WO1996016737A1 - Procede de preparation de supports - Google Patents
Procede de preparation de supports Download PDFInfo
- Publication number
- WO1996016737A1 WO1996016737A1 PCT/EP1995/004713 EP9504713W WO9616737A1 WO 1996016737 A1 WO1996016737 A1 WO 1996016737A1 EP 9504713 W EP9504713 W EP 9504713W WO 9616737 A1 WO9616737 A1 WO 9616737A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inorganic oxide
- process according
- impregnating
- foam
- drying
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 230000008569 process Effects 0.000 title claims abstract description 52
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 239000006260 foam Substances 0.000 claims abstract description 128
- 239000000919 ceramic Substances 0.000 claims abstract description 52
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 48
- 238000005470 impregnation Methods 0.000 claims abstract description 32
- 238000001035 drying Methods 0.000 claims abstract description 28
- 239000002243 precursor Substances 0.000 claims abstract description 20
- 230000003197 catalytic effect Effects 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 239000011148 porous material Substances 0.000 claims description 35
- 239000003054 catalyst Substances 0.000 claims description 19
- 239000008279 sol Substances 0.000 claims description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 14
- 150000001768 cations Chemical class 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 239000004215 Carbon black (E152) Substances 0.000 claims description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 10
- 229930195733 hydrocarbon Natural products 0.000 claims description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 229910052703 rhodium Inorganic materials 0.000 claims description 10
- 239000010948 rhodium Substances 0.000 claims description 10
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 230000003647 oxidation Effects 0.000 claims description 9
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 239000004411 aluminium Substances 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 230000000737 periodic effect Effects 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 230000001427 coherent effect Effects 0.000 claims description 6
- 238000001179 sorption measurement Methods 0.000 claims description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 5
- 238000009501 film coating Methods 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 239000011777 magnesium Substances 0.000 claims description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- 239000007888 film coating Substances 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 239000000499 gel Substances 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000002002 slurry Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000017 hydrogel Substances 0.000 claims description 2
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 2
- 150000002602 lanthanoids Chemical class 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 150000001247 metal acetylides Chemical class 0.000 claims description 2
- 239000003607 modifier Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 238000011068 loading method Methods 0.000 description 12
- 230000008901 benefit Effects 0.000 description 10
- 239000000654 additive Substances 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 8
- 238000001354 calcination Methods 0.000 description 8
- 230000006641 stabilisation Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000011149 active material Substances 0.000 description 5
- 238000007654 immersion Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 230000004584 weight gain Effects 0.000 description 3
- 235000019786 weight gain Nutrition 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000002638 heterogeneous catalyst Substances 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical class [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000643 oven drying Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/386—Catalytic partial combustion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/40—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/025—Processes for making hydrogen or synthesis gas containing a partial oxidation step
- C01B2203/0261—Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1005—Arrangement or shape of catalyst
- C01B2203/1029—Catalysts in the form of a foam
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1082—Composition of support materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a process for the preparation of ceramic foams supporting inorganic oxide(s) and catalytic applications thereof, particularly the preparation of ceramic foams supporting high loadings of inorganic oxides, and applications thereof in gas treating, adsorption, as catalyst support in catalytic conversion reactions, particularly in the preparation of carbon monoxide and hydrogen by the partial oxidation of a hydrocarbon feed, in nitric oxides reduction processes, in ethylene oxidation, and the like.
- Ceramic foams are known for various applications, in particular more recently as supports for catalytically active materials fulfilling several requirements simultaneously, as described in "Preparation and properties of ceramic foam catalyst supports" by MV Twigg and JT Richardson published in the "Scientific Bases for the preparation of heterogeneous catalysts" 6th International Symposium September 5-8 1994 Louvain-la Neuve, Belgium.
- Open pore ceramic foams and the more traditional extrudates may be made from materials with high temperature resistance, and promote surface- catalyzed reaction by means of tortuous flow patterns, in foams by virtue of connecting adjacent pores or "cells" providing non-linear channels, and in extrudate beds by virtue of random particle packing.
- Ceramic foams enable the passage of gases at high space velocities and acceptable pressure drop, are readily shaped and provide good conductivity but they do not offer the high surface areas available with conventional catalyst forms such as extrudates.
- Commercially available foams may have a BET surface area (as defined in "Adsorption surface area and porosity" SJ Gregg & KSW Sing, Academic Press London 1982) of typically less than 1 m2/g, in particular of about 0.2 or 0.3 m2/g after high temperature calcination for a prolonged period, which is too low to be useful in the majority of catalytic applications.
- a high surface area is generally accepted to be advantageous in providing a high contact area for catalytic, treating, adsorption and other surface located activities.
- the stabiliser and the active material are introduced by impregnation of the foam by means of immersion of the foam in an aqueous solution of a salt of the stabiliser and the active component, draining to remove excess solution and firing at 450°C. This process is repeated to build up sufficient impregnant layer on the foam.
- the foams described are to be used at relatively low temperatures, of the order of 760°C, and may not give the desired stabilisation at higher temperatures. This process is suited for the stabilisation of the active component in the existing
- FR 2 590 887 discloses zirconium oxides having stable surface area at elevated temperatures, the oxide comprising as additive an oxide of silica, the rare earths, yttria, ceria and/or aluminium.
- the additive may be introduced by various means including co- precipitation, mixing of salt with sol hydrate and impregnation of the zirconium oxide with a salt precursor of the additive. Impregnation is preferably performed "dry" whereby the total volume of the impregnating solution is approximately equal to the total pore volume of the (oxide) support.
- a process for the preparation of a ceramic foam supporting one or more inorganic oxide (s) comprising impregnation of the foam with an impregnating phase comprising the inorganic oxide (s) in an impregnating medium and drying wherein the impregnating phase has a viscosity greater than 1 cps, i.e. greater than water, and drying is performed without substantial prior draining of impregnating phase from the ceramic foam.
- the impregnating phase has a viscosity of greater than 1 cps at 20°C, preferably of from 5 to 80 cps, more preferably from 7 to 50cps.
- a suitable viscosity may be selected according to the properties of the ceramic foam, in particular the pore size thereof. whereby a smaller pore size would require a less viscous impregnating phase.
- the drying is performed without substantial prior draining of impregnating medium from the ceramic foam.
- substantially prior draining is to draining practices common in the art of washcoating and impregnation, and which may involve subjecting the foam to vacuum, centrifuging or blowing air through the foam for example. It is intended that substantially none of the impregnating medium introduced into the foam pores should be deliberately removed but rather should be allowed to be retained, aided by the viscosity thereof.
- any drainage of impregnating medium from the foam pores prior to drying is less than 60%, preferably less than 50%, more preferably from 0% to 40% of that introduced.
- the pores of the foam are substantially filled with impregnating medium prior to drying.
- the foam pores are filled by at least 60% with impregnating medium, more preferably by at least 85%.
- the ceramic foam is immersed slowly or incrementally into the impregnating phase whereby formation of air pockets is prevented, this enabling filling of the pores.
- the rate of immersion or extent of initial immersion may be determined appropriately according to the pore size (ppi) of the foam, and the viscosity of the impregnating medium.
- the impregnation may be carried out at or below atmospheric pressure.
- foams of low pore diameters it may be particularly advantageous to impregnate at reduced pressure of between 0.5 and 1 atmospheres.
- the pore volume may be calculated for example on the basis of the density, weight and dimensions of the foam, whereby the amount of impregnating medium required may be determined. Drying may be performed by any known means, such as subjecting to air-flow at ambient temperature, oven drying or microwave drying.
- Reference herein to a "gradient" in any given property of the foam samples of the invention is to a stepwise or continuous change in value of that property, such as surface area, solids loading for example, across a given dimension of the impregnated foam sample.
- the impregnating medium may be in the form of any suitable liquid having viscosity greater than that of water.
- the impregnating medium is in the form of an aqueous or organic solution, slurry, sol, gel, suspension or dispersion of inorganic oxide(s) particles, preferably of a sol of colloidal inorganic oxide(s) particles.
- a sol may be prepared in particular by means of peptising a slurry of the inorganic oxide(s) or precursor thereof.
- a commercially available sol for example an alumina sol may be adapted by the addition of the further inorganic oxide (s).
- the impregnating phase may be stabilised to attain an inorganic oxide(s) particle size of less than 300 n , preferably less than 150 nm, more preferably in the range of 5 to 50 nm.
- Stabilisation may be performed by any known means, for example by electrostatic stabilisation or "depletion" stabilisation by addition of a polymer or other impregnating medium modifier.
- inorganic particles greater than 300 nm, preferably greater than 150 nm, more preferably greater than 50 nm, for example by means of ultrasound. This is of particular advantage with use of ceramic foams of small pore dimensions.
- the impregnating phase employed has a solid content of greater than 5 wt% whereby a sufficient amount of inorganic oxide(s) precursor is introduced into the pores.
- the solids content is between 7 and 40 wt%, the maximum solids loading depending on the loading at which inorganic oxide (s) precursors particles dispersion deteriorates, or flocculation occurs. At significantly lower solids loadings, the formation of a coherent film will be inhibited.
- the foam is pretreated prior to impregnation, in order to improve the dispersion and cohesion of the eventual impregnated oxides.
- a pretreatment of the foam with water and drying to give an optimised concentration of surface hydroxide groups, for example, prior to impregnation with the inorganic oxide(s) has been found to give improved impregnation of the foams.
- the dried impregnated inorganic oxide may be in the form of a coherent or incoherent film coating of the ceramic foam as will be understood with reference to thin film coating technology.
- a calcined ceramic foam having a coherent film coating will generally exhibit attractive surface area enhancement having high stability and is particularly preferred where it is desired to modify the bulk properties of the ceramic foam. This has found to be attained with the use of impregnating medium in the form of a coherent dispersion, preferably a dispersion of colloidal particles in liquid.
- a coherent film coating may for example be derived from a partially dried impregnated oxide in the form of a hydrogel, in particular from impregnation of an impregnating phase characterised by a gelling time substantially equal to its drying time or, where gelling commences during impregnation, to the combined impregnation and drying time.
- the ceramic foams of the invention comprise a layer of the inorganic oxide of thickness greater than 0.5 micron, preferably of greater than 1 micron.
- the ceramic foams of the invention typically are obtained with a layer of the inorganic oxide of up to 2.5 micron.
- the thickness of the layer may be determined by choice of inorganic oxide(s) solid content of the impregnating phase. In general, the greater the layer thickness the greater the increase in surface area of the foam, and the greater the tortuosity and pressure drop presented by the foam.
- Suitable ceramic foams to be employed in the present invention are for example those having from 10 pores per inch. Commercially available foams are generally in the range of up to 200 pores per inch.
- foam will generally depend on the intended use, whereby selection of material from high temperature stable single or mixed refractory oxides of silica, alumina, titania, zirconia and (partially) stabilized forms thereof, carbides, nitrides and mixtures thereof may confer beneficial properties such as thermal stability, thermal shock resistance and/or strength, and whereby increase in pores per inch rating generally corresponds to an increase in tortuosity of a fluid passed through the foam.
- thermal stability thermal shock resistance and/or strength
- increase in pores per inch rating generally corresponds to an increase in tortuosity of a fluid passed through the foam.
- tortuosity is a common term which, when referring to a fixed catalyst bed, can be defined as the ratio of the length of the path taken by a gas flowing through the bed to the length of the shortest straight line path through the bed.
- a non-tortuous bed such as a honeycomb monolith structure, has a tortuosity of 1.0.
- ceramic foams of the present invention have a tortuosity of at least 1.1/ for example of 1.1 to 10.0, more preferably of 1.1 to 5.0, most preferably of 1.3 to 4.0.
- the process is substantially independent of the size, shape or other dimension of foam sample being impregnated.
- foams of any dimensions or scale may be impregnated and yield excellent results, for example foams of the order of centimetres to order of metres, preferably of dimension in any given direction of 0.5 cm to 1 m.
- the inorganic oxide(s) to be impregnated according to the process of the invention may suitably comprise any ambient or high temperature stable high surface area inorganic oxide.
- Such oxides may include but are not limited to oxides comprising one or more cations selected from groups IA, IIA, IIIA and IVA of the Periodic Table of the Elements and the transition metals (Periodic Table of the Elements, IUPAC 1970), preferably from groups IA, IB, IIA, IIB, IIIA, IIIB, IVA, IVB, VB, VIB, VIIB, VIII and the lanthanides, more preferably from aluminium, lanthanum, titanium, magnesium, yttrium, silicon, zirconium, cerium, niobium and barium.
- Preferred inorganic oxides to be impregnated in ceramic foams employed as catalytic supports in a process for the preparation of carbon monoxide and hydrogen by the partial oxidation of a hydrocarbon feedstock include those above defined, more preferably oxides comprising aluminium as the only cation or comprising more than one of the above defined cations.
- the foam may be impregnated with more than one inorganic oxide (precursor) simultaneously or sequentially.
- Inorganic oxides comprising more than one of the above cations present several advantages, for example an oxide may be employed comprising one cation as above defined, such as lanthanum giving desired performance in the intended use of the foam, together with a further cation as above defined, such as aluminium of which the precursor is readily dispersed in the impregnating phase. By this means the solids loading may be increased without prejudicing the performance of the impregnated material.
- the present invention relates to the impregnation of ceramic foams as hereinbefore defined with an impregnating phase having enhanced solids content of inorganic oxide precursor comprising a first cation as hereinbefore defined, by inclusion or increased content of a second cation as hereinbefore defined of which the inorganic oxide precursor is characterised by a higher dispersion capacity in the impregnating phase, preferably a second cation is aluminium.
- Ceramic foams prepared according to the present invention may suitably comprise a catalytically active component as the inorganic oxide or in addition to the inorganic oxide.
- a catalytically active component may thus be impregnated as the inorganic oxide onto the ceramic foam or may be impregnated onto the inorganic oxide supported ceramic foam.
- catalytic applications are envisaged, of which particular advantage may be by employing as preferred catalytically active components to be impregnated in ceramic foams employed as catalytic supports those generally known for a process for the preparation of carbon monoxide and hydrogen by the partial oxidation of a hydrocarbon feedstock, including a metal or precursor of a metal selected from Group VIII of the Periodic Table of the Elements, preferably selected from ruthenium, rhodium, palladium, osmium, iridium and platinum, more preferably rhodium, platinum and iridium, for a process for nitric oxides reduction, including vanadium, titanium and a mixture thereof, and for a process for the manufacture of ethylene oxide.
- a metal or precursor of a metal selected from Group VIII of the Periodic Table of the Elements preferably selected from ruthenium, rhodium, palladium, osmium, iridium and platinum, more preferably rhodium, platinum and iridium,
- the present invention provides the use of ceramic foams obtained as above defined as a catalytic support in a catalytic conversion process. Particular advantages are obtained with the use of ceramic foams obtained as above defined as a catalytic support in a conversion process employing temperatures greater than or equal to 800°C, preferably employing space velocities greater than or equal to 500, 000
- Nl/kg/hr more preferably in a process for preparation of carbon monoxide and hydrogen by the partial oxidation of a hydrocarbon feed.
- Ceramic foams according to the invention may also be employed in gas treating applications. Many applications are envisaged, of which particular advantage may be obtained in guard bed application for removing impurities or undesired components of a gas stream, particularly for purification or feed conditioning purpose, or in other gas adsorption or filtration application, particularly for separating components of a mixed gas stream, optionally with suitable active components loaded onto the modified foam.
- Particular applications of such gradient may be foreseen in applications involving catalytic reaction, wherein distribution of catalytically active material may be manipulated by means of adoption of gradient created by the impregnant, or in applications involving feed conditioning, adsorption etc., in which different velocities and retention times may be desired for components of a mixed gas stream passing through the foam.
- a process for the catalytic partial oxidation of a hydrocarbon feedstock comprises contacting a feed comprising the hydrocarbon feedstock, and an oxygen containing gas at an oxygen-to- carbon molar ratio in the range of from 0.45 to 0.75 at elevated pressure with a catalyst in a reaction zone, which catalyst comprises a metal selected from Group VIII of the periodic table supported on a ceramic foam carrier, wherein the metal is present in the form of a gradient as hereinbefore defined.
- Example 1 Preparation of a composition of the invention Rectangular samples (approximately 4 x x 1 cm) of alpha alumina foams with 30 pores per inch were modified by sol impregnation with boehmite sol, (Nyacol AI2O) having a solid content of 20 wt% on AI2O3 basis and a viscosity of 10 cps. Before impregnation with the sol the foams were first impregnated with water and dried at 55 to 60°C. Impregnation with the sol was then effected by immersing it, first partly and after 2 hours fully in the sol for 6 hours under 0.8 atmosphere vacuum.
- boehmite sol boehmite sol
- the samples were transferred to a drying oven with substantially no loss of impregnating medium from the pores and were then dried at 55 to 60°C for 12 to 14 hours. After drying the samples were calcined at temperatures ranging from 800 to 1100°C for 8 hours. The foams were weighed before modification and after drying and calcination. Samples of the unimpregnated alpha alumina foams with 30 pores per inch were also weighed, calcined at temperatures ranging from 800 to 1100°C for 8 hours and reweighed for comparison purpose.
- Example 2 Preparation of a composition of the invention Rectangular samples (approximately 4 x 4 x 1 cm) of partially stabilised zirconia (Zr - Mg + Ca) foams with 50 pores per inch were modified by sol impregnation with lanthana alumina sols having a solids content of 13wt% on oxide basis and a viscosity of 10 cps according to the process of Example 1.
- the sols were obtained by adding lanthanum nitrate solution to a commercial alumina sol (Nyacol AI2O) .
- the samples were then dried at 55 to 60°C for 12 to 14 hours. After drying the samples were calcined at temperatures ranging from 1100 to 1300°C for 8 hours.
- Example 3 Preparation of a composition of the invention Rectangular samples (approximately 4 x 4 x 1 cm) of partially stabilized zirconia (Zr - Mg + Ca) foams with 50 pores per inch were modified by the same technique of examples 1 and 2, using titania sols prepared by the hydrolysis of titanium isopropoxide, of 0.3 mole/1. The modified foams were dried and then heated at 450 °C for - 14 -
- Table 1 giving % weight gain, and (by FE-SEM pictures) layer thickness.
- Example 1 After calcining at 900°C and 1000°C for 8 hours the compositions of Example 1 according to the invention give surface areas of the order of 400 and 50 times the starting surface area of the unmodified foam. This is favorably comparable with the comparison 1 calcined under less severe conditions.
- the compositions of Example 2 calcined at 1000°C and 1100°C give favourable stabilisation of surface areas of a partially stabilised zirconia foam, when compared with measured surface areas of the corresponding dried and calcined impregnating sol. Exceptionally high surface areas may be obtained with repeated impregnation as illustrated in Example 2.
- the foams samples modified according to Example 2 (calcined at 1100 °C) and 4, were loaded into an autothermal microflow reactor for the partial oxidation of methane, consisting of an elongate quartz tube, maintained at 3 bar during operation. Hydrocarbon (methane) and oxygen at room temperature were mixed in O2/C ratio of 0.5-0.65 mol/mol and led, at a velocity of around 500,000 Nl/l/h, through the reactor operated autother ally at 950-1100 °C. The gaseous effluent was analysed on exiting the reactor, and results are given in Table 3.
- Example 4 For comparison purposes the conversion was repeated using a similar sized unmodified foam as used as starting foam in Example 2, loaded with rhodium metal as described in Example 4.
- a sample (of 30 x 4 x 1 cm) of zirconia stabilized alumina (ZTA) foam with 20 pores per inch was modified according to the procedure of Example 1, employing vacuum during the 2 to 3 hours immersion in the impregnation medium. During transfer to the drying stage drainage of impregnating medium from the pores was about 37 %wt.
- ZTA zirconia stabilized alumina
- the dried foam was calcined for 8 hours at 1100 °C.
- XPS revealed a gradient of alumina had developed in the foam, such that the Al/Zr atomic ratio varied between 38 and 65, compared with a ratio of 5 in the starting material.
- the foam was loaded with rhodium following the technique of Example 4.
- the modified and rhodium-loaded foam catalyst of Example 6 was employed in a larger scale version of the conversion process of Example 5, in which feed was preheated and catalyst was pre-ignited using methanol and air.
- the results are given in Table 4.
- modified foams which may positively benefit from gradient impregnation are also included within the scope of this invention, in particular employing a selected orientation of the gradient in the Example 7, for example with maximum Al/Zr atomic ratio at the catalyst front, whereby further enhanced temperature control and selectivity may be envisaged.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Cephalosporin Compounds (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX9703813A MX9703813A (es) | 1994-11-28 | 1995-11-27 | Proceso para la preparacion de soportes. |
AU42592/96A AU689996B2 (en) | 1994-11-28 | 1995-11-27 | Process for preparation of supports |
EP95941058A EP0794834A1 (fr) | 1994-11-28 | 1995-11-27 | Procede de preparation de supports |
NO972402A NO972402L (no) | 1994-11-28 | 1997-05-27 | Fremgangsmåte for fremstilling av bærere |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94203453 | 1994-11-28 | ||
EP94203453.9 | 1994-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996016737A1 true WO1996016737A1 (fr) | 1996-06-06 |
Family
ID=8217414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1995/004713 WO1996016737A1 (fr) | 1994-11-28 | 1995-11-27 | Procede de preparation de supports |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0794834A1 (fr) |
AU (1) | AU689996B2 (fr) |
CA (1) | CA2205178A1 (fr) |
DZ (1) | DZ1946A1 (fr) |
MX (1) | MX9703813A (fr) |
NO (1) | NO972402L (fr) |
WO (1) | WO1996016737A1 (fr) |
ZA (1) | ZA9510014B (fr) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997019753A1 (fr) * | 1995-11-27 | 1997-06-05 | Shell Internationale Research Maatschappij B.V. | Procede de preparation d'un catalyseur ou d'un precurseur de catalyseur |
WO1999048805A1 (fr) * | 1998-03-24 | 1999-09-30 | Johnson Matthey Public Limited Company | Production catalytique d'hydrogene |
EP0974550A1 (fr) * | 1997-04-11 | 2000-01-26 | Chiyoda Corporation | Catalyseur pour preparer un gaz de synthese et procede de preparation de monoxyde de carbone |
WO2001060515A2 (fr) * | 2000-02-18 | 2001-08-23 | Conoco Inc. | Catalyseurs de mousse ceramique reticulee pour la production de gaz de synthese |
US6312660B1 (en) | 1997-04-11 | 2001-11-06 | Chiyoda Corporation | Process for preparing synthesis gas |
EP1157434A1 (fr) * | 1999-02-18 | 2001-11-28 | International Fuel Cells, LLC | Catalyseur a lit fluidise leger et compact pour centrale a piles a combustible, et son procede de fabrication |
WO2002020395A2 (fr) * | 2000-09-05 | 2002-03-14 | Conoco Inc. | Catalyseurs au rhodium a activite stimulee par lanthanide et procede de production de gaz de synthese |
US6387843B1 (en) | 2001-04-05 | 2002-05-14 | Chiyoda Corporation | Method of preparing Rh- and/or Ru-catalyst supported on MgO carrier and reforming process using the catalyst |
US6656978B2 (en) | 2001-04-05 | 2003-12-02 | Chiyoda Corporation | Process of producing liquid hydrocarbon oil or dimethyl ether from lower hydrocarbon gas containing carbon dioxide |
WO2006018059A2 (fr) * | 2004-08-19 | 2006-02-23 | Haldor Topsøe A/S | Procede et catalyseur d'oxydation de so2 en so3 |
US7056488B2 (en) | 2002-03-13 | 2006-06-06 | Conocophillips Company | Controlled-pore catalyst structures and process for producing synthesis gas |
US7230035B2 (en) | 2002-12-30 | 2007-06-12 | Conocophillips Company | Catalysts for the conversion of methane to synthesis gas |
EP1797954A1 (fr) * | 2005-12-16 | 2007-06-20 | STEAG encotec GmbH | Procédé de traitement d'un catalyseur pour la purification de gaz de combustion |
US8105975B2 (en) | 2006-09-08 | 2012-01-31 | Yara International Asa | Method and device for catchment of platinum group metals in a gas stream |
EP2603320A2 (fr) | 2010-08-09 | 2013-06-19 | Cormetech, Inc. | Compositions de catalyseurs et leurs applications |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2316906A1 (fr) * | 1975-07-09 | 1977-02-04 | Montedison Spa | Procede de preparation d'eponges metalliques et/ou metallo-ceramiques et/ou ceramique |
DE3433197A1 (de) * | 1983-09-12 | 1985-03-28 | Sakai Chemical Industry Co. Ltd., Sakai, Osaka | Verfahren zur herstellung einer katalysatorstruktur zur reduktion von stickoxiden |
EP0198186A1 (fr) * | 1985-03-21 | 1986-10-22 | Drache Keramikfilter Produktions-GmbH | Procédé de préparation d'un corps de réacteur de gaz d'échappement |
JPS63111944A (ja) * | 1986-10-28 | 1988-05-17 | Toyota Motor Corp | 内燃機関排気ガス浄化用触媒の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0260826B1 (fr) * | 1986-09-10 | 1990-10-03 | Imperial Chemical Industries Plc | Catalyseurs |
-
1995
- 1995-11-24 ZA ZA9510014A patent/ZA9510014B/xx unknown
- 1995-11-26 DZ DZ950128A patent/DZ1946A1/fr active
- 1995-11-27 WO PCT/EP1995/004713 patent/WO1996016737A1/fr not_active Application Discontinuation
- 1995-11-27 CA CA002205178A patent/CA2205178A1/fr not_active Abandoned
- 1995-11-27 AU AU42592/96A patent/AU689996B2/en not_active Ceased
- 1995-11-27 MX MX9703813A patent/MX9703813A/es not_active Application Discontinuation
- 1995-11-27 EP EP95941058A patent/EP0794834A1/fr not_active Withdrawn
-
1997
- 1997-05-27 NO NO972402A patent/NO972402L/no unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2316906A1 (fr) * | 1975-07-09 | 1977-02-04 | Montedison Spa | Procede de preparation d'eponges metalliques et/ou metallo-ceramiques et/ou ceramique |
DE3433197A1 (de) * | 1983-09-12 | 1985-03-28 | Sakai Chemical Industry Co. Ltd., Sakai, Osaka | Verfahren zur herstellung einer katalysatorstruktur zur reduktion von stickoxiden |
EP0198186A1 (fr) * | 1985-03-21 | 1986-10-22 | Drache Keramikfilter Produktions-GmbH | Procédé de préparation d'un corps de réacteur de gaz d'échappement |
JPS63111944A (ja) * | 1986-10-28 | 1988-05-17 | Toyota Motor Corp | 内燃機関排気ガス浄化用触媒の製造方法 |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 012, no. 353 (C - 530) 21 September 1988 (1988-09-21) * |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU695933B2 (en) * | 1995-11-27 | 1998-08-27 | Shell Internationale Research Maatschappij B.V. | Process for the preparation of a catalyst or catalyst precursor |
WO1997019753A1 (fr) * | 1995-11-27 | 1997-06-05 | Shell Internationale Research Maatschappij B.V. | Procede de preparation d'un catalyseur ou d'un precurseur de catalyseur |
US6562749B1 (en) | 1995-11-27 | 2003-05-13 | Shell Oil Company | Process for the preparation of a catalyst or catalyst precursor |
EP0974550A1 (fr) * | 1997-04-11 | 2000-01-26 | Chiyoda Corporation | Catalyseur pour preparer un gaz de synthese et procede de preparation de monoxyde de carbone |
EP0974550A4 (fr) * | 1997-04-11 | 2000-05-24 | Chiyoda Chem Eng Construct Co | Catalyseur pour preparer un gaz de synthese et procede de preparation de monoxyde de carbone |
US6312660B1 (en) | 1997-04-11 | 2001-11-06 | Chiyoda Corporation | Process for preparing synthesis gas |
US6376423B2 (en) | 1997-04-11 | 2002-04-23 | Chiyoda Corporation | Catalyst for preparation of synthesis gas and process for preparing carbon monoxide |
WO1999048805A1 (fr) * | 1998-03-24 | 1999-09-30 | Johnson Matthey Public Limited Company | Production catalytique d'hydrogene |
US6887455B2 (en) | 1998-03-24 | 2005-05-03 | Johnson Matthey Public Limited Company | Catalytic generation of hydrogen |
JP2002507535A (ja) * | 1998-03-24 | 2002-03-12 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | 触媒作用による水素発生 |
EP1157434A4 (fr) * | 1999-02-18 | 2003-04-16 | Int Fuel Cells Llc | Catalyseur a lit fluidise leger et compact pour centrale a piles a combustible, et son procede de fabrication |
EP1157434A1 (fr) * | 1999-02-18 | 2001-11-28 | International Fuel Cells, LLC | Catalyseur a lit fluidise leger et compact pour centrale a piles a combustible, et son procede de fabrication |
US6630078B2 (en) | 2000-02-18 | 2003-10-07 | Conocophillips Company | Reticulated ceramic foam catalysts for synthesis gas production |
WO2001060515A3 (fr) * | 2000-02-18 | 2002-04-25 | Conoco Inc | Catalyseurs de mousse ceramique reticulee pour la production de gaz de synthese |
WO2001060515A2 (fr) * | 2000-02-18 | 2001-08-23 | Conoco Inc. | Catalyseurs de mousse ceramique reticulee pour la production de gaz de synthese |
WO2002020395A2 (fr) * | 2000-09-05 | 2002-03-14 | Conoco Inc. | Catalyseurs au rhodium a activite stimulee par lanthanide et procede de production de gaz de synthese |
US6946114B2 (en) | 2000-09-05 | 2005-09-20 | Conocophillips Company | Lanthanide-promoted rhodium catalysts and process for producing synthesis gas |
AU2001290617B2 (en) * | 2000-09-05 | 2007-06-21 | Conocophillips Company | Lanthanide-promoted rhodium catalysts and process for producing synthesis gas |
WO2002020395A3 (fr) * | 2000-09-05 | 2002-10-10 | Conoco Inc | Catalyseurs au rhodium a activite stimulee par lanthanide et procede de production de gaz de synthese |
US6387843B1 (en) | 2001-04-05 | 2002-05-14 | Chiyoda Corporation | Method of preparing Rh- and/or Ru-catalyst supported on MgO carrier and reforming process using the catalyst |
US6656978B2 (en) | 2001-04-05 | 2003-12-02 | Chiyoda Corporation | Process of producing liquid hydrocarbon oil or dimethyl ether from lower hydrocarbon gas containing carbon dioxide |
US6806296B2 (en) | 2001-04-05 | 2004-10-19 | Chiyoda Corporation | Process of producing liquid hydrocarbon oil or dimethyl ether from lower hydrocarbon gas containing carbon dioxide |
US7056488B2 (en) | 2002-03-13 | 2006-06-06 | Conocophillips Company | Controlled-pore catalyst structures and process for producing synthesis gas |
US7230035B2 (en) | 2002-12-30 | 2007-06-12 | Conocophillips Company | Catalysts for the conversion of methane to synthesis gas |
WO2006018059A3 (fr) * | 2004-08-19 | 2006-12-28 | Haldor Topsoe As | Procede et catalyseur d'oxydation de so2 en so3 |
WO2006018059A2 (fr) * | 2004-08-19 | 2006-02-23 | Haldor Topsøe A/S | Procede et catalyseur d'oxydation de so2 en so3 |
EP1797954A1 (fr) * | 2005-12-16 | 2007-06-20 | STEAG encotec GmbH | Procédé de traitement d'un catalyseur pour la purification de gaz de combustion |
EP2248587A1 (fr) * | 2005-12-16 | 2010-11-10 | Evonik Energy Services GmbH | Procédé de traitement d'un catalyseur pour la purification de gaz de combustion |
US8637417B2 (en) | 2005-12-16 | 2014-01-28 | Steag Energy Services Gmbh | Method for treating flue gas catalysts |
US8105975B2 (en) | 2006-09-08 | 2012-01-31 | Yara International Asa | Method and device for catchment of platinum group metals in a gas stream |
US8562926B2 (en) | 2006-09-08 | 2013-10-22 | Yara International Asa | Method and device for catchment of platinum group metals in a gas stream |
EP2603320A2 (fr) | 2010-08-09 | 2013-06-19 | Cormetech, Inc. | Compositions de catalyseurs et leurs applications |
US8901033B2 (en) | 2010-08-09 | 2014-12-02 | Cormetech, Inc. | Catalyst compositions and applications thereof |
EP2603320B1 (fr) * | 2010-08-09 | 2016-02-10 | Cormetech, Inc. | Structure catalytique |
Also Published As
Publication number | Publication date |
---|---|
NO972402D0 (no) | 1997-05-27 |
AU689996B2 (en) | 1998-04-09 |
EP0794834A1 (fr) | 1997-09-17 |
MX9703813A (es) | 1997-08-30 |
DZ1946A1 (fr) | 2002-02-17 |
AU4259296A (en) | 1996-06-19 |
CA2205178A1 (fr) | 1996-06-06 |
ZA9510014B (en) | 1996-06-04 |
NO972402L (no) | 1997-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5658497A (en) | Process for the catalytic partial oxidation of hydrocarbons using a certain catalyst support | |
AU689996B2 (en) | Process for preparation of supports | |
Ermakova et al. | New nickel catalysts for the formation of filamentous carbon in the reaction of methane decomposition | |
US6824689B2 (en) | Carbon nanotube-containing structures, methods of making, and processes using same | |
RU2340394C2 (ru) | Способ получения носителя для катализатора с повышенной гидротермальной стабильностью (варианты), катализатор для синтеза углеводородов и способ синтеза углеводородов из синтез-газа | |
CA2470025C (fr) | Structures contenant des nanotubes de carbone, procedes de fabrication, et processus dans lesquels elles sont utilisees | |
US7214331B2 (en) | Catalyst configuration and methods for syngas production | |
US20050176580A1 (en) | Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst | |
JP5759447B2 (ja) | フィッシャー・トロプシュ合成触媒の製造方法、並びに炭化水素の製造方法 | |
CN1307539A (zh) | 采用两种催化活性金属的催化部分氧化 | |
US4713363A (en) | High surface area supported noble metal catalysts and process for their preparation | |
AU2003203604A1 (en) | Metal catalyst and method of preparation and use | |
JP2003507161A (ja) | フィッシャー・トロプシュ合成の触媒構造及び方法 | |
Chai et al. | Promotion of hydrogen permeation on metal-dispersed alumina membranes and its application to a membrane reactor for methane steam reforming | |
EA009572B1 (ru) | Катализаторы синтеза фишера-тропша | |
MXPA97003813A (en) | Process for the preparation of sopor | |
EP0863801B1 (fr) | Procede de preparation d'un catalyseur ou d'un precurseur de catalyseur | |
JP2014171950A (ja) | 炭化水素化合物類のオートサーマル改質触媒およびその製造方法 | |
JPH0459052A (ja) | 水蒸気改質用触媒 | |
EP1567446A1 (fr) | Supports ameliores pour catalyseurs a grande surface active | |
JPH0616850B2 (ja) | 水蒸気改質用の触媒 | |
US20020111262A1 (en) | Catalyst and method of making micrometer sized spherical particles | |
CA1224200A (fr) | Preparation d'oxydes refractaires modifies, et leur emploi dans les processus d'hydroconversion | |
US20040147619A1 (en) | Chlorine-containing synthesis gas catalyst | |
Zhu et al. | Selective hydrogenation of acetylene over egg-shell palladium nano-catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2205178 Country of ref document: CA Ref country code: CA Ref document number: 2205178 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995941058 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1997/003813 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 297436 Country of ref document: NZ |
|
WWP | Wipo information: published in national office |
Ref document number: 1995941058 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995941058 Country of ref document: EP |