+

WO1996016913A1 - Composition de fibre minerale - Google Patents

Composition de fibre minerale Download PDF

Info

Publication number
WO1996016913A1
WO1996016913A1 PCT/EP1995/004730 EP9504730W WO9616913A1 WO 1996016913 A1 WO1996016913 A1 WO 1996016913A1 EP 9504730 W EP9504730 W EP 9504730W WO 9616913 A1 WO9616913 A1 WO 9616913A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
mineral fiber
mineral
fiber composition
microns
Prior art date
Application number
PCT/EP1995/004730
Other languages
English (en)
Inventor
Peter Lohe
Wolfgang Holstein
Wolfgang Schwab
Original Assignee
Isover Saint-Gobain
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isover Saint-Gobain filed Critical Isover Saint-Gobain
Priority to AU43008/96A priority Critical patent/AU4300896A/en
Publication of WO1996016913A1 publication Critical patent/WO1996016913A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • C03C2213/02Biodegradable glass fibres

Definitions

  • This invention relates to a mineral fiber composition which is biodegradable, i.e. the fibers decompose as soon as they come in contact with a physiological milieu.
  • Biodegradability of mineral fiber compositions is of great importance since various studies indicate that mineral fibers with very small diameters in the range of under 3 mi ⁇ crons are suspected to be carcinogenic, while biodegradable mineral fibers with such dimensions show no carcinogenicity.
  • mineral fiber compositions must also have good workability by known methods for producing mineral wool with a small diameter, in particular the jet process or the exter ⁇ nal rotary process. This involves in particular a sufficient difference of e.g. 80° between the devitrification and proc ⁇ essing temperatures.
  • the mechanical and thermal properties of mineral fibers, or the products made therefrom, are also of crucial impor ⁇ tance.
  • Mineral fibers are used for example for insulating purposes to a great extent. Sufficient temperature resistance of the mineral fibers is necessary in particular for use in the industrial sector.
  • the problem of the invention is to provide a novel min ⁇ eral fiber composition which is distinguished by high biode ⁇ gradability, has sufficient temperature resistance for appli ⁇ cation in the industrial sector, and can be fiberized well.
  • the invention is based on the finding that this problem can be solved by a mineral fiber composition which consists substantially of silicon dioxide and alkaline-earth oxides, and further contains alkali oxides as a melting accelerator and a considerable proportion of iron oxide for increasing temperature resistance.
  • such mineral fiber compositions fulfill the combination of necessary properties, namely bio ⁇ degradability, sufficient temperature resistance for insu ⁇ lated objects in industry, as well as good workability in the production of the mineral wool as such and the products .
  • the upper devitrification tempera ⁇ ture of the melt is preferably under 1300°C.
  • the subject of the invention is a mineral fiber composi ⁇ tion which is biodegradable, characterized by the following constituents in percent by weight:
  • AI2O3 0 to less than 4
  • inventive mineral fiber compositions are readily drawable in particular by the jet process, i.e. one obtains a mineral wool with a low-shot content.
  • the mineral fibers reach a high temperature resistance of at least 1000°C according to DIN 4102, part 17.
  • Such mineral fibers show good biodegradability.
  • the mean fiber diameter is usually 1 to 15 microns, a range of 2.5 to 8 microns being preferred.
  • the addition of alkali oxides causes a melting point re ⁇ duction and therefore better workability in the melting proc ⁇ ess.
  • up to 30% recycled glass can be used advan ⁇ tageously with a sodium-containing mineral wool composition.
  • the inventive mineral fiber compositions can preferably be melted in melting chambers fueled with fossile fuels, in particular natural gas, at melting temperatures from 1350 to 1450°C.
  • Such melting chambers can produce a homogeneous melt, which is a prerequisite for constant product quality. Homoge ⁇ neity of the glass melt also facilitates the reproducibility of the fiberizing process and thus of the thermal and me ⁇ chanical product properties. Furthermore, the constant chemi ⁇ cal composition of the thus produced mineral wool leads to controllable biodegradability.
  • iron oxide increases the temperature resistance of the mineral wool.
  • inventive mineral fiber compositions preferably have the following constituents in percent by weight :
  • a content of silicon oxide in the range of 46 to 52% by weight is especially preferred.
  • the alkali oxides a range of 3 to 6% by weight is especially preferred.
  • Iron oxide is preferably pre ⁇ sent in a range between 7,1 and 11% by weight.
  • the thermal behavior of the mineral fibers was deter ⁇ mined by the so-called "Swedish method” .
  • This method uses a silit pipe furnace with a horizontal working pipe open on both sides with a length of 350 mm and an inside diameter of 27 mm. In the center of the furnace there is a ceramic sup ⁇ porting plate with dimensions of 30 x 20 x 3 mm for position ⁇ ing the test sample.
  • the test sample has dimensions of 12 x 12 x 12 mm or 12 mm ⁇ x 12 mm height.
  • the gross density is normally 100 kg/m 3 .
  • the temperature increase is 5 K/min.
  • the change in test sample height is determined continuously with a reading optic.
  • a mineral wool was produced with the following composi ⁇ tion in percent by weight:
  • This composition could be readily fiberized by the jet process at a drawing temperature between 1300 and 1400°C into mineral fibers with a diameter range of 1.0 to 15 microns, a mean diameter range of 2.5 to 8.0 microns being preferred.
  • a mineral wool was produced with the following composi ⁇ tion in percent by weight:
  • This composition could be readily fiberized by the jet process at a drawing temperature between 1300 and 1400°C into mineral fibers with a mean diameter range of 2.5 to 8.0 mi ⁇ crons.
  • a mineral wool was produced with the following composi ⁇ tion in percent by weight:
  • This composition could be readily fiberized by the jet process at a drawing temperature between 1300 and 1400°C into mineral fibers with a diameter range of 1.0 to 15 microns, a mean diameter range of 2.5 to 8.0 microns being preferred.
  • a mineral wool was produced with the following composi ⁇ tion in percent by weight :
  • This composition could be readily fiberized by the jet process at a drawing temperature between 1300 and 1400°C into mineral fibers with a diameter range of 1.0 to 15 microns, a mean diameter range of 2.5 to 8.0 microns being preferred.
  • a mineral wool was produced with the following composi ⁇ tion in percent by weight:
  • This composition could be readily fiberized by the jet process at a drawing temperature between 1300 and 1400°C into mineral fibers with a diameter range of 1.0 to 15 microns, a mean diameter range of 2.5 to 8.0 microns being preferred.
  • a mineral wool was produced with the following composi ⁇ tion in percent by weight:
  • This composition could be readily fiberized by the jet process at a drawing temperature between 1300 and 1400°C into mineral fibers with a diameter range of 1.0 to 15 microns, a mean diameter range of 2.5 to 8.0 microns being preferred.
  • Example 7
  • a mineral wool was produced with the following composi ⁇ tion in percent by weight :
  • This composition could be readily fiberized by the jet process at a drawing temperature between 1300 and 1400°C into mineral fibers with a diameter range of 1.0 to 15 microns, a mean diameter range of 2.5 to 8.0 microns being preferred.
  • a mineral wool was produced with the following composi ⁇ tion in percent by weight:
  • This composition could be readily fiberized by the jet process at a drawing temperature between 1300 and 1400°C into mineral fibers with a diameter range of 1.0 to 15 microns, a mean diameter range of 2.5 to 8.0 microns being preferred.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Composition de fibre minérale biodégradable, caractérisée par la présence des constituants suivants en pourcentage pondéral: SiO2: 45 à 55 %, Al2O3: 0 à moins de 4 %, Fe2O3: plus de 7 et jusqu'à 15 %, CaO: 18 à 35 %, MgO: 5 à 15 %, Na2O + K2O: 0 à 10 %, P2O5: 0 à 5 %, et impuretés: 0 à 2 %.
PCT/EP1995/004730 1994-12-02 1995-11-30 Composition de fibre minerale WO1996016913A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU43008/96A AU4300896A (en) 1994-12-02 1995-11-30 A mineral fiber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4443022.1 1994-12-02
DE4443022A DE4443022C2 (de) 1994-12-02 1994-12-02 Mineralfaserzusammensetzung

Publications (1)

Publication Number Publication Date
WO1996016913A1 true WO1996016913A1 (fr) 1996-06-06

Family

ID=6534798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/004730 WO1996016913A1 (fr) 1994-12-02 1995-11-30 Composition de fibre minerale

Country Status (5)

Country Link
AU (1) AU4300896A (fr)
DE (1) DE4443022C2 (fr)
TR (1) TR199501519A2 (fr)
WO (1) WO1996016913A1 (fr)
ZA (1) ZA959879B (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932347A (en) * 1996-10-31 1999-08-03 Owens Corning Fiberglas Technology, Inc. Mineral fiber compositions
EP0946356A4 (fr) * 1996-10-31 2000-06-21 Owens Corning Fiberglass Corp Compositions de fibres minerales
US6861381B1 (en) 1999-09-10 2005-03-01 The Morgan Crucible Company Plc High temperature resistant saline soluble fibres
US6987076B1 (en) 1998-09-15 2006-01-17 The Morgan Crucible Company Plc Bonded fibrous materials
US7153796B2 (en) 2002-01-04 2006-12-26 The Morgan Crucible Company Plc Saline soluble inorganic fibres
WO2007022974A1 (fr) 2005-08-24 2007-03-01 Saint-Gobain Isover G+H Ag Produit de fibres mixtes anorganique contenant des flocons de fibres et des fibres de laine verre
US7259118B2 (en) 1992-01-17 2007-08-21 The Morgan Crucible Company Plc Saline soluble inorganic fibers
CN114293283A (zh) * 2021-12-15 2022-04-08 五邑大学 一种复合型无机纳米纤维及其制备方法与在肿瘤光热治疗中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022251A1 (fr) * 1992-04-23 1993-11-11 Isover Saint-Gobain Fibres minerales susceptibles de se dissoudre en milieu physiologique
WO1994014717A1 (fr) * 1992-12-29 1994-07-07 Rockwool International A/S Compositions de fibres minerales thermostables et solubles dans les liquides biologiques

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660199B2 (ja) * 1986-01-02 1994-08-10 ワシントン ユニバ−シテイ− 前立腺由来成長因子
DK159201B (da) * 1988-09-05 1990-09-17 Rockwool Int Mineralfibre
DE3917045A1 (de) * 1989-05-25 1990-11-29 Bayer Ag Toxikologisch unbedenkliche glasfasern
FR2662688B1 (fr) * 1990-06-01 1993-05-07 Saint Gobain Isover Fibres minerales susceptibles de se decomposer en milieu physiologique.
US5250488A (en) * 1989-08-11 1993-10-05 Sylvie Thelohan Mineral fibers decomposable in a physiological medium
FR2650821B1 (fr) * 1989-08-11 1991-10-31 Saint Gobain Isover Composition de verre destinee a etre transformee en fibres degradables en milieu biologique
US5055428A (en) * 1990-09-26 1991-10-08 Owens-Corning Fiberglass Corporation Glass fiber compositions
FI93346C (sv) * 1990-11-23 1998-03-07 Partek Ab Mineralfibersammansättning
US5401693A (en) * 1992-09-18 1995-03-28 Schuller International, Inc. Glass fiber composition with improved biosolubility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022251A1 (fr) * 1992-04-23 1993-11-11 Isover Saint-Gobain Fibres minerales susceptibles de se dissoudre en milieu physiologique
WO1994014717A1 (fr) * 1992-12-29 1994-07-07 Rockwool International A/S Compositions de fibres minerales thermostables et solubles dans les liquides biologiques

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259118B2 (en) 1992-01-17 2007-08-21 The Morgan Crucible Company Plc Saline soluble inorganic fibers
US5932347A (en) * 1996-10-31 1999-08-03 Owens Corning Fiberglas Technology, Inc. Mineral fiber compositions
EP0946356A4 (fr) * 1996-10-31 2000-06-21 Owens Corning Fiberglass Corp Compositions de fibres minerales
US6987076B1 (en) 1998-09-15 2006-01-17 The Morgan Crucible Company Plc Bonded fibrous materials
US6861381B1 (en) 1999-09-10 2005-03-01 The Morgan Crucible Company Plc High temperature resistant saline soluble fibres
US7153796B2 (en) 2002-01-04 2006-12-26 The Morgan Crucible Company Plc Saline soluble inorganic fibres
US7470641B2 (en) 2002-01-04 2008-12-30 The Morgan Crucible Company Plc Saline soluble inorganic fibres
WO2007022974A1 (fr) 2005-08-24 2007-03-01 Saint-Gobain Isover G+H Ag Produit de fibres mixtes anorganique contenant des flocons de fibres et des fibres de laine verre
CN114293283A (zh) * 2021-12-15 2022-04-08 五邑大学 一种复合型无机纳米纤维及其制备方法与在肿瘤光热治疗中的应用
CN114293283B (zh) * 2021-12-15 2024-01-02 五邑大学 一种复合型无机纳米纤维及其制备方法与在光热转换膜中的应用

Also Published As

Publication number Publication date
ZA959879B (en) 1996-06-04
DE4443022A1 (de) 1996-06-05
DE4443022C2 (de) 1996-12-12
AU4300896A (en) 1996-06-19
TR199501519A2 (tr) 1996-07-21

Similar Documents

Publication Publication Date Title
EP0710220B1 (fr) Composition de fibre minerale
AU2001244266B2 (en) Mineral wool composition
EP0513112B1 (fr) Fibres minerales
US4461840A (en) Heat resistant glass fiber composition
AU721117B2 (en) Mineral fiber composition
KR960703820A (ko) 고온 섬유화 조성물(compositions for high temperature fiberisation)
IE66323B1 (en) Glass fibres capable of decomposing in a physiological mediam
US4607015A (en) Glass composition, its method of formation and products made therefrom
WO1996016913A1 (fr) Composition de fibre minerale
CA2162890A1 (fr) Composition de fibre minerale
US3600205A (en) Boric oxide-free glass fibers and compositions for making them
KR20000064588A (ko) 인공 광면 조성물
US3928049A (en) Alkali-resistant mineral fibers useful for the reinforcement of various moulded articles
EP0721432B1 (fr) Composition de fibre minerale
US3985935A (en) Alkali resistant perlite - CaO vitreous fibers
WO1996030314A1 (fr) Composition de fibres minerales
WO1998047831A1 (fr) Composition de fibres minerales biodegradable
HUT77856A (hu) Ásványi szál készítmény
SK4896A3 (sk) Zloženie minerálneho vlákna
AU2018307447A1 (en) Mineral fibres

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ FI HU IS JP KR NO NZ PL SI SK US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载