+

WO1996010658A1 - Alliage dur revetu - Google Patents

Alliage dur revetu Download PDF

Info

Publication number
WO1996010658A1
WO1996010658A1 PCT/JP1995/002016 JP9502016W WO9610658A1 WO 1996010658 A1 WO1996010658 A1 WO 1996010658A1 JP 9502016 W JP9502016 W JP 9502016W WO 9610658 A1 WO9610658 A1 WO 9610658A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
minutes
seconds
intermediate layer
cutting
Prior art date
Application number
PCT/JP1995/002016
Other languages
English (en)
French (fr)
Inventor
Hideki Moriguchi
Akihiko Ikegaya
Nobuyuki Kitagawa
Katsuya Uchino
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP95932963A priority Critical patent/EP0732423B1/en
Priority to US08/652,496 priority patent/US5871850A/en
Priority to KR1019960702932A priority patent/KR100250587B1/ko
Priority to DE69521410T priority patent/DE69521410T2/de
Publication of WO1996010658A1 publication Critical patent/WO1996010658A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12743Next to refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a coated hard alloy obtained by coating a hard metal or a cermet with a hard material, and more particularly to a coated hard alloy used for a cutting tool.
  • the present invention provides a material for a cutting tool, which is particularly excellent in wear resistance and chipping resistance and can withstand high-speed or high-efficiency cutting conditions.
  • the cutting edge temperature of the cutting tool is
  • the cutting edge temperature of the cutting tool exceeds 100, which is a very severe cutting condition for the tool material.
  • the temperature of the cutting edge increases, the cutting edge plastically deforms due to heat, causing the cutting edge position to retract.
  • the base metal such as cemented carbide that constitutes the tool is oxidized, and wear rapidly progresses.
  • Tools with various hard coating layers formed on the surface of a hard alloy by chemical vapor deposition or physical vapor deposition are used.
  • tools that were coated with Ti-based compounds first appeared, and because of their better stability at high temperatures than hard alloys, cutting speeds were improved. Since then, tools have been developed in which an A1203 layer of l to 2 ⁇ m is coated on a Ti-based compound, and it has become possible to further increase the cutting speed. The mainstream of cutting tools.
  • A123 has a small standard free energy of formation and is chemically more stable than Ti-based compounds. And a Conoco, A l 2 0 3 film brings a great effect for suppressing click craters wear at thumping have surface portion that becomes the highest temperature in the cutting edge, are said to be suitable for high speed cutting. Further, since the thermal conductivity of A l 2 0 3 is small, the cutting heat propagation is suppressed, it is said that it is the this to keep the hard metal base material as a base at a low temperature. Therefore, in order to develop a tool capable of high-speed cutting, the A123 layer needs to be made even thicker.
  • a 1 A method has been proposed to prevent crystal grains from becoming coarser by dividing the 203 layer into several layers. According to this method, it is true that the grain size of A123 can be reduced, and the wear resistance can be improved. On the other hand, since the boundary between the A l 2 03 and other substances is increased, ⁇ at the interface is likely to occur. In cutting with large impacts, such as interrupted cutting, damage was suddenly increased due to layer separation on the flank and rake faces, often leading to tool life.
  • the lower layer is any one of titanium carbide, titanium nitride, and titanium carbonitride having a thickness of 0 to 10.0 m
  • the intermediate layer is an aluminum oxide having a thickness of 0.1 to 5.0 m
  • the upper layer is any one of titanium carbide, titanium nitride and titanium carbonitride having a thickness of 0.1 to 3. Om.
  • the gazette states that the thickness of the intermediate layer must not exceed 5.0 m, since toughness is reduced if the intermediate layer exceeds 5 m.
  • the publication also states that if the thickness of the upper layer exceeds 3.0 / m, the crystal grains forming the coating layer become coarse, which is not preferable. Therefore, the thickness of the upper layer should not exceed 3.0 m.
  • Japanese Patent Application Laid-Open No. 54-28316 also discloses that a coating layer having a three-layer structure is formed on a cemented carbide. Coating the outermost layer, T i, consists least one of nitride and Z or the carbonitrides also of Z r and H f, the intermediate layer A 1 2 03, and Z or consists Z r 0 2,
  • the innermost coating comprises at least one of Ti, Zr and Hf carbides and / or carbonitrides.
  • the thickness of the innermost layer is 3 m
  • the thickness of the intermediate layer is 1 m
  • the thickness of the outermost layer is 2 m.
  • the thickness of the outermost layer is equal to or less than the thickness of the innermost layer.
  • the conventional coated hard alloy having these three-layer coatings is characterized by further having a TiN or TiCN coating with a thickness of 3 ⁇ m or less on the oxide layer.
  • Power in high-speed cutting, especially when the cutting edge temperature is 8.00 ° C or more, when these conventional coated hard alloy chips are used, the cutting edge of the chip is easily damaged. In addition, there is a problem that the dimensional change of the work material easily occurs.
  • the Conoco during high speed and high feed cutting the publication outermost Since cormorants want is oxidized, it is the this read also from the description of the direct A l 2 0 3, Z r 0 oxides such as 2 is exposed .
  • the present invention provides a coated hard alloy in which a hard coating layer is provided on a surface of a base material selected from the group consisting of a hard metal and a cermet.
  • the hard coating layer includes the following three layers.
  • AI 2 0 3, Z r 0 2 and an intermediate layer mainly composed of oxides is rather also mixtures thereof are selected from the group consisting of a solid solution, and (c) at least one of the materials formed on the intermediate layer and selected from the group consisting of carbides, nitrides, carbonitrides, carbonates, carbonitrides and boronitrides of Ti Outside fo
  • the thickness of the intermediate layer is 5 m or more when Al 2 O 3 is the main component, and is 0.5 m or more when Z r 0 2 is the main component.
  • the thickness of the outer layer is 5 m or more, and exceeds the thickness of the inner layer.
  • the thickness of the inner layer is preferably in the range of 0.15 m.
  • the thickness of the intermediate layer, A 1 2 0 3 is laid preferable range cases 5 5 0 m is the subject, Z r ⁇ 2 be a principal 0. 5 2 0 m range of favored arbitrariness.
  • the thickness of the outer layer is preferably in the range of 5100 m.
  • the outer layer is made thicker than the inner layer, and the thickness of the outer layer is set to 5 ⁇ m or more.
  • the present invention can maintain the wear resistance for a longer time under cutting conditions from low speed to high speed.
  • the present invention is et al using A 1 2 0 3 or Z r ⁇ 2 with excellent thermal insulation properties in the intermediate layer.
  • the intermediate layer suppresses the propagation of heat generated at the cutting edge to the base material during cutting, and suppresses plastic deformation of the base material due to heat. If the deformation of the base material during cutting is suppressed, peeling of the coating is also suppressed.
  • the thickness of the intermediate layer Ru provide sufficient thermal insulation, when the intermediate layer mainly composed of A ⁇ 2 0 3 5 m or more, when the intermediate layer composed mainly of Z r ⁇ 2 0. 5 m or more is set.
  • the inner layer particularly contributes to the adhesion of the hard coating layer to the base material.
  • the middle layer contributes to heat insulation, and the outer layer contributes to wear resistance.
  • the three layers are assigned different functions respectively, and thereby, an attempt is made to obtain a coated hard alloy capable of exhibiting excellent performance under a wide range of cutting conditions. Further, as will be described later, by setting the thickness of each layer to an appropriate range and improving the adhesion between Z or each layer, a more excellent one can be obtained.
  • FIG. 1 is a schematic sectional view showing a specific example of a coated hard alloy according to the present invention. As shown in FIG. 1, an inner layer 2, an intermediate layer 3, and an outer layer 4 are formed on a base material 1 in this order.
  • FIG. 2A is a schematic diagram showing a state where a work material is being machined by a cutting tool.
  • the workpiece 22 is processed by the cutting tool 21 attached to the holder 20, and chips 23 are generated.
  • Cutting tool 2 1 is used with a clearance angle of 0.
  • FIG. 2B is a schematic sectional view showing wear of the cutting tool. This figure shows a worn thickness D of the film 2 5 on the tool base material 2 4 in wear amount V B.
  • FIG. 3 is a schematic sectional view showing another specific example of the coated hard alloy according to the present invention.
  • FIG. 4 is a schematic sectional view showing another specific example of the coated hard alloy according to the present invention.
  • FIG. 5 is a schematic sectional view showing another specific example of the coated hard alloy according to the present invention.
  • FIG. 6 is a schematic sectional view showing another specific example of the coated hard alloy according to the present invention.
  • FIG. 7 is a schematic sectional view showing another specific example of the coated hard alloy according to the present invention.
  • the outer layer consists of columnar crystals.
  • FIG. 8 is a schematic cross-sectional view showing a state in which cracks occur in the columnar crystals of the outer layer in the coated hard alloy according to the present invention.
  • FIG. 9 is a schematic cross-sectional view of a work material used in the fracture resistance test of the example.
  • the tool alloy base material was coated with a Ti-based compound, and A1-203 having a thickness of 1 to 2 m was coated thereon.
  • 3 ⁇ m thinner than T i N or T i CN layer has been made form on A 1 2 0 3.
  • the thickness of the entire coating layer was about 10 m.
  • the main role of the outermost layer consisting of T i N or T i CN is considered to be the identification of used corners by coloring, and therefore, the inner corners should be easily worn. It is naturally thinner than the film thickness of the Ti compound.
  • the outer TiN or TiCN film wears early and does not contribute to the wear resistance.
  • thermocouple was embedded in the tool and the temperature of the tool portion was examined.
  • the temperature of the flank is about 300 times lower than the maximum temperature of the rake face, and the maximum temperature of the flank is even at a high speed cutting of 500 m / min. It turned out that it did not reach 100.
  • T i based compound at each cutting temperature and compare the A 1 2 0 3 and Z r ⁇ 2 the wear resistance.
  • the cutting conditions where the maximum temperature of the rake face is about 600 ° C or more and about 130 ° C or less, that is, from a low speed of about 100 mZ min to about 500 m / min
  • the material with the highest wear resistance is the rake face
  • A] a 2 0 3 or Z r ⁇ 2 becomes that it is a T i based compound in flank. Therefore, as the coating structure of coated hard alloys, only T i based compound flank is coated, thumping have surface A 1 2 0 3 and / or Z r ⁇ 2 only cover What you do is what you like. However, when the hard coating layer is formed by an evaporation method, it is difficult to change the evaporation material depending on the surface.
  • the present invention covers the A 1 2 0 3 or Z r ⁇ 2 inside, Ri by the and this covering thick Ri by a T i based compound outside the al, the wear resistance at the flank face
  • the goal was to obtain a coated hard alloy that could be improved and reduced the dimensional change of the work material.
  • the thickness of the layer and the outer layer was set to be larger, resulting in a material having excellent wear resistance and fracture resistance.
  • the oxide layer provided on the inner side plays a role of reinforcing the outer Ti-based compound layer with respect to the anti-cracking property.
  • the most problematic is plastic deformation of the base metal alloy.
  • the hard coating layer made of ceramics having a lower deformability than the base metal alloy cannot follow the deformation, and the coating layer cracks, and the cracks become larger due to the cutting stress.
  • the work material is then deposited and the layers tend to separate.
  • Conventional techniques have not found a sufficient solution to the problem caused by plastic deformation.
  • the thickness of the outer layer is as thin as about 2 mm in the conventional technology, so that the inner layer is easily exposed due to abrasion. For this reason, it was difficult to suppress the dimensional change of the work material due to the flank.
  • the outer layer in the prior art focuses on lubricity to a work material, for example, steel, and in particular, reactivity with steel on a rake face, but is not intended to improve wear resistance on a flank face.
  • the present invention in the this to adopt A 1 2 0 3 or Z r ⁇ 2 superior as an intermediate layer in thermal insulation, suppress plastic deformation of even the base material alloy Ri by conventional in cutting be able to. For this reason, in the cutting tool made of the coated hard alloy of the present invention, peeling of the coating layer hardly occurs. Moreover, the outer layer of the Ti-based compound is thicker than the inner layer and is coated with a thickness of 5 m or more, so that the flank has excellent wear resistance. Therefore, according to the present invention, it is possible to provide a coated hard alloy cutting tool which does not change the dimensions of the work material and can simultaneously suppress crater wear on a rake face. These properties are provided an intermediate layer ing from the appropriate A 1 2 0 3 having a thickness, Z r 0 2 or mixtures thereof, by an outer layer thereon ing from thickly formed T i based compound .
  • the base metal is a cemented carbide or a cermet, that is, a carbide, nitride, or carbonitride of an iron group metal and an element of the IVa, Va, or VIa group of the periodic table. It is a hard alloy consisting of a material.
  • the inner layer of T i based compound as a layer for bonding the base material and A 1 2 0 3 or Z r 0 2 of the intermediate layer acts of A l 2 0 3 or Z r 0 2
  • the middle layer improves crater wear resistance and plastic deformation resistance on the rake face
  • the outer layer of Ti-based compound which is thicker than the inner layer, has better wear resistance on the flank. Contribute to improvement.
  • the cutting tool made of the coated hard alloy of the present invention has excellent wear resistance on the flank due to the better wear resistance of the Ti-based compound below Minimize dimensional change of work material and prolong tool life.
  • the Ku has a surface portion to be Ri by flank surface component becomes high, even if the outer layer is wear of T i based compound, A 1 2 0 3 or Z r 0 2 of the intermediate layer below it Since it is present, excellent crater wear resistance can be expected.
  • wear on the rake face is not a problem unless the base material is exposed, and initial wear of the outer layer of the Ti-based compound does not pose a major obstacle.
  • the cutting tool according to the present invention can exhibit excellent wear resistance under a wide range of cutting conditions from low speed to high speed.
  • the inner layer formed on the base material is selected from the group consisting of Ti carbides, nitrides, carbonitrides, carbonates, carbonitrides, and boronitrides It consists of at least one layer of material.
  • the reason for using these Ti-based compounds as the inner layer is that they have excellent adhesion to the hard metal as the base material, Between one A l 2 03 and Z r 0 2. This is because is excellent in adhesion.
  • the total thickness is less than 0.1 m, the effect is not obtained, and when the total thickness is more than 5 m, it is too thick as an adhesive layer, so that the range of 0.1 to 5 m is preferable, and more preferable. Or in the range of 0.5 to 3 ⁇ m.
  • Intermediate layer formed on the inner layer A 1 2 03, Z r 02 or is properly mixtures thereof as a main component a solid solution. When a mixture is used, either one of them is mainly contained. If the intermediate layer mainly composed of A 1 2 03, other materials in a proportion of 50% or less in the intermediate layer, for example Z r 0 2, H f ⁇ 2, T i 0 2, T i C or T i N or the like, or Ti, Zr or CI, N or the like may be dissolved.
  • An intermediate layer consisting mainly of A 1 2 03 has won suppress plastic deformation of the base material, a large effect of improving the ⁇ Ku aerator wear in combing have surface.
  • the range of 5 to 50 ⁇ m is preferable, and more preferably 10 to 40 ⁇ m. in the range of m is there.
  • Z r 0 2 has a low hardness, but the wear resistance has failed to have been put into practical use because of low thermal conductivity very small compared with the A 1 2 03. 2 0.
  • a 1 2 03 are 0. 0 5 4 ca 1 / cm ⁇ sec ⁇ and in C, Z r ⁇ 2 0. 0 0 5 cal Z cm ⁇ sec ⁇ .
  • a 1 203 has a thermal conductivity of 0. 0 l S cal Z cm 'sec' and Z r 02 has a thermal conductivity of 0.05 ca 1 / cm ⁇ has a thermal conductivity of sec * ° C.
  • Z r ⁇ 2 is excellent in that the effect to suppress the plastic deformation of the base material, a thin layer than a l 2 03 a 1 2 03 foot URN same The heat insulation effect is obtained.
  • the intermediate layer of Z r ⁇ 2 provided on a thin inner layer T i based compound formed on the base material, coated with an outer layer of a thickness not T i compounds on the tool And a high-speed cutting test was performed.
  • the tool having the coating structure of the present invention was superior to the tool having the conventional coating structure in the plastic deformation resistance and the wear resistance in the flank face: It was found that when cutting was carried out using, the dimensional change of the work material was not likely to occur, and crater wear on the rake face could be suppressed at the same time.
  • the Zr02 intermediate layer not only provides excellent plastic deformation resistance with a thinner film, but also allows the film thickness to be reduced, thereby improving the smoothness of the coating surface and improving the separation resistance. It turns out Was. Even more surprisingly, the unexpected effect of reducing boundary wear, which is a problem in cutting work-hardened materials such as stainless steel, and improving fracture resistance was obtained. Although the cause is not clear, rather small, Z r ⁇ second Young's modulus, due to the low hardness of its, the deformability is thought that the Runode not due to the Okiiko.
  • the intermediate layer when using an intermediate layer consisting mainly of Z r 02, the intermediate layer, in a proportion of 50% or less, for example A 1 2 03, H f 02 , other oxides such as T i 02, T i C or T i N or the like may be contained, or Al, T i, CI, N or the like may be dissolved.
  • T i Zr-based compounds such as ZrN and ZrC,
  • a 1 2 03, H f 02 , T it may be divided Ri by the thin film of oxide such as 02.
  • Intermediate layer consisting mainly of Z r 0 2 inhibits plastic deformation of the base material, a large effect of improving the ⁇ Ku aerator wear in combing have surface.
  • the effect that the intermediate layer can suppress the film separation due to the deformation of the base material is important.
  • the range of 0.5 to 20 / m is preferable, and more preferable. In the range of 3 to 15 ⁇ m.
  • the outer layer formed on the intermediate layer consists of T i carbides, nitrides, carbonitrides, carbonates, carbonitrides and boronitrides Consists of at least one layer of material selected from the group, which effectively improves the wear resistance on the flank.
  • the reason why the thickness of the outer layer is set to 5 m or more is described below.
  • the cutting tool is used at a clearance angle of 0 to 6 ° as shown in Fig. 2A.Therefore, as shown in Fig.
  • the amount of wear V B 0.05 mm is about 5 ⁇ m at the maximum. (0.05 mm X tan 6 °) is equivalent to abrasion of the film. Therefore, if there is no wear-resistant film of 5 m or more on the tool surface, the lower layer or base metal, which has poor wear resistance, is exposed, and the tool life tends to be short. For this reason, it is necessary to cover the outer layer with a Ti compound film exhibiting excellent wear resistance in the range of 100 Om / min to 500 m / min by 5 zm or more. However, if the thickness exceeds 100 m, the strength is reduced. Therefore, the thickness is preferably in the range of 5 to 100 m. Under cutting conditions where the cutting speed exceeds 300 m / min, a film thickness of 10 ⁇ m or more is particularly preferable, and a range of 15 to 50 ⁇ m is more preferable.
  • the total thickness of the hard coating layer is preferably in the range of 25 to 60 m. Within this range, the base material can be more effectively protected and more excellent fracture resistance can be obtained.
  • Z r 0 2 when the intermediate layer shall be the main the sum of the thickness of the hard coating layer is arbitrarily favored in the range of 2 0 ⁇ 6 0 m. In this range, the base metal is more effective Protection and better fracture resistance.
  • a 1 2 between ⁇ third intermediate layer and the outer layer arbitrary preferable that the this providing a thin film further.
  • This thin film is formed in direct contact with the intermediate layer, and preferably has a thickness of 0.1 to 2 m.
  • This thin film can be an A 1 -containing thin film made of a material selected from the group consisting of nitrides and oxynitrides of A 1 (when such an A 1 -containing thin film is used, the nitrogen content in the thin film is low).
  • the intermediate layer mainly comprising Z r 0 2 between the intermediate layer and the outer layer, in contact with the intermediate layer, carbide Z r, nitrides, carbo-nitrides, carbonates, oxynitrides and carbonitrides It is preferable to further form a Zr-containing thin film made of a material selected from the group consisting of nitride oxides.
  • the thickness of this thin film is preferably 0.1 to 2 ⁇ m. Good. With this thin film, the adhesion between the intermediate layer and the outer layer is enhanced, and a thicker outer layer can be formed. Also, due to its excellent adhesion, delamination hardly occurs and excellent abrasion resistance can be obtained.
  • the nitrogen content and / or the carbon content decrease as approaching the intermediate layer, and the oxygen content increase as approaching the intermediate layer.
  • Figure 3 shows a structure in which a thin film is further formed between the intermediate layer and the outer layer.
  • an inner layer 2 is formed on a base material 1.
  • An intermediate layer 3 is formed thereon. The intermediate layer 3 is in close contact with the outer layer 4 via the thin film 10 containing A1 or Zr.
  • Such coated thin films of containing thin film on the base material 1 is the inner layer 2 is formed, the intermediate layer 3 is formed thereon You.
  • An A 1 or Zr-containing thin film 10 is formed on the intermediate layer 3.
  • the A 1 or Zr-containing thin film 10 is in close contact with the outer layer 4 via the thin film 12.
  • Such thin film 1 2, T i BN_ ⁇ can and benzalkonium be made of a material selected from T i N 0 and T i 0 2 consists of the group.
  • A] or a thin film made of a material selected from the group consisting of TiBN, TiCO and TiC A0 can be used instead of the Zr-containing layer.
  • Such a thin film belongs to the outer layer defined above.
  • Fig. 5 shows the structure using this thin film.
  • An inner layer 2 is formed on a base material 1, and an intermediate layer 3 is formed thereon.
  • the intermediate layer 3 is adhered to the outer layer 4 through a thin film 14 made of TiBN, TiC0 or TiCN.
  • T i BN_ ⁇ can also also This provided a thin film made of T i NO and T i ⁇ 2 material from the group Ru is selected consisting of.
  • Figure 6 shows a structure using such a thin film.
  • An inner layer 2 is formed on the base material 1, and an intermediate layer 3 is formed thereon.
  • the intermediate layer 3 is in close contact with the outer layer 4 via the thin film 16.
  • Film 1 6 kills with T i BN_ ⁇ , T i NO or T i 0 this transgression to second thin film.
  • the thickness of this film is preferably in the range of 0.1 to 2 ⁇ m.
  • the outer layer be mainly composed of columnar crystals, because the fracture resistance is improved.
  • a hard coating layer is deposited on a base material by a chemical vapor deposition method, etc.
  • tensile residual stress is generated in the coating layer due to a difference in the coefficient of thermal expansion between the base material and the coating layer, thereby reducing the fracture resistance of the tool. This is often the case.
  • the outer layer 4 is mainly composed of the columnar crystals 5
  • the tensile residual stress is formed in such a manner that cracks 6 enter the grain boundaries of the columnar crystals 5. It was presumed that it was easy to release and it was difficult to cause large defects that would extend the tool life.
  • the inner layer 2 of the T i based compound on the base material 1 is provided, the provided intermediate layer 3 composed mainly of A 1 2 03 or Z r ⁇ 2 thereon, Furthermore, in the coated hard alloy of the present invention in which the outer layer 4 of the Ti-based compound is provided thereon, by making the outer layer 4 a columnar crystal 5, the thickness of the outer layer 5 can be increased. This makes it possible to exhibit more excellent wear resistance over a long period of time.
  • the wear resistance and the fracture resistance are particularly improved.
  • the aspect ratio is, as shown in FIG. 7, a ratio of the length 1 of the columnar crystal 5 to the crystal grain size d, ie, 1 d.
  • the measurement was performed by taking an image of the cross section of the hard coating layer by TEM and calculating the average value of three arbitrary visual fields.
  • the outer layer is made of columnar crystal TiCN
  • wear resistance and fracture resistance on the flank are more excellent.
  • the C: N ratio of TiCN is in a molar ratio of 5: 5 to 7: 3, particularly excellent wear resistance is obtained. This is because if the ratio of TiCN: N in this range is within this range, the hardness and toughness of the coating layer are well balanced, and excellent wear resistance and chipping resistance are exhibited.
  • the molar ratio of the C: N ratio is determined by analysis using ESCA (ELECTRON SPECTROSCOPY FOR CHEMICAL ANALYSIS) or EPMA (ELECTRON PROBE MICRO ANALYSIS), or by X-ray analysis. It can be measured by analyzing the lattice constant of the outer layer of TiCN.
  • the lattice constant of TiCN having a molar ratio of C: N in the range of 5: 5 to 7: 3 is 4.275 to 4.75. It was in the range of 295. At this time, it exhibited particularly excellent wear resistance and fracture resistance. Since this result, including displacement Considering in T i CN stoichiometry, there is a child with good UNA non-stoichiometry of T i CN backlash and example, if T i (CN) o. S , It is probable that such a shift occurred.
  • the outer layer TiCN should have the highest peak intensity of X-ray diffraction for a crystal plane selected from the group consisting of (111), (422) and (3111). Is preferred.
  • the outer layer TiCN film exhibiting such characteristics has excellent adhesion to the underlying layer.
  • the thickest layer included in the inner layer is
  • a layer mainly composed of columnar crystals having an aspect ratio of 5 to 30 can have high strength.
  • the inner layer is made thicker, by setting the end-to-side ratio within this range, it is possible to suppress a decrease in the strength of the inner layer.
  • the intermediate layer preferably includes a layer mainly composed of columnar crystals having an aspect ratio of 3 to 20.
  • the strength and toughness of the intermediate layer depend not only on the grain size but also on the aspect ratio of the crystal grains. We have found that in the middle layer It has been found that by setting the asbestos ratio of the crystal grains to be 3 to 2.0, the strength and toughness can be improved. Further, the onset inventor et al., Even when the thickness of A l 2 0 or Z r ⁇ second film, the degree of coarsening of the crystal grains is minor, yet rather large the Asupeku Ratio of crystal ⁇ I found what I could do. Further, it was found that by increasing the thickness of the film, a film having excellent strength and toughness could be obtained.
  • a l 2 0 of the intermediate layer is arbitrarily favored Ri this Togayo mainly an A l 2 0 shed.
  • the Al 20 crystal system As a pattern, it is easy to form a crystal grain size with an aspect ratio of 3 to 20 and obtain a film with excellent strength and toughness. It will be.
  • Another aspect A 1 2 0 layer ratio is (1 0 4) and
  • the crystal plane selected from the group consisting of (1 16) preferably has the highest peak intensity of X-ray diffraction. As a result, the adhesion between the outer layer and the AIO film can be improved.
  • the crystal system of A] 0 in the intermediate layer is in the vicinity of the contact with the near and outer layer in contact with the inner layer, it is the this mainly composed of / one A 1 2 0.
  • the intermediate layer In the this providing an outer layer / foremost and their respective contact portions to the inner layer A 1 2 0, it is the this to improve the adhesion between the inner layer contact and the outer layer and the intermediate layer also shed one A 1 2 0 Ri by the and this to form an intermediate layer sandwiched one a 1 2 0, excellent strength and toughness, the intermediate layer can be obtained and excellent tight adhesion force.
  • the present inventors have found that by controlling the distance between cracks formed in the hard coating layer to an appropriate value, particularly excellent separation resistance and fracture resistance can be imparted.
  • the average of the intervals between adjacent cracks is 20 to 40 im. Further, it is preferable that the interval between the cracks in the inner layer and the outer layer is smaller than the interval between the cracks in the intermediate layer.
  • the inner layer, intermediate layer and outer layer according to the present invention can be formed by a usual chemical vapor deposition method or physical vapor deposition method.
  • a 1 2 03 or Z r ⁇ case of forming by a chemical vapor deposition an outer layer of T i CN on the second intermediate layer, T i C 1 4 as a T i source of the raw material gas, and a carbon and nitrogen source Then, using an organic carbonitride and hydrogen gas as a carrier gas, it is possible to coat the TiCN at a pressure of 700 to 110 Torr and a pressure of 500 Torr or less.
  • Et al is, in coated hard alloy of the present invention, A 1 2 03, Z r 0 2 and H f ⁇ 2 total film oxide selected from the group consisting of 0. 5 ⁇ 5 xzm on the outer layer It can be coated with a thickness of By covering the outer layer with such a film, it is possible to prevent boundary wear and deterioration of the Ti compound film at portions other than the worn portion. In particular, the effect of suppressing boundary wear was remarkable when cutting difficult-to-cut materials such as stainless steel. If the thickness of this film is less than 0.5 m, the effect is small, and if it is more than 5 ⁇ m, the wear resistance on the flank decreases. In particular, the thickness range is preferably 1 to 3 ⁇ m. This film is also preferably thinner than the intermediate layer.
  • the outermost surface of the coated hard alloy of the present invention may be coated with a thin film showing a golden color such as TiN or ZrN. This is because these golden colors help identify used corners.
  • the coated hard alloy of the present invention can be used for a cutting tool. Therefore, the coated hard alloy of the present invention can have the shape of a cutting tool such as a chip.
  • the hard coating More preferably, a part of the covering layer is removed, and a surface having an average value of the surface roughness Ra of 0.05 m or less is formed.
  • ISOM20 cemented carbide base material 1
  • IS ⁇ K20 base material 2
  • base material 3 base material 3
  • One of the hard coating layers shown in Table 1 was formed at a vapor deposition temperature of 1000 ° C. by the chemical vapor deposition method described above, and chip-shaped tools of SNGN 12048 were produced, respectively.
  • the left side is the base material side
  • Samples marked with * in the table are comparative examples (the same applies hereinafter). From the above results, it can be seen that the chip of Sample 14 of the present invention example shows excellent cutting performance not only in high-speed cutting (cutting condition 1) but also in low-speed cutting (cutting condition 2).
  • Samples 1 and 5 The comparison shows the effect of having the Ti-based compound as the inner layer. Comparison of Sample 1 and 6, A l 2 0 This thickness or 2 ⁇ m in the effect of the intermediate layer is small Togawakari and I by the comparison of the sample 1 and 7, A 1 2 0 outer layer It can be seen that the wear resistance is better when used as an intermediate layer than when coated. I by the comparison of Sample 1 and 8, and this the direction of the in the outer layer A 1 2 ⁇ good Ri also T i based compound is excellent in wear resistance pictmap Kakaru.
  • a hard coating layer shown in Table 4 below was formed on the surface of the base material 1 in Example 1 above, and chips 9 to 14 were prepared. Using these chips, cutting performance was evaluated in the same manner as in Example 1 under cutting conditions 2. Further, as shown in FIG. 9, a work-piece 7 made of SCM 435 having four grooves 8 on the circumference was tested for chipping resistance under cutting conditions 3 in Table 2 above. Fracture resistance was evaluated based on the cutting time until chip breakage. Table 4 summarizes these results.
  • a hard coating layer shown in Table 5 below was formed on the surface of the base material 2 in Example 1 above, and chips 15 to 21 were prepared. Using these chips, the cutting performance was evaluated in the same manner as in Example 1 under cutting conditions 1. Further, in the same manner as in Example 2, the chipping resistance was tested under cutting condition 3. Table 5 summarizes these results. [Table 5]
  • a hard coating layer shown in Table 6 below was formed on the surface of the base material 3 in Example 1 above, and a chip of Sample 222 was prepared. Using these chips, the cutting performance was evaluated in the same manner as in Example 1 under cutting conditions 1 and 2, and the chipping resistance was tested in the same manner as in Example 2 under cutting condition 3. . Table 6 summarizes these results. [Table 6] Abrasion resistance Abrasion resistance Fracture resistance Sample Hard coating layer composition Cutting condition 1 Cutting condition 2 Cutting condition 3
  • the shape of the crystal grains in the CN layer was changed by changing the film forming conditions. Using these chips, cutting conditions 2 were used as in Example 1. The cutting performance was further evaluated, and the fracture resistance was tested under cutting conditions 3 in the same manner as in Example 2. Table 7 summarizes these results.
  • the C: N ratio of the TiCN layer, which is the outer layer of the chip, of sample 1 (base material 1, hard coating layer A) prepared in Example 1 above was calculated by calculating the lattice constant by the X-ray diffraction method. The molar ratio was 4: 6.
  • the inner layer and the intermediate layer of Sample 1 were the same, and the TiCN layers having different C: N ratios shown in Table 8 were formed as the outer layer by changing the flow rate ratio of the raw material gas. Samples 35 to 38 were prepared. Using these chips, the cutting performance was evaluated under cutting conditions 1 and 2 as in Example 1, and the chipping resistance was tested under cutting condition 3 as in Example 2. Table 8 summarizes these results.
  • Chips of samples 46 to 47 formed to a film thickness of 5 were prepared. Incidentally, the raw material gas, A 1 C 1 4 according to the quality, C 0 2.
  • Table 11 shows the results of evaluating the wear resistance and chipping resistance of each of the obtained chips in comparison with the chips of sample 25. [Table 11]
  • Example 2 In the sample 12 of Example 2 above, the coating temperature and the gas composition ratio were changed when coating the TiCN film, and the samples 12-1 and 1 were coated with the TiCN film having different orientations. 2-2, 1 2-3, 1 2-4, 1 2-5 and 1 2-6 were prepared. Table 13 shows the evaluation results of the cutting performance of the obtained samples.
  • coated hard alloy described in 1), (422) or (311) has excellent cutting performance.
  • Example 3 the crystal grain size of the A 1 2 0 3 film, by changing the film formation conditions (Koti ing temperature and gas composition ratio) in the variable Elko, grain Asupeku DOO the ratio of different a 1 2 0 3 samples film was formed 1 7 - 1, 1 7 - 2, 1 7 - 3, 1 7 - 4 and 1 7 - 5 were prepared.
  • Table 15 shows the cutting performance evaluation results.
  • a 1 2 0 1 aspect ratio of the crystal grains in the film is in the range of 3 to 2 0 7 of the intermediate layer - 2, 1 7 one 3 and 1 7 - 4 Ji-up is excellent It can be seen that it has excellent cutting performance.
  • a l 2 0 was mainly body, a portion of the sandwiched therebetween an intermediate layer, mainly composed of an a 1 2 0 shed, sample 4 7 - was produced m.
  • a 1 2 0 intermediate layer having good Unayui crystal system is, H 2, C 0, A 1 C
  • a 1 0 was used as a source gas. — The formation of A 1 0 is.
  • Example 4 the orientation of the A 1 2 0 layer of the intermediate layer The properties were changed by controlling the coating temperature and gas composition ratio. Obtained sample 2 3 — 1, 2.3-2,
  • Table 18 shows the evaluation results of cutting performance for 23-3, 23-4 and 23-5.
  • a coating film having a structure of (10 urn) was formed.
  • the crystal grain size of the inner layer TiCN, the intermediate layer A1233, and the outer layer TiCN was changed. Then, the size of the TiCN grains in the inner layer and the outer layer is reduced.
  • the aspect ratio is lower than the aspect ratio of the intermediate layer A123 crystal grains.
  • a sample 48-8 larger than twice or more and a sample 48-7 smaller than twice were prepared.
  • the distance between cracks in the coating layer due to crystal grains in these samples was measured by mirror-polishing the sample cross section and observing it with an optical microscope.
  • the crack spacing was determined by performing five visual field measurements at a magnification of 500 ⁇ .
  • Table 19 shows the results.
  • Table 19 also shows the cutting performance of the obtained samples. [Table 19]
  • the crack interval of the inner layer and the outer layer was made smaller than that of the middle layer with respect to the crack interval of the coating layer. It can be seen that the coated hard alloy shows excellent cutting performance.
  • samples 24-1, 24-2, and 24-3 were prepared by introducing a crack in the coating layer in a substantially vertical direction by a single centrifugal barrel after the coating treatment.
  • Table 20 shows the cutting performance of these samples. [Table 20]
  • the coated hard alloy having a thickness in the range of 0 to 40 m has excellent cutting performance.
  • the crack can be introduced by a method other than the barrel treatment, such as a shot blast, a treatment with an elastic grindstone, or a quenching treatment.
  • the crack interval does not need to be formed in the entire coating layer, and if a crack is formed in the ridge of the cutting edge at an interval in this range, a hard coating alloy exhibiting excellent cutting performance can be obtained. can get.
  • Example 5 The chip surface of sample 31 of Example 5 was further coated with a hard layer shown in Table 21 to prepare the chips of samples 31-1 to 5-5. Using these chips, a cutting test was performed under the same cutting conditions 1 and 2 as in Example 1. The evaluation results are shown in Table 21. [Table 21]
  • Abrasion resistance Abrasion resistance Specimen Composition of hard coat layer Cutting condition 1 Cutting condition 2 31 I in Table 1 4 minutes 57 seconds 79 minutes 45 grooves
  • samples 41, 441-2, and 44-3 were prepared by partially polishing and removing the coating on the ridge of the cutting edge with an elastic grindstone.
  • Table 22 shows the average value of the surface roughness Ra of the polished part and the cutting performance of the obtained sample.
  • the average value of surface roughness Ra is ) In ERA 800. manufactured by Elionix, the edge of the cutting edge was magnified 5000 times and measured. Here, the average value of the surface roughness Ra is the average value of the surface roughness Ra for 180 horizontal lines in the fixed visual field. From the above results, it can be seen that the coated hard alloy having an average value of the surface roughness Ra of the coating at the ridge of the cutting edge of 0.05 m or less shows excellent cutting performance.
  • ISOM20 cemented carbide base material 1
  • IS ISK20 base material 2
  • a commercially available cermet tool base material 3
  • One of the hard coating layers shown in Table 23 was formed at a deposition temperature of 1000 by a known chemical vapor deposition method, and a chip-shaped tool of SNGN 12048 was produced.
  • the left side indicates the base material side and the thickness in parentheses indicates the film thickness ().
  • a work material of SCM 415 was cut under the cutting conditions shown in Table 24 below, and the cutting performance was evaluated. The results are shown in Table 25 together with the combination of the base metal and the hard coating layer.
  • Table 26 below shows the surface of the base material 1 in Example 21 above. A hard coating layer was formed, and chips 9 ′ to ⁇ 4 ′ were prepared. Using these chips, cutting performance was evaluated in the same manner as in Example 21 under cutting conditions 2. Also, as shown in Fig. 9,
  • Sample 9 ' which has no Ti-based compound as the inner layer, has low adhesion of the coating layer, so the coating layer peels off early in the abrasion resistance test and is extremely short. Life was over.
  • the chip of sample 14 ' had a slightly poor fracture resistance due to the large thickness of the inner layer, but was excellent in abrasion resistance.
  • Samples 10 'to 13' of the present invention have excellent wear resistance and fracture resistance, and Samples 11 'and 12' have particularly good balance of wear resistance and fracture resistance. I have.
  • a hard coating layer shown in Table 27 below was formed on the surface of the base material 2 in Example 21 described above, and samples 15 ′ to 21 ′ chips were prepared. Using these chips, the cutting performance was evaluated in the same manner as in Example 21 under cutting condition 1. Further, in the same manner as in Example 22, the fracture resistance was tested under the cutting condition 3. These results are summarized in Table 27.
  • the hard coating layers shown in Table 28 below were formed on the surface of the base material 3 in Example 21 and the chips of samples 22 ′ to 28 ′ were prepared. Using these chips, the cutting performance was evaluated under cutting conditions 1 and 2 as in Kiyoshi 21 and the chipping resistance was tested under cutting condition 3 as in Example 22. . These results are summarized in Table 28.
  • Example 21 On the surface of the base material 1 in Example 21 described above, a hard coating layer having the structure indicated by the symbol I 'in Table 23 was formed, and chips 29' to 34 'were prepared. The shape of the crystal grains of the outermost TiCN layer in these samples was changed by changing the film forming conditions. Using these chips, the cutting performance was evaluated under cutting conditions 2 as in Example 21 and the chipping resistance was tested under cutting conditions 3 as in Example 22. The results are summarized in Table 29.
  • Sample 1 ′ (base material 1 ′) coating layer A prepared in Example 21 above ')
  • the C: N ratio of the TiCN layer which is the outer layer of the chip, was calculated by calculating the lattice constant by X-ray diffraction, and the molar ratio was 4: 6.
  • the TiCN layer having a different C: N ratio shown in Table 30 is used as the outer layer by changing the flow rate of the source gas. To form chips of samples 35 'to 38'.
  • T i C Ri by the normal CVD method, T i C] and CH 4 and nitrogen gas as the source gas, and except for using a hydrogen gas as the calibration re Agasu, T i CN in the same manner as described above Table 31 also shows the results of the same evaluation of Sample 4 'with the layer formed. Table 31 shows that sample 39 'using CH 3 CN as the raw material gas showed superior cutting performance.
  • Sample 46 in which a thin film consisting of ZrN, ZrC0, ZrCN ⁇ , and ZrNO was formed to a thickness of about 0.5 ⁇ m at 100 ° C by ordinary CVD. 'To 51' chips were prepared. The starting gas, depending on the quality Z r C 1, C 0 2 , N 2, H 2 was used. Table 33 shows the results of evaluating the wear resistance and chipping resistance of each of the obtained chips in comparison with the chip of sample 25 '.
  • SUS 304 was cut by a wet method for 20 minutes under the conditions of a cutting speed of 350 mZm in, a feed of 0.S mmZ rev, and a cutting depth of 1.5 mm. And boundary wear was set.
  • the fracture resistance under cutting condition 3 in Table 24 above was evaluated, and the results are shown in Table 34.
  • Example 25 The chip surface of the sample 31 ′ of Example 25 was coated with the hard layer shown in Table 36 to produce the chips of the samples 31′-1 to 5 ′. Using these chips, cutting tests were performed under cutting conditions 1 and 2 in the same manner as in Example 21. Table 36 shows the results of these evaluations.
  • a coated hard alloy having excellent wear resistance and fracture resistance can be provided.
  • the present invention is particularly useful for cutting tools that can withstand sufficient use under high-speed or high-efficiency severe cutting conditions where the cutting edge temperature exceeds 100 ° C., in addition to ordinary cutting conditions.
  • a coated hard alloy can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書 - 被覆硬質合金
技術分野
本発明は、 超硬合金またはサーメ ッ トを硬質材料でコ 一 ティ ングした被覆硬質合金に関し、 特に、 切削工具に用い られる被覆硬質合金に関する。 本発明は、 特に、 耐摩耗性 および耐欠損性に優れ、 高速または高能率の切削条件にも 耐え得る切削工具用材料を提供する。
背景技術
切削中における切削工具の刃先温度は、 通常の 1 0 0〜
3 0 0 m Z分程度の切削条件においても、 最高で約 8 0 0 °C以上になるこ とが知られている。 さ らに近年においては、 N C工作機の普及、 生産コス トの低減努力、 労働時間短縮 の流れから、 単位時間当りの生産性を高めるため、 従来よ り も高速または高送りの条件、 たとえば 3 0 O m 分以上 の高速で、 切削可能な工具の開発に対する要求が自動車メ 一力一を中心に高まっている。
しかし、 そのような切削条件では、 切削工具の刃先温度 は 1 0 0 0てを超えるこ とになり、 これは、 工具材料にと つて非常に過酷な切削条件である。 刃先温度が高く なれば、 刃先は熱により塑性変形し、 刃先位置の後退を招く。 さ ら に、 1 0 0 o °cを超える温度では、 工具を構成している超 硬合金等の母材が酸化し、 急激に摩耗が進行する。
このような切削による工具の損傷を回避するために、 化 学蒸着または物理蒸着によ り硬質合金の表面に各種の硬質 被覆層を形成した工具が使用されている。 歴史的には、 ま ず T i 系化合物を被覆した工具が登場し、 これは硬質合金 よ り も高温での安定性に優れるため、 切削速度の向上が得 られた。 その後、 さ らに T i 系化合物の上に l 〜 2 〃 mの A 1 2 0 3 層を被覆した工具が開発され、 切削速度をさ ら に向上させる こ とが可能となったため、 これが現在の被覆 切削工具の主流となっている。
A 1 2 0 3 は、 標準生成自由エネルギが小さ く 、 化学的 に T i 系化合物よ り も安定である。 このこ とから、 A l 2 0 3 膜は、 刃先の中で最も高温となるすく い面部分でのク レーター摩耗の抑制に大きな効果をもたらし、 高速切削に 適している と言われている。 また、 A l 2 0 3 の熱伝導度 が小さいため、 切削熱の伝播が抑制され、 下地である硬質 合金母材を低温に保つこ とができる と言われている。 した がって、 さ らに高速切削が可能な工具を開発するためには、 A 1 2 0 3 層をさ らに厚く すればよいこ とになる。
しかしながら、 A l 2 0 3 層を厚く する と、 被覆層を構 成する結晶粒の粗大化が進行するため硬度が低下し、 逃げ 面での耐摩耗性の低下が問題となる。 実際にそのよ うなェ 具を使用する と、 摩耗の進行が速いために、 刃先位置の後 退によ り被削材の寸法が変化するよう になり、 工具の寿命 が極めて短いこ とがわかった。
これに対して、 特公平 5 — 4 9 7 5 0号公報では、 A 1 2 03 層を何層かに分割するこ とに.よ り、 結晶粒の粗大化 を防ぐ方法が提案されている。 この方法によれば、 確かに A 1 2 03 の粒度を小さ く するこ とができ、 耐摩耗性を向 上させるこ とができる。 その反面、 A l 2 03 と他の物質 との境界が増えるため、 界面での剝離が生じやすく なる。 断続切削等の衝擊の大きい切削では、 逃げ面およびすく い 面での層剝離のため、 急激に損傷が大き く なり、 工具寿命 に至るケースが多かった。
また、 特公平 6 — 1 5 7 1 4号公報では、. A 1 23 層 を l 〜 3 /z mの内側層と 0. 4〜 2 0 / mの外側層の 2層 に分けて被覆した被覆焼結合金が提案されている。 外側層 の A 1 2 03 膜の役割と して、 断熱性と耐摩耗性の両方が 期待されている。 しかし、 摩耗により外側層の断熱層と し ての働きは早期に低下するうえ、 外側層の耐摩耗性につい ても特別な工夫が施されていない。 このため、 摩耗の進行 は速く、 工具は極めて寿命が短かった。
A 1 2 03 層を厚くする代わりに、 A l 2 03 なみに標 準生成自由エネルギが小さ く、 熱伝導率が A 1 2 03 よ り も小さい Z r 02 膜を用いるこ とも、 特公昭 5 2 - 4 3 1 8 8号公報ゃ特公昭 5 4 - 3 4 1 8 2号公報に提案されて いる。 しかしながら、 Z r 〇 2 を被覆層と して用いた工具 は、 現在まで実用化されていない。 これは、 Z r 〇 2 の硬 度が A 1 2 03 に比較して低いため、 Z r 02 層が耐摩耗 性に劣るためである。 特公昭 5 6 - 5 2 1 0 9号公報は、 超硬合金製切削チ ッ プを、 下層、 中間層および上層の 3つの層で順に被覆する こ とを開示する。 下層は、 厚み し 0〜 1 0. 0 〃 mの炭 化チタ ン、 窒化チタ ンおよび炭窒化チタンのいずれか 1 種 であり、 中間層は厚み 0. 1 〜 5. 0 mの酸化アル ミ二 ゥムであり、 上層は厚み 0. 1 〜 3. O mの炭化チタ ン、 窒化チタ ンおよび炭窒化チタ ンのいずれか 1 種である。 同 公報は、 中間層が 5 mを超える と靭性に低下をきたすの で、 中間層の厚みは 5. 0 mを超えてはならない旨記載 する。 また同公報は、 上層の厚みが 3. 0 / mを超えると 被覆層を形成する結晶粒子が粗く なり好ま しく ないため、 上層の厚みは 3. 0 mを超えてはならない旨記載する。
特開昭 5 4 - 2 8 3 1 6号公報も超硬合金上に 3層構造 の被覆層を形成するこ とを開示する。 被覆最外層は、 T i 、 Z r および H f の少なく ともいずれかの窒化物および Zま たは炭窒化物からなり、 中間層は A 1 2 03 および Zまた は Z r 02 からなり、 被覆最内層は T i 、 Z r および H f の少な く ともいずれかの炭化物および または炭窒化物か らなる。 その具体例において、 最内層の厚みは 3 mであ り、 中間層の厚みは 1 mであり、 最外層の厚みは 2 m である。 最外層の厚みは、 最内層の厚み以下である。
これら 3層コーティ ングを有する従来の被覆硬質合金は、 酸化物層上に 3 〃 m以下の厚みで T i Nまたは T i C Nの コーティ ングをさ らに有するこ とを特徴とする。 し力、しな がら、 高速切削、 特に刃先温度が 8. 0 0 °C以上となる切削 において、 これら従来の被覆硬質合金のチ ッ プを用いた場 合、 チ ッ プの刃先はダメ ージを受けやす く 、 さ らに被削材 の寸法変化が起こ りやすいという問題があった。 このこ と は、 上記公報の高速高送り切削時には最外層は酸化されて しま う ため、 直接 A l 2 0 3 、 Z r 0 2 等の酸化物が露出 する という記載から も読みとるこ とができる。
発明の開示
本発明の目的は、 上述した問題点を解決し、 耐摩耗性お よび耐欠損性に優れる被覆硬質合金を提供する こ とである。 本発明のも う 1 つの目的は、 通常の切削条件はも とよ り、 刃先温度が 1 0 0 0 °Cを超えるよ うな高速または高能率の 厳しい切削条件下において、 十分使用に耐え得る切削工具 用被覆硬質合金を提供する こ とである。
本発明は、 超硬合金およびサーメ ッ トからなる群から選 択される母材の表面に、 硬質被覆層を設けた被覆硬質合金 を提供する。 本発明において、 硬質被覆層は、 次の 3 つの 層を備える。
( a ) 母材上に形成され、 かつ T i の炭化物、 窒化物、 炭窒化物、 炭酸化物、 炭窒酸化物および硼窒化物からなる 群から選択される材料の少な く と も 1 層からなる内側層、
( b ) 内側層上に形成され、 かつ A I 2 0 3 、 Z r 0 2 およびそれらの混合物も し く は固溶体からなる群から選 択される酸化物を主体とする中間層、 および ( c ) 中間層上に形成され、 かつ T i の炭化物、 窒化 物、 炭窒化物、 炭酸化物、 炭窒酸化物および硼窒化物から なる群から選択される材料の少な く と も 1 層からなる外側 f o
本発明において、 中間層の厚みは、 A l 2 0 3 が主体で ある場合 5 m以上であり、 Z r 0 2 が主体である場合 0 . 5 m以上である。 外側層の厚みは 5 m以上であり、 内 側層の厚みを上回っている。
本発明において、 内側層の厚みは 0 . 1 5 mの範囲 が好ま しい。 中間層の厚みは、 A 1 2 0 3 が主体である場 合 5 5 0 mの範囲が好ま しく 、 Z r 〇 2 が主体である 場合 0 . 5 2 0 mの範囲が好ま しい。 外側層の厚みは、 5 1 0 0 mの範囲が好ま しい。
本発明では、 外側層を内側層より も厚く し、 さ らに外側 層の厚みを 5 〃 m以上とより厚く設定している。 これによ り、 低速から高速までの切削条件において、 本発明は耐摩 耗性をより長時間、 保持するこ とができる。 さ らに本発明 は、 中間層に断熱性に優れた A 1 2 0 3 または Z r 〇 2 を 用いている。 特に中間層は、 切削加工中、 刃先に発生する 熱の母材への伝播を抑制し、 熱による母材の塑性変形を抑 制する。 切削加工時における母材の変形を抑制すれば、 被 覆の剥離も抑制される。 本発明では、 十分な断熱性を与え る中間層の厚みと して、 A 〗 2 0 3 を主体とする中間層の 場合 5 m以上、 Z r 〇 2 を主体とする中間層の場合 0 . 5 m以上を設定している。 本発明において、 内側層は硬 質被覆層の母材への密着に特に寄与する。 一方、 中間層は 断熱、 外側層は耐摩耗性に特に寄与する。 このように、 本 発明は 3つの層にそれぞれ異なる機能を分担させており、 このこ とで、 幅広い切削条件において優れた性能を発揮で きる被覆硬質合金を得よう と してる。 また、 後述するよう に、 各層の厚みを適切な範囲に設定し、 かつ Zまたは各層 間の密着力を向上させるこ とにより、 さ らに優れたものを 得るこ とができる。
図面の簡単な説明
図 1 は、 本発明に従う被覆硬質合金の一具体例を示す概 略断面図である。 図 1 に示すように、 母材 1 上には内側層 2、 中間層 3および外側層 4 が順に形成されている。
図 2 Aは、 切削工具により被削材を加工している様子を 示す模式図である。 ホルダー 2 0 にとり付けられた切削ェ 具 2 1 により、 被削材 2 2が加工され、 切り屑 2 3が生じ ている。 切削工具 2 1 は逃げ角 0で使用される。 図 2 Bは 、 切削工具の摩耗を示す概略断面図である。 同図は、 摩耗 量 V B において工具母材 2 4上の膜 2 5 の摩耗した厚み D を示している。
図 3 は、 本発明に従う被覆硬質合金のもう 1 つの具体例 を示す概略断面図である。
図 4 は、 本発明に従う被覆硬質合金の他の具体例を示す 概略断面図である。 図 5 は、 本発明に従う被覆硬質合金の他の具体例を示す 概略断面図である。
図 6 は、 本発明に従う被覆硬質合金の他の具体例を示す 概略断面図である。
図 7 は、 本発明に従う被覆硬質合金の他の具体例を示す 概略断面図である。 この合金において、 外側層は柱状結晶 カヽらなる。
図 8 は、 本発明に従う被覆硬質合金において、 外側層の 柱状結晶に亀裂が生じる状態を示す概略断面図である。
図 9 は、 実施例の耐欠損性試験に用いた被削材の概略断 面図である。
発明を実施するための最良の形態
上述した従来の被覆硬質合金工具において、 工具合金母 材は T i 系化合物で被覆され、 その上に厚さ 1 〜 2 mの A 1 2 0 3 が被覆されていた。 また従来の技術では、 3 〃 m以下の薄い T i Nまたは T i C N層が A 1 2 0 3 上に形 成されていた。 従来の技術おいて被覆層全体の厚みは約 1 0 m程度であった。 また、 従来の技術において、 T i N または T i C Nからなる最外層の主な役割は、 色付けによ る使用済コーナーの識別である と考えられ、 したがって、 簡単に摩耗されるよう、 内側の T i 化合物の膜厚よ り も当 然薄く なつている。 したがって、 従来の 3層構造の膜を有 する被覆硬質合金では、 外側の T i Nまたは T i C N膜は、 早期に摩耗し、 耐摩耗性に寄与する ものではない。 従来の 技術において、 耐摩耗性に寄与するのは、 内側の T i 化合 物層および A 1 2 〇 3 層である。
被覆硬質合金工具が実際に使用されている環境において、 熱電対を工具に埋め込んで工具部分の温度を調べた。 その 結果、 工具刃先の断面温度分布に関し、 逃げ面の温度は、 すく い面の最高温度に比べて約 3 0 0ても低く 、 5 0 0 m / m i nの高速切削でも逃げ面の最高温度は 1 0 0 0でに 達していないこ とがわかった。 また、 各切削温度において T i 系化合物、 A 1 2 0 3 および Z r 〇 2 の耐摩耗性を比 較した。 その結果、 逃げ面において切削温度が 1 0 0 0 °C 以上のときは、 A 1 2 0 3 または Z r 0 2 が耐摩耗性に優 れるが、 逃げ面の切削温度が 1 0 0 0 °Cより も低い^:件で は、 T i 系化合物の方が耐縻耗性に優れるこ とがわかった。 また、 すく い面においては、 6 0 0 °C以上の温度において A 1 2 0 3 および Z r 〇 2 の方が T i 系化合物よ り も ク レ 一夕一摩耗の抑制に効果があるこ とが判明した。
これらの事実から、 すく い面の最高温度が 6 0 0 °C以上 1 3 0 0 °C以下程度となる切削条件、 すなわち 1 0 0 m Z m i n程度の低速から 5 0 0 m / m i n程度の高速切削条 件において、 最も耐摩耗性に優れる物質は、 すく い面では
A 】 2 0 3 または Z r 〇 2 であり、 逃げ面では T i 系化合 物であるこ とになる。 したがって、 被覆硬質合金における 被覆構造と しては、 逃げ面に T i 系化合物のみが被覆され、 すく い面に A 1 2 0 3 および/または Z r 〇 2 のみが被覆 される こ とが好ま しいこ とになる。. しかしながら、 硬質被 覆層を蒸着法によ り形成する場合、 面によって蒸着物質を 変えるこ とは困難である。
そこで本発明では、 内側に A 1 2 0 3 または Z r 〇 2 を 被覆し、 さ らに外側に T i 系化合物をよ り厚く 被覆する こ とによ り、 逃げ面での耐摩耗性を向上させ、 被削材の寸法 変化を抑える こ とのできる被覆硬質合金を得よ う と した。 そ して上述したように、 T i 系化合物からなる内側層、 A 1 2 0 3 および Zまたは Z r 〇 2 からなる中間層および T i 系化合物からなる外側層を有する被覆硬質合金において、 中間層および外側層の膜厚をよ り大き く 設定し、 耐摩耗性 および耐欠損性に優れたものを得るに至つた。 外側に厚い T i 系化合物を被覆すれば、 その内側には比較的耐摩耗性 の低い硬質膜を形成する こ とができる。 一方、 耐ク レー夕 一摩耗性に関しては、 内側に設けられた酸化物層が、 外側 の T i 系化合物層を補強する役割を果た している。
高速切削、 と く に刃先温度が 8 0 0 °C以上となる切削速 度で、 最も問題となるのは母材合金の塑性変形である。 塑 性変形時において、 母材合金よ り変形能の小さいセラ ミ ッ クスからなる硬質被覆層は、 変形に追随できず、 被覆層に 亀裂が生じ、 切削応力によって亀裂がよ り大き く なり、 そ こに被削材が溶着して層の剝離を起こ しやす く なる。 従来 の技術は、 この塑性変形による問題に対して十分な解決策 を見い出 していない。 また、 上述したよ う に、 従来の技術において外側層の厚 みは 2 ΙΏ程度と薄いため、 摩耗によ り簡単に内側の層が 露出する こ とになる。 このため、 逃げ面による被削材の寸 法変化を抑制する こ とは難しかった。 従来技術における外 側層は、 被削材たとえば鋼に対する潤滑性、 特にすく い面 での鋼との反応性に着目する ものの、 逃げ面での耐摩耗性 の向上を意図 した ものではなかった。
一方、 本発明によれば、 中間層と して断熱性に優れた A 1 2 0 3 または Z r 〇 2 を採用する こ とで、 切削において 従来よ り も母材合金の塑性変形を抑制する こ とができる。 このため、 本発明の被覆硬質合金からなる切削工具では、 被覆層の剥離が起こ りに く い。 しかも、 T i 系化合物の外 側層の膜厚を内側層よ り も厚く 、 また 5 m以上被覆する こ とによ って、 逃げ面での耐摩耗性に優れる。 したがって、 本発明によれば、 被削材の寸法変化がな く 、 しかもす く い 面でのク レーター摩耗も同時に抑制できる被覆硬質合金切 削工具を提供する こ とができ る。 これらの特性は、 適切な 厚みの A 1 2 0 3 、 Z r 0 2 またはそれらの混合物からな る中間層と、 その上に厚く 形成された T i 系化合物からな る外側層とによってもたらされる。
本発明の被覆硬質合金において、 母材は、 超硬合金また はサー メ ッ ト、 すなわち鉄族金属と周期律表の I V a、 V a、 V I a 族の元素の炭化物、 窒化物、 炭窒化物とからな る硬質合金である。 この母材上に設けられる硬質被覆層の う ち、 T i 系化合物の内側層は、 母材と A 1 2 0 3 または Z r 0 2 の中間層とを接着する層と して作用 し、 A l 2 0 3 または Z r 0 2 の中間層は、 す く い面での耐ク レーター 摩耗性および耐塑性変形性を向上させ、 内側層よ り厚く 被 覆された T i 系化合物の外側層は、 逃げ面での耐摩耗性の 向上に寄与する。
したがって、 本発明の被覆硬質合金からなる切削工具は、 】 0 0 0 °C以下における T i 系化合物のよ り優れた耐摩耗 性に起因 して、 逃げ面での耐摩耗性に優れ、 被削材の寸法 変化を小さ く し、 工具寿命を長く する。 しかも、 逃げ面部 分よ り も高温となるす く い面部分においては、 T i 系化合 物の外側層が摩耗しても、 その下に A 1 2 0 3 または Z r 0 2 の中間層が存在するため、 優れた耐ク レーター摩耗性 が期待できる。 工具にとって、 すく い面での摩耗は母材が 露出 しない限り問題にな らないものであり、 初期に T i 系 化合物の外側層が摩耗する こ とは大きな障害とな らない。 この結果、 本発明による切削工具は、 低速から高速までの 幅広い切削条件で、 優れた耐摩耗性を発揮する こ とができ ο
硬質被覆層のう ち、 母材上に形成される内側層は、 T i の炭化物、 窒化物、 炭窒化物、 炭酸化物、 炭窒酸化物およ び硼窒化物からなる群から選択される材料の少な く と も 1 層からなる。 これらの T i 系化合物を内側層 と して用いる 理由は、 母材である硬質合金との密着性に優れ、 中間層で ある A l 2 03 および Z r 02 との.接着性にも優れている ためである。 また、 その膜厚は、 合計で 0. 1 m未満で はその効果がなく 、 5 mを超えると接着層と して厚すぎ るため、 0. l 〜 5 mの範囲が好ま しく 、 より好ま しく は 0. 5〜 3 〃mの範囲である。
内側層上に形成する中間層は、 A 1 2 03 、 Z r 02 ま たはそれらの混合物も しく は固溶体を主体とする。 混合物 を用いる場合、 両者の何れかが主体として多 く 含まれる。 A 1 2 03 を主体とする中間層の場合、 中間層には 5 0 % 以下の割合で他の物質、 たとえば Z r 02 、 H f 〇 2 、 T i 02 、 T i Cまたは T i N等が含まれたり、 T i、 Z r または C I 、 N等が固溶していてもよい。 また、 A l 2 0 3 を主体とする中間層は、 他の膜、 たとえば T i C、 T i C N、 T i N、 T i B N、 T i C O、 T i C N O等の T i 系化合物、 A 〗 N、 A 1 N O等の A I 系化合物、 Z r 02 , H f 02 、 T i 02 等の酸化物の薄膜により分割されてい てもよい。
、A 1 2 03 を主体とする中間層は、 母材の塑性変形を抑 制し、 すく い面での耐ク レーター摩耗性を改善する効果が 大きい。 特に、 この中間層の断熱効果により、 母材の熱変 形に起因する膜剝離の抑制が可能となった効果は重要であ る。 しかし、 その膜厚が 5 m未満ではその効果が少な く 、 5 0 〃 mを超えると強度が低下するため、 5〜 5 0 〃 mの 範囲が好ま しく、 より好ま しく は 1 0〜 4 0 mの範囲で ある。
一方、 Z r 02 は硬度が低く 、 耐摩耗性が低いため実用 化されていなかつたが、 熱伝導率が A 1 2 03 と比べて非 常に小さい。 2 0。Cにおいて A 1 2 03 は 0. 0 5 4 c a 1 / c m · s e c · て、 Z r 〇 2 は 0. 0 0 5 c a l Z c m · s e c · 。(:の熱伝導率を有し、 1 0 0 0 °Cにおいて、 A 1 2 03 は 0. O l S c a l Z c m ' s e c ' て、 Z r 02 は 0. 0 0 5 c a 1 / c m · s e c * °Cの熱伝導率を 有する。 このため、 Z r 〇 2 は、 母材の塑性変形を抑制す る効果に優れ、 A l 2 03 より も薄い層で A 1 2 03 とほ ぼ同一の断熱効果が得られる。
かかる知見に基づいて、 母材上に形成された T i 系化合 物の薄い内側層上に Z r 〇 2 の中間層を設け、 その上に厚 い T i系化合物の外側層を被覆した工具を試作し、 高速切 削テス トを実施した。 その結果、 従来の被覆構造を有する 工具に対し、 本発明の被覆構造を有する工具は、 耐塑性変 形性に優れ、 逃げ面での耐摩耗性に優れるこ とがわかつた: 本発明に従う工具を用いて切削を行えば、 被削材の寸法変 化が起こ りにく く、 すく い面でのク レーター摩耗も同時に 抑制できるこ とが判明した。
さ らに、 中間層に A 1 2 03 を用いた場合と比較しても、
Z r 02 中間層は、 より薄い膜で優れた耐塑性変形性が得 られるだけでな く 、 膜厚を薄く できるため、 コーテ ィ ン グ 面の滑らかさが向上し、 耐剝離性が向上するこ とも判明し た。 さ らに驚く べき こ とに、 ステンレ ス等の加工硬化しや すい被削材の切削において問題となる境界摩耗が減少し、 耐欠損性が向上する という予想外の効果が得られた。 その 原因は明らかでないが、 Z r 〇 2 のヤ ング率が小さ く 、 そ の硬度が低いため、 その変形能が大きいこ とに起因してい るのではないかと考えられる。
Z r 02 を主体とする中間層を用いる場合、 中間層は、 5 0 %以下の割合で、 たとえば A 1 2 03 、 H f 02 、 T i 02 などの他の酸化物、 T i Cまたは T i N等が含まれ たり、 A l 、 T i 、 C I 、 N等が固溶していてもよい。 ま た、 Z r 〇 2 を主体とする中間層は、 他の膜、 たとえば T i C:、 T i C N、 T i N、 T i B N、 T i C〇、 T i C N 〇等の T i 系化合物、 Z r N、 Z r C等の Z r系化合物、
A 1 2 03 、 H f 02 、 T i 02 等の酸化物の薄膜によ り 分割されていてもよい。 Z r 02 を主体とする中間層は、 母材の塑性変形を抑制し、 すく い面での耐ク レーター摩耗 性を改善する効果が大きい。 特に、 この中間層によ り、 母 材の変形に起因する膜剝離の抑制が可能となった効果は重 要である。 しかし、 その膜厚が 0. 5 / m未満ではその効 果が少な く 、 2 0 を超える と強度が低下するため、 0. 5〜 2 0 / mの範囲が好ま し く 、 よ り好ま し く は 3〜 1 5 〃 mの範囲である。
中間層上に形成する外側層は、 T i の炭化物、 窒化物、 炭窒化物、 炭酸化物、 炭窒酸化物および硼窒化物からなる 群から選択される材料の少な く とも 1 層からなり、 逃げ面 での耐摩耗性を効果的に向上させる。 外側層の膜厚を 5 m以上と した理由について次に説明する。 発明者らが自動 車メ ーカーの鋼部品加工ライ ンで使用済工具を回収し、 ェ 具の損傷状態を調査したところ、 逃げ面摩耗量は 0 . 0 5 m m以上のものがほとんどであるこ とを確認した。 切削ェ 具は、 図 2 Aに示すように、 逃げ角 0 5 〜 6 ° で使用され るため、 図 2 Bに示すように、 摩耗量 V B 0 . 0 5 mmは 最大で約 5 〃 m ( 0 . 0 5 mm X t a n 6 ° ) の膜が摩耗 したこ とに相当する。 従って、 工具表面には 5 m以上の 耐摩耗性に優れた膜がないと耐摩耗性に劣る下層も しく は 母材が露出し、 短寿命となりやすい。 このため、 1 0 O m / m i nから 5 0 0 m/m i nで優れた耐摩耗性を示す T i 化合物膜を外側層と し 5 z m以上被覆するこが必要であ る。 ただし、 1 0 0 mを超えると強度が低下するため、 膜厚は 5 〜 1 0 0 mの範囲が好ま しい。 切削速度が 3 0 0 m/m i nを超える切削条件では、 特に 1 0 〃 m以上の 膜厚が好ま しく 、 1 5〜 5 0 Ζ ΙΏの範囲がよ り好ま しい。
A 1 2 03 を主体とする中間層を用いる場合、 硬質被覆 層の膜厚の合計は、 2 5〜 6 0 mの範囲が好ま しい。 こ の範囲において、 母材をより効果的に保護し、 より優れた 耐欠損性を得るこ とができる。 一方、 Z r 02 を主体とす る中間層の場合、 硬質被覆層の膜厚の合計は 2 0〜 6 0 mの範囲が好ま しい。 この範囲において、 母材はよ り効果 的に保護され、 よ り優れた耐欠損性が得られる。
A 1 2 0 3 の中間層の上に T i 系化合物を直接被覆する 場合、 両者の密着力が低いために、 外側の T i 系化合物の 膜厚をよ り厚く する こ とが難しいこ とが判明した。 そこで 本発明において、 A 1 23 の中間層と外側層の間に、 さ らに薄膜を設ける こ とが好ま しい。 この薄膜は、 中間層に 直接接して形成され、 0 . 1 〜 2 mの膜厚が好ま しい。 この薄膜は、 A 1 の窒化物および酸窒化物からなる群から 選択される材料からなる A 1 含有薄膜とする こ とができる ( このよ うな A 1 含有薄膜を用いる場合、 薄膜における窒素 含量は中間層に近く なるにつれて減少し、 かつ酸素含量は 中間層に近く なるにつれて増加する こ とがよ り好ま しい。 この薄膜は、 A 】 2 0 3 中間層と T i 化合物の外側層との 間の密着力を向上させる。 この薄膜によ り、 層間の剝離が 起こ りに く く なり、 優れた耐摩耗性が得られる。 特に、 上 述したよ う に A 1 2 0 3 と A 1 Nまたは A 1 〇 Nとの間で、 薄膜の組成を連続的に変化させる こ とによ り、 中間層と外 側層との密着力はよ り高められ、 剝離がよ り起こ り に く く なる。
一方 Z r 0 2 を主体とする中間層の場合、 中間層と外側 層との間に、 中間層に接して、 Z r の炭化物、 窒化物、 炭 窒化物、 炭酸化物、 酸窒化物および炭窒酸化物からなる群 から選択される材料からなる Z r 含有薄膜をさ らに形成す る こ とが好ま しい。 この薄膜の膜厚は 0 . l 〜 2 〃 mが好 一 1 ま しい。 この薄膜によ り、 中間層 と外側層との密着力が高 められ、 よ り厚い外側層を形成する こ とができる。 また優 れた密着力のため、 層間の剥離が起こ り に く く なり、 優れ た耐摩耗性を得る こ とができる。 この場合も、 Z r 含有薄 膜において、 窒素含量および または炭素含量は中間層に 近く なるにつれて減少し、 かつ酸素含量は中間層に近く な るにつれて増加する こ とがよ り好ま しい。 このよ う に、 Z r 0 2 と Z r 系化合物との間で組成を連続的に変化させる こ とによ り、 よ り優れた密着力が得られ、 層の剝離をよ り 効果的に抑制する こ とができる。
中間層と外側層の間にさ らに薄膜を形成した構造を図 3 に示す。 図 3 において、 母材 1 上には内側層 2が形成され. その上には中間層 3 が形成される。 中間層 3 は、 A 1 また は Z r 含有薄膜 1 0 を介して外側層 4 と密着する。
また図 4 に示すよう に、 中間層 3 と外側層 4 の間に、 A
1 または Z r 含有薄膜の他にさ らに薄膜を形成してもよい t したがってこのような被覆において、 母材 1 上には内側層 2が形成され、 その上には中間層 3が形成される。 中間層 3上には A 1 または Z r含有薄膜 1 0 が形成される。 A 1 または Z r 含有薄膜 1 0 は、 薄膜 1 2 を介して外側層 4 と 密着する。 このような薄膜 1 2 は、 T i B N〇、 T i N 0 および T i 0 2 からなる群から選択される材料から構成す るこ とができる。
一方、 中間層と外側層との間の密着力を向上させるため、 A 】 または Z r含有層の代わり に T i B N、 T i C Oおよ び T i C Ν 0からなる群から選択される材料からなる薄膜 を用いる こ とができる。 このよ うな薄膜は、 上で定義され た外側層に属する ものである。 この薄膜を用いた構造を図 5に示す。 母材 1上には内側層 2が形成され、 その上には 中間層 3が形成される。 中間層 3は、 T i B N、 T i C 0 または T i C N〇からなる薄膜 1 4を介して外側層 4に密 着する。 外側層の中間層と接する部分にこのよ うな材料を 用いるこ とによ って、 よ り強い密着力が得られる。
また、 中間層と外側層との間に、 中間層に接して、 T i BN〇、 T i N Oおよび T i 〇 2 からなる群から選択され る材料からなる薄膜を設ける こ と もできる。 このよ うな薄 膜を用いる構造を図 6に示す。 母材 1上には内側層 2が形 成され、 その上には中間層 3が形成される。 中間層 3は、 薄膜 1 6を介して外側層 4 と密着する。 薄膜 1 6は、 T i B N〇、 T i NO, または T i 02 の薄膜とする こ とがで きる。 この膜の厚みは 0. l 〜 2 〃mの範囲が好ま しい。
さ らに、 外側層が主に柱状結晶である と、 耐欠損性が向 上するため、 好ま しいこ とが判明した。 化学蒸着法等によ つて母材上に硬質被覆層を蒸着する とき、 母材と被覆層の 熱膨張係数の差から被覆層に引張残留応力が発生するため、 工具の耐欠損性を低下させる こ とが多い。 しかしながら、 図 7に示すよう に、 外側層 4が主に柱状結晶 5である場合 には、 柱状結晶 5の粒界に亀裂 6が入る形で引張残留応力 が解放されやす く 、 工具寿命に至るよ うな大きな欠損を引 き起こ しに く く なる と推定された。
このため、 図 7 に示すよう に、 母材 1 の上に T i 系化合 物の内側層 2を設け、 その上に A 1 2 03 または Z r 〇 2 を主体とする中間層 3を設け、 さ らにその上に T i 系化合 物の外側層 4 を設けた本発明の被覆硬質合金において、 外 側層 4 を柱状結晶 5 とするこ とによって、 外側層 5の膜厚 を厚く する こ とが可能となり、 一層優れた耐摩耗性を長期 にわたつて発揮する こ とができる。
この柱状結晶 5 のアスペク ト比が 5〜 8 0 のとき、 特に 耐摩耗性および耐欠損性の向上が著しい。 こ こでァスぺク ト比とは、 図 7 に示すよ う に、 柱状結晶 5の長さ 1 と結晶 粒径 dの比 1 ノ dである。 その则定は、 硬質被覆層の断面 を T E Mで撮影し、 任意の 3視野の平均値を求める こ とに よ り行なった。
特に、 外側層が柱状結晶の T i C Nからなる とき、 逃げ 面での耐摩耗性および耐欠損性はよ り優れる。 中でも、 T i C Nの C : N比がモル比で 5 : 5〜 7 : 3の範囲にある 場合、 特に優れた耐摩耗性が得られる。 これは、 T i C N のじ : N比がこの範囲にある と、 被覆層の硬度および靭性 のバラ ンスがよ く 、 優れた耐摩耗性と耐欠損性を示すため である。 なお、 C : N比のモル比は、 E S C A (ELECTRON SPECTROSCOPY FOR CHEMICAL ANALYSIS ) や E P MA (EL ECTRON PROBE MICRO ANALYSIS ) による分析、 または X線 分析で、 T i C N外側層の格子定数を求める こ とによ り測 定でき る。
本発明者らが X線分析で求めた結果では、 C : N比のモ ル比が 5 : 5〜 7 : 3の範囲にある T i CNの格子定数は、 4. 2 7 5〜 4. 2 9 5の範囲にあり、 このとき、 特に優 れた耐摩耗性と耐欠損性を示した。 この結果は、 化学量論 組成の T i C Nで考える とずれを含むが、 T i C Nがたと えば T i ( CN) o. s のよ うな非化学量論組成を持つこ と があるため、 このよ うなずれが生じたものと思われる。
また、 外側層の T i C Nは、 ( 1 1 1 ) 、 ( 4 2 2 ) お よび ( 3 1 1 ) からなる群から選択される結晶面について、 X線回折の最高ピーク強度を有する こ とが好ま しい。 この よ うな特性を示す外側層の T i C N膜は、 下の層との密着 力に優れている。
硬質被覆層において、 内側層に含まれる最も厚い層は、
5〜 3 0のァスぺク ト比を有する柱状結晶を主体とする層 からなる こ とが好ま しい。 このよ うな内側層は、 高い強度 を有する こ とができる。 内側層を厚く する際に、 了スぺク ト比をこの範囲に設定すれば、 内側層の強度低下を抑制す る こ とができ る。
一方、 中間層は、 3〜 2 0のァスぺク ト比を有する柱状 結晶を主体とする層を含むこ とが好ま しい。 中間層の強度 および靭性は、 粒径のみに依存するのではな く 、 結晶粒の ァスぺク ト比にも依存する。 本発明者らは、 中間層におけ る結晶粒のァスベタ 卜比を 3〜 2.0 とする こ とによ り、 強 度および靭性を改善できる こ とを見い出 した。 また、 本発 明者らは、 A l 2 0 または Z r 〇 2 の膜を厚く しても、 結晶粒の粗大化の程度は小さ く 、 しかも結晶拉のァスぺク ト比を大き く できる こ とを見い出 した。 そ して、 膜を厚く するこ とによ り、 かえって強度および靭性に優れた膜が得 られる こ とが判明 した。
中間層の A l 2 0 は、 ひ 一 A l 2 0 を主体とする こ とがよ り好ま しい。 A l 2 0 の結晶系をひ型とする こ と によ り、 アスペク ト比が 3〜 2 0の結晶粒径を形成する こ とが容易になり、 強度および靭性に優れた膜が得られるよ う になる。 また、 ひ 一 A 1 2 0 膜は、 ( 1 0 4 ) および
( 1 1 6 ) からなる群から選択される結晶面について、 X 線回折の最高ピー ク強度を有する こ とが好ま しい。 これに よ り、 外側層と A I 0 膜との密着力を向上させる こ と ができ る。
一方、 中間層における A 】 0 の結晶系は、 内側層と 接する付近および外側層と接する付近で、 / 一 A 1 2 0 を主体とする こ とができる。 外側層および内側層にそれぞ れ接する部分に / 一 A 1 2 0 を設ける こ とで、 内側層お よび外側層と中間層との密着力を向上させる こ とができる また、 ひ 一 A 1 2 0 を 一 A 1 2 0 で挟み込んだ中間 層を形成する こ とによ り、 強度および靭性に優れ、 かつ密 着力に優れた中間層が得られる。 また、 本発明者らは、 硬質被覆層に形成される亀裂の間 隔を適切な値に制御するこ とにより、 特に優れた耐剝離性、 耐欠損性を付与できるこ とを見い出した。 すなわち、 硬質 被覆層に形成される複数の亀裂に関し、 隣合う亀裂同士の 間隔の平均は、 2 0〜 4 0 imであるこ とが好ま しい。 ま た、 内側層および外側層における亀裂同士の間隔は、 中間 層における亀裂同士の間隔より も小さいこ とが好ま しい。 このよう に亀裂の分布状態を制御するこ とよって、 優れた 耐欠損性および耐摩耗性を得るこ とができる。 また特に 2 5 m以上の厚みを有する被覆では、 この範囲に亀裂の間 隔を制御した効果は顕著である。 亀裂の間隔をこのよ う に 制御するこ とにより、 従来使用不可能と考えられていたよ り厚い膜を有する被覆硬質合金の使用が可能となった。
本発明に係る内側層、 中間層および外側層は、 通常の化 学蒸着法または物理蒸着法により形成するこ とができる。 A 1 2 03 または Z r 〇 2 の中間層の上に T i C Nの外側 層を化学蒸着法により形成する場合、 原料ガスの T i 源と して T i C 1 4 、 炭素および窒素源と して有機炭窒化物、 キャ リアガスと して水素ガスを用いて、 7 0 0〜 1 1 0 0 て、 5 0 0 T o r r以下の圧力で T i C Nを被覆するこ と ができる。 このような工程によれば、 A 1 2 03 または Z r 02 上に、 均一で微細な T i C Nの核形成が行なわれる ため、 中間層との密着力に優れ、 層間剝離を起こ しに く く 、 優れた耐摩耗性を発揮する硬質被覆層を得るこ とができ る。 特に、 上述した方法において、 炭素源および窒素源と し て有機炭窒化物たとえば C H3 C Nを用いる と、 T i C N 外側層の結晶粒を柱状結晶に しゃす く 、 その柱状結晶のァ スぺク ト比を大き く する こ とが容易であり、 しかも C : N 比のモル比が 5 : 5〜 7 : 3の範囲内にある T i CN外側 層を形成しゃすい。
さ らに、 本発明の被覆硬質合金において、 外側層の上に A 1 2 03 、 Z r 02 および H f 〇 2 からなる群から選択 される酸化物の膜を合計 0. 5〜 5 xzmの厚みで被覆する こ とができる。 外側層をこのような膜で覆う こ とによ り、 境界摩耗、 摩耗部以外での T i化合物膜の劣化を防ぐこ と ができ る。 特に境界摩耗の抑制効果は、 ステン レス鋼など の難削材の切削において顕著であった。 この膜の厚みは、 0. 5 mよ り薄いと効果は小さ く 、 5 〃 mよ り厚いと逃 げ面での耐摩耗性が低下する。 特に、 厚みの範囲は 1 〜 3 〃mが好ま しい。 またこの膜は、 中間層よ り も薄いこ とが 好ま しい。 なお、 本発明の被覆硬質合金の最表面には T i Nや Z r Nなどの黄金色を示す薄膜が被覆されていて も良 い。 これらの黄金色は使用済コーナーの識別に役立つから である。
本発明の被覆硬質合金は切削工具に用いる こ とができ る。 したがって、 本発明の被覆硬質合金は、 たとえばチ ッ プな どの切削工具の形状を有する こ とができる。 本発明の被覆 硬質合金で形成される切削工具の切れ刃において、 硬質被 覆層の一部は除去され、 面粗さ R a の平均値が 0 . 0 5 m以下である表面が形成されている こ とがよ り好ま しい。 切れ刃の部分にこのような平滑な表面を形成する こ とによ つて、 耐摩耗性に優れた切削工具を提供する こ とができる £ 以下に本発明の実施形態を実施例で示すが、 本発明はこ れらの実施例によ り限定される ものではない。
例 1
母材と して、 I S O M 2 0超硬合金 (母材 1 ) 、 I S 〇 K 2 0 (母材 2 ) および市販のサーメ ッ ト工具 (母材 3 ) を用意し、 各母材上に公知の化学蒸着法によ り蒸着温 度 1 0 0 0 °Cで表 1 に示す硬質被覆層のいずれかを形成し、 それぞれ S N G N 1 2 0 4 0 8のチ ッ プ形状の工具を作製 した。
[表 1 ]
己号 硬質被覆層の構成 (左側が母材側、 括弧内は膜厚( ) )
A TiN(0.5)/Al203 (10)/TiCN(15)
B TiC(0.5)/TiCN(3)/TiBN(0.5)/Al203 (5)/TiN(7)
C TiCN(2)/TiC0(0.5)/Al203 (20)/TiCN(20)
D TiN(0.5)/TiCN0 (0.5)/Al203 (45) /T i CN (30) /TiC(lO)
E Al203(10)/TiCN(15)
F TiN(0.5)/Al203 (2)/TiCN(15)
G TiN(0.5)/TiCN(15)/Al203 (10)
H TiN(0.5)/Al203(10)
I TiN(l)/TiBN(0.5)/Al203 (10)/TiC(0.5)/TiCN(10)
(注) 表中の硬質彼覆層の構成に関して、 左側が母材側および括弧内は
膜厚 ( ) を表すことは、 以下の表においても同様とする。 母材上に硬質被覆層を形成した各チップを用い、 下記の 表 2の切削条件で S C M 4 1 5の被削材を切削加工し、 切 削性能を評価した。 その結果を表 3 に、 母材と硬質被覆層 の組合せとともに示す。
[表 2 ] 切削 切削速度 送り 切込み
条件 (m/min) (mm/rev) (画) 切削油 ホルダー 寿命判定基準
1 500 0. 5 1. 5 無し FN11R44A VB =0. l mm
2 200 0. 4 1. 5 切 有り FN11R44A VB =0. 15mm
3 100 0. 3 1. 5 無し FN11R44A 欠損
[表 3 ] 性 試料 母材 被 S層 切削条件 1 切削条件 2
1 A 5分 11秒 102分 17秒
2 B 4分 23秒 61分 27秒
3 C 9分 8秒 89分 46秒
4 D 18分 39秒 73分 51秒
5 * E 19秒で剝離 2分 14秒で剥離
6 * F 45分で欠損 87分 35秒
7 * G 1分 56秒 29分 7秒
8 * H 2分 4秒 16分 29秒
(注) 表中の *を付した試料は比較例である (以下同じ) 。 上記の結果から、 本発明例の試料 1 4 のチップは、 高 速切削 (切削条件 1 ) だけでな く低速切削 (切削条件 2 ) でも優れた切削性能を示すこ とがわかる。 試料 1 と 5 との 比較によ り、 内側層 と して T i 系化合物を有する効果がわ かる。 試料 1 と 6 の比較から、 A l 2 0 中間層の膜厚か 2 〃 mではその効果が小さいこ とがわかり、 また試料 1 と 7 の比較によ って、 A 1 2 0 は外側層と して被覆するよ り も中間層と して用いる方が耐摩耗性に優れるこ とがわか る。 試料 1 と 8 の比較によ って、 外側層と しては A 1 2 〇 よ り も T i 系化合物の方が耐摩耗性に優れている こ とが ゎカヽる。
例 2
上記例 1 における母材 1 の表面に下記の表 4 に示す硬質 被覆層を形成し、 試料 9 〜 1 4 のチ ッ プを準備した。 これ らのチ ッ プを用いて切削条件 2 によ り例 1 と同様に切削性 能を評価した。 また、 図 9 に示すよ う に円周上に 4 つの溝 8 を有する S C M 4 3 5 からなる被削材 7 を用いて、 上記 表 2 の切削条件 3 によ り耐欠損性を試験した。 耐欠損性は チ ップが欠けるまでの切削時間で評価した。 これらの結果 を、 表 4 にま とめて示す。
[表 4 ]
耐摩耗性 耐欠損性 試料 硬質被?!層の構成 切削条件 2 切削条件 3
9* Al203(10)/TiCN(15) 1分 38杪で剝離 2分 50秒
10 TiC(0.2)/Al203(10)/TiCN(15) 65分 51秒 4分 29秒
11 TiC(0.5)/Al203 (10)/TiCN(15) 89分 33秒 5分 4 少
12 TiC(3)/Al203(10)/TiCN(15) 115分 45秒 5分 12秒
13 TiC(5)/Al203(10)/TiCN(15) 93分 29秒 4分 44秒
14* TiC(10)/A 03(10)/TiCN(15) 87分 47秒 3分 47秒 上記の結果からわかるよ う に、 内側層と して T i 系化合 物のない試料 9 は被覆層の密着力が低いため、 耐摩耗性試 験において早期に被覆層の剥離が発生し、 極めて短寿命で あった。 試料 1 4 のチ ッ プは内側層の膜厚が厚いため、 や ゃ耐欠損性に欠ける結果となったが、 耐摩耗性については 優れている。 これに対し本発明例の試料 〗 0 〜 ! 3 では、 耐摩耗性と耐欠損性に優れ、 特に試料 1 1 と 1 2 は耐摩耗 性と耐欠損性のバラ ンスに優れている。
例 3
上記例 1 における母材 2 の表面に下記の表 5 に示す硬質 被覆層を形成し、 試料 1 5 〜 2 1 のチ ッ プを準備した。 こ れらのチ ップを用いて切削条件 1 によ り例 1 と同様に切削 性能を評価した。 また、 例 2 と同様に して、 切削条件 3 に よ り耐欠損性を試験した。 これらの結果を、 表 5 にま とめ て示す。 [表 5 ]
試 VJ リ宋什 1 J3リ采汗 o J T 1i 1 P INC?') / rtAl l2„nU,3 ( V.0U.3 /T 1i 1rW <3) 1 TTi †少小 人す
16 TiCN(2)/Al203(5)/TiC(13) 9分 51杪 7分 24秒
17 TiCN(2)/Al203(10)/TiC(13) 12分 3秒 7分 33秒
18 TiCN(2)/Al203(20)/TiC(13) 12分 54秒 6分 53秒
19 TiCN(2)/Al203(38)/TiC(13) 12分 29秒 5分 47秒
20 TiCN(2)/Al203(48)/TiC(13) 10分 47秒 3分 51秒
21* TiCN(2)/Al203(60)/TiC(13) 10分 21秒 2分 28秒 上記の結果からわかるよ う に、 A l 2 03 の中間層の膜 厚が薄い試料 1 5 と厚い試料 2 1 以外は、 耐摩耗性と耐欠 損性のバラ ンスに優れた切削性能を示し、 中でも試料 1 7 1 8 1 9 のチ ッ プは特に優れた切削性能を示した。
例 4
上記例 1 における母材 3 の表面に下記の表 6 に示す硬質 被覆層を形成し、 試料 2 2 2 8 のチ ッ プを準備した。 こ れらのチ ッ プを用いて切削条件 1 および 2 によ り例 1 と同 様に切削性能を評価し、 また例 2 と同様に して切削条件 3 によ り耐欠損性を試験した。 これらの結果を表 6 にま とめ て示す。 [表 6 ] 耐摩耗性 耐摩耗性 耐欠損性 試料 硬質被覆層の構成 切削条件 1 切削条件 2 切削条件 3
22* TiN(4)/Al203(10)/TiCN(2) 3分 5秒欠損 18分 3秒欠損 8分 2秒
L 111、4ノ//112<">3、丄^^ノ/ 1 1レ11 丄(^ノ 刀 メ 丄 メ 刀丄 >Jlク
24 TiN(4)/Al203(10)/TiCN(15) 9分 28秒 55分 21秒 6分 39秒
25 TiN(4)/Al203(10)/TiCN(30) 10分 31秒 84分 53秒 5分 56秒
26 TiN(4)/Al203(10)/TiCN(46) 11分 23秒 74分 31秒 5分 12秒
27 TiN(4)/Al203(10)/TiCN(95) 10分 19秒 63分 16秒 3分 4秒
28* TiN(4)/Al203(10)/TiCN(120) 6分 5秒 52分 47秒 1分 57秒 上記の結果からわかるよ う に、 T i C Nの外側層の膜厚 が薄い試料 2 2 と厚い試料 2 8 以外は、 耐摩耗性と耐欠損 性のバラ ンスに優れた切削性能を示し、 中でも試料 2 4、 2 5 、 2 6 のチ ッ プは特に優れた切削性能を示した。
また、 上記例 3 の表 5 および例 4 の表 6 に示す結果から、 硬質被覆層の合計膜厚が 2 5 〜 6 0 mの範囲内にある試 料 1 6 〜 1 9 および 2 4 〜 2 6 は、 耐摩耗性と耐欠損性の バラ ンスが特に優れている こ とがわかる。
例 5
上記例 1 における母材 1 の表面に、 上記表 1 の記号 Iの 構成からなる硬質被覆層を形成し、 試料 2 9 〜 3 4 のチッ プを準備した。 なお、 これらの試料における最外側の T i
C N層の結晶粒の形状を、 成膜条件を変える こ とで変化さ せた。 これらのチ ッ プを用いて例 1 と同様に切削条件 2 に よ り切削性能を評価し、 また例 2 と同様に して切削条件 3 によ り耐欠損性を試験した。 これらの結果を表 7 にま とめ て示す。
[表 7 ]
TiCN層の 耐摩耗性 耐欠損性
試料 ァスぺク 卜比 切削条件 2 切削条件 3
29 1. 5 51分 13秒 3分 25秒 30 5 70分 32秒 5分 16秒 31 15 79分 45秒 7分 4秒 32 35 85分 11秒 8分 21秒 33 70 78分 7秒 7分 36秒 34 100 62分 24秒 7分 54秒 外側被覆層のうち最外側の T i C N層を構成する T i C Nのァスぺク ト比が 5 〜 8 0 の範囲内にある場合、 耐摩耗 性および耐欠損性に優れ、 中でも試料 3 1 と 3 2 は特に優 れた性能を示すこ とがわかる。
例 6
上記例 1 で作製した試料 1 (母材 1 、 硬質被覆層 A ) の チップの外側層である T i C N層の C : N比を、 X線回折 法により格子定数を求めて算出したところ、 モル比で 4 : 6であった。 次に、 試料 1 と内側層および中間層は同じで ある力 原料ガスの流量比を変化させるこ とで表 8 に示す C : N比の異なる T i C N層を外側層と して形成し、 試料 3 5 〜 3 8 のチ ップを作製した。 これ らのチ ッ プを用いて例 1 と同様に切削条件 1 および 2 によ り切削性能を評価し、 また例 2 と同様に して切削条 件 3 によ り耐欠損性を試験した。 これらの結果を表 8 にま とめて示す。
[表 8 ]
TiCN層の 耐摩耗性 耐摩耗性 耐欠損性
C:N比 切削条件 1 切削条件 2 切削条件 3
1 4:6 5分 11秒 102分 17杪 5分 22秒
35 5:5 7分 23秒 124分 32秒 6分 13秒
36 6:4 8分 54秒 141分 8秒 5分 54秒
37 7:3 7分 42秒 149分 44秒 4分 57秒
38 8:2 7分 21秒 137分 51秒 3分 42秒 上記の結果から、 C : N比がモル比で 5 : 5〜 7 : 3の 範囲にある試料 3 5〜 3 7 のチ ッ プは、 耐摩耗性および耐 欠損性に優れ、 優れた切削性能を示すこ とがわかる。
例 7
母材 1 の表面上に上記表 1 の記号 Dの硬質被覆層を形成 するに際して、 外側層のう ちの T i C N層の形成を、 原料 ガスと して T i C 1 4 と C H 3 C Nおよびキャ リ アガスと して水素ガスを用い、 1 0 0 0でぉょび 5 0 丁 0 1" 1" の圧 力で行なう こ とによ り、 試料 3 9 のチ ッ プを作製した。 得 られたチ ッ プを用いて、 切削条件 1 および 2 によ り切削性 能を評価した結果を表 9 に示す。
また、 通常の C V D法によ り、 原料ガスと して T i C l , と C H と窒素ガス、 およびキャ リ アガスと して水素ガ スを用いた以外、 上記と同様に して T i C N層を形成した 試料 4 について、 同様に評価した結果を表 9 に併せて示す 表 9から、 原料ガスと して C H 3 C Nを用いた試料 3 9の 方が、 優れた切削性能を示すこ とがわかる。
[表 9 ] 耐摩耗性 耐摩耗性
試料 切削条件 1 切削条件 2
4 18分 39秒 75分 51秒
39 24分 51秒 103分 14秒 例 8
上記例 2の試料 1 1 のチ ッ プにおいて、 A l 2 0 の中 間層と T i C Nの外側層との間に、 T i B N、 T i B N〇 T i N〇、 T i C〇、 T i C N〇、 または T i 02 からな る薄膜を通常の C V D法によ り 1 0 0 0 °Cで約 0. 5 〃 m の膜厚に形成した試料 4 0〜 4 5 のチ ッ プを作製した。 な お、 原料ガスは、 膜質に応じて T i C 1 4 、 C H , 、 N H 、 C O、 N H a 、 B C 1 を使用 した。 得られた各チ ッ プについて耐摩耗性および耐欠損性を評価した結果を、 試料 1 1 のチ ッ プと比較して表 1 0 に示す。 [表 1 0 ]
耐摩耗性 耐欠損性
丰斗 薄 膜 切削条件 1 切削条件 3
11 無し 89分 33秒 5分 41秒
40 TiBN 131分 17秒 7分 秒
41 TiBNO 125分 23秒 7分 4秒
42 TiNO 108分 5秒 6分 35秒
43 TiCO 133分 41秒 6分 52秒
44 TiCNO 147分 59秒 7分 29秒
45 Ti02 102分 31秒 6分 19秒 この結果から、 A 1 2 03 の中間層と T i C Nの外側層 との間に、 T i B N、 T i B NO、 T i NO, T i C O, T i CN O、 または丁 i 〇 2 からなる薄膜を形成した試料
4 0〜 4 5は、 これらの薄膜のない試料 1 1 よ り も、 優れ た切削性能を示すこ とがわかる。
例 9
上記例 4の試料 2 5のチ ッ プにおいて、 A I 2 0 の中 間層と T i C Nの外側層との間に、 A 1 Nまたは A 1 0 N からなる薄膜を通常の C V D法によ り 1 0 0 0 °Cで約 0 .
5 の膜厚に形成した試料 4 6〜 4 7のチ ッ プを作製し た。 なお、 原料ガスは、 膜質に応じて A 1 C 1 4 、 C 02 .
N 、 H を使用 した。 得られた各チ ッ プについて耐摩耗 性および耐欠損性を評価した結果を、 試料 2 5のチ ッ プと 比較して表 1 1 に示す。 [表 1 1 ]
耐摩耗性 耐欠損性
試料 薄 膜 切削条件 2 切削条件 3
25 無し 84分 53秒 5分 56秒
46 A1N 145分 21秒 7分 19秒
47 A10N 151分 39秒 7分 2秒 上記の結果から、 A 1 2 0 3 の中間層と T i C Nの外側 層との間に、 A 1 Nまたは A 1 〇 Nからなる薄膜を形成し た試料 4 6 〜 4 7 は、 これらの薄膜のない試料 2 5 と比較 して、 優れた切削性能を示すこ とがわかる。
例 1 0
上記例 4 の試料 2 5 のチップにおいて、 A 1 2 0 3 の中 間層と T i C Nの外側層との間に、 A 1 2 0 3 から A 1 N . または A 1 2 0 3 から A 1 O Nまで、 組成が連続的に変化 した層を約 0 . 5 〃 mの膜厚で形成した試料 4 6 — cおよ び 4 7 — c を作製した。 この層は、 通常の C V D法を用い、 温度を 9 0 0 °Cから 1 0 0 0 °Cまで連続的に変化させつつ、 C 0 2 / N 2 の原料ガス比率を連続的に減少させるこ とに より作製した。 得られたチップを用いて耐摩耗性および耐 欠損性を評価した結果を、 組成を連続的に変化させていな い試料 4 6 および 4 7 と比較して、 表 1 2 に示す。 [表 1 2 ]
耐摩耗性 耐欠損性
試料 薄 膜 切削条件 2 切削条件 3
46 A1N 145分 21秒 7分 19秒
47 A10N 181分 39秒 7分 2秒
46 - c A1203 ~A1N 183分 13秒 8分 14秒
47 - c AI2O3 -A10 186分 11秒 8分 9沙 上記の結果から、 A 1 2 03 の中間層と T i C Nの外側 層との間に A 1 Nまたは A 1 0 Nからなる薄膜を形成した 試料に関 し、 薄膜の組成を連続的に変化させた試料 4 6 - c 、 4 7 - c 力 、 組成を変化させていない試料 4 6 および 4 7 に比べて、 さ らに優れた切削性能を示すこ とがわかる , 例 1 1
上記例 2 の試料 1 2 において、 T i C N膜を被覆する際 にコーティ ング温度、 およびガス組成比を変化させて、 配 向性の異なる T i C N膜を被覆した試料 1 2 — 1 、 1 2 - 2、 1 2 - 3 , 1 2 — 4 、 1 2 - 5 および 1 2 — 6 を作製 した。 得られた試料に関し、 切削性能の評価結果を表 1 3 に示す。
[表 1 3 ]
X線回折で最高ピ-ク強度 耐摩耗性 耐欠損性 試料 を示す結晶面 切削条件 2 切削条件 3
12-1 (111) 112分 15秒 5分 17秒
12-2 (422) 124分 32秒 5分 25秒
12-3 (311) 115分 54秒 5分 12秒
12-4 (220) 63分 41秒 4分 36秒
12 - 5 (420) 75分 18秒 4分 49秒
12-6 (331) 71分 25秒 4分 21秒 以上の結果よ り、 X線回折の最高ピーク強度が ( 1 1
1 ) 、 ( 4 2 2 ) または ( 3 1 1 ) にある被覆硬質合金は 優れた切削性能を有する こ とがわかる。
例 1 2
上記例 1 の母材 2 に内側層から順に T i Ν ( 0. 5 m) /Ύ \ C N ( 3 // m) /Ύ ϊ B N ( 0.. 5 m ) / Z r 02 ( 1 z m ) / A 1 2 03 ( 1 5 m ) / A 1 0 N ( 0. / Ύ i C N ( 1 0 m ) の構造の被覆層を 形成した。 内側層の T i C N膜を被覆する際に、 成膜温度 およびガス組成比を変化させて、 結晶粒のァスぺク ト比の 異なる T i C N膜を形成した試料 4 8 — 1 、 4 8 — 2、 4 8 - 3、 4 8 - 4. および 4 8 — 5 を作製した。 切削性能 の評価結果を表 1 4 に示す。 [表 1 4 ] 内側層 T iNの 耐摩耗性 耐欠損性 試料 結晶径のァスぺク卜比 切削条件 1 切削条件 3 48-1 3 5分 15秒 6分 7秒 48-2 7 8分 21秒 7分 21秒 48-3 15 10分 34秒 7分 52秒 48-4 26 9分 27秒 7分 35秒 48-5 42 6分 18秒 6分 41秒 以上の結果よ り、 内側層のう ち最も厚い層である T i C N膜において、 結晶粒のァスぺク ト比が 5〜 3 0 の範囲内 にある 4 8 — 2、 4 8 — 3 および 4 8 — 4 は、 優れた切削 性能を有する こ とがわかる。
例 1 3
上記例 3 の試料 1 7 において、 A 1 2 0 3 膜の結晶粒径 を、 成膜条件 (コーティ ング温度およびガス組成比) を変 えるこ とで変化させ、 結晶粒のァスぺク ト比の異なる A 1 2 0 3 膜を形成した試料 1 7 — 1 、 1 7 — 2、 1 7 — 3、 1 7 - 4 および 1 7 - 5 を作製した。 切削性能の評価結果 を表 1 5 に示す。
[表 1 5 ]
A 1 203 結晶粒 耐摩耗性 耐欠損性
試料 p スぺク 卜比 切削条件 1 切削条件 3
17- 1 1 12分 10秒 5分 4 少
17-2 3 12分 3秒 7分 33秒 17-3 8 12分 21秒 8分 5秒 17 - 4 17 12分 15秒 7分 2 少 17-5 25 11分 50秒 6分 3秒 以上の結果よ り、 中間層の A 1 2 0 膜における結晶粒 のアスペク ト比が 3 〜 2 0 の範囲内にある 1 7 — 2、 1 7 一 3 および 1 7 — 4 のチ ッ プは、 優れた切削性能を有する こ とがわかる。
例 1 4
上記例 9 の試料 4 7 において、 中間層の A 1 2 0 の結 晶系を、 コーティ ング温度およびガス組成比を変化させる こ とで変化させ、 結晶系の異なる 2種類の試料を作製した ( 得られた試料について、 切削性能の評価結果を表 1 6 に示 す。
[表 1 6 ]
耐摩耗性 耐欠損性
試料 A 1 203 結晶系 切削条件 2 切削条件 3
47 κ主体 151分 39秒 7分 24秒 47 - 1 α主体 162分 15秒 8分 17秒 以上の結果よ り、 中間層の A 1 0 の結晶系について ひ型を主体とする こ とによ り、 優れた切削性能が得られる こ とがわかる。
例 1 5
例 1 4 の試料 4 7 — 1 のチ ッ プにおいて、 内側層と接す る厚み約 1 . 0 z mの中間層の部分および外側層と接する 厚み約 l mの中間層の部分のみを、 — A l 2 0 を主 体と し、 それらに挟まれた中間層の部分を、 ひ 一 A 1 2 0 を主体と した、 試料 4 7 — mを作製した。 このよ うな結 晶系を有する A 1 2 0 中間層は、 H 2 、 C 0 、 A 1 C
1 を原料ガスと して作製した。 — A 1 0 の形成は.
9 5 0 °C、 5 0 T o r r および C 02 = 2 %の条件下で行 なわれ、 ひ— A 1 2 03 の形成は、 1 0 5 0 °C、 5 0 T 0 r r および C〇 2 = 5 %の条件下で行なわれた。 また、
- A 1 0 層の形成と ひ — A 1 0 層の形成の間にお いて、 真空度を 1 0— 3T o r r以下まで上昇させた。 この よ う に して作製したチ ップを用い、 耐摩耗性および耐欠損 性について評価した結果を表 1 7 に示す。
[表 1 7 ]
耐摩耗性 耐欠損性 試料 A12Q3 の結晶系 切削条件 2 切削条件 3
47-1 α主体 162分 秒 8分 17秒
47- m /c主体— α主体- κ主体 175分 23秒 8分 31秒 例 1 6
例 4 の試料 2 3 において、 中間層の A 1 2 0 膜の配向 性を、 コーティ ン グ温度およびガス組成比を制御するこ と によって変化させた。 得られた試料 2 3 — 1 、 2 .3 - 2、
2 3 — 3、 2 3 — 4 および 2 3 - 5 について、 切削性能の 評価結果を表 1 8 に示す。
[表 1 8 ]
X線回折で最高ピ-ク強度 耐摩耗性 耐欠損性 試料 を示す結晶面 切削条件 2 切削条件 3
23-1 (104) 52分 21秒 8分 4秒
23-2 (116) 42分 33秒 7分 52秒
23-3 (113) 25分 14秒 7分 15秒
23-4 (024) 28分 17秒 6分 59秒
23-5 (300) 26分 22秒 7分 3秒 以上の結果より、 中間層の A 1 2 03 膜が、 ( 1 0 4 ) または ( 1 1 6 ) の結晶面について、 X線回折の最高ピー ク強度を有する被覆硬質合金は、 優れた切削性能を示すこ とがわかる。
例 1 7
例 1 の母材 2に、 内側層から順に T i N ( 0. m ) ZT i C N ( 3 m) ZT i B N ( 0. 5 u rn ) / A I 2 03 ( 1 5 / m) A I O N ( 0. 5 〃 m) ZT i C N
( 1 0 u rn ) の構造の被覆膜を形成した。 成膜温度および ガス組成比を変化させて、 内側層の T i C N、 中間層の A 1 2 03 、 および外側層の T i C Nの結晶粒径を変化させ た。 そ して、 内側層および外側層の T i C N結晶粒の了ス ぺク ト比が中間層 A 1 2 0 3 結晶粒のァ スぺク ト比よ り も
2倍以上大きい試料 4 8 - 6 と、 2倍以下の試料 4 8 - 7 を作製した。 これ らの試料における、 結晶粒による被覆層 中の亀裂の間隔を、 試料断面を鏡面研磨したのち、 光学頭 微鏡で観察する こ とによ り、 測定した。 亀裂の間隔は、 倍 率 5 0 0 倍において 5 視野測定を行なう こ とによ り求めら れた。 その結果を表 1 9 に示す。 得られた試料の切削性能 について も表 1 9 に示す。 [表 1 9 ]
内側層 T i CNの 外側層 T i CNの 中間層 A 1 203の 耐摩耗性 耐欠損性 試料 亀裂間隔 ( ) 亀裂間隔 亀裂間隔 ( ) _ 切削条件 1 切削条件 3
48-6 80 70 100 12分 45秒 8分 4秒
48-7 100 100 100 10分 11秒 7分 32秒 以上の結果よ り、 被覆層の亀裂間隔に関し、 内側層およ び外側層の亀裂間隔を、 中間層の亀裂間隔よ り も小さ く し た被覆硬質合金は、 優れた切削性能を示すこ とがわかる。
例 1 8
例 4 の試料 2 4 において、 被覆処理後、 遠心一バレルに よ り、 被覆層にほぼ垂直方向の亀裂を導入した試料 2 4 - 1 、 2 4 — 2 および 2 4 — 3 を作製した。 これらの試料に ついて切削性能を表 2 0 に示す。 [表 2 0 ]
被覆層の亀裂 耐摩耗性 耐欠損性
試料 間隔 ( ) 切削条件 2 切削条件 3
24 72 55分 21秒 6分 39秒
24-1 38 59分 42秒 7分 41秒 24-2 25 63分 17秒 7分 58秒 24-3 16 56分 3秒 6分 48秒 以上の結果によ り、 被覆層の亀裂間隔を 2 0 〜 4 0 m の範囲内と した被覆硬質合金は、 優れた切削性能を有する こ とがわかる。 なお、 亀裂を導入する方法は、 バ レ ル処理 以外にも、 シ ョ ッ トブラス トや弾性砥石による処理、 急冷 処理な どの方法によって行なう こ とができる。 また、 この 亀裂間隔は、 被覆層全体において形成されている必要はな く 、 切刃の稜線部分にこ の範囲の間隔で亀裂が形成されて いれば、 優れた切削性能を示す硬質被覆合金が得られる。 例 1 9
例 5 の試料 3 1 のチ ッ プ表面に、 さ らに表 2 1 に示す硬 質層を被覆し、 試料 3 1 — 1 〜 5 のチ ッ プを作製した。 こ れらのチ ッ プを用いて、 例 1 と同様に切削条件 1 および 2 によ り切削試験を行なった。 評価結果を表 2 1 に示す。 [表 2 1 ]
耐摩耗性 耐摩耗性 試料 硬質彼覆層の構成 切削条件 1 切削条件 2 31 表 1の I 4分 57秒 79分 45杪
31-1 I/Al203 (2)/TiN(0.5) 6分 39秒 81分 33秒 31-2 I/TiBN(0.5)/Α1203 (1) 6分 7秒 84分 16秒 31-3 I/Zr02(l) 5分 45秒 82分 51秒 31-4 I/TiCN(0.5)/Al203 (3)/TiN(0.5) 7分 28秒 78分 27秒 31-5 I/HfCN(0.5)/Hf02(l) 6分 54秒 83分 48秒 上記の結果からわかるように、 T i C Nの外側層の上に さ らに A 1 23 、 Z r 02 、 H f 〇 2 などの酸化物薄膜 および/または T i Nを被覆した試料は、 特に高速切削時 の耐摩耗性に優れているこ とが分かる。
例 2 0
例 8 の試料 4 4 のチ ッ プについて、 切刃の稜線部におけ る被膜を弾性砥石で部分的に研摩除去した試料 4 一 1 、 4 4 一 2、 および 4 4 — 3 を作製した。 研摩した部分の面 粗さ R a の平均値および得られた試料の切削性能を表 2 2 に示す。
[表 2 2 ]
被膜除去部分の表面粗さ 耐摩耗性 耐欠損性 試料 Raの平均値 Ctm) 切削条件 1 切削条件 3 44 0.065 147分 59秒 7分 29秒
44-1 0.048 171分 42秒 8分 5秒 44-2 0.041 183分 25秒 8分 34秒 44-3 0.030 188分 56秒 8分 21秒 なお、 面粗さ R aの平均値は、 (株) エリオニクス製の E R A 8 0 0 0.において、 切刃稜線部を 5 0 0 0倍に拡大 して計測した。 こ こでいう面粗さ R aの平均値とは、 则定 視野の水平方向ライ ン 1 8 0本についての面粗さ R aの平 均値である。 以上の結果から、 切刃の稜線部における被膜 の面粗さ R aの平均値が 0 . 0 5 ; m以下である被覆硬質 合金は、 優れた切削性能を示すこ とがわかる。
例 2 1
母材と して、 I S O M 2 0超硬合金 (母材 1 ) 、 I S 〇 K 2 0 (母材 2 ) 、 および市販のサーメ ッ ト工具 (母 材 3 ) を用意し、 各母材上に公知の化学蒸着法によ り蒸着 温度 1 0 0 0でで表 2 3 に示す硬質被覆層のいずれかを形 成し、 それぞれ S N G N 1 2 0 4 0 8 のチップ形状の工具 を作製した。 [表 2 3 ]
記号 硬質被覆層の構成 (左側が母材側、 括弧内は膜厚 ( ) )
A' TiN(0.5)/Zr02(3)/TiCN(15)
B' TiCCO.5)/TiCN(3)/TiBN(0.5)/Zr02 (D/TiN(7)
C TiCN(2)/TiC0(0.5)/Zr02 (5)/TiCN(20)
D' TiN(0.5)/TiCN0(0.5)/Zr02 (18)/TiCN(30)/TiC(10)
E' Zr02(3)/TiCN(15)
F' TiN(0.5)/Zr02(0.3)/TiCN(15)
G' TiN(0.5)/TiCN(15)/Zr02(3)
H' TiN(0.5)/Zr02(3)
I ' TiN(l)/TiBN(0.5)/Zr02 (3)/TiC(0.5)/TiCN(10)
(注) 表中の硬 K彼覆層の構成に関して、 左側が母材側および括弧内は 膜厚 ( ) を表すことは、 以下の表においても同様とする。 母材上に硬質被覆層を形成した各チップを用い、 下記表 2 4 の切削条件で S C M 4 1 5の被削材を切削加工し、 切 削性能を評価した。 その結果を表 2 5 に、 母材と硬質被覆 層の組合せとと もに示す。
[表 2 4 ] 切削 切削速度 送り 切込み
条件 (m/niin) kram/rev; ) 切削油 ホルダー 寿命判定基準
1 500 0.5 1.5 無し FN11R44A VB =0.15mm
2 200 0.4 1.5 有り FN11R44A VB =0.15删
3 100 0.3 1.5 無し FN11R44A 欠損 [表 2 5 ]
切 削 性
試 料 母材 被覆層 切削条件 1 切削条件 2
Γ A' 5分 27秒 99分 52秒 2' B' 3分 41秒 46分 19秒 3' C 9分 33秒 91分 12秒 4' D' Π分 26秒 70分 40秒
5' * E' 38秒で剝離 1分 31秒で剝離 6' * F' 59秒で欠損 84分 17秒 7' * C 43秒で欠損 17分 10秒 8' * H' 25秒で欠損 1分 24秒で欠損
(注) 表中の *を付した試料は比較例である (以下同じ) 。 上記の結果から、 本発明例の試料 1 ' 一 4 t ' のチ ッ プは 高速切削 (切削条件 1 ) だけでな く 低速切削 (切削条件 2 ) でも優れた切削性能を示すこ とがわかる。 試料 1 ' と 5 ' の比較によ り、 内側層と して T i 系化合物を有する効 果がわかる。 試料 1 ' と 6 ' の比較から、 Z r 〇 2 中間層 の膜厚が 0 . 3 mではその効果が小さいこ とがわかり、 また試料 1 ' と 7 ' の比較によって、 Z r 〇 2 は外側層と して被覆するよ り も中間層と して用いる方が耐摩耗性に優 れる こ とがわかる。 試料 1 ' と 8 ' の比較によ って外側層 と しては Z r 02 よ り も T i 系化合物の方が耐摩耗性に優 れている こ とがわかる。
例 2 2
上記例 2 1 における母材 1 の表面に下記の表 2 6 に示す 硬質被覆層を形成し、 試料 9 ' 〜 〗 4 ' のチ ッ プを準備し た。 これらのチ ッ プを用いて切削条件 2 によ り例 2 1 と同 様に切削性能を評価した。 また、 図 9 に示すよ う に、 円周 式
上に 4 つの溝を有する S C M 4 3 5 からなる被削材 7 を用 いて、 上記表 2 5 の切削条件 3 によ り耐欠損性を試験した 耐欠損性は、 チ ッ プが欠けるまでの切削時間で評価した。 これらの結果を、 表 2 6 にま とめて示す。
[表 2 6 ]
耐摩耗性 · 耐欠損性 硬質被覆層の構成 切削条件 2 切削条件 3
9' * Zr02(3)/TiCN(15) i分 49秒で剝離 3分 11秒 10' TiC(0.2)/Zr02(3)/TiCN(15) 67分 45秒 5分 7沙 11' TiC(0.5)/Zr02(3)/TiCN(15) 91分 27秒 6分 50秒 12' TiC(3)/Zr02(3)/TiCN(15) 113分 21秒 6分 24秒 13' TiC(5)/Zr02(3)/TiCN(15) 97分 14秒 5分 59秒
14' * TiC(10)/Zr02(3)/TiCN(15) 88分 5秒 4分 33秒
上記の結果からわかるよう に、 内側層と して T i 系化合 物のない試料 9 ' は被覆層の密着力が低いため、 耐摩耗性 試験において早期に被覆層の剥離が発生し、 極めて短寿命 であった。 試料 1 4 ' のチ ッ プのは内側層の膜厚が厚いた め、 やや耐欠損性に欠ける結果となったが、 耐摩耗性につ いては優れている。 これに対し本発明例の試料 1 0 ' 〜 1 3 ' では、 耐摩耗性と耐欠損性に優れ、 特に試料 1 1 ' と 1 2 ' は耐摩耗性と耐欠損性のバラ ンスに優れている。 例 2 3
上記例 2 1 における母材 2 の表面に下記の表 2 7 に示す 硬質被覆層を形成し、 試料 1 5 ' 〜 2 1 ' チ ッ プを準備し た。 これらのチ ップを用いて切削条件 1 よ り例 2 1 と同様 に切削性能を評価した。 また、 例 2 2 と同様に して、 切削 条件 3 によ り耐欠損性を試験した。 これ らの結果を、 表 2 7 にま とめて示す。
[表 2 7 ]
耐摩耗性 , 耐欠損性 試 料 硬質被覆層の構成 切削条件 1 切削条件 3
15' * TiCN(2)/Zr02(0.3)/TiC(13) 2分 18秒で欠損 7分 19秒
16' TiCN(2)/Zr02(0.5)/TiC(13) 8分 22秒 8分 51秒
17' TiCN(2)/Zi 2(3)/TiC(13) 13分 37秒 9分 25秒
18' TiCN(2)/ZrO2(10)/TiC(13) 15分 41秒 8分 31秒
19' TiCN(2)/Zr02(15)/TiC(13) 14分 18秒 8分 Π秒
20' TiCN(2)/Zr02(20)/TiC(13) 12分 34秒 7分 15秒
21' * TiCN(2)/Zr02(30)/TiC(13) 11分 16秒 6分 8秒 上記の結果からわかるように、 Z r 02 の中間層の膜厚 が薄い試料 1 5 ' と厚い試料 2 1 ' 以外は、 耐摩耗性と耐 欠損性のバラ ンスに優れた切削性能を示し、 中でも試料 1 7 ' 、 1 8 ' 、 1 9 ' のチ ッ プは特に優れた切削性能を示 した。
例 2 4
例 2 1 における母材 3 の表面に下記の表 2 8 に示す硬質 被覆層を形成し、 試料 2 2 ' 〜 2 8 ' のチ ッ プを準備した < これ らのチ ッ プを用いて切削条件 1 および 2 によ り洌 2 1 と同様に切削性能を評価し、 また例 2 2 と同様に して切削 条件 3 によ り耐欠損性を試験した。 これらの結果を、 表 2 8 にま とめて示す。
[表 2 8 ]
耐摩耗性 耐摩耗性 耐欠損性 試 料 硬質被?!層の構成 切削条件 1 切削条件 2 切削条件 3
22' 氺 T N(4)/Zr02(3)/TiCN(2) 1分 12沙欠損 8分 12秒欠損 9分 47秒
23' T N(4)/ZrO2(3)/TiCN(10) 4分 15杪 22分 39秒 8分 41秒
24' T tN(4)/Zr02(3)/TiCN(15) 5分 49秒 53分 10秒 7分 58秒
25' T N(4)/Zr02(3)/TiCN(30) 7分 3秒 85分 14秒 6分 35秒
26' T N(4)/Zr02(3)/TiCN(46) 6分 11秒 72分 51秒 6分 7秒
27' T N(4)/Zr02(3)/TiCN(95) 5分 20秒 65分 32秒. 3分 29秒
28' 氺 T N(4)/Zr02(3)/TiCN(120) 3分 5秒 49分 8秒 2分 36秒 上記の結果からわかるよ う に、 T i C Nの外側層の膜厚 が薄い試料 2 2 ' と厚い試料 2 8 ' 以外は、 耐摩耗性と耐 欠損性のバラ ンスに優れた切削性能を示し、 中でも試料 2 4 ' 、 2 5 ' 、 2 6 ' のチ ップは特に優れた切削性能を示 した。
また、 上記例 2 3 の表 2 7 および例 2 4 の表 2 8 に示す 結果から、 硬質被覆層の合計膜厚が 2 0〜 6 の範囲 内にある試料 1 8 ' 〜 1 9 ' および 2 4 ' 〜 2 6 ' は、 耐 摩耗性と耐欠損性のバラ ンスが特に優れている こ とがわか o 例 2 5
上記例 2 1 における母材 1 の表面に、 上記表 2 3 の記号 I ' の構成からなる硬質被覆層を形成し、 試料 2 9 ' 〜 3 4 ' のチ ッ プを準備した。 なお、 これらの試料における最 外側の T i C N層の結晶粒の形状を、 成膜条件を変える こ とで変化させた。 これらのチ ッ プを用いて例 2 1 と同様に 切削条件 2 によ り切削性能を評価し、 また例 2 2 と同様に して切削条件 3 によ り耐欠損性を試験した。 これらの結果 を表 2 9 にま とめて示す。
[表 2 9 ]
Ti CN層の 耐摩耗性 耐欠損性 試料 ァスぺク 卜比 切削条件 2 切削条件 3
29' 1. 5 48分 21秒 4分 9秒
30 ' 5 72分 44秒 6分 11秒
31 ' 15 81分 9秒 7分 59秒
32 ' 35 86分 12秒 9分 5秒
33' 70 78分 37秒 8分 21秒
34 ' 100 60分 11秒 8分 5秒 外側被覆層のう ちの最外側の T i C N層を構成する T i C N結晶粒のァスぺク ト比が 5 〜 8 0 の範囲内にある場合 耐摩耗性および耐欠損性に優れ、 中でも試料 3 1 ' と 3 2 ' は特に優れた性能を示すこ とがわかる。
例 2 6
上記例 2 1 で作製した試料 1 ' (母材 1 ' 質被覆層 A ' ) チ ッ プの外側層である T i C N層の C : N比を、 X線 回折法によ り格子定数を求めて算出 したと ころ、 モル比で 4 : 6 であった。 次に、 試料 1 ' と内側層および中間層は 同 じであるが、 原料ガスの流量比を変化させる こ とで表 3 0 に示す C : N比の異なる T i C N層を外側層と して形成 し、 試料 3 5 ' 〜 3 8 ' のチッ プを作製した。
これらのチ ッ プを用いて例 2 1 と同様に切削条件 1 およ び 2 によ り切削性能を評価し、 また例 2 2 と同様に して切 削条件 3 によ り耐欠損性を試験した。 これらの結果を表 3 0 にま とめて示す。
[表 3 0 ]
TiCN層の 耐摩耗性 耐摩耗性 耐欠損性
C : N比 切削条件 1 切削条件 2 切削条件 3
Γ 4 : 6 5分 27秒 99分 52秒 5分 59秒
35' 5: 5 8分 5秒 127分 24秒 6分 56秒
36' 6:4 9分 17秒 140分 15秒 6分 28秒
37' 7: 3 8分 31秒 157分 18秒 5分 31秒
38' 8:2 7分 42秒 128分 9秒 4分 20秒 上記の結果から、 C : N比がモル比で 5 : 5 〜 7 : 3 の 範囲にある試料 3 5 ' 〜 3 7 ' のチ ッ プは 、 耐摩耗性およ び耐欠損性に優れ、 優れた切削性能を示すこ と力 わ力、る。 例 2 7
母材 1 の表面上に上記表 2 3 の記号 D ' の硬質被覆層を 形成するに際して、 外側層のう ちの T i C N層の形成を、 原料ガスと して T i C 1 と C H 3 . C Nおよびキ ヤ リ アガ スと して水素ガスを用い、 1 0 0 0 °Cおよび 5 0 T 0 r r の圧力で行なう こ とによ り、 試料 3 9 ' のチ ッ プを作製し た。 得られたチ ッ プを用いて、 切削条件 1 および 2 によ り 切削性能を評価した結果を表 3 1 に示す。
また、 通常の C V D法によ り、 原料ガスと して T i C 】 と C H 4 と窒素ガス、 およびキャ リ アガスと して水素ガ スを用いた以外、 上記と同様に して T i C N層を形成した 試料 4 ' について、 同様に評価した結果を表 3 1 に併せて 示す。 表 3 1 から、 原料ガスと して C H 3 C Nを用いた試 料 3 9 ' の方が、 優れた切削性能を示すこ とがわかる。
[表 3 1 ]
耐摩耗性 ffi摩耗性
試料 切削条件 1 切削条件 2
4' 17分 26秒 70分 40秒
39' 28分 15秒 111分 9秒 例 2 8
上記例 2 2 の試料 1 1 ' のチッ プにおいて、 Z r 〇 2 の 中間層と T i C Nの外側層との間に、 T i B N、 T i B N 〇、 T i N〇、 T i C 〇、 T i C N〇、 または T i 〇 2 か らなる薄膜を通常の C V D法によ り 1 0 0 0 °Cで約 0 . 5 mの膜厚に形成した試料 4 0 ' 〜 4 5 ' のチ ッ プを作製 した。 なお、 原料ガスは、 膜質に応じて T i C 1 4 、 C H 4 、 N 2 、 H 2 、 C O、 N H 3 、 B C 1 3 を使用 した。 得 られた各チ ッ プについて耐摩耗性および耐欠損性を評価し た結果を、 試料 1 1 ' のチ ッ プと比較して表 3 2 に示す。
[表 3 2 ]
耐摩耗性 耐欠損性
試料 薄 膜 切削条件 2 切削条件 3
11' 無し 91分 27秒 6分 50秒
40' TiBN 123分 7秒 7分 24秒
41 TiBNO 115分 43秒 7分 18秒
42' TiNO 112分 14秒 6分 49杪
43' TiCO 128分 51秒 6分 31秒
44' TiCNO 136分 21秒 7分 6秒
45' Ti02 109分 32秒 6分 31秒 この結果から、 Z r 0 の中間層と T i C Nの外側層と の間に、 T i B N 、 T i B N O. T i N〇、 T i C O. T i C NO、 または T i 〇 2 からなる薄膜を形成した試料 4
0 ' 〜 4 5 ' は、 これらの薄膜のない試料 1 1 ' よ り も、 優れた切削性能を示すこ とがわかる。
例 2 9
上記例 2 4 の試料 2 5 ' のチ ッ プにおいて、 Z r 〇 2 の 中間層と T i C Nの外側層との間に、 Z r C、 Z r C N、
Z r N、 Z r C 0 、 Z r C N〇、 Z r NOからなる薄膜を 通常の C V D法によ り 1 0 0 0 °Cで約 0 . 5 〃 mの膜厚に 形成した試料 4 6 ' 〜 5 1 ' のチ ッ プを作製した。 なお、 原料ガスは、 膜質に応じて Z r C 1 、 C 02 、 N 2 、 H 2 を使用 した。 得られた各チップについて耐摩耗性および 耐欠損性を評価した結果を、 試料 2 5 ' のチ ップと比較し て表 3 3に示す。
[表 3 3 ]
ΙΠΐί ί Ϊϊ
試料 膜 切削条件 2 切削条件 3
25' 無し 85分 14秒 6分 35秒
46' ZrC 131分 12秒 7分 19秒
47' ZrCN 138分 41秒 7分 28秒
48' ZrN 125分 33秒 7分 34秒
49' ZrCO 142分 29秒 7分 9沙
50' ZrCNO 135分 8秒 7分 18秒
51' ZrNO 121分 19秒 7分 47秒 上記の結果から、 Z r 〇 2 の中間層と T i C Nの外側層 との間に、 Z r C:、 Z r C N. Z r N. Z r C O. Z r C N 0、 または Z r N 0からなる薄膜を形成した試料 4 6 ' 〜 5 1 ' は、 これらの薄膜のない試料 2 5 ' と比較して、 優れた切削性能を示すこ とがわかる。
例 3 0
上記例 2 2の試料 1 1 ' のチップの中間層を A l 2 03 で置き換えて被覆した試料 5 2 ' 〜 5 4 ' を作製した。 こ れらのチップを用いて、 S U S 3 0 4を切削速度 3 5 0 m Zm i n、 送り 0. S mmZ r e v、 切込み 1 . 5 mmの 条件で湿式にて 2 0分間切削し、 塑性変形量と境界摩耗量 を则定した。 また、 上記表 2 4の切削条件 3での耐欠損性 を評価し、 これらの結果を表 3 4 に示す。
[表 3 4 ]
中間層 塑性変形量 境界摩耗量 耐欠損性 試料 (mm) (mm) 切削条件 3
11' Zr02(3) 0 0.13 6分 50秒
52' Al203(3) 0.07 0.32 6分 12秒
53' Al203(10) 0.02 0.35 5分 53秒
54' Al203(20) 0 0.41 5分 34秒
(注) 中間層の括弧内は膜厚 ( m) である。 この結果よ り、 中間層と して Z r 02 を被覆した試料 1 1 ' のチ ッ プは、 中間層と して A 1 2 03 を被覆した他の 試料のチ ッ プと比較して、 境界摩耗量が小さ く 、 塑性変形 量も同一膜厚の試料 5 2 ' よ り も小さいこ と、 および耐欠 損性に も優れている こ とがわかる。
例 3 1
例 2 4の試料 2 5 ' のチ ッ プにおいて、 Z r 02 の中間 層と T i C Nの外側層との間に、 Z r 〇 2 から Z r Nまで. または Z r 02 から Z r N〇まで組成が連続的に変化した 層を、 約 0. 5 mの厚さで形成した。 こ の層は、 通常の C VD法を用いて、 温度を 9 0 0 °Cから 1 0 0 0 °Cまで連 続的に変化させ、 C〇 2 /N 2 の原料ガス比を連続的に減 少させる こ とによ り作製した。 このよ う に して膜中におけ る 0および Nの含量が連続的に変化した試料 4 8 ' — c お よび 5 1 ' 一 c を得た。 得られた試料を用いて、 耐摩耗性 および耐欠損性を評価した結果を、 組成を連続的に変化さ せていない試料 4 8 ' および 5 1 ' と比較して表 3 5 に示 す。
[表 3 5 ]
耐摩耗性 耐欠損性
薄 膜 切削条件 2 切削条件 3
48' ZrN 125分 33秒 7分 34秒
51 ' ZrNO 121分 19秒 7分 47秒
48' -c Zr02〜ZrN 154分 25秒 8分 16杪
51 ' -c Zr02~ZrN0 0分 13秒 8分 35秒 上記の結果から、 Z r 〇 2 の中間層と T i C Nの外側層 との間の Z r Nまたは Z r N〇からなる薄膜を形成した試 料において、 薄膜の組成を連続的に変化させた試料 4 8 ' 一 c および 5 1 ' 一 c は、 組成を変化させていない試料 4 8 ' および 5 1 ' に比べて、 さ らに優れた切削性能を示す こ とがわかる。
例 3 3
上記例 2 5 の試料 3 1 ' のチ ッ プ表面に、 さ らに表 3 6 に示す硬質層を被覆し、 試料 3 1 ' - 1 〜 5 のチ ッ プを作 製した。 これらのチ ッ プを用いて、 例 2 1 と同様に切削条 件 1 および 2 によ り切削試験を行なった。 これらの評価結 果を表 3 6 に示す。
一 5 [表 3 6 ] 耐摩耗性 耐摩耗性
■r-r 届の; 1:羞 fit tJl削 件 1 切削^件 2
31' 表 23の I ' 5分 32秒 81分 9秒
31' -1 V /Al203 (2)/TiN(0.5) 7分 秒 83分 14秒
31' -2 I' /TiBNCO.5)/A 03(l) 6分 49秒 85分 46秒
31' -3 I' /Zr02(l) 7分 5秒 84分 28秒
31' -4 I' /TiCN(0.5)/Al203 (3)/TiN(0.5) 7分 38秒 79分 31秒
31' -5 V /HfCNCO.5)/Hf02(l) 7分 24秒 82分 17秒 上記の結果からわかるよ う に、 T i C Nの外側層の上に さ らに A 1 2 03 、 Z r 02 、 H f 02 などの酸化物薄膜 および Zまたは T i Nを被覆した試料 3 1 ' - 1 〜 5は、 特に高速切削時の耐摩耗性に優れているこ とがわかる。
産業上の利用可能性
本発明によれば、 優れた耐摩耗性および耐欠損性を有す る被覆硬質合金を提供する こ とができる。 本発明は、 特に. 通常の切削条件はも とよ り、 刃先温度が 1 0 0 0 °Cを超え るような高速または高能率の厳しい切削条件においても十 分に使用に耐え得る切削工具用被覆硬質合金を提供する こ とができ る。
今回開示された実施の形態はすべての点で例示であって 制限的な ものではないと考えられるべきである。 本発明の 範囲は上記した説明ではな く て特許請求の範囲によって示 され、 特許請求の範囲と均等の意味および範囲内でのすべ ての変更が含まれる こ とが意図され.る

Claims

請求の範囲 .
1 . 超硬合金およびサー メ ッ 卜からなる群から選択され る母材の表面に、 硬質被覆層を設けた被覆硬質合金におい て、
前記硬質被覆層が、
前記母材上に形成され、 かつ T i の炭化物、 窒化物、 炭 窒化物、 炭酸化物、 炭窒酸化物および硼窒化物からなる群 から選択される材料の少な く と も 1 層からなる内側層と、 前記内側層上に形成され、 かつ A 1 2 0 3 、 Z r 0 2 お よびそれらの混合物も し く は固溶体からなる群から選択さ れる酸化物を主体とする中間層と、
前記中間層上に形成され、 かつ T i の炭化物、 窒化物、 炭窒化物、 炭酸化物、 炭窒酸化物および硼窒化物からなる 群から選択される材料の少な く と も 1 層からなる外側層と を備え、
前記中間層の厚みは、 前記 A 1 2 0 3 が主体である場合
5 m以上であ り、 前記 Z r 〇 2 が主体である場合 0 . 5 m以上であり、
前記外側層の厚みは、 5 m以上であり、 かつ前記内側 層の厚みを上回っている こ とを特徴とする、 被覆硬質合金 c 2 . 前記内側層の厚みは 0 . 1 〜 5 mであり、
前記中間層の厚みは、 前記 A 1 2 0 3 が主体である場合
5〜 5 0 ΓΏであり、 前記 Z r 0 2 が主体である場合 0 . 5〜 2 0 mであり、 かつ 前記外側層の厚みは 5 〜 1 0 0 ^ mであるこ とを特徴と する、 請求項 1 に記載の被覆硬質合金。
3. 前記内側層の厚みは 0. 5〜 3 〃 mであり、
前記中間層の厚みは、 前記 A 1 2 03 を主体とする場合 1 0〜 4 0 〃 171、 前記 2 1" 〇 2 を主体とする場合 3〜 1 5 mであり、
前記外側層の厚みは 1 0〜 5 0 mであり、 かつ 前記内側層、 中間層および外側層の厚みの合計が、 前記 中間層において A I 2 03 を主体とする場合 2 5〜 6 0 m、 前記中間層において Z r 02 を主体とする場合 2 0〜
6 0 mであるこ とを特徴とする、 請求項 1 または 2 に記 載の被覆硬質合金。
4. 前記 A 1 2 03 を主体とする中間層と外側層との間 に、 前記中間層に接して、 A 1 の窒化物および酸窒化物か らなる群から選択される材料からなる A 1 含有薄膜をさ ら に備えるこ とを特徵とする、 請求項 1 〜 3のいずれか 1 項 に記載の被覆硬質合金。
5. 前記 A 1 含有薄膜において、 窒素含量は前記中間層 に近く なるにつれて減少し、 かつ酸素含量は前記中間層に 近く なるにつれて増加するこ とを特徴とする、 請求項 4 に 記載の被覆硬質合金。
6. 前記 A 1 含有薄膜と前記外側層との間に、 T i B N 0、 T i N Oおよび T i 02 からなる群から選択される材 料からなる薄膜をさ らに備えるこ とを特徴とする、 請求項 4 または 5に記載の被覆硬質合金。 ·
7. 前記 Z r 〇 2 を主体とする中間層と外側層との間に 前記中間層に接して、 Z rの炭化物、 窒化物、 炭窒化物、 炭酸化物、 酸窒化物および炭窒酸化物からなる群から選択 される材料からなる Z r含有薄膜をさ らに備える こ とを特 徵とする、 請求項 1〜 3のいずれか 1 項に記載の被覆硬質 ム ≥:
□ 3Ξ
8. 前記 Z r含有薄膜において、 窒素含量および また は炭素含量は前記中間層に近く なるにつれて減少し、 かつ 酸素含量は前記中間層に近く なるにつれて増加する こ とを 特徴とする、 請求項 7に記載の被覆硬質合金。
9. 前記 Z r含有薄膜と前記外側層との間に、 T i B N 〇、 T i NOおよび T i 02 からなる群から選択される材 料からなる薄膜をさ らに備える こ とを特徵とする、 請求項 7または 8に記載の被覆硬質合金。
1 0. 前記中間層は、 T i B N、 T i C 0および T i C N Oからなる群から選択される材料からなる薄膜を介して 前記外側層に接している こ とを特徵とする、 請求項 1 〜 9 のいずれか 1項に記載の被覆硬質合金。
1 1. 前記中間層と前記外側層との間に、 前記中間層に 接して、 T i B NO、 T i NOおよび T i 〇 2 からなる群 から選択される材料からなる薄膜をさ らに備える こ とを特 徴とする、 請求項 1 〜 1 0のいずれか 1項に記載の被覆硬 暂ム 全
1 2. 前記外側層が、 5 〜 8 0 のアスペク ト比を有する 柱状結晶を主体とする層を含むこ とを特徴とする、 請求項 1 〜 1 1 のいずれか 1 項に記載の被覆硬質合金。
1 3. 前記外側層が T i C Nを主体とする層からな り、 その C : N比がモル比で 5 : 5〜 7 : 3の範囲にあるこ と を特徴とする、 請求項 1 2 に記載の被覆硬質合金。
1 4. 前記外側層の T i C Nが、 ( 1 1 1 ) 、 ( 4 2
2 ) および ( 3 1 1 ) からなる群から選択される結晶面に ついて、 X線回折の最高ピーク強度を有する こ とを特徴と する、 請求項 1 3 に記載の被覆硬質合金。
1 5. 前記内側層において最も厚い層が、 5〜 3 0 のァ スぺク ト比を有する柱状結晶を主体とする こ とを特徵とす る、 請求項 1 〜 1 4 のいずれか 1 項に記載の被覆硬質合金。
1 6. 前記中間層が、 3〜 2 0 のアスペク ト比を有する 柱状結晶を主体とする層を含むこ とを特徵とする、 請求項
1 〜 1 5 のいずれか 1 項に記載の被覆硬質合金。
1 7. 前記中間層の A l 2 0 が、 ひ 一 A l 2 0 を主 体とする こ とを特徵とする、 請求項 1 〜 6 および 1 0〜 1
6のいずれか 1 項に記載の被覆硬質合金。
1 8. 前記中間層の A 1 23 力く、 ( 1 0 4 ) および
( 1 1 6 ) からなる群から選択される結晶面について、 X 線回折の最高ピー ク強度を有する こ とを特徴とする、 請求 項 1 7 に記載の被覆硬質合金。
1 9. 前記中間層における A 1 2 0 の結晶系が、 前記 内側層と接する付近および前記外側層 と接する付近で、
- A 1 2 03 を主体とする こ とを特徵とする、 請求項 1 7 または 1 8 に記載の被覆硬質合金。
2 0 . 前記硬質被覆層が複数の亀裂を有しており、 隣合 う亀裂同士の間隔の平均が 2 0〜 4 0 mである こ とを特 徵とする、 請求項 ! 〜 1 9 のいずれか 1 項に記載の被覆硬 質合金。
2 1 . 前記硬質被覆層が複数の亀裂を有しており、 前記 内側層および前記外側層における亀裂同士の間隔が、 前記 中間層における亀裂同士の間隔よ り も小さいこ とを特徴と する、 請求項 1 〜 2 0 のいずれか 1 項に記載の被覆硬質合 金。
2 2. 前記外側層上に形成され、 かつ A 1 2 03 、 Z r 02 および H f 〇 2 からなる群から選択される酸化物から なる薄膜をさ らに備え、 かつ前記薄膜は前記中間層よ り も 薄いこ とを特徴とする、 請求項 1 〜 2 1 のいずれか 1 項に 記載の被覆硬質合金。
2 3 . 切削工具の形状を有しており、 かつ前記切削工具 の切れ刃における前記硬質被覆層の一部が除去されて、 面 粗さ R a の平均値が 0 . 0 5 ;/ m以下である表面が形成さ れている こ とを特徵とする、 請求項 1 〜 2 2 のいずれか 1 項に記載の被覆硬質合金。
PCT/JP1995/002016 1994-10-04 1995-10-02 Alliage dur revetu WO1996010658A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP95932963A EP0732423B1 (en) 1994-10-04 1995-10-02 Coated hard alloy
US08/652,496 US5871850A (en) 1994-10-04 1995-10-02 Coated hard metal material
KR1019960702932A KR100250587B1 (ko) 1994-10-04 1995-10-02 피복 경질합금
DE69521410T DE69521410T2 (de) 1994-10-04 1995-10-02 Beschichtete hartlegierung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP26457594 1994-10-04
JP26457494 1994-10-04
JP6/264574 1994-10-04
JP6/264575 1994-10-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/204,812 Continuation-In-Part US6183846B1 (en) 1994-10-04 1998-12-03 Coated hard metal material

Publications (1)

Publication Number Publication Date
WO1996010658A1 true WO1996010658A1 (fr) 1996-04-11

Family

ID=26546573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002016 WO1996010658A1 (fr) 1994-10-04 1995-10-02 Alliage dur revetu

Country Status (6)

Country Link
US (2) US5871850A (ja)
EP (1) EP0732423B1 (ja)
KR (1) KR100250587B1 (ja)
DE (1) DE69521410T2 (ja)
TW (1) TW306938B (ja)
WO (1) WO1996010658A1 (ja)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2157021T3 (es) 1996-10-09 2001-08-01 Widia Gmbh Cuerpo compuesto, procedimiento para su fabricacion y utilizacion del cuerpo compuesto.
DE19719195A1 (de) 1997-05-09 1998-11-12 Widia Gmbh Schneideinsatz zum Zerspanen und Verfahren zur Herstellung dieses Schneideinsatzes
JP4185172B2 (ja) * 1997-06-19 2008-11-26 住友電工ハードメタル株式会社 被覆硬質工具
US6020243A (en) * 1997-07-24 2000-02-01 Texas Instruments Incorporated Zirconium and/or hafnium silicon-oxynitride gate dielectric
US6015614A (en) * 1997-11-03 2000-01-18 Seco Tools Ab Cemented carbide body with high wear resistance and extra tough behavior
US6387060B1 (en) * 1998-06-17 2002-05-14 Advanced Cardiovascular Systems, Inc. Composite radiopaque intracorporeal product
JP2000042806A (ja) * 1998-07-31 2000-02-15 Toshiba Tungaloy Co Ltd 切削工具用積層被覆体
US6492011B1 (en) * 1998-09-02 2002-12-10 Unaxis Trading Ag Wear-resistant workpiece and method for producing same
EP1115905B1 (de) * 1998-09-24 2002-11-06 Widia GmbH Verbundwerkstoff-überzug und verfahren zu seiner herstellung
US6251508B1 (en) * 1998-12-09 2001-06-26 Seco Tools Ab Grade for cast iron
US6221469B1 (en) * 1998-12-09 2001-04-24 Seco Tools Ab Grade for steel
KR100671919B1 (ko) * 1999-06-21 2007-01-22 스미토모덴키고교가부시키가이샤 피복 경질 합금
DE60012850T2 (de) * 1999-11-25 2005-02-03 Seco Tools Ab Beschichteter Schneideinsatz für Fräs- und Drehanwendungen
CA2327092C (en) * 1999-12-03 2004-04-20 Sumitomo Electric Industries, Ltd. Coated pcbn cutting tools
DE19962056A1 (de) * 1999-12-22 2001-07-12 Walter Ag Schneidwerkzeug mit mehrlagiger, verschleissfester Beschichtung
US6779951B1 (en) * 2000-02-16 2004-08-24 U.S. Synthetic Corporation Drill insert using a sandwiched polycrystalline diamond compact and method of making the same
JP4437353B2 (ja) * 2000-03-30 2010-03-24 株式会社タンガロイ 被覆切削工具およびその製造方法
DE10109523A1 (de) * 2001-02-28 2002-09-05 Ceram Tec Ag Innovative Cerami Hartstoffbeschichtetes Bauteil mit Zwischenschicht zur Verbesserung der Haftfestigkeit der Beschichtung
US6733874B2 (en) * 2001-08-31 2004-05-11 Mitsubishi Materials Corporation Surface-coated carbide alloy cutting tool
US6655181B2 (en) * 2001-10-15 2003-12-02 General Motors Corporation Coating for superplastic and quick plastic forming tool and process of using
EP1473101A4 (en) * 2002-01-18 2007-10-24 Sumitomo Electric Industries SURFACE-FINISHED CUTTING TOOL
DE10222347C2 (de) 2002-05-21 2003-11-27 Walter Ag TiBN-Beschichtung für einen Schneideinsatz oder ein Schneidwerkzeug
JP2004284003A (ja) 2003-02-28 2004-10-14 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
DE10320652A1 (de) * 2003-05-07 2004-12-02 Kennametal Widia Gmbh & Co.Kg Werkzeug, insbesondere Schneidwerkzeug und Verfahren zur CVD-Abscheidung einer zweiphasigen Schicht auf einem Substratkörper
SE526567C2 (sv) * 2003-07-16 2005-10-11 Sandvik Intellectual Property Stödlist för långhålsborr med slityta i avvikande färg
JP3896358B2 (ja) * 2003-12-22 2007-03-22 Tdk株式会社 磁気ヘッド用基板材料、磁気ヘッド用基板、ヘッドスライダおよび磁気ヘッド用基板の製造方法
DE102004010285A1 (de) * 2004-03-03 2005-09-29 Walter Ag Beschichtung für ein Schneidwerkzeug sowie Herstellungsverfahren
US7455918B2 (en) * 2004-03-12 2008-11-25 Kennametal Inc. Alumina coating, coated product and method of making the same
WO2005092608A1 (ja) * 2004-03-29 2005-10-06 Kyocera Corporation 表面被覆部材および切削工具
SE528107C2 (sv) * 2004-10-04 2006-09-05 Sandvik Intellectual Property Belagt hårdmetallskär, speciellt användbart för höghastighetsbearbetning av metalliska arbetsstycken
CN101080295B (zh) 2004-12-14 2010-08-18 住友电工硬质合金株式会社 被覆切削工具
US7597970B2 (en) * 2005-03-22 2009-10-06 Kyocera Corporation Surface coated member and cutting tool
US7722246B1 (en) * 2005-04-20 2010-05-25 Carty William M Method for determining the thermal expansion coefficient of ceramic bodies and glazes
JP2007144992A (ja) * 2005-10-28 2007-06-14 Fujifilm Corp 凹凸構造体とその製造方法、圧電素子、インクジェット式記録ヘッド、インクジェット式記録装置
SE530755C2 (sv) * 2006-03-03 2008-09-02 Sandvik Intellectual Property Belagt cermetskär och användning därav
SE530189C2 (sv) * 2006-04-25 2008-03-25 Seco Tools Ab Gängskär med hel yta av PCBN samt gängverktyg och metod för formning av gänga
JP4747344B2 (ja) * 2006-08-31 2011-08-17 住友電工ハードメタル株式会社 表面被覆切削工具
EP1897970B2 (en) * 2006-09-05 2016-06-15 Tungaloy Corporation Coated cutting tool and method for producing the same
DE102007058564A1 (de) * 2007-11-30 2009-06-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verschleißschutzbeschichtung für Bauteile oder Werkzeuge
KR101057106B1 (ko) * 2008-10-21 2011-08-16 대구텍 유한회사 절삭 공구 및 이의 표면 처리방법
EP2342367A4 (en) * 2008-10-30 2012-03-21 Sandvik Intellectual Property COATED TOOL AND METHOD FOR THE PRODUCTION THEREOF
US8007928B2 (en) * 2008-11-07 2011-08-30 Masco Corporation Coated article with black color
CN102049889A (zh) * 2009-10-28 2011-05-11 乔云鹏 抗光热辐射纳米复合织物涂层材料及其制备方法
DE102010000640A1 (de) * 2010-03-04 2011-09-08 Gühring Ohg Stirnfräser
US8734070B2 (en) 2010-10-20 2014-05-27 Kennametal Inc. Toolholder with externally-mounted dynamic absorber
US8574728B2 (en) 2011-03-15 2013-11-05 Kennametal Inc. Aluminum oxynitride coated article and method of making the same
US8524360B2 (en) 2011-08-29 2013-09-03 Kennametal Inc. Cutting insert with a titanium oxycarbonitride coating and method for making the same
EP2759360B1 (en) * 2011-09-22 2019-02-13 Tungaloy Corporation Surface-coated cutting tool
US9028953B2 (en) 2013-01-11 2015-05-12 Kennametal Inc. CVD coated polycrystalline c-BN cutting tools
US9017809B2 (en) 2013-01-25 2015-04-28 Kennametal Inc. Coatings for cutting tools
US9138864B2 (en) 2013-01-25 2015-09-22 Kennametal Inc. Green colored refractory coatings for cutting tools
JP6213867B2 (ja) 2013-02-21 2017-10-18 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
US8974896B2 (en) * 2013-03-08 2015-03-10 Vapor Technologies, Inc. Coated article with dark color
DE112014001520B4 (de) 2013-03-21 2023-06-15 Kennametal Inc. Beschichtungen für Schneidwerkzeuge
US9371580B2 (en) 2013-03-21 2016-06-21 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
DE112014001562B4 (de) 2013-03-21 2019-08-08 Kennametal Inc. Beschichtungen für Schneidwerkzeuge
US9427808B2 (en) 2013-08-30 2016-08-30 Kennametal Inc. Refractory coatings for cutting tools
US9719175B2 (en) 2014-09-30 2017-08-01 Kennametal Inc. Multilayer structured coatings for cutting tools
JP6641925B2 (ja) * 2014-11-27 2020-02-05 三菱マテリアル株式会社 掘削チップおよび掘削ビット
US9650712B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Inter-anchored multilayer refractory coatings
US9650714B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Nanocomposite refractory coatings and applications thereof
EP3287857B1 (fr) * 2016-08-26 2019-04-03 The Swatch Group Research and Development Ltd. Procédé d'obtention d'un article à base de zircone ayant un aspect métallique
US12031207B2 (en) * 2017-04-07 2024-07-09 Sandvik Intellectual Property Ab Coated cutting tool
JP6999383B2 (ja) 2017-11-29 2022-01-18 株式会社タンガロイ 被覆切削工具
JP6784928B2 (ja) 2018-09-04 2020-11-18 株式会社タンガロイ 被覆切削工具
JP7060528B2 (ja) * 2019-01-18 2022-04-26 株式会社タンガロイ 被覆切削工具
JP6999585B2 (ja) * 2019-01-18 2022-01-18 株式会社タンガロイ 被覆切削工具
JP7055761B2 (ja) 2019-02-15 2022-04-18 株式会社タンガロイ 被覆切削工具
US11273498B2 (en) * 2020-06-04 2022-03-15 Sumitomo Electric Hardmetal Corp. Cutting tool

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243188B1 (ja) * 1971-07-07 1977-10-28
JPS5428316A (en) * 1977-08-03 1979-03-02 Sumitomo Electric Industries Wearr and heatt resistant coated super hard alloy members
JPS5652109B2 (ja) * 1976-02-20 1981-12-10
JPH02236268A (ja) * 1989-03-07 1990-09-19 Nissin Electric Co Ltd 窒化ホウ素膜の形成方法
JPH04341580A (ja) * 1990-12-25 1992-11-27 Mitsubishi Materials Corp 硬質層被覆サーメット
JPH0549750B2 (ja) * 1985-02-26 1993-07-27 Sumitomo Electric Industries
JPH0615714B2 (ja) * 1981-09-11 1994-03-02 イスカ−・リミテツド 焼結硬質金属製品
JPH06106402A (ja) * 1992-09-28 1994-04-19 Mitsubishi Materials Corp 表面被覆wc基超硬合金製切削工具
JPH07305181A (ja) * 1994-05-09 1995-11-21 Hitachi Tool Eng Ltd 被覆超硬合金

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243188A (en) * 1975-10-01 1977-04-04 Nippon Kokan Kk <Nkk> Side trimming method for rolled steel plate and its device
AR214922A1 (es) 1977-05-25 1979-08-15 Donaldson Co Inc Un purificador de dos etapas de aire
JPS5652109A (en) * 1979-09-26 1981-05-11 Fujitsu Ltd Removal of chips in drill
USRE32111E (en) * 1980-11-06 1986-04-15 Fansteel Inc. Coated cemented carbide bodies
US4357382A (en) * 1980-11-06 1982-11-02 Fansteel Inc. Coated cemented carbide bodies
JPS60238481A (ja) * 1984-05-14 1985-11-27 Sumitomo Electric Ind Ltd 多重層被覆超硬合金
US4714660A (en) * 1985-12-23 1987-12-22 Fansteel Inc. Hard coatings with multiphase microstructures
US4696352A (en) * 1986-03-17 1987-09-29 Gte Laboratories Incorporated Insert for a drilling tool bit and a method of drilling therewith
US4749629A (en) * 1987-01-20 1988-06-07 Gte Laboratories Ultrathin laminated oxide coatings and methods
US4984940A (en) * 1989-03-17 1991-01-15 Kennametal Inc. Multilayer coated cemented carbide cutting insert
US5075181A (en) * 1989-05-05 1991-12-24 Kennametal Inc. High hardness/high compressive stress multilayer coated tool
JP2646291B2 (ja) * 1989-09-11 1997-08-27 ユニオン・カーバイド・コーティングズ・サービセズ・テクノロジー・コーポレイション 窒化チタン化合物の多層被覆及びその形成法
AU640225B2 (en) * 1990-05-02 1993-08-19 Shell Oil Company Improved thermoplastic process
US5185211A (en) * 1991-07-11 1993-02-09 Praxair S.T. Technology, Inc. Non-stoichiometric titanium nitride coating
JP2764483B2 (ja) * 1991-08-22 1998-06-11 株式会社日商 コイン清浄装置
SE501527C2 (sv) * 1992-12-18 1995-03-06 Sandvik Ab Sätt och alster vid beläggning av ett skärande verktyg med ett aluminiumoxidskikt
US5443892A (en) * 1993-03-19 1995-08-22 Martin Marietta Energy Systems, Inc. Coated graphite articles useful in metallurgical processes and method for making same
DE69431032T2 (de) * 1993-05-31 2003-01-30 Sumitomo Electric Industries, Ltd. Beschichtetes schneidwerkzeug und verfahren zu dessen herstellung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243188B1 (ja) * 1971-07-07 1977-10-28
JPS5652109B2 (ja) * 1976-02-20 1981-12-10
JPS5428316A (en) * 1977-08-03 1979-03-02 Sumitomo Electric Industries Wearr and heatt resistant coated super hard alloy members
JPH0615714B2 (ja) * 1981-09-11 1994-03-02 イスカ−・リミテツド 焼結硬質金属製品
JPH0549750B2 (ja) * 1985-02-26 1993-07-27 Sumitomo Electric Industries
JPH02236268A (ja) * 1989-03-07 1990-09-19 Nissin Electric Co Ltd 窒化ホウ素膜の形成方法
JPH04341580A (ja) * 1990-12-25 1992-11-27 Mitsubishi Materials Corp 硬質層被覆サーメット
JPH06106402A (ja) * 1992-09-28 1994-04-19 Mitsubishi Materials Corp 表面被覆wc基超硬合金製切削工具
JPH07305181A (ja) * 1994-05-09 1995-11-21 Hitachi Tool Eng Ltd 被覆超硬合金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0732423A4 *

Also Published As

Publication number Publication date
DE69521410D1 (de) 2001-07-26
US5871850A (en) 1999-02-16
KR960706574A (ko) 1996-12-09
EP0732423B1 (en) 2001-06-20
KR100250587B1 (ko) 2000-04-01
EP0732423A4 (en) 1997-05-02
US6183846B1 (en) 2001-02-06
DE69521410T2 (de) 2001-10-04
EP0732423A1 (en) 1996-09-18
TW306938B (ja) 1997-06-01

Similar Documents

Publication Publication Date Title
WO1996010658A1 (fr) Alliage dur revetu
JP3833288B2 (ja) 被覆硬質合金
US7695222B2 (en) Indexable insert
EP1952920B2 (en) Cutting tip of cutting edge replacement type
US20100232893A1 (en) Indexable insert
US20090067938A1 (en) Indexable cutting insert
US20070298280A1 (en) Surface-Coated Cutting Tool
JP3671623B2 (ja) 被覆超硬合金
JP3658948B2 (ja) 被覆超硬合金
EP2959994A1 (en) Surface-coated cutting tool and process for producing same
KR100832868B1 (ko) 절삭공구/내마모성 공구용 표면 피복 부재용 박막
JP4114741B2 (ja) チタンクロム化合物皮膜被覆工具
JP2002273607A (ja) 多層被覆工具
JP2004148503A (ja) 酸化アルミニウム被覆工具
JP3544450B2 (ja) 酸化アルミニウム被覆工具
JPH10310878A (ja) 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JPH11236671A (ja) 耐欠損性のすぐれた表面被覆超硬合金製スローアウエイ切削チップ
JP2002205204A (ja) 多層被覆工具
JP2019126893A (ja) 被覆切削工具
KR100603744B1 (ko) 밀착도가 향상된 절삭공구/내마모성 공구용 표면 피복경질부재 및 이를 이용하는 표면 피복부재
JP2006334720A (ja) 被覆工具部材
JP2024092734A (ja) 被覆切削工具
JPH11236672A (ja) 耐欠損性のすぐれた表面被覆超硬合金製スローアウエイ切削チップ
JP2002224903A (ja) 多層被覆工具
JP2002192403A (ja) 多層被覆工具

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995932963

Country of ref document: EP

Ref document number: 08652496

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019960702932

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995932963

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995932963

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载