+

WO1996011325A1 - Suction-exhaust valve control device for a four cycle engine - Google Patents

Suction-exhaust valve control device for a four cycle engine Download PDF

Info

Publication number
WO1996011325A1
WO1996011325A1 PCT/JP1995/002063 JP9502063W WO9611325A1 WO 1996011325 A1 WO1996011325 A1 WO 1996011325A1 JP 9502063 W JP9502063 W JP 9502063W WO 9611325 A1 WO9611325 A1 WO 9611325A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
valve
cam follower
exhaust
engine
Prior art date
Application number
PCT/JP1995/002063
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroomi Ogasawara
Original Assignee
Ogasawara Precision Engineering Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ogasawara Precision Engineering Ltd. filed Critical Ogasawara Precision Engineering Ltd.
Priority to DE19581378T priority Critical patent/DE19581378T1/en
Publication of WO1996011325A1 publication Critical patent/WO1996011325A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/143Tappets; Push rods for use with overhead camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/01Absolute values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]

Definitions

  • the present invention relates to a device for changing the operation timing of a supply / exhaust valve of a four-cycle engine, and more particularly to a device for changing the timing of transmitting the operation of a cam to a valve and the valve lift.
  • the supply and exhaust of the engine is performed by operating at least one of the intake and exhaust valves according to the rotation of the cam.
  • the charging efficiency and the combustion efficiency are not the best if the timing of the supply and exhaust of the engine is not changed between the low and high engine speeds. In other words, the higher the engine speed, the faster the supply and exhaust timing needs to be.
  • VTEC and MIVEC two types of cams
  • a helical gear called VANOS is used to change the force acting on at least one of the cam-operated intake and exhaust valves, and the helicopter gear rotates according to the separately detected engine speed. In some cases, the degree of action fe3 ⁇ 4 is changed.
  • the present invention has been made in consideration of the above points, and has as its object to provide a four-stroke engine integrated exhaust valve control device that can perform variable supply and exhaust according to the engine speed in a simple manner.
  • a cam that determines the timing of at least one of an air supply valve and an exhaust valve of the engine, and a valve body that is pressed in accordance with the rotation of the cam and pushes down at least one of the air supply valve and the exhaust valve.
  • the cam operation of the cam is applied to the valve body between the cam and the valve body, and ⁇ is changed according to an external force.
  • a four-cycle engine wherein a cam follower that changes the timing and the valve lift amount of the cam that moves the cam to the valve body by changing the contact position with respect to the cam, or a rocker arm is further inserted.
  • Lined exhaust valve control device
  • the operating timing of at least one of the exhaust and exhaust valves of the engine determined by the cam is transmitted to the valve via the cam follower.
  • the cam follower can change its length when an external force is applied, and by changing the posture, the phase angle position that contacts the cam changes, so the timing of receiving the operation from the cam changes.
  • the timing of the valve element changes to change the timing relationship between the cam operation and the operation of the valve element, so that the engine charging efficiency and combustion efficiency corresponding to the engine speed can be optimized.
  • changing the posture of the cam follower changes the contact position force with the valve body, so the valve lift also changes.
  • the movement of the cam follower may be further transmitted to the valve via a rocker arm.
  • FIG. 1 (a) is a vertical cross-sectional view of the supply and discharge periphery of a four-stroke engine to which the present invention is applied
  • FIG. 1 (b) is a partial detailed view of FIG. 1 (a).
  • FIG. 2 is a diagram for explaining the operation of the supply / exhaust timing according to the present invention.
  • FIG. 2 (a) shows the case of normal timing
  • FIG. 2 (b) shows the case of early timing.
  • FIG. 2 (a) shows the case of normal timing
  • FIG. 2 (b) shows the case of early timing.
  • FIG. 3 is a view showing a rotary member 3 in the example of FIG.
  • FIG. 4 is a schematic diagram illustrating the operation of the cam follower in the example of FIG. 1.
  • FIG. 5 is a simplified diagram of FIG. 4 illustrating the operation of the cam follower in the example of FIG. 1;
  • FIG. 6 is a characteristic diagram showing the relationship between the inclination angle of the cam follower and the rate of change of the valve lift in the example of FIG.
  • FIG. 7 is a diagram showing the relationship between the inclination angle of the cam follower and the change Ut in the clearance of ⁇ which comes into contact with the cam follower in the example of FIG.
  • FIG. 8 is a view showing another example of the angle H of the present invention.
  • FIG. 8 (a) shows a state viewed from the same angle as FIG. 1, and
  • FIG. 8 (b) shows an X-X of FIG. It shows the condition viewed along the direction.
  • FIG. 9 is a longitudinal sectional view showing the supply and discharge of another HJI example of the present invention.
  • FIG. 10 is a diagram for explaining the change ⁇ b operation of the supply / exhaust timing according to the present invention.
  • FIG. 10 (a) shows the case of normal timing
  • FIG. 10 (b) shows the case of early timing.
  • FIG. 11 is a view showing another embodiment of the present invention.
  • FIG. 11 (a) shows a state viewed from the same angle as FIG. 9, and
  • FIG. 11 (b) shows a state of FIG. 11 (a).
  • X shows the state viewed along the X direction.
  • FIGS. 1 (a) and 1 (b) show, as an Hlfe form of the present invention, a vertical cross section around a supply / exhaust valve of a four-stroke engine. As shown, the engine or air-fuel mixture is introduced into the cylinder through an air supply port 10 and is discharged from an exhaust port 20 after compression and combustion.
  • FIG. 1 shows only the details of pfling the air supply valve provided in the air supply hole 10 and omits the other components.The same configuration is applied to the exhaust valve provided in the exhaust hole 20. Or ⁇ !
  • the fl of the air supply valve is controlled by the operation of the cam 1.
  • the cam 1 rotates clockwise in the figure synchronously with the rotation of the engine, pushes down the valve body via another member at a predetermined rotation position against the extension of the spring incorporated in the air supply valve, and forms a line. Air is supplied to the cylinder from the pore 10.
  • the cam follower 2 is formed in a columnar shape as shown in FIG. 1 (a), and is accommodated in a through-hole provided in a cylindrical rotating body 3 so as to be movable in the axial direction or "5J-capable.” As shown in Fig. 1 (b), the cam follower 2 may have a large diameter at the contact portion with the cam and a thinner guide portion, that is, may have a so-called mushroom-like shape.
  • the pressing force of the body is fitted to the valve body 8 via the hemispherical body 4.
  • the hemispherical body 4 is in sliding contact with the upper surface of the valve body 8 in the figure, and the pressing force from the cam follower 2 is applied to the valve. A downward force in the figure is given to the body 8. Therefore, a force for pushing down the valve body 8 against the extension force of the spring 7 is given to the upper end face in the drawing of # ⁇ * 8.
  • valve element 8 When the valve element 8 is pushed down, the end of the air supply hole closed by the valve element 8 is opened, and the air is communicated with the air supply hole 10 and the cylinder, and a solid air is performed.
  • a similar valve is provided between the exhaust port 20 and the cylinder. An operation for exhausting by the operation is performed.
  • FIG. 2A and 2B are diagrams for explaining the operation of changing the supply / exhaust timing according to the present invention.
  • FIG. 2A shows the case of normal timing
  • FIG. 2B shows the case of early timing.
  • the cam 1 rotates clockwise in the figure and comes into contact with the upper surface of the cam follower 2 in the figure.
  • the cam follower 2 is pushed down in the axial direction along the through hole of the rotating body 3 and pushes down the hemispherical body 4.
  • the rotating body 3 is rotated counterclockwise by an angle 0 as compared with the state of the same figure (a), and the cam follower 2 is in an inclined state with respect to the cam 1. .
  • the cam follower 2 first comes into contact with the cam 1 at the right end of the upper surface in the figure.
  • the upper surface of the cam follower 2 is shifted rightward in the drawing when viewed from the center axis of the cam follower 2, and thus is the portion of the upper surface of the cam follower 2 that comes into contact with the cam 1 first. Therefore, in the case of FIG. 7 (a), the cam follower 2 responds to 3 ⁇ ⁇ of the cam 1 earlier than in FIG. 7 (a). If the inclination angle of the cam follower 2 is reversed in the clockwise direction, the cam follower 2 responds to the movement of the cam 1 with a delay.
  • the cam follower 2 changes the force with respect to the cam 1 in accordance with the engine speed. If the cam follower 2 contacts the cam 1 at ⁇ shown in the same figure (a) when the engine speed is high, the cam follower 2 contacts the cam 1 at ⁇ shown in the same figure (b) at high speed. For example, by rotating the rotating body 3 through a control mechanism (not shown) or a link mechanism operated by an actuator such as a hydraulic pressure, supply and exhaust at high speed is performed earlier than engine rotation. .
  • FIG. 3 shows the shape of the rotating body 3.
  • the rotating body 3 is The rotating body 3 has two through holes 3 a, 3 a which are substantially cylindrical in shape, are arranged side by side along the longitudinal direction thereof, and extend from one of the peripheral surfaces of the rotating body 3 to the other.
  • the cam follower 2 is accommodated in the through hole 3a so as to be movable in the axial direction in the through holes 3a and 3b.
  • a longer rotating body 3 common to a plurality of cylinders and having only two valves in the DOHC engine may be formed.
  • At least one end surface of the rotating body 3 is provided with a connecting portion 3b, and the connecting portion 3b is subjected to IE® connection with a control mechanism or a hydraulic device provided by a link mechanism (not shown).
  • IE® connection with a control mechanism or a hydraulic device provided by a link mechanism (not shown).
  • FIGS. 6 and 7 are schematic diagrams for explaining how the clearance between the cam follower pushed up by the valve spring and the rotation limit position for taking two forces changes.
  • the cam follower 2 has a total length St of 5 O mm, and pivots to a position at an angle 0 with a point at a distance S from the contact surface with the cam 1 as a fulcrum.
  • the lower end of the cam follower 2 is in contact with the valve body 8 via the hemispherical body 4.
  • This schematic diagram shows a state in which the cam follower 2 abutting on the cam 1 is in an upright state, which is a reference state, and a state in which the cam follower 2 rotates about the rotation center C f and rotates to a position of an angle 0 indicated by the idea. .
  • FIG. 6 is a characteristic diagram obtained by performing a simulation under the conditions of FIG.
  • the horizontal axis indicates the tilt angle 0 of the cam follower 2
  • the vertical axis indicates the lift of a valve (not shown).
  • the valve lift is +8 when the tilt angle is 0.
  • the valve lift within the above range Rate is obtained.
  • the change of the valve lift can be estimated by the following formula (1).
  • FIG. 7 is a characteristic diagram obtained by performing a simulation under the conditions of FIG. 4 in the same manner as in FIG. 6, in which the inclination angle 0 of the cam follower 2 is plotted on the horizontal axis, and the change in the clearance of the cam follower 2 ( ⁇ 1 is plotted on the vertical axis).
  • the clearance between the cam and the cam follower must be within a range that can absorb this change, and the clearance change amount 1 can be obtained by the following equation (2).
  • the change in clearance bS can be kept within 1 to around 8 °.
  • the valve opening angle can be reduced by arranging the clearance in a direction to increase the clearance.
  • FIGS. 8A and 8B show another example of the present invention, in which the cam follower 12 is formed in an umbrella shape and supported by a ring 13.
  • the ring 13 is supported by the cylinder head by a force (not shown) ⁇ a well-known structure.
  • the ring 13 may be not cylindrical but notched as long as it can support the cam follower 12.
  • the upper surface in the figure of ##: 14 is an arc surface with a radius R centered on the cam shaft.
  • FIG. 9 shows a state similar to that of FIG. 1 according to still another embodiment of the present invention.
  • C FIG. 9 also shows only the opening of the air valve provided in the air supply hole 10 in detail. The other components are omitted. The same configuration can be applied to the exhaust provided in the exhaust hole 20.
  • the p3 ⁇ 4l of the air supply valve is controlled by the operation of the cam 1.
  • the cam 1 rotates clockwise in the figure synchronously with the rotation of the engine, stakes at a predetermined rotation position under the tension of the spring incorporated in the lined air valve, pushes down the valve body via another member, and supplies the power. Vent from cylinder 10 to cylinder.
  • the main elements for transmitting the cam operation of the cam 1 to the air valve at this time are the cam follower 2 and the rocker arm 5 as a valve F ⁇ member.
  • the cam follower 2 is formed in a columnar shape, and is accommodated in a through hole provided in the cylindrical rotating body 3 so as to have an axial moving force. Further, as shown in FIG. 9 (b), the cam follower 2 may have a so-called mushroom-like shape in which the diameter of the contact portion with the force is large and the guide portion is thinner than that.
  • the pushing force of the valve body by the cam follower 2 is transmitted to the rocker arm 5 through the hemispherical body 4.
  • the hemisphere 4 slides on the upper surface of the rocker arm 5 in the figure.
  • the cam follower 2 is being touched, and the pressing force from the cam follower 2 is applied to the mouth kicker arm 5 downward in the figure.
  • the rocker arm 5 rotates counterclockwise in the figure, and applies a force to push down the valve body 8 against the extension force of the spring 7 to the illustrated upper end of the valve body 8 via the spherical body 6.
  • the rocker arm 5 receives a clockwise acting force due to the extension force of the spring 7, and rotates to a preset operation position around a rotation center near the right end in the figure. Then, it receives an acting force from the cam follower 2 and gives an acting force to # ⁇ * 8.
  • the rocker arm 5 is a member for applying the acting force received from the force follower 2 to the valve element 8. If the point where the acting force is received from the force follower 2 and the point applied to the valve element 8 are only slightly small in position and are not separated from each other, the strength of the rocker arm 5 does not need to be increased so much.
  • valve element 8 When the valve element 8 is pushed down, the end of the air supply hole closed by the valve element 8 opens, and the air hole 10 and the cylinder are connected to supply air.
  • the same operation for exhaust is performed between the exhaust hole 20 and the cylinder by the same valve operation.
  • FIG. 10 is a diagram for explaining the operation of changing the supply / exhaust timing in the embodiment of FIG. 9.
  • FIG. 10 (a) shows the case of normal timing
  • FIG. 10 (b) shows the case of early timing. Each is shown.
  • the cam 1 rotates clockwise in the figure and comes into contact with the upper surface of the cam follower 2 in the figure.
  • the cam follower 2 is pushed down in the axial direction along the through hole of the rotating body 3, and pushes down the hemispherical body 4 to apply a force to the cam follower 5.
  • the cam follower 2 changes ⁇ with respect to the cam 1 in accordance with the engine speed. If the cam follower 2 contacts the cam 1 at ⁇ shown in the same figure (a) when the engine speed is low, the cam follower 2 contacts the cam 1 at ⁇ shown in the same figure (b) at high speed. For example, by rotating the rotating body 3 through a link (not shown) that is controlled by a control motor or an actuator such as a hydraulic pressure, air supply and exhaust at a high speed are performed earlier than the engine rotation. .
  • FIGS. 11A and 11B show another example of the present invention, in which a cam follower 12 is formed in an umbrella shape and supported by a ring 13.
  • the ring 13 is supported by a cylinder head by a well-known configuration (not shown).
  • the ring 13 may be not cylindrical but notched as long as it can support the cam follower 12.
  • the position of the cam follower 2 may be offset in the advance direction, that is, in the direction shown in the figure with respect to the center position of the cam 1.
  • the cam follower since the operation of the cam is transmitted to the valve body via a force follower that changes the contact position with respect to the cam when the external force is applied and the force changes, the cam follower can be changed according to the engine speed.
  • the operation to the valve body can be performed at timing that changes according to the speed.
  • the operation of at least one of the supply valve and the exhaust valve can be changed according to the engine 3 ⁇ 4S.
  • the contact position between the cam follower and the valve body the force to change the valve lift can be achieved.
  • the present invention since the present invention has the structure of the upper part of the cylinder head of the engine, the present invention can be similarly applied to a case where the present invention is applied to an existing engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

Industrial field of utilization: the present invention relates to a device for changing the operation timing of suction and exhaust valves of a four cycle engine, and more particularly to a device for changing a timing at which the operation of a cam is transmitted to a valve and a valve lift. Problem: an object of the present invention is to provide a variable suction-exhaust device simple in construction and capable of effecting suction and exhaust in accordance with an engine speed. Means for solving the problem: a suction and exhaust valve control device for a four cycle engine comprising a cam (1) for determining the operation timing of at least one of suction and exhaust valves and a valve disc (8, 14) adapted to be operated by being pressed down in accordance with the rotation of the cam to thereby press down at least one of the valve discs of the suction and exhaust valves, wherein a cam follower (2) or the cam follower and a rocker arm (5, 15) are inserted between the cam and the valve disc, the cam follower being adapted not only to transmit the cam operation of the cam to the valve disc but also to be able to change its attitude in accordance with an external force so as to change the contact position relative to the cam to thereby change a timing at which the cam operation of the cam is transmitted to the valve disc and a valve lift.

Description

明 細 害  Harm
4サイクルェンジンの給排気弁制御装置 技術分野 Supply / exhaust valve control system for 4-cycle engine
本発明は、 4サイクルエンジンの給排気弁の作動タイミングを変化させる装置 に係り、 とくにカムの動作を弁に伝えるタイミングおよび弁リフト量を変化させ るものに関する。  The present invention relates to a device for changing the operation timing of a supply / exhaust valve of a four-cycle engine, and more particularly to a device for changing the timing of transmitting the operation of a cam to a valve and the valve lift.
背景技術  Background art
エンジンの給排気は、 カムの回転動作に応じて給気弁、 排気弁の少なくとも一 方を作動させることにより行っている。 そして、 この給排気は、 エンジン速度が 低い場合と高い場合とで、 給排気のエンジンのピストン動作に対するタイミング を変えないと充填効率および燃焼効率力 <最良にならない。 つまり、 エンジン速度 力《高速になるほど給排気のタイミングを早める必要がある。 そのため従来、 V T E C、 M I V E Cなどと称する 2種類のカムを用い、 エンジン回転速度に応じて エンジン燃焼室への給気、 さらには排気のタイミングを調整する技術が提供され ている。  The supply and exhaust of the engine is performed by operating at least one of the intake and exhaust valves according to the rotation of the cam. In addition, the charging efficiency and the combustion efficiency are not the best if the timing of the supply and exhaust of the engine is not changed between the low and high engine speeds. In other words, the higher the engine speed, the faster the supply and exhaust timing needs to be. For this reason, conventionally, there has been provided a technology that uses two types of cams, such as VTEC and MIVEC, to adjust the timing of air supply to the engine combustion chamber and further the timing of exhaust air according to the engine speed.
また、 V A N O Sと称する、 ヘリカルギアを用いてカム動作の給気弁、 排気弁 の少なくとも一方への作用力 合いを変え得るようにしておき、 別途検出し たェンジン速度に応じてヘリ力ルギアを回転させ、 作用力 fe¾度合いを変えるよ うにしたものもある。  A helical gear called VANOS is used to change the force acting on at least one of the cam-operated intake and exhaust valves, and the helicopter gear rotates according to the separately detected engine speed. In some cases, the degree of action fe¾ is changed.
これらの装置は、 2種類のカムもしくはヘリカルギアを用いているので、 カム の進角と弁リフト量とを同時に且つ連続的に制御することができず、 充填効率お よび燃焼効率を常に最良に保つことができないばかりでなく、全体機構が複雑な 構成となっている。 本発明は上述の点を考慮してなされたもので、 簡単な でェンジン速度に応 じて可変給排気を行い得る 4サイクルェンジンの袷排気弁制御装置を提供するこ とを目的とする。 Since these devices use two types of cams or helical gears, the cam advance and the valve lift cannot be controlled simultaneously and continuously, and the charging efficiency and combustion efficiency are always optimized. Not only cannot it be maintained, but the overall mechanism has a complicated configuration. The present invention has been made in consideration of the above points, and has as its object to provide a four-stroke engine integrated exhaust valve control device that can perform variable supply and exhaust according to the engine speed in a simple manner.
発明の開示 Disclosure of the invention
上記目的達成のため、 本発明では、  In order to achieve the above object, in the present invention,
エンジンの給気弁、 排気弁の少なくとも一方の タイミングを決めるカムと、 このカムの回転に応じ押圧されて し、 前記給気弁、 排気弁の少なくとも一方 の弁体を押し下げる弁体とをそなえた 4サイクルェンジンの袷排気弁制御装置に おいて、 前記カムと前記弁体との間に、 前記カムのカム動作を前記弁体に & す るとともに、 外力に応じて^が変えられることにより前記カムに対する接触位 置を変えて前記カムのカム動作を前記弁体に ^ するタイミングおよび弁リフト 量を可変とするカムフォロワ、 またはさらにロッカーアームが挿入されたことを 特徴とする 4サイクルェンジンの袷排気弁制御装置、  A cam that determines the timing of at least one of an air supply valve and an exhaust valve of the engine, and a valve body that is pressed in accordance with the rotation of the cam and pushes down at least one of the air supply valve and the exhaust valve. In the lined exhaust valve control device of a 4-cycle engine, the cam operation of the cam is applied to the valve body between the cam and the valve body, and ^ is changed according to an external force. A four-cycle engine, wherein a cam follower that changes the timing and the valve lift amount of the cam that moves the cam to the valve body by changing the contact position with respect to the cam, or a rocker arm is further inserted. Lined exhaust valve control device,
を提供するものである。  Is provided.
上記 段により、 次のような作用が得られる。  The following effects can be obtained by the above steps.
カムにより決まるエンジンの铪気弁、 排気弁の少なくとも一方の作動タイミン グをカムフォロワを介して弁体に伝える。 カムフォロワは、 外力が与えられるこ とによりその^を変えることができ、 姿勢を変えることによってカムに接触す る位相角度位置が変わるので、 カムからの作動を受け取るタイミングが変わる。 この結果、 弁体の タイミング力く変化してカム動作と弁体の動作とのタイミン グ関係が変化し、 ェンジン速度に対応したェンジンの充填効率および燃焼効率を 最良にすることができる。 また、 カムフォロワは姿勢を変えることにより、 弁体 との接触位置力く変わるから弁リフト量も変わる。 カムフォロワの動きは、 さらに ロッカーアームを介して弁体に伝えるようにしてもよい。 EI®の簡単な説明 The operating timing of at least one of the exhaust and exhaust valves of the engine determined by the cam is transmitted to the valve via the cam follower. The cam follower can change its length when an external force is applied, and by changing the posture, the phase angle position that contacts the cam changes, so the timing of receiving the operation from the cam changes. As a result, the timing of the valve element changes to change the timing relationship between the cam operation and the operation of the valve element, so that the engine charging efficiency and combustion efficiency corresponding to the engine speed can be optimized. In addition, changing the posture of the cam follower changes the contact position force with the valve body, so the valve lift also changes. The movement of the cam follower may be further transmitted to the valve via a rocker arm. Brief description of EI®
図 1 (a ) は、 本発明を適用した 4サイクルエンジンの給排 周りの縦断面 図、 図 1 (b) は図 1 (a) の部分詳細図。  FIG. 1 (a) is a vertical cross-sectional view of the supply and discharge periphery of a four-stroke engine to which the present invention is applied, and FIG. 1 (b) is a partial detailed view of FIG. 1 (a).
図 2は本発明による給排気タイミングの変 b»作を説明するための図で、 図 2 (a ) は通常タイミングの場合を、 また図 2 (b) は早めタイミングの場合をそ れぞれ示した図。  FIG. 2 is a diagram for explaining the operation of the supply / exhaust timing according to the present invention. FIG. 2 (a) shows the case of normal timing, and FIG. 2 (b) shows the case of early timing. FIG.
図 3は図 1の! 例における回動体 3の を示した図。  FIG. 3 is a view showing a rotary member 3 in the example of FIG.
図 4は図 1の H½例におけるカムフォロワの動作を説明した模式図。  FIG. 4 is a schematic diagram illustrating the operation of the cam follower in the example of FIG. 1.
図 5は図 4よりも簡単化して図 1の 例におけるカムフォロワの動作を説明 した^;図。  FIG. 5 is a simplified diagram of FIG. 4 illustrating the operation of the cam follower in the example of FIG. 1; FIG.
図 6は図 1の 例におけるカムフォロワの傾き角とそれによる弁リフト量の 変化率との関係を示す特性図。  FIG. 6 is a characteristic diagram showing the relationship between the inclination angle of the cam follower and the rate of change of the valve lift in the example of FIG.
図 7は図 1の! 例におけるカムフォロワの傾き角とこのカムフォロワに当接 する^のクリアランスの変ィ Utとの関係を示す 図。  FIG. 7 is a diagram showing the relationship between the inclination angle of the cam follower and the change Ut in the clearance of ^ which comes into contact with the cam follower in the example of FIG.
図 8は本発明の他の H¾例を示す図であり、 図 8 ( a) は図 1と同一角度から 見た忧態を示し、 図 8 (b) は同図 (a ) の X— X方向に沿って見た忧態を示し たものである。  FIG. 8 is a view showing another example of the angle H of the present invention. FIG. 8 (a) shows a state viewed from the same angle as FIG. 1, and FIG. 8 (b) shows an X-X of FIG. It shows the condition viewed along the direction.
図 9は本発明のさらに他の HJI例の給排^周りの縱断面図、 図 9 (b) は図 FIG. 9 is a longitudinal sectional view showing the supply and discharge of another HJI example of the present invention, and FIG.
9 (a) の部分詳細図。 9 (a) is a partial detailed view.
図 1 0は本発明による給排気タイミングの変 <b¾作を説明するための図で、 図 FIG. 10 is a diagram for explaining the change <b operation of the supply / exhaust timing according to the present invention.
1 0 ( a ) は通常タイミングの場合を、 また図 1 0 (b) は早めタイミングの場 合をそれぞれ示した図。 10 (a) shows the case of normal timing, and FIG. 10 (b) shows the case of early timing.
図 1 1は本発明の別の実施例を示す図であり、 図 1 1 ( a) は図 9と同一角度 から見た 態を示し、 図 1 1 (b) は図 1 1 (a ) の X— X方向に沿って見た状 態を示している。 発明を するための の形態 FIG. 11 is a view showing another embodiment of the present invention. FIG. 11 (a) shows a state viewed from the same angle as FIG. 9, and FIG. 11 (b) shows a state of FIG. 11 (a). X—shows the state viewed along the X direction. DESCRIPTION OF EMBODIMENTS OF THE INVENTION
図 1 ( a ) , (b ) は、 本発明の一 Hlfe形態として、 4サイクルエンジンの給 排気弁周りを縦断面として示したものである。 図示のように、 エンジンへの^ または混合気は給気孔 1 0からシリンダに導入され、 圧縮、 そして燃焼の後に排 気孔 2 0から排出される。  FIGS. 1 (a) and 1 (b) show, as an Hlfe form of the present invention, a vertical cross section around a supply / exhaust valve of a four-stroke engine. As shown, the engine or air-fuel mixture is introduced into the cylinder through an air supply port 10 and is discharged from an exhaust port 20 after compression and combustion.
この図 1では、給気孔 1 0に設けられた給気弁を pflさせる のみを詳細に 示していて他は省略している力 排気孔 2 0に設けられる排気弁についても同様 の構成を採ることか^!能である。  FIG. 1 shows only the details of pfling the air supply valve provided in the air supply hole 10 and omits the other components.The same configuration is applied to the exhaust valve provided in the exhaust hole 20. Or ^!
給気弁の flは、 カム 1の動作によって制御される。 カム 1は、 エンジンの回 転と同期的に図における時計方向に回転し、 所定回転位置で給気弁に組み込まれ たスプリングの伸張力に抗し他の部材を介して弁体を押し下げ、 袷気孔 1 0から シリンダに給気を行う。  The fl of the air supply valve is controlled by the operation of the cam 1. The cam 1 rotates clockwise in the figure synchronously with the rotation of the engine, pushes down the valve body via another member at a predetermined rotation position against the extension of the spring incorporated in the air supply valve, and forms a line. Air is supplied to the cylinder from the pore 10.
この際のカム 1のカム動作を耠気弁に伝える主たる要素として、 カムフォロワ 2がある。 カムフォロワ 2は、 図 1 ( a ) に示すように円柱状に形成されており、 円筒状の回動体 3に設けられた貫通孔に軸方向移動か "5J能なように収容されてい る。 また、 カムフォロワ 2は、 図 1 (b ) に示すようにカムとの接触部の径カ大 きく、 ガイド部をそれに比較して細くした、 いわば茸状の形状であってもよい。 カムフォロワ 2による弁体の押し下げ力が、半球状体 4を介して弁体 8に fit される。 半球状体 4は、 弁体 8の図における上面に滑り接触しており、 カムフォ ロワ 2からの押圧力を弁体 8に対して図における下方に向けて与える。 このため、 #ί* 8の図示上端面に、 スプリング 7の伸張力に抗して弁体 8を押し下げる力が 与えられる。  There is a cam follower 2 as a main element for transmitting the cam operation of the cam 1 to the air valve at this time. The cam follower 2 is formed in a columnar shape as shown in FIG. 1 (a), and is accommodated in a through-hole provided in a cylindrical rotating body 3 so as to be movable in the axial direction or "5J-capable." As shown in Fig. 1 (b), the cam follower 2 may have a large diameter at the contact portion with the cam and a thinner guide portion, that is, may have a so-called mushroom-like shape. The pressing force of the body is fitted to the valve body 8 via the hemispherical body 4. The hemispherical body 4 is in sliding contact with the upper surface of the valve body 8 in the figure, and the pressing force from the cam follower 2 is applied to the valve. A downward force in the figure is given to the body 8. Therefore, a force for pushing down the valve body 8 against the extension force of the spring 7 is given to the upper end face in the drawing of # ί * 8.
この弁体 8の押し下げにより、 弁体 8により塞がれていた給気孔端部が開き、 給気孔 1 0とシリンダと力、'連通して袷気が行われる。  When the valve element 8 is pushed down, the end of the air supply hole closed by the valve element 8 is opened, and the air is communicated with the air supply hole 10 and the cylinder, and a solid air is performed.
図示および詳細説明を行わないが、 排気孔 2 0とシリンダとの間でも同様の弁 動作による排気のための動作が行われる。 Although not shown or described in detail, a similar valve is provided between the exhaust port 20 and the cylinder. An operation for exhausting by the operation is performed.
図 2は、 本発明による給排気タイミングの変化動作を説明するための図で、 同 図 (a ) は通常タイミングの場合を、 また同図 (b ) は早めタイミングの場合を それぞれ示している。  2A and 2B are diagrams for explaining the operation of changing the supply / exhaust timing according to the present invention. FIG. 2A shows the case of normal timing, and FIG. 2B shows the case of early timing.
まず同図 (a ) では、 カム 1が図における時計方向に回転してきてカムフォロ ヮ 2の図示上面に当接する。 この結果、 カムフォロワ 2は回動体 3の貫通孔に沿 つて軸方向に押し下げられ、半球状体 4を押し下げる。  First, in FIG. 2A, the cam 1 rotates clockwise in the figure and comes into contact with the upper surface of the cam follower 2 in the figure. As a result, the cam follower 2 is pushed down in the axial direction along the through hole of the rotating body 3 and pushes down the hemispherical body 4.
次に同図 (b ) では、 同図 (a ) の状態に比べて回動体 3が角度 0だけ反時計 方向に回動しており、 カムフォロワ 2がカム 1に対して 斜した伏態にある。 こ のため、 カムフォロワ 2の上面の図示右端力く最初にカム 1に当接することになる。 そして、 このカムフォロワ 2の上面: は、 カムフォロワ 2の中心軸から見て図 示右側にずれているため、 カムフォロワ 2の上面のうちでも真っ先にカム 1に当 接する部分である。 したがって、 同図 (a ) の場合は、 同図 (a ) に比べてカム 1の 3¾に対してカムフォロワ 2が早めに応動する。 またカムフォロワ 2の傾き 角を逆に時計方向にすれば、 カム 1の運動に対しカムフォロワ 2は遅れて応動す る。  Next, in the same figure (b), the rotating body 3 is rotated counterclockwise by an angle 0 as compared with the state of the same figure (a), and the cam follower 2 is in an inclined state with respect to the cam 1. . For this reason, the cam follower 2 first comes into contact with the cam 1 at the right end of the upper surface in the figure. The upper surface of the cam follower 2 is shifted rightward in the drawing when viewed from the center axis of the cam follower 2, and thus is the portion of the upper surface of the cam follower 2 that comes into contact with the cam 1 first. Therefore, in the case of FIG. 7 (a), the cam follower 2 responds to 3 カ ム of the cam 1 earlier than in FIG. 7 (a). If the inclination angle of the cam follower 2 is reversed in the clockwise direction, the cam follower 2 responds to the movement of the cam 1 with a delay.
そこで、 エンジン ¾gに応じて回動体 3の回動角度を変えれば、 カムフォロワ 2はエンジン速度に応じてカム 1に対する を変える。 そして、 エンジン速度 力 のとき同図 (a ) に示す^でカムフォロワ 2がカム 1に接触するとすれ ば、 高速のとき同図 (b ) に示す^でカムフォロワ 2がカム 1に接触するよう に、 たとえば図示しない制御モータや油圧などのァクチユエ一夕により作動する リンク機構などを介して回動体 3を回動させることにより、 高速時における給排 気がェンジン回転に対して早めに行われることになる。  Therefore, if the rotation angle of the rotating body 3 is changed in accordance with the engine ¾g, the cam follower 2 changes the force with respect to the cam 1 in accordance with the engine speed. If the cam follower 2 contacts the cam 1 at ^ shown in the same figure (a) when the engine speed is high, the cam follower 2 contacts the cam 1 at ^ shown in the same figure (b) at high speed. For example, by rotating the rotating body 3 through a control mechanism (not shown) or a link mechanism operated by an actuator such as a hydraulic pressure, supply and exhaust at high speed is performed earlier than engine rotation. .
したがつて、 ェンジン速度に応じた給排気が行われることになる。  Therefore, air supply and exhaust are performed according to the engine speed.
図 3は、 回動体 3の形状を示したものである。 回動体 3は、 図示のように全体 形状がほぼ円筒状であり、 その長手方向に沿って並んで配され、 回動体 3の周面 の一方から他方に抜ける 2つの貫通孔 3 a , 3 aを有する。 この貫通孔 3 aに、 カムフォロワ 2がこれら貫通孔 3 a , 3 bの中で軸方向移動可能に収容される。 この場合、 D O H Cエンジンにおけるバルブ 2本分だけを示している力く、 複数気 筒に共通の、 さらに長い回動体 3を形成してもよい。 それにより、 単一の制御モ 一夕や油圧などのァクチユエ一夕で複数気筒の力厶フォロワ 2の^を変えるこ とができる。 FIG. 3 shows the shape of the rotating body 3. The rotating body 3 is The rotating body 3 has two through holes 3 a, 3 a which are substantially cylindrical in shape, are arranged side by side along the longitudinal direction thereof, and extend from one of the peripheral surfaces of the rotating body 3 to the other. The cam follower 2 is accommodated in the through hole 3a so as to be movable in the axial direction in the through holes 3a and 3b. In this case, a longer rotating body 3 common to a plurality of cylinders and having only two valves in the DOHC engine may be formed. As a result, it is possible to change the value of the force follower 2 of a plurality of cylinders in a single control mode or in a hydraulic operation.
回動体 3の少なくとも一方の端面には連結部 3 bが設けられており、 この連結 部 3 bを図示しないリンク機構に ¾ された制御モー夕や油圧などのァクチユエ 一夕で IE®Jすることにより、 回動体 3の回動角を変えてカムフォロワ 2の姿勢を 変える。  At least one end surface of the rotating body 3 is provided with a connecting portion 3b, and the connecting portion 3b is subjected to IE® connection with a control mechanism or a hydraulic device provided by a link mechanism (not shown). By changing the rotation angle of the rotating body 3, the posture of the cam follower 2 is changed.
図 4および図 5は、 回動体 3の回動による、 図 1の H¾例におけるカムフォロ ヮ 2の回動によって弁のリフト量変化率がどのように変化する力、、 およびカムフ ォロワ 2の上限位置、 つまり弁のスプリングにより押し上げられたカムフォロワ 2力取る回動限界位置との間のクリアランスがどのように変化するかを、 ¾ ^す る図 6および図 7によって説明するための模式図である。 そして、 カムフォロワ 2は、 その全長 S tが 5 O mmであり、 そのカム 1との当接面から距離 Sの点を 支点として角度 0の位置まで回動する。 カムフォロワ 2の下端は、 半球状体 4を 介して弁体 8に当接している。  4 and 5 show how the rate of change of the valve lift changes due to the rotation of the cam follower 2 in the example H of FIG. 1 due to the rotation of the rotating body 3, and the upper limit position of the cam follower 2. That is, FIGS. 6 and 7 are schematic diagrams for explaining how the clearance between the cam follower pushed up by the valve spring and the rotation limit position for taking two forces changes. The cam follower 2 has a total length St of 5 O mm, and pivots to a position at an angle 0 with a point at a distance S from the contact surface with the cam 1 as a fulcrum. The lower end of the cam follower 2 is in contact with the valve body 8 via the hemispherical body 4.
この模式図では、 カム 1に当接するカムフォロワ 2が基準状態である直立状態 のときと、 回転中心 C f を中心にして回転し想 で示す角度 0の位置まで回動 した状態とを示している。  This schematic diagram shows a state in which the cam follower 2 abutting on the cam 1 is in an upright state, which is a reference state, and a state in which the cam follower 2 rotates about the rotation center C f and rotates to a position of an angle 0 indicated by the idea. .
とくに図 5では、 図 4で矩形に描いたカムフォロワを T字形に描いてその機能 を分かり易く示している。  In particular, in Figure 5, the function of the cam follower drawn in rectangle in Figure 4 is shown in a T-shape for easy understanding.
図 6は、 図 4の条件を当てはめてシミュレーションして得た特性図であり、 、 力厶フォロワ 2の傾き角 0を横軸に、弁 (図示せず) のリフト量を縦軸にそれぞ れとったものである。 この場合、 カムフォロワ 2の支点位置は、 カムフォロワ 2 の上端からの距離 Sが S = 10mm〜4 Ommの範囲で、 5 mm刻みで 7段 えている。 これにより、 弁リフト量は、 傾き角 0が +8。 で 130ないし 148 %まで、 また一 8° で 80ないし 75%の範囲まで変化し、 傾き角 +8° ないし 一 8 ° の範囲で任意に変えることにより、上記の範囲内での弁リフト量変化率が 得られる。 なお、弁リフト量の変化は下式 (1) により概算できる。 FIG. 6 is a characteristic diagram obtained by performing a simulation under the conditions of FIG. The horizontal axis indicates the tilt angle 0 of the cam follower 2, and the vertical axis indicates the lift of a valve (not shown). In this case, the fulcrum position of the cam follower 2 is seven steps in increments of 5 mm, with the distance S from the upper end of the cam follower 2 in the range of S = 10 mm to 4 Omm. As a result, the valve lift is +8 when the tilt angle is 0. At 130 to 148% at 80 ° to 80% to 75% at 18 °, and by changing the tilt angle from + 8 ° to 18 ° arbitrarily, the valve lift within the above range Rate is obtained. The change of the valve lift can be estimated by the following formula (1).
L ' = {A/ (A - X) } XL>L (1) このように、 カムフォロワ 2の¾¾位置を選択することにより、 弁リフト量を 大幅に変化させ得ることがわかる。  L '= {A / (A-X)} XL> L (1) Thus, it can be seen that the valve lift can be significantly changed by selecting the 2 position of the cam follower 2.
図 7は、 図 6と同様に、 図 4の条件を当てはめシミュレーションして得た特性 図であり、 カムフォロワ 2の傾き角 0を横軸に、 カムフォロワ 2のクリアランス の変ィ (ΛΔ 1を縦軸に取ったものであり、 カムとカムフォロワとのクリアランス は、 この変化を吸収できる範囲にする必要がある。 そして、 クリアランスの変化 量厶 1は下式 (2) により求められる。  FIG. 7 is a characteristic diagram obtained by performing a simulation under the conditions of FIG. 4 in the same manner as in FIG. 6, in which the inclination angle 0 of the cam follower 2 is plotted on the horizontal axis, and the change in the clearance of the cam follower 2 (ΛΔ1 is plotted on the vertical axis). The clearance between the cam and the cam follower must be within a range that can absorb this change, and the clearance change amount 1 can be obtained by the following equation (2).
厶 1 = (Γ + l) — { (r + 1) c o s 0 + (r + S) s i n2 Θ)  1 = (Γ + l) — {(r + 1) cos 0 + (r + S) s i n2 Θ)
(2) (2)
¾¾Sの位置を、 カムフォロワ 2の上端からの距離 Sが S =l 8. 7mm〜 19. 1mmの範囲で傾き角 0を 8° としたときのクリアランスの変ίί^Δ 1が、 一 4 mないし + 3 mの範囲で変化する。 このような範囲のクリアランスの変 であれば実用上問題はない。 クリアランスの変ィ tfi厶 1は、 図 6で説明した 弁リフト量 の精密さを要求されるから、 カムフォロワ 2の支点位置を選択す るについてはクリアランスの変 bfiを考慮する必要がある。 そして、 支点位置を S =l 8. 8 mmに選べば、 傾き角 Sが 5° までクリアランスの変 b*はほ ぼゼロということができるし、 ^位置を S = 18. 9mmに選べば、 傾き角 8° 付近までクリアランスの変 bSを 1 以内に収めることができる。 また、 開弁角を狭めることも、 このクリアランスを大きくする方向にアレンジすること によって可能となる。 When the position of S is the distance S from the upper end of the cam follower 2, the clearance change ίί ^ Δ1 when the inclination angle 0 is 8 ° in the range of S = l 8.7mm to 19.1mm is less than 4 m It varies in the range of +3 m. If the clearance changes in such a range, there is no practical problem. Since the clearance change 1 requires the precision of the valve lift explained in Fig. 6, it is necessary to consider the clearance change bfi when selecting the fulcrum position of the cam follower 2. If the fulcrum position is selected as S = l 8.8 mm, the change in clearance b * can be reduced to almost zero until the inclination angle S is 5 °, and if the ^ position is selected as S = 18.9 mm, Tilt angle The change in clearance bS can be kept within 1 to around 8 °. Also, the valve opening angle can be reduced by arranging the clearance in a direction to increase the clearance.
図 8 ( a ) および (b) は、 本発明の他の H½例を示したもので、 カムフォロ ヮ 1 2を傘型に構成してリング 1 3により支持したものである。 リング 1 3は、 図示しない力《周知の構成によりシリンダヘッドに支持されている。 また、 リング 1 3は、 カムフォロワ 1 2を支持できれば、 円筒でなく切り欠いた形状のもので もよい。 この場合、 ##:1 4の図示上面はカム軸を中心にした半径 Rの円弧面で める。  FIGS. 8A and 8B show another example of the present invention, in which the cam follower 12 is formed in an umbrella shape and supported by a ring 13. The ring 13 is supported by the cylinder head by a force (not shown) << a well-known structure. The ring 13 may be not cylindrical but notched as long as it can support the cam follower 12. In this case, the upper surface in the figure of ##: 14 is an arc surface with a radius R centered on the cam shaft.
図 9は、 本発明のさらに他の実施例における、 図 1と同様の状態を示している c この図 9でも、 給気孔 1 0に設けられた铪気弁を■させる のみを詳細に 示していて他は省略している力 排気孔 2 0に設けられる排^ についても同様 の構成を採ること力可能である。  FIG. 9 shows a state similar to that of FIG. 1 according to still another embodiment of the present invention. C FIG. 9 also shows only the opening of the air valve provided in the air supply hole 10 in detail. The other components are omitted. The same configuration can be applied to the exhaust provided in the exhaust hole 20.
給気弁の p¾lは、 カム 1の動作によって制御される。 カム 1は、 エンジンの回 転と同期的に図における時計方向に回転し、 所定回転位置で袷気弁に組み込まれ たスプリングの伸張力に杭し他の部材を介して弁体を押し下げ、 給気孔 1 0から シリンダに耠気を行う。  The p¾l of the air supply valve is controlled by the operation of the cam 1. The cam 1 rotates clockwise in the figure synchronously with the rotation of the engine, stakes at a predetermined rotation position under the tension of the spring incorporated in the lined air valve, pushes down the valve body via another member, and supplies the power. Vent from cylinder 10 to cylinder.
この際のカム 1のカム動作を铪気弁に伝える主たる要素として、 カムフォロワ 2および弁 F¾部材としてのロッカーアーム 5がある。 カムフォロワ 2は、 円柱 状に形成されており、 円筒状の回動体 3に設けられた貫通孔に軸方向移動力河能 なように収容されている。 また、 カムフォロワ 2は図 9 (b) に示すように、 力 ムとの接触部の径が大きく、 ガイド部をそれに比較して細くした、 いわば茸状の 形状であってもよい。  The main elements for transmitting the cam operation of the cam 1 to the air valve at this time are the cam follower 2 and the rocker arm 5 as a valve F 弁 member. The cam follower 2 is formed in a columnar shape, and is accommodated in a through hole provided in the cylindrical rotating body 3 so as to have an axial moving force. Further, as shown in FIG. 9 (b), the cam follower 2 may have a so-called mushroom-like shape in which the diameter of the contact portion with the force is large and the guide portion is thinner than that.
カムフォロワ 2による弁体の押し下げ力が、 半球状体 4を介してロッカーァー ム 5に伝達される。 半球状体 4は、 ロッカーアーム 5の図における上面に滑り接 触しており、 カムフォロワ 2からの押圧力を口ッカーアーム 5に対して図におけ る下方に向けて与える。 このため、 ロッカーアーム 5は図における反時計方向に 回動し、 球状体 6を介して弁体 8の図示上端に、 スプリング 7の伸張力に抗して 弁体 8を押し下げる力を与える。 The pushing force of the valve body by the cam follower 2 is transmitted to the rocker arm 5 through the hemispherical body 4. The hemisphere 4 slides on the upper surface of the rocker arm 5 in the figure. The cam follower 2 is being touched, and the pressing force from the cam follower 2 is applied to the mouth kicker arm 5 downward in the figure. For this reason, the rocker arm 5 rotates counterclockwise in the figure, and applies a force to push down the valve body 8 against the extension force of the spring 7 to the illustrated upper end of the valve body 8 via the spherical body 6.
ロッカーアーム 5は、 スプリング 7の伸張力により時計方向の作用力を受けて おり、 図示右端寄りの回転中心を中心にして予め設定されている動作位置まで回 動するものである。 そして、 カムフォロワ 2から作用力を受け、 #<* 8に作用力 を与える。  The rocker arm 5 receives a clockwise acting force due to the extension force of the spring 7, and rotates to a preset operation position around a rotation center near the right end in the figure. Then, it receives an acting force from the cam follower 2 and gives an acting force to # <* 8.
この作用力の^!^路に設けられた要素のうち、 とくにロッカーアーム 5は力 ムフォロワ 2から受け取った作用力を弁体 8に するものである。 そして、 力 ムフォロワ 2から作用力を受け取る点と弁体 8に与える点とが位置的にほんの僅 かし力、離れていない場合は、 ロッカーアーム 5の強度をさほど大きくしなくても よい。  Among the elements provided on the path of this acting force, the rocker arm 5 is a member for applying the acting force received from the force follower 2 to the valve element 8. If the point where the acting force is received from the force follower 2 and the point applied to the valve element 8 are only slightly small in position and are not separated from each other, the strength of the rocker arm 5 does not need to be increased so much.
弁体 8の押し下げにより、弁体 8により塞がれていた給気孔端部が開き、 铪気 孔 1 0とシリンダとが ¾ϋして給気が行われる。  When the valve element 8 is pushed down, the end of the air supply hole closed by the valve element 8 opens, and the air hole 10 and the cylinder are connected to supply air.
図示および詳細説明を行わないが、排気孔 2 0とシリンダとの間でも同様の弁 動作による排気のための動作が行われる。  Although not shown or described in detail, the same operation for exhaust is performed between the exhaust hole 20 and the cylinder by the same valve operation.
図 1 0は、 図 9の実施例における給排気タイミングの変化動作を説明するため の図で、 同図 (a ) は通常タイミングの場合を、 また同図 (b ) は早めタイミン グの場合をそれぞれ示している。  FIG. 10 is a diagram for explaining the operation of changing the supply / exhaust timing in the embodiment of FIG. 9. FIG. 10 (a) shows the case of normal timing, and FIG. 10 (b) shows the case of early timing. Each is shown.
まず同図 (a ) では、 カム 1が図における時計方向に回転してきてカムフォロ ヮ 2の図示上面に当接する。 この結果、 カムフォロワ 2は回動体 3の貫通孔に沿 つて軸方向に押し下げられ、 半球状体 4を押し下げてカムフォロワ 5に 力を 与える。  First, in FIG. 2A, the cam 1 rotates clockwise in the figure and comes into contact with the upper surface of the cam follower 2 in the figure. As a result, the cam follower 2 is pushed down in the axial direction along the through hole of the rotating body 3, and pushes down the hemispherical body 4 to apply a force to the cam follower 5.
次に同図 (b ) では、 同図 (a ) の状態に比べて回動体 3が角度 0だけ反時計 — 1 o — 方向に回動しており、 カムフォロワ 2がカム 1に対して ^した忧態にある。 こ のため、 カムフォロワ 2の上面の図示右端が最初にカム 1に当接することになる c そして、 このカムフォロワ 2の上面右端は、 カムフォロワ 2の中心軸から見て図 示右側にずれているため、 カムフォロワ 2の上面のうちでも真っ先にカム 1に当 接する部分である。 した力つて、 同図 (a ) の場合は、 同図 (a ) に比べてカム 1の運動に対して力ムフォロワ 2力く早めに応動する。 またカムフォロワ 2の傾き 角を逆に時計方向にすれば、 カム 1の運動に対しカムフォロワ 2は遅れて応動す る。 Next, in the same figure (b), the rotating body 3 is turned counterclockwise by an angle 0 compared to the state of the same figure (a). The cam follower 2 is rotating with respect to the cam 1. For this reason, the right end of the upper surface of the cam follower 2 in the figure comes into contact with the cam 1 first.c And the right end of the upper surface of the cam follower 2 is shifted to the right side of the drawing when viewed from the center axis of the cam follower 2. This is the portion of the upper surface of the cam follower 2 that comes into contact with the cam 1 first. In the case of FIG. 7 (a), the force of the cam 1 responds to the movement of the cam 1 two times earlier than the force of FIG. 7 (a). If the inclination angle of the cam follower 2 is reversed in the clockwise direction, the cam follower 2 responds to the movement of the cam 1 with a delay.
そこで、 エンジン速度に応じて回動体 3の回動角度を変えれば、 カムフォロワ 2はエンジン速度に応じてカム 1に対する^を変える。 そして、 エンジン速度 力低速のとき同図 (a ) に示す^でカムフォロワ 2がカム 1に接触するとすれ ば、 高速のとき同図 (b ) に示す^でカムフォロワ 2がカム 1に接触するよう に、 たとえば図示しない制御モータや油圧などのァクチユエ一夕により p¾する リンク などを介して回動体 3を回動させることにより、 高速時における給排 気がェンジン回転に対して早めに行われることになる。  Therefore, if the rotation angle of the rotating body 3 is changed in accordance with the engine speed, the cam follower 2 changes ^ with respect to the cam 1 in accordance with the engine speed. If the cam follower 2 contacts the cam 1 at ^ shown in the same figure (a) when the engine speed is low, the cam follower 2 contacts the cam 1 at ^ shown in the same figure (b) at high speed. For example, by rotating the rotating body 3 through a link (not shown) that is controlled by a control motor or an actuator such as a hydraulic pressure, air supply and exhaust at a high speed are performed earlier than the engine rotation. .
したがって、 ェンジン速度に応じた給排気が行われることになる。  Therefore, air supply and exhaust are performed according to the engine speed.
図 1 1 ( a ) および (b ) は、 本発明の別の H¾例を示したもので、 カムフォ ロワ 1 2を傘型に構成してリング 1 3により支持したものである。 リング 1 3は、 図示しないが周知の構成によりシリンダヘッドに支持されている。 また、 リング 1 3は、 カムフォロワ 1 2を支持できれば、 円筒でなく切り欠いた形状のもので もよい。  FIGS. 11A and 11B show another example of the present invention, in which a cam follower 12 is formed in an umbrella shape and supported by a ring 13. The ring 13 is supported by a cylinder head by a well-known configuration (not shown). The ring 13 may be not cylindrical but notched as long as it can support the cam follower 12.
そして、 カムフォロワ 1 2のストローク運動がロッカーアーム 1 5を介して弁 体に 達される。  Then, the stroke motion of the cam follower 12 reaches the valve body via the rocker arm 15.
上記 ¾例に対する変形例として、 カム 1の中心位置に対してカムフォロワ 2 の位置が進角方向、 つまり図における: 向にオフセットされた構成としてもよ い o As a modification to the above example, the position of the cam follower 2 may be offset in the advance direction, that is, in the direction shown in the figure with respect to the center position of the cam 1. O
このような^を加えることにより、 カム 1の動作をカムフォロワに fe する タイミングを種々選択することができる。 また、 カムフォロワ 2の にも EJt して を決定することができる。  By adding such ^, it is possible to select various timings at which the operation of the cam 1 is fed to the cam follower. In addition, EJt can be determined for the cam follower 2 to determine.
産 H±の利用可 Available for H ±
本発明は、 外力力く与えられて 力く変わることによりカムに対する接触位置が 変化する力ムフォロワを介してカムの動作を弁体に ί¾するため、 ェンジン速度 に応じてカムフォロワの を変えれば、 エンジン速度に応じて変化するタイミ ングで弁体への動作^!を行うことができる。 この結果、 給気弁、 排気弁の少な くとも一方の動作をエンジン ¾Sに応じて変化させることができる。 また、 カム フォロワと弁体との接触位置の変化により、 弁のリフト量を変えること力 <できる。 しかも本発明は、 エンジンのシリンダへッ ド上部の構成であるから、 既存のェン ジンに ¾Dして ¾ϋする場合についても同様に適用することができる。  According to the present invention, since the operation of the cam is transmitted to the valve body via a force follower that changes the contact position with respect to the cam when the external force is applied and the force changes, the cam follower can be changed according to the engine speed. The operation to the valve body can be performed at timing that changes according to the speed. As a result, the operation of at least one of the supply valve and the exhaust valve can be changed according to the engine ¾S. Also, by changing the contact position between the cam follower and the valve body, the force to change the valve lift can be achieved. In addition, since the present invention has the structure of the upper part of the cylinder head of the engine, the present invention can be similarly applied to a case where the present invention is applied to an existing engine.

Claims

請 求 の 範 囲 The scope of the claims
1. ェンジンの給気弁、排気弁の少なくとも一方の p¾夕ィミングを決める カムと、 このカムの回転に応じ押圧されてィ«し、 前言 s^m 、排気弁の少なく とも一方の弁体を押し下げる弁体とをそなえた 4サイクルェンジンの給排気弁制 御装置において、 1. At least one of the engine's air supply valve and exhaust valve is determined by the cam and the cam is pressed in accordance with the rotation of the cam, and at least one of the exhaust valve and the exhaust valve is turned off. In a 4-cycle engine supply / exhaust valve control device with a valve body to push down,
前記カムと前記弁体との間に、前記カムのカム動作を前記弁体に fe¾するとと もに、 外力に応じて姿勢が変えられることにより前記カムに対する接触位相角を 変えて前記カムのカム動作を前記弁体に するタイミングおよび弁リフト量を 可変とするカムフォロワが挿入されたことを特徴とする 4サイクルエンジンの給 排^ 制御装置。  Between the cam and the valve element, the cam operation of the cam is applied to the valve element, and the attitude of the cam is changed according to an external force to change the contact phase angle with respect to the cam. A feed / discharge control device for a four-stroke engine, wherein a cam follower for changing the timing of the operation of the valve body and the valve lift is inserted.
2. 請求項 1 §己載の装置において、  2. Claim 1 § In the device on my own,
前記力ムと前記弁作動部材との間に、 前記カムの力ム動作を前記弁 F¾部材に するとともに、 外力に応じて が変えられることにより前記カムに対する 接触位相角を変えて前記カムのカム動作を前記弁 f¾¾部材に伝達するタイミング および弁リフト量を可変とするカムフォロワおよびロッカーアームが挿入された ことを特徴とする 4サイクルェンジンの給排気弁制御装置。  Between the force and the valve operating member, the force operation of the cam is controlled by the valve F¾ member, and the contact phase angle with respect to the cam is changed by changing the force according to an external force. A supply / exhaust valve control device for a four-cycle engine, wherein a cam follower and a rocker arm for changing a timing for transmitting an operation to the valve member and a valve lift amount are inserted.
3. 請求項 1記載の装置において、  3. The apparatus according to claim 1,
前記カムと前記弁体とを結ぶ筒状の孔を有し、前記カムの回転軸と平行な回転 中心線を中心にして回転する回転体をそなえ、  A rotating body having a cylindrical hole connecting the cam and the valve body and rotating about a rotation center line parallel to a rotation axis of the cam;
この回転体の孔に、 前記カムフォ口ワカ軸方向移動可能に支持されている 4サ ィクルエンジンの給排気弁制御装置。  A supply / exhaust valve control device for a four-cycle engine, which is supported in the hole of the rotating body so as to be movable in the axial direction of the cam faw port.
4. 請求項 1記載の装置において、  4. The apparatus according to claim 1,
前記ェンジンは 1または 2以上の気筒を有し、  Said engine has one or more cylinders,
前記回転体は各気筒に共通に設けられている 4サイクルェンジンの給排 制 御装置。 The rotating body is provided in common for each cylinder. Control device.
5. 請求項 1記載の装置において、  5. The apparatus according to claim 1,
前記カムフォロワは、前記カムの回転中心から進角方向にオフセッ 卜された 4 サイクルェンジンの給排気弁制御装置。  The cam follower is a four-cycle engine supply / exhaust valve control device which is offset from the rotation center of the cam in the advance direction.
PCT/JP1995/002063 1994-10-11 1995-10-09 Suction-exhaust valve control device for a four cycle engine WO1996011325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19581378T DE19581378T1 (en) 1994-10-11 1995-10-09 Intake / exhaust valve control mechanism for a four-stroke engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/245342 1994-10-11
JP24534294A JPH08109812A (en) 1994-10-11 1994-10-11 Intake and exhaust valve control device for four-cycle engine

Publications (1)

Publication Number Publication Date
WO1996011325A1 true WO1996011325A1 (en) 1996-04-18

Family

ID=17132251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002063 WO1996011325A1 (en) 1994-10-11 1995-10-09 Suction-exhaust valve control device for a four cycle engine

Country Status (3)

Country Link
JP (1) JPH08109812A (en)
DE (1) DE19581378T1 (en)
WO (1) WO1996011325A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380531B2 (en) 2005-04-01 2008-06-03 Schaeffler Kg Variable valve drive for changing the control timing of cam-actuated gas-exchange valves

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036373A1 (en) * 2000-07-18 2002-02-14 Herbert Naumann Hubventilsteuerungen
JP4896817B2 (en) * 2006-07-25 2012-03-14 本田技研工業株式会社 Variable valve operating device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182009U (en) * 1984-11-05 1986-05-30
JPS6272410U (en) * 1985-10-28 1987-05-09
US5056476A (en) * 1990-08-28 1991-10-15 King Brian T Variable valve duration and lift for an internal combustion engine
JPH05508205A (en) * 1990-02-16 1993-11-18 グループ ロータス リミテッド valve control means
JPH06185324A (en) * 1992-12-15 1994-07-05 Toyota Motor Corp Valve timing and lift control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182009U (en) * 1984-11-05 1986-05-30
JPS6272410U (en) * 1985-10-28 1987-05-09
JPH05508205A (en) * 1990-02-16 1993-11-18 グループ ロータス リミテッド valve control means
US5056476A (en) * 1990-08-28 1991-10-15 King Brian T Variable valve duration and lift for an internal combustion engine
JPH06185324A (en) * 1992-12-15 1994-07-05 Toyota Motor Corp Valve timing and lift control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380531B2 (en) 2005-04-01 2008-06-03 Schaeffler Kg Variable valve drive for changing the control timing of cam-actuated gas-exchange valves

Also Published As

Publication number Publication date
JPH08109812A (en) 1996-04-30
DE19581378T1 (en) 1996-12-19

Similar Documents

Publication Publication Date Title
US5431132A (en) Variable valve gear of internal combustion engines
US6422187B2 (en) Variable valve mechanism having an eccentric-driven frame
US6659053B1 (en) Fully variable valve train
JPH1054213A (en) Hydraulic tappet and internal combustion engine using the same
US7926456B2 (en) Continuous variable valve lift system
JP2010025099A (en) Slidable continuously variable valve lift device
JP4065992B2 (en) Forced open / close valve operating system
US20090151669A1 (en) Variable valve lift apparatus
WO1996011325A1 (en) Suction-exhaust valve control device for a four cycle engine
JP4063622B2 (en) Variable valve mechanism
CN100472037C (en) Variable Valve Devices for Internal Combustion Engines
JP2006207591A (en) Cylinder valve operation system of internal combustion engine
US7971562B2 (en) Continuous variable valve lift device
EP1697619B1 (en) Variable valve gear
JP3023632U (en) Supply / exhaust valve control device for 4-cycle engine
WO2004033942A3 (en) Maintaining controlled orientation of a roller lifter follower used in conjunction with a variable phased valve lifter
KR20000071212A (en) Operating mechanisms for valves
JPH066882B2 (en) Valve mechanism of internal combustion engine
JPS63117109A (en) Valve system for internal combustion engine
JP2004521245A (en) Variable valve mechanism
KR20060113414A (en) Fuel pump control unit
JPH0518221A (en) Variable valve system of engine
JP4180013B2 (en) Variable valve operating device for internal combustion engine
JP4063623B2 (en) Variable valve mechanism
KR100656606B1 (en) Continuously variable valve lift system with rocker arm valve train system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

ENP Entry into the national phase

Ref document number: 1996 663190

Country of ref document: US

Date of ref document: 19960611

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 19581378

Country of ref document: DE

Date of ref document: 19961219

WWE Wipo information: entry into national phase

Ref document number: 19581378

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载