WO1996011369A1 - Air-conditioner - Google Patents
Air-conditioner Download PDFInfo
- Publication number
- WO1996011369A1 WO1996011369A1 PCT/JP1995/002039 JP9502039W WO9611369A1 WO 1996011369 A1 WO1996011369 A1 WO 1996011369A1 JP 9502039 W JP9502039 W JP 9502039W WO 9611369 A1 WO9611369 A1 WO 9611369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- heat exchanger
- valve
- dehumidification
- refrigerant passage
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 218
- 238000007791 dehumidification Methods 0.000 claims abstract description 85
- 239000007788 liquid Substances 0.000 claims description 34
- 238000005057 refrigeration Methods 0.000 claims description 23
- 238000011144 upstream manufacturing Methods 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 8
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000007710 freezing Methods 0.000 claims description 2
- 230000008014 freezing Effects 0.000 claims description 2
- 239000012071 phase Substances 0.000 abstract description 15
- 239000007791 liquid phase Substances 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 230000005514 two-phase flow Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K47/00—Means in valves for absorbing fluid energy
- F16K47/02—Means in valves for absorbing fluid energy for preventing water-hammer or noise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/34—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/34—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
- F25B41/345—Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0234—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0411—Refrigeration circuit bypassing means for the expansion valve or capillary tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/12—Sound
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/33—Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
- F25B41/335—Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/39—Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to an air conditioner capable of performing a dehumidification operation that performs dehumidification while preventing a decrease in room temperature by using a refrigeration cycle, and is particularly suitable for reducing refrigerant flow noise generated by a dehumidification expansion device during a dehumidification operation.
- air conditioners Related to air conditioners. Background art
- the refrigerant flows into the dehumidification expansion device, so that the upstream side of the two-part indoor heat exchanger is used as the evaporator, the downstream side is used as the evaporator, and the evaporator is used as the evaporator. It cools and dehumidifies and heats it with a coke oven to enable a dehumidifying operation that lowers the humidity without significantly lowering the temperature blown out of the air conditioner.
- a two-way valve structure with a small hole that uses a small hole provided in the movable part of the two-way valve as the dehumidifying throttle device S.
- a large refrigerant flow noise which is a continuous sound or a discontinuous sound
- the magnitude of the refrigerant flow noise is generated by the expansion device. It is greatly influenced by the flow mode of the high-pressure refrigerant flowing in.
- the refrigerant flow noise becomes very loud when a slag flow or a plug flow occurs in which shell-shaped bubbles and liquid appear alternately in a two-phase flow state of gas and liquid.
- the continuous flow noise is mainly caused by the liquid refrigerant being decompressed and expanded at the throttle section of the expansion device to form a high-speed gas-liquid two-phase jet.
- Discontinuous flow noise is mainly due to pressure
- the gas refrigerant and the liquid refrigerant, which is an incompressible fluid, are caused by large pressure fluctuations that occur when they alternately pass through the narrow flow path of the expansion device.
- a conventional example aimed at reducing such refrigerant flow noise is disclosed in Japanese Patent Publication No. 57-129371.
- This conventional example relates to a reduction in refrigerant flow noise in a throttling device provided between an outdoor heat exchanger and a room-to-heat exchanger used in a cooling operation or a heating operation, and an expansion valve which is a throttling device g.
- a fixed orifice is provided on the upstream side (high pressure side) to increase the number of air bubbles in the refrigerant when passing through the expansion valve, and to make the distribution uniform to reduce the noise level.
- the chamber that acts as a condenser upstream of the dehumidification expansion device and the outlet of the heat exchanger have a gas-liquid two-phase outlet.
- loud refrigerant flow noise is generated at the dehumidifying expansion device.
- the dehumidifying squeezing device S is provided on the room ⁇ side, it gives a feeling of discomfort to a person in the living space.
- noise reduction has conventionally been attempted by providing damping material and sound insulation material.
- the demand for comfort has become extremely high, and noise has also been required to be further reduced.
- An object of the present invention is to provide an air conditioner capable of a dehumidifying operation in which dehumidification is performed while preventing a decrease in room temperature by a refrigeration cycle, and to prevent a decrease in performance in a cooling operation or a heating operation, and to perform a dehumidifying expansion device during a dehumidifying operation.
- An object of the present invention is to provide an air conditioner capable of reducing the refrigerant flow noise generated in the air conditioner. Disclosure of the invention
- an air conditioner of the present invention includes a pressure box machine, a heat source side heat exchanger, and a use side heat exchanger, and the child side heat exchanger is thermally divided into two.
- a dehumidifying throttle device used during the dehumidifying operation is provided between the two heat exchangers.
- the upstream side of the use-side heat exchanger is a coagulator and the downstream side is an evaporator.
- the dehumidification expansion device includes a high-pressure side refrigerant flow path and a low-pressure side refrigerant flow path that are provided in the valve body and allow the refrigerant to flow.
- a valve port that penetrates the high-pressure side refrigerant flow path and an open port that communicates with the low-pressure side refrigerant flow path, and forms a main refrigerant passage connecting the valve port and the open port. Adjusting the refrigerant flow i passing through the main refrigerant passage connecting the valve port and the opening port.
- a valve stem that can reciprocate in the main refrigerant passage for changing the opening area of the refrigerant passage, separately from the main refrigerant passage, a high-pressure side refrigerant flow path and a low-pressure side refrigerant flow.
- a dehumidification control valve having a sub-refrigerant passage that passes through the passage.
- the heat exchanger further includes a compressor, a heat source-side heat exchanger, and a use-side heat exchanger, wherein the use-side heat exchanger is thermally divided into two parts.
- a dehumidifying expansion device used during dehumidification operation is provided, and a refrigeration cycle is configured so that during dehumidification operation, dehumidification is performed by using a condenser upstream of the utilization side heat exchanger and an evaporator downstream.
- the dehumidifying expansion device communicates with the high-pressure side refrigerant flow path, the low-pressure side refrigerant flow path, and the high-pressure side refrigerant flow path through which the refrigerant flows through the valve body.
- Changing the opening area of the refrigerant passage to adjust the flow rate of the refrigerant passing through the main refrigerant passage A valve stem capable of reciprocating in the main refrigerant passage ⁇ for causing And a dehumidification control valve having an auxiliary refrigerant passage for allowing the refrigerant to flow from the high-pressure side refrigerant flow path to the low-pressure side refrigerant flow path through the valve stem and the valve body poorly. It is characterized by having.
- a pressure box machine a heat source side heat exchanger, and a use side heat exchanger are provided, and the use side heat exchanger is thermally divided into two parts.
- a dehumidifying expansion device e used during dehumidification operation is inserted, and during dehumidification operation, dehumidification is performed by using a box box on the upstream side of the heat exchanger on the utilization side and an evaporator on the downstream side.
- the dehumidifying throttle device e is provided in the valve body and has a high-pressure side refrigerant flow path and a low-pressure side refrigerant flow path through which refrigerant flows, and the high-pressure side refrigerant flow path.
- a low-pressure side refrigerant flow path having a valve port and an open port through which a main refrigerant passage connecting the valve port and the open port is formed, and the valve port and the open port.
- the special dehumidification control valve is provided as a special hinoki.
- sub-refrigerant passage of the dehumidification control valve is configured such that an inlet hole on the high-pressure side refrigerant flow path side is provided at an upper end of the high-pressure side refrigerant flow path.
- the air conditioner is configured as described above, in the dehumidification control valve used as the dehumidification expansion device, the gap between the main refrigerant passage connecting the valve port and the opening port, that is, the gap between the valve rod and the valve seat.
- a sub-refrigerant passage that penetrates through the valve stem and the valve body and allows the refrigerant to flow through the high-pressure side refrigerant flow path and the low-pressure side refrigerant flow path is provided. It can be diverted.
- the refrigerant flow rate can be differentiated, Since the momentum and kinetic energy of the fluid decrease, the exciting force of the fluid is reduced, and the refrigerant flow noise generated when the refrigerant flow passes through the valve of the dehumidifying expansion device is reduced.
- an inlet hole on the low-pressure side refrigerant flow path is provided at the upper end of the high-pressure side refrigerant flow path, and the main refrigerant passage is located at the lower end of the high-pressure side refrigerant flow path.
- the refrigerant flows into the dehumidification control valve in a gas-liquid two-phase state, it has a gas-liquid separation function, so that liquid refrigerant flows through the main refrigerant passage and gas refrigerant flows through the sub-refrigerant passage. Since a refrigerant passage can be secured, it is possible to prevent gas from flowing into the throttle portion in a gas-liquid two-phase state.
- the flow path is discontinuously changed in shape, so that the pressure is reduced stepwise and the flow path is made maze, so that the kinetic energy of the refrigerant flow is reduced. Since the heat is dissipated and the excitation force can be reduced, the flow noise of the refrigerant can be reduced.
- FIG. 1 is a configuration diagram of a freezing cycle using a dehumidification control valve having two refrigerant passages according to one embodiment of the present invention.
- FIG. 2 is a longitudinal sectional view showing a dehumidifying expansion device using the dehumidifying control valve having two refrigerant passages of the present embodiment.
- FIG. 3 is a longitudinal sectional view showing a dehumidifying expansion device using a dehumidifying control valve having two refrigerant passages and a gas-liquid separation function of the present embodiment.
- FIG. 4 is a longitudinal sectional view showing a dehumidification expansion device using the dehumidification control valve having two refrigerant passages of the present embodiment.
- FIG. 5 is a longitudinal sectional view showing a dehumidifying expansion device using a dehumidifying control valve having two refrigerant passages according to the present embodiment.
- FIG. 6 shows a throttling device used in a cooling and heating operation according to another embodiment of the present invention.
- FIG. 3 is a configuration diagram of a refrigeration cycle using a dehumidification control valve.
- FIG. 1 is a diagram showing a configuration of a refrigeration cycle of the present embodiment
- FIG. 2 is a longitudinal sectional view showing a structure of a dehumidification control valve which performs a throttling operation during a dehumidification operation of a dehumidification expansion device 7 of the present embodiment
- FIG. 4 is a longitudinal sectional view showing a structure of a dehumidification control valve having a gas-liquid separation function
- FIG. 4 is a longitudinal sectional view showing a dehumidification throttle device S using a dehumidification control valve having two refrigerant passages, and FIG. It is a longitudinal section showing a dehumidification expansion device using a dehumidification control valve which has a passage.
- the air conditioner of this embodiment includes a pressure box machine 1, a four-way valve 2 for switching operation states such as a cooling operation and a heating operation, an outdoor heat exchanger 3, and a cooling operation and a heating operation.
- the main throttle device S 4 through which the refrigerant flows at the time, the two-way valve 5 that is provided in parallel with the main throttle device S 4 and allows the refrigerant to flow during the dehumidifying operation, the indoor heat exchangers 6 a and 6 b divided into two, and the indoor heat exchanger
- It consists of an outdoor fan 9 for blowing air, an indoor fan 10 for blowing air to the indoor heat exchangers 6a and 6b, and the like.
- the valve body 23 is formed integrally with a valve seat 36 having a valve port 31 and an open port 30, and a valve rod 34 and a valve rod 34 positioned therein.
- the valve body 3 5 attached to the valve stem 3 4, the electromagnetic coil 20 for driving the valve body 35, the suction element 21 for sucking the valve body 35, and the valve body 35 3 Consists of springs 22 pressed against the 1 side.
- the electromagnetic coil 20 When the electromagnetic coil 20 is energized, a magnetic force is generated in the attraction element 21, and the valve stem 34 is provided due to the balance between the spring force of the spring 22 and the attraction force of the attraction element 21.
- the valve body 35 moves up and down the valve body 23 ⁇ .
- valve stem 34 moves up and down between the valve seats 36, and the throttle amount changes. At this time, it is set so that the valve rod 34 can be removed from the valve seat 36 and the main refrigerant passage 27 can be opened.
- the refrigerant flows from the inlet pipe 33 of the dehumidification control valve into the refrigerant passage 32 on the high pressure side, passes through the two refrigerant passages, flows into the refrigerant passage 28 on the low pressure side, and exits. Outflow from pipe 29.
- the branched refrigerant passages are formed in the main refrigerant passage 27 formed by a gap between the valve rod 34 and the valve seat 36, the refrigerant passage 32 on the high pressure side, and the valve body 23.
- the refrigerant passage 25 provided in the valve rod 34 penetrates the refrigerant passage 25 passing through the space 24 and the space 2 formed in the valve body 23 and the refrigerant passage 28 on the low pressure side. 6 is a sub refrigerant passage.
- the space 24 formed in the valve body 23 may use a gap such as a moving mechanism or may form a flow path in the valve body 23.
- the dehumidification control valve shown in FIG. 3 has the same basic configuration as the dehumidification control valve shown in FIG. 2, but the inlet 37 of the sub-refrigerant passage is provided at the upper end of the refrigerant passage 32 on the high pressure side. Have been. Therefore, when refrigerant flows into the dehumidification control valve in a gas-liquid two-phase flow, gas refrigerant 38 flows to the upper layer and liquid refrigerant 39 flows 5 to the lower layer in general except for vertical piping. As a result, a liquid refrigerant 39 flows through the sub-refrigerant passage 25, and a gas refrigerant 38 flows through the sub-refrigerant passage 25.
- valve port 31 as an inlet of the main refrigerant passage 27 is provided at a lower end side of the high-pressure side refrigerant passage 32 facing the inlet 37 of the sub-refrigerant passage 25. It is desirable. Further, the gas-liquid separation function has a great effect when the inlet pipe 33 and at least the high-pressure side refrigerant flow path 32 are installed horizontally.
- the sub-refrigerant passage 25 provided to be connected to the high-pressure side refrigerant passage 32 is provided with a valve body 23.
- the clearance between the valve stem 34 and the valve stem 34 may be used. Configuration in this way Even in the same manner as described above, it can have the function of dividing the refrigerant flow and the function of separating gas and liquid.
- the two-way valve 5 is closed and the dehumidifying expansion device 7 is opened.
- the opening surfaces of the valve stem and the valve seat of the dehumidification control valve operating as the dehumidification expansion device 7 are opened so that pressure loss is almost eliminated.
- the refrigerant flows from the compressor 1 to the four-way valve 2 to the outdoor heat exchanger 3 to the main expansion device 4—the indoor heat exchanger 6a—to the dehumidification expansion device.
- the four-way valve 2 is switched as in the cooling operation, the two-way valve 5 is opened, and the dehumidifying expansion device 7 is closed.
- the valve rod 34 of the dehumidification control valve used as the dehumidification expansion device 7 is lowered to be located in the valve seat 36, and a main refrigerant passage 27 and a sub refrigerant passage 25 are formed.
- pressure is reduced in each case.
- the refrigerant flows from compressor 1 ⁇ four-way valve 2 to ⁇ outdoor heat exchanger 3 ⁇ two-way valve 5 ⁇ indoor heat exchanger 6 a-dehumidifying expansion device 7 ⁇ Indoor heat exchanger 6 b-Four-way valve 2 ⁇ ⁇ Accumulator 8 ⁇ Compressor 1 Circulates in this order, and the dehumidification control valve as dehumidification expansion device 7 restricts outdoor heat exchanger 3 Upstream condenser, room heat exchanger 6a is the downstream box and the indoor heat exchanger 6b is the evaporator. Then, the indoor heat exchanger 6b cools and dehumidifies the indoor air, and also heats the air with the indoor heat exchanger 6a. It can be carried out.
- the condensing capacity in the indoor heat exchanger 6a that is, the amount of radiated heat is changed to change the indoor fan capacity.
- the temperature of the air blown out by the air conditioner 10 can be controlled over a wide range from a cooling tendency to a heating tendency.
- the indoor heat exchangers 6a and 6b may be arranged in front and rear, and the wind may flow from the indoor heat exchangers 6b to 6a by the indoor fan 10 or the indoor heat exchangers 10a may be arranged vertically. Therefore, the wind may flow in parallel to the indoor heat exchangers 6a and 6b.
- the refrigerant flow is in a gas-liquid two-phase state at the inlet of the dehumidifying expansion device 7, depending on the indoor and outdoor temperature and humidity conditions, the operating conditions of the pressure box machine fan, and the like.
- the gas-liquid two-phase flow may be a slag flow or plug flow in which gun-shaped bubbles flow intermittently in the liquid flow.
- the flow may be a laminar flow or a wavy flow in which the upper part is a gas phase and the lower part is a two-phase, a yes phase.
- the auxiliary refrigerant passage is provided only in the valve stem 34.
- This sub-refrigerant passage is composed of a horizontal hole 40 and a vertical hole 41.
- the refrigerant flow flowing from the lateral hole 40 changes the flow direction at right angles in the valve rod 34 and flows out from the longitudinal hole 41 to the refrigerant passage 28 on the low pressure side.
- the horizontal hole 40 in the upper part of the refrigerant passage on the low pressure side when the refrigerant flows in a gas-liquid two-phase, it can also have a gas-liquid separation function.
- the momentum and kinetic energy serving as the exciting force due to the split flow of the refrigerant flow can be dissipated with respect to the gas-liquid two-phase refrigerant flow, as in the above-described embodiment. This has the effect of reducing flowing noise.
- FIG. 6 is a diagram showing the configuration of the refrigeration cycle of this embodiment.
- the dehumidification control valve shown in FIGS. 2 to 5 is replaced by an expansion valve 1 shown in FIG. 2 shows a frozen cycle when used. It is necessary to set the expansion valve 12 so as to have a throttling function during the cooling / heating operation, and it is necessary to set the expansion valve 12 so that there is almost no pressure loss during the dehumidifying operation.
- the function of the refrigeration cycle shown in FIG. can be the same as the function.
- the expansion valve 12 even if the refrigerant flows into the expansion valve 12 in a gaseous two-phase flow state, the expansion valve 12 The refrigerant flow noise generated in step 1 and 2 can be reduced.
- the drive device for the valve stem of the dehumidification control valve is described as being composed of an electromagnetic coil, an attractor, and a spring.
- a device that uses a motor and is mechanically driven A pressure control method using a temperature sensor may be applied, and a driving method of various configurations may be applied.
- the valve may have a structure in which a valve rod moves through a valve seat ⁇ , and may have a structure in which a main refrigerant passage and a sub-refrigerant passage are provided.
- a part of the sub-refrigerant passage is provided in the valve rod.
- a passage (not shown) penetrating the high-pressure side refrigerant flow path and the low-pressure side refrigerant flow path may be provided in the valve body.
- the refrigerant flow noise can be reduced.
- the present invention is not limited to this, and can be applied to other refrigeration cycles.
- a refrigeration cycle in which the four-way valve 2 is not provided and a cooling operation and a dehumidification operation in the cooling cycle is possible, that is, the indoor heat exchanger 6 b and the accumulator 8
- the dehumidifying operation can be performed by applying the embodiment shown in any of FIGS. 2 to 5.
- the refrigerant flow noise generated in the dehumidifying expansion device can be similarly reduced.
- the refrigeration cycle without the four-way valve 2 and the dehumidification operation in the heating cycle can be performed, that is, the outdoor heat exchanger 3, the accumulator 8,
- the box box 1 and the indoor heat exchanger 6b are connected so as to be in series (not shown)
- one of the embodiments shown in FIGS. Refrigerant flow noise generated in the device can be reduced.
- an accumulator is not necessarily required, and an accumulator without an accumulator may be used depending on the type of press used, the type of main squeezing device, and the control method. It can be configured as a frozen cycle.
- the types of refrigerant flowing in the refrigeration cycle include single refrigerant such as HCFC22 currently used in air conditioners, ozone layer destruction, and the like.
- a mixed refrigerant which is an alternative to HCFC22, can be used.
- intermittent or continuous refrigerant flow noise is considered to be significant when the gas-liquid two-phase refrigerant flow flows into the throttle, but as described above, Applying the embodiment has the effect of reducing the flow noise of the refrigerant.
- the present invention is not limited to this, and the present invention can be applied to a device for other uses requiring a dehumidifying operation.
- the heat exchanger is generally not necessarily used indoors or outdoors.
- the indoor heat exchanger is the use side heat exchanger
- the outdoor heat exchanger is the heat source side heat exchanger
- the indoor The fan is called the use side fan
- the outdoor fan is called the heat source side fan.
- the indoor heat exchanger (use-side heat exchanger) is divided into two parts, and the dehumidifying throttle device used during the dehumidifying operation is provided between the two parts.
- the dehumidifying throttle device used during the dehumidifying operation is provided between the two parts.
- one of the user-side heat exchangers is used as an evaporator and the other is used as a refrigerating box, and air is cooled, dehumidified and heated by a refrigeration cycle.
- a sub-refrigerant passage that penetrates the main refrigerant passage connecting the valve port and the open port, the valve rod, and the valve body, and circulates the high-pressure refrigerant passage and the low-pressure refrigerant passage,
- the refrigerant flow is divided into two, and the kinetic energy and momentum of each flow can be dispersed.
- the inlet hole of the high-pressure remote refrigerant flow passage in the sub-refrigerant passage at the upper end of the flow passage it is possible to have a gas-liquid separation function, and when the refrigerant flow is a single-phase flow, Therefore, even in the case of the gas-liquid two-phase flow, the generation of the refrigerant flow noise due to the refrigerant flow passing through the dehumidification control valve can be reduced. Further, since the heating capacity by the refrigerating cycle is relatively large, it is possible to perform a quiet and comfortable dehumidifying operation for lowering the humidity without lowering the room temperature.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Magnetically Actuated Valves (AREA)
Abstract
Description
明 細 害 Harm
空気調和機 Air conditioner
技術分野 Technical field
本発明は、 冷凍サイ クルを用いて室温の低下を防ぎながら除湿を行う 除湿運転が可能な空気調和機に係わり 、 特に除湿運転時に除湿絞り装置 により発生する冷媒流動音を低滅するのに好適な空気調和機に関する。 背景技術 The present invention relates to an air conditioner capable of performing a dehumidification operation that performs dehumidification while preventing a decrease in room temperature by using a refrigeration cycle, and is particularly suitable for reducing refrigerant flow noise generated by a dehumidification expansion device during a dehumidification operation. Related to air conditioners. Background art
冷凍サイ クルで除湿運転を行う空気調和機に関する従来例と しては、 特開平 2— 1 8 3 7 7 6号公報に記載のものがある。 この従来の空気調 和機には、 圧縮機と、 室外熱交換器と、 絞り装置と、 室内熱交換器等を 順次冷媒配管で接裱し、 室内熱交換器を二分割してこれらの間に除湿運 転時用の除湿絞り装置を投けたサイクル構成が開示されている。 そして、 除湿運転時には、 冷媒を除湿絞り装置に流すこ とによ り 、 二分割した室 内熱交換器のうち上流側を凝綰器と し、 下流側を蒸発器と して、 蒸発器 で冷却 · 除湿すると と もに凝箱器で加熱して、 空気調和機から吹き出す 温度をあま り 下げずに湿度を下げる除湿運転を可能にしている。 又、 除 湿絞 装 Sと して、 二方弁の弁可動部に設けた小孔を使用する小孔付ニ 方弁構造が開示されている。 As a conventional example of an air conditioner that performs a dehumidifying operation in a refrigeration cycle, there is one disclosed in Japanese Patent Application Laid-Open No. 2-187377. In this conventional air conditioner, a compressor, an outdoor heat exchanger, a throttle device, an indoor heat exchanger, and the like are sequentially connected by refrigerant piping, and the indoor heat exchanger is divided into two parts. Discloses a cycle configuration in which a dehumidifying expansion device for dehumidifying operation is thrown. During the dehumidification operation, the refrigerant flows into the dehumidification expansion device, so that the upstream side of the two-part indoor heat exchanger is used as the evaporator, the downstream side is used as the evaporator, and the evaporator is used as the evaporator. It cools and dehumidifies and heats it with a coke oven to enable a dehumidifying operation that lowers the humidity without significantly lowering the temperature blown out of the air conditioner. Also disclosed is a two-way valve structure with a small hole that uses a small hole provided in the movable part of the two-way valve as the dehumidifying throttle device S.
ところで、 一般に、 絞り装置の部分では、 絞り作用に伴い連続音も し く は不連続音である大きな冷媒流動音が発生し、 この冷媒流動音、 特に 不連続音の大きさは、 絞り装置に流入する高圧側冷媒の流動様式に大き く影饗される。 中でも、 気体と液の二相流動状態で砲弾形気泡と液が交 互に現れるスラグ流やプラグ流の時に、 冷媒流動音が非常に大き く なる ことが知られている。 こ こで、 連続的な流動音は、 主と して液冷媒が、 絞り装置の絞り部で減圧膨張して高速の気液二相噴流になるこ とによつ て生ずるものであり 、 また不連続的な流動音は、 主と して圧箱性流体で ある気体冷媒と非圧縮性流体である液冷媒とが、 交互に絞り装置の狭い 流路を通過する ときに生ずる大きな圧力変動によって生ずるものである。 こ う した冷媒流動音を低滅することを目的と した従来例と しては、 特 開昭 5 7— 1 2 9 3 7 1号公報に記載のものがある。 この従来例は、 冷 房運転や暖房運転の時に用いる室外熱交換器と室內熱交換器の間に設け た絞り装置での冷媒流動音低滅に関するものであり、 絞り装 gである膨 張弁の上流側 (高圧側) に固定オリ フィ スを設け、 膨張弁を通過する際 の冷媒中の気泡を多く し、 またその分布を均一化して騒音レベルの低下 を図っている。 By the way, in general, a large refrigerant flow noise, which is a continuous sound or a discontinuous sound, is generated in the expansion device in accordance with the expansion operation, and the magnitude of the refrigerant flow noise, particularly the discontinuous sound, is generated by the expansion device. It is greatly influenced by the flow mode of the high-pressure refrigerant flowing in. In particular, it is known that the refrigerant flow noise becomes very loud when a slag flow or a plug flow occurs in which shell-shaped bubbles and liquid appear alternately in a two-phase flow state of gas and liquid. Here, the continuous flow noise is mainly caused by the liquid refrigerant being decompressed and expanded at the throttle section of the expansion device to form a high-speed gas-liquid two-phase jet. Discontinuous flow noise is mainly due to pressure The gas refrigerant and the liquid refrigerant, which is an incompressible fluid, are caused by large pressure fluctuations that occur when they alternately pass through the narrow flow path of the expansion device. A conventional example aimed at reducing such refrigerant flow noise is disclosed in Japanese Patent Publication No. 57-129371. This conventional example relates to a reduction in refrigerant flow noise in a throttling device provided between an outdoor heat exchanger and a room-to-heat exchanger used in a cooling operation or a heating operation, and an expansion valve which is a throttling device g. A fixed orifice is provided on the upstream side (high pressure side) to increase the number of air bubbles in the refrigerant when passing through the expansion valve, and to make the distribution uniform to reduce the noise level.
特開平 2— 1 8 3 7 7 6号公報に記載の冷凍サイ クルでは、 除湿運転 時に、 除湿絞り装置の上流側で凝縮器と して作用する室內熱交換器の出 口が気液二相状態になる と、 除湿絞り装置のと ころで大きな冷媒流動音 が発生する。 この除湿絞り装 Sは室內側に設けられているので、 居住空 間にいる人に不快感を与えることになる。 この問題に対しては、 従来は 制振材ゃ遮音材を設けることによ り騒音低減を図っていた。 しかし、 最 近は快適性に対する要求が非常に高く なり 、 騒音についてもさ らに低滅 するこ-とが要求されている。 In the refrigerating cycle described in Japanese Patent Application Laid-Open No. 2-187367, during the dehumidification operation, the chamber that acts as a condenser upstream of the dehumidification expansion device and the outlet of the heat exchanger have a gas-liquid two-phase outlet. In this state, loud refrigerant flow noise is generated at the dehumidifying expansion device. Since the dehumidifying squeezing device S is provided on the room 內 side, it gives a feeling of discomfort to a person in the living space. To solve this problem, noise reduction has conventionally been attempted by providing damping material and sound insulation material. However, recently, the demand for comfort has become extremely high, and noise has also been required to be further reduced.
特開昭 5 7— 1 2 9 3 7 1号公報に記載の絞り装 Sのよ うに、 絞り装 fiの上流側にォリ フィ スを設ける構成を、 特開平 2— 1 8 3 7 7 6号公 報に開示された除湿運転を行う冷凍サイ クルの除湿絞り装置に適用 した 場合、 冷房運転あるいは暖房運転において、 オリ フィ スが冷媒流の流通 抵抗となって、 性能低下を引き起こすことになるという問題がある。 本発明の目的は、 冷凍サイ クルによ り室温の低下を防ぎながら除湿を 行う除湿運転が可能な空気調和機において、 冷房運転あるいは暖房運転 での性能低下を防ぎつつ、 除湿運転時に除湿絞り装置で発生する冷媒流 動音を低減できる空気調和機を提供することにある。 発明の開示 A configuration in which an orifice is provided on the upstream side of the aperture device fi as in the aperture device S described in Japanese Patent Application Laid-Open No. 57-1293291 is disclosed in In the cooling or heating operation, the orifice acts as a flow resistance of the refrigerant flow, causing performance degradation when applied to the dehumidifying expansion device of the refrigeration cycle that performs the dehumidification operation disclosed in the bulletin There is a problem. An object of the present invention is to provide an air conditioner capable of a dehumidifying operation in which dehumidification is performed while preventing a decrease in room temperature by a refrigeration cycle, and to prevent a decrease in performance in a cooling operation or a heating operation, and to perform a dehumidifying expansion device during a dehumidifying operation. An object of the present invention is to provide an air conditioner capable of reducing the refrigerant flow noise generated in the air conditioner. Disclosure of the invention
上記目的を達成するために、 本発明の空気調和機は、 圧箱機と、 熱源 側熟交換器と、 利用側熱交換器を備え、 孩利用側熱交換器が熱的に二分 割されたものであって、 その二分割された熱交換器の間に除湿運転時に 使用する除湿絞り装置を股け、 除湿運転時には前記利用側熱交換器の上 流側が凝箱器、 下流側が蒸発器になることによって除湿を行う よ う に冷 凍サイクルを構成した空気稠和機において、 前記除湿絞り装置が、 弁本 体内に設けられ冷媒を流通させる高圧側の冷媒流路と低圧側の冷媒流路、 前記高圧側の冷媒流路に貫通する弁口 と前記低圧側の冷媒流路に莨通す る開放口を有し、 前記弁口 と開放口 とを結ぶ主冷媒通路を形成されてい る と ともに、 前記弁口 と開放口 とを結ぶ主冷媒通路を通過する冷媒流 i を調節するために、 前記冷媒通路の開口面積を変化させるための前記主 冷媒通路内を往復運動可能な弁棒を備え、 前記主冷媒通路とは別に、 高 圧側の冷媒流路と低圧側の冷媒流路とを貫通する副冷媒通路を有してい る除湿制御弁を具備していることを特徴とするものである。 In order to achieve the above object, an air conditioner of the present invention includes a pressure box machine, a heat source side heat exchanger, and a use side heat exchanger, and the child side heat exchanger is thermally divided into two. A dehumidifying throttle device used during the dehumidifying operation is provided between the two heat exchangers. During the dehumidifying operation, the upstream side of the use-side heat exchanger is a coagulator and the downstream side is an evaporator. In the air concentrator having a refrigeration cycle configured to perform dehumidification, the dehumidification expansion device includes a high-pressure side refrigerant flow path and a low-pressure side refrigerant flow path that are provided in the valve body and allow the refrigerant to flow. A valve port that penetrates the high-pressure side refrigerant flow path and an open port that communicates with the low-pressure side refrigerant flow path, and forms a main refrigerant passage connecting the valve port and the open port. Adjusting the refrigerant flow i passing through the main refrigerant passage connecting the valve port and the opening port. A valve stem that can reciprocate in the main refrigerant passage for changing the opening area of the refrigerant passage, separately from the main refrigerant passage, a high-pressure side refrigerant flow path and a low-pressure side refrigerant flow. And a dehumidification control valve having a sub-refrigerant passage that passes through the passage.
又、 圧縮機と、 熱源側熱交換器と、 利用側熱交換器を備え、 該利用側 熱交換器が熱的に二分割されたものであって、 その二分割された熱交換 器の間に除湿運転時に使用する除湿絞り装置を設け、 除湿運転時には前 記利用側熱交換器の上流側が凝縮器、 下流側が蒸発器になるこ とによつ て除湿を行う ように冷凍サイ クルを構成した空気調和機において、 前記 除湿絞り装置が、 弁本体内に股けられて冷媒を流通させる高圧側の冷媒 流路と低圧側の冷媒流路と、 前記高圧側の冷媒流路に莨通する弁口 と前 記低圧側の冷媒流路に貫通する開放口を有し、 前記弁口 と開放口 とを結 ぶ主冷媒通路が形成されていると ともに、 前記弁口 と開放口とを結ぶ主 冷媒通路を通過する冷媒流量を調節するために、 前記冷媒通路の開口面 積を変化させるための前記主冷媒通路內を往復運動可能な弁棒を備え、 かつ前記弁棒と弁本体とを貧通し、 冷媒を前記高圧側の冷媒流路から前 記低圧側の冷媒流路に流通させるための副冷媒通路を有している除湿制 御弁を具備していることを特徴とするものである。 The heat exchanger further includes a compressor, a heat source-side heat exchanger, and a use-side heat exchanger, wherein the use-side heat exchanger is thermally divided into two parts. A dehumidifying expansion device used during dehumidification operation is provided, and a refrigeration cycle is configured so that during dehumidification operation, dehumidification is performed by using a condenser upstream of the utilization side heat exchanger and an evaporator downstream. In the air conditioner described above, the dehumidifying expansion device communicates with the high-pressure side refrigerant flow path, the low-pressure side refrigerant flow path, and the high-pressure side refrigerant flow path through which the refrigerant flows through the valve body. A valve port and an open port penetrating the low-pressure side refrigerant flow path, a main refrigerant passage connecting the valve port and the open port is formed, and connecting the valve port and the open port. Changing the opening area of the refrigerant passage to adjust the flow rate of the refrigerant passing through the main refrigerant passage A valve stem capable of reciprocating in the main refrigerant passage 內 for causing And a dehumidification control valve having an auxiliary refrigerant passage for allowing the refrigerant to flow from the high-pressure side refrigerant flow path to the low-pressure side refrigerant flow path through the valve stem and the valve body poorly. It is characterized by having.
又、 圧箱機と、 熱源側熱交換器と、 利用側熱交換器を備え、 該利用側 熱交換器が熱的に二分割されたものであって、 その二分割された熱交換 器の間に除湿運転時に使用する除湿絞り装 eを股け、 除湿運転時には前 記利用側熱交換器の上流側が凝箱器、 下流側が蒸発器になるこ とによつ て除湿を行う よ う に冷凍サイ クルを構成した空気調和機において、 前記除湿絞り装 eが、 弁本体内に設けられて冷媒を流通させる高圧側の 冷媒流路と低圧側の冷媒流路と、 前記高圧側の冷媒流路に s通する弁口 と前記低圧側の冷媒流路に: a通する開放口を有し、 前記弁口 と開放口 と を結ぶ主冷媒通路が形成される と ともに、 前記弁口 と開放口とを結ぶ主 冷媒通路を通過する冷媒流量を調節するために、 前記冷媒通路の開口面 積を変化させるための前記主冷媒通路內を往復運動可能な弁棒を備え、 かつ前記弁棒内に冷媒を前記高圧側冷媒流路から前記低圧冷媒流路に流 通させるための副冷媒通路を有している除湿制御弁を具備しているこ と を特淤とするものである。 In addition, a pressure box machine, a heat source side heat exchanger, and a use side heat exchanger are provided, and the use side heat exchanger is thermally divided into two parts. In the meantime, a dehumidifying expansion device e used during dehumidification operation is inserted, and during dehumidification operation, dehumidification is performed by using a box box on the upstream side of the heat exchanger on the utilization side and an evaporator on the downstream side. In the air conditioner constituting a refrigeration cycle, the dehumidifying throttle device e is provided in the valve body and has a high-pressure side refrigerant flow path and a low-pressure side refrigerant flow path through which refrigerant flows, and the high-pressure side refrigerant flow path. A low-pressure side refrigerant flow path having a valve port and an open port through which a main refrigerant passage connecting the valve port and the open port is formed, and the valve port and the open port. In order to adjust the flow rate of the refrigerant passing through the main refrigerant passage connecting the port, the opening area of the refrigerant passage is changed. And a sub-refrigerant passage for allowing the refrigerant to flow from the high-pressure refrigerant passage to the low-pressure refrigerant passage in the valve stem. The special dehumidification control valve is provided as a special hinoki.
又、 前記除湿制御弁の副冷媒通路が、 前記高圧側の冷媒流路側の入口 孔が高圧側の冷媒流路の上端に設けられるよ う に構成されているもので ある。 Further, the sub-refrigerant passage of the dehumidification control valve is configured such that an inlet hole on the high-pressure side refrigerant flow path side is provided at an upper end of the high-pressure side refrigerant flow path.
上記構成によって、 次のよ うに作用する。 空気調和機を上記のよ う に 構成しているので、 除湿絞り装置と して用いられる除湿制御弁において、 弁口 と開放口 とをつなぐ主冷媒通路、 すなわち弁棒と弁座との隙問の通 路、 の他に、 弁棒と弁本体とを貫通し、 冷媒を高圧側冷媒流路と低圧側 冷媒流路とを流通させる副冷媒通路を設けているので、 冷媒流を 2つに 分流させるこ とができる。 その結果、 冷媒流量の分化が図れ、 それぞれ の運動量及び運動エネルギが滅少するこ と となり 、 流体による加振力が 低減されるので、 冷媒流が除湿絞り装置の弁を通過すると きに発生する 冷媒流動音が低滅される。 With the above configuration, the following operation is performed. Since the air conditioner is configured as described above, in the dehumidification control valve used as the dehumidification expansion device, the gap between the main refrigerant passage connecting the valve port and the opening port, that is, the gap between the valve rod and the valve seat. In addition to the above, a sub-refrigerant passage that penetrates through the valve stem and the valve body and allows the refrigerant to flow through the high-pressure side refrigerant flow path and the low-pressure side refrigerant flow path is provided. It can be diverted. As a result, the refrigerant flow rate can be differentiated, Since the momentum and kinetic energy of the fluid decrease, the exciting force of the fluid is reduced, and the refrigerant flow noise generated when the refrigerant flow passes through the valve of the dehumidifying expansion device is reduced.
また、 除湿制御弁の副冷媒通路において、 髙圧側の冷媒流路側の入口 孔が高圧側の冷媒流路の上端に設けられており 、 また主冷媒通路が高圧 側冷媒流路の下端に位置してしるので、 気液二相状態で冷媒流が除湿制 御弁に流入した場合、 気液分離機能があるため、 主冷媒通路には液冷媒 力 副冷媒通路にはガス冷媒が流れ、 各々冷媒通路を確保できるので、 絞り部分に気液二相状態で流入するこ とが防げる。 この結果、 冷媒気液 二相流が原因となって発生する冷媒流動音を低滅するこ とができる。 また、 除湿制御弁の副冷媒通路では、 流路が不連続的に形状変化して いるので、 段階的に滅圧され、 かつ流路を迷路化させているので、 冷媒 流の持つ運動エネルギを消散させ、 加振力が低滅できるため、 冷媒流動 音の低滅を図ることができる。 In the sub-refrigerant passage of the dehumidification control valve, an inlet hole on the low-pressure side refrigerant flow path is provided at the upper end of the high-pressure side refrigerant flow path, and the main refrigerant passage is located at the lower end of the high-pressure side refrigerant flow path. When the refrigerant flows into the dehumidification control valve in a gas-liquid two-phase state, it has a gas-liquid separation function, so that liquid refrigerant flows through the main refrigerant passage and gas refrigerant flows through the sub-refrigerant passage. Since a refrigerant passage can be secured, it is possible to prevent gas from flowing into the throttle portion in a gas-liquid two-phase state. As a result, it is possible to reduce the refrigerant flow noise generated due to the refrigerant gas-liquid two-phase flow. In the sub-refrigerant passage of the dehumidification control valve, the flow path is discontinuously changed in shape, so that the pressure is reduced stepwise and the flow path is made maze, so that the kinetic energy of the refrigerant flow is reduced. Since the heat is dissipated and the excitation force can be reduced, the flow noise of the refrigerant can be reduced.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の一実施例である 2冷媒通路を有する除湿制御弁を用 いた^凍サイクルの構成図である。 FIG. 1 is a configuration diagram of a freezing cycle using a dehumidification control valve having two refrigerant passages according to one embodiment of the present invention.
図 2は、 本実施例の 2冷媒通路を有する除湿制御弁を用いた除湿絞り 装置を示す縱断面図である。 FIG. 2 is a longitudinal sectional view showing a dehumidifying expansion device using the dehumidifying control valve having two refrigerant passages of the present embodiment.
図 3は、 本実施例の 2冷媒通路を有し、 かつ気液分離機能を有する除 湿制御弁を用いた除湿絞り装置を示す縱断面図である。 FIG. 3 is a longitudinal sectional view showing a dehumidifying expansion device using a dehumidifying control valve having two refrigerant passages and a gas-liquid separation function of the present embodiment.
図 4は、 本実施例の 2冷媒通路を有する除湿制御弁を用いた除湿絞り 装置を示す縱断面図である。 FIG. 4 is a longitudinal sectional view showing a dehumidification expansion device using the dehumidification control valve having two refrigerant passages of the present embodiment.
図 5は、 本実施例の 2冷媒通路を有する除湿制御弁を用いた除湿絞り 装置を示す縱断面図である。 FIG. 5 is a longitudinal sectional view showing a dehumidifying expansion device using a dehumidifying control valve having two refrigerant passages according to the present embodiment.
図 6は、 本発明の他の実施例である冷暖房運転時に用いる絞り装置に 除湿制御弁を用いた冷凍サイ クルの構成図である。 FIG. 6 shows a throttling device used in a cooling and heating operation according to another embodiment of the present invention. FIG. 3 is a configuration diagram of a refrigeration cycle using a dehumidification control valve.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施例を、 建家に取り付ける空気調和機を想定して、 図 1 から図 5によ り説明する。 図 1 は本実施例の冷凍サイ クルの構成を 示す図、 図 2は本実施例の除湿絞り装置 7 の除湿運転時に絞り作用を行 う除湿制御弁の構造を示す縦断面図、 図 3 は、 気液分離機能を加えた除 湿制御弁の構造を示す縦断面図、 図 4 は、 2冷媒通路を有する除湿制御 弁を用いた除湿絞り装 Sを示す縦断面図、 図 5は 2冷媒通路を有する除 湿制御弁を用いた除湿絞り装置を示す縦断面図である。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 5 assuming an air conditioner to be attached to a building. FIG. 1 is a diagram showing a configuration of a refrigeration cycle of the present embodiment, FIG. 2 is a longitudinal sectional view showing a structure of a dehumidification control valve which performs a throttling operation during a dehumidification operation of a dehumidification expansion device 7 of the present embodiment, and FIG. FIG. 4 is a longitudinal sectional view showing a structure of a dehumidification control valve having a gas-liquid separation function, FIG. 4 is a longitudinal sectional view showing a dehumidification throttle device S using a dehumidification control valve having two refrigerant passages, and FIG. It is a longitudinal section showing a dehumidification expansion device using a dehumidification control valve which has a passage.
図 1 に示すよ うに、 本実施例の空気調和機は、 圧箱機 1 、 冷房運転、 暖房運転等の運転状態を切り換えるための四方弁 2、 室外熱交換器 3 、 冷房運転、 暖房運転の時に冷媒が流れる主絞り装 S 4 、 主絞り装 S 4 と 並列に設けられ、 除湿運転時に冷媒を流す二方弁 5、 二分割された室内 熱交換器 6 a 、 6 b、 室内熱交換器 6 a と 6 b との間にこれらと直列に 設けられた除湿絞り装 Sである除湿制御弁 7、 圧縮機 1 への液戻り を防 止するためのアキュム レータ 8、 室外熱交換器 3 へ送風するための室外 ファ ン 9 、 室内熱交換器 6 a及び 6 b に送風するための室内フ アン 1 0 等で構成されている。 As shown in FIG. 1, the air conditioner of this embodiment includes a pressure box machine 1, a four-way valve 2 for switching operation states such as a cooling operation and a heating operation, an outdoor heat exchanger 3, and a cooling operation and a heating operation. The main throttle device S 4 through which the refrigerant flows at the time, the two-way valve 5 that is provided in parallel with the main throttle device S 4 and allows the refrigerant to flow during the dehumidifying operation, the indoor heat exchangers 6 a and 6 b divided into two, and the indoor heat exchanger To the dehumidification control valve 7, which is a dehumidification throttle device S provided in series with these components between 6a and 6b, to the accumulator 8 to prevent liquid from returning to the compressor 1, and to the outdoor heat exchanger 3. It consists of an outdoor fan 9 for blowing air, an indoor fan 10 for blowing air to the indoor heat exchangers 6a and 6b, and the like.
図 2において、 弁本体 2 3は、 弁口 3 1 と開放口 3 0を有する弁座 3 6 と、 この中に位 gする弁棒 3 4、 弁棒 3 4 と一体化されて形成される か弁棒 3 4 に取り付けられている弁体 3 5 、 弁体 3 5 を駆動させるため の電磁コイル 2 0、 弁体 3 5を吸引させるための吸引子 2 1 、 弁体 3 5 を弁口 3 1側に押し付けるスプリ ング 2 2等から構成されている。 電磁 コイル 2 0に通電する と、 吸引子 2 1 に磁力が発生し、 スプリ ング 2 2 のバネ力と吸引子 2 1 の吸引力との力のバランスによ り、 弁棒 3 4 を有 する弁体 3 5が弁本体 2 3內を上下に移動する。 この弁体 3 5移動する こ とによ り 、 弁棒 3 4が弁座 3 6 の間を上下に移動し、 絞り量が変化す る。 このとき、 弁棒 3 4が弁座 3 6から抜けて主冷媒通路 2 7 を開放状 態にするこ と も可能なよ うに設定されている。 In FIG. 2, the valve body 23 is formed integrally with a valve seat 36 having a valve port 31 and an open port 30, and a valve rod 34 and a valve rod 34 positioned therein. The valve body 3 5 attached to the valve stem 3 4, the electromagnetic coil 20 for driving the valve body 35, the suction element 21 for sucking the valve body 35, and the valve body 35 3 Consists of springs 22 pressed against the 1 side. When the electromagnetic coil 20 is energized, a magnetic force is generated in the attraction element 21, and the valve stem 34 is provided due to the balance between the spring force of the spring 22 and the attraction force of the attraction element 21. The valve body 35 moves up and down the valve body 23 內. Move this valve body 3 5 As a result, the valve stem 34 moves up and down between the valve seats 36, and the throttle amount changes. At this time, it is set so that the valve rod 34 can be removed from the valve seat 36 and the main refrigerant passage 27 can be opened.
除湿運転時、 冷媒は、 除湿制御弁の入口配管 3 3から高圧側の冷媒流 路 3 2に流入し、 ここで 2つの冷媒通路を通り 、 低圧側の冷媒流路 2 8 に流入し、 出口配管 2 9から流出する。 ここで、 分流した冷媒通路は、 弁棒 3 4 と弁座 3 6 と間の隙間で構成される主冷媒通路 2 7 と、 高圧側 の冷媒流路 3 2 と弁本体 2 3内に形成される空間 2 4 とを S通する冷媒 通路 2 5及び弁本体 2 3 内に形成される空間 2 と低圧側の冷媒流路 2 8 とを貫通し弁棒 3 4 内に設けられた冷媒通路 2 6からなる副冷媒通路 である。 なお、 弁本体 2 3内に形成された空間 2 4は、 動機構等の隙 間を利用しても、 弁本体 2 3内に流路を形成してもよい。 During the dehumidification operation, the refrigerant flows from the inlet pipe 33 of the dehumidification control valve into the refrigerant passage 32 on the high pressure side, passes through the two refrigerant passages, flows into the refrigerant passage 28 on the low pressure side, and exits. Outflow from pipe 29. Here, the branched refrigerant passages are formed in the main refrigerant passage 27 formed by a gap between the valve rod 34 and the valve seat 36, the refrigerant passage 32 on the high pressure side, and the valve body 23. The refrigerant passage 25 provided in the valve rod 34 penetrates the refrigerant passage 25 passing through the space 24 and the space 2 formed in the valve body 23 and the refrigerant passage 28 on the low pressure side. 6 is a sub refrigerant passage. The space 24 formed in the valve body 23 may use a gap such as a moving mechanism or may form a flow path in the valve body 23.
図 3に示す除湿制御弁は、 図 2に示した除湿制御弁と基本構成は同様 のものであるが、 副冷媒通路の入口 3 7が、 高圧側の冷媒流路 3 2の上 端に設けられている。 そのため、 除湿制御弁に気液二相流で冷媒が流入 した場合、 一般に垂直配管以外では上層にガス冷媒 3 8、 下層に液冷媒 3 9力5流れるため、 主冷媒通路 2 7には主と して液冷媒 3 9が、 副冷媒 通路 2 5には主と してガス冷媒 3 8が流れ、 気液分離して冷媒を流すこ とが可能となる。 この時、 主冷媒通路 2 7の入口である弁口 3 1 は、 副 冷媒通路 2 5の入口 3 7に対して対面している高圧側の冷媒流路 3 2の 下端側に設けられている ことが望ま しい。 また、 気液分離機能は、 入口 配管 3 3 と少なく と も高圧側の冷媒流路 3 2 とが水平に位置するよ う に 設置されるとき効果が大きい。 The dehumidification control valve shown in FIG. 3 has the same basic configuration as the dehumidification control valve shown in FIG. 2, but the inlet 37 of the sub-refrigerant passage is provided at the upper end of the refrigerant passage 32 on the high pressure side. Have been. Therefore, when refrigerant flows into the dehumidification control valve in a gas-liquid two-phase flow, gas refrigerant 38 flows to the upper layer and liquid refrigerant 39 flows 5 to the lower layer in general except for vertical piping. As a result, a liquid refrigerant 39 flows through the sub-refrigerant passage 25, and a gas refrigerant 38 flows through the sub-refrigerant passage 25. At this time, the valve port 31 as an inlet of the main refrigerant passage 27 is provided at a lower end side of the high-pressure side refrigerant passage 32 facing the inlet 37 of the sub-refrigerant passage 25. It is desirable. Further, the gas-liquid separation function has a great effect when the inlet pipe 33 and at least the high-pressure side refrigerant flow path 32 are installed horizontally.
なお、 図 4 に示すよ う に、 図 2あるいは図 3 に示した除湿制御弁にお いて、 高圧側の冷媒流路 3 2に接続して設けられる副冷媒通路 2 5は、 弁本体 2 3 と弁棒 3 4 との間の隙間を利用 してもよい。 このよ う に構成 しても上述したと同様に冷媒流の分流機能と気液分離機能を有するこ と ができる。 As shown in FIG. 4, in the dehumidification control valve shown in FIG. 2 or FIG. 3, the sub-refrigerant passage 25 provided to be connected to the high-pressure side refrigerant passage 32 is provided with a valve body 23. The clearance between the valve stem 34 and the valve stem 34 may be used. Configuration in this way Even in the same manner as described above, it can have the function of dividing the refrigerant flow and the function of separating gas and liquid.
以上のよ う にサイクル構成を図 1 に示すよ う に構成し、 除湿制御弁の 構造を図 2、 図 3、 あるいは図 4 に示すよ う に構成するこ とによ り、 次 のよ うに動作する。 As described above, by configuring the cycle configuration as shown in Fig. 1 and the structure of the dehumidification control valve as shown in Fig. 2, 3, or 4, the following is achieved. Operate.
冷房運転時には、 二方弁 5 を閉じ除湿絞り装置 7を開く。 この時、 除 湿絞り装置 7 と して動作する除湿制御弁の弁棒と弁座との開口面穣は圧 力損失がほぼ無く なるよ うに開かれる。 その結果、 冷媒は、 図 1 中に実 線の矢印で示されるよ う に、 圧縮機 1→四方弁 2→室外熱交換器 3→主 絞り装置 4—室内熱交換器 6 a—除湿絞り装置 7—室内熱交換器 6 b→ 四方弁 2—アキュムレータ 8→圧縮機 1 の順に循環し、 室外熱交換器 3 を凝箱器、 室內熱交換器 6 a及び 6 bを蒸発器と して室内を冷房する。 暖房運転時には、 四方弁 2 を切り換えるこ とによ り 、 冷媒を破線の矢 印で示すよ うに、 圧縮機 1 →四方弁 2→室內熱交換器 6 b→除湿絞り装 置 7—室內熱交換器 6 a—主絞り装置 4→室外熱交換器 3 ·→四方弁 2→ アキュムレータ 8 ~»圧綰機 1 の順に循環させ、 室外熱交換器 3 を蒸発器、 室内熱交換器 6 a及び 6 b を凝箱器と して室内を暖房する。 During the cooling operation, the two-way valve 5 is closed and the dehumidifying expansion device 7 is opened. At this time, the opening surfaces of the valve stem and the valve seat of the dehumidification control valve operating as the dehumidification expansion device 7 are opened so that pressure loss is almost eliminated. As a result, as shown by the solid arrows in Fig. 1, the refrigerant flows from the compressor 1 to the four-way valve 2 to the outdoor heat exchanger 3 to the main expansion device 4—the indoor heat exchanger 6a—to the dehumidification expansion device. 7—Indoor heat exchanger 6 b → Four-way valve 2 — Accumulator 8 → Compressor 1 Circulate in this order, outdoor heat exchanger 3 as box box, and indoor heat exchangers 6a and 6b as evaporators. Cool. During the heating operation, the refrigerant is switched by switching the four-way valve 2 so that the refrigerant is compressed by the compressor 1 → the four-way valve 2 → the chamber / heat exchanger 6 b → the dehumidifying throttle device 7-the chamber / heat exchange as shown by the dashed arrow. 6a—Main throttling device 4 → outdoor heat exchanger 3 → four-way valve 2 → accumulator 8 ~ »circulator 1 in order, outdoor heat exchanger 3 evaporator, indoor heat exchanger 6a and 6 The room is heated using b as a box.
除湿運転時には、 四方弁 2 を冷房運転時と同様に切り換え、 二方弁 5 を開いて除湿絞り装置 7 を閉じる。 この時、 除湿絞り装置 7 と して用い る除湿制御弁の弁棒 3 4 は下がり 、 弁座 3 6 中に位置し、 主冷媒通路 2 7 と副冷媒通路 2 5 とが構成され、 冷媒はこの 2通路を通過するときに それぞれで滅圧される。 その結果、 冷媒は、 図 1 中に一点鎖線で示され るよ うに、 圧縮機 1 →四方弁 2 ~→室外熱交換器 3→二方弁 5→室内熱交 換器 6 a—除湿絞り装置 7 →室内熱交換器 6 b—四方弁 2 ~→アキュム レータ 8→圧縮機 1 の順に循環され、 除湿絞り装置 7 と しての除湿制御 弁の絞り作用によ り、 室外熱交換器 3 を上流側の凝縮器、 室內熱交換器 6 a を下流側の凝箱器、 室内熱交換器 6 b を蒸発器とする。 そして、 室 内熱交換器 6 bで室内空気の冷却 · 除湿を行う と と もに室内熱交換器 6 aで空気を加熱するこ とによ り 、 室温の低下を防ぎながら除湿する除湿 運転を行う ことができる。 During the dehumidifying operation, the four-way valve 2 is switched as in the cooling operation, the two-way valve 5 is opened, and the dehumidifying expansion device 7 is closed. At this time, the valve rod 34 of the dehumidification control valve used as the dehumidification expansion device 7 is lowered to be located in the valve seat 36, and a main refrigerant passage 27 and a sub refrigerant passage 25 are formed. When passing through these two passages, pressure is reduced in each case. As a result, as shown by the dashed line in Fig. 1, the refrigerant flows from compressor 1 → four-way valve 2 to → outdoor heat exchanger 3 → two-way valve 5 → indoor heat exchanger 6 a-dehumidifying expansion device 7 → Indoor heat exchanger 6 b-Four-way valve 2 ~ → Accumulator 8 → Compressor 1 Circulates in this order, and the dehumidification control valve as dehumidification expansion device 7 restricts outdoor heat exchanger 3 Upstream condenser, room heat exchanger 6a is the downstream box and the indoor heat exchanger 6b is the evaporator. Then, the indoor heat exchanger 6b cools and dehumidifies the indoor air, and also heats the air with the indoor heat exchanger 6a. It can be carried out.
なお、 この場合、 室外熱交換器 3での凝箱能力あるいは圧縮機 1 の能 力を変えるこ とによ り 、 室内熱交換器 6 a での凝縮能力、 即ち放熱量を 変えて、 室内ファ ン 1 0による吹き出し空気温度を冷房気味から暖房気 味の広い範囲にわたって制御することができる。 また、 室内熱交換器 6 a と 6 b は、 前後に並べて室內ファ ン 1 0によ り風を室内熱交換器 6 b から 6 a に流しても良く 、 あるいは上下に並べて室内ファ ン 1 0によ り 風を室内熱交換器 6 a と 6 bに並列に流しても良い。 In this case, by changing the box capacity in the outdoor heat exchanger 3 or the capacity of the compressor 1, the condensing capacity in the indoor heat exchanger 6a, that is, the amount of radiated heat is changed to change the indoor fan capacity. Thus, the temperature of the air blown out by the air conditioner 10 can be controlled over a wide range from a cooling tendency to a heating tendency. In addition, the indoor heat exchangers 6a and 6b may be arranged in front and rear, and the wind may flow from the indoor heat exchangers 6b to 6a by the indoor fan 10 or the indoor heat exchangers 10a may be arranged vertically. Therefore, the wind may flow in parallel to the indoor heat exchangers 6a and 6b.
こ こで、 上記除湿運転において、 室内外の温湿度条件、 圧箱機ゃファ ンの運転条件等によっては、 除湿絞り装置 7の入口で冷媒流が気液二相 状態となる。 又、 場合によっては、 この気液二相流は砲弹形の気泡が液 流中に断続的に流れるスラグ流やプラグ流になることがある。 また、 上 部に気相、 下部に掖相と二相になった層状流や波状流といった流れとな るこ もある。 このよ う な気液二相流の状態で冷媒が除湿絞り装置 7に 流入する と、 流れの一部に気液両相が断続的に流れる箇所が存在すると、 そこで間欠的に流動音が発生し、 この間欠流動音は耳障り な音となる。 そして、 除湿絞り装置 7が室内側に設饅されているので、 室内の人に不 快感を与えるこ とになる。 しかし、 本実施例の空気調和機では、 気液二 相流が流れても、 2つの冷媒通路を形成しているので、 冷媒流の分散化 をするこ とで加振力となる冷媒流の持つ運動量、 運動エネルギの消散を 行う ことができる。 また、 気液分離を行う ことで、 液冷媒の流路を確保 し、 気相による絞りの閉塞を防ぐことができる。 これらの結果、 気液二 相冷媒流によ り発生する冷媒流動音を低滅するこ とができる。 図 5に示す除湿制御弁においては、 副冷媒通路は、 弁棒 3 4 内にのみ 設けられている。 この副冷媒通路は、 横孔 4 0 と縦孔 4 1 とから構成さ れている。 横孔 4 0から流入した冷媒流は、 弁棒 3 4 内で直角に流れ方 向を変え縱孔 4 1 から低圧側の冷媒流路 2 8に流出する。 この時、 横孔 4 0を髙圧側の冷媒流路の上部に股けるこ とで、 冷媒が気液二相で流入 したとき、 気液分離機能も有するこ とができる。 この構造の除湿制御弁 を使用した場合においても、 上記した実施例と同様、 気液二相の冷媒流 に対し、 冷媒流の分流による加振力となる運動量、 運動エネルギの消散 が図れ、 その流動音を低滅する効果がある。 Here, in the above dehumidifying operation, the refrigerant flow is in a gas-liquid two-phase state at the inlet of the dehumidifying expansion device 7, depending on the indoor and outdoor temperature and humidity conditions, the operating conditions of the pressure box machine fan, and the like. In some cases, the gas-liquid two-phase flow may be a slag flow or plug flow in which gun-shaped bubbles flow intermittently in the liquid flow. In addition, the flow may be a laminar flow or a wavy flow in which the upper part is a gas phase and the lower part is a two-phase, a yes phase. When the refrigerant flows into the dehumidifying expansion device 7 in such a gas-liquid two-phase flow state, if there is a portion of the flow where both gas and liquid phases intermittently flow, intermittent flow noise is generated there. However, this intermittent sound is a harsh sound. Further, since the dehumidifying squeezing device 7 is installed inside the room, it gives an unpleasant feeling to the person in the room. However, in the air conditioner of the present embodiment, even if the gas-liquid two-phase flow flows, the two refrigerant passages are formed. It can dissipate the momentum and kinetic energy that it has. In addition, by performing gas-liquid separation, it is possible to secure the flow path of the liquid refrigerant and prevent the restriction of the throttle by the gas phase. As a result, the refrigerant flow noise generated by the gas-liquid two-phase refrigerant flow can be reduced. In the dehumidification control valve shown in FIG. 5, the auxiliary refrigerant passage is provided only in the valve stem 34. This sub-refrigerant passage is composed of a horizontal hole 40 and a vertical hole 41. The refrigerant flow flowing from the lateral hole 40 changes the flow direction at right angles in the valve rod 34 and flows out from the longitudinal hole 41 to the refrigerant passage 28 on the low pressure side. At this time, by forming the horizontal hole 40 in the upper part of the refrigerant passage on the low pressure side, when the refrigerant flows in a gas-liquid two-phase, it can also have a gas-liquid separation function. Even in the case of using the dehumidification control valve having this structure, the momentum and kinetic energy serving as the exciting force due to the split flow of the refrigerant flow can be dissipated with respect to the gas-liquid two-phase refrigerant flow, as in the above-described embodiment. This has the effect of reducing flowing noise.
本発明の他の実施例を図 6 によ り説明する。 図 6は本実施例の冷凍サ ィクルの構成を示す図である。 Another embodiment of the present invention will be described with reference to FIG. FIG. 6 is a diagram showing the configuration of the refrigeration cycle of this embodiment.
本実施例では、 図 1 に示す実施例の冷凍サイ クルの主絞り装置と二方 弁の代わりに、 図 2から図 5で示した除湿制御弁を、 図 6に示すよ うに、 膨張弁 1 2 と して用いた場合の冷凍サイ クルを示している。 膨張弁 1 2 は、 冷暖房運転時においては、 絞り作用を有するよ う に股定する必要で あり 、 また除湿運転時には、 ほとんど圧力損失が無い状態に設定する必 要がおる。 膨張弁 1 2 と して、 図 2から図 5に示した除湿制御弁のいず れかを用いるこ とで、 図 6に示す冷凍サイ クルの機能を、 図 1 に示した 冷凍サイ クルの機能と同じにすることができる。 また図 2から図 5に示 す除湿制御弁のいずれかを膨張弁 1 2 どして用いるこ とで、 膨張弁 1 2 に気掖二相流の状態で冷媒が流入する場合でも、 膨張弁 1 2で発生する 冷媒流動音を低滅するこ とができる。 In this embodiment, instead of the main throttle device and two-way valve of the refrigeration cycle of the embodiment shown in FIG. 1, the dehumidification control valve shown in FIGS. 2 to 5 is replaced by an expansion valve 1 shown in FIG. 2 shows a frozen cycle when used. It is necessary to set the expansion valve 12 so as to have a throttling function during the cooling / heating operation, and it is necessary to set the expansion valve 12 so that there is almost no pressure loss during the dehumidifying operation. By using any of the dehumidification control valves shown in FIGS. 2 to 5 as the expansion valve 12, the function of the refrigeration cycle shown in FIG. Can be the same as the function. In addition, by using one of the dehumidification control valves shown in FIGS. 2 to 5 as the expansion valve 12, even if the refrigerant flows into the expansion valve 12 in a gaseous two-phase flow state, the expansion valve 12 The refrigerant flow noise generated in step 1 and 2 can be reduced.
本実施例では、 除湿制御弁の弁棒の駆動装置と して、 電磁コイル、 吸 引子、 スプリ ングで構成されるものを示したが、 モーターを使用するも の、 機械的に駆動されるもの、 感温简を用いた圧力制御によるものを適 用してもよく 、 駆動方法については種々の構成のものを適用してもよレ、。 また、 弁の構造は、 弁棒が弁座內を移動する構成のもので、 主冷媒通路 と副冷媒通路を設けるものであればよい。 又、 本実施例では副冷媒通路 の一部を弁棒内に設けているが、 弁本体に高圧側の冷媒流路と低圧側の 冷媒流路を貫通する通路 (図示省略) を設けてもよく 、 同様に冷媒流動 音の低滅が図れる。 In the present embodiment, the drive device for the valve stem of the dehumidification control valve is described as being composed of an electromagnetic coil, an attractor, and a spring. However, a device that uses a motor and is mechanically driven A pressure control method using a temperature sensor may be applied, and a driving method of various configurations may be applied. The valve may have a structure in which a valve rod moves through a valve seat 內, and may have a structure in which a main refrigerant passage and a sub-refrigerant passage are provided. In this embodiment, a part of the sub-refrigerant passage is provided in the valve rod. However, a passage (not shown) penetrating the high-pressure side refrigerant flow path and the low-pressure side refrigerant flow path may be provided in the valve body. Similarly, the refrigerant flow noise can be reduced.
これまでは冷房、 暖房、 除湿の 3つの運転状態ができる冷凍サイ クル について説明してきたが、 これに限るものではなく他の冷凍サイ クルに ついても適用できる。 例えば、 図 1 あるいは図 6 に示す冷凍サイクルに おいて、 四方弁 2を設けない冷房運転と冷房サイ クルでの除湿運転が可 能な冷凍サイ クル、 すなわち、 室内熱交換器 6 b 、 アキュムレータ 8 、 圧綰機 1 、 室外熱交換器 3が直列になるよ うに接続 (図示省略) した場 合にも、 図 2から図 5のいずれかに示す実施例を適用することによ り 、 除湿運転において、 同様に除湿絞り装置の部分で発生する冷媒流動音を 低滅するこ とができる。 So far, the description has been given of a refrigeration cycle that can operate in three operation states: cooling, heating, and dehumidification. However, the present invention is not limited to this, and can be applied to other refrigeration cycles. For example, in the refrigeration cycle shown in FIG. 1 or FIG. 6, a refrigeration cycle in which the four-way valve 2 is not provided and a cooling operation and a dehumidification operation in the cooling cycle is possible, that is, the indoor heat exchanger 6 b and the accumulator 8 Even when the crusher 1 and the outdoor heat exchanger 3 are connected in series (not shown), the dehumidifying operation can be performed by applying the embodiment shown in any of FIGS. 2 to 5. In the same manner, the refrigerant flow noise generated in the dehumidifying expansion device can be similarly reduced.
また、 図 1 あるいは図 6に示す冷凍サイ クルにおいて、 四方弁 2 を設 けない暖房運転と暖房サイクルでの除湿運転が可能な冷凍サイ クル、 す なわち、 室外熱交換器 3 、 アキュムレータ 8、 任箱機 1 、 室内熱交換器 6 bが直列になるよ うに接続 (図示省略) した場合、 図 2から図 5のい ずれかの実施例を適用 して、 除湿運転において、 同様に除湿絞り装置の 部分で発生する冷媒流動音を低滅することができる。 Also, in the refrigeration cycle shown in FIG. 1 or FIG. 6, the refrigeration cycle without the four-way valve 2 and the dehumidification operation in the heating cycle can be performed, that is, the outdoor heat exchanger 3, the accumulator 8, When the box box 1 and the indoor heat exchanger 6b are connected so as to be in series (not shown), one of the embodiments shown in FIGS. Refrigerant flow noise generated in the device can be reduced.
なお、 図 1 あるいは図 6に示す冷凍サイ クルの構成において、 アキュ ム レータは必ずしも必要ではなく 、 使用する圧綰機の種類あるいは主絞 り装置の種類や制御方法によつてはアキュム レータ無しの冷凍サイ クル 構成とするこ とができる。 In the configuration of the refrigeration cycle shown in FIG. 1 or FIG. 6, an accumulator is not necessarily required, and an accumulator without an accumulator may be used depending on the type of press used, the type of main squeezing device, and the control method. It can be configured as a frozen cycle.
また、 冷凍サイ クル内を流れる冷媒の種類と しては、 空気調和機で現 在一般的に使用されている H C F C 2 2等の単一冷媒、 オゾン層破壊や 地球温暖化の点から H C F C 2 2 に代わる代替冷媒の一つである混合冷 媒を使用するこ とができる。 特に、 混合冷媒を使用すると、 気液二相冷 媒流が絞り に流入した時、 間欠的なあるいは連続的な冷媒流動音の発生 は著しいと考えられるが、 これまで述べたよ う に、 上記した実施例を適 用するこ とで、 冷媒流動音の低滅を図れる効果がある。 The types of refrigerant flowing in the refrigeration cycle include single refrigerant such as HCFC22 currently used in air conditioners, ozone layer destruction, and the like. From the viewpoint of global warming, a mixed refrigerant, which is an alternative to HCFC22, can be used. In particular, when a mixed refrigerant is used, intermittent or continuous refrigerant flow noise is considered to be significant when the gas-liquid two-phase refrigerant flow flows into the throttle, but as described above, Applying the embodiment has the effect of reducing the flow noise of the refrigerant.
また、 上記各実施例では、 建星の空気調和機を想定して説明したが、 これに限らず、 除湿運転が必要な他の用途の装置にも適用可能である。 このよ う な場合は、 一般に熱交換器を室内あるいは室外に用いられる と は限られず、 この場合は、 室內熱交換器は利用側熱交換器、 室外熱交換 器は熱源側熱交換器、 室内ファンは利用側ファ ン、 室外ファンは熱源側 ファ ンと呼ぶ。 Further, in each of the above embodiments, the description has been made on the assumption that the air conditioner is a astronaut. However, the present invention is not limited to this, and the present invention can be applied to a device for other uses requiring a dehumidifying operation. In such a case, the heat exchanger is generally not necessarily used indoors or outdoors.In this case, the indoor heat exchanger is the use side heat exchanger, the outdoor heat exchanger is the heat source side heat exchanger, and the indoor The fan is called the use side fan, and the outdoor fan is called the heat source side fan.
以上詳細に説明したよ うに、 本発明の空気調和機によれば、 室内熱交 換器 (利用側熱交換器) を二分割してその間に除湿運転時に使用する除 湿絞り装 を設け、 除湿運転時に、 利用側熱交換器の一方を蒸発器、 他 方を凝箱器と して冷凍サイクルによ り空気の冷却 · 除湿及び加熱を行う 冷凍サイ クルにおいて、 除湿絞り装 eに対して、 弁口 と開放口 とを結ぶ 主冷媒通路と弁棒と弁本体とを貫通し、 高圧側冷媒流路低圧側冷媒流路 とを流通させる副冷媒流路の 2通路を形成するこ とで、 冷媒流を 2つに 分流し、 それぞれの流れが有する運動エネルギ、 運動量を分散させるこ とができる。 また、 副冷媒通路の高圧僻の冷媒流路の入口孔を流路上端 に設けることによ り 、 気液分離機能を有させるこ とができ、 冷媒流が単 相流であるときはもと よ り、 気液二相流である場合においても、 除湿制 御弁を通過する冷媒流による冷媒流動音の発生を低滅させるこ とができ る。 また、 冷凍サイ クルによる前記加熱能力が比較的大きいこ とから、 静かで室温を下げずに湿度を下げる快適な除湿運転を行う こ とができる。 As described above in detail, according to the air conditioner of the present invention, the indoor heat exchanger (use-side heat exchanger) is divided into two parts, and the dehumidifying throttle device used during the dehumidifying operation is provided between the two parts. During operation, one of the user-side heat exchangers is used as an evaporator and the other is used as a refrigerating box, and air is cooled, dehumidified and heated by a refrigeration cycle. By forming two passages, a sub-refrigerant passage that penetrates the main refrigerant passage connecting the valve port and the open port, the valve rod, and the valve body, and circulates the high-pressure refrigerant passage and the low-pressure refrigerant passage, The refrigerant flow is divided into two, and the kinetic energy and momentum of each flow can be dispersed. Further, by providing the inlet hole of the high-pressure remote refrigerant flow passage in the sub-refrigerant passage at the upper end of the flow passage, it is possible to have a gas-liquid separation function, and when the refrigerant flow is a single-phase flow, Therefore, even in the case of the gas-liquid two-phase flow, the generation of the refrigerant flow noise due to the refrigerant flow passing through the dehumidification control valve can be reduced. Further, since the heating capacity by the refrigerating cycle is relatively large, it is possible to perform a quiet and comfortable dehumidifying operation for lowering the humidity without lowering the room temperature.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24102494A JP3872824B2 (en) | 1994-10-05 | 1994-10-05 | Air conditioner |
JP6/241024 | 1994-10-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996011369A1 true WO1996011369A1 (en) | 1996-04-18 |
Family
ID=17068206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/002039 WO1996011369A1 (en) | 1994-10-05 | 1995-10-05 | Air-conditioner |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3872824B2 (en) |
CN (1) | CN1082179C (en) |
WO (1) | WO1996011369A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005106354A1 (en) * | 2004-04-22 | 2005-11-10 | Ice Energy, Inc | A mixed-phase regulator for managing coolant in a refrigerant based high efficiency energy storage and cooling system |
US20230272868A1 (en) * | 2020-08-04 | 2023-08-31 | Eagle Industry Co., Ltd. | Valve |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3817981B2 (en) * | 1999-08-06 | 2006-09-06 | 三菱電機株式会社 | Refrigeration cycle apparatus and air conditioner |
JP2008151351A (en) * | 2006-12-14 | 2008-07-03 | Matsushita Electric Ind Co Ltd | Air conditioner |
CN105115181B (en) * | 2015-07-21 | 2018-06-26 | 上海海立电器有限公司 | A kind of air-conditioning system |
CN106885403B (en) * | 2015-12-16 | 2018-11-02 | 上海海立电器有限公司 | The air-conditioning system of sensible heat latent heat separation control |
CN106885387A (en) * | 2015-12-16 | 2017-06-23 | 上海日立电器有限公司 | A kind of air-conditioning system |
CN106885402B (en) * | 2015-12-16 | 2019-01-29 | 上海海立电器有限公司 | The air-conditioning system of sensible heat latent heat separation control |
CN106885388B (en) * | 2015-12-16 | 2018-07-27 | 上海海立电器有限公司 | A kind of air-conditioning system |
CN112648761A (en) * | 2020-12-21 | 2021-04-13 | 上海交通大学 | Throttle control element based on memory alloy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01152176U (en) * | 1988-04-12 | 1989-10-20 | ||
JPH04113864U (en) * | 1991-03-25 | 1992-10-06 | 株式会社鷺宮製作所 | Solenoid valve with built-in orifice |
JPH05164432A (en) * | 1991-12-17 | 1993-06-29 | Hitachi Ltd | Expansion valve |
-
1994
- 1994-10-05 JP JP24102494A patent/JP3872824B2/en not_active Expired - Lifetime
-
1995
- 1995-10-05 CN CN95190998A patent/CN1082179C/en not_active Expired - Lifetime
- 1995-10-05 WO PCT/JP1995/002039 patent/WO1996011369A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01152176U (en) * | 1988-04-12 | 1989-10-20 | ||
JPH04113864U (en) * | 1991-03-25 | 1992-10-06 | 株式会社鷺宮製作所 | Solenoid valve with built-in orifice |
JPH05164432A (en) * | 1991-12-17 | 1993-06-29 | Hitachi Ltd | Expansion valve |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005106354A1 (en) * | 2004-04-22 | 2005-11-10 | Ice Energy, Inc | A mixed-phase regulator for managing coolant in a refrigerant based high efficiency energy storage and cooling system |
JP2007534914A (en) * | 2004-04-22 | 2007-11-29 | アイス エナジー インコーポレーテッド | Mixed phase regulator for coolant management in high performance refrigerant regenerative cooling systems. |
US7690212B2 (en) | 2004-04-22 | 2010-04-06 | Ice Energy, Inc. | Mixed-phase regulator for managing coolant in a refrigerant based high efficiency energy storage and cooling system |
JP2011208939A (en) * | 2004-04-22 | 2011-10-20 | Ice Energy Inc | Method for controlling pressure and flow of refrigerant |
JP4864876B2 (en) * | 2004-04-22 | 2012-02-01 | アイス エナジー インコーポレーテッド | Closed system for regulating refrigerant pressure and flow and method for controlling refrigerant pressure and flow |
US8109107B2 (en) | 2004-04-22 | 2012-02-07 | Ice Energy, Inc. | Mixed-phase regulator |
US20230272868A1 (en) * | 2020-08-04 | 2023-08-31 | Eagle Industry Co., Ltd. | Valve |
Also Published As
Publication number | Publication date |
---|---|
CN1082179C (en) | 2002-04-03 |
CN1136350A (en) | 1996-11-20 |
JP3872824B2 (en) | 2007-01-24 |
JPH08105672A (en) | 1996-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100442392B1 (en) | Heating and cooling air conditioner with dual out door heat exchanger | |
WO1996011369A1 (en) | Air-conditioner | |
KR101712069B1 (en) | Heat pump type cooling and heating system for vehicle | |
CN108931068A (en) | Air-conditioning system, heating dehumanization method, heating method and refrigerating method | |
KR100688168B1 (en) | Heat exchanger of air conditioner | |
JP2011133133A (en) | Refrigerating device | |
JP2000346493A5 (en) | ||
JPH1062032A (en) | Air conditioner | |
KR100667517B1 (en) | Air conditioners with variable displacement compressors | |
JP3921870B2 (en) | Refrigeration cycle equipment | |
JP3404817B2 (en) | Air conditioner | |
JP3047702B2 (en) | Air conditioner | |
JP3724011B2 (en) | Air conditioner | |
JPH07120105A (en) | Air conditioner | |
JP2002350003A (en) | Air conditioner | |
KR100535807B1 (en) | Refrigerating cycle | |
KR100308760B1 (en) | Solenoid valve | |
KR100332778B1 (en) | Flow control device for heat pump | |
JPH0781387A (en) | Air-conditioner for vehicle | |
JP4608828B2 (en) | Air conditioner, dehumidifier, and throttle mechanism | |
JP2013181708A (en) | Air conditioner | |
JP2001199232A (en) | Heat pump device | |
JP3435743B2 (en) | Air conditioner | |
JP2008151351A (en) | Air conditioner | |
JP3071307B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 95190998.3 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN |