+

WO1996009647A1 - Verfahren zum kontaktieren eines elektronischen bauelementes auf einem substrat - Google Patents

Verfahren zum kontaktieren eines elektronischen bauelementes auf einem substrat Download PDF

Info

Publication number
WO1996009647A1
WO1996009647A1 PCT/DE1995/001322 DE9501322W WO9609647A1 WO 1996009647 A1 WO1996009647 A1 WO 1996009647A1 DE 9501322 W DE9501322 W DE 9501322W WO 9609647 A1 WO9609647 A1 WO 9609647A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
contact
bumps
gold
connection
Prior art date
Application number
PCT/DE1995/001322
Other languages
English (en)
French (fr)
Inventor
Joachim Eldring
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to JP8510532A priority Critical patent/JPH10503059A/ja
Publication of WO1996009647A1 publication Critical patent/WO1996009647A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/119Methods of manufacturing bump connectors involving a specific sequence of method steps
    • H01L2224/11901Methods of manufacturing bump connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the invention relates to a method for connecting aluminum connection surfaces of an electronic component to contact surfaces of a substrate, and to an electronic circuit produced using this method.
  • connection or metallization pads
  • a large number of permanent connections are then produced in a single process step by soldering, thermocompression welding or gluing, and a high connection density or connection density can also be achieved.
  • the flip-chip assembly technology is used, for example, in the connection of two or more chips or else for fastening and / or contacting chips on substrates, in particular for forming multi-chip modules (MCM).
  • MCM multi-chip modules
  • the contact bumps can be applied either only to the substrate connection area, only to the chip connection area or to both.
  • the application of Contact bumps on bumps also called "bumping".
  • the invention can be advantageously used in the context of flip-chip technology in all areas where, in particular, ever smaller components or higher frequencies (or very small capacitances and inductors) or high integration densities are necessary or useful, for example on the Fields of application of integrated optics and / or microwave technology.
  • the flip-chip method in the cited document also comes with a low bonding temperature (less than 350 °) C) and a reduced contact pressure to good quality connections, especially in terms of shear strength.
  • a silicon IC with aluminum pads is connected on the one hand to a substrate ("chip on substrate") and on the other hand to an III-V semiconductor component ("chip on chip”).
  • the substrate and the Ill-V semiconductor component are equipped with gold surface metallizations at the contact points.
  • a connecting layer made of titanium-tungsten and a gold layer are first applied by sputtering to the aluminum pads of the silicon ICs, which are usually present in the wafer composite, before the gold contact bumps are deposited electrochemically.
  • the many process steps for the construction of gold contact bumps on the aluminum connection pads of the silicon IC are disadvantageous and are therefore exposed to increased thermal and mechanical loads. Another disadvantage is that these process steps for Contact bump construction is only profitable with many silicon ICs to be contacted or is a significant cost factor for smaller quantities.
  • An achievement of this object consists in a method for contacting aluminum pads of an electronic component on a substrate in accordance with the characterizing features of claim 1
  • an object of the present invention to provide an electronic circuit in which a plurality of aluminum pads of an electronic component are connected to contact areas on a substrate using gold as the predominant connecting material, in such a way that the mechanical and thermal properties are low Stress for the electronic component and with few process steps and with low technical equipment costs, environmentally friendly and inexpensive connections produced have high quality, reproducible mechanical and electrical properties, especially with a large number of contacted aluminum pads.
  • This object is achieved by an electronic circuit according to claim 18.
  • a method for connecting an electronic component which has a plurality of aluminum connection surfaces on one surface, to a substrate having a plurality of contact surfaces via contact metallizations formed between the aluminum connection surfaces and the contact surfaces the contact metallizations at least forming one largely consist of the connecting material gold
  • the contact surfaces on the substrate are provided with contact bumps, which at least consist largely of gold.
  • a plurality of aluminum connection areas of the electronic component are also aligned with the contact areas provided with contact bumps on the substrate.
  • a third step under the exclusive action of pressure and temperature, a connection is made between the aluminum connection areas and the contact bumps, which largely consist of gold, on the contact areas of the substrate.
  • All aluminum connections usually used in semiconductor processes can be used as aluminum connection surfaces, e.g. B. about a pad composition of about 99 percent by weight aluminum and the rest silicon.
  • the electronic components include, for example, individual chips, IC components or also substrates provided with conductor tracks, both inorganic (for example silicon, ceramic) and organic (for example fiber composite materials).
  • the contact bumps on the contact surfaces of the substrate are formed in such a way that they have a narrow contact bump tip and one in comparison have a wider base of bumps.
  • These contact bumps are preferably generated mechanically by so-called “ball bumping” (or “stud bumping” or “mechanical bumping”).
  • ball bumping refers to rell a method for producing contact bumps on connection areas of a chip or a substrate. Ball bumping is derived from the known wire bonding process and can be implemented with only a slight change in the control hardware and software of a wire bonder.
  • the bonding wire is not guided in a loop to the second contact point and a second contact ball is applied, as is the case with the usual wire bonding, but the bonding wire is cut off by a flame device after an adjustable length.
  • the advantages of these gold ball bumps are on the one hand the selectively adjustable deformability properties during the later bonding process due to the selected geometric dimensions of a gold ball bump, the deformable and narrow conical shape being more deformable than the gold ball bump base Trained gold ball bump tip is of particular importance.
  • gold ball bumps that consist at least to a large extent of gold (in short: gold ball bumps)
  • palladium-doped gold wires are used, in particular bond wire with approximately 98 percent by weight gold and the rest palladium.
  • wires with approximately 99 percent by weight gold and approximately 1 percent by weight palladium are advantageous. Common wire diameters are between 18 ⁇ m to 33 ⁇ m.
  • Temperatures suitable for printed wiring boards are between 170 ° C and 230 ° C.
  • Standard metallization on printed wiring boards is a copper-nickel-gold layer system, with the top layer being deposited very thinly in an electroless process.
  • multi-stacked gold ball bumps are formed on the contact surfaces of the substrate, in particular double-stacked gold ball bumps. With them, the distance between the chip contacted on the substrate and the substrate can be increased.
  • the aluminum contact surfaces of the chip to be contacted are aligned with the gold ball bumps on the contact surfaces of the substrate.
  • the aluminum pads are exposed to the associated substrate-side gold ball under the exclusive effect of pressure and temperature (thermocompression bonding) - Contacted bumps.
  • the chip is heated for the application of temperature.
  • temperature-sensitive substrates which are very inexpensive can also be used.
  • Good welding of the gold ball bumps is carried out on these substrates the substrate contact surfaces achieved by ultrasound application and on the other hand the subsequent welding between the gold ball bumps and the aluminum connection surfaces of the chip can be carried out in the thermocompression process, preferably only the chip being heated.
  • a short bonding process eg less than 10 seconds with pulse heating is advantageous so that the heat from the chip does not flow to the colder substrate and damage it to a great extent.
  • the electronic component or the chip and the substrate are also connected by an electrically non-conductive adhesive layer which is located in the space between the chip and the substrate.
  • an electrically non-conductive adhesive layer which is located in the space between the chip and the substrate.
  • the adhesive is provided with suitable fillers or adhesives already containing suitable fillers are used. A sufficiently high temperature and / or electromagnetic waves, in particular UV light, are preferably applied to activate and harden the adhesive.
  • the adhesive layer is arranged on the surface of the electronic component or chip having the aluminum connection surfaces before the connection is established with the substrate, the aluminum connection surfaces preferably being at least partially covered by the adhesive layer be covered.
  • the adhesive layer is preferably applied as a liquid paste. It is also advantageous to apply the adhesive layer in the form of an adhesive film, for. B. a polymer film.
  • the aluminum pads of the chip are aligned with the substrate-side gold ball bumps. This Alignment is independent of whether the aluminum connection surfaces are not, partially or completely covered by the adhesive layer.
  • the geometric shape of the substrate-side contact bumps and / or the pressure-temperature-time profile acted upon causes puncturing and / or displacement the adhesive layer over the aluminum connection surfaces of the chip through the substrate-side contact bumps.
  • a defined deformation of the gold ball bumps occurs under the influence of pressure and temperature, which leads to the breaking up and removal of oxide layers present on the aluminum pads of the chip.
  • a temperature-hardening adhesive is used for the adhesive layer and the adhesive layer and its fillers are selected or matched to the bonding parameters so that the temperature applied to establish the connection by thermocompression is sufficient to activate the adhesive layer.
  • the curing process of the adhesive is also completed after the pressure and temperature exposure has ended.
  • the welded connections serve as electrical connections between the chip and the substrate and at the same time lead to a mechanical fixation between the chip and the substrate.
  • the embedded adhesive layer provides additional mechanical fixation between the chip and the substrate.
  • This adhesive layer has the further advantage that it at least partially reduces or compensates for existing and / or emerging mechanical and / or thermomechanical stresses and thus leads to a significant increase in the reliability of the flip-chip connections produced using the method according to the invention .
  • This advantage is particularly pronounced in the case of a flip-chip connection between a silicon chip and a circuit board substrate (for example: FR-4 circuit board), since, due to the different expansion coefficients between the circuit board and silicon in the welding process, mechanical stresses arising without the use of an adhesive layer would easily lead to contact failures.
  • Another exemplary embodiment of the invention comprises an electronic circuit consisting of an electronic component which has a plurality of aluminum connection surfaces on one surface and a substrate having a plurality of contact surfaces, a plurality of aluminum connection surfaces being connected to the contact surfaces of the substrate by contact metallizations are connected and these contact metallizations consist at least to a large extent of the connecting material gold, contact bumps, in particular ball bumps, applied to the contact metallizations of the substrate are used for the contact metallizations.
  • the electronic component and the substrate are also connected by an electrically nonconductive adhesive layer.
  • This adhesive layer is preferably designed as a film and advantageously fills the entire space remaining outside the welded connections between the chip and the substrate, which brings about very good compensation of thermo-mechanical stresses.
  • the method according to the invention permits the flip-chip assembly of silicon chips with aluminum pads which are not provided with bumps (ie not bumped) and which are not suitable for known bumping methods owing to their small dimensions (for example for high-frequency applications).
  • chips are so expensive and rare that they are not only available occasionally, but also only in small quantities.
  • the ball bumping of very small chips e.g. smaller than 1 mm
  • Other bumping processes such as B. galvanic processes, electroless deposition processes, vapor deposition are used on many chips that still in the silicon wafer or wafer composite. This is the only way to make these processes profitable.
  • Another advantage of the invention results from the fact that the otherwise customary bumping process for the chip is omitted due to the use of non-bumped silicon chips. As a result, the chip is less exposed to a thermal and mechanical loading step in the chip contacting method according to the invention, which greatly reduces the risk of chip damage, in particular in the subsequent thermocompression bonding. In addition, the saved bumping process for a chip also results in considerable cost savings.
  • the bump process is software controllable, which is why it can be quickly defined and modified. In particular, they can be adapted to subsequent changes to chips or substrates, for example.
  • This high flexibility and high development speed is of particular advantage in small series and prototype production, in which the electronic components are available in isolated form instead of in wafers and in small numbers due to their sometimes high price or their limited availability. In this case, galvanic processes and vapor deposition processes with their expensive mask processes and clean room conditions are unprofitable.
  • mask-oriented processes are inflexible, since the geometries can no longer be changed after the mask production.
  • the invention thus enables in particular a quick and inexpensive production of flip-chip-bonded prototypes and small series.
  • By generating gold ball bumps on the substrate side mask process steps are completely eliminated. This significantly reduces manufacturing time and costs.
  • the bonding equipment used for the mechanical bumping process namely a wire bonder
  • the wire bonder used is inexpensive compared to a clean room infrastructure and is already available in most of the larger development departments. With the wire bonder used, only a modification of the control software is necessary in order to generate gold ball bumps.
  • a great advantage of the method according to the invention is that even with chips with a large number of aluminum connection surfaces, the welded connections to the substrate-side gold ball bumps produced with the sole action of pressure and temperature (thermocompression bonding) have reproducibly good electrical and mechanical properties. Because each individual gold ball bump, owing to its conical, pointed geometry, together with the pressure and temperature, ensures that the oxide layer on the associated aluminum connection surface of the chip is reliably removed without it being removed . B. still needs a support by ultrasound impact.
  • Another advantage of the invention is that no flux and no toxic lead are required in the connection. The dangers and disadvantages of the sometimes very aggressive flux and their residues are thus avoided in the invention. In addition, due to the cleaning steps not required in this regard, fewer process steps and thus also cost savings are associated with the inventive method.
  • Fig. 1.3 Aligning and contacting the aluminum pads of the chip of Fig. 1.1 with the substrate-side gold ball bumps of Fig. 1.2 (cross-sectional view) when pressure and temperature are applied to produce welded connections between the aluminum pads and the associated gold ball bumps
  • Fig. 1.6 Infrared micrograph of a chip-side pad (in Fig. 1.4) through the back of the chip, the darker areas indicate intermetallic phases between gold and aluminum.
  • Fig. 1.7 Geometric dimensions of a gold ball bump
  • Fig. 2.0 Top view of a flip-chip connection of a silicon IC with aluminum pads on a ceramic substrate
  • Fig. 3.2 Cross-sectional representation of the silicon substrate according to Fig. 1.0 with double-stacked gold ball bumps applied to the contact surfaces
  • Fig.3.3 Aligning and contacting the aluminum pads of the chip of Fig.3.1 with the substrate-side double-stacked gold ball bumps of Fig.3.2 (cross-sectional view) when pressure and temperature are applied to produce welded connections between the aluminum pads and the associated stacked gold ball bumps
  • Fig. 4.3 Aligning and contacting the aluminum pads of the chip from Fig. 4.1 with the substrate-side gold ball bumps from Fig. 4.2 (cross-sectional view) when pressure and temperature are applied to produce welded connections between the aluminum pads and the associated gold ball bumps and to activate the adhesive layer for an additional connection of chip and substrate.
  • the contact areas (2) having a minimum width of approximately 100 ⁇ m and a minimum distance of approximately 130 ⁇ m, and of approximately 99 Ge ⁇ weight percent aluminum and the rest silicon.
  • the bonding wire used to produce the gold ball bumps (3) has a diameter of 25 ⁇ m and consists of about 98 percent by weight gold and the rest palladium.
  • the last-mentioned value results from the use of a bond capillary with a hole diameter of 33 ⁇ m.
  • a silicon chip (5) to be connected to the silicon substrate has a structure of aluminum pads (4) that matches the contact surface structure of the silicon substrate (1) (see FIG. 1.1).
  • the aluminum connection surfaces (4) of the chip (5) to be connected to contact surfaces (2) of the substrate (1) are aligned with the gold ball bumps (3) on the contact surfaces (2) of the substrate (1) and in contact brought (Fig. 1.3).
  • the connection is established by thermocompression bonding at a temperature rature of 320 ° C and a force of 100 cN per gold ball bump, the (bond) force being applied slowly at a rate of 10 cN per second up to the maximum value of 100 cN and at this value and the set temperature is maintained for about 10 seconds (in Fig. 1.3: F ... force, T ... temperature).
  • 1.6 shows an infrared microscopic image of the interface between an aluminum pad (4) of the chip and the associated gold contact metallization (7) through the back of the chip.
  • the recognizable darker areas indicate intermetallic phases (8) between gold and aluminum and are evidence of a good weld.
  • a silicon IC (11) with aluminum connection surfaces is attached to the contact surfaces of the conductor tracks (10), which consist of gold, of a ceramic substrate (9) using the method according to the invention.
  • the gold contact areas of the conductor tracks (10) of the ceramic substrate (9) are provided with gold ball bumps.
  • a wire bonder with bond wire with a diameter of 18 ⁇ m and a composition of 98 percent by weight gold and the rest palladium is used.
  • the initial diameter of the gold ball bumps on the gold contact areas is approximately 60 ⁇ m.
  • the silicon IC with its aluminum connection surface structure matching the contact surface structure of the ceramic substrate is bonded at a temperature of 320 ° C.
  • a further exemplary embodiment of the invention differs from the first exemplary embodiment listed above in that instead of simple gold ball bumps (FIG. 1.2), now twice stacked gold ball bumps (12) on the contact surfaces (2) of the silicon substrate (1 ) are applied (Fig.3.2).
  • Figures 3.0 and 3.1 correspond to Figures 1.0 and 1.1.
  • stacked GoJd ball bumps (12) With stacked GoJd ball bumps (12), a higher height of the later weld connections between the chip and the substrate can be set.
  • the remaining method steps of the method according to the invention take place analogously to FIGS. 1.3 and 1.4 and are shown in FIGS. 3.3 and 3.4.
  • the two-stacked gold ball bumps (13) deformed as a result of the connection process can be seen, according to which a greater distance between chip and substrate is realized.
  • an electrically non-conductive adhesive layer (17) in the form of an adhesive film is placed on the surface of a silicon chip (5) provided with aluminum connection surfaces (4) in such a way that all with gold ball bumps (3) on contact surfaces (2) of a silicon substrate (1), (Fig. 4.2, Fig. 4.0) aluminum contact surfaces (4) to be contacted are completely covered by the adhesive film (17) (Fig. 4.1).
  • the thickness of the film is matched to the height and the deformability of the gold ball bumps as well as the bonding parameters pressure and temperature so that the film after the contacting of the chip with the substrate both on the chip surface as well as on the substrate surface outside of the respective connection or contact surfaces completely and completely fills the space between the chip and the substrate except for the welded connections.
  • 4.3 shows the chip (5) provided with the adhesive film (17) with aluminum connection surfaces (4) aligned with the gold ball bumps (3) on the substrate side.
  • the gold ball bumps (3) first penetrate the adhesive layer (17) before they deform under the action of pressure and temperature and thereby an existing oxide layer on the aluminum connection surfaces (4) break up and remove.
  • 4.4 shows the finished connection between the chip (5) and the substrate (1), the welded connections mechanically fixing the chip and the substrate to one another and serving as electrically conductive connections between the chip and the substrate.
  • the embedded adhesive film (17) effects an additional mechanical fixation between the chip (5) and the substrate (1). Since it fills the entire space remaining outside of the welded connections between the chip and the substrate, it also provides very good compensation for thermo-mechanical stresses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Die Erfindung beschreibt ein Verfahren zur Verbindung eines elektronischen Bauelements (5), das auf einer Oberfläche mehrere Aluminium-Anschlußflächen (4) aufweist, mit einem eine Mehrzahl von Kontaktflächen (2) aufweisenden Substrat (1) über zwischen den Aluminium-Anschlußflächen und den Kontaktflächen ausgebildeten Kontaktmetallisierungen, wobei die Kontaktmetallisierungen zumindest zu einem großen Teil aus dem Verbindungsmaterial Gold bestehen. Dazu werden die Kontaktflächen auf dem Substrat mit Kontakthöckern (3) versehen, die zumindest zu einem großen Teil aus Gold bestehen (z.B. Gold-Ball-Bumps), und ferner mehrere Aluminium-Anschlußflächen des elektronischen Bauelements mit den mit Kontakthöckern versehenen Kontaktflächen auf dem Substrat ausgerichtet und weiterhin unter ausschließlicher Einwirkung von Druck und Temperatur, d.h. insbesondere ohne Ultraschallbeaufschlagung, eine Verbindung zwischen den Aluminium-Anschlußflächen und den zu einem großen Teil aus Gold bestehenden Kontakthöckern auf den Kontaktflächen des Substrats hergestellt. Die Erfindung ist daher für die Flip-Chip-Montage von nicht gebumpten, vereinzelten Silizium-Chips mit Standardaluminium-Anschlußflächen auf anorganische Substrate (z.B. Keramik) und organische Substrate (z.B. FR-4 Leiterplatte) hervorragend geeignet.

Description

BESCHREIBUNG
Verfahren zum Kontaktleren eines elektronischen Bauelementes auf einem Substrat
Technisches Gebiet
Die Erfindung betrifft ein Verfahren zur Verbindung von Aluminium-Anschluß- flächen eines elektronischen Bauelements mit Kontaktflächen eines Substrats sowie eine mit diesem Verfahren hergestellte elektronische Schaltung.
Der Anwendungsbereich liegt überall dort, wo zwei oder mehrere Materialbau¬ steine (z. B.: Chips, verschiedene Substratmaterialien, IC(lntegrated Circuit)- Bauelemente, elektronische Bauelemente) miteinander elektrisch und/oder mechanisch verbunden werden. In der Vergangenheit haben sich hierfür meh¬ rere Verfahren etabliert, z. B. das Drahtbonden, bei dem jeweils zwei Anschlu߬ bzw. Metallisierungsflächen (englisch: pads) durch Verschweißen mit einer Drahtbrücke verbunden werden. Bei der neuerdings entwickelten Flip-Chip- Technik werden mit herkömmlichen Verfahren Kontakthöcker auf die Anschlu߬ bzw. Kontaktflächen der zu verbindenden Materialbausteine aufgebracht, diese gegeneinander ausgerichtet und in Kontakt gebracht. Durch Löten, Thermokompressionsverschweißen oder Kleben werden sodann eine Vielzahl dauerhafter Verbindungen in einem einzigen Verfahrensschritt, wobei zudem eine hohe Verbindungsdichte bzw. Anschlußdichte erzielbar ist, hergestellt. Anwendung findet die Flip-Chip-Montagetechnik beispielsweise bei der Ver¬ bindung zweier oder mehrerer Chips oder aber auch zur Befestigung und/oder Kontaktierung von Chips auf Substraten, insbesondere zur Bildung von Multi¬ Chip-Modulen (MCM). Dabei sind die Kontakthöcker (englisch: bumps) ent¬ weder nur auf der Substratanschlußfläche, nur auf der Chipanschlußfläche oder auf beiden aufbringbar. In der Fachsprache wird das Aufbringen von Kontakthöckem bzw. Bumps auf Anschlußflächen auch "Bumping" genannt. Generell ist die Erfindung im Rahmen der Flip-Chip-Technologie auf all den Gebieten vorteilhaft einsetzbar, wo insbesondere immer kleinere Bauteile oder höhere Frequenzen (bzw. sehr kleine Kapazitäten und Induktivitäten) oder hohe Integrationsdichten erforderlich bzw. nutzbringend sind, so zum Beispiel auf den Anwendungsfeldern der Integrierten Optik und/oder der Mikrowellentechnik.
Stand der Technik
Aus der Veröffentlichung "Flip chip attachment using mechanical bumps, ITAB, Februar 1994, Seite 1 bis 7 ist bekannt, Hochfrequenz-GaAs-Chips mit Stan- dardgoldkontaktflächenmetallisierungen auf mit Gold-Kontakthöckern versehe¬ nen Substratkontaktflächen im Thermokompressionsverfahren zu kontaktieren. In dieser Schrift wird gezeigt, daß unter Verwendung von substratseitig aufge¬ brachten Gold-Ball-Bumps sehr kleine GaAs-Chips (kleiner als 0,5 mm) mit Anschlußflächengrößen von 35 μm und minimalen Anschlußflächenabständen (Pitch) von 70 μm auf anorganische Substrate bondbar sind. Als Testsubstrat diente Aluminium, auf das eine Goldschicht als Kontaktfläche abgeschieden wurde. Darauf wiederum sind die Gold-Ball-Bumps aufgebracht. Das Ball- Bumping ist vom bekannten Drahtbondprozeß abgeleitet. Nach dem ersten aufgebrachten Kontakt-Ball wird der Bonddraht nicht wie beim üblichen Draht¬ bonden in einer Schlaufe zur zweiten Kontaktstelle geführt und ein zweiter Kontakt-Ball aufgebracht, sondern der Bonddraht wird nach einer einstellbaren Länge abgerissen bzw. abgetrennt.
Weiterhin ist aus der genannten Veröffentlichung bekannt, Gold-Ball-Bumps auf die Aluminiumkontaktelektroden eines Siliziumchips mittels eines bestimmten Temperatur-Druck-Ultraschall-Zeit-Verlaufs (sogenannte Bondparameter) auf¬ zubringen und anschließend den gebumpten Chip mit den Goldkontaktflächen eines Siliziumsubstrates zu verbinden, wobei zumindest das Substrat geheizt wird. Die Ultraschallbeaufschlagung dient bekanntermaßen dazu, die Oxid¬ schichten auf den Aluminiumkontaktelektroden abzusprengen und ist weiter für die Verschweißungsqualität, insbesondere der Scherfestigkeit, in der Grenzflä- ehe eines Gold-Ball-Bumps zur jeweiligen Chipkontaktfläche von Bedeutung. Nachteilig ist, daß der Chip bei dem Ball-Bumping thermischen und mechani¬ schen Belastungen ausgesetzt ist. Letzteres ist sowohl durch den Anpreßdruck als auch den Ultraschall bedingt.
Aus der Druckschrift DE 42 26 167 ist ein Verfahren zur Montage von Halblei- terbauelementen auf einem Substrat durch ein Gold-Gold-Thermokompressi- ons verfahren bekannt, wobei auf mindestens einem der beiden Fügepartner mittels Elektroplattierung Gold-Kontakthöcker aufgebracht sind. Gold-Gold- Thermokompressionsverbindungen ergeben qualititativ gute Verbindungen und benötigen außer den vorbereiteten Kontaktstellen keine weiteren Materialien, wie zum Beispiel weiteres Metall, Flußmittel oder Lotstopper. Ziel der Druck¬ schrift ist es, geeignete Bedingungen für das Abscheiden der Gold-Kontakt¬ höcker zu schaffen, so daß koplanare, äußerst glatte Oberflächen entstehen. Da die Goldflächenmetallisierungen üblicher Substrate oder Halbleiterbauele¬ mente, die als Fügepartner in Frage kommen, normalerweise die Anforderun¬ gen bezüglich Koplanarität und Rauheit gleichermaßen erfüllen, kommt das Flip-Chip-Verfahren in der genannten Druckschrift auch mit einer geringen Bondtemperatur (kleiner als 350 °C) und einem verminderten Anpreßdruck zu qualitativ guten Verbindungen, insbesondere was die Scherfestigkeit anbelangt.
In den Ausführungsbeispielen der DE 42 26 167 wird ein Silizium-IC mit Alumi¬ nium-Anschlußflächen zum einen mit einem Substrat ("Chip auf Substrat") zum anderen mit einem Ill-V-Halbleiterbauelement ("Chip auf Chip"), verbunden. Das Substrat und das Ill-V-Halbleiterbauelement sind an den Kontaktstellen mit Goldflächenmetallisierungen ausgestattet. Auf die Aluminium-Anschlußflächen der Silizium-ICs, die in der Regel im Wafer-Verbund vorliegen, werden zu¬ nächst eine Verbindungsschicht aus Titan-Wolfram und eine Goldschicht durch Sputtering aufgebracht, bevor die Gold- Kontakthöcker elektrochemisch abge¬ schieden werden. Nachteilig sind die vielen Verfahrensschritte zum Aufbau von Gold- Kontakthöckem auf den Aluminium-Anschlußflächen des Silizium-ICs, der dadurch erhöhten thermischen und mechanischen Belastungen ausgesetzt ist. Des weiteren ist von Nachteil, daß diese Verfahrensschritte zum Kontakthöckeraufbau nur bei vielen zu kontaktierenden Silizium-ICs rentabel ist bzw. bei kleineren Stückzahlen ein erheblicher Kostenfaktor darstellt.
Darsteliung der Erfindung
Ausgehend von dem oben dargelegten Stand der Technik ist es Aufgabe der vorliegenden Erfindung ein Verfahren zum Verbinden mehrerer Aluminium- Anschlußflächen eines elektronischen Bauelementes mit Kontaktflächen auf einem Substrat unter Verwendung von Gold als vorwiegendem Verbindungs¬ material derart weiterzubilden, daß insbesondere die mechanische und thermi¬ sche Belastung des elektronischen Bauelements deutlich reduziert wird und daß mit wenig Verfahrensschritten und geringem gerätetechnischen Aufwand hochwertige Verbindungen mit reproduzierbaren mechanischen und elektri¬ schen Eigenschaften, vor allem auch bei sehr vielen zu kontaktierenden Alu¬ minium-Anschlußflächen, umweltverträglich und kostengünstig, insbesondere auch bei sehr wenigen zu kontaktierenden elektronischen Bauelementen, her¬ stellbar sind.
Eine erfindungsgemäße Lösung dieser Aufgabe besteht in einem Verfahren zum Kontaktieren von Aluminium-Anschlußflächen eines elektronischen Bau¬ elementes auf einem Substrat gemäß den kennzeichnenden Merkmalen des Anspruchs 1
Ferner liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine elektroni¬ sche Schaltung zu schaffen, bei der mehrere Aluminium-Anschlußflächen eines elektronischen Bauelementes mit Kontaktflächen auf einem Substrat unter Verwendung von Gold als vorwiegendem Verbindungsmaterial verbunden sind, derart, daß die unter geringer mechanischer und thermischer Belastung für das elektronische Bauelement und mit wenig Verfahrensschritten und mit geringem gerätetechnischen Aufwand umweltverträglich und kostengünstig hergestellten Verbindungen hochwertige, reproduzierbare mechanische und elektrische Eigenschaften aufweisen, vor allem auch bei sehr vielen kontaktierten Alumi- nium-Anschlußflächen. Diese Aufgabe wird durch eine elektronische Schaltung nach Anspruch 18 ge¬ löst.
Bevorzugte Weiterbildungen sind in den Unteransprüchen aufgeführt.
Bei einem erfindungsgemäßen Verfahren zur Verbindung eines elektronischen Bauelements, das auf einer Oberfläche mehrere Aluminium-Anschlußflächen aufweist, mit einem eine Mehrzahl von Kontaktflächen aufweisenden Substrat über zwischen den Aluminium-Anschlußflächen und den Kontaktflächen aus¬ gebildeten Kontaktmetallisierungen, wobei die Kontaktmetallisierungen zumin¬ dest zu einem großen Teil aus dem Verbindungsmaterial Gold bestehen, wer¬ den in einem ersten Verfahrensschritt die Kontaktflächen auf dem Substrat mit Kontakthöckern versehen, die zumindest zu einem großen Teil aus Gold be¬ stehen. In einem zweiten Schritt werden ferner mehrere Aluminium-Anschlu߬ flächen des elektronischen Bauelements mit den mit Kontakthöckern versehe¬ nen Kontaktflächen auf dem Substrat ausgerichtet. Anschließend wird in einem dritten Schritt unter ausschließlicher Einwirkung von Druck und Temperatur eine Verbindung zwischen den Aluminium-Anschlußflächen und den zu einem großen Teil aus Gold bestehenden Kontakthöckern auf den Kontaktflächen des Substrats hergestellt. Als Aluminium-Anschlußflächen sind sämtliche bei Halbleiterprozessen üblicherweise verwendeten Aluminium-Verbindungen benutzbar, z. B. etwa eine Anschlußflächenzusammensetzung aus ca. 99 Ge¬ wichtsprozent Aluminium und dem Rest Silizium. Zu den elektronischen Bau¬ elementen zählen beispielsweise vereinzelt vorliegende Chips, IC-Bauteile oder auch etwa mit Leiterbahnen versehene Substrate, sowohl anorganische (z. B. Silizium, Keramik) als auch organische (z. B. Faserverbundwerkstoffe).
Die Kontakthöcker auf den Kontaktflächen des Substrats (Substrat z. B. Silizi¬ um; Keramik; Verbundstoffe aus faserverstärkten Kunststoffen (Printed Wiring Boards), etwa FR-4 Leiterplattensubstrat; Glas) werden derart ausgebildet, daß sie eine schmale Kontakthöckerspitze und eine im Vergleich dazu breitere Kontakthöckerbasis aufweisen. Vorzugsweise werden diese Kontakthöcker mechanisch durch das sogenannte "Ball-Bumping" (bzw. "Stud-Bumping" oder "Mechanical-Bumping") erzeugt. Der Begriff "Bumping" bezeichnet dabei gene- rell ein Verfahren zur Erzeugung von Kontakthöckern (englisch: bumps) auf Anschlußbereichen eines Chips oder eines Substrats. Das Ball-Bumping ist vom bekannten Drahtbondprozeß abgeleitet und bereits mit einer geringen Änderung der Steuerhard- und Software eines Drahtbonders realisierbar. Nach dem ersten aufgebrachten Kontakt-Ball wird der Bonddraht nicht wie beim übli¬ chen Drahtbonden in einer Schlaufe zur zweiten Kontaktstelle geführt und ein zweiter Kontakt-Ball aufgebracht, sondern der Bonddraht wird nach einer ein¬ stellbaren Länge durch eine Abflammeinrichtung abgetrennt. Die Vorteile dieser Gold-Ball-Bumps sind einerseits die gezielt einstellbaren Verformbarkeitsei¬ genschaften während des späteren Bondprozesses durch die gewählten geo¬ metrischen Abmessungen eines Gold-Ball-Bumps, wobei die stärker als der Gold-Ball-Bump-Sockel verformbare sowie schmal kegelförmig ausgebildete Gold-Ball-Bump-Spitze von besonderer Bedeutung ist. Für Ball-Bumps, die zumindest zu einem großen Teil aus Gold bestehen (kurz: Gold-Ball-Bumps), werden Palladium-dotierte Golddrähte verwendet, insbesondere Bonddraht mit ca. 98 Gewichtsprozent Gold und dem Rest Palladium. Daneben sind noch Drähte mit ca. 99 Gewichtsprozent Gold und ca. 1 Gewichtsprozent Palladium von Vorteil. Gängige Drahtdurchmesser liegen zwischen 18 μm bis 33 μm.
Für temperaturempfindliche Substrate, etwa FR-4 Leiterplattensubstrate, sind übliche Bondtemperaturen von ca. 300 °C bis 450 °C meist zu hoch, da sie sehr nachteilige Veränderungen der mechanischen und chemischen Substrat¬ eigenschaften zur Folge haben und im Extremfall sogar zur Zerstörung dieser Substrate führen. Für Printed-Wiring-Boards geeignete Temperaturen liegen etwa zwischen 170 °C und 230 °C. Standardmetallisierung auf Printed-Wiring- Boards ist ein Kupfer-Nickel-Gold-Schichtsystem, wobei die oberste Lage sehr dünn in einem stromlosen Prozeß abgeschieden wurde. Eine Unterstützung durch Ultraschallbeaufschlagung beim Gold-Ball-Bumping von insbesondere temperaturempfindlichen Substraten ergibt eine gute, reproduzierbare Festkör- perverschweißung zwischen einem Gold-Ball-Bump und einer Substratkon¬ taktfläche, was bei reinen Thermokompressionsverfahren (ausschließliche Druck- und Temperaturbeaufschlagung), insbesondere bei niedrigen Bond- temperaturen, nicht der Fall ist. In einer anderen Ausführungsform der Erfindung werden auf den Kontaktflä¬ chen des Substrats mehrfach gestapelte Gold-Ball-Bumps ausgebildet, vor allem zweifach gestapelte Gold-Ball-Bumps. Mit ihnen kann der Abstand des auf dem Substrat kontaktierten Chips zum Substrat vergrößert werden.
Bei einem erfindungsgemäßen Verfahren werden die zu kontaktierenden Alu¬ minium-Anschlußflächen des Chips gegenüber den Gold-Ball-Bumps auf den Kontaktflächen des Substrats ausgerichtet. Nach dem Ausrichten des Chips in Face-Down-Lage (Aluminium-Anschlußflächen nach unten in Richtung der mit Gold-Ball-Bumps versehenen Substratkontaktflächen) werden die Aluminium- Anschlußflächen unter ausschließlicher Druck- und Temperatureinwirkung (Thermokompressionsbonden) mit den zugehörigen substratseitigen Gold-Ball- Bumps in Kontakt gebracht. Durch die mechanische Verformung eines Gold- Ball-Bumps zufolge der Druck- und Temperaturbeaufschlagung, insbesondere der Gold-Ball-Bump-Spitze an der Grenzfläche zur jeweiligen Aluminium-An¬ schlußfläche, kommt es zunächst zu einem Aufreißen und Entfernen der natür¬ licherweise vorhandenen Oxidschicht auf den Aluminium-Anschlußflächen. An den Orten, wo die Oxidschicht entfernt ist, beginnt unmittelbar die Verschwei¬ ßung in der Grenzschicht zwischen einer Aluminium-Anschlußfläche und dem jeweiligen Gold-Ball-Bump. Der aufgebrachte Maximaldruck wird bei der beauf¬ schlagten Temperatur ein vorbestimmtes Zeitintervall lang aufrechterhalten. Zufolge dadurch ermöglichter Interdiffusionsvorgänge zwischen Gold und Alu¬ minium in den Grenzflächen zwischen den Gold-Ball-Bumps und den Alumi¬ nium-Anschlußflächen kommt es zur Bidlung intermetallischer Phasen zwi¬ schen Gold und Aluminium, welche die hergestellte Verschweißung festigen. Auf diese Weise wird mit dem erfindungsgemäßen Aluminium-Gold-Thermo- kompressionsverfahren eine gute Verschweißung in der Aluminium-Gold- Grenzfläche erreicht, das sich in einer guten Scherfestigkeit widerspiegelt.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird nur der Chip, nicht aber das Substrat, für die Temperaturbeaufschlagung beheizt. Daraus resultiert der weitere Vorteil der Erfindung, daß auch tempera¬ turempfindliche Substrate, die sehr preiswert sind, verwendbar sind. Auf diesen Substraten wird einerseits eine gute Verschweißung der Gold-Ball-Bumps mit den Substratkontaktflächen durch Ultraschallanwendung erzielt und anderer¬ seits ist die nachfolgende Verschweißung zwischen den Gold-Ball-Bumps und den Aluminium-Anschlußflächen des Chips im Thermokompressionsverfahren durchführbar, wobei vorzugsweise nur der Chip geheizt wird. Damit die Wärme vom Chip nicht in zu großem Maße auf das kältere Substrat abfließt und dieses beschädigt, ist ein kurzer Bondprozeß (z. B. kleiner als 10 Sekunden) mit Im¬ pulsheizung vorteilhaft. In dieser Hinsicht ist es günstig, wenn die Wärmelei¬ tungseigenschaften der Schweißverbindungen (Aluminium-Anschlußflä- che/Gold-Ball-Bump/Substratkontaktfläche) während des Bondprozesses nicht allzu gut sind, z. B. auch aufgrund des längeren Weges bei mehrfach gestapel¬ ten Gold-Ball-Bumps.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das elektronische Bauelement bzw. der Chip und das Substrat neben den Schweißverbindungen bzw. Kontaktmetallisierungen noch durch eine elektrisch nichtleitende Klebeschicht verbunden, welche sich im Raum zwischen dem Chip und dem Substrat befindet. Zur Veränderung bzw. gezielten Einstellung der mechanischen, elektrischen, thermischen und/oder chemischen Eigen¬ schaften des für die Klebeschicht verwendeten Klebemittels wird das Klebemit¬ tel mit geeigneten Füllstoffen versehen oder aber bereits passende Füllstoffe enthaltende Klebemittel benutzt. Zur Aktivierung und Aushärtung des Klebemit¬ tels werden vorzugsweise eine hinreichend hohe Temperatur und/oder elek¬ tromagnetische Wellen, insbesondere UV-Licht, beaufschlagt.
In einer Ausführungsform des erfindungsgemäßen Verfahrens wird die Klebe¬ schicht vor einer Verbindungsherstellung mit dem Substrat auf der die Alumi¬ nium-Anschlußflächen aufweisenden Oberfläche des elektronischen Bauele¬ ments bzw. Chips angeordnet, wobei die Aluminium-Anschlußflächen vor¬ zugsweise zumindest teilweise von der Klebeschicht bedeckt werden. Der Auftrag der Klebeschicht erfolgt vorzugsweise als Flüssigpaste. Von Vorteil ist auch das Aufbringen der Klebeschicht in Form einer Klebefolie, z. B. einer Po¬ lymerfolie. Zur Kontaktierung werden die Aluminium-Anschlußflächen des Chips gegenüber den substratseitigen Gold-Ball-Bumps ausgerichtet. Dieses Ausrichten ist unabhängig davon, ob die Aluminium-Anschlußflächen nicht, teilweise oder ganz von der Klebeschicht bedeckt sind.
Bei einer nachfolgenden Verbindungsherstellung zwischen dem mit der Klebe¬ schicht versehenen Chip und den substratseitigen Gold-Ball-Bumps durch Thermokompression bewirkt die geometrische Form der substratseitigen Kon¬ takthöcker und/oder der beaufschlagte Druck-Temperatur-Zeit-Verlauf ein Durchstoßen und/oder Verdrängen der Klebeschicht über den Aluminium-An¬ schlußflächen des Chips durch die substratseitigen Kontakthöcker. Nach dem Durchdringen der Klebeschicht kommt es unter der Druck- und Temperatur- einwirkung zu einer definierten Verformung der Gold-Ball-Bumps, das zum Aufbrechen und Entfernen von auf den Aluminium-Anschlußflächen des Chips vorhandenen Oxidschichten führt. Bevorzugterweise wird für die Klebeschicht ein Tem pe rat ur-aush artendes Klebemittel verwendet und die Klebeschicht und deren Füllstoffe so ausgewählt bzw. auf die Bondparameter abgestimmt, daß die zur Verbindungsherstellung durch Thermokompression beaufschlagte Temperatur ausreicht, die Klebeschicht zu aktivieren. In einer bevorzugten Ausführungsform der Erfindung ist der Aushärtungsprozeß des Klebemittels zudem nach Beendigung der Druck- und Temperaturbeaufschlagung abge¬ schlossen.
Die hergestellten Schweißverbindungen dienen als elektrische Verbindungen zwischen Chip und Substrat und führen gleichzeitig zu einer mechanischen Fixierung zwischen Chip und Substrat. Eine zusätzliche mechanische Fixierung zwischen Chip und Substrat bewirkt die eingebettete Klebeschicht. Diese Kle¬ beschicht hat den weiteren Vorteil, daß sie vorhandene und/oder entstehende mechanische und/oder thermomechanische Spannungen zumindest teilweise reduziert bzw. kompensiert und so zu einer signifikanten Steigerung der Zuver¬ lässigkeit der mit dem erfindungsgemäßen Verfahren hergestellten Flip-Chip- Verbindungen führt. Dieser Vorteil ist besonders ausgeprägt bei einer Flip- Chip-Verbindung zwischen einem Silizium-Chip und einem Leiterplatten¬ substrat (z. B: FR-4 Leiterplatte), da bedingt durch die unterschiedlichen Aus¬ dehnungskoeffizienten zwischen Leiterplatte und Silizium in den Schweißver- bindungen entstehende mechanische Spannungen ohne Verwendung einer Klebeschicht leicht zu Kontaktausfällen führen würden.
Ein anderes Ausführungsbeispiel der Erfindung umfaßt eine elektronische Schaltung bestehend aus einem elektronischen Bauelement, das auf einer Oberfläche mehrere Aluminium-Anschlußflächen aufweist, und einem eine Mehrzahl von Kontaktflächen aufweisenden Substrat, wobei mehrere Alumi¬ nium-Anschlußflächen mit den Kontaktflächen des Substrats durch Kontakt¬ metallisierungen verbunden sind und diese Kontaktmetallisierungen zumindest zu einem großen Teil aus dem Verbindungsmaterial Gold bestehen, wobei für die Kontaktmetallisierungen auf den Kontaktflächen des Substrats aufge¬ brachte Kontakthöcker, insbesondere Ball-Bumps, verwendet sind.
In einer weiteren Ausgestaltung der erfindungsgemäßen elektronischen Schal¬ tung ist das elektronische Bauelement und das Substrat neben den Kontakt¬ metallisierungen noch durch eine elektrisch nichtleitende Klebeschicht verbun¬ den. Diese Klebeschicht ist vorzugsweise als Folie ausgebildet und füllt vorteil¬ haftweise den gesamten außerhalb der Schweißverbindungen zwischen dem Chip und dem Substrat verbleibenden Raum aus, was eine sehr gute Kompen¬ sation von thermo-mechanischen Spannungen bewirkt.
Weitere Vorteile des erfindungsgemäßen Verfahrens und der erfindungsgemä¬ ßen elektronischen Schaltung sind nachfolgend aufgeführt.
Das erfindungsgemäße Verfahren gestattet die Flip-Chip-Montage von nicht mit Kontakthöckem versehenen (d. h. nicht gebumpten), vereinzelten Silizium- Chips mit Aluminium-Pads, welche aufgrund ihrer kleinen Abmessungen (z. B. für Hochfrequenzanwendungen) für bekannte Bumpingverfahren nicht geeignet sind. Zum Teil sind Chips auch so teuer und selten, daß sie nicht nur vereinzelt sondern auch nur in geringen Stückzahlen erhältlich sind. Das Ball-Bumping von sehr kleinen Chips (z. B. kleiner als 1 mm) scheitert bisher daran, daß die kleinen Chips beim Ball-Bumping nicht ausreichend fixiert werden können. Andere Bumpingverfahren, wie z. B. galvanische Verfahren, stromlose Ab¬ scheideverfahren, Aufdampfen, werden auf viele Chips angewendet, die noch im Silizium-Wafer- bzw. Scheibenverbund vorliegen. Denn nur so sind diese Verfahren rentabel.
Ein weiterer Vorteil der Erfindung resultiert daraus, daß aufgrund der Verwen¬ dung von nicht gebumpten Silizium-Chips, der sonst übliche Bumping-Prozeß für den Chip entfällt. Dadurch ist der Chip beim erfindungsgemäßen Chipkon- taktierungsverfahren einem thermischen und mechanischen Belastungsschritt weniger ausgesetzt, was die Gefahr der Chipbeschädigung insbesondere beim nachfolgenden Thermokompressionsbonden stark reduziert. Daneben hat der eingesparte Bumping-Prozeß bei einem Chip vor allem auch erhebliche Ko¬ steneinsparungen zur Folge.
Bei den mechanischen Bumpingverfahren, z. B. dem Ball-Bumping, ist der Bumpprozeß softwaresteuerbar, weshalb er schnell definiert und modifiziert werden kann. Insbesondere sind sie nachträglichen Änderungen von etwa Chips oder Substraten anpaßbar. Diese hohe Flexibilität und hohe Entwick¬ lungsgeschwindigkeit ist von besonderem Vorteil bei der Kleinserien- und Prototypenfertigung, bei denen die elektronischen Bauelemente aufgrund ihres zum Teil hohen Preises oder ihrer eingeschränkten Verfügbarkeit in vereinzel¬ ter Form, anstelle in Wafern, und in geringer Stückzahl vorliegen. In diesem Fall sind galvanische Verfahren und Aufdampfverfahren mit ihren teueren Mas¬ kenprozessen und Reinraumbedingungen unrentabel. Zudem sind maskenori¬ entierte Verfahren im Gegensatz zu den softwaregesteuerten mechanischen Bumpingverfahren unflexibel, da die Geometrien nach der Maskenproduktion nicht mehr änderbar sind.
Die Erfindung ermöglicht somit insbesondere eine schnelle und kostengünstige Herstellung von Flip-Chip-gebondeten Prototypen und Kleinserien. Durch Er¬ zeugung von substratseitigen Gold-Ball-Bumps entfallen Maskenprozeßschritte ganz Dadurch werden Herstellungszeit und Kosten deutlich reduziert. Zumal das verwendete Bondequipment zum mechanischen Bumpingverfahren, nämlich ein Drahtbonder, verglichen mit einer Reinrauminfrastruktur preiswert und in den meisten größeren Entwicklungsabteilungen schon vorhanden ist. Beim eingesetzten Drahtbonder ist lediglich eine Modifikation der Steuersoft¬ ware nötig, um Gold-Ball-Bumps zu erzeugen.
Ein großer Vorteil des erfindungsgemäßen Verfahrens liegt darin, daß auch bei Chips mit sehr vielen Aluminium-Anschlußflächen die mit ausschließlicher Druck- und Temperatureinwirkung (Thermokompressionsbonden) hergestellten Schweißverbindungen zu den substratseitigen Gold-Ball-Bumps reproduzierbar gute elektrische und mechanische Eigenschaften aufweisen. Denn jeder ein¬ zelne Gold-Ball-Bump sorgt aufgrund seiner kegelförmigen, spitzen Geometrie zusammen mit der Druck- und Temperaturbeaufschlagung dafür, daß die Oxid¬ schicht auf der zugehörigen Aluminium-Anschlußfläche des Chips sicher ent¬ fernt wird, ohne daß es dazu z. B. noch einer Unterstützug durch Ultraschallbe¬ aufschlagung bedarf. Ein Entfernen der Oxidschichten von den Aluminium- Anschlußflächen ausschließlich durch Ultraschallbeaufschlagung (verursachte mechanische Schwingungen) scheitert daran, daß entweder die für sehr viele Aluminium-Anschlußflächen benötigte hohe Ultraschallenergie nicht zur Ver¬ fügung steht bzw. diese den Chip beschädigt und/oder eine reproduzierbar gleichmäßige Einkopplung der insgesamt beaufschlagten Ultraschallenergie in die einzelnen Aluminium-Anschlußflächen bzw. Gold-Ball-Bumps nicht möglich ist. Letzteres hätte unterschiedliche elektrische und mechanische Eigen¬ schaften der Schweißverbindungen zur Folge. Im Extremfall würden einzelne Schweißverbindungen sogar überhaupt keinen Strom leiten können.
Von Vorteil bei der Erfindung ist weiter, daß keine Flußmittel und kein toxisches Blei bei der Verbindungsherstellung benötigt werden. Die Gefahren und Nachteile der zum Teil sehr aggressiven Flußmittel sowie deren Rückstände werden bei der Erfindung somit vermieden. Zudem sind zufolge der diesbezüg¬ lich nicht benötigten Reinigungsschritte beim erfindungsgemäßen Verfahren weniger Verfahrensschritte und damit auch Kosteneinsparungen verbunden.
Nachfolgend wird die Erfindung anhand von Zeichnungen an Ausführungsbei¬ spielen beschrieben. Es zeigen:
Fig. 1.0: Querschnittsdarstellung eines Silizium-Substrats mit Kontaktflächen Fig. 1.1: Querschnittsdarstellung eines Silizium-Chips mit Aluminium-An¬ schlußflächen
Fig. 1.2: Querschnittsdarstellung des Silizium-Substrats nach Fig. 1.0 mit auf den Kontaktflächen aufgebrachten Gold-Ball-Bumps
Fig. 1.3: Ausrichten und in Kontakt bringen der Aluminium-Anschlußflächen des Chips aus Fig. 1.1 mit den substratseitigen Gold-Ball-Bumps aus Fig. 1.2 (Querschnittsdarstellung) bei Druck- und Temperaturbeauf- schlagung zur Herstellung von Schweißverbindungen zwischen den Aluminium-Anschlußflächen und den zugehörigen Gold-Ball-Bumps
Fig. 1.4: Querschnittsdarstellung des auf dem Silizium-Substrat nach Fig. 1.0 kontaktierten Chips aus Fig. 1.1 nach Beendigung der Druck- und Temperaturbeaufschlagung
Fig. 1.5: Schliffpräparation des Querschnittes einer Flip-Chip-Verbindung zwischen einem Silizium-Substrat und einem Silizium-Chip gemäß Fig.1.4
Fig. 1,6: Infrarotmikroskopische Aufnahme einer chipseitigen Anschlußfläche (in Fig. 1.4) durch die Chiprückseite, wobei die dunkler erscheinen¬ den Bereiche intermetallische Phasen zwischen Gold und Aluminium kennzeichnen.
Fig. 1.7: Geometrische Abmessungen eines Gold-Ball-Bumps
Fig. 2.0: Aufsichtsdarstellung einer Flip-Chip-Verbindung eines Silizium-ICs mit Aluminium-Anschlußflächen auf einem Keramiksubstrat
Fig. 3.0: Querschnittsdarstellung eines Silizium-Substrats mit Kontaktflächen analog Fig.1.0 Fig. 3.1: Querschnittsdarstellung eines Silizium-Chips mit Aluminium-An¬ schlußflächen analog Fig. 1.1
Fig. 3.2: Querschnittsdarstellung des Silizium-Substrats nach Fig. 1.0 mit auf den Kontaktflächen aufgebrachten zweifach gestapelten Gold-Ball- Bumps
Fig. 3.3: Ausrichten und in Kontakt bringen der Aluminium-Anschlußflächen des Chips aus Fig. 3.1 mit den substratseitigen zweifach gestapelten Gold-Ball-Bumps aus Fig. 3.2 (Querschnittsdarstellung) bei Druck- und Temperaturbeaufschlagung zur Herstellung von Schweißverbindungen zwischen den Aluminium-Anschlußflächen und den zugehörigen gestapelten Gold-Ball-Bumps
Fig. 3.4: Querschnittsdarstellung des auf dem Silizium-Substrat nach Fig. 3.0 kontaktierten Chips aus Fig. 3.1 nach Beendigung der Druck- und Temperaturbeaufschlagung
Fig. 4.0: Querschnittsdarstellung eines Silizium-Substrats mit Kontaktflächen analog Fig. 1.0
Fig. 4.1: Querschnittsdarstellung eines Silizium-Chips mit Aluminium-An¬ schlußflächen, wobei auf der mit Aluminium-Anschlußflächen verse¬ henen Oberfläche eine elektrisch nichtleitende Klebeschicht aufge¬ bracht ist.
Fig. 4.2: Querschnittsdarstellung des Silizium-Substrats nach Fig. 4.0 mit auf den Kontaktflächen aufgebrachten Gold-Ball-Bumps
Fig. 4.3: Ausrichten und in Kontakt bringen der Aluminium-Anschlußflächen des Chips aus Fig. 4.1 mit den substratseitigen Gold-Ball-Bumps aus Fig. 4.2 (Querschnittsdarstellung) bei Druck- und Temperaturbeauf¬ schlagung zur Herstellung von Schweißverbindungen zwischen den Aluminium-Anschlußflächen und den zugehörigen Gold-Ball-Bumps sowie zur Aktivierung der Klebeschicht für eine zusätzliche Verbin¬ dung von Chip und Substrat.
Fig. 4.4: Querschnittsdarstellung des auf dem Silizium-Substrat nach Fig. 4.0 kontaktierten Chips aus Fig. 4.1 nach Beendigung der Druck- und Temperaturbeaufschlagung, wobei der Raum zwischen Chip und Substrat bis auf die Schweißverbindungen vollständig mit Klebema¬ terial ausgefüllt ist.
In einem ersten Ausführungsbeispiel der Erfindung liegt ein Silizium-Substrat
(1) vor (siehe Fig.1.0), auf dem Leiterbahnen mit Kontaktflächen (2) angeordnet sind, wobei die Kontaktflächen (2) eine minimale Breite von etwa 100 μm und einen kleinsten Abstand von ca. 130 μm aufweisen sowie aus etwa 99 Ge¬ wichtsprozent Aluminium und dem Rest Silizium bestehen. Die Kontaktflächen
(2) des Silizium-Substrats werden mit Gold-Ball-Bumps (3) versehen, wozu ein Drahtbondgerät mit einer Temperatur- und Kraftbeaufschlagung von ca. 150 °C und ca. 40 cN (1 cN = 10"2 N) pro Bump eingesetzt wird (Fig. 1.2). Der zur Herstellung der Gold-Ball-Bumps (3) eingesetzte Bonddraht hat einen Durch¬ messer von 25 μm und besteht aus etwa 98 Gewichtsprozent Gold und dem Rest Palladium. Der maximale Durchmesser D der aufgebrachten Gold-Ball- Bumps (3) parallel zur jeweiligen Kontaktfläche (2), der sogenannte Aus¬ gangsdurchmesser, hat einen Wert von etwa D = 80 μm. Die Werte weiterer geometrischer Abmessungen dieser Gold-Ball-Bumps sind etwa B = 65 μm, H = 55 μm, h = 42 μm, h' = 64 μm und b = 33 μm (siehe Fig. 1.7). Der zuletzt ge¬ nannte Wert resultiert aus der Verwendung einer Bondkapillare mit einem Lochdurchmesser von 33 μm.
Ein mit dem Silizium-Substrat zu verbindender Silizium-Chip (5) weist eine zu der Kontaktflächenstruktur des Silizium-Substrats (1) passende Struktur von Aluminium-Anschlußflächen (4) auf (siehe Fig. 1.1). Die mit Kontaktflächen (2) des Substrats (1) zu verbindenden Aluminium-Anschlußlächen (4) des Chips (5) werden gegenüber den Gold-Ball-Bumps (3) auf den Kontaktflächen (2) des Substrats (1) ausgerichtet und in Kontakt gebracht (Fig. 1.3). Die Verbin¬ dungsherstellung durch Thermokompressionsbonden erfolgt bei einer Tempe- ratur von 320 °C und einer Kraft von 100 cN pro Gold-Ball-Bump, wobei die (Bond)Kraft mit einer Rate von 10 cN pro Sekunde langsam bis auf den Maxi¬ malwert von 100 cN aufgebracht wird und bei diesem Wert und der eingestell¬ ten Temperatur etwa 10 Sekunden lang beibehalten wird (in Fig 1.3: F...Kraft, T... Temperatur). Innerhalb dieses Zeitintervalls von 10 Sekunden kommt es durch zusätzliche Interdiffusionsvorgänge zur Ausbildung intermetallischer Phasen zwischen Gold und Aluminium an den Grenzflächen (6) zwischen den Gold-Ball-Bumps (3) und den Aluminium- Anschlußflächen (4) des Chips, wo¬ durch die Schweißverbindungen gefestigt werden. Die Festkörperverschwei- ßung in der Kontaktgrenzfläche (6) zwischen einem Gold-Ball-Bump und einer Aluminium-Anschlußfläche erfolgt dabei, nachdem durch die Deformation des Gold-Ball-Bumps in der Grenzfläche zur Aluminium-Anschlußfläche deren na¬ türliche Oxidschicht aufgerissen worden ist, was insbesondere durch die spitze, kegelförmige Form eines Gold-Ball-Bumps (siehe Fig. 1.7) begünstigt wird. In Fig. 1.4 ist die fertige Flip-Chip-Verbindung des auf dem Substrat (Fig. 1.0) kontaktierten Silizium-Chips (Fig. 1.1) gezeigt, wobei die während der Verbin¬ dungsherstellung erfolgte Verformung der Gold-Ball-Bumps (7) deutlich wird.
Fig 1.5 zeigt eine Querschnittspräparation einer einzelnen Schweißverbindung mit Silizium-Chip (5), Gold-Kontaktmetallisierung (7) und Silizium-Substrat (1). Die chipseitige Aluminium-Anschlußfläche und die substratseitige Kontaktfläche sind in Fig. 1.5 nicht sichtbar.
In Fig. 1.6 ist eine infrarotmikroskopische Aufnahme der Grenzfläche zwischen einer Aluminium-Anschlußfläche (4) des Chips und der zugehörigen Gold- Kontaktmetallisierung (7) durch die Chiprückseite gezeigt. Die erkennbaren dunkleren Bereiche kennzeichnen intermetallische Phasen (8) zwischen Gold und Aluminium und sind Beweis für eine erfolgte gute Verschweißung.
In einem zweiten Ausführungsbeispiel wird ein Silizium-IC (11) mit Aluminium- Anschlußflächen auf den Kontaktflächen der Leiterbahnen (10), welche aus Gold bestehen, eines Keramiksubstrats (9) mit dem erfindungsgemäßen Verfahren befestigt. In einem Verfahrensschritt werden die Gold-Kontaktflächen der Leiterbahnen (10) des Keramiksubstrats (9) mit Gold-Ball-Bumps versehen. Dazu wird ein Drahtbonder mit Bonddraht des Durchmessers 18 μm und der Zusammensetzung von 98 Gewichtsprozent Gold und dem Rest Palladium verwendet. Die Ausgangsdurchmesser der Gold-Ball-Bumps auf den Gold- Kontaktflächen betragen etwa 60 μm. Der mit seiner Aluminium-Anschlu߬ flächen-Struktur zur Kontaktflächenstruktur des Keramiksubstrats passende Silizium-IC wird bei einer Temperatur von 320 ° C und einer Kraft von 50 cN pro Gold-Ball-Bump gebondet, wobei die (Bond)Kraft mit einer Rate von 10 cN pro Sekunde langsam bis auf den Maximalwert von 50 cN aufgebracht wird und bei diesem Wert und der eingestellten Temperatur etwa 10 Sekunden lang beibehalten wird. In Fig. 2.0 ist eine Aufsicht einer auf diese Art und Weise her¬ gestellten Flip-Chip-Verbindung eines Silizium-ICs (11) mit einem Kera¬ miksubstrat (9) dargestellt.
Ein werteres Ausführungsbeispiel der Erfindung unterscheidet sich vom oben aufgeführten ersten Ausführungsbeispiel dahingehend, daß anstelle einfacher Gold-Ball-Bumps (Fig. 1.2) nunmehr zweifach gestapelte Gold-Ball-Bumps (12) auf die Kontaktflächen (2) des Silizium-Substrats (1) aufgebracht werden (Fig. 3.2). Die Fig. 3.0 und Fig. 3.1 entsprechen Fig. 1.0 und Fig. 1.1. Mit gestapel¬ ten GoJd-Ball-Bumps (12) läßt sich eine größere Höhe der späteren Schwei߬ verbindungen zwischen Chip und Substrat einstellen. Die übrigen Verfahrens¬ schritte des erfindungsgemäßen Verfahrens erfolgen analog zu Fig. 1.3 und Fig. 1.4 und sind in Fig. 3.3 und Fig. 3.4 dargestellt. In Fig. 3.4 sind die zufolge des Verbindungsprozesses deformierten, zweifach gestapelten Gold-Ball- Bumps (13) erkennbar, zufolge derer ein größerer Abstand zwischen Chip und Substrat realisiert ist.
Bei einem bevorzugten Ausführungsbeispiel der Erfindung wird auf die mit Aluminium-Anschlußflächen (4) versehene Oberfläche eines Silizium-Chips (5) eine elektrisch nichtleitende Klebeschicht (17) in Form einer Klebefolie derart aufgelegt, daß alle mit Gold-Ball-Bumps (3) auf Kontaktflächen (2) eines Silizi¬ um-Substrats (1), (Fig. 4.2, Fig. 4.0) zu kontaktierenden Aluminium-Anschlu߬ flächen (4) von der Klebefolie (17) vollständig bedeckt sind (Fig. 4.1). Die Dicke der Folie ist auf die Höhe und die Verformbarkeit der Gold-Ball-Bumps sowie die Bondparameter Druck und Temperatur so abgestimmt, daß die Folie nach der Kontaktierung des Chips mit dem Substrat sowohl an der Chipoberfläche als auch an der Substratoberfläche außerhalb der jeweiligen Anschluß- bzw Kontaktflächen vollständig anliegt und den Raum zwischen Chip und Substrat bis auf die Schweißverbindungen ganz ausfüllt. In Fig. 4.3 ist der mit der Kle¬ befolie (17) versehene Chip (5) mit gegenüber den substratseitigen Gold-Ball- Bumps (3) ausgerichteten Aluminium-Anschlußflächen (4) dargestellt. Beim eigentlichen Verbindungsprozeß durch Thermokompressionsbonden analog dem ersten Ausführungsbeispiel durchstoßen die Gold-Ball-Bumps (3) zuerst die Klebeschicht (17) bevor sie sich unter Druck- und Temperaturein Wirkung verformen und dabei eine vorhandene Oxidschicht auf den Aluminium-An¬ schlußflächen (4) aufbrechen und entfernen. Fig. 4.4 zeigt die fertige Verbin¬ dung zwischen Chip (5) und Substrat (1), wobei die Schweißverbindungen den Chip und das Substrat mechanisch miteinander fixieren und als elektrisch lei¬ tende Verbindungen zwischen Chip und Substrat dienen. Eine zusätzliche me¬ chanische Fixierung zwischen Chip (5) und Substrat (1) bewirkt die eingebet¬ tete Klebefolie (17). Da sie den gesamten außerhalb der Schweißverbindungen zwischen dem Chip und dem Substrat verbleibenden Raum ausfüllt, bewirkt sie zudem eine sehr gute Kompensation von thermo-mechanischen Spannungen.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Verbindung eines elektronischen Bauelements, das auf einer Oberfläche mehrere Aluminium-Anschlußflächen aufweist, mit einem eine Mehrzahl von Kontaktflächen aufweisenden Substrat über zwischen den Aluminium-Anschlußflächen und den Kontaktflächen ausgebildeten Kontaktmetallisierungen, wobei die Kontaktmetallisierungen zumindest zu einem großen Teil aus dem Verbindungsmaterial Gold bestehen, dadurch gekennzeichnet, daß die Kontaktflächen auf dem Substrat mit Kontakthöckem versehen werden, die zumindest zu einem großen Teil aus Gold bestehen, daß mehrere Aluminium-Anschlußflächen des elektronischen Bauelements mit den mit Kontakthöckem versehenen Kontaktflächen auf dem Substrat ausgerichtet werden und daß unter ausschließlicher Einwirkung von Druck und Temperatur eine Verbindung zwischen den Aluminium-Anschlußflä¬ chen und den zu einem großen Teil aus Gold bestehenden Kontakt¬ höckem auf den Kontaktflächen des Substrats hergestellt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Kontakthöcker auf den Kontaktflächen des Substrats derart aus¬ gebildet werden, daß sie eine schmale Kontakthöckerspitze und eine im Vergleich dazu breitere Kontakthöckerbasis aufweisen.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Kontakthöcker, welche auf den Kontaktflächen des Substrats ausgebildet werden, mit einem mechanischen Verfahren, insbesondere dem Ball-Bumping, aufgebracht werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Kontakthöcker auf den Kontaktflächen des Substrats als Gold- Ball-Bumps ausgebildet und dabei insbesondere Verbindungsmaterialen aus mindestens 95 Gewichtsprozent Gold und dem Rest Palladium ver¬ wendet werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Aufbringen der Kontakthöcker auf die Kontaktflächen des Substrats unter Ultraschallbeaufschlagung erfolgt.
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Kontakthöcker auf den Kontaktflächen des Substrats als mehrfach gestapelte Gold-Ball-Bumps ausgebildet werden.
7. Verfahren nach einen der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der bei der Herstellung einer Verbindung zwischen mehreren Alumi¬ nium-Anschlußflächen des elektronischen Bauelementes und den substratseitigen Kontakthöckern aufgebrachte Druck bei einer vorbe¬ stimmten Temperatur ein vorbestimmtes Zeitintervall lang aufrechterhal¬ ten wird.
8. Verfahren nach einen der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß bei der Herstellung einer Verbindung zwischen mehreren Aluminium- Anschlußflächen des elektronischen Bauelementes und den Kontakt¬ höckem auf den Kontaktflächen des Substrats das elektronische Bauele¬ ment geheizt wird, nicht aber das Substrat.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß als Substrat Faserverbundwerkstoffe, Silizium oder eine Keramik verwendet werden.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das elektronische Bauelement und das Substrat neben den Kontakt¬ metallisierungen noch durch eine elektrisch nichtleitende Klebeschicht verbunden werden.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß vor einer Verbindungsherstellung mit dem Substrat auf der die Alu¬ minium-Anschlußflächen aufweisenden Oberfläche des elektronischen Bauelements eine Klebeschicht angeordnet wird.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, daß die Aluminium-Anschlußflächen zumindest teilweise von der Klebe¬ schicht bedeckt werden.
13. Verfahren nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, daß die Klebeschicht als Klebefolie ausgeführt ist.
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß für die Klebeschicht ein Temperatur-aushärtendes Klebemittel ver¬ wendet wird.
15. Verfahren nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß die zur Verbindungsherstellung beaufschlagte Temperatur ausreicht, um die Klebeschicht zu aktivieren.
16. Verfahren nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß das Klebemittel Füllstoffe zur Anpassung der physikalischen und chemischen Eigenschaften enthält.
17. Verfahren nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, daß bei einer Verbindungsherstellung die geometrische Form der substratseitigen Kontakthöcker und/oder der beaufschlagte Druck-Tempe¬ ratur-Verlauf ein Durchstoßen und/oder Verdrängen der Klebeschicht über den Aluminium-Anschlußflächen des elektronischen Bauelements durch die substratseitigen Kontakthöcker bewirkt.
18. Elektronische Schaltung bestehend aus einem elektronischen Bauele¬ ment, das auf einer Oberfläche mehrere Aluminium-Anschlußflächen auf¬ weist, und einem eine Mehrzahl von Kontaktflächen aufweisenden Substrat, wobei mehrere Aluminium-Anschlußflächen mit den Kontaktflä¬ chen des Substrats durch Kontaktmetallisierungen verbunden sind und diese Kontaktmetallisierungen zumindest zu einem großen Teil aus dem Verbindungsmaterial Gold bestehen, dadurch gekennzeichnet, daß als Kontaktmetallisierungen auf den Kontaktflächen des Substrats aufgebrachte Kontakthöcker, insbesondere Ball-Bumps, verwendet sind.
19. Elektronische Schaltung nach Anspruch 18 dadurch gekennzeichnet, daß das elektronische Bauelement und das Substrat neben den Kontakt¬ metallisierungen noch durch eine elektrisch nichtleitende Klebeschicht verbunden sind.
PCT/DE1995/001322 1994-09-23 1995-09-22 Verfahren zum kontaktieren eines elektronischen bauelementes auf einem substrat WO1996009647A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8510532A JPH10503059A (ja) 1994-09-23 1995-09-22 アルミニウム接続面を有する電子部品を基板に接続する方法およびこの方法によって製造された電子回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4434104 1994-09-23
DEP4434104.0 1994-09-23

Publications (1)

Publication Number Publication Date
WO1996009647A1 true WO1996009647A1 (de) 1996-03-28

Family

ID=6529062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001322 WO1996009647A1 (de) 1994-09-23 1995-09-22 Verfahren zum kontaktieren eines elektronischen bauelementes auf einem substrat

Country Status (3)

Country Link
JP (1) JPH10503059A (de)
DE (1) DE19535282A1 (de)
WO (1) WO1996009647A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11016052B2 (en) 2007-08-30 2021-05-25 Pepex Biomedical Inc. Electrochemical sensor and method for manufacturing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1448033A1 (de) * 1996-12-27 2004-08-18 Matsushita Electric Industrial Co., Ltd. Verfahren und Vorrichtung zum Befestigen eines elektronischen Bauteils auf einer Leiterplatte
DE102004055061A1 (de) * 2004-11-15 2006-05-18 Robert Bosch Gmbh Verfahren zur Anordnung eines Flip-Chips auf einem Substrat
JP4568215B2 (ja) * 2005-11-30 2010-10-27 三洋電機株式会社 回路装置および回路装置の製造方法
DE102006045836B4 (de) * 2006-09-22 2015-12-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen einer Durchkontaktierung zwischen zwei Oberflächen eines Halbleitersubstrats
DE102008060862B4 (de) 2008-12-09 2010-10-28 Werthschützky, Roland, Prof. Dr.-Ing.habil. Verfahren zur miniaturisierbaren Kontaktierung isolierter Drähte
WO2024187432A1 (zh) * 2023-03-15 2024-09-19 京东方科技集团股份有限公司 发光基板及其制备方法、发光装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2348325A1 (de) * 1973-09-26 1975-04-03 Licentia Gmbh Halbleiteranordnung mit fuer die drahtlose kontaktierung geeigneten anschlusskontakten
EP0388011A2 (de) * 1989-03-14 1990-09-19 Kabushiki Kaisha Toshiba Verfahren zum Herstellen einer Halbleiteranordnung
EP0402756A2 (de) * 1989-06-07 1990-12-19 Nec Corporation Verfahren zum Herstellen einer Unebenheit auf einer Halbleiterchip-Elektrode und Apparat zur Anwendung dafür

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2348325A1 (de) * 1973-09-26 1975-04-03 Licentia Gmbh Halbleiteranordnung mit fuer die drahtlose kontaktierung geeigneten anschlusskontakten
EP0388011A2 (de) * 1989-03-14 1990-09-19 Kabushiki Kaisha Toshiba Verfahren zum Herstellen einer Halbleiteranordnung
EP0402756A2 (de) * 1989-06-07 1990-12-19 Nec Corporation Verfahren zum Herstellen einer Unebenheit auf einer Halbleiterchip-Elektrode und Apparat zur Anwendung dafür

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11016052B2 (en) 2007-08-30 2021-05-25 Pepex Biomedical Inc. Electrochemical sensor and method for manufacturing

Also Published As

Publication number Publication date
JPH10503059A (ja) 1998-03-17
DE19535282A1 (de) 1996-03-28

Similar Documents

Publication Publication Date Title
DE3888476T2 (de) Elektrische Kontaktstellen und damit versehene Gehäuse.
DE69535629T2 (de) Montage von elektronischen komponenten auf einer leiterplatte
DE69026188T2 (de) Elektrischer Verbinder
DE60219779T2 (de) Flussmittelfreie flip-chip-verbindung
DE69525280T2 (de) Herstellungsverfahren einer mit Anschlusshöckern versehenen Halbleiteranordnung vom Filmträgertyp
DE69622412T2 (de) Verfahren zur herstellung einer elektronischen anordnung mit klebeverbindung mittels eines nachgiebigen substrats
DE69533041T2 (de) Montage von federelementen auf halbleiterbauteilen
DE10033977B4 (de) Zwischenverbindungsstruktur zum Einsatz von Halbleiterchips auf Schichtträgern
DE69325404T2 (de) Leiterschicht-Anordnungen und das Herstellen ihrer elektrischen Verbindungen
DE19524739A1 (de) Kernmetall-Lothöcker für die Flip-Chip-Technik
DE102011079708B4 (de) Trägervorrichtung, elektrische vorrichtung mit einer trägervorrichtung und verfahren zur herstellung dieser
WO2009062757A1 (de) Verfahren zum verbinden zweier fügeflächen
DE69805404T2 (de) Verfahren zum herstellen kontaktloser karten mit antennenverbindung durch gelötete drähte
DE10223738B4 (de) Verfahren zur Verbindung integrierter Schaltungen
EP3555913B1 (de) Halbleitermodul mit bodenplatte mit hohlwölbung
WO1996009647A1 (de) Verfahren zum kontaktieren eines elektronischen bauelementes auf einem substrat
DE69316159T2 (de) Verfahren zum Aufbringen von Kontakthöckern auf einer Halbleitervorrichtung sowie zum Verbinden dieser Vorrichtung mit einer Leiterplatte
DE19646476A1 (de) Verbindungsstruktur
DE112010002901T5 (de) Verbindungsanordnungen und Verfahren zum Herstellen und Verwenden derselben
DE112020003541T5 (de) Leistungshalbleitermodul
DE10233641B4 (de) Verfahren zur Verbindung einer integrierten Schaltung mit einem Substrat und entsprechende Schaltungsanordnung
WO2019243322A1 (de) Diodenlaseranordnung und verfahren zum herstellen einer diodenlaseranordnung
DE102014116030A1 (de) Verfahren zur Herstellung einer Verbindung und Anordnung für eine Chipzusammenstellung mit Direktverbindung
WO1997006557A1 (de) Kontakthöckerloses chipkontaktierungsverfahren und damit hergestellte elektronische schaltung
DE102008011394A1 (de) Montageverfahren für elektronische Bauelemente und Montagebaugruppe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019970701665

Country of ref document: KR

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 809388

Date of ref document: 19970320

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1019970701665

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWR Wipo information: refused in national office

Ref document number: 1019970701665

Country of ref document: KR

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载