking work (described later) that cannot be seen with conventional nonwoven fabrics and woven fabrics, and is therefore thin and economical and can be used as packaging materials and civil engineering materials. I do.
  • nonwoven fabrics must be inexpensive and have a wide variety of applications, so it is necessary to use a production method suitable for high-mix low-volume production.
  • the conventional production method it has been difficult to produce a nonwoven fabric excellent in both strength and bulkiness at low cost. Therefore, there is a need for a method of solving the above-mentioned problems of strength, uniformity, and dimensional stability of the nonwoven fabric, and at the same time, achieving a higher degree of bulkiness and texture, which are the characteristics of the nonwoven fabric. It is desired that the production method be suitable for high-mix low-volume production without losing its low-priced characteristics.
  • FIG. 1 (A) to (I) are enlarged perspective views of a part of the conjugation filament.
  • FIG. 2 is a schematic diagram of a web made of crimped filaments;
  • Fig. 4 (A) is a cross-sectional view of a die used for the device shown in Fig. 3;
  • Fig. 4 (B) is a cross-sectional view of two types of polymer in the die (A).
  • FIG. 5 is a schematic side view showing an example of a melt-pro spinning apparatus;
  • FIG. 6 (A) is a longitudinal section showing an example of a die used in the apparatus of FIG. 5;
  • Fig. 6 (B) is a partially exploded perspective view of the die of (A);
  • FIG. 7 is a schematic side view showing an example of an apparatus for manufacturing a heterogeneous filament web for stretching
  • Fig. 8 (A ) Is a bottom view of an example of the dice used in the apparatus of FIG. 7
  • FIG. 8 (B) is a front sectional view of the tip of the die of (A)
  • FIG. 9 is a schematic side view showing an example of a hot emboss bonding apparatus
  • FIGS. 10 (A) to 10 (D) are plan views showing examples of emboss patterns used for hot emboss bonding.
  • FIG. 11 is a schematic side view showing an example of a through-air bonding apparatus
  • FIG. 12 (A) is a plan view of an apparatus that performs vertical and horizontal shrinkage simultaneously with through-air bonding
  • the present inventors have conducted intensive studies for the above purpose and as a result, have found that the problem can be solved by combining a plurality of polymers having different properties during spinning, and have completed the present invention.
  • the first invention of the present application is characterized in that a long fiber web composed of a long fiber filament group formed of a plurality of thermoplastic polymers having different properties is drawn, and the long fiber filament group is arranged in one direction as a whole.
  • the present invention relates to a stretched long-fiber nonwoven fabric made of a heterogeneous polymer, characterized in that the stretched long-fiber web is provided.
  • the second invention of the present application is the stretched long-fiber nonwoven fabric according to the first invention, wherein the long-fiber filament group has a strength in an arrangement direction of 1.5 g / d or more, which is made of a heterogeneous polymer. About.
  • the third invention of the present application is the heterogeneous polymer according to the first invention, wherein the long fiber filament group is a collection of conjugate filaments formed of a plurality of thermoplastic polymers having different properties.
  • a drawn long-fiber nonwoven fabric comprising:
  • the fourth invention of the present application relates to a drawn long-fiber nonwoven fabric made of a heterogeneous polymer, wherein the long-fiber filament group in the first invention is a mixture of a plurality of filaments having different properties. .
  • the fifth invention of the present application relates to the drawn long-fiber nonwoven fabric made of a heterogeneous polymer according to the first invention, further comprising another fiber web laminated on the drawn long-fiber web.
  • the fiber arrangement direction of the other fiber tube intersects with the arrangement direction of the long fiber filament group of the drawn long fiber web.
  • the seventh invention of the present application is the sixth invention, wherein the strength in each of the intersecting arrangement directions is 0.5 g Zd or more, the biaxial breaking work is 0.2 g / d or more, and the bulk density is O.
  • the present invention relates to a drawn long-fiber nonwoven fabric made of a heterogeneous polymer, which has a lg / cc or less.
  • the eighth invention of the present application is the invention according to the first invention, characterized in that at least a part of the filaments of the long iron filament group is crimped, -b-
  • the ninth invention of the present application is a step of producing a long fiber web formed of a group of long fiber filaments having substantially no molecular orientation from a plurality of thermoplastic polymers having different properties. And a method for producing a stretched long fiber web by stretching in the direction.
  • the tenth invention of the present application is the ninth invention, further comprising a step of shrinking the drawn continuous fiber web to generate a crimp, characterized in that the drawn continuous fiber comprises a heterogeneous polymer.
  • the present invention relates to a method for producing a nonwoven fabric.
  • the eleventh invention of the present application is the tenth invention, further comprising a step of laminating the drawn long fiber nibs after crimping and another arranged nonwoven fabric so that the arrangement directions intersect.
  • the present invention relates to a method for producing a drawn long-fiber nonwoven fabric made of a different kind of polymer.
  • the twelfth invention of the present application is the ninth invention according to the ninth invention, wherein the stretched long-fiber web and another arranged nonwoven fabric are laminated so that the arrangement directions intersect with each other, and then the shrinkage is performed by shrinking in at least one arrangement direction.
  • the present invention further relates to a method for producing a drawn long-fiber nonwoven fabric made of a heterogeneous polymer, further comprising a step of producing a nonwoven fabric.
  • the thirteenth invention of the present application is characterized in that, in the ninth invention, the long weave filament group is a set of conjugate filaments formed of a plurality of thermoplastic polymers having different properties.
  • the present invention relates to a method for producing a drawn long-fiber nonwoven fabric made of a different polymer.
  • a fifteenth invention of the present application is the method for producing a drawn long-fiber nonwoven fabric made of a heterogeneous polymer according to the ninth invention, wherein the long fiber filament group is a mixture of a plurality of filaments having different properties. About.
  • the fifteenth invention of the present application relates to a first web layer mainly composed of a crimped filament, and a filament of the first web layer laminated on the first web layer.
  • a second web layer mainly composed of stretched filament fibers that are not substantially crimped, have a strength in at least one direction of 0.5 g Zd or more, and have a bulk density of 0
  • the present invention relates to a drawn long-fiber nonwoven fabric made of a heterogeneous polymer, which is not more than 1 g Zcc. _ g _
  • the invention of the sixteenth aspect of the present invention includes a step of forming a laminated web by laminating the first and second webs having different shrinkages, and a step of joining the laminated web to form a joining layer. At the same time or after that, by crimping the bonded web to generate crimps.
  • the laminated web forming step according to the sixteenth invention comprises a long fiber filament having substantially no molecular orientation separately from different polymers having different shrinkage properties when stretched.
  • the eighteenth invention of the present application is the above-mentioned sixteenth invention, wherein the laminated web forming step comprises a long fiber filament having substantially no molecular orientation, each of which is made of a different polymer having different shrinkage properties when stretched.
  • a method for producing a drawn long-fiber nonwoven fabric made of a heterogeneous polymer made of a heterogeneous polymer.
  • the nineteenth invention of the present application is the heterogeneous polymer according to the sixteenth invention, characterized in that at least one of the first and second webs has rubber elastic stretching recovery performance in an unstretched state.
  • the present invention relates to a method for producing a drawn long-fiber nonwoven fabric made of one or more of
  • Polymers having different properties used in the present invention may be those having a slight difference in melting point, swelling degree, shrinkage after stretching, spontaneous extensibility, adhesiveness, and the like. By combining polymers having different properties, a nonwoven fabric can be obtained with a good feel. Unheated filaments, especially filaments of polyethylene terephthalate, may not be shrunk by heat treatment, but rather may be elongated. This is a phenomenon called spontaneous stretching.
  • Examples of the above-mentioned different polymers include polymers that belong to the same series and have different molecular weights, molecular weight distributions, branching degrees, sunsetness, and the like. _ _
  • Limers and blends can also be heterogeneous polymers. Also, by adding various additives and plasticizers, the polymer can be used as a heterogeneous polymer. It is also possible to use completely different polymer combinations such as boriamid and polyester. When a mixed filament is used as the different polymer, the different polymer may be spun from the same nozzle or may be spun from another nozzle.
  • the mixing ratio of other heterogeneous polymers is equal to or less than that of the basic polymer which can substantially become a strength member such as an orthogonal nonwoven fabric due to the occurrence of molecular orientation, and the proportion of the total polymer is 5% by weight or more. It is desirable that More preferably, it is at least 20% by weight.
  • heterogeneous polymers two types of polymers will be described as the heterogeneous polymers in order to avoid the complexity of the description, but more heterogeneous polymers can be combined.
  • the polymer serving as a strength member in the filament constituting the present invention include thermoplastic resins such as polyolefin resins such as polyethylene and polypropylene, polyesters, polyamides, polyvinyl chloride resins, polyurethanes, and fluorine resins. And their modified resins can be used.
  • those obtained by spinning a polyvinyl alcohol-based resin—a polyacrylonitrile-based resin or the like in a wet or dry manner can also be used.
  • an adhesive polymer When an adhesive polymer is used in the present invention, a resin having a melting point different from that of the above polymer, a modified resin of the above polymer, or a modified olefin resin such as an ethylene-vinyl acetate copolymer or an acid-modified polyolefin, Resins used as hot melt adhesives are used.
  • the “stretched long-fiber nonwoven fabric composed of different polymers” in the present invention means that a long-fiber web composed of a plurality of long-filament filaments formed of a plurality of thermoplastic polymers having different properties is stretched, and the long-filament filaments are entirely
  • This is a nonwoven fabric comprising drawn filaments arranged in one direction as described above.
  • the stretched filament filaments have substantially molecular orientation and have a strength per denier of at least 1. It is at least 5 g Zd, preferably at least 2.5 g Zd, more preferably at least 3 g. Even with ordinary nonwoven fabrics, those with a unidirectional strength of around 1 g Zd have a certain force ⁇ , while those with a good texture such as spunbond have low strength, _ g _
  • Tow-spread nonwoven fabric ⁇ flash spun nonwoven fabric has a certain strength in one direction. Flash spun nonwoven fabrics are also expensive.
  • long fiber filament refers to a fiber substantially consisting of filaments of long fibers. That is, unlike the short fibers of length 1 0-3 about 0 mm normally used, 1 0 O mm or more filaments Bok, may be those having the majority c Therefore, the nonwoven fabric in the final product However, a part cut in the middle of stretching may be included.
  • a long fiber tube which is “arranged as a whole in one direction” is a tube in which most of the long fiber filaments constituting the same are arranged in a certain direction in a plane thereof, and generally, are not arranged. It is obtained by stretching a stretching tube.
  • the following various spinning means can be used as a method for producing a long fiber web composed of a group of long fiber filaments and a nonwoven fabric using the same.
  • a soft and comfortable nonwoven fabric By incorporating filaments conjugated and spun so that the adhesive polymer layer is exposed on the surface of the drawn filament fiber filament, a soft and comfortable nonwoven fabric can be obtained (adhesive conduit type). ).
  • the polymer having a low melting point or an adhesive polymer By mixing and spinning different polymers including a polymer having a low melting point or an adhesive polymer from various nozzles, the polymer having a low melting point or a polymer having an adhesive property is melted and the orthogonal nonwoven fabric is integrally bonded, It is possible to obtain an orthogonal nonwoven fabric that is flexible and has a good texture (adhesive mixed filament type).
  • a soft, good-feature orthogonal non-woven fabric composed of a mixture with the above can be obtained (bulky mixed filament type).
  • the above spinning means 2, 5 or 6 can be carried out by combining a polymer which spontaneously expands by stretching and a normal polymer which becomes shrinkable by stretching. Since spontaneous stretching can be regarded as negative shrinkage, in the present invention, the spinning means 2, 5, and 6 using polymers having different shrinkage rates are included.
  • the method of the spinning means 6 is used in the method for producing a stretched long-fiber nonwoven fabric having excellent strength and bulkiness disclosed in the fifteenth invention of the present application (hereinafter, referred to as “bulk stretched long-fiber nonwoven fabric”). .
  • bulk stretched long-fiber nonwoven fabric having excellent strength and bulkiness disclosed in the fifteenth invention of the present application
  • Method B a method is used in which a plurality of long fibers having different properties which have already been drawn are combined, shrinked after joining.
  • the webs may have the same stretching direction (B-1) or different stretching directions (B-2).
  • method C there is a method in which a stretched long-fiber web is combined with another nonwoven fabric which is not a stretched long-fiber web, and then contracted after joining.
  • a stretched long fiber tube is used as at least one of a plurality of webs, and the shrinkage of the stretched long fiber is used.
  • a stretched long fiber web having a large shrinkage is combined with another web having a relatively small shrinkage, and the two are joined together and then shrunk, so that a web having a large shrinkage (hereinafter referred to as “shrink web”). Due to the shrinkage of the web, the web having a low shrinkage ratio (hereinafter referred to as “low shrinkage web”) is crimped and bulkiness is increased.
  • the difference in shrinkage between the two webs at the shrinking temperature is preferably at least 10% or more, more preferably 30% or more.
  • contraction can be caused not only by heat but also by the presence of a swelling agent such as water.
  • Webs with different contractility include those that expand spontaneously due to heating or the like, and the shrinkage in such cases is calculated as negative.
  • the shrinkable tube may be a drawn long-fiber nonwoven fabric.
  • the shrinkability is different from that of the shrinkable web, and a web made of a different polymer or a web made of the same polymer and having different stretching temperature conditions, stretching ratios, heat treatment conditions, and the like can be used.
  • Heterogeneous polymers include not only those with different chemical species but also those belonging to the same polymer species, including those with different melting points, molecular weights, molecular weight distributions, degree of branching, tacticity, etc., and various copolymers and blends To make a heterogeneous polymer Can be.
  • different polymers can be obtained by adding various additives or plasticizers. Completely different combinations are possible, such as polyamides and polyesters.
  • the difference in the orientation of the film due to stretching can be used.
  • a stretching method in which shrinkage lobes and low shrinkage lobes are arranged in different filaments is adopted.
  • high bulkiness cannot be obtained only by laminating the web in the vertical direction and the web in the horizontal direction.
  • the longitudinal web is a shrink web and the transverse web is a low shrink web, the transverse web will only have a reduced filament spacing and will not crimp. Therefore, it is necessary to adopt a laminated structure as shown in FIG. 13 (C) described later.
  • the low-shrink tube is another non-woven fabric, for example, a commercially available non-woven fabric such as a tow-spread non-woven fabric, a spun-bonded non-woven fabric, or a melt-blown non-woven fabric, it can be used as long as it has a different shrinkability from the shrinkable web.
  • a commercially available non-woven fabric such as a tow-spread non-woven fabric, a spun-bonded non-woven fabric, or a melt-blown non-woven fabric
  • a low shrinkage web is a web obtained by opening and widening a crimped filament tow.
  • the stuffing box method is generally adopted for crimping of filament tow.
  • a combination of curved bars is used for spreading and widening.
  • Japanese Patent Publication No. 46-43 32 75 and Japanese Patent Application No. 7-2 3 19 The method described in No. 04 is particularly desirable.
  • An effective means of providing a difference in web shrinkage is to combine a heat treated web with a non-heat treated web. That is, when producing a low shrinkage web, the web is subjected to a sufficient heat treatment.
  • heat treatment dry heat treatment and wet heat treatment are used depending on the type of web.
  • heat treatment methods there are a tension heat treatment and a shrink heat treatment, but the shrink heat treatment is most suitable for producing a low shrinkage web.
  • the basic polymer in the case of using the spinning means 6 is a drawn long fiber filament, and substantially molecular orientation occurs in a drawn state.
  • the strength as a filament is the same as that of a drawn long-fiber nonwoven fabric made of the different polymer. Similarly, it is at least 1.5 grams per denier, preferably 2.5 grams, and more preferably 3 grams or more.
  • the long fiber filament may be substantially a long fiber filament, and is different from a filament of about 10 to 30 millimeters used for ordinary nonwoven fabric, and is a filament of 100 millimeters or more. Should occupy the majority of them. Therefore, the nonwoven fabric of the final product may partially include the filament cut during the spinning, drawing, and laminating steps.
  • a spinning device such as a conventional melt blow die or a spun bond nozzle can be used.
  • Japanese Patent Publication No. 3-369498 one-way spinning even
  • Any of the spinning means and the like shown in Japanese Patent Application Laid-Open No. 2-266989 fluid rectification method can be used.
  • the above-mentioned spinning means is basically different from the conventional spunbond spinning, because it is heated by infrared rays or hot air immediately after the nozzle, or it is taken off by using hot air as air in one air sucker. The point is that the filament is taken out while minimizing the molecular orientation of the filament during spinning. In this way, by reducing the molecular orientation of the filament, the stretchability in the post-stretching of the tube performed thereafter is improved.
  • the stretching means for producing a stretched filament filament having a molecular orientation composed of a heterogeneous polymer used in the present invention there are longitudinal stretching means, transverse stretching means, and biaxial stretching which have been conventionally used for stretching a film / nonwoven fabric. Means can be used, and various stretching means disclosed in Japanese Patent Publication No. 3-36948 in accordance with the present inventors' invention can also be used.
  • the longitudinal stretching means the proximity stretching between rolls is preferable because stretching can be performed without reducing the width.
  • roll rolling, hot air stretching, hot water stretching, steam stretching, hot plate stretching and the like can also be used.
  • transverse stretching means a tenter method used for biaxial stretching of a film can be used.
  • a bully-type transverse stretching (hereinafter referred to as a “pulley method”) exemplified in The horizontal stretching method (groove roll stretching) that combines groove rolls is simple.
  • the biaxial rolling means a simultaneous biaxial stretching method of ten-night and one-eve which is used for film biaxial stretching can be used, but by combining the above-mentioned longitudinal stretching means and horizontal stretching means. Can also be achieved.
  • the draw ratio of the drawn long-fiber nonwoven fabric of the present invention is 5 to 20 times, preferably about 7 to 15 times.
  • Stretching generally means that the molecular orientation is generated by stretching, and that the molecular orientation state is maintained substantially even after the elongation.
  • the material is a material exhibiting rubber elasticity, and the molecular orientation in the stretched state. Is included in the category of stretching even when the tension is released reversibly when the tension for stretching is released.
  • the molecular orientation is distinguished from the arrangement of filaments, the orientation indicates in which direction the molecules are arranged as an average value in each of the filaments, and the arrangement refers to the arrangement of the filaments with each other. .
  • the present invention includes a nonwoven fabric obtained by laminating a stretched long-fiber web and a web of the same type or another nonwoven fabric of an arrayed long fiber so as to intersect the array axis.
  • the other arrayed long-fiber nonwoven fabric may include long-fiber ⁇ Eb.
  • the nonwoven fabric formed by laminating webs having different arrangement directions when laminating webs having a vertical arrangement or webs arranged in a horizontal direction, both orthogonal and oblique are used.
  • the nonwoven fabric is orthogonal to the course, but it is only necessary that the filaments are laminated so that the arrangement axes of the filaments intersect, and there is no particular limitation.
  • Orthogonal lamination, oblique lamination, and multiple laminations such that the arrangement axis intersects in various directions can balance the strength in all directions in a plane.
  • the cross lamination method of the stretched long fiber web of the present invention is a method of laminating a transversely stretched web, a longitudinally stretched web, and the like, which are disclosed in Japanese Patent Publication No. 3-36948, which is a prior invention of the present inventors. These methods are represented by the method (longitudinal stretching and transverse stretching laminating method ⁇ method 1) and the method using a weft laminator (weft laminating method ' ⁇ method 2). However, they may be slightly obliquely stacked.
  • the cross-lamination in the present invention includes those in which the arrangement of long fiber filament groups is orthogonal or oblique as described above, as long as the layers arranged in one direction are laminated and joined to each other in different arrangement directions. Although it is good, the orthogonal nonwoven fabric will be described below as a representative.
  • the arrangement of the filament group means not the microscopic direction of the fiber axis but the entire arrangement of long fiber filaments constituting each web. That is, the vertically arranged web means a web arranged vertically as the whole filament.
  • a water jet method as a means for laminating a drawn continuous fiber web and joining or entangled between the layers, a water jet method, a through air method, an adhesive bonding method, a hot embossing method, an ultrasonic bonding method, a high frequency bonding method At least one selected from a needle punch bonding method and a stitch bond method can be used.
  • One of them is a partial bonding method using a hot embossing roll, ultrasonic bonding, emulsion bonding, and the like, and these methods are particularly effective for performing flexible and good-texture bonding. It is also possible to use a partial bonding method such as powder dot bonding or emulsion dot bonding.
  • the hot embossing method or ultrasonic method is effective. If the adhesive polymer is not contained in the heat-shrinkable polymer mixed spinning In this case, dot bonding of an adhesive powder or an adhesive emulsion is effective. In this case, if the filaments having different heat shrinkages are mixed and spun, effects such as flexibility are further improved.
  • a bonding method that allows hot air to pass through is particularly effective when a composite film or an adhesive polymer is mixed and spun, and the filament of these adhesive polymers and the heat shrinkage are used.
  • hot air can be used as a jet flow and the layers can be joined by the fluid stitching effect.
  • lamination and joining can be performed by filament stitching by a jet flow of a fluid such as a water jet.
  • a mechanical joining method such as a needle punch method and a stitch bond method is also particularly effective as a method for producing a flexible nonwoven fabric.
  • heat treatment such as through-air method is performed after mechanical joining to achieve a more flexible finish. be able to.
  • this mechanical joining method in addition to the effect of suturing the filaments, when the different types of polymers are spun in multiple layers from the same nozzle, the different types of polymers are separated after drawing, and the filaments are also actively split. It is also possible to reduce the size of the fiber, which has the effect of obtaining an extremely thin fiber.
  • the heterogeneous polymer does not need to be evenly distributed inside the nonwoven fabric.
  • a large amount of the filament is present on the surface or interface, or the filament has a different shrinkage so as to bend.
  • various combinations are possible, for example, including a large amount of heterogeneous polymer in the interior.
  • the nonwoven fabric including the laminate of the present invention is characterized in that it has the same strength as a woven fabric, and the nonwoven fabric has a longitudinal or transverse strength of 0.5 g Zd or more, respectively.
  • the reason why the strength is indicated per denier is that it is difficult to compare nonwoven fabrics having different basis weights and bulk densities with the normal display per square centimeter or per 30 millimeter width.
  • the strength of the conventional nonwoven fabric is about 0.4 to 0.8 g Zd in the longitudinal direction even in spunbonded nonwoven fabric, which is considered to be relatively strong. Below, which is significantly inferior to the strength of the woven fabric.
  • the strength is not always the highest in the vertical or horizontal direction depending on the direction in which the layers are arranged. ⁇ The above evaluation method is used to avoid complexity, and because the applications that emphasize the vertical and horizontal directions are overwhelmingly numerous. Was.
  • the present invention relates to a stretched long-fiber nonwoven fabric made of a heterogeneous polymer, which is obtained by laminating and entwining another nonwoven fabric on one or both sides, or a nonwoven fabric comprising the above-mentioned stretched long-fiber web on both sides using another nonwoven fabric as a core material. Includes those that are laminated and entangled.
  • nonwoven fabrics used in the present invention include webs made of natural fibers, regenerated fibers or synthetic fibers and nonwoven fabrics using the same.
  • cotton, linters, pallets Fiber such as natural fiber such as cellulose, semi-synthetic cellulose fiber such as acetate, synthetic fiber such as polyethylene, polypropylene, polyester, polyamide, polyacrylonitrile, acryl, and polyvinyl alcohol.
  • Either an elastomer fiber, a conjugate fiber, a splittable conjugate fiber separated into ultra-fine fibers by a high-pressure water stream, or a mixture thereof is used as a raw material.
  • a method for forming a web a method in which regenerated fibers or the like are wet-spun or synthetic fibers are melt-spun in a conventional manner, cut, and the fibers are drawn together by a card machine to form a web, or a method in which the web is formed by heat.
  • the method include a spun bond method and a melt blow method in which a plastic resin is spun to directly form a web, and a method in which natural fibers are drawn together using a force machine to form a web or beaten to make paper.
  • the single yarn fineness of the fibers used in the other nonwoven fabric is preferably 0.01 to 15 denier, more preferably 0.03 to 5 denier, and the fiber length is preferably 1 to 100 mm, More preferably, it is 10 to 6 O mm. If the single yarn fineness is less than 0.01 denier, the print becomes less free, and if it exceeds 15 denier, the texture becomes poor. If the fiber length is less than 1 mm, the entanglement is insufficient and the strength is low, and if it exceeds 10 Omm, the dispersibility becomes poor, which is not preferable.
  • the basis weight of the web is preferably from 10 to 150 g / m 2 , and more preferably from 20 to 50 Og / m 2 . Because the basis weight is assumed that high-pressure water jet unevenness occurs in the density of the fibers during processing, also inferior in thin lightweight exceeds 1 5 O g / m 2 is less than 1 O g / m 2, not desirable either .
  • bulkiness is one of the characteristics indicating the texture of the nonwoven fabric.
  • those having high bulkiness, that is, those having low bulk density have low strength, and none of them has a large value of the above-described biaxial breaking work. Therefore, none could be used for the same applications as woven fabrics.
  • the present invention has made it possible to produce a bulky nonwoven fabric while maintaining high tensile strength and biaxial breaking work.
  • the vertical web used in the present invention can be used with the web width increased while maintaining the vertical arrangement. Also, the webs can be stretched or shrunk in the longitudinal direction. n
  • FIG. 1 is a partial cross-sectional enlarged perspective view showing a structure of a conjugation film obtained by extruding different kinds of polymers from the same nozzle used in the present invention.
  • the filaments having these structures are not specific to the present invention, and are also used for ordinary nonwoven fabrics.
  • the present invention is characterized in that the webs formed in a sheet shape are stretched while maintaining the web shape, and thereafter, the lamination is performed so that the arrangement of the filaments intersects. That is, since the filaments constituting the nonwoven fabric of the present invention are sufficiently stretched, the properties of the conjugate filament are more easily exhibited than in the case of the ordinary nonwoven fabric.
  • Fig. 1 (A) and (B) are examples of conjugate filaments having a core-sheath structure.
  • a indicates the main polymer of the nonwoven fabric
  • b indicates the adhesive polymer.
  • the filament can also be provided with a crimping property described below.
  • Fig. 1 (C) and (D) are examples of side-by-side type conjugation filaments, which are used to crimp the filaments and impart elasticity to the nonwoven fabric.
  • b may be a force ⁇ adhesive polymer in which a polymer different from a in heat shrinkability after stretching is used.
  • FIG. 1 (E), (F), (G), (H) and (I) show examples of spinning filaments using different polymers to obtain fine fibers.
  • FIG. 1 (E) is an example of a filament having a composite of different diameters, which is particularly suitable for the case where the fiber is separated by drawing or warp-jetting.
  • the present invention relates to a method of further extending a web made of these filaments to obtain a long fiber. It is fundamentally different from a conventional nonwoven fabric used in a short fiber form in that it is used as a nonwoven fabric as it is.
  • the present invention also differs from conventional nonwoven fabrics in that cross-laminated stretched long fiber webs are used.
  • a in FIG. 1 (F), (G), (H) and (I) may be dissolved and removed later, or may be divided by stretching or subsequent mechanical treatment.
  • FIG. 2 shows a conduit gate filter having the structure shown in FIG. 1 (B), (C) or (D).
  • FIG. 4 is a schematic view showing an example in which a web is formed by crimping a ment to constitute the nonwoven fabric of the present invention.
  • filaments having various types of crimps are shown in tube 1.
  • Filament 2 is bent in a wavy shape
  • filament 3 is coil-spring-shaped
  • filament 4 is finely irregularly bent and crimped.
  • the directions of these filaments are microscopically random, but the filaments as a whole match the longitudinal direction of the web (the direction of the arrow in the figure).
  • the crimps of the filaments in FIG. 2 are schematically shown. In actual nonwoven fabrics, different evening eves are often mixed instead of one of these types.
  • the tube 1 in FIG. 2 an example is shown in which the filaments are arranged in the vertical direction as a whole, but the tubes in which the crimped filaments are arranged in the horizontal direction are also the same.
  • the present invention also includes a nonwoven fabric in which these longitudinally arranged webs and transversely arranged webs are cross-laminated and joined.
  • FIG. 3 is a schematic side view showing an example of an apparatus for extruding different kinds of polymers from the same nozzle.
  • Different resins 11 and 21 are extruded by gear pumps 13 and 23 using separate extruders 12 and 22 respectively, and a number of conjugation nozzles 31 (Fig. 4 (A) described later) are formed.
  • the conjugation filament group 33 is formed through the arranged dies 32.
  • the filament group 33 is sucked by a large amount of air 35 using, for example, air soccer 34 used in the production of spunbond nonwoven fabric.
  • the filaments drawn by the air soccer 34 are collected on a conveyor 36 to form a vertical tube 37, which is wound by a winder 38.
  • the filaments can be efficiently arranged vertically.
  • webs stretched longitudinally can be obtained.
  • FIG. 4 (A) is a cross-sectional view of a die for a conjugation spunbond used in the spinning of FIG. From the nozzle 31 formed in the die 32, the various filaments of FIG. 1 are spun.
  • a die 32a in which the nozzles 14 for pushing out the resin 11 and the nozzles 24 for pushing out the resin 21 are arranged in a zigzag pattern can be used.
  • the spun filament is drawn in the same manner as described above, and becomes a drawn web in which different kinds of filaments are mixed.
  • FIG. 5 is a schematic side view showing an example in which a melt blow spinning device is applied to the spinning shown in FIG.
  • FIG. 6 ( ⁇ ) is a longitudinal sectional view showing an example of the conjugate die 41 of the melt blow spinning apparatus in FIG. 5, and FIG. 6 (B) is a partially exploded perspective view of the conjugate die 41. is there.
  • FIG. 6 (A) different resins a and b are extruded into a filament form integrally through a nozzle 42. The filament is heated by hot air passing through the slits 44 and 45 and blown off by the hot air force L.
  • Fig. 6 (A) and (B) are examples of conjugate type melt blow dies. Using multiple dies, the resin a and b are each blown out from different nozzles, and mixed. It can also be a filament for textile.
  • the advantages of the melt-blown method are that the hot air generated by the hot air generator 43 is used from the time of extrusion, so that the molecular orientation of the filament is small, the stretchability afterwards is good, and the filament having a small denier value is used. Can be obtained.
  • FIG. 7 is a schematic side view showing an example of an apparatus for producing a heterogeneous mixed filament web for transverse stretching.
  • the different resins 11 and 21 are extruded by gear pumps 13 and 23 using separate extruders 12 and 22 respectively, and conjugating dies for a large number of conjugating nozzles 51-1 to 51 — Line up 6 in the line direction.
  • the filament 52 coming out of the nozzle is scattered in the direction perpendicular to the traveling direction of the filament by the action of hot air (not shown) to form a laminate 53 of filaments arranged horizontally. I do.
  • FIG. 8 is an example of the structure of the dice 51 in the apparatus of FIG. 7, which is disclosed in the above-mentioned publication of the present inventors, Japanese Patent Publication No. 3-36948, and Japanese Patent Application Laid-Open No. 2-242920.
  • This method is called “one-way arrangement spinning method” because spinning is performed so that the filaments are arranged in one direction using a spray gun-shaped die for painting.
  • Fig. 8 (A) is a bottom view of the die 51
  • Fig. 8 (B) is a front sectional view of the tip of the die 51
  • Fig. 8 (C) is a die tip shown in (B).
  • FIG. 8 is a side view of the resin a (resin 1 1 is extruded from the extruder 1 2, resin he guide the nozzle) and the resin b (resin 2 1 is issued from the extruder 2 2, Spray gun-like dies 51 1 Nozzle 5 5 Around primary nozzle 5 6—1 to 5 1—6 when producing a composite filament consisting of resin introduced to the nozzle)
  • the hot air blown out from the secondary air nozzles 57-1 and 57-2 collides with the place where the filament 52 vibrates due to the primary air (hot air).
  • the secondary air scatters in the direction perpendicular to the secondary air blowing direction, and the filament 52 scatters the secondary air.
  • the resin a is led through the conduit 58 into the die 51, in which the resins a and b have a core and b has a sheath. It is led to the nozzle 55.
  • FIGS. 8 (B) and 8 (C) show a state in which the filaments 52 are arranged in a direction perpendicular to the traveling direction of the conveyor 36 (lateral direction).
  • the conjugating dice 51-1-1 to 51-6 are used, but no conjugating dice are used.
  • the dice 51-1, 51-3 and 51-5 are not used.
  • Resin 11 is blown out, and resin 21 is blown out from dies 51-2, 51-4 and 51-6 to produce a mixed fiber of different filaments. Can also be.
  • the resin 21 is an adhesive polymer
  • the method for producing an arrayed web is not limited to the example shown in FIG. 8, but may be a nozzle shown in Japanese Patent Application Laid-Open No. 2-269680 or a device shown in Japanese Patent Application Laid-Open No. 2-269589. Examples (tentatively referred to as fluid rectification) can also be used.
  • FIG. 9 is a schematic side view showing an example in which hot emboss bonding is used as the bonding method after lamination.
  • the longitudinally stretched web 61 and the transversely stretched web 62 made of different polymers are taken up by the nip rolls 63a and 63b while being formed by the embossing roll 64a and the receiving roll 64b.
  • the embossing rolls 64a and the receiving rolls 64b are heated, and the heat shrinks the ribs to generate crimp.
  • the take-off nib rolls 66a and 66b need to have a lower peripheral speed than the embossing rolls 64a and the receiving rolls 64b.
  • the receiving roll 64b may be a metal roll having a flat surface or a hard rubber roll, but the bulk can be further increased by using an embossing roll as the receiving roll.
  • FIGS. 10 Examples of embossing patterns to be imprinted are shown in FIGS. 10 (A), (B), (C) and (D).
  • a heat treatment is applied to a longitudinally stretched web made of a straight polymer.
  • a low-shrink web subjected to the above-mentioned process is used, and a longitudinally-stretch web made of a copolymer without heat treatment is used as 62.
  • the filament of the shrink web 62 shrinks due to the heat of the embossing roll, and the low shrink web 61 is formed.
  • the integrated web 65 which is bent without shrinking, has high bulkiness.
  • the shrinkable web 62 has rubber elasticity
  • another pair of nip rolls is provided (not shown) before the web 62 contacts the nipples 63 a and b, and the two nip rolls are provided.
  • FIG. 11 is a schematic side view showing an example of a through-air bonding apparatus.
  • At least one of the longitudinally stretched web 61 and the stretched web 62 is a web containing an adhesive polymer, and both webs are taken up by nib rolls 63a and 63b, and are passed through a turn roll 71 to form a hot air chamber 71.
  • a basket roll 7 3 whose surface is covered with a metal net is rotating, and hot air flows from the inside of the basket roll through hot air nozzles 7 4a, 7 4b and 7 4c. It penetrates the laminated web 75.
  • the web that has left the basket roll 73 in the hot air chamber 72 passes through the cooling roll 76 and is taken up by the nib rolls 66a and 66b. In this case, if bulking is to be performed,
  • peripheral speed of the nip rolls 76 and the nip rolls 66 a and b be smaller than the peripheral speed of the basket roll 73.
  • Fig. 12 shows an example of a device for penetrating hot air while shrinking the web vertically and vertically.
  • Fig. 12 (A) is a plan view of the device, and Fig. 12 (B) is a side view of the device. .
  • a pair of rotating disks 8 1a and 8 1b Forces face each other so that their trajectories become narrower in the direction of travel of the web, and are rotated by motors M la and M lb via rotating shafts 85a and 85b, respectively. Driven. There are many bins around the circumference of both disks.
  • the longitudinally-stretched web 61 and the transversely-stretched web 62 are passed through the evening rolls 83a and 83b to form bins 82a and
  • FIG. 12 is a simple device and can be contracted vertically and vertically. Is excellent.
  • FIG. 13 is a partially enlarged sectional view schematically showing a bulky stretched long-fiber nonwoven fabric of the present invention.
  • FIG. 13 (A) shows the case where the arrangement direction of the filaments of the ribs c and d is basically the same, and the ribs c and d overlap in the thickness direction.
  • the filament 5 of Ebb c forms a stretched long fiber web constituting the stretched nonwoven fabric, and shrinks after the lamination and bonding, and is relatively hard.
  • the filament 6 of the web d does not shrink so much when the filament 5 of the web c shrinks, so that it is crimped and has a partially bent shape.
  • FIG. 13 (B) shows a case where three layers of the web d, the web c and the web d are overlapped in the thickness direction with the same force as in FIG. 13 (A).
  • web c is a contracted web, it generally has a low softening point and is expected to play a role in enhancing the adhesion.
  • FIG. 13 (C) the web e indicating another arrangement direction is laminated in FIG. 13 ( ⁇ ), and the filament of the web e and the filaments of the web c and the web d are stacked in the IJ direction.
  • web c and web d are longitudinally drawn long fiber webs
  • web e is a long drawn long fiber web.
  • the reason why the filament 7 of e is indicated by a dot is that the arrangement direction of the filaments is perpendicular to the paper.
  • FIG. 13 (D) shows a case where the web ⁇ and the web d of FIG. 13 ( ⁇ ) are laminated, and the web f is a contracted biaxially drawn long fiber web.
  • the reason why the filament 8 of the web f is indicated by dots and short lines is that the orientation of the filaments of the biaxially stretched web is random in a plane.
  • the crimped filament can be formed of a biaxially stretched long fiber web.
  • the filament 5 mainly contains the force ⁇ belonging to the web c to which the filament 5 belongs, and a part thereof is mixed with the other web d.
  • filaments that bend, for example, filaments 6 of web d are often mixed into other webs c, e, and ⁇ ⁇ ⁇ .
  • FIG. 14 is a micrograph (magnification: X 20) showing an example of the bulky stretched long-fiber nonwoven fabric of the present invention.
  • the photograph shows an example of a stretched non-woven fabric made of polypropylene (Table 7, below, Example X-1). There is a group of crimped filaments on the surface, and the back is not substantially crimped. You can see the group of filaments. The part that has been partially melted by embossing at the center can also be removed.
  • the photograph shows an example in which crimped filaments are aggregated.
  • dispersed filaments can be formed by brushing or opening the stretched nonwoven fabric.
  • FIG. 15 is a schematic side view showing one example of the above method in the method for producing a bulky drawn long-fiber nonwoven fabric of the present invention.
  • the webs 91 and 92 are webs made of unoriented long fiber filaments having different shrinkages after stretching. These two webs are introduced into a stretching device by nib rolls 93a and 93b, preheated by a preheating roll 94, and then guided to a stretching roll 96 as a web 95.
  • the stretching roll 96 is provided with a rubber nib roll 97, and longitudinal stretching is performed between the stretching roll 96 and the stretching roll 99.
  • the inter-stretch distance is defined as the nip point P between the Yannaka roll 96 and the nib roll 97, and the stretch roll 99 and the two. This is the web travel distance PQ defined by the two roll points Q with the web roll 100, between which the web 98 is extended one step.
  • the inter-stretching distance is the running distance QR of the knob 101 defined by the point Q and the nib point R between the stretching roll 102 and the nib roll 103.
  • Method A heat treatment is generally not required, but if heat treatment is required in longitudinal stretching, the web 104 can be heat-treated by a heat treatment roll 105.
  • the web 104 that has been extended is taken up by nib rolls 106a and 106b, and becomes a laminated and stretched web 107 of different kinds of webs.
  • the nonwoven fabric can be made into a bulky stretched long-fiber nonwoven fabric by further performing bonding by hot embossing, warp jetting, or the like, and then performing shrinkage treatment.
  • one having the shortest distance between stretching is suitable for longitudinal stretching of the web.
  • the stretching starting point is fixed and stretching is stable, so stretching is performed at a higher magnification. can do. For example, if there is no nib roll 97, the stretching start point moves to the preheating roll 94 side from the point P, and not only the distance between stretching becomes longer, but also the stretching start point moves to cause stretching J.
  • a web suitable for longitudinal extension is preferably one in which the filaments are arranged as vertically as possible.
  • the percentage of filaments that are gripped between the nibs at both ends increases, and the strength of the web after stretching is improved, even if the extended distance is constant.
  • Table 1 shows the types of resins used in the examples.
  • the test method of the sample is as follows.
  • the measurement conditions are a chuck interval of 10 Omm and a tensile speed of 10 Omm / min.
  • the strength is expressed as the value (gZd) obtained by dividing the measured force by the denier of the sample nonwoven fabric.
  • the strength can be expressed in terms of force per fixed width (for example, 3 Omm width) or per unit area (for example, mm 2 ), but the basis weight, thickness, bulkiness, etc. are extremely different. Not suitable when comparing samples.
  • the insemination strength is defined as the force that is the joining force between the longitudinal web and the horizontal web. ⁇ If the web type, joining method, bulkiness, etc. are completely different, various factors are combined, so It is difficult to express.
  • the intensity in the 45 ° direction of the history / layer / bed is represented. That is, a sample with a chuck interval of 100 mm and a width of 5 Omm is cut out in the direction of 45 ° and measured at a tensile speed of 10 OmmZ.
  • the longitudinal breaking process is defined as follows.
  • the strength in the machine direction of the joint after the lamination web (GZD) and elongation (L one L 0) ZL 0 (L is the length at break, Lo is the original length) determine the strength X elongation 2 Is defined as the longitudinal breaking work.
  • the method indicated by the area of the strength-elongation curve should be used, but the above method was used to avoid complication.
  • the stretched web as in the present invention no difference in the tendency occurs even when the comparison is made using the product of the strength and the mediumness. Bulk density>
  • the bulk density is calculated by using the thickness gauge of the cross-sectional area lcm 2, measured Thickness (cm) under a constant load (300g / cm 2), the following formula with a basis weight (g / cm 2) I do.
  • the web described in Table 2 can be used as a nonwoven fabric of the present invention as it is, but it is necessary to integrate the web by embossing or emulsifying the web. There are many.
  • PET-1 60 PET-2 40 Mixed 7.0 2.1 Vertical 18 2.2 14
  • Table 4 shows the characteristics of the manufacturing process and the performance of the nonwoven fabric.
  • the conventional long-fiber laminated nonwoven fabric without using different polymers Japanese Patent Publication No. 3-36948
  • the conventional long-fiber spinning nonwoven fabric, spunbonded nonwoven, meltblown nonwoven and flash Table 5 shows the physical properties of the spun nonwoven fabric and typical industrial woven fabrics.
  • One kind of polymer was selected from the resins listed in Table 1, spun, stretched and heat-treated to obtain a stretched long fiber tube used for producing a bulky stretched long fiber nonwoven fabric.
  • Table 6 shows the characteristics of the manufacturing process and the performance of the tube.
  • Example X-1 in Table 7 is an example of the case of laminating in the stretching process (method A), and webs VI II-1 and VI II-2 are subjected to the proximity stretching machine shown in FIG. 15 before stretching.
  • the layers were longitudinally stretched 8.2 times at 110 ° C, and the stretched webs were processed by an embossing device shown in Fig. 9 to generate crimp.
  • Examples XI-1 to XI-4 are cases in which stretched long fibers are laminated and shrunk (Method B).
  • Example XI-5 shows an example in which the crimping web is a web in which the filament tow is spread and widened.
  • Example XI-6 is an example in which the web to be crimped is a commercially available spunbond nonwoven fabric made of polybrovirene (basis weight: 2 Og / m 2 ; trade name: PP spunbond, manufactured by Asahi Kasei Corporation) showed that.
  • Example XI-7 a rubber elastic nonwoven fabric (basic weight 2 Og / m 2 ; trade name: Expansione, manufactured by Kanebo Co., Ltd.) was used as the shrinkable web. This is an example of a case where the web 62 is stretched 4 times in the longitudinal direction before contacting the nib rolls 6 3 a and 6 b.
  • stretched filaments of different polymers By combining stretched filaments of different polymers in a crosswise manner, it is a non-woven fabric, yet has the same mechanical properties, breaking work and uniformity of basis weight as the woven fabric. A material having drape property, bulkiness and texture was obtained.
  • the present invention is characterized in that a non-woven fabric having a particularly high elongation can be manufactured. Due to the high elongation, not only a large breaking work but also a product excellent in drape property and texture in practical use can be obtained. Is obtained.
  • the present invention was able to establish a nonwoven fabric having particularly excellent strength and bulkiness and a method for producing the same.
  • it does not require complicated and expensive devices such as a conjugation spinning device and a mixing spinning device required for the conventional method of producing a bulky nonwoven fabric, and a simple device can be obtained by combining a plurality of layers having different shrinkages.
  • This is a feasible method, not only with low equipment costs, but also suitable for low-volume, high-mix, low-volume production, and it has become possible to provide inexpensive nonwoven fabrics and their manufacturing methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Description

Λ
一 1一
明 細 書 異種ポリマーからなる延伸長繊維不織布およびその製造方法 技術分野
本発明は、 性質の異なる複数のポリマーで形成された長繊維フィラメント群を —方向に延伸し、 かつ一方向に配列してなる延伸長繊維ウェブを含む不織布であ つて、 強度、 伸度、 接着性、 嵩高性その他種々の性能を付与することが可能な不 織布およびそれらの製造方法に関するものである。
さらに、 本発明は特に強度および嵩高性に優れた延伸不織布およびその製法に 関する。 すなわち、 複雑高価な装置を使用せず、 延伸長繊維ウェブと、 その延伸 長繊維ウェブと収縮性の異なるウェブとを組み合わせて接合し、 その後に収縮さ せることによって得られる強度および嵩高性の高い不織布およびその製法に関す るものである。 背景技術
従来の不織布はランダム不織布が多く、 強度が小さく、 かつ寸法安定性のない ものが多かった。 本発明者らは、 これら従来の不織布が有する欠点を改善した発 明として、 不織布を延伸し直交積層することからなる不織布の製法 (特公平 3— 3 6 9 4 8号、 特開平 2 - 2 6 9 8 5 9号、 特開平 2— 2 6 9 8 6 0号等) を提 案した。 本発明は、 これらの発明をさらに改良発展させたものである。
従来、 性質の異なるボリマーを用いた混合紡糸フィラメン卜やコンジユゲー卜 紡糸フィラメントを不織布に応用する例が種々知られている。
例えば、 嵩高のコンジユゲートフイラメン卜に関しては、 特開平 4 - 2 4 2 1 6号公報 (短繊維不織布)、 特開平 2— 1 8 2 9 6 3号公報 (スパンボンド不織 布) 、 特開平 4一 4 1 7 6 2号公報 (スパンボンド不織布) 、 接着性コンジュゲ 一トフイラメントに関しては、 特開平 2— 6 1 1 5 6号公報 (スパンボンド不織 布) 、 特開平 4一 3 1 6 6 0 8号公報 (スパンボンド不織布) 、 混合フィラメン 卜に関しては、 特開平 3— 2 6 9 1 5 4号 (スパンボンド不織布) 、 また、 コン ジユゲートフイラメン卜よりなる不織布のウォータジエツ ト加工については、 特 開平 4一 3 1 6 6 0 8号公報 (スパンボンド不織布) 等が挙げられる。
上記の従来の不織布には、 コンジユゲートフイラメントゃ異種ポリマーフィラ メントを混用したものもある。 し力、し、 それらはコンジユゲートフィラメントや 異種ポリマーフィラメ ン トを切断して用いた短繊維不織布であり、 嵩高性は優れ ているが強度や寸法安定性が劣るものである。 また、 従来、 コンジュゲート紡糸 によるスパンボンド不織布ゃメルトブロー不織布等の長繊維不織布もあるが、 こ れらは延伸されていないので、 収縮の効果が発現されず、 嵩高性が不十分であり、 強度や寸法安定性も劣る。
すなわち、 これらの従来技術による不織布は、 嵩高性と、 単繊維 (シングルフ イラメン卜) としての強度ゃ不織布全体としての強度などとのバランスに欠けて おり、 織布の代替としての物性を備えたものではない。 さらに従来の不織布は、 一般的に目付け量が小さくなると (例えば、 2 0 g/m2以下) 、 均一性が劣り、 前 記のように強度が不十分であることと相まって、 織布と同等の寸法安定性が要求 される分野では使用することができなかった。
また、 本発明者らによる前記発明の直交積層不織布においては、 ェマルジヨン 接着や熱エンボス接着等により接着して不織布とするので、 不織布としての風合 いや柔らかさが不十分となる場合があつた。
さらに、 本発明人らは、 従来の不織布が持つ上記各種の欠点を改善するため、 不織布を延伸し、 かつ適宜に積層した不織布について発明 (特公平 3— 3 6 9 4 8号、 特開平 2— 2 6 9 8 5 9号、 特開平 2— 2 6 9 8 6 0号等) を行った。 上記のように、 織布と同等の強度を有し、 しかも柔らかさや膨らみ (低嵩密度) に優れ、 伸度が大きく、 かつ風合いを兼ね備えた不織布が要望されている。 また、 強度が大きい不織布においては、 坪量の均一性が悪い場合に実用的価値が半減す るので、 均一性のあることも望まれている。
本発明は、 このように強度と共に、 均一性、 風合い、 嵩高性、 薄手 (薄さ) 等 の特長を兼ね備えることにより、 従来の不織布では開発することができなかった、 より織布に近い用途、 例えば使い捨て衣料、 合成皮革や人工皮革の基布等に適合 する不織布を開発することを目的とする。 さらに、 従来の不織布や織布では見られないほど二軸破断仕事 (後述) が大き く、 従って薄くて経済的な包装資材や土木資材としての用途に適合し得る不織布 を提供することを目的とする。
さらに、 不織布は安価でなければならず、 しかも用途が多岐にわたるため、 多 品種少量生産に適する生産方法を用いる必要がある。 従来の製造法では、 特に強 度と嵩高性の両方に優れた不織布を低コス卜で製造することは困難であった。 そこで、 上記の不織布の強度、 均一性、 寸法安定正当の問題点を解決しつつ、 不織布の特徴である嵩高性や風合いをさらに高度に実現する方法が望まれており、 しかも不織布の経済的特徴である安価という特性を損なわず、 多品種少量生産に 適した生産方法であることが望まれている。 図面の簡単な説明
第 1図 (A ) から ( I ) はコンジユゲートフイラメン卜の部分断面拡大斜視図 第 2図は捲縮したフィラメン卜からなるウェブの模式図;第 3図は異種ポリマー を同一ノズルから押出す装置の例を示す略示側面図;第 4図 (A ) は第 3図の装 置に用いるダイスの横断面図:第 4図 (B ) は (A ) のダイスにおいて 2種のポ リマーを用 t、る例を示す横断面図;第 5図はメルトプロ一紡糸装置の例を示す略 示側面図;第 6図 (A ) は第 5図の装置に用いるダイスの例を示す縦断面図;第 6図 (B ) は (A ) のダイスの部分分解斜視図;第 7図は橫延伸用異種混合フィ ラメン卜ウェブの製造装置の例を示す略示側面図;第 8図 (A ) は第 7図の装置 に用いるダイスの例の底面図;第 8図 (B ) は (A ) のダイスの先端部の正面断 面図;第 8図 (C ) は (B ) に示したダイス先端部の側面図;第 9図は熱ェンボ ス接着装置の例を示す略示側面図;第 1 0図 (A ) から (D ) は熱エンボス接着 に用いるエンボスパターンの例を示す平面図;第 1 1図はスルーエアー接着装置 の例を示す略示側面図;第 1 2図 (A ) はスルーエア一接着と同時に縦横収縮を 行う装置の平面図;第 1 2図 (B ) は (A ) に示した装置の側面図:第 1 3図は 嵩高延伸長繊維不織布を模式的に示す部分拡大断面図;第 1 4図は嵩高延伸長繊 維不織布の一例を示す顕微鏡写真;第 1 5図は嵩高延伸長繊維不織布の製法 (A 法) の一例を示す略示側面図である。 発明の開示
本発明者らは、 上記の目的に沿って鋭意研究した結果、 紡糸に際して性質の異 なる複数のポリマーを組み合わせるこにより、 課題を解決し得ることを見出して 本発明を完成するに至った。
すなわち、 本願第 1の発明は、 性質の異なる複数の熱可塑性ポリマーで形成さ れた長繊維フィラメント群からなる長繊維ウェブが延伸され、 かつ長繊維フィラ メン卜群が全体として一方向に配列されている延伸長繊維ウェブを具備したこと を特徴とする異種ポリマ一からなる延伸長繊維不織布に関するものである。
さらに本願第 2の発明は、 第 1の発明において、 上記長繊維フィ ラメ ン ト群の 配列方向の強度が 1 . 5 g / d以上であることを特徴とする異種ボリマーからなる 延伸長繊維不織布に関する。
さらに本願第 3の発明は、 第 1の発明において上記長繊維フイラメ ン卜群が、 性質の異なる複数の熱可塑性ボリマ一で形成されたコンジユゲートフィラメント の集合であることを特徴とする異種ポリマーからなる延伸長繊維不織布に関する。 さらに本願第 4の発明は、 第 1の発明において上記長繊維フィ ラメ ン ト群が、 性質の異なる複数のフィラメントを混在させたものであることを特徴とする異種 ポリマーからなる延伸長繊維不織布に関する。
さらに本願第 5の発明は、 第 1の発明において、 上記延伸長繊維ウェブに積層 された他の繊維ウェブをさらに具備したことを特徴とする異種ポリマーからなる 延伸長繊維不織布に関する。
さらに本願第 6の発明は、 第 5の発明において、 上記他の繊維ゥュブの繊維配 列方向が、 上記延伸長繊維ウェブの長繊維フィラメン卜群の配列方向と交差する ことを特徴とする請求項 5記載の異種ポリマーからなる延伸長繊維不織布に関す
Ό o
さらに本願第 7の発明は、 第 6の発明において、 上記交差した各配列方向の強 度が 0 . 5 g Z d以上、 二軸破断仕事が 0 . 2 g / d以上、 嵩密度が O . l g /cc 以下であることを特徴とする異種ポリマーからなる延伸長繊維不織布に関する。 また本願第 8の発明は、 第 1の発明において、 上記長鐵維フィ ラメ ン ト群の少 なくとも一部のフィラメ ン卜が捲縮していることを特徴とする異種ポリマーから - b -
なる延伸長繊維不織布に関する。
さらに本願第 9の発明は、 性質の異なる複数の熱可塑性ボリマーから、 実質的 に分子配向を伴わない長繊維フィラメント群で形成された長繊維ウェブを製造す る工程と、 この長繊維ウェブを一方向に延伸して延伸長繊維ウェブを製造するェ 程とを特徴とする異種ポリマーからなる延伸長繊維不織布の製造方法に関するも のである。
さらに本願第 1 0の発明は、 第 9の発明において、 上記延伸長繊維ウェブを収 縮させることにより捲縮を生ぜしめる工程をさらに具備したことを特徴とする異 種ポリマ一からなる延伸長繊維不織布の製造方法に関する。
さらに本願第 1 1の発明は、 第 1 0の発明において、 捲縮後の延伸長繊維ゥニ ブと他の配列不織布とを配列方向が交差するように積層する工程をさらに具備し たことを特徴とする異種ポリマーからなる延伸長繊維不織布の製造方法に関する。 さらに本願第 1 2の発明は、 第 9の発明において、 延伸長繊維ウェブと他の配 列不織布とを配列方向が交差するように積層し、 その後少なく とも一配列方向に 収縮させることにより捲縮を生ぜしめる工程をさらに具備したことを特徴とする 異種ポリマーからなる延伸長繊維不織布の製造方法に関する。
さらに本願第 1 3の発明本発明は、 第 9の発明において上記長織維フィラメン ト群が、 性質の異なる複数の熱可塑性ポリマーで形成されたコンジユゲートフィ ラメン卜の集合であることを特徴とする異種ポリマーからなる延伸長繊維不織布 の製造方法に関する。
また本願第 1 4の発明は、 第 9の発明において上記長繊維フィラメント群が、 性質の異なる複数のフィラメントを混在させたものであることを特徴とする異種 ポリマーからなる延伸長繊維不織布の製造方法に関する。
さらに本願第 1 5の発明は、 捲縮しているフィラメントを主とする第 1のゥェ ブ層と、 この第 1のゥヱブ層に積層され、 かつ、 上記第 1のウェブ層のフィラメ ントとは異なる性質で、 ほとんど捲縮していない延伸長繊維フィラメントを主と する第 2のウェブ層とを具備し、 少なくとも一方向の強度が 0 . 5 g Z d以上であ り、 嵩密度が 0 . 1 g Zcc以下であることを特徴とする異種ポリマ一からなる延伸 長繊維不織布に関するものである。 _ g _
さらに本願第 1 6の発明は、 収縮性の異なる第 1および第 2のウェブが積層さ れ積層ゥュブを形成する工程と、 上記積層ゥュブを接合して接合ゥ工ブを形成す ると共に、 接合と同時またはその後に接合ウェブを収縮させることにより捲縮を 生ぜしめる工程とを具備したことを特徴とする異種ポリマ一からなる延伸長繊維 不織布の製造方法に関するものである。
さらに本願第 1 7の発明は、 第 1 6の発明において積層ウェブ形成工程が、 延 伸すると収縮性の異なる異種ポリマーより、 それぞれ別に実質的に分子配向を伴 わない長繊維フィラメン卜からなる上記第 1および第 2のゥヱブを製造する工程 と、 これら第 1および第 2のゥヱブを重ねて少なくとも一方向に延伸する工程と を具備したことを特徴とする異種ポリマ一からなる延伸長繊維不織布の製造方法 に関する。
さらに本願第 1 8の発明は、 第 1 6の発明において積層ウェブ形成工程が、 延 伸すると収縮性の異なる異種ポリマーより、 それぞれ別に実質的に分子配向を伴 わない長繊維フィラメン卜からなる上記第 1および第 2のゥヱブを製造する工程 と、 これら第 1および第 2のウェブを別々に延伸する工程と、 これら延伸された 第 1および第 2のゥヱブをフイラメン卜配列方向が同一方向となるように積層す る工程とを具備したことを特徴とする異種ポリマ一からなる延伸長繊維不織布の 製造方法に関する。
さらに本願第 1 9の発明は、 第 1 6の発明において、 第 1と第 2のウェブの少 なくとも一方が、 未延伸状態でゴム弾性的な伸張回復性能を有することを特徴と する異種ポリマ一からなる延伸長繊維不織布の製造方法に関する。
本発明で用いる性質の異なるポリマー (以下 「異種ポリマー」 という) とは、 融点、 膨潤度、 延伸後の収縮性、 自発伸張性、 接着性等において多少でも異なつ ていればよく、 これらの性質が異なるポリマーを組み合わせることにより、 風合 いのよぃ不織布を得ることができる。 未熱処理フィ ラメ ント、 特にポリエチレン テレフタレー卜のフィラメン卜は、 熱処理することにより収縮せず、 逆に伸張す る場合がある。 これが自発伸張と呼ばれる現象である。
上記異種ポリマーとしては、 同じ系列に属するボリマーであって、 分子量、 分 子量分布、 分岐度、 夕クチシティなどが異なるものが含まれ、 また、 各種のコボ _ _
リマーやブレンド物を異種ボリマ一とすることもできる。 また、 各種の添加剤や 可塑剤を添加することによつても異種ポリマーとして用いることができる。 なお、 ボリアミ ドとポリエステルのように全く異なるボリマーの組合せも可能である。 上記異種ポリマーとして混合フィラメントを用いる場合においては、 異種ポリ マーが同一ノズルから紡糸される場合もある力 別のノズルから紡糸される場合 もある。 実質的に分子配向が生じて直交不織布などの強度部材となり得る基本の ボリマ一に対して、 他の異種ボリマーの混合割合は同等以下の量であり、 かつ全 体に占める割合が 5重量%以上であることが望ましい。 さらに望ましくは 2 0重 量%以上である。
以下、 説明の煩雑さを避けるために、 異種ポリマーとして 2種類のボリマーに ついて説明するが、 さらに多数の異種ポリマーを組み合わせることもできる。 本発明を構成するフィラメン卜において強度部材となるポリマーとしては、 ポ リエチレン、 ポリプロピレン等のポリオレフイ ン系樹脂、 ポリエステル、 ポリア ミ ド、 ポリ塩化ビニル系樹脂、 ポリウ レタン、 フッ素系樹脂等の熱可塑性樹脂お よびそれらの変性樹脂を使用することができる。 また、 ボリビニルアルコール系 樹脂ゃポリアクリロニトリル系樹脂等を湿式または乾式で紡糸したものも使用す ることができる。
本発明において接着性ボリマ一を使用する場合には、 上記ポリマーと融点の異 なる樹脂や上記ポリマーの変性樹脂、 あるいはエチレン一舴酸ビニル共重合体、 酸変性ポリオレフィ ン等の変性ォレフィ ン樹脂、 ホッ トメルト接着剤として使用 されている樹脂等が用いられる。
本発明における 「異種ポリマーからなる延伸長繊維不織布」 とは、 上記性質の 異なる複数の熱可塑性ポリマーで形成された長繊維フィラメント群からなる長繊 維ウェブが延伸され、 かつ長繊維フィラメント群が全体として一方向に配列され ている延伸長繊維ゥヱブを含む不織布であり、 延伸された長繊維フィラメン卜は、 実質的に分子配向が生じており、 フィラメントとしてのデニール当りの強度が少 なくとも 1 . 5 g Z d以上、 望ましくは 2 . 5 g Z d以上、 さらに望ましくは 3 g 以上のものである。 通常の不織布でも、 一方向の強度が 1 g Z d前後のもの はある力 <、 スパンボンドのようにある程度風合いに優れたものは強度が弱く、 ま _ g _
たトゥ開繊不織布ゃフラッシュ紡糸不織布は、 一方向にある程度の強度を有する ものもある力〈、 紙状で風合いに劣る。 また、 フラッシュ紡糸不織布はコス トが高 い。
上記 「長繊維フィラメ ント」 とは、 実質的に大部分が長繊維のフィラメン 卜か らなるものをいう。 すなわち、 通常用いられる長さ 1 0〜3 0 m m程度の短繊維 とは異なり、 1 0 O m m以上のフィラメン卜が大部分を占めるものであればよい c 従って、 最終製品としての不織布中には、 一部に延伸の途中で切断されたフイラ メ ン卜が含まれていてもよい。
また、 「全体として一方向に配列されている」 長繊維ゥュブとは、 その平面内 において、 それを構成する長繊維フィ ラメン 卜の大部分が一定方向に配列してい るゥヱブであり、 一般に未延伸ゥヱブを延伸することにより得られる。
本発明において、 長繊維フィラメン ト群からなる長繊維ウェブおよびそれを利 用する不織布の製造方法としては、 以下の各種の紡糸手段を使用することができ る。
ぐ紡糸手段 1 〉
延伸長繊維フィラメン ト中に、 接着性ポリマー層が表面に出るようにコンジュ ゲー 卜紡糸したフィラメ ン卜を含ませることにより、 柔軟で風合いのよい不織布 を得ることができる (接着性コンジユゲートタイブ) 。
<紡糸手段 2 >
—つの紡糸ノズル中へ延伸後の収縮性が異なる 2種のポリマ一を供給して 2層 になるように紡糸し、 紡糸したフィラメントを延伸し、 延伸後さらに収縮させる ことにより、 繊維に多数の捲縮を発生させて、 強度と伸度の大きい延伸長繊維フ イラメ ントからなる柔軟で風合いのよい直交不織布を得ることができる (嵩高コ ンジユゲー トタイブ) 。
ぐ紡糸手段 3 >
—つの紡糸ノズル中に異種ポリマーを多層に導入し、 紡糸ノズルから紡糸され たフイラメ ン卜を延伸するか、 またはウォータジヱッ 卜等による機械加工を行う ことにより、 異種ボリマーを相互に分離して、 ファインデニールの延伸長繊維フ イラメントからなる柔钦で風合いのよい直交不織布を得ることができる (コンジ ユゲー卜一混合フィ ラメ ン卜併合タイプ) 。
ぐ紡糸手段 4 >
融点が低いかまたは接着性を有するポリマーを含む異種ポリマーを别々のノズ ルから混合紡糸することにより、 融点の低いポリマーまたは接着性を有するボリ マーを融解して直交不織布を一体として接着させ、 柔軟で風合いのよい直交不織 布を得ることができる (接着性混合フィ ラメ ン トタイプ) 。
く紡糸手段 5 >
延伸後の収縮性が異なる異種ボリマーを別々のノズルから混合紡糸することに より、 収縮して緊張した状態のフィ ラメ ントと、 収縮せずまたは収縮が少ないた めに弛緩して屈曲したフィラメン卜との混合物からなる柔軟で風合いのよい直交 不織布を得ることができる (嵩高性混合フィラメントタイブ) 。
<紡糸手段 6〉
延伸後の収縮性が異なる異種ポリマ一を別々に紡糸して、 それぞれ別に実質的 に分子配向を伴わないフィラメントからなるゥュブを製造し、 それらのゥヱブを それぞれ少なくとも一方向に延伸して接合することにより不織布を得る (収縮性 ウェブ積層フィラメン卜タイプ) 。
さらに別の手段として、 延伸により自発伸張するボリマーと、 延伸により収縮 性を有するようになる通常のポリマーとを組み合わせて、 上記紡糸手段 2、 5ま たは 6の方法を行うことができるが、 自発伸張はマイナスの収縮とみなすことが できるから、 本発明では、 収縮率の異なるポリマーを用いる上記紡糸手段 2、 5 および 6に含めることとする。
これらの紡糸手段は、 それぞれ独立に使用することができる力 また組み合わ せて使用することもできる。
さらに具体的な詳細については、 実施例で詳述する。
前記紡糸手段 6の方法は、 本願第 1 5の発明に開示した強度および嵩高性に優 れた延伸長繊維不織布 (以下、 「嵩高延伸長繊維不織布」 という) の製造法に用 いるものである。 以下、 この発明について詳細に説明する。
まず、 性質の異なる複数のゥュブとして、 接合の際またはその後に行う収縮ェ 程で異なる収縮性を示すウェブを用意する必要がある。 その一つの手段 ( 法) としては、 性質の異なる複数の長繊維ゥヱブを別々に作製し、 その後それらのゥ ュブを重ね合わせ、 同時に延伸することにより、 性質の異なる延伸長繊維ウェブ の積層体を形成し、 その後にその積層ウェブを収縮させることにより、 嵩高性に 優れた不織布を製造する方法がある。
別の手段 (B法) として、 すでに延伸されている性質の異なる複数の長繊維ゥ エブを組み合わせ、 接合した後に収縮させる方式である。 この複数のゥヱブには、 延伸方向が同一の場合 (B— 1 ) および異なる場合 (B— 2 ) がある。
さらに別の手段 (C法) として、 延伸長繊維ウェブと、 延伸長繊維ウェブでは ない他の不織布とを組み合わせ、 接合後に収縮させる方式がある。
上記の方式で共通していることは、 複数のウェブの少なくとも 1種として延伸 長繊維ゥュブを用い、 延伸長繊維の収縮性を利用している点である。 すなわち、 収縮率の大きな延伸長繊維ゥュブと収縮率の比較的小さい他のゥェブとを組み合 わせ、 両者を接合した後に収縮させることにより、 収縮率の大きなゥヱブ (以下、 「収縮ウェブ」 という) の収縮によって収縮率の少ないウェブ (以下、 「低収縮 ウェブ」 という) が捲縮して嵩高性が増大する。
両ウェブは、 収縮させる温度において収縮率の差が少なくとも 1 0 %以上であ ることが好ましく、 さらに 3 0 %以上あることが望ましい。
収縮の発現は、 熱ばかりでなく、 水等の膨潤剤の存在でも可能な場合がある。 収縮性の異なるゥュブとしては、 加熱等により自発伸張するものも含まれ、 そ の場合の収縮率はマイナスとして計算する。
上記の場合において、 捲縮を生ずる低収縮ウェブとしては種々のウェブを使用 することができる。 以下にそれらを例示する。
① 収縮ゥュブと同様に延伸長繊維不織布であってもよい。
ただし、 収縮ウェブとは収縮性が異なっている必要があり、 異種ポリマーから なるゥュブ、 または同種ポリマ一からなり、 延伸温度条件、 延伸倍率、 熱処理条 件等が異なるゥヱブを用いることができる。
異種ポリマーとしては、 化学種が異なるものはもちろん、 同じボリマー種に属 するものであって、 融点、 分子量、 分子量分布、 分岐度、 タクチシティ等が異な る場合も含み、 また、 各種のコポリマーやブレンドにより異種ポリマーにするこ とができる。 各種の添加剤や可塑剤の添加によって異種ポリマーにすることがで きる場合もある。 ポリアミ ドとボリエステルのように全く異なる組合せも可能で ある。
② 収縮ウェブと低収縮ゥヱブの他のタイプの組み合わせとしては、 延伸によるフ イラメ ン卜の配列方向の相違を利用することができる。 例えば、 縦一軸延伸、 横 —軸延伸および二軸延伸のうち、 収縮ゥヱブおよび低収縮ゥヱブが互いに異なる フイラメ ン卜の配列をとる延伸方式を採用し、 さらにこれに熱処理の有無等の条 件を組み合わせることができる。 この場合に、 縦方向のウェブと横方向のウェブ とを積層しただけでは高い嵩高性は得られない。 例えば、 縱方向のウェブが収縮 ゥヱブであり、 横方向のウェブが低収縮ウェブであるときは、 横方向のゥヱブは フィ ラメ ン ト間隔が狭くなるだけであり捲縮は発生しない。 従って、 後に説明す る第 1 3図 (C ) のような積層構成にする必要がある。
③ 低収縮ゥュブが他の不織布、 例えばトウ開繊不織布、 スパンボン ド不織布、 メ ルトブロー不織布等の市販の不織布であつても、 収縮ゥュブと収縮性が異なるも のであれば用いることができる。
④ 低収縮ゥヱブの他の例として、 捲縮加工されたフィラメント トウを開繊し拡幅 したウェブを挙げることができる。 フィラメントトウの捲縮加工には、 スタフィ ングボックス法が一般に採用されている。 開繊および拡幅には湾曲バーの組み合 わせが用いられる力 広巾でしかも均一に拡幅することができる手段として、 特 公昭 4 6 - 4 3 2 7 5号および特願平 7— 2 3 1 9 0 4号に記載された方法が特 に望ましい。
ウェブの収縮性に差を付与する有力な手段として、 熱処理したウェブと熱処理 しないウェブとを組み合わせる方法がある。 すなわち、 低収縮ウェブを製造する 際に、 ウェブに十分な熱処理を施しておく。 熱処理は、 ウェブの種類により乾熱 熱処理および湿熱熱処理が用いられる。 また、 熱処理手段として緊張熱処理と収 縮熱処理があるが、 低収縮ゥェブを作製するには収縮熱処理が最も適している。 上記のように、 紡糸手段 6による場合に基本となるポリマーは、 延伸された長 繊維フィ ラメ ン トであり、 延伸伏態では実質的分子配向が生じている。 そのフィ ラメン卜としての強度は、 前記異種ポリマーからなる延伸長繊維不織布の場合と 同様に、 少なくともデニールあたり 1 . 5グラム以上であり、 望ましくは 2 . 5グ ラム、 さらに望ましくは 3グラム以上である。
長繊維フィラメントも、 前記と同様に、 実質的に長繊維フィラメン卜であれば よく、 通常の不織布に用いられる 1 0から 3 0ミ リメータ程度のものとは異なり、 1 0 0ミ リメータ以上のフィラメントがその大部分を占めるものであればよい。 従って、 最終製品の不織布中には、 一部に紡糸、 延伸、 積層工程中で切断したフ イラメン卜が含まれていてもよい。
本発明における紡糸装置としては、 従来のメルトブローダイス夕イブやスパン ボンドノズル夕イブ等の紡糸装置を使用することができ、 さらに特公平 3— 3 6 9 4 8号 (一方向配列紡糸夕イブ) ゃ特開平 2— 2 6 9 8 5 9号 (流体整流法) に示した紡糸手段等のいずれも使用することができる。
上記紡糸手段が従来のスパンボンド方式の紡糸と基本的に異なるのは、 ノズル 部直後において赤外線や熱風等により積極的に加熱したり、 またはエア一サッカ 一のエア一として熱風を用いて引取ることにより、 紡糸時にフィラメン卜が分子 配向されることを極力抑制しながら引取る点にある。 このようにして、 フィラメ ン卜の分子配向を小さくすることにより、 その後に行うゥヱブの後延伸における 延伸性を良好にする。
本発明において用いる異種ポリマーからなる分子配向された延伸長繊維フィラ メントを製造するための延伸手段としては、 従来のフィルムゃ不織布の延伸に使 用された縦延伸手段、 横延伸手段、 二軸延伸手段を使用することができ、 本発明 者らの発明に係る特公平 3— 3 6 9 4 8号公報に示した種々の延伸手段も用いる ことができる。
すなわち、 縦延伸手段としては、 ロール間近接延伸が幅を狭めることなく延伸 することができるので好適である。 他に、 ロール圧延、 熱風延伸、 熱水延伸、 蒸 気延伸、 熱盤延伸等も使用することができる。
横延伸手段としては、 フィルムの二軸延伸に使用されているテンター法も使用 することができる力 特公平 3— 3 6 9 4 8号公報に例示したブーリ式横延伸 (以下、 「プーリ方式」 と略す) や溝ロールを組み合わせた横延伸法 (溝ロール 延伸) が簡便である。 二軸延仲手段としては、 フィル厶の二軸延伸に使用されているテン夕一夕イブ の同時二軸延伸方式も使用できるが、 上記縦延伸手段と横延伸手段とを組み合わ せることによつても達成することができる。
本発明の延伸長繊維不織布の延伸倍率は 5〜2 0倍、 好ましくは約 7〜1 5倍 である。
延伸とは、 通常、 伸張することにより分子配向が生じ、 伸長後もほぼその分子 配向状態が維持されることをいうが、 本発明では、 ゴム弾性を示す物質であって、 伸張状態で分子配向を示す場合は、 伸張のための張力を開放したとき可逆的に元 に戻る場合でも、 延伸の範疇に含める。
なお本発明では、 分子配向とフィラメントの配列とは区別しており、 配向は各 フイラメ ン 卜の中で分子が平均値としてどの方向に並んでいるかを示し、 配列は フイ ラメン 卜相互の並び方をいう。
本発明は、 延伸長繊維ウェブと、 その同種のウェブまたは他の配列長繊維不織 布とを、 配列軸を交差させて積層した不織布を包含するものである。 なお、 ここ で他の配列長繊維不織布とは長繊維ゥエブも含むことができる。
本発明の配列方向の異なるゥェブを積層してなる不織布としては、 縱配列ゥェ ブまたは横配列ウェブを積層する場合に直交および斜交のいずれも用いられる。 好ましくは経緯直交した不織布であるが、 要はフィラメン卜の配列軸が交差して 積層されていればよく、 特に限定するものではない。 直交積層、 斜交積層のほ力、、 配列軸が種々の方向に交差するように多重に積層して、 平面的にあらゆる方向の 強度をバランスさせることもできる。
本発明の延伸長繊維ウェブの交差積層方式は、 本発明者らの先発明である特公 平 3— 3 6 9 4 8号公報等に示した、 横延伸ウェブと縦延伸ウェブ等を積層する 方式 (縱延伸一横延伸積層法 · · ·方式 1 ) および経緯積層機による方法 (経緯積層 法 ' · ·方式 2 ) に代表されるが、 繊維の配列軸が必ずしも直交している必要はなく、 若干斜交して積層されていてもよい。
本発明における交差積層は、 上記のように長繊維フィラメント群の配列が直交 または斜交しているものを含み、 一方向に配列した各層が互いに配列方向を異に して積層接合されていればよいが、 以下、 直交不織布について代表して説明する。 ここでフィラメ ント群の配列とは、 微視的な繊維軸の方向性ではなく、 各ゥェ ブを構成する長繊維フィ ラメ ン トの全体的な配列をいう。 すなわち、 縱配列ゥュ ブとは、 フイラメ ント全体として縦に配列しているゥヱブを意味する。
本発明においては、 延伸長繊維ウェブを積層し、 それらの層間を接合または交 絡させる手段として、 ウォータジヱッ ト法、 スルーエア一法、 接着剤接着法、 熱 エンボス法、 超音波接着法、 高周波接着法、 ニー ドルパンチ接合法、 ステッチボ ン ド法の内から選ばれる少なく とも 1種を用いることができる。
また、 本発明者らの発明に係る前記特許公報において例示したェマルジョ ン接 着や熱による全面接着法も使用できるが、 本発明の目的である柔钦で風合いのよ ぃ不織布を得るためには、 以下の手段を用いることが特に有効である。
その一つは、 熱エンボスロールによる接着、 超音波接着、 ェマルジヨ ンの接着 等による部分接着法であり、 それらの方法は柔軟で風合いのよい接着を行うため に特に有効である。 粉末ドッ ト接着、 ェマルジヨ ンのドッ 卜接着等による部分接 着法も可能である。
コンジユゲー卜フィ ラメ ン トや接着性ポリマ一を混合紡糸した場合には、 熱ェ ンボス法や超音波法が有効であり、 熱収縮性ポリマーの混合紡糸において、 接着 性ポリマーが含まれていない場合は、 接着剤粉末や接着剤ェマルジョ ンのドッ ト 接着が有効である。 この場合、 熱収縮性の異なるフィ ラメ ン トを混合紡糸すると、 柔軟性等の効果はさらに向上する。
他の接着手段として、 熱風を貫通させる接着法は、 コンジユゲートフイラメ ン 卜や接着性ポリマーを混合紡糸した場合に特に有効であり、 これらの接着性ポリ マーのフィ ラメン 卜と、 熱収縮性の異なるフィラメ ン卜とを混合紡糸すると、 さ らに柔钦性等の効果が向上する (スルーエア一法) 。 この場合、 熱風をジュッ ト 流にして、 流体縫合効果により積層接合することもできる。
さらに他の接着手段として、 ウォータジヱッ ト等の流体のジヱッ 卜流によるフ イラメン卜縫合により積層接合を行うことができる。 また、 ニードルパンチ法、 ステッチボンド法等の機械的な接合方法も、 柔钦な不織布の製法として特に有効 である。 この場合、 熱収縮性の異なるフィ ラメ ン トを混合紡糸すると、 機械的な 接合の後にスルーエアー法等の熱加工を行うことにより、 さらに柔軟に仕上げる ことができる。 この機械的接合方法では、 フィ ラメ ン トを縫合させる効果の他、 同一ノズルから異種ポリマーを多層にして紡糸した場合には、 延伸後に異種ポリ マーを分離したり、 さらにフィラメントを積極的に割繊することも可能であり、 ごく細いファイバ一を得られる効果もある。
本発明において、 異種ポリマーは不織布内部に均等に分布している必要はなく、 例えば接着性フィラメン卜の場合には表面や界面に多く存在させたり、 収縮性を 異ならせて屈曲するようにしたフィラメン卜の場合には異種ボリマーを内部に多 く含ませるなど、 種々の組合せが可能である。
本発明の積層を含む不織布は、 織布と同等の強度を有する点に特徴があり、 不 織布として縱または横の強度がそれぞれ 0 . 5 g Z d以上であり、 望ましくは
O . S g Z d以上、 さらに望ましくは 1 . 2 g Z d以上である。 強度表示をデニ一 ル当りとしたのは、 通常の平方センチメートル当りあるいは 3 0ミ リ幅当りの表 示では、 それぞれ坪量や嵩密度が異なる不織布の間の比較が困難なためである。 従来の不織布の強度は、 比較的強度があるとされているスパンボンド不織布に おいても、 縱方向は 0 . 4〜0 . 8 g Z d程度である力 橫方向は 0 . 3 gノ d以下 であり、 織布の強度に比べて著しく劣る。
不織布の強度は、 一方向にのみ大きくても実用上は不十分であるため、 実用性 能の評価として、 縱方向と横方向の破断仕事の和を 「二軸破断仕事」 として用い ることにした。 この数値が大きいことは、 織布と同様の利用分野、 すなわち合成 皮革や人造皮革の基布、 土木用不織布、 衣類、 包装材料、 建築のルーフィ ング資 材等として実用性が高いことを意味する。
積層の配列方向により縱方向または横方向が最も強度が大きいとは限らない力 <、 煩雑さを避けるため、 また縱および横方向を重視する用途が圧倒的に多いため、 上記の評価方法を用いた。
本発明は、 前記異種ポリマーからなる延伸長繊維不織布の片面または両面に他 の不織布を積層して絡合したもの、 あるいは他の不織布を芯材として両面に上記 延伸長繊維ゥ ブを含む不織布を積層して絡合したものを包含する。
本発明で用いる他の不織布とは、 天然繊維、 再生繊維または合成繊維からなる ウェブおよびそれを用いた不織布を包含し、 具体的には、 木綿、 リ ンター、 パル ブ等の天然繊維、 レーヨン、 キュブラ等の再生セルロース繊維、 アセテート等の 半合成セルロース繊維、 ポリエチレン、 ボリプロピレン、 ボリエステル、 ポリア ミ ド、 ポリアクリロニトリル、 ァクリル、 ポリビニルアルコール等の合成繊維ま たはポリウレタン系エラストマ一繊維、 コンジュゲート繊維、 高圧水流により超 極細繊維に分繊される分割型複合繊維等のいずれか、 あるいはそれらの混合物を 原料としたものである。 ウェブを形成する方法としては、 再生繊維等を湿式紡糸 したものまたは合成繊維を通常の方法により溶融紡糸したものをカツ トし、 カー ド機により繊維を引き揃えてウェブに形成する方法、 あるいは熱可塑性樹脂を紡 糸し直接ウェブを形成させるスパンボンド法ゃメル卜ブロー法、 さらに天然繊維 を力一ド機により引き揃えてウェブに形成したりまたは叩解して抄紙する方法等 が挙げられる。
上記他の不織布に用いる繊維の単糸繊度は好ましくは 0 . 0 1 〜 1 5デニール、 より好ましくは 0 . 0 3〜5デニールであり、 繊維の長さは好ましくは 1〜 1 0 0 m m、 より好ましくは 1 0〜6 O m mである。 単糸繊度が 0 . 0 1デニール未満で はリ ン トフ リー性に劣り、 1 5デニールを越えると風合いに劣る。 また繊維の長 さが l m m未満では絡合が不十分で強度が低く、 1 0 O m mを越えると分散性が 悪くなり好ましくない。
また、 ウェブの坪量は好ましくは 1 0〜 1 5 0 g/m2、 より好ましくは 2 0〜 5 O g/m2である。 坪量が 1 O g/m2未満では高圧水流処理の際に繊維の密度にムラ が生じ、 また 1 5 O g/m2を越えると薄手軽量性に劣るものとなるため、 いずれも 好ましくない。
また、 不織布の風合いを示す特性として、 嵩高性が挙げられる。 従来の不織布、 特に短繊維の乾式不織布では嵩高性が高いものも多い。 しかし、 嵩高性の大きい、 すなわち嵩密度の小さいものは強度が弱く、 上述の二軸破断仕事が大きい値を示 すものはない。 従って、 織布と同様の用途に使用できるものはなかった。 本発明 は、 引張強度や二軸破断仕事を大きく保ちつつ、 嵩高性の大きい不織布を製造す ることを可能にしたものである。
本発明で用いる縱ゥェブは、 縦方向の配列を維持しつつゥェブ幅を拡幅して使 用することもできる。 また、 橫ゥヱブも縱方向に延伸したり、 縮充することによ n
- 1 ί -
り、 坪量をコントロールすることができる。
以下、 本発明を添付図面に基づいてさらに説明する。
第 1図は、 本発明において使用する、 異種ポリマーを同一のノズルから押し出 して得たコ ンジユゲートフイラメ ン 卜の構造を示す部分断面拡大斜視図である。 これらの構造のフィ ラメ ン トは、 本発明に特有なものではなく、 通常の不織布に も用いられている。 ただし、 本発明は以下に詳述するように、 シート状に形成し たゥヱブをゥヱブ状のまま延伸したり、 さらにその後フィラメン卜の配列が交差 するように積層する点に特徴がある。 すなわち、 本発明の不織布を構成するフィ ラメン トは、 十分に延伸されているので、 通常の不織布の場合よりもコンジュゲ —トフイ ラメ ン 卜の特性を発揮し易い。
第 1図 ( A ) および ( B ) は芯鞘構造のコンジユゲー卜フィ ラメ ン トの例であ り、 図中の aは不織布の主ポリマー、 bは接着性ボリマーを示す。 第 1図 (B ) の構造では、 フィ ラメ ン トに、 次に述べる捲縮性も付与することができる。
第 1図 (C ) および (D ) は、 サイ ドバイサイ ド型のコンジユゲートフイラメ ン 卜の例であり、 フィ ラメ ン トを捲縮させ、 不織布に伸縮性を付与するために使 用される。 従って、 bとしては、 延伸後の熱収縮性の点で aと異なるボリマーが 用いられる力 \ 接着性ポリマーであってもよい。
第 1図 (E ) 、 (F ) 、 (G ) 、 (H ) および ( I ) は、 ファインファイバー を得るために異種ポリマ一を用いた紡糸フィ ラメ ン トの例を示す。 第 1図 (E ) は、 異径複合のフィ ラメ ン トの例であり、 延伸やウォー夕ジヱッ 卜等で分繊を行 う場合に特に適している。 第 1図 (E ) 〜 ( 1 ) の構造を有するフィラメントか らファインファイバーの不織布を得る例は公知であるが、 本発明は、 これらのフ イラメン卜からなるゥヱブをその後さらに延伸し、 長繊維のまま不織布として使 用する点において、 従来の不織布のように短繊維状で使用するものとは基本的に 相異する。 また、 本発明は延伸長繊維ウェブを交差積層して用いる点においても 従来の不織布とは異なるものである。
第 1図 ( F ) 、 ( G ) 、 ( H ) および ( I ) の aは、 後に溶解して除去しても よいし、 延伸やその後の機械処理等で分割してもよい。
第 2図は、 第 1図 (B ) 、 (C ) または (D ) の構造のコンジユゲートフイラ メ ン トを捲縮させて本発明の不織布を構成するゥュブとした例を示す模式図であ 。
第 2図において、 ゥヱブ 1の中には種々の捲縮形態を有するフィラメ ン卜が示 されている。 フィラメン ト 2は波型に屈曲しており、 フィラメ ント 3はコイルス プリ ング状であり、 フィ ラメン 卜 4は細かく不規則に屈曲して捲縮している例を 示す。 これらのフィラメ ントの方向は、 微視的にはランダムであるが、 フィ ラメ ント全体としてはウェブの縦方向 (図の矢印方向) と一致している。
第 2図におけるフィラメン卜の捲縮は略図的に示したものであり、 現実の不織 布では、 これらの 1つのタイプではなく、 異なる夕イブが混在することが多い。 また、 第 2図のゥヱブ 1においては、 フィ ラメ ン ト全体として縱方向に配列し ている例を示しているが、 捲縮フィ ラメ ン トが横方向に配列しているゥヱブも同 様に製造することができ、 本発明はこれら縦配列ウェブと横配列ウェブとを交差 積層して接合した不織布も含むものである。
第 2図のように捲縮した延伸フィラメン卜を製造するためには、 縱配列フィラ メ ン 卜の場合には縱方向に、 橫配列フィ ラメ ン 卜の場合には横方向に、 それぞれ 十分遊離した伏態を保持しながら熱を加えて捲縮させることが必要である。
第 3図は、 異種ポリマ一を同一のノズルから押出す装置の例を示す略示側面図 である。
異なる樹脂 1 1および 2 1を、 それぞれ別の押出機 1 2および 2 2を用いてギ ァポンプ 1 3および 2 3により押出し、 多数のコンジュゲ一トノズル 3 1 (後記 の第 4図 (A ) ) が配列したダイス 3 2を通してコンジユゲー 卜フィ ラメ ン ト群 3 3を成形する。 このフィ ラメ ン ト群 3 3を、 例えばスパンボンド不織布の製造 において使用されているエア一サッカー 3 4を用い、 多量のエア一 3 5により吸 引する。
吸引されることにより紡糸されたフイラメ ン卜の延伸性が良好になるようにす るためには、 吸引の際に分子配向を抑制する必要がある。 そのためには、 エア一 サッカー 3 4におけるエアー 3 5を、 スパンボンド不織布の場合のように多量に 使用せず、 また熱風として使用することが望ましい。 また、 エアーサッカーで冷 風を使用した場合には、 ノズルから押出されたフィ ラメ ン卜群 3 3を赤外線や熱 風、 保温筒など (図示せず) を使用して、 積極的または消極的に加熱することが 望ましい。
エアーサッカー 3 4で ドラフ 卜されたフィ ラメ ン 卜はコンベア 3 6上に集積し て縱ゥヱブ 3 7となり、 巻取機 3 8により巻取られる。
この場合、 コンベア 3 6を図のように傾斜させることにより、 フィ ラメ ン トを 効率よく縱に配列することができる。 縦に配列したウェブ 3 7を縦に延伸するこ とにより縦延伸されたゥヱブを得ることができる。
第 4図 (A ) は、 第 3図の紡糸に使用するコンジユゲートスパンボンド用のダ イスの橫断 ΐΓα図である。 ダイス 3 2に形成されたノズル 3 1から、 前記第 1図の 各種コンジユゲー卜フィ ラメ ン トが紡糸される。
また、 第 4図 (Β ) に示すように、 樹脂 1 1を押し出すノズル 1 4と樹脂 2 1 を押し出すノズル 2 4が千鳥掛に配列されたダイス 3 2 aを使用することもでき る。 紡糸されたフィ ラメ ン トは、 上記と同様に延伸され、 異種のフィラメントが 混合した延伸ウェブとなる。
第 5図は、 第 3図に示す紡糸において、 メルトブロー紡糸装置を応用した場合 の例を示す略示側面図である。
第 6図 (Λ ) は、 第 5図におけるメルトブロー紡糸装置のコンジュゲートダイ ス 4 1の例を示す縱断面図であり、 第 6図 ( B ) はコンジュゲートダイス 4 1の 部分分解斜視図である。 第 6図 (A ) において、 異なる樹脂 aおよび bは、 ノズ ル 4 2を通り一体となって、 フイラメント状に押出される。 そのフィ ラメ ン トは スリ ッ ト 4 4および 4 5を通る熱風で加熱され、 熱風の勢 L、により吹き飛ばされ 。
第 6図 ( A ) および (B ) は、 コンジュゲート方式のメルトブローダイスの例 であるが、 複数のダイスを使用し、 樹脂 a、 bをそれぞれ別のノズルから吹き出 すよ όに導いて、 混繊用フィラメントにすることもできる。
メルトブ口一方式の利点としては、 押出し時から熱風発生器 4 3による熱風を 使用するので、 フィ ラメ ン トの分子配向が小さく、 後の延伸性が良好なこと、 お よびデニール値の小さいフィラメン卜が得られることが挙げられる。
第 7図は、 横延伸用異種混合フイラメントウェブの製造装置の例を示す略示側 面図である。
異なる樹脂 1 1および 2 1を、 それぞれ別の押出機 1 2および 2 2を用いてギ アポンブ 1 3および 2 3により押出し、 多数のコンジユゲー卜ノズル用のコンジ ユゲー卜ダイス 5 1— 1〜 5 1— 6をライン方向に並べる。 ノズルから出たフィ ラメ ン ト 5 2は、 熱風 (図示せず) の作用で、 フイ ラメ ン 卜の進行方向と垂直の 方向に飛散し、 横に配列したフィラメン卜の積層体 5 3を形成する。
第 8図は、 第 7図の装置におけるダイス 5 1の構造の例であり、 本発明者らの 前記公報、 特公平 3 — 3 6 9 4 8号、 特開平 2— 2 4 2 9 6 0号等に記載された 方式であって、 塗装のスプレーガン状のダイスを使用して一方向にフィラメ ント が配列するように紡糸させるところから 「一方向配列紡糸方式」 と称している。 第 8図 ( A ) は、 ダイス 5 1の底面図、 第 8図 ( B ) はダイス 5 1の先端部の 正面断面図、 および第 8図 (C ) は (B ) に示したダイス先端部の側面図である c 第 8図において、 樹脂 a (樹脂 1 1が押出機 1 2から押し出され、 ノズルに導 かれた樹脂) および樹脂 b (樹脂 2 1が押出機 2 2から し出され、 ノズルに導 かれた樹脂) からなるコンジユゲートフィ ラメ ン トを製造する場合に、 スプレー ガン状のダイス 5 1のノズル 5 5の周辺に 1次エア一ノズル 5 6— 1〜5 1— 6 が設けられ、 1次エアー (熱風) によりフィ ラメ ン ト 5 2が振動しているところ に、 2次エアーノズル 5 7— 1および 5 7— 2から吹き出される熱風が衝突し、 衝突した 2次エアーは、 2次エアーの吹き出し方向と垂直の方向へ飛散し、 フィ ラメン卜 5 2は、 その 2次エアーの飛散する方向に沿って配列する。
第 8図 (B ) および (C ) において、 樹脂 aは導管 5 8を通ってダイス 5 1中 へ導かれ、 ダイス 5 1中で、 樹脂 aおよび bは、 aを芯とし、 bを鞘とする流れ になりノズル 5 5へ導かれる。
第 8図 (B ) および (C ) は、 フィ ラメ ン ト 5 2がコンベア 3 6の進行方向に 対して垂直の方向 (横方向) に配列する状態を示している。
第 7図においては、 コンジユゲートダイス 5 1— 1〜5 1— 6を使用したが、 コンジユゲー卜ダイスを使用せず、 例えばダイス 5 1— 1、 5 1— 3および 5 1 — 5からは樹脂 1 1を吹き出し、 ダイス 5 1— 2、 5 1— 4および 5 1— 6から は樹脂 2 1を吹き出すことにより、 異種フィラメン 卜の混合ゥヱブを製造するこ ともできる。
この場合に、 樹脂 2 1が接着性ポリマーであるときは、 最先端のダイス 5 1— 1と最後尾のダイス 5 1一 6のみに樹脂 2 1を使用し、 樹脂 1 1を中間のダイス で使用することにより、 積層フィラメントウヱブの表面層を接着性ポリマー 2 1 のフイラメ ントとすることも可能である。
横延伸が効率的に行われ、 横方向に十分配向してその強度が大きい延伸フィラ メントウヱブを製造するためには、 横方向に配列したフィラメン卜を紡糸する必 要がある。
橫配列ウェブの製法は、 第 8図に示した例に限定されず、 特開平 2— 2 6 9 8 6 0号に示したノズルや、 特開平 2— 2 6 9 8 5 9号に示した例 (流体整流法と 仮称する) なども使用することができる。
第 9図は経緯積層後の接着方式として、 熱エンボス接着を用いる例を示す略示 側面図である。
第 9図において、 異種ポリマーからなる縦延伸ウェブ 6 1と横延伸ゥヱブ 6 2 をニップロール 6 3 aおよび 6 3 bで引取りながら、 エンボスロール 6 4 aと受 ロール 6 4 bで付型する。 エンボスロール 6 4 aおよび受ロール 6 4 bは加熱さ れており、 その熱でゥヱブを収縮させて、 捲縮を発生させることができる。 その 場合には、 引取りニッブロール 6 6 aおよび 6 6 bは、 エンボスロール 6 4 aお よび受ロール 6 4 bより周速度を小さくする必要がある。 エンボス処理を行うこ とにより、 ウェブ 6 1および 6 2は接着して 1枚のゥヱブ 6 5となる力 引取ら れた積層ゥヱブ 6 7は、 さらに次に述べるスルーエア一等により嵩高加工を施す 場合がある。
受ロール 6 4 bは、 平坦面の金属ロールであっても、 硬いゴムロールであって もよいが、 受ロールをエンボスロールとすることにより、 さらに嵩高にすること もできる。
付型するエンボスパターンの例を第 1 0図 (A ) 、 ( B ) 、 ( C ) および (D ) に示す。
第 9図の熱ェンボス接着により、 本発明の嵩高延伸長織維不織布を製造する場 合には、 例えば、 6 1としてス トレー トポリマーからなる縱延伸ウェブに熱処理 を行った低収縮ゥヱブを用い、 6 2としてコポリマーからなる縦延伸ゥヱブに熱 処理を加えていない収縮ウェブを用いる。 これらのゥヱブにエンボス処理を行う と、 収縮ゥヱブ 6 2のフィラメントがエンボスロールの熱で収縮し、 低収縮ゥェ ブ 6 1が
収縮せずに屈曲し、 一体化したゥヱブ 6 5は嵩高性が增大する。
ここで、 収縮ウェブ 6 2がゴム弾性を有する場合には、 ウェブ 6 2がニップロ —ル 6 3 a、 bに接触する前にもう 1組のニッブロールを設け (図示せず) 、 そ の二ップロールとニップロール 6 3との間でゥヱブ 6 2を縦に伸張することによ り、 ゥヱブ 6 5の嵩高性を更に増大することができる。
第 1 1図は、 スルーエアー接着装置の例を示す略示側面図である。 縦延伸ゥェ ブ 6 1および橫延伸ウェブ 6 2の少なくとも一方は接着性ポリマーを含むウェブ であり、 両ゥヱブはニッブロール 6 3 aおよび 6 3 bに引取られ、 ターンロール 7 1を経て熱風室 7 2へ人る。 熱風室 7 2内には、 表面を金属ネッ トで覆った籠 ロール 7 3が回転しており、 熱風が籠ロールの内側から、 熱風ノズル 7 4 a、 7 4 bおよび 7 4 cを経て、 積層されたウェブ 7 5を貫通する。 熱風室 7 2内の 籠ロール 7 3を離れたウェブは冷却ロール 7 6を経て、 ニッブロール 6 6 aおよ び 6 6 bで引き取られる。 なお、 この場合も嵩高加工を行う場合は、 冷却ロール
7 6およびニップロール 6 6 a、 bの周速度は、 籠ロール 7 3の周速度より小さ くすることが望ましい。
スルーエア一により縱延伸ゥヱブ、 横延伸ゥヱブ等を接合しながら嵩高加工を 行うには、 積層されたゥヱブが縦、 横共に収縮することが望ましい。 第 1 2図は、 ウェブを縱橫共に収縮させながら熱風を貫通させる装置の例を示し、 第 1 2図 ( A ) は装置の平面図、 第 1 2図 (B ) は装置の側面図である。
一対の回転円盤 8 1 aおよび 8 1 b力 ウェブの進行方向に向かって軌道が狭 くなるように向かい合つており、 モータ M l aおよび M l bによりそれぞれ回転 軸 8 5 aおよび 8 5 bを経て駆動される。 この両円盤の周上には多数のビン
8 2 aおよび 8 2 bが植えられている。 縦延伸ウェブ 6 1と横延伸ウェブ 6 2は、 夕一ンロール 8 3 aおよび 8 3 bを介して、 回転円盤上のビン 8 2 aおよび
8 2 bに突き刺して把持される。 その直後に、 ゥヱブ 6 1および 6 2のビンで把 持した部分のさらに外側の両耳部を、 ニッブロール 8 4 aおよび 8 4 bで把持す る。 ニッブロール 8 4 aおよび 8 4 bは、 モータ M 2 aおよび M 2 bでそれぞれ 駆動される。 回転円盤 8 1 aおよび 8 1 bの周速度よりも、 ニッブロール 8 4 a および 8 4 bのウェブの送り速度が大きくなるようにすると、 両回転円盤間の積 層ウェブ 8 6は縱方向に折り畳まれた伏態になる。 両円盤 8 1 aおよび 8 1 bは、 前記の通り互いに軌道を狭くするように回転しており、 両円盤の間から熱風を吹 き出して (図示せず) 、 円盤とウェブに囲まれた空間の空気を高温に保つことに より、 両ゥュブを縱および横方向に収縮させ、 また両ウェブを接合する。
これらのゥヱブを橫方向に収縮する方式としては、 市販のビンテン夕一を使用 することも可能であるが、 第 1 2図の方式は、 簡便な装置であり、 しかも縱橫共 に収縮させ得る点で優れている。 このように縦横を同時に収縮させる簡便な装置 の他の例は、 本発明人らの前記公報、 特開平 6— 5 7 6 2 0号に示されている。 第 1 3図は、 本発明の嵩高延伸長繊維不織布を模式的に示す部分拡大断面図で ある。
第 1 3図 (A ) は、 ゥヱブ cとゥヱブ dのフィ ラメ ン トの配列方向が基本的に 同一であり、 またゥヱブ cとゥヱブ dが厚み方向に重なっている場合を示す。 ゥ エブ cのフィラメント 5は、 延伸不織布を構成する延伸長繊維ウェブを形成する ものであり、 穑層および接着後に収縮しており、 比較的硬いものである。 ウェブ dのフィラメント 6は、 ウェブ cのフイラメン卜 5が収縮する際にあまり収縮せ ず、 そのために捲縮して、 部分的に多数の屈曲を有する形態となっている。
第 1 3図 (B ) は、 第 1 3図 (A ) と同様である力、 厚み方向にウェブ d、 ゥ エブ cおよびゥヱブ dと 3層を重ねた場合を示す。 この場合、 ゥヱブ cは収縮し たウェブであるため、 一般に軟化点が低く、 接着性を増強する役割を期待するこ と こ',さる。
第 1 3図 (C ) は、 第 1 3図 (Α ) に他の配列方向を示すウェブ eが積層され、 ウェブ eのフィラメントと、 ウェブ cおよびウェブ dのフィラメントとの S己歹 IJ方 向が直交する場合を示す。 例えば、 ゥュブ cおよびウェブ dが縱延伸長繊維ゥェ ブであり、 ゥヱブ eが橫延伸長繊維ゥヱブの場合である。 ゥヱブ eのフイラメ ン ト 7を点で示したのは、 フィラメン卜の配列方向が紙面に垂直なためである。 第 1 3図 (D ) は、 ウェブ ί と第 1 3図 (Α ) のウェブ dとが積層され、 ゥェ ブ f が収縮した二軸延伸長繊維ゥヱブである場合を示す。 ゥヱブ f のフイラメ ン ト 8を点および短線で示したのは、 二軸延伸したウェブのフィ ラメ ン トの配列方 向は平面的にランダムであることによる。
なお、 第 1 3図 (D ) とは逆に、 捲縮したフィ ラメ ン トを二軸延伸長繊維ゥェ ブで形成することもできる。
また、 ウェブ f として、 短繊維不織布や在来のランダム不織布を用いる場合に も、 第 1 3図 (D ) と同様な図で示すことができる。
上記において、 例えばフィ ラメ ン ト 5は、 主として自己の属するウェブ cに属 する力 <、 一部は他のウェブ dにも混入する。 特に屈曲するフィ ラメン 卜、 例えば ウェブ dのフィラメ ン ト 6は、 他のウェブ c、 eおよび ίなどに混入する割合が 多い。
第 1 4図は、 本発明の嵩高延伸長繊維不織布の一例を示す顕微鏡写真 (倍率: X 2 0 ) である。
写真は、 ポリプロピレンからなる延伸不織布の例 (後述の表 7、 実施例 X — 1 ) であり、 表面に捲縮したフィ ラメ ン ト群があり、 その裏に実質的に捲縮していな いフィ ラメ ン ト群を見ることができる。 中央部にエンボス接着により一部溶融し ている部分も昆ることができる。
写真には、 捲縮したフィラメ ントが集合している例を示したが、 延伸不織布を ブラッシングしたり開繊することにより、 分散されたフィ ラメ ン トとすることも できる。
第 1 5図は、 本発明の嵩高延伸長繊維不織布の製造法における前記 Α法の一例 を示す略示側面図である。
ウェブ 9 1および 9 2は、 延伸後の収縮性が異なる未配向の長繊維フィラメ ン 卜からなるウェブである。 この両ウェブはニッブロール 9 3 a、 9 3 bにより延 伸装置に導入され、 予熱ロール 9 4で予熱された後、 ゥヱブ 9 5として延伸ロー ル 9 6に導かれる。 延伸ロール 9 6にはゴム製のニッブロール 9 7が設置されて おり、 延伸ロール 9 6と延伸ロール 9 9の間で縦延伸が行われる。 延伸間距離は、 延仲ロール 9 6とニッブロール 9 7との二ップ点 Pと、 延伸ロール 9 9とその二 ッブロール 1 0 0との二ップ点 Qとで定められるウェブの走行距離 P Qであり、 その間でゥヱブ 9 8は 1段延仲される。
2段延仲が必要である場合は、 延伸ロール 9 9と延伸ロール 1 0 2の間で延伸 を行う。 この場合の延伸間距離は、 点 Qおよび延伸ロール 1 0 2とニッブロール 1 0 3との二ッブ点 Rで定められるゥヱブ 1 0 1の走行距離 Q Rである。
A法の場合に、 一般に熱処理は必要でないが、 縱延伸において熱処理を必要と する場合は、 ウェブ 1 0 4を熱処理ロール 1 0 5により熱処理することもできる。 延仲されたウェブ 1 0 4は、 ニッブロール 1 0 6 a、 1 0 6 bに引き取られ、 異種ゥヱブの積層延伸されたゥヱブ 1 0 7となる。
A法においては、 その後必要に応じて、 さらに熱エンボスやウォー夕ジェッ ト 等で接合を行い、 その後に収縮処理をすることにより嵩高延伸長繊維不織布とす ることができる。
上記ウェブの縱延伸においては近接延伸が適当である。 延伸間距離が長いと、 ウェブを構成するフィラメン卜のうちで延伸間距離を越える長さのものが少ない ために、 延仲されるフィ ラメン トの割合が少なくる。 そのため、 大部分のフイラ メントは延伸されることなく、 フィラメン卜の間隔が増大して厚みが減少するの み結粜となる。
従って、 装置としては、 延伸間距離ができるだけ短いものがウェブの縦延伸に 適する。 第 1 5図に示した延伸ロールに対して、 ニッブロール 9 7、 1 0 0およ び 1 0 3を設置することにより、 延伸開始点が固定されて延伸が安定するので、 より高倍率に延伸することができる。 例えば、 ニッブロール 9 7がないと、 延伸 開始点は P点より予熱ロール 9 4側に移動し、 延伸間距離が長くなるのみならず、 延伸開始点が移動して延伸 Jれの原因となる。
縱延仲に適するゥヱブとしては、 上記の原理から、 できるだけフィ ラメン トが 縦に配列しているものがよい。 すなわち、 フィラメ ントが延伸方向に配列してい るので、 延仲間距離が一定でも、 両端がニッブ点の間に把持されるブイラメ ン卜 の割合が多くなり、 また、 延伸後のウェブの強度が向上する。 _ 2g _
発明を実施するための最良の形態
以下、 実施例により詳細に説明する。
実施例に用いた樹脂の種類を表 1に示す。
試料の試験方法は以下の通りである。
くウェブの強度および伸度 >
ウェブについては、 延伸方向の強度および伸度のみを測定する。
ウェブから延伸方向に約 1000デニールになるようにサンプリングした後、 メータ当たり約 100回の撚を掛けた後、 その伏態で強度および伸度を測定する。 撚を掛けるのは、 延伸したままのゥヱブではフィラメント間の抱合性が悪く、 真 のフイラメ ン卜の強度の平均値に対応しない場合があるからである。
測定条件は、 チヤック間隔 1 0 Ommおよび引張速度 10 Omm/分とする。
<ウェブの収縮率〉
ウェブをポリプロビレン系の場合には 130。C、 ポリェチレンテレフ夕レート 系の場合には 190ての熱風中に 3分間放置した後の熱収縮率を測定する。
<不織布の強度および伸度〉
不織布から 3 Omm幅、 チャ ック間隔 10 Ommの試料を作製し、 引張速度 10 Omm/分で測定する。
強度は、 測定された力を試料不織布のデニール数で割った値 (gZd) で表す。 強度の表不方法としては、 一定幅 (例えば 3 Omm幅) 当りや、 単位面積 (例え ば mm2) 当りの力で表すこともできるが、 坪量や厚み、 嵩高性などが極端に異な る試料を比較する場合には適当でない。
ぐ接着強度 >
接精強度とは、 縱ウェブと横ウェブとの接合力である力《、 ウェブの種類、 接合 方式、 嵩高性等が全く異なる場合には、 種々の要因が複合されているので、 一義 的に表現することは困難である。 ここでは簡便のため、 経緯穑層ゥヱブの 45度 方向の強度で代表させる。 すなわち、 チャック間隔 100mm、 幅 5 Ommの試 料を 45度方向に切り出して、 引張速度 10 OmmZ分で測定する。
ぐ 2軸破断仕事〉
2舢破断仕事は、 前記の通り下式により定義し、 布の破断エネルギーの尺度と した。
2軸破断仕事-縦破断仕事 +横破断仕事
縦破断仕亊は、 ここでは次のように定義する。 すなわち、 積層後の接合ウェブ の縦方向の強度 (gZd) および伸度 (L一 L0) ZL0 (Lは破断時の長さ、 Loは元の長さ) を求め、 強度 X伸度 2の値を縦破断仕事とする。 横破断仕事も 同様である。 本来、 強度一伸度曲線の面積で示す方式を用いるべきであるが、 煩 雑さを避けるために上記の方式を用いた。 本発明のように延伸したウェブの場合 には、 このように強度と仲度の積を用いて比較しても、 傾向に差異は生じない。 ぐ嵩密度〉
嵩密度は、 断面積 lcm2の厚み計を用いて、 一定荷重 (300g/cm2) の下で厚 み (cm) を測定し、 坪量 (g/cm2) を用いて下式から算出する。
嵩密度 (gZcc) = 坪量 Z厚み
<実験例 I— 1~6、 II一 1~4〉
表 1に記載した樹脂から 2種類 ( 「樹脂 1」 および 「樹脂 2」 とする) を選ん で紡糸し、 それを延伸してウェブを得た。 製造工程の特徴およびウェブの性能を 表 2に示す。
表 2に記載したウェブは、 単体のまま本発明の不織布として実用に供すること ができるが、 その際は、 ウェブにエンボス加工ゃェマルジヨン接着等の加工を施 して、 一体化する必要のある場合が多い。
く実験例 111ー1〜3、 IV— 1—3〉
表 1に記戲した樹脂から 1種の主ポリマーのみを用いて紡糸し、 延伸してゥェ ブを得た。 製造工程の特徴およびゥェブの性能を表 3に示す。 - 2¾ -
Figure imgf000030_0001
注(1) : メルトフローレ一卜 (J I S K6758) (2) :極限粘度 表 2
樹 脂 1 樹 脂 2 紡 糸 延 伸 ウ ェ ブの性能
:^^?リ 割合 割合 フィラメント 平 均 坪量 伸度 種 頹 種 類 Π· fife 装置方式 延髓 倍率
7"—一ノレ力 Ί口 J (gα) コンジュゲ'一卜 スパンボンド ロー
I -1 PP-1 75 PP-4 25 8.5 0.3 縦 8 3.2 15
図 1(B) 図 3、図 4(A) 伸
スパンボンド ローノ^^
1-2 ΡΡ-2 80 20 混 織 8.0 0.7 縱 12 3.0 17
図 3、図 4(B)
コンジュゲ'一卜 メルトブロー
1-3 PET - 1 60 PET— 2 40 7.2 0.1 縱 7 2.8 11
図 1(D) 図 5、凶 6
スパンボンド 口—ノ!
1-4 PET - 1 60 PET - 2 40 混 織 7.0 2.1 縱 18 2.2 14
図 3、図 4(B)
コンジユゲー卜 スパンボンド ローク L¾
1-5 PET - 1 70 30 6.5 0.8
一 1 図 1 (C) 図 3、図 4(A) m 5 2.0 10 コンジユゲー卜 スパンボンド 口—ノ
1-6 HDPE 80 LLDPE 20 8.5 0.7
凶 1 A) 伸 . 12 3.0 17 コンジュゲート —綱冽 ブ—リ
Π - 1 PET - 1 50 PP-1 50 7.5 0.2 横 17 2.9 15 凶丄 1ノ 凶 , 、
変せ ρετ ブーリ
Π - 2 PET - 1 85 15 混 織 7.0 0.1 8 2.5 14
-1 図 7、図 8 2謝扁
コンジユゲー卜 プーリ
Π - 3 PP-1 50 PP-4 50 7.5 0.2 15
図 1(G) 図 7、図 8 2應伸 横 20 2.9
溝ロー湖申
Π - 4 PET - 1 60 PET - 2 40 混 織 エアー整流 6.1 1.2 横 28 2.1 38
表 3
Figure imgf000032_0001
く実施例 V - 1〜 8 >
表 2および表 3に記載したゥュブを用いて経緯積層および接合を行い不織布と した。 製造工程の特徴および不織布の性能を表 4に示す。
<比較例 VI— 1 , 2、 VI I - 1〜4〉
比較のため、 異種ポリマーを使用しない従来法による長繊維経緯積層不織布 (特公平 3— 3 6 9 4 8号) や、 従来法の長繊維紡糸型の不織布であるスパンボ ンド不織布、 メルトブロー不織布およびフラッシュ紡糸不織布、 ならびに代表的 な産業用織布について、 物性値を表 5に示す。
従来法の市販不織布としては、 坪量 5 2 g/m2の比較的厚い不織布を使用したが、 薄いものでは坪量のばらつきが大きく、 比較データとして適当でないためである。 く実験例 VI I I— 1〜4、 IX— 1〜4〉
表 1に記載した樹脂から 1種のポリマ一を選んで紡糸し、 延伸および熱処理を 行って、 嵩高延伸長繊維不織布の製造に用いる延伸長繊維ゥュブを得た。 製造ェ 程の特徴およびゥュブの性能を表 6に示す。
なお、 表中のゥュブの詳細な製法については、 本発明者らの出願による特公平 3 - 3 6 9 4 8号公報に記載されている。
く実施例 X - 1、 XI - 1 ~ 7 >
表 6に記載した延伸長繊維ウェブおよびその他の不織布を用いて、 積層、 接着 および収縮を行い、 嵩高延伸長繊維不織布を得た。 製造工程の特徴および不織布 の性能を表 7に示す。
表 4
Figure imgf000034_0001
注 (l): ¾fgの lは、 伸ウェブと 伸ウェブを ίϋ。 ¾¾2は、 «伸ウェブ^ mm ^
表 5
Figure imgf000035_0001
注 (1) : 210d、 マルチフィラメント
表 6
Figure imgf000036_0001
表 7
Figure imgf000037_0001
表 7の実施例 X— 1は、 延伸過程で積層した場合 (A法) の例であり、 ウェブ VI I I— 1と VI I I— 2とを、 延伸前に第 1 5図の近接延伸機で重ねて 1 1 0 °Cで 8 . 2倍に縦延伸し、 延伸したゥヱブを第 9図のエンボス装置で処理することによ り捲縮を発生させたものである。
実施例 XI— 1から XI— 4までは、 延伸長繊維ゥヱブを積層して収縮させた場合 ( B法) である。
実施例 XI— 5は、 捲縮するゥヱブがフィラメン ト トウを開繊拡幅したゥヱブで ある場合の例を示した。
実施例 XI - 6は、 捲縮するゥヱブが市販のポリブロビレン製スパンボンド不織 布 (坪量 2 O g/m2;商品名: P Pスパンボンド、 旭化成工業 (株)製) である場合 の例を示した。
実施例 XI— 7は、 収縮ウェブとしてゴム弾性不織布 (坪量 2 O g/m2;商品名: ェクスパンシオーネ、 鐘紡(株)製) を使用し、 第 9図のエンボス装置において、 上記ゥヱブ 6 2がニッブロール 6 3 a、 bに接触する前に縦方向に 4倍に延伸し た場合の例である。
表 5の比蛟例の従来法による経緯積層不織布やスパンボンド不織布、 メル卜ブ ロー不織布等と比較すると、 表 7の不織布は、 強度および嵩高性の両方を適度に 有していることが判る。 産業上の利用可能性
異種ポリマーによる延伸フィラメン卜を経緯交差させて組み合わせることによ り、 不織布であって、 しかも織布と同等の機械的特性や破断仕事、 坪量の均一性 を有し、 さらに本発明に特有のドレープ性、 嵩高性、 風合いを有するものを得る ことができた。
本発明は、 特に伸度の大きい不織布を製造し得る点に特徴があり、 伸度が大き いことにより、 破断仕事が大きいのみならず、 実用面においてもドレープ性や風 合い等に優れた製品が得られる。
また従来、 接着剤等を用いることにより嵩高性や風合いを損なう傾向があつた のに対し、 本発明においては異種ポリマーの 1つとして接着性ポリマーを用いる ことにより、 強度や伸度を保持したまま、 嵩高性が大きく、 風合いやドレープ性 にも優れた不織布を得ることが可能となった。
さらに本発明は、 特に強度および嵩高性に優れた不織布およびその製法を確立 することができた。 すなわち、 従来の嵩高性不織布の製法に必要なコンジユゲー ト紡糸装置や混合紡糸装置等複雑高価な装置を必要とせず、 収縮性を異にするゥ ブの複数層を組み合わせることにより、 簡便な装置で実現し得る方法であり、 設備コストが安いばかりでなく、 多品種少量生産に適しており、 安価な不織布お よびその製法を提供することが可能となった。

Claims

WO 96/17121 _ 3g _ PCT/JP95/02376 請 求 の 範 囲
1 . 性質の異なる複数の熱可塑性ポリマーで形成された長繊維フィラメン ト群 からなる長繊維ウェブが延伸され、 かつ該長繊維フィラメン卜群が全体として一 方向に配列されている延伸長繊維ゥュブを具備したことを特徴とする異種ポリマ 一からなる延伸長繊維不織布。
2. 上記長繊維フィラメント群の配列方向の強度が 1 . 5 g Z d以上であること を特徴とする請求項 1記載の異種ポリマーからなる延伸長繊維不織布。
3 . 上記長繊維フィ ラメ ン ト群が、 性質の異なる複数の熱可塑性ポリマーで形 成されたコンジユゲートフイラメ ン卜の集合であることを特徴とする請求項 1記 載の異種ポリマーからなる延伸長繊維不織布。
4. 上 己長繊維フィラメント群が、 性質の異なる複数のフィ ラメン 卜を混在さ せたものであることを特徴とする請求項 1記載の異種ポリマーからなる延伸長繊 維不織布。
5. 上記延伸長繊維ゥュブに積層された他の繊維ウェブをさらに具備したこと を特徴とする請求項 1記載の異種ポリマ一からなる延伸長繊維不織布。
6. 上記他の繊維ウェブの繊維配列方向が、 上記延伸長繊維ウェブの長繊維フ イラメ ン 卜群の配列方向と交差することを特徴とする請求項 5記載の異種ポリマ 一からなる延伸長繊維不織布。
7. 上記交差した各配列方向の強度が 0 . 5 g Z d以上、 二軸破断仕事が 0 . 2 g Z d以上、 嵩密度が 0 . 1 g Zcc 以下であることを特徴とする請求項 6記載の 異種ポリマーからなる延仲長繊維不織布。
8. 上記長繊維フィラメン卜群の少なくとも一部のフィラメ ン卜が捲縮してい ることを特徴とする請求项 1記載の異種ポリマーからなる延伸長繊維不織布。 9. 性質の異なる複数の熱可塑性ポリマーから、 実質的に分子配向を伴わない 長繊維フィ ラメン ト群で形成された長繊維ウェブを製造する工程と、 この長繊維 ゥュブを一方向に延伸して延伸長繊維ゥ ブを製造する工程とを特徴とする異種 ポリマーからなる延伸長繊維不織布の製造方法。
1 0. 上記延伸長繊維ゥ ブを収縮させることにより捲縮を生ぜしめる工程を さらに具備したことを特徴とする請求項 9記載の異種ポリマーからなる延伸長繊 維不織布の製造方法。
1 1 . 捲縮後の延伸長繊維ウェブと他の配列不織布とを配列方向が交差するよ うに積層する工程をさらに具備したことを特徴とする請求項 1 0記載の異種ポリ マ一からなる延伸長繊維不織布の製造方法。
1 2 . 延伸長繊維ゥュブと他の配列不織布とを配列方向が交差するように積層 し、 その後少なくとも一配列方向に収縮させることにより捲縮を生ぜしめる工程 をさらに具備したことを特徴とする請求項 9記載の異種ボリマーからなる延伸長 繊維不織布の製造方法。
1 3 . 1:記長繊維フィラメン 卜辟が、 性質の異なる複数の熱可塑性ポリマーで 形成されたコンジユゲー 卜フィラメン卜の集合であることを特徴とする請求項 9 記載の異種ポリマーからなる延伸長繊維不織布の製造方法。
1 4 . 上記長繊維フィラメント群が、 性質の異なる複数のフィラメントを混在 させたものであることを特徴とする請求項 9記載の異種ポリマーからなる延伸長 繊維不織布の製造方法。
1 5 . 捲縮しているフィラメ ントを主とする第 1のウェブ層と、 この第 1のゥ エブ層に積層され、 かつ、 上記第 1のゥヱブ層のフィラメントとは異なる性質で、 ほとんど捲縮していない延伸長繊維フィラメン卜を主とする第 2のゥヱブ層とを 具備し、 少なくとも一方向の強度が 0 . 5 g Z d以上であり、 嵩密度が 0 . 1 gノ cc以下であることを特徴とする異種ボリマーからなる延伸長繊維不織布。
1 6 . 収縮性の異なる第 1および第 2のゥヱブが積層され積層ゥヱブを形成す る工程と、 上記積層ウェブを接合して接合ウェブを形成すると共に、 該接合と同 H寺またはその後に ΐ亥接合ウェブを収縮させることにより捲縮を生ぜしめる工程と を具備したことを特徴とする異種ポリマーからなる延伸長繊維不織布の製造方法。 1 7 . 積層ウェブ形成工程が、 延伸すると収縮性の異なる異種ポリマーより、 それぞれ別に実質的に分子配向を伴わない長繊維フィラメン卜からなる上記第 1 および第 2のゥヱブを製造する工程と、 これら第 1および第 2のゥヱブを重ねて 少なくとも一方向に延伸する工程とを具備したことを特徴とする請求項 1 6記載 の異種ポリマーからなる延伸長繊維不織布の製造方法。
1 8. 積層ゥュブ形成工程が、 延伸すると収縮性の異なる異種ポリマーより、 それぞれ別に実質的に分子配向を伴わない長繊維フィラメン卜からなる上記第 1 および第 2のウェブを製造する工程と、 これら第 1および第 2のゥヱブを別々に 延伸する工程と、 これら延伸された第 1および第 2のウェブをフィラメント配列 方向が同一方向となるように積層する工程とを具備したことを特徴とする請求項 1 6記載の異種ポリマ一からなる延伸長繊維不織布の製造方法。
1 9. 第 1と第 2のウェブの少なく とも一方が、 未延伸状態でゴム弾性的な伸 張回復性能を有することを特徴とする請求项 1 6記載の異種ポリマーからなる延 伸長繊維不織布の製造方法。
PCT/JP1995/002376 1994-11-25 1995-11-22 Non-tisse en fibres longues etirees constituees de differents types de polymeres, et son procede de fabrication WO1996017121A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP95937161A EP0757127A4 (en) 1994-11-25 1995-11-22 Nonwoven cloth of drawn long fiber of different kinds of polymers and method of manufacturing the same
US08/682,535 US5840633A (en) 1994-11-25 1995-11-22 Nonwoven fabric and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31547094 1994-11-25
JP6/315470 1994-11-25

Publications (1)

Publication Number Publication Date
WO1996017121A1 true WO1996017121A1 (fr) 1996-06-06

Family

ID=18065749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002376 WO1996017121A1 (fr) 1994-11-25 1995-11-22 Non-tisse en fibres longues etirees constituees de differents types de polymeres, et son procede de fabrication

Country Status (3)

Country Link
US (2) US5840633A (ja)
EP (1) EP0757127A4 (ja)
WO (1) WO1996017121A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814189A1 (en) * 1996-06-18 1997-12-29 Nippon Petrochemicals Co., Ltd. Bulky nonwoven fabric and method for producing the same
JPH11302961A (ja) * 1998-04-16 1999-11-02 Nippon Petrochem Co Ltd 包装用基布およびそれを用いた包装材料
US6132661A (en) * 1996-11-19 2000-10-17 Nippon Petrochemical Company, Limited Longitudinally stretched nonwoven fabric and method for producing the same
JP2002541337A (ja) * 1999-02-17 2002-12-03 フィルトロナ、リッチモンド、インコーポレーテッド 混合繊維のウェブの紡糸方法および装置、ならびにそれから製造される製品
US6511625B1 (en) 1999-08-24 2003-01-28 Nippon Petrochemicals Co., Ltd. Transversely stretched nonwoven fabric with high tensile strength stretched seven times wider or more in transverse direction
US6984350B2 (en) 2001-02-27 2006-01-10 Nippon Petrochemicals Co., Ltd. Method of and apparatus for manufacturing a web having filaments aligned in a transverse direction
JP2007314930A (ja) * 1996-07-22 2007-12-06 Chisso Corp 長繊維不織布及びその製造方法
US9410273B2 (en) 2006-08-11 2016-08-09 Es Fibervisions Co. Fiber bundle and web

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017121A1 (fr) * 1994-11-25 1996-06-06 Polymer Processing Research Inst., Ltd. Non-tisse en fibres longues etirees constituees de differents types de polymeres, et son procede de fabrication
JPH1036795A (ja) * 1996-07-26 1998-02-10 Nippon Petrochem Co Ltd 粘着テープ用基布およびそれを用いた粘着テープ
US6454989B1 (en) 1998-11-12 2002-09-24 Kimberly-Clark Worldwide, Inc. Process of making a crimped multicomponent fiber web
US6686303B1 (en) * 1998-11-13 2004-02-03 Kimberly-Clark Worldwide, Inc. Bicomponent nonwoven webs containing splittable thermoplastic filaments and a third component
US7091140B1 (en) 1999-04-07 2006-08-15 Polymer Group, Inc. Hydroentanglement of continuous polymer filaments
CN1158414C (zh) * 1999-04-30 2004-07-21 金伯利-克拉克环球有限公司 可拉伸非织造布材料及其生产方法
US20050039836A1 (en) * 1999-09-03 2005-02-24 Dugan Jeffrey S. Multi-component fibers, fiber-containing materials made from multi-component fibers and methods of making the fiber-containing materials
JP4233181B2 (ja) * 1999-09-30 2009-03-04 新日本石油株式会社 横配列ウェブの製造方法および製造装置
JP2001098489A (ja) * 1999-09-30 2001-04-10 Uni Charm Corp 水不溶性カルボキシメチルセルロースを含有する水解性の繊維シート
US6447410B2 (en) 1999-11-19 2002-09-10 Stx Llc Lacrosse stick pocket shooting strings and thong elements
US6491777B1 (en) * 1999-12-07 2002-12-10 Polymer Goup, Inc. Method of making non-woven composite transfer layer
DE10022292C2 (de) * 2000-05-09 2002-03-28 Sebastian Sommer Verfahren zur Herstellung eines Vliesstoffes
US6969441B2 (en) 2000-05-15 2005-11-29 Kimberly-Clark Worldwide, Inc. Method and apparatus for producing laminated articles
US8182457B2 (en) 2000-05-15 2012-05-22 Kimberly-Clark Worldwide, Inc. Garment having an apparent elastic band
US20020019616A1 (en) * 2000-05-15 2002-02-14 Thomas Oomman Painumoottil Elastomeric laminate with film and strands suitable for a nonwoven garment
US20020007164A1 (en) * 2000-05-15 2002-01-17 Boggs Lavada Campbell Garment having gasket with integrated zone of elastic tension and/or stretch
US6576575B2 (en) 2000-05-15 2003-06-10 Kimberly-Clark Worldwide, Inc. Dispersible adherent article
EP1282737B1 (en) 2000-05-16 2006-08-23 Polymer Group, Inc. Method of making nonwoven fabric comprising splittable fibers
US6465095B1 (en) 2000-09-25 2002-10-15 Fiber Innovation Technology, Inc. Splittable multicomponent fibers with partially overlapping segments and methods of making and using the same
US6863959B2 (en) 2000-12-22 2005-03-08 Kimberly-Clark Worldwide, Inc. Laminate and web characteristic control by varying bonding patterns
US7045029B2 (en) * 2001-05-31 2006-05-16 Kimberly-Clark Worldwide, Inc. Structured material and method of producing the same
US6939334B2 (en) 2001-12-19 2005-09-06 Kimberly-Clark Worldwide, Inc. Three dimensional profiling of an elastic hot melt pressure sensitive adhesive to provide areas of differential tension
US6902796B2 (en) 2001-12-28 2005-06-07 Kimberly-Clark Worldwide, Inc. Elastic strand bonded laminate
US7316840B2 (en) 2002-07-02 2008-01-08 Kimberly-Clark Worldwide, Inc. Strand-reinforced composite material
US7316842B2 (en) 2002-07-02 2008-01-08 Kimberly-Clark Worldwide, Inc. High-viscosity elastomeric adhesive composition
US6978486B2 (en) 2002-07-02 2005-12-27 Kimberly-Clark Worldwide, Inc. Garment including an elastomeric composite laminate
US7335273B2 (en) 2002-12-26 2008-02-26 Kimberly-Clark Worldwide, Inc. Method of making strand-reinforced elastomeric composites
US7015155B2 (en) 2002-07-02 2006-03-21 Kimberly-Clark Worldwide, Inc. Elastomeric adhesive
BR0314899A (pt) * 2002-10-24 2005-08-09 Advanced Design Concept Gmbh Fibras elastoméricas multicomponentes, telas alisadas e tecidos alisados
US6958103B2 (en) 2002-12-23 2005-10-25 Kimberly-Clark Worldwide, Inc. Entangled fabrics containing staple fibers
US7022201B2 (en) 2002-12-23 2006-04-04 Kimberly-Clark Worldwide, Inc. Entangled fabric wipers for oil and grease absorbency
US7329621B2 (en) * 2002-12-26 2008-02-12 Kimberly-Clark Worldwide, Inc. Stretchable film laminates and methods and apparatus for making stretchable film laminates
US6916750B2 (en) 2003-03-24 2005-07-12 Kimberly-Clark Worldwide, Inc. High performance elastic laminates made from high molecular weight styrenic tetrablock copolymer
US7378360B2 (en) * 2003-12-17 2008-05-27 Kimberly-Clark Worldwide, Inc. Water dispersible, pre-saturated wiping products
US7194788B2 (en) 2003-12-23 2007-03-27 Kimberly-Clark Worldwide, Inc. Soft and bulky composite fabrics
US7645353B2 (en) 2003-12-23 2010-01-12 Kimberly-Clark Worldwide, Inc. Ultrasonically laminated multi-ply fabrics
US7601657B2 (en) 2003-12-31 2009-10-13 Kimberly-Clark Worldwide, Inc. Single sided stretch bonded laminates, and methods of making same
DE112005001341B4 (de) * 2004-06-11 2011-12-08 Ishida Co., Ltd. Auslagestreifen und Verpackungsanordnung
EP1657333B1 (en) * 2004-11-10 2008-01-09 Carl Freudenberg KG Stretchable nonwovens
US7651653B2 (en) 2004-12-22 2010-01-26 Kimberly-Clark Worldwide, Inc. Machine and cross-machine direction elastic materials and methods of making same
MX2007011823A (es) * 2005-04-19 2007-11-22 Pgi Polymer Inc Proceso y aparato para formar substratos de nanofibra uniformes.
CA2692143C (en) * 2007-06-19 2015-07-07 Abdellah Ajji Non-woven mat and method of producing same
BR122014000896B1 (pt) 2009-10-09 2021-08-31 Volm Companies, Inc Bolsa
CN102211426B (zh) * 2010-04-06 2015-03-25 Jnc株式会社 使用伸长性无纺布的复合体
JP5482440B2 (ja) 2010-05-19 2014-05-07 トヨタ紡織株式会社 溶融紡糸方法及び溶融紡糸装置
JP2011241510A (ja) * 2010-05-19 2011-12-01 Toyota Boshoku Corp 溶融紡糸方法及び溶融紡糸装置
AU2011268321B2 (en) 2010-06-17 2015-10-01 Washington University Biomedical patches with aligned fibers
DE102011110937A1 (de) * 2011-08-13 2013-02-14 Universität Kassel Scharnierelement, hergestellt auf Basis mindestens eines Flächengebildes und Verfahren zur Herstellung eines Scharnierelements auf Basis mindestens eines Flächengebildes
USD693129S1 (en) * 2012-05-24 2013-11-12 N.R. Spuntech Industries Ltd. Non-woven fabric
IN2015DN02299A (ja) 2012-09-21 2015-08-21 Univ Washington
JP5752775B2 (ja) 2013-03-04 2015-07-22 株式会社finetrack 長繊維不織布およびその長繊維不織布を有する積層生地
US9539797B2 (en) 2013-11-14 2017-01-10 Rayven, Inc. Traverse wound double-sided pressure sensitive adhesive tape
WO2016121797A1 (ja) * 2015-01-29 2016-08-04 山田 菊夫 パルプ積繊シート、及びパルプ積繊シートの製造方法
US10682265B2 (en) 2015-11-12 2020-06-16 Pfnonwovens Llc Nonwoven with improved abrasion resistance and method of making the same
US10632228B2 (en) 2016-05-12 2020-04-28 Acera Surgical, Inc. Tissue substitute materials and methods for tissue repair
FR3059344B1 (fr) * 2016-11-25 2019-11-22 Andritz Asselin Thibeau Dispositif d'etirage d'un voile dispose entre un dispositif de carde et un etaleur nappeur
EP4377502A2 (en) 2021-07-29 2024-06-05 Acera Surgical, Inc. Particle-form hybrid-scale fiber matrix
EP4376908A1 (en) 2021-07-29 2024-06-05 Acera Surgical, Inc. Combined macro and micro-porous hybrid-scale fiber matrix
US12167853B2 (en) 2021-09-07 2024-12-17 Acera Surgical, Inc. Non-woven graft materials for nerve repair and regeneration

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148861A (ja) * 1987-07-14 1989-06-12 Polymer Processing Res Inst 延伸直交不織布の製法
JPH01321966A (ja) * 1988-06-22 1989-12-27 Mitsui Petrochem Ind Ltd 不織布の製造方法
JPH02160966A (ja) * 1988-12-13 1990-06-20 Unitika Ltd 長繊維不織布及びその製造方法
JPH02182963A (ja) * 1989-01-06 1990-07-17 Asahi Chem Ind Co Ltd 熱収縮性長繊維不織シート及びその製法
JPH05125645A (ja) * 1991-10-28 1993-05-21 Unitika Ltd 伸縮性嵩高長繊維不織布及びその製造方法
JPH05125650A (ja) * 1991-10-28 1993-05-21 Oji Paper Co Ltd 捲縮性長繊維不織布の製造方法
JPH05230754A (ja) * 1992-02-17 1993-09-07 Unitika Ltd 芯鞘型複合長繊維よりなる不織布及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189338A (en) * 1972-11-25 1980-02-19 Chisso Corporation Method of forming autogenously bonded non-woven fabric comprising bi-component fibers
US4657804A (en) * 1985-08-15 1987-04-14 Chicopee Fusible fiber/microfine fiber laminate
DE3882018T2 (de) * 1987-06-10 1993-10-14 Kanebo Ltd In der länge und breite streckbares gewebe und verfahren zur herstellung.
JPH07103507B2 (ja) * 1988-08-23 1995-11-08 ユニチカ株式会社 熱接着性長繊維からなる不織布
US5312500A (en) * 1989-01-27 1994-05-17 Nippon Petrochemicals Co., Ltd. Non-woven fabric and method and apparatus for making the same
JPH03269154A (ja) * 1990-02-19 1991-11-29 Unitika Ltd 嵩高長繊維不織布の製造方法
JP2918988B2 (ja) * 1990-05-14 1999-07-12 チッソ株式会社 変性ポリオレフィン極細繊維発生複合繊維および織布または不織布
JP2956134B2 (ja) * 1990-06-07 1999-10-04 東洋紡績株式会社 嵩高不織布及びその製造法
JP2904966B2 (ja) * 1991-04-16 1999-06-14 宇部日東化成株式会社 熱分割性複合繊維
US5382400A (en) * 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5382461B1 (en) * 1993-03-12 1998-11-03 Clopay Plastic Prod Co Extrusion laminate of incrementally stretched nonwoven fibrous web and thermoplastic film and method
US5399174A (en) * 1993-04-06 1995-03-21 Kimberly-Clark Corporation Patterned embossed nonwoven fabric, cloth-like liquid barrier material
US5534339A (en) * 1994-02-25 1996-07-09 Kimberly-Clark Corporation Polyolefin-polyamide conjugate fiber web
US5424115A (en) * 1994-02-25 1995-06-13 Kimberly-Clark Corporation Point bonded nonwoven fabrics
US5798305A (en) * 1994-07-04 1998-08-25 Chisso Corporation Hot-melt-adhesive conjugate fibers and a non-woven fabric using the fibers
WO1996017121A1 (fr) * 1994-11-25 1996-06-06 Polymer Processing Research Inst., Ltd. Non-tisse en fibres longues etirees constituees de differents types de polymeres, et son procede de fabrication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148861A (ja) * 1987-07-14 1989-06-12 Polymer Processing Res Inst 延伸直交不織布の製法
JPH01321966A (ja) * 1988-06-22 1989-12-27 Mitsui Petrochem Ind Ltd 不織布の製造方法
JPH02160966A (ja) * 1988-12-13 1990-06-20 Unitika Ltd 長繊維不織布及びその製造方法
JPH02182963A (ja) * 1989-01-06 1990-07-17 Asahi Chem Ind Co Ltd 熱収縮性長繊維不織シート及びその製法
JPH05125645A (ja) * 1991-10-28 1993-05-21 Unitika Ltd 伸縮性嵩高長繊維不織布及びその製造方法
JPH05125650A (ja) * 1991-10-28 1993-05-21 Oji Paper Co Ltd 捲縮性長繊維不織布の製造方法
JPH05230754A (ja) * 1992-02-17 1993-09-07 Unitika Ltd 芯鞘型複合長繊維よりなる不織布及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0757127A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814189A1 (en) * 1996-06-18 1997-12-29 Nippon Petrochemicals Co., Ltd. Bulky nonwoven fabric and method for producing the same
US5789328A (en) * 1996-06-18 1998-08-04 Nippon Petrochemicals Company, Limited Bulky nonwoven fabric and method for producing the same
JP2007314930A (ja) * 1996-07-22 2007-12-06 Chisso Corp 長繊維不織布及びその製造方法
JP4513838B2 (ja) * 1996-07-22 2010-07-28 チッソ株式会社 長繊維不織布及びその製造方法
US6132661A (en) * 1996-11-19 2000-10-17 Nippon Petrochemical Company, Limited Longitudinally stretched nonwoven fabric and method for producing the same
JPH11302961A (ja) * 1998-04-16 1999-11-02 Nippon Petrochem Co Ltd 包装用基布およびそれを用いた包装材料
JP2002541337A (ja) * 1999-02-17 2002-12-03 フィルトロナ、リッチモンド、インコーポレーテッド 混合繊維のウェブの紡糸方法および装置、ならびにそれから製造される製品
US6511625B1 (en) 1999-08-24 2003-01-28 Nippon Petrochemicals Co., Ltd. Transversely stretched nonwoven fabric with high tensile strength stretched seven times wider or more in transverse direction
US6637128B2 (en) 1999-08-24 2003-10-28 Nippon Petrochemicals Co., Ltd. Heating apparatus for a transversely stretched nonwoven fabric
US6984350B2 (en) 2001-02-27 2006-01-10 Nippon Petrochemicals Co., Ltd. Method of and apparatus for manufacturing a web having filaments aligned in a transverse direction
US9410273B2 (en) 2006-08-11 2016-08-09 Es Fibervisions Co. Fiber bundle and web

Also Published As

Publication number Publication date
US5840633A (en) 1998-11-24
EP0757127A1 (en) 1997-02-05
US6048808A (en) 2000-04-11
EP0757127A4 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
WO1996017121A1 (fr) Non-tisse en fibres longues etirees constituees de differents types de polymeres, et son procede de fabrication
JP3657700B2 (ja) カサ高性不織布の製造方法
JP5563459B2 (ja) 可変伸長性多層不織布複合体
TW458884B (en) Composite material with controlled elasticity
CN100379917C (zh) 具有弹性的合成片材
WO1997013020A1 (fr) Etoffe non tissee enchevetree par un jet d&#39;eau et procede pour la fabriquer
US20090068419A1 (en) Variable stretch nonwoven fabric composites
US20090068422A1 (en) Multilayer stretch nonwoven fabric composites
JP2005504183A (ja) 伸縮性不織ウェブおよびそのための方法
TW201544642A (zh) 海島複合纖維、複合極細纖維及纖維製品
WO2007070148A1 (en) Process for making necked nonwoven webs having improved cross-directional uniformity
EP2132034A2 (en) Asymmetric elastic film nonwoven laminate
JP2004532939A (ja) 大きなデニールの分割可能な繊維から作られた伸長可能な繊維及び不織布
JP2006104629A (ja) 凹凸模様が付与されてなるスパンレース不織布およびその製造方法
US20060148359A1 (en) Nonwoven loop material
JP2000265351A (ja) ヒートシール性に優れた伸縮性不織布およびその製造方法
JP6791469B2 (ja) 不織布の製造方法
JP5102723B2 (ja) 捲縮性複合繊維及びこれを用いた繊維構造物
JP4015831B2 (ja) 極細繊維不織布およびその製造方法
JPS5854060A (ja) 高配向不織布の製造方法
JP2003231196A (ja) 差別化シートおよびその製造方法
JPH0434058A (ja) 極細短繊維不織布の製造方法
JP7057406B2 (ja) 不織布
JPH0559655A (ja) 不織布
TWI230752B (en) Method for manufacturing fiber web having inelastic extensibility

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995937161

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08682535

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995937161

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995937161

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载